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ABSTRACT 

 
DO DIFFERENT PATHOLOGIES AFFECT THE RELATIONSHIP BETWEEN THE 

STIFFNESS OF THE PLANTAR FASCIA AND THE FUNCTION OF THE MTP JOINT? 
 

Madeline Ryan Pauley 
Old Dominion University, 2020 

 Director: Dr. Stacie Ringleb 
 

 

Compared to healthy individuals, individuals with plantar fasciitis and diabetes experience 

material and structural property changes to soft tissues in the feet.  The purpose of this study was 

to compare the relationship between material properties, power absorption, and energy storage 

characteristics to metatarsal power between healthy, plantar fasciitis symptomatic and 

asymptomatic, and diabetic participants.  Investigating material change differences as well as 

energy storage and transfer trends in different pathology groups can lead to a better overall 

understanding of power transfer at the metatarsophalangeal joint (MTP).  Participants were 

recruited for kinematic gait analysis and lower extremity shear wave elastography analysis and fell 

into subgroups of either having plantar fasciitis and having symptoms (PFS, n=11), plantar fasciitis 

without having symptoms (PFA, n=5), diabetic type 1 or 2 (DT1, n=7/DT2, n=8), or age-matched 

healthy controls (n=16).  There was no significant difference between subgroups at either the 

plantar fascia (PF) proximal or distal region.  PFS presented statistically significant (p=.02) 

reductions in the total range of motion consistent with prior literature. Insignificant differences in 

the Redistribution Ratio between subgroups, which is the ratio of total positive work performed 

by MTP joint musculature to the proximal joint musculature, suggests that work is performed about 

the MTP similarly in both eccentric and concentric motions.  PFA was found to have a positive 

relationship between eccentric peak power and the PF proximal (r=.897, p=.003), as well as a 



negative relationship between concentric peak power and the PF distal stiffness (r=-.72, p=.044).  

These observations suggest that there may be an altered mechanism of moment execution in the 

plantarflexion propulsion movement in a PFA population.   
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PF  Plantar Fascia 
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PFS  Plantar Fascia Symptomatic 

DT1  Diabetes Type 1 

DT2  Diabetes Type 2 

MTP  Metatarsophalangeal joint  

TROM  Total Range of Motion 

RR  Redistribution Ratio 
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INTRODUCTION AND REVIEW OF LITERATURE 
 
 

 
The foot is a conservational machine that allows for constant and consistent recycling of 

mechanical energy during locomotion.  Three key events occur within a single gait cycle; during 

the stance phase, gravitational and kinetic energy are exchanged to conserve energy; in the swing 

phase, the leg transition is mainly passive, and lastly, the end foot-ground impact [1].  Energy 

transfers at all three of these motions are necessary to preserve smooth walking dynamics, but 

the focus of this study is the energy transfers during stance at the metatarsophalangeal joint 

(MTP). 

 
Anatomy 
 

The human foot is configured to optimize propulsive and locomotive efficiency [2].  

Within each foot, there are five metatarsophalangeal joints located between the proximal 

phalanges of the toes and the metatarsal bones of the foot.  They are categorized as a condyloid 

joint because the rounded surface of the metatarsal bones connects to the cavity made by the 

proximal phalanges.  They act to provide a broad support area for the forefoot and assist 

primarily in energy absorption during the terminal stance of the gait cycle [3].  These joints can 

accomplish abduction, adduction, flexion, extension, and circumduction and are anchored by 

collateral ligaments, plantar ligaments, and deep, transverse metatarsal ligaments.  Abduction is 

defined as a movement away from the midline. Adduction is a movement towards the midline. 

Flexion refers to a movement that decreases the angle between two body parts, extension refers 

to a movement that increases the angle between two body parts, and circumduction can be 

defined as a conical movement of a limb extending from the joint where the movement is 

controlled.   



 

 

2 

One complete gait cycle runs from one initial heel strike to the next initial contact of the 

same foot (Figure 1).  Initial contact refers to the point at which the first foot contacts the ground 

and is classified as 0% stance.  Heel rise refers to the heel lifting from the ground and occurs at 

around 30% of the gait cycle.  The initial contact of the opposite foot occurs at 50% of the gait 

cycle, and toe-off occurs when the foot leaves contact with the ground at around 60% of the gait 

cycle.  Throughout the gait cycle, the first metatarsal joint has plantarflexion and dorsiflexion 

motions that help adjust the flexibility and stability of the medial longitudinal arch.  At heel 

contact during normal walking, the MTP is slightly extended in an overall dorsiflexion motion.  

From heel contact to heel-off, the MTP is then in a relatively neutral position for stability.  As 

the foot begins the toe-off propulsive motion, the MTP again dorsiflexes, followed by a 

significant plantarflexion as the step motion is completed.   

 
 
Figure 1 Complete gait cycle illustration accompanied by terminology 
 

 
This figure was published in Kinesiology of the Musculoskeletal System, Edition 2, Donald A. 
Neumann, Pg. 636, Copyright Elsevier Health Sciences (2013). Reprinted with permission. 
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The plantar aponeurosis is a strong layer of fibrous connective tissue laterally divided 

into three sections that line the bottom of the foot [4].  It originates at the medial tubercle of the 

calcaneus and extends distally towards the toes, where it is further divided into five separate 

divisions that straddle the flexor tendons of each toe [4, 5].   

 
Properties of the Plantar Fascia 
 

The plantar fascia was first described as a 'truss'-like structure with the calcaneus, talus, 

navicular, three cuneiforms, and the first, second, and third metatarsals forming the medial 

longitudinal arch of the truss and the plantar fascia acting as the rod that ran from the phalanges 

to the calcaneus [6].  The structure allows for downward vertical forces to be displaced flatly 

onto the medial longitudinal arch and for ground reaction forces to travel upward on the 

calcaneus and metatarsal heads [7].  This further accentuates the flattening effect of the medial 

longitudinal arch when weight-bearing, yet the truss does not experience collapse due to the role 

of the plantar fascia.  The tension of the plantar fascia while weight-bearing maintains the 

integrity of the truss and prevents the spreading of the calcaneus and metatarsals [8, 9].  This 

phenomenon is known as Windlass-Mechanism.   

A windlass, by definition, is a tightening of a cable or rope about a cylinder.  During 

dorsiflexion of the metatarsals, the plantar fascia becomes taut about the head of the metatarsal, 

and it is this tension that serves to shorten the distance between the calcaneus and metatarsals 

and, in contrast, elevate the medial longitudinal arch [8].  As such, the windlass function of the 

plantar fascia is extremely important during the toe-off phase of walking [6, 10, 11].  Its tension 

essentially transforms the midfoot joints into a firm lever that is effective in transmitting plantar 

flexor force during the terminal-stance phase of gait [12].  The largest support for the plantar 

fascia acting as a windlass comes from the nearly complete disappearance of the effect in 
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paralyzed feet as well as in feet that had undergone fasciotomies [6, 13].  Furthermore, several 

cadaveric in vitro studies reveal its contribution to medial longitudinal arch support in static 

stance as a deterioration of arch integrity is compromised by sectioning [14-16].   

The Windlass-mechanism affects all of the joints in the foot but understanding the 

movements of the metatarsals is essential to understanding other motions within the foot caused 

by Windlass.  During a closed kinetic chain plantarflexion movement, the toe-off motion in 

walking, for example, the first metatarsal moves proximally, causing the medial cuneiform, 

navicular, and talus proximal to it to have to move out of the way to allow for a full 

plantarflexion and arch raising [9].  The opposite motion of this same joint attributes to arch 

lowering.  While motions do occur in all three planes, the largest of the Windlass mechanism 

motions occur in the sagittal plane, making the sagittal plane movement of the first 

metatarsophalangeal joint a focus of study.    

The plantar fascia can store and return a portion of the strain energy during a quasi-elastic 

recoil, which dictates its fundamentality to medial longitudinal arch integrity; therefore, it can be 

theorized that the plantar fascia, along with other soft tissues, comprises a passive force 

mechanism that has the capability of modifying medial arch stiffness in accordance with an 

applied load [17, 18].  Because the plantar fascia is the largest contributor to arch maintenance, 

applied loads will increase the stiffness of the arch in a regulated manner to a finite deformation 

[18, 19].  As previously described, dorsiflexion of the toes results in a Windlass-Mechanism 

driven result of a shortened plantar fascia length and increased tension [6].  During an unloaded 

plantarflexion about the metatarsals, the plantar fascia raises the arch.  However, in a loaded 

condition, such as static stance, a plantarflexion of the metatarsals is resisted by ground reaction 

forces.  The greatest effect of the Windlass-Mechanism in any of these motions, however, is seen 
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during dorsiflexion of the hallux when the plantar fascia is pulled about the first metatarsal head 

due to its relatively large structure and curved surface [20].  With any structure existing in the 

body, however, there is a finite amount of tension it can bear before failure.  With the 

deterioration of the plantar fascia comes irregular stiffness and loading patterns. If the plantar 

fascia is compromised, it should be seen at the level of the metatarsophalangeal joint about 

which the medial longitudinal arch is stabilized and speak to medial longitudinal arch integrity.  

Compromised metatarsophalangeal joint kinematics due to pathology that are correlated with 

plantar fascia stiffness could illuminate nuances in power transfer not yet identified in other 

literature. 

Like any soft tissue structure in the body, the material properties of the plantar fascia can 

be influenced by water content, size, and collagen fiber orientation, therefore making these 

properties difficult to estimate [21].  An in vitro study by Wright and Rennels reported ranges of 

the modulus of elasticity to fall between recorded measures of other human connective tissue in 

the lower leg; ligament and tendon, which have experimental upper and lower bounds of about 

50 and 1500 MPa, respectively [22-24].  The complex nature of the plantar fascia stemming from 

its unusual geometry and the trickiness of taking accurate measures of soft structures most likely 

renders findings of true stiffness to be speculative at best.  However, it is ventured that while the 

plantar fascial material properties are variable, it falls somewhere in between a ligament and 

tendon [17].  These properties can change in the presence of pathology, specifically plantar 

fasciitis [25].   
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Plantar Fasciitis Diagnosis 
 

Plantar Fasciitis (PF) is a degenerative disorder of this connective tissue that typically 

presents itself as a stabbing pain in the medial heel.  A positive diagnosis for PF depends on a 

combination of risk factors, reported symptoms, and exam findings from a physician [26].  Some 

of these risk factors include excessive running, high arch, weak intrinsic muscles, pes planus, 

prolonged time spent on feet, obesity, Achilles tendon tightness, and others [27-30].  It is also 

common for individuals with symptomatic PF to experience heel tightness following a long 

period of being seated or in the morning after standing up for the first time of the day.  A 

physical exam usually reveals sensitivity at the medial heel with palpation.  Diagnostic 

evaluation, such as ultrasound or X-ray, is not typically used in diagnosis unless to rule out other 

causes of heel pain, such as a bone spur.   

As such, there are a variety of avenues for treatment to alleviate pain.  Early recognition 

and frequent rest are key in lessening the amount of time to recovery, which is typically in a 

window of 6-18 months [31-33].  Resting and limiting weight-bearing can often be the most 

effective and significant source of relief, as well as avoiding footwear with poor support.  Arch 

support and orthotics are other affordable options for PF, which is inclusive of arch taping, 

strapping, orthotics, or heel cupping [34].  One other low-cost option that has shown significant 

results in alleviating plantar fasciitis symptoms is stretching and strengthening exercises tailored 

to targeting the aforementioned functional risk factors such as Achilles tightness and weak 

intrinsic muscles [35].  

While contention still exists as to the pathogenesis of plantar fasciitis, it is believed to be 

a similar mechanism to tendinosis (tendon inflammation).  A general consensus exists that 

extended overuse and overload of the plantar fascia results in microtears in the fascia, which 
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triggers an inflammatory response for repair [17, 36].  The inflammatory response, though, is not 

quickly successful as the sufferer continues heel strike and prolongs microtrauma to result in a  

painful chronic inflammation [37-40]. Plantar Fasciitis can be debilitating for everyday activities 

for those that suffer from it, and the Windlass Mechanism can provide a plausible explanation as 

to why.  Increased forces on the first metatarsal head and hallux create an increased tension on 

the plantar fascia [6].  Upon stretching, the individual may feel pain in the plantar fascia, at the 

attachment to bone, or both.   

When coping with the pain of plantar fasciitis, individuals adopt alternative loading 

patterns during gait to alleviate pain.  When compared to controls, individuals with symptomatic 

plantar fasciitis experience less significant vertical ground force peaks, which suggest a lower 

overall energetic gait profile likely due to avoidance of a normal loading of the heel [41, 42].  

Multiple studies have been done that evaluate heel kinetics (contact duration, peak pressure, 

hindfoot impulse) in plantar fasciitis symptomatic individuals, but all have concluded that they 

remain unchanged [42-44].  However, these same studies disagree regarding forefoot and 

midfoot loading. Bedi and Love showed plantar fasciitis resulting in lower midfoot impulses 

during gait and increased forefoot impulse, while Katoh et al. showed the opposite [42, 44].  As 

such, there is not a definitive agreement as to loading trend in a symptomatic plantar fascia foot.  

This also speaks to the poor understanding of joint mechanics, especially at the first metatarsal 

joint.  Mechanical overload is necessary to plantar fasciitis development, and because of the 

plantar fascial driven Windlass-Mechanism about the first metatarsal head, it is entirely possible 

that effects from loading pattern can actually be seen in kinematic changes at the first 

metatarsophalangeal joint rather than simply in plantar pressures and identify relationships not 

yet identified in other literature. 
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Diabetes Background, Pathology, and Diagnosis 
 

Diabetes Mellitus affects millions of people in the United States alone.  In 2018, the 

Centers for Disease Control (CDC) reported an estimated 26.9 million people of all ages - 

roughly 8.2% - had diagnosed diabetes [45].  The two overwhelming categories of diabetes are 

Type 1 and Type 2 Diabetes.  Type 1 diabetes is characterized by the destruction of the beta cells 

produced in the pancreas due to an autoimmune disorder and accounts for roughly 10% of all 

diabetes cases [46].  Beta cells are responsible for producing insulin for the body to decrease 

blood sugar, and therefore treatment for this disease requires insulin delivery via routine shots or 

an insulin pump.   

Type 2 Diabetes, which attributes to a much greater percentage of the population of 

individuals affected by diabetes, is caused by a combination of insulin resistance and subsequent 

deficiency.  The inability for insulin to perform its intended action results in a constant state of 

hyperglycemia that, if untreated, can lead to extensive damage in a wide range of areas including 

various organs leading to failure, the eyes, kidneys, nerves, heart, circulatory system [46].  This 

particular category of diabetes can typically go unnoticed for years because the effects of the 

initial hyperglycemia can be gradual and non-severe.  A large percentage of patients diagnosed 

with type 2 diabetes are obese, as obesity itself typically results in mild insulin resistance.  It is 

usually when patients begin to experience effects from the hyperglycemia, such as increased 

thirst, headaches, fatigue, or notice a high blood sugar count, that they seek out medical 

attention.  Diabetes mellitus can be diagnosed from plasma glucose in three different ways; if 

fasting plasma glucose is ≥ 126 mg/dl, if casual fasting glucose is ≥ 200 mg/dl, or if 2-hour 

plasma glucose is ≥ 200 mg/dl [47]. For this study, individuals were considered diabetic if they 

met HbA1c criteria put forth by the American Diabetes Association.  HbA1c concentrations is an 
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objective measure of glycemic control and a positive diagnosis is an HbA1c value greater than or 

equal to 6.5%.  There is a wide variety of diets and medications available to treat the disorder of 

diabetes mellitus itself, but oftentimes the disease causes other physical complications that 

require additional treatment methods.  

Diabetes can cause an array of problems that can affect kinematics, kinetics, gait, and 

physical properties in the lower extremities, including but not limited to Charcot Neuropathy, 

claw toes, hammertoes, hallux valgus, heel pain, and alterations of skin thickness [48-50]. Once 

diabetics develop peripheral neuropathy, the prescribed treatment is critical in preventing 

irreversible damage from an assortment of other complications including, but not limited to, 

increased plantar pressure, foot deformity, or gait instability; all of which are predecessors to 

diabetic ulceration [49, 51-53].  The pathophysiology of the diabetic ulcer largely explains why 

peripheral neuropathy in combination with biomechanical alterations is a frequent culprit to 

blame [54].   

The diabetic ulcer typically develops across three stages. In the first stage, a callus forms 

and can be exaggerated by altered gait patterns [55].  This continued trauma continues into a 

second stage due to the inability to feel the feet or any pain or irregularity associated with the 

area.  Diabetics then also develop dry skin conditions from autonomic neuropathy, which makes 

them further susceptible.  Finally, the continuous trauma of the callus results in a subcutaneous 

hematoma that eventually rubs away or bursts to reveal an open wound- an ulcer [55, 56].  These 

ulcers have a difficult time healing due to the development of extreme atherosclerosis of the 

blood vessels in the lower extremity.  The restricted blood flow makes a diabetic patient 

exceptionally susceptible to infection and resistance to healing, which, if severe enough, can lead 

to necrosis, gangrene, and amputation.  The severity of the complications that can occur from 
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altered kinematics and gait patterns detailed thus far call for any identifiable correlations to be 

investigated.  As ulcers are most common in the toe and forefoot area, the kinematics and 

propulsive forces happening in this region are pertinent [54, 57].  Identifying and understanding 

trends in feet that do not yet have neuropathy or diabetic ulcers is the most important key in 

prevention.  For example, Birke et al. found that reductions in MTP dorsiflexion play a factor in 

plantar ulceration of the great toe, and the ability to acknowledge a reduction in the range of 

motion at the first MTP allows for anticipatory action to be taken to prevent a more severe 

wound state, such as toe ulceration, from occurring [58]. 

Because of the metatarsophalangeal joint's role in gait and the possibility that its 

mechanical function might change in the presence of pathology makes it an interesting focus of 

study.  For example, as loading conditions are altered in the presence of disease, the 

metatarsophalangeal joint function may change to compensate for a deteriorated loading 

condition or weight distribution changes, both of which have been associated with skin 

breakdown and amputation [59].  As earlier described, diabetes, especially diabetes accompanied 

by peripheral neuropathy, can cause intrinsic muscle and soft tissue deterioration throughout the 

foot.  This has been associated with a decreased range of motion at the first metatarsophalangeal 

joint and lower maximum power [60].  This decreased range of motion has been associated with 

increased plantar fascia thickness, as well as increased stiffness and reduced passive range of 

motion at the first metatarsal [61].   

Alterations of the first metatarsophalangeal joint in gait and other biomechanical factors 

in diabetics are critical to understanding energy profiles and transfer.  Most literature concerning 

these properties is focused on diabetics with peripheral neuropathy, and not as much is available 

for non-neuropathic diabetics.  It is critical that the energy profiles of this population specifically 
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be explored so that potential preventative measures can be identified for the purpose of avoiding 

a neuropathic state. To date, it has been shown that the range of motion at the metatarsal heads is 

decreased in diabetics when compared to non-diabetics, especially at the first 

metatarsophalangeal joint, and that this reduction is most prominent in those with a history of 

ulceration [60, 62, 63]. It is clear that some musculoskeletal changes are also at play in diabetics, 

especially those with neuropathy.  For example, intrinsic muscle atrophy leads to a reduced 

support surface and an increased reliance on bony structures, which leads to significantly higher 

peak plantar pressures at the mid- and forefoot [64-67]. Moreover, ground reaction forces and 

plantar pressures are significantly different in diabetics, at both the initial contact and toe-off 

phases of gait.  Intrinsic soft tissues may show signs of deterioration prior to the onset of 

neuropathy, and so kinematic observations in non-neuropathic diabetics could be enlightening to 

trends seen in a disease state where prevention measures can still be applied [68].  Therefore, 

because the relationship has not been studied to date, further research is needed to explore 

potential causal pathways and to develop an understanding of how plantar fascia stiffness 

impacts metatarsophalangeal joint function. 

Patients of both plantar fasciitis or diabetes experience material property changes and 

biomechanical changes, but they have only been compared to non-disease state controls [25, 61, 

69-74]. Given the importance of the plantar fascia in elastic energy storage, change in material 

properties could lead to alterations in efficiency energy storage [7, 22]. If plantar fascia stiffness 

alters other kinematic variables within a pathology group, it would be beneficial to examine how 

stiffness is related to kinematics outside the disease states.  Comparison to another pathologic 

population could provide insight into alterations of properties of foot structures, their effect on 

kinematics, and potential energy transfer mechanisms that are otherwise not attainable by 
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comparisons within pathologic groups or their corresponding healthy controls.  This study 

proposes a novel comparison between gait profiles, power transfer, and kinematic and kinetic 

differences specific to the metatarsophalangeal joint in both plantar fasciitis and diabetes 

participants to discern similarities or divergences between variables in pathologies.   
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METHODS 
 
 

 
Subjects: 
 

Forty-eight total participants from a de-identified data set were included in this study and 

divided into subgroups: Diabetes Type 2 (DT2), Diabetes Type 1 (DT1), Plantar Fasciitis 

Symptomatic (PFS), Plantar Fasciitis Asymptomatic (PFA), and Control.  Fifteen individuals 

with diabetes (DT1 n=7, DT2 n=8), sixteen healthy controls, eleven individuals with active 

plantar fasciitis symptoms (PFS), and five individuals with a history of plantar fasciitis 

symptoms, but currently asymptomatic (PFA). The left and right feet of each patient were 

considered separately.  

 
Inclusion and Exclusion Criteria 
 

Participants were placed into the PF Symptomatic subgroup if within the past week prior 

to selection they had experienced the following situations consistent with most plantar fasciitis 

sufferers: plantar medial heel pain when taking the initial steps following a period of inactivity, 

heel pain that worsens with prolonged activity/weight-bearing, heel pain triggered by a recent 

increase in weight-bearing activity, or heel pain when palpated at the proximal PF insertion site.  

Participants were recruited to the PF Asymptomatic group if they self-reported history of these 

criteria but had not experienced any heel pain in the past week prior to data collection. Any 

individual with previous foot surgery or diagnosed osteoarthritis was not considered for the 

study.    

Diabetic participants were recruited, either type 1 or type 2, if they had not had previous 

foot surgery, diagnosed osteoarthritis, gross foot deformities that affect walking ability, edema, a 

current foot ulcer, or a wound history less than three months prior to the study. The exclusion 
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criteria were designed to avoid the inclusion of people with problems impacting on mobility that 

would likely mask the biomechanical subtleties of the metatarsophalangeal joint.  In order to be 

considered a diabetic, an individual had to meet the standards put forth by the American Diabetic 

Association and have a Hemoglobin A1c (HbA1c) level of ≥6.5%.   

 
Elastography Data Collection: 
 
 
 
Figure 2 Example shear wave elastography (SWE) measurement of the proximal plantar fascia 
site including the 1mm circular region of interest. 
 

 
 

 

 

Bilateral shear wave elastography (SWE) measurements were taken of the Plantar Fascia 

at a proximal and distal site, located at roughly 45% and 75% of foot length from the most 

posterior aspect of the heel, respectively. All images were taken in the longitudinal view while 

the foot was in a prone, relaxed position with the feet hanging off of an examination table above 

the ankles.  Quantitative measurements of stiffness were assessed and quantified with SWE taken 

on an Aixplorer ultrasound system (SuperSonic Imagine, Aix-en-Provence, France). Shear 

modulus was determined in a 1 mm circular region of interest placed in the middle of the tissue 
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at each measurement site (Figure 2).  The mean shear modulus of three measurements was 

averaged and reported as stiffness for both PF proximal and PF distal. 

Motion Analysis Data Collection: 
 

Three-dimensional motion analysis testing was performed using a 12-mm marker set.  

Reflective markers were placed in the following locations: each iliac crest, the greater 

trochanters, medial and lateral femoral condyles, medial and lateral proximal tibia, medial and 

lateral malleoli, the first and fifth metatarsal heads, and the tip of the shoe, as detailed in a 

similar study by Willson et al. (Figure 3) [75].  An additional marker was placed at the base of 

the first phalanx to use as a tracking marker for the distal foot segment.  These markers were 

collectively used to create segmental coordinate systems and shank, femur, and pelvis were 

established as rigid bodies.  The foot was broken into three segments; toes, forefoot and rearfoot.  

After a standing calibration, the anatomical markers were removed so as not to alter the gait 

pattern of the individual.  Throughout the trials, some reflective markers stayed in place and 

were positioned as a cluster of three markers on the rearfoot of the shoe, a cluster of four markers 

on the posterior shank, and a cluster of four markers on the lateral thigh. The pelvis was tracked 

using bilateral anterior and posterior superior iliac spines and the L5–S1 interspace.   
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Figure 3 Marker placement during standing calibration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Marker data in each condition were collected at 200 Hz using a ten-camera motion 

capture system (Qualysis AB, Gothenburg, Sweden) positioned around a treadmill (Bertec Corp, 

Columbus, Ohio, USA). Participants were given a minimum of two minutes of practice to 

familiarize themselves with the treadmill and performed the trials in conventional footwear.  

Participants were asked to walk at a speed of 1.3 m/s over a thirty-second interval, as it has been 

noted in previous literature that faster than preferred walking speeds show more exaggerated 

changes in propulsive force, moment, and angle in lower limb joints [76-79]. Also, a study by 

Caravaggi et al. showed that plantar fascia strain remains similar throughout different speeds 

tested [80]. 
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Figure 4. Screenshot of Visual Studio analysis.  Blue and red lines represent heel strike and toe-
off, respectively. 
 
 

 
 
 
 
 

The time when the vertical ground reaction force exceeded 50 N was deemed the first 

initial contact. Participants successfully demonstrated acceptable foot strike patterns during the 

experiment, and no data were excluded based on the foot strike pattern. Marker and ground 

reaction force data were used together to calculate 3D ankle, knee, and hip internal joint 

moments and joint kinematics (Visual 3D, C-Motion Inc., Rockville, Maryland, USA) (Figure 

4).  For the MTP,  X-direction represented the medial/lateral axis, Y was the anterior/posterior 

axis, and Z was the vertical axis for the virtual rearfoot and forefoot (Table 1).    
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Table 1 Foot segment directions of motion 

 
 

 

 

 

The coordinate system for the proximal rearfoot segment, however, did not follow this 

same convention.  The proximal rearfoot is used to create a segment endpoint at the ankle joint, 

but with a six degree of freedom joint, there is no obvious link connecting the segments.  

Because Visual 3D recognizes any two segments in proximity to be linked, the proximal rearfoot 

segment was identified to simulate the motion experienced at the talocrural joint.  For the 

proximal rearfoot segment, X remained the medial/lateral axis, but Y points dorsally and Z 

points in the direction of the back of the shoe (from distal to proximal endpoints). For all 

kinematic calculations, the virtual rearfoot was modeled as being flat on the floor with the ankle 

at 90 degrees in normal standing. An inverse dynamic approach relative to the reference frame of 

the distal segment at each joint was used to calculate internal joint moments (Figure 5). The 

inverse dynamics calculations that used marker data and ground reaction force data were 

digitally filtered using a low pass, fourth-order Butterworth recursive filter at the same cut-off 

frequency (10 Hz) [81, 82]. 

 

 

 

 

  

Foot segment angles Sagittal Frontal 

MTP Dorsiflexion (DF): + Inversion: − 

Plantarflexion (PF): − Eversion: + 
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Figure 5 Marker placement and inverse dynamics of two segment foot model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data Processing and Analysis 

The number of participants and total number of feet used in the study differed. Each foot 

of a recruited subject was used as an independent data source.  Plantar fasciitis symptoms can be 

unilateral, as well as ulceration in diabetics, so there is some reason to believe that feet are not 

directly related to each other in these two circumstances.  Due to the feet of diabetics and plantar 

fasciitis individuals being more independent, considering them individually for analysis was 

more appropriate.  People with plantar fasciitis who had unilateral symptoms had only the 

affected foot included in the study, where individuals with bilateral symptoms had both feet in 

the study.   

Dependent variables of interest for this study included peak metatarsophalangeal 

eccentric and concentric power, moment, total range of motion, and joint reaction force.  Work 

for the MTP was determined by integrating and the power time series data of six steps over each 

stance phase and averaging.  These values were all correlated with plantar fascia proximal and 
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distal stiffness values.  The power, moment, and range of motion data of the ankle joint was also 

considered as a secondary measure for trend comparison.  In addition to the analysis, data was 

also normalized to stance for ease of visualization. 

In order to determine a subject's reliance on distal vs. proximal foot muscles in generating 

positive power during waking, a redistribution ratio (Equation 1) was established from a study by 

Browne et al. and utilizes stance phase positive MTP and proximal joint work values [83].  A 

custom Matlab (The Mathworks, Natick, MA) code was developed for visualizing normalized 

data, including MTP joint angle, power, joint reaction force, and moment (Appendix A). Two 

custom Python™ programs were also developed to recruit data efficiently from exported .txt 

files (Appendix B) and to integrate data when necessary (Appendix C). 

 
Equation 1 Redistribution Ratio 

𝑅𝑅 = 1 −
𝑊&'(

) −𝑊(*+,
)

𝑊&'() +𝑊(*+,)  

 
 
 

The Redistribution Ratio (RR) was calculated to quantify the extent that an individual 

walks with a distal to proximal redistribution (Equation 1). WMTP refers to the total positive work 

performed by MTP musculature, and WProx refers to total positive work performed by proximal 

joint musculature, which is representative of ankle work. Joint work, both positive and negative, 

was determined by taking the integration of the stride-averaged power versus time profile. The 

RR is bounded between 0 and 2, where 0 signifies that all positive work was performed about the 

MTP and 2 signifies that all positive work is performed about the proximal joint musculature. 

Accordingly, lower and higher RR values denote low and high distal-to-proximal redistribution. 

MTP moment impulse and angular impulse were calculated by integrating the joint 

moment and the force-time integral, respectively. One-way ANOVA was performed on the raw 
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data for 1st metatarsophalangeal joint total range of motion (TROM), power, joint reaction force 

(JRF), and moment. Linear regressions and bivariate Pearson correlative analysis were 

performed between these measures and stiffness of the plantar fascia proximal and distal sections 

to determine any relationships and measure the strength and direction of the relationship.  For 

post-hoc multiple comparisons of the means, the Tukey test was used. Significance was defined 

as p ≤ .05 and trends were defined as .05 ≤ p ≤ .10.  
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RESULTS 
 
 
 

 
There were no significant differences between groups for height or weight; however, 

diabetics were found to have higher BMIs of 32.5, and PF Symptomatic individuals were older 

in age when compared to controls (Table 2).  Additionally, BMI trended higher in PFS 

participants. 

 
 
Table 2 Subject group demographics. Statistical significance indicated by bold font and * 
(p≤0.05) for a difference from controls. Trends indicated by † (0.05<p≤0.10). 
 
 

Demographics Control Diabetic PFA PFS 
N Participants 16 15 (7DT1/8DT2) 5 11 

N feet used 32 (12DT1/16DT2) 8 17 
Sex 2M/8F 2M/13F 1M/5F 3M/8F 

Age (yrs) 36.0 (7.9) 35.9 (11.0) 42.5 (8.5) 50.9 (6.9)* 
Height (cm) 170.16 (11.6) 165.27 (12.8) 169.2 (8.5) 171.7 (12.6) 
Weight (kg) 75.6 (21.9) 88.8 (19.4) 82.2 (17.3) 92.2 (24.8) 
BMI (kg/m2) 25.75 (4.9) 32.5 (6.0)* 28.8 (4.9) 31.0 (5.8) † 

Years with Diabetes  9.4 (9.5)   
Years with Plantar 

Fasciitis 
  4.3 (4.1) 2.9 (2.8) 

 
 

 

When the elastography data were examined, there was no significant difference in plantar 

fascia stiffness at either the distal region or proximal between groups. However, on average, PFA 

and DT2 held the highest stiffness values in both regions (Figure 6).  There was high variability 

of stiffness within participants with type 2 diabetes in both the proximal and distal plantar fascia, 

as shown by the presence of outliers (Figure 6) and large standard deviations (Table 3).   
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Figure 6 Boxplots of proximal (A) and distal (B) plantar fascia stiffness in PFS, PFA, Control, 
DT2, and DT1.   
 
(A)       (B) 

 
 
 
 
Table 3 Proximal (A) and distal (B) plantar fascia stiffness averages and standard deviation. 
 
 
(A)       (B) 

 
 
 

Spatiotemporal data, shown in Table 4, show that there was no significant difference 

between groups in step length or steps per minute, but that the DT1 group experienced 

statistically significant lower overall stride times (p=.002) and step time (p=.000) when 

compared to controls.  The PFS group also experienced lower step times (p=.001). 

 

PF 
Distal             N     Mean 

Std. 
Deviation 

PFS 17 92.0 31.1 
PFA 10 114.0 46.4 
Control 32 79.9 42.3 
DT2 16 108.0 60.4 
DT1 12 85.0 51.5 
Total 85 91.6 46.9 

PF Prox 
Stiffness             N   Mean 

      Std.           
Deviation 

PFS 17 114.1 74.1 
PFA 8 185.4 62.5 
Control 32 149.3 75.7 
DT2 16 185.8 118.4 
DT1 12 132.6 44.0 
Total 91 150.6 82.1 
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Table 4 Spatiotemporal data among subgroups 
 
 

 Stride Time Step Time Step Length (m) Steps/Minute 
DT1 .98 (.06) (p=.002) .49 (.03) (p=.000) 0.63 (.04) 124.1 (8.0) 
DT2 1.04 (.04) .52 (.02) 0.67 (.03) 117.2 (6.1) 
Control 1.04 (.09) .53 (.03) 0.67 (.05) 118.1 (10.3) 
PFA 1.04 (.07) .52 (.04) 0.66 (.05) 118.2 (8.6) 
PFS 1.01 (.03) .51 (.01) (p=.001) 0.65 (.02) 120.0 (3.0) 

 

Plantar fasciitis symptomatic participants experienced a statistically significant lower 

total range of motion at the MTP (p=.02), which can be seen in the range of motion data across 

100% of stance (Figure 7).  The DT1 group also trended lower in TROM (p=.063).  Two local 

maxima were recorded at the MTP as well as an overall minimum angle achieved; however, 

there were no significant differences in the minimum or either local maximum angles achieved 

(Table 5 A).  There was found to be no correlation between the TROM and PF proximal or distal 

stiffness values and r correlations, while not significant, varied both positive and negative (Table 

5 B). 

 
Figure 7 Total range of motion at the MTP across 100% of stance 
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Table 5 Average local maximums and minimum, TROM, and significance (A), and correlation 
coefficients between the subgroup TROMs versus plantar fascia proximal or distal stiffness (B).  
Statistical significance indicated by bold font and * (p≤0.05) for a difference from controls. 
Trends indicated by † (0.05<p≤0.10). 
 
(A) 

 
(B) 

TROM vs. PF 
Proximal 

Pearson's R Significance 

DT1 0.487 0.108 
DT2 0.149 0.596 
Control 0.118 0.536 
PFS -0.365 0.15 
PFA 0.265 0.526 
TROM vs. PF Distal 

 

DT1 0.25 0.433 
DT2 0.167 0.537 
Control -0.261 0.164 
PFS -0.388 0.124 
PFA -0.388 0.342 

 

 

MTP power graphs exhibited a negative eccentric power peak followed by a positive 

concentric power peak, but there was no significant difference between subgroup MTP 

maximum or minimum power between subgroups when compared to control (Figure 8 A, Table 

6 A), likely due to large value distribution among participants (Figure 8 B).  DT2 minimum 

power did, however, differ significantly from DT1 when compared (p=.038) While not 

significant, the control group had the lowest average concentric (positive) power, and PFA had 

SubGroup Max MTP 
angle from 0-
20% stance 

Max MTP 
angle from 80-
100% stance 

Min 
MTP 
angle 

TROM P when 
compared to 

control 
DT1 7.5 (8.6) 19.0 (9.9) -3.1 (5.3) 22.1 (8.4) .063 † 
DT2 8.7 (6.7) 19.6 (6.5) -3.5 (5.4) 23.1 (3.7) .13 

Control 12.0 (11.9) 22.7 (11.4) -4.2 (6.9) 26.9 (6.1)  
PFA 10.4 (5.5) 20.5 (9.8) -3.3 (7.2) 23.9 (3.4) .67 
PFS 12.8 (9.7) 20.2 (5.4) -1.9 (4.9) 22.1 (2.9)*  0.02 
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the highest, while DT2 had the lowest eccentric (negative) power, and the Control group had the 

largest. The plantar fascia proximal and distal stiffness of each subgroup was compared 

individually against both maximum and minimum power values. Statistically significant 

correlations were found between PFA minimum power and PF proximal as well as PFA 

maximum power and PF distal, and one trend was noted in the PFS group between maximum 

power and PF proximal (Table 6 B). 

 
 
Figure 8 Subgroup average MTP power vs. percent stance (A) and eccentric power distribution 
(B) 
 
 
(A)           (B) 
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Table 6 Subgroup average maximum (concentric) power and negative (eccentric) power and 
standard deviation (A), Correlation coefficients and significance for MTP concentric and 
eccentric power vs. plantar fascia proximal and distal (B).  Statistical significance indicated by 
bold font and * (p≤0.05) for a difference from controls. Trends indicated by † (0.05<p≤0.10). 
 
(A) 

 (B) 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Subgroup Avg. Max Power 

P when 
compared to 

Control Avg Min power 

P when 
compared to 

Control 

DT1 0.40 (.19) 
.786 

-1.18 (.45) 
.642 

DT2 0.38 (.16) 
.998 

-1.03 (.23) 
.249 

Control 0.3753 (.14)  -1.16 (.24)  

PFA 0.47 (.12) 
.251 

-1.05 (.25) 
.941 

PFS 0.37 (.11) 
.983 

-1.10 (.25) 
.92 

Maximum Power vs. PF Proximal Pearson's R Significance 
DT1 -0.059 0.855 
DT2 0.178 0.525 
Control 0.278 0.136 
PFS 0.468 0.058 † 
PFA 0.255 0.542 
Minimum Power vs. PF Proximal   
DT1 -0.062 0.848 
DT2 -0.193 0.474 
Control 0.026 0.893 
PFS -0.242 0.35 
PFA 0.897 0.003* 
Maximum Power vs. PF Distal   
DT1 0.132 0.681 
DT2 -0.047 0.864 
Control 0.084 0.658 
PFS -0.34 0.182 
PFA -0.72 0.044* 
Minimum Power vs. PF Distal   
DT1 -0.369 0.238 
DT2 0.186 0.489 
Control 0.098 0.607 
PFS 0.382 0.13 
PFA 0.176 0.677 
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Following MTP power-time integration, there were no significant differences between 

subgroups in concentric or eccentric work.  Concentric redistribution ratios revealed that the 

plantar fasciitis asymptomatic group average was significantly less when compared with controls 

(p = .06), but eccentrically, the RR was not significantly different between groups (Figure 9). 

 

Figure 9   Eccentric (A) and Concentric (B) Redistribution Ratios and standard deviations in 
subgroups 
 
(A)                                                                             (B) 

 
 

A correlative relationship between the Redistribution Ratio was found between both 

Concentric and Eccentric and the PF proximal in the PF Asymptomatic subgroup (p=020, 

p=.001, respectively) (Table 7). However, no other subgroup, either concentrically or 

eccentrically, correlated strong with either the plantar fascia distal section (Figure 10 A-D).  One 

trend was noted in the PFS group between concentric RR and PF distal (p=.077).  When the 

concentric and eccentric RRs of all participants, regardless of subgroups, were compared with PF 

proximal and PF distal, there also was only one overall correlation; Concentric vs. PF Proximal 

(r=-.277, p=.012*), Eccentric vs. PF Proximal (r=-.001, p=.964), Concentric vs. PF Distal 

(r=.081,p=.471), Eccentric vs. PF Distal r=-.078, p=.484).   
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Figure 10 Individual subject Eccentric Redistribution Ratio (RR) value for organized by 
subgroups vs. plantar fascia proximal stiffness (A), Eccentric Redistribution Ratio vs. plantar 
fascia distal stiffness (B), Concentric Redistribution Ratio vs. plantar fascia proximal 
stiffness (C), Eccentric Redistribution Ratio vs. plantar fascia distal stiffness (D) 
 
(A)                     (B)   

 
 
(C)                          (D) 
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Table 7 Correlation coefficients and significance for MTP concentric and eccentric RR vs. 
plantar fascia proximal and distal.  Statistical significance indicated by bold font and * (p≤0.05) 
for a difference from controls. Trends indicated by † (0.05<p≤0.10). 
 
 

Concentric RR vs. PF Proximal Pearson's R Significance 
DT1 0.133 0.679 
DT2 -0.171 0.542 
Control -0.267 0.153 
PFS -0.108 0.681 
PFA -0.79* 0.02* 
Eccentric RR vs. PF Proximal 
DT1 -0.199 0.535 
DT2 -0.379 0.163 
Control -0.066 0.73 
PFS -0.154 0.556 
PFA 0.914* 0.001* 
Eccentric RR vs. PF Distal 
DT1 -0.031 0.923 
DT2 -0.026 0.925 
Control 0.234 0.214 
PFS -0.219 0.602 
PFA -0.142 0.587 
Concentric RR vs. PF Distal 
DT1 0.169 0.6 
DT2 -0.239 0.392 
Control -0.073 0.703 
PFS 0.656 0.077† 
PFA -0.024 0.927 

 
 

The largest joint reaction forces at the MTP occurred as a small inversion during toe-off, 

and all forces in other directions were negligible (Figure 11).  No significant difference between 

subgroups was found for MTP average joint reaction force during metatarsal inversion (Table 8).  

When correlated against the plantar fascia, there was no significant relationships identified. 

 
 
 
 
 
 
 



 

 

31 

Figure 11 Normalized Joint Reaction Force vs. percent stance 
 

 
         
 
 
 
Table 8 Subgroup MTP inversion JRF average, standard deviation, and significance. 

 

 

 

 

 

 

 

Normalized MTP moment was similar in magnitude (Figure 12, Table 9), but the average 

percent stance where the moment was engaged varied by an average of 21%, with DT2 being the 

earliest in stance to engage moment at 41% and PF Asymptomatic being the latest at 61%.   
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Figure 12 Average Subgroup MTP Moment vs. Percent Stance (A) and Moment participant 
distribution (B) 
 
(A)        (B) 

 
 

 
 
Table 9 Subgroup averages minimum MTP Moment and standard deviation 
            
 
 
 
 
 
 
 
 
 

 

Following integration, there was no significant difference between subgroups for average 

plantarflexion MTP moment impulse, but one correlative relationship was found between 

moment impulse and plantar fascia proximal in the control group (r=-.046, p=.011), while no 

other correlations were found (Figure 13 A, B, Table 10). 

 

Subgroup Mean 

p when 
compared to 

control 
DT1 -0.26 (.10) .939 
DT2 -0.25 (.04) .543 

Control -0.28 (.06)  
PFA -0.26 (.06) .973 
PFS -0.28 (.04) 1 
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Figure 13 Individual Moment Impulse vs. PF Proximal Stiffness (A) and PF Distal Stiffness (B). 

(A)               (B) 

 
 
 
Table 10 Subgroup Moment Impulse vs. PF Proximal Stiffness and PF Distal Stiffness 
correlation coefficients and significance.  Statistical significance indicated by bold font and * 
(p≤0.05) for a difference from controls. Trends indicated by † (0.05<p≤0.10). 
 
 

Moment Impulse 
vs. PF Distal Pearson's R Significance 

DT1 0.251 0.432 
DT2 0.036 0.898 
Control -0.067 0.727 
PFS 0.106 0.684 
PFA 0.159 0.708 
Moment Impulse vs. PF Proximal 
DT1 0.068 0.833 
DT2 -0.086 0.761 
Control -0.46 .011* 
PFS -0.326 0.201 
PFA 0.315 0.448 

 
 
 
 

For trend comparison to the MTP, average peak maximum power at the ankle joint was 

compared and found to be significantly different for DT1 when compared to controls (p=.019) 

(Figure 14).  When compared against the stiffness of the proximal and distal plantar fascia, only 
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one correlative relationship was found in the PFA group between the stiffness of the proximal 

plantar fascia and peak ankle concentric power (r=-.748, p=.033) that indicates as stiffness 

increases, the peak concentric power decreases.  Work was calculated from integrating power, 

and these values were also used in the determination of the Redistribution Ratio as WProx.  When 

means were compared of eccentric and concentric work, there was no significant difference 

between groups when compared to each other or to controls (Table 11). When correlated with PF 

proximal and distal, there were two trends noted between PFS and PFA concentric work and the 

stiffness of the plantar fascia proximal (p=.075, p=.093, respectively). Two statistically 

significant relationships were found between eccentric work.  PFA held a positive relationship 

between eccentric work and the PF proximal (p=.04) and PFS held a positive relationship 

between eccentric work and the PF distal (p=.046) (Table 12). 

 
 

Figure 14 Ankle power vs. percent stance 
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Table 11 Subgroup Ankle Eccentric and Concentric work averages 
 
 

 
 
 
 
 
 
 
 
Table 12 Correlation coefficients and significance for Ankle concentric and eccentric work vs. 
plantar fascia proximal and distal.  Statistical significance indicated by bold font and * (p≤0.05) 
for a difference from controls. Trends indicated by † (0.05<p≤0.10). 
 

Concentric Work vs. PF Proximal Pearson's R Significance 
PFS 0.443 0.075† 
PFA -0.632 0.093† 
Control 0.207 0.273 
DT2 -0.147 0.601 
DT1 -0.165 0.607 
Concentric Work  vs. PF Distal   

PFS -0.379 0.134 
PFA 0.088 0.835 
Control 0.156 0.409 
DT2 -0.371 0.173 
DT1 0.27 0.397 
Eccentric Work vs PF Proximal   

PFS -0.031 0.906 
PFA -0.729 0.04* 
Control 0.076 0.69 
DT2 0.291 0.293 
DT1 0.294 0.353 
Eccentric Work vs PF Distal   

PFS 0.491 0.046* 
PFA 0.214 0.61 
Control -0.17 0.37 
DT2 0.313 0.256 
DT1 -0.155 0.631 

Subgroup 
Eccentric 
Work 

Concentric 
Work 

DT1 -0.14 (.03) 0.16 (.03) 

DT2 -0.13 (.02) 0.13 (.03) 
Control -0.13 (.03) 0.15 (.03) 
PFA -0.14 (.03) 0.15 (.05) 
PFS -0.13 (.03) 0.14 (.04) 
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Minimum ankle moment varied significantly between subgroups.  When compared with 

controls, DT2 and PFS experienced significantly smaller minimums, p=.000 and p=.003, 

respectively (Figure 15).  PFS also experienced a significant correlation between minimum 

moment and the plantar fascia proximal stiffness (r=-.750, p=.001), while diabetics were found 

to have a significant relationship between the plantar fascia distal stiffness (r=.547, p=.035).  

 

Figure 15 Ankle moment vs. percent stance 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Moment impulse was calculated from the integration of ankle moment and did not vary 

significantly between groups, nor did it correlate significantly with the stiffness of the PF 

proximal or distal regions (Table 13).  One trend was noted in the control group when moment 

impulse was correlated against PF proximal. 
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Table 13 Correlation coefficients and significance for ankle moment impulse vs. plantar fascia 
proximal and distal.  Statistical significance indicated by bold font and * (p≤0.05) for a 
difference from controls. Trends indicated by † (0.05<p≤0.10). 
 

 

 

 

 

 

 

 

 

There was no significant difference found between subgroups for ankle local minimum, 

maximum, or total range of motion when compared and no correlative relationships were 

identified between TROM and plantar fascia distal or proximal (Figure 16, Table 14). 

 

Figure 16 Ankle total range of motion vs. percent stance 
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DT1 0.163 0.613 
DT2 0.417 0.122 
Control -0.318 0.087† 
PFS -0.409 0.103 
PFA -0.271 0.516 
 Moment Impulse vs. PF Distal 
DT1 0.003 0.993 
DT2 0.218 0.435 
Control 0.031 0.871 
PFS 0.375 0.138 
PFA 0.118 0.78 
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Table 14 Ankle minimum, maximum, and total range of motion averages and standard deviation 

 
Ankle Local Minimum Angle Maximum Angle TROM 
Control -9.6 (2.9) 11.9 (3.8) 21.6 (3.7) 

PFS -9.0 (2.0) 13.0 (2.5) 22.0 (3.2) 
DT2 -11.7 (3.3) 10.8 (3.0) 22.4 (3.6) 
DT1 -10.8 (2.2) 12.1 (3.3) 22.9 (2.5) 
PFA -11.1 (3.3) 11.3 (3.9) 22.4 (3.2) 
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DISCUSSION 
 
 

 
Significant changes in material and structural properties occur in both plantar fasciitis and 

diabetic individuals. The plantar fascia has been widely studied in both disease states because of 

its importance in gait function and overall foot stability [22, 25, 42, 60, 61, 70, 72, 74, 84-88].  

The purpose of this study was to identify or determine if there are any relationships between the 

material properties of the plantar fascia and power absorption or energy storage characteristics of 

the metatarsophalangeal joint.  It was hypothesized that a correlative relationship could be 

determined between PF stiffness and kinematic measures at the MTP joint in plantar fasciitis or 

diabetic individuals.  More than one clinical population was studied in order to observe 

alterations of properties that are otherwise not attainable by comparisons within pathology 

groups and their corresponding healthy controls.  Therefore, this was a novel study investigating 

the gait profiles, power transfer, and kinematics in populations of PF Asymptomatic, PF 

Symptomatic, Healthy Controls, Diabetes Type 2, and Diabetes Type 1. Because of the key role 

the plantar fascia material properties plays in the windlass mechanism and overall gait function, 

as well as the wealth of literature documenting alterations in structural and material changes in 

disease states, it was hypothesized that a correlative relationship could be determined between 

plantar fascia stiffness and kinematic measures at the metatarsophalangeal joint in plantar 

fasciitis or diabetic individuals.   

Stiffness measured by shear Wave Elastography (SWE) evaluation did not reveal 

statistically significant differences between subgroups at either the plantar fascia proximal or 

distal regions, which is inconsistent with literature.  In plantar fasciitis studies using either 

compression or Shear Wave Elastography (SWE), results have shown that those with 
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symptomatic plantar fasciitis experience lower stiffness values in the PF than those with and 

without a history of plantar fasciitis [69, 70, 89-91].  Multiple in vivo studies using either MRI or 

ultrasound have found that increased stiffness of foot soft tissue has been found in diabetics 

when compared against a healthy control group [84, 87, 92, 93].  With this in mind, it is likely 

due to the large subject variability within the diabetic group and the presence of outliers that 

statistical significance was not observed against the control group.  It is speculated that increases 

in plantar soft tissues, particularly the plantar fascia, may reduce shock-absorbing capacity across 

the foot, and this is extremely relevant in the diabetic foot as these alterations increase the risk of 

ulceration.  Kinematic changes at the MTP in relation to the plantar fascia stiffness has not been 

widely studied, and this study sheds some light.  It should be noted that there have been 

documented differences between treadmill and over-ground walking when studying kinematics 

and human locomotion, and so because this study recorded data on a treadmill, results may not 

be exactly representative of over-ground kinematics [94-96]. 

Abnormal soft tissue vascularity and fiber consistency has been seen in plantar fasciitis 

through ultrasound [88], and similar physiological changes, specifically concerning collagen 

integrity, can be seen in diabetics as well [86, 97].  This was further cause for speculation that 

the impaired physiology and function of the plantar function could lead to overall alterations in 

the dynamic function at the MTP due to the Windlass-Mechanism. From experimental findings, 

there is moderate evidence that correlative relationships exist between the certain kinematics of 

subgroups and PF proximal and distal stiffness.  Specifically, this study showed a weak 

correlation between maximum MTP power and PF proximal stiffness (r=.231, p=.037).   

The only significant difference in the TROM comparison between subgroups was the 

mean MTP total range of motion in the PF symptomatic group, which is consistent with literature 
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[9, 17]. Because no relationship was found between TROM and open kinetic chain relaxed 

stiffness measures of either the plantar fascia proximal or distal, it can be speculated that TROM 

may not experience drastic alterations as a direct result of plantar fascia stiffness.  This can also 

be said for MTP moment during propulsion, as no correlative relationship was found between 

plantar fascia stiffness and peak moment values.  There was, however, a negative relationship 

found between MTP moment impulse and the stiffness at the plantar fascia distal region for the 

control group (r=-.46, p=.011), meaning that as the PF distal increases in stiffness, the control 

group experienced a downtrend in maximum moment impulse.  This suggests that there may be 

an altered mechanism of moment execution in the plantarflexion propulsion movement. 

The plantar fasciitis asymptomatic group had multiple deviances from other subgroups.  

Despite never statistically differing from the other subgroups in the mean average for any 

kinematic or stiffness measure, it was found to have the most correlative relationships.  The PFA 

subgroup had a positive relationship between MTP eccentric peak power and the plantar fascia 

proximal (r=.897, p=.003), as well as a negative relationship between MTP concentric peak 

power and the plantar fascia distal stiffness (r=-.72, p= .044).   The PFA also had a correlative 

relationship between total range of motion at the ankle and plantar fascia proximal stiffness (r=-

.880, p=.004).   

In the ankle, few differences and correlations were observed.  No significant difference 

was found between groups for concentric work, eccentric work, minimum angle, maximum 

angle, total range of motion, or moment impulse.  Moment did vary by subgroup, as DT2 and 

PFS experienced significantly smaller minimums, p=.000 and p=.003, respectively.  PFS also 

experienced a significant correlation between minimum moment and the plantar fascia proximal 

stiffness (r=-.750, p=.001), while diabetics were found to have a significant relationship between 
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the plantar fascia distal stiffness (r=.547, p=.035).  It has been found that the plantar fascia 

supplies only a minor amount of energy to push-off at the ankle, roughly 10-15%, which could 

explain why there was only one correlation between the plantar fascia proximal and ankle power 

in the PFA group (r=-.748, p=.033) [98].   

In all subgroups, during a concentric motion, the Redistribution Ratio of the MTP to 

proximal rearfoot, or ankle, trended higher than an eccentric motion.  While the groups were not 

significantly different from each other, it does speak to power transfer mechanisms at the MTP.  

The redistribution ratio quantifies the extent that an individual walks with a distal to proximal 

redistribution and may pertinent to understanding push-off intensity at the MTP in general.  

When concentrically moving during stance, the RR showed that individuals tended to rely more 

on the ankle muscles than the MTP when generating power.  When eccentrically moving, the RR 

revealed that the work was more equally shared by the muscles of the ankle and the MTP. The 

higher the RR during concentric motion has a much higher distal-proximal redistribution.  The 

concentric power experienced during stance at the MTP ensures the propulsion forward of the 

body, swing initiation, and forward acceleration, so an increased reliance on proximal rearfoot 

muscles indicates that work performed about the MTP joint may not be as drastically 

compromised by disease state as previously hypothesized.  Changes in distribution can also be 

seen in a study by Cen et al., who set out to determine relationships between arch stiffness and 

regional impulse during over-ground walking [99]. The study’s results suggest that subjects with 

less stiff arches had a smaller plantar impulse in the forefoot and larger impulse in the rearfoot, 

but most notably, overall changes in the distribution of plantar loading. 

The PFA group held a positive relationship between ankle eccentric work and the PF 

proximal (p=.04). Most notably, the PFA group was the only subgroup to show a correlative 
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relationship between the concentric and eccentric Redistribution Ratio with the PF proximal 

(p=020, p=.001, respectively) which indicates two things: that as stiffness increases in the plantar 

fascia proximal, the concentric RR decreases while the Eccentric RR increases.  Two theories 

were postulated as to why this trend occurred.  One being that individuals who recover from 

plantar fasciitis may have adopted ways to alter their gait pattern in order to successfully 

alleviate symptoms.  Another is that PFA individuals may have returned to their original way of 

walking that predisposed them to initially developing plantar fasciitis. 

Because redistribution ratios were not correlated with plantar fascia stiffness changes in 

any other subgroup, it is reasonable to speculate that MTP mechanical power accomplishments 

may not be affected by the stiffness of the plantar fascia as dramatically as in the PFA group.  

However, because there are gait differences noted in the lower extremity for both pathology 

subgroups in literature [10, 17, 72, 73, 100], as well as within this study, power concessions 

likely happen elsewhere in the foot to account for gait pattern alterations.    

The area that this likely occurs is the Achilles tendon.  The Achilles tendon supports the 

Windlass mechanism by acting to control the amount of dorsiflexion present in gait.  Plantar 

fascial loading is not only dependent on the MTP joint angle in feet but also on the tension 

within the Achilles tendon.  Achilles tendons stiffness alterations have been observed in both 

diabetic and plantar fasciitis populations and subject to lower forces [101, 102] and have been 

found to affect peak pressures at the heel in plantar fasciitis populations specifically [103].  A study 

by Giacomozzi et al. supports this theory.  Giacomozzi et al. studied the effects that alterations of 

Achilles tendon, plantar fascia and first MTP joint may have on foot loading [74]. Thickness of the 

Achilles tendon and plantar fascia was also determined by ultrasound, as well as flexion and 

extension of the first MTP joint.  At the study conclusion, they found that the plantar fascia and 

Achilles tendons were significantly thicker in diabetics than in controls and that Flexion and 
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extension of the first MTP joint was significantly smaller in diabetics than in controls.  Thus, an 

increased vertical force under the metatarsals during over-ground walking was strongly related to the 

changes in the three above parameters.  These findings of a thickened plantar fascia and Achilles 

tendon contribute to the development of a rigid foot, which poorly absorbs shock during landing.  It 

is a combination of alterations in the PF and the Achilles that lead to an overall alteration of the foot–

ankle complex motion likely occurs throughout the whole gait cycle, which partly explains the 

abnormal loading under the forefoot. Tissue thickening is present in both diabetes and plantar 

fasciitis and so this theory can be applied to both pathology groups [73, 74, 101-103].   

Altered properties of the Achilles in these two pathologies paired with the knowledge that 

no correlation exists between the metatarsophalangeal joint and kinematic factors in most 

subgroups (excluding PFA), it is possible that more dramatic energy saving concessions are 

occurring at the Achilles, which contributes towards a higher metabolic cost of walking, but 

overall less impactful energetic consequence at the MTP.  However, this theory is speculative, 

and gait and energy profiles would need to be assessed at the Achilles Tendon in both 

pathologies before making such a conclusion about the nature of this relationship.   

There are notable limitations to this study.  For example, only healthy diabetic 

individuals with no injury were allowed in this study.  This is relevant to the diabetic group as 

literature reports the most drastic and severe changes in gait and overall foot function to occur in 

individuals with either history of or current lower extremity ulceration [49, 53].  A second 

limitation is that the joint kinematics at 1.3 m/s were not compared to other walking speeds on 

the basis that the most drastic kinematic changes are most often observed in the fastest walking 

condition [76-79]. Participants wore shoes during motion analysis data collection, which is 

another limitation.  Markers placed on the outside of a shoe rather than directly on the skin can 

produce less accurate results [104, 105].  Another limitation is measuring the plantar fascia itself.  
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The plantar fascia stiffness is an inherently difficult measure to obtain in vivo due to its complex 

geometry and structure, as well as its physical location amongst other soft tissues.  It is 

reasonable to assert that the values obtained for plantar fascia stiffness for this study are 

approximate and variable.  Lastly, the stiffness of the plantar fascia was measured in the open 

kinetic chain in a relaxed position; therefore, it is difficult to know the true stiffness while 

weight-bearing and in dynamic motion.   

Future Work 

Specific causes behind a compromised Windlass-Mechanism are still not defined, and 

further research is necessary to understand the complex consequences that stem from altered 

plantar fascia in pathology groups.  Future work should include correlating kinematic measures 

of TROM, power, work, moment, impulse, joint force, and redistribution ratios of the proximal 

rearfoot joint and musculature against the stiffness of the plantar fascia and Achilles tendon to 

identify more probable locations of biomechanical impact from soft tissue alterations.  Another 

avenue of future work should include investigating and identifying relationships between 

kinematic and material property changes in more severe disease states, primarily diabetic 

individuals with neuropathy or ulceration, while still maintaining comparison against other 

clinical populations to uncover any patterns that may not be evident in one population against 

controls.   
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APPENDICES 
 
 

 
Appendix A 
 
  
% Prompts user to select the file they want to graph 
% Request user input for how many graphs to create 
  
function analysisdata 
  
close all; 
clear all; 
clc; 
  
answer = questdlg('How many files do you want to compare?', ... 
    'Graphs', ... 
    'ONE','MULTIPLE', 'ONE'); 
% Handle response  
switch answer 
     case 'ONE' %if user selects one graph, the file directory  
     %will pop up and they will select one file 
        [file] = uigetfile('*.txt'); 
        if isequal(file,0) 
            % if user clicks cancel 
            disp('User selected Cancel'); 
        else 
           disp(fullfile(file)); 
        end 
         
        T = readtable(file, 'ReadVariableNames',false); 
        figure;  
        x = T{:,2}; 
        mean = x %this should print out only the second  
        %column of the table which is the x value mean 
        plot(mean,'.'); 
         
        set(gcf,'NumberTitle','off') %don't show the figure number 
        set(gcf,'Name',file) %select the name you want 
  
        str = (file); 
        newStr = erase(str,'_'); 
        title (newStr); 
        %title (file); 
        xlabel ('X-Axis'); 
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        ylabel ('Mean of X values'); 
        grid 
         
     %NEEDS TO BE EDITED 
     case 'MULTIPLE' % if user selects multiple graphs  
        files= uigetfile('*.txt',... 
               'Select One or More Files', ... 
               'MultiSelect', 'on'); 
        if isequal(files,0) 
            % if user clicks cancel 
            disp('User selected Cancel'); 
%         elseif length(files) == 1 
%             disp('Use other option'); 
        else 
            disp(fullfile(files)); 
             
            figure; 
            numberOfFiles = length(files) % will display the total numeber of files you selected 
            for i = 1:numberOfFiles 
                temp = char(files(i)); 
                disp(temp); 
                T = readtable(temp, 'ReadVariableNames',false); 
                x = T{:,2}; 
                mean = x %this should print out only the second  
                %column of the table which is the x value mean 
                plot(mean,'.'); 
                hold on; 
            end  
             
            set(gcf,'NumberTitle','off') %don't show the figure number 
            set(gcf,'Name','Comparison of Data') %select the name you want 
  
            title ('Comparison of Data'); 
            xlabel ('X-Axis'); 
            ylabel ('Mean of X values'); 
            grid 
        end  
end 
  
%ask user if they want to generate a new graph 
answer = questdlg('Do You Want To Generate Another Graph?', ... 
    'New Graph', ... 
    'YES','NO', 'YES'); 
% Handle response  
switch answer 
     case 'YES' 
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         % ask for new excel file  
         analysisdata; 
         figure; 
     case 'NO' 
         %question box closes 
end 
 
 
Appendix B 
 
 
import csv 
import os 
from collections import defaultdict 
import itertools 
 
root_file_path = input("enter folder path: ") 
 
all_columns = [] 
 
for filename in os.listdir(root_file_path): 
    columns = defaultdict(list) 
    try: 
        print(filename) 
        if filename == "all_data.txt" or filename[-4:] != ".txt": 
            continue 
        with open(f"{root_file_path}/{filename}", 'r') as csv_file: 
            csv_reader = csv.reader(csv_file, delimiter="\t") 
            next(csv_reader) 
            for row in csv_reader: 
                for (i,v) in enumerate(row): 
                    columns[i].append(v) 
        columns[1].append(filename) 
        all_columns.append(columns[1]) 
    except IndexError: 
        print(f"index error in file {filename}") 
 
print(all_columns) 
transposed = list(map(list, itertools.zip_longest(*all_columns, fillvalue="-"))) 
print(transposed) 
 
 
Appendix C 
 
 
import pandas as pd 
import numpy as np 
 
f = open("filepath.txt", "r") 
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import os 
path = f.read() 
text_files = [f for f in os.listdir(path) if f.endswith('.txt')] 
 
def MatClean(Dp): 
    Dp=Dp.astype(np.float) 
    flag=0 
    for i in range(len(Dp)): 
        if np.isnan(Dp[i]): 
            u=i 
            flag=1 
            break 
    if flag==1: 
        Dp=Dp[0:u] 
    return(Dp) 
 
def integration(Dp): 
    if isinstance(Dp, str): 
        print(Dp) 
        raise ValueError 
    px=0 
    nx=0 
    dt=1/200.00 
    for i in range(len(Dp)-1): 
        if Dp[i]<0 and Dp[i+1]>0: 
            g=Dp[i+1]-Dp[i] 
            pddt=Dp[i+1]/g*dt 
            nddt=dt-pddt 
            px=px+Dp[i+1]*pddt/2 
            nx=nx+Dp[i]*nddt/2 
             
        if Dp[i]>0 and Dp[i+1]>0: 
            px=px+(Dp[i]+Dp[i+1])/2*dt    
             
        if Dp[i]>0 and Dp[i+1]<0: 
            g=Dp[i]-Dp[i+1] 
            pddt=Dp[i]/g*dt 
            nddt=dt-pddt 
            px=px+Dp[i]*pddt/2 
            nx=nx+Dp[i+1]*nddt/2         
         
        if Dp[i]<0 and Dp[i+1]<0: 
            nx=nx+(Dp[i]+Dp[i+1])/2*dt 
    return(px,nx) 
 
def Iterate(num,DP,file): 
    global linenum 
    num=num 
    print(file) 
    total = 0 
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    # clean dataframe and iterate count for average 
    try: 
        x1=MatClean(DP[4:len(DP),1+num]) 
        total = total + 1 
    except: 
        x1 = "x1 error" 
    try: 
        x2=MatClean(DP[4:len(DP),4+num]) 
        total = total + 1 
    except: 
        x2 = "x2 error" 
    try: 
        x3=MatClean(DP[4:len(DP),7+num]) 
        total = total + 1 
    except: 
        x3 = "x3 error" 
    try: 
        x4=MatClean(DP[4:len(DP),10+num]) 
        total = total + 1 
    except: 
        x4 = "x4 error" 
    try: 
        x5=MatClean(DP[4:len(DP),13+num]) 
        total = total + 1 
    except: 
        x5 = "x5 error" 
    try: 
        x6=MatClean(DP[4:len(DP),16+num]) 
        total = total + 1 
    except: 
        x6 = "x6 error" 
 
    # calculate p,n 
    try: 
        p1,n1=integration(x1) 
    except: 
        p1=0 
        n1=0 
        print("p1 error") 
    try: 
        p2,n2=integration(x2) 
    except: 
        p2=0 
        n2=0 
        print("p2 error") 
    try: 
        p3,n3=integration(x3) 
    except: 
        p3=0 
        n3=0 
        print("p3 error") 
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    try: 
        p4,n4=integration(x4) 
    except: 
        p4=0 
        n4=0 
        print("p4 error") 
    try: 
        p5,n5=integration(x5) 
    except: 
        p5=0 
        n5=0 
        print("p5 error") 
    try: 
        p6,n6=integration(x6) 
    except: 
        p6=0 
        n6=0 
        print("p6 error") 
     
    if num==0: 
        print('-----------Data corresponding to X---------------------') 
        # file2.write('Average Positive X: '+str(str((p1+p2+p3+p4+p5+p6)/6))) 
        # file2.write('\n') 
        # file2.write('Average Negative X: '+str(str((n1+n2+n3+n4+n5+n6)/6))) 
        # file2.write('\n') 
        sheet1.write(linenum, 0, 'Average Positive X:') 
        sheet1.write(linenum, 1, str(str((p1+p2+p3+p4+p5+p6)/total))) 
        linenum=linenum+1 
        sheet1.write(linenum, 0, 'Average negativee X:') 
        sheet1.write(linenum, 1, str(str((n1+n2+n3+n4+n5+n6)/total))) 
        linenum=linenum+1 
         
    elif num==1: 
        print('-----------Data corresponding to Y---------------------') 
        # file2.write('Average Positive Y: '+str(str((p1+p2+p3+p4+p5+p6)/6))) 
        # file2.write('\n') 
        # file2.write('Average Negative Y: '+str(str((n1+n2+n3+n4+n5+n6)/6))) 
        # file2.write('\n') 
        sheet1.write(linenum, 0, 'Average Positive Y:') 
        sheet1.write(linenum, 1, str(str((p1+p2+p3+p4+p5+p6)/total))) 
        linenum=linenum+1 
        sheet1.write(linenum, 0, 'Average negativee Y:') 
        sheet1.write(linenum, 1, str(str((n1+n2+n3+n4+n5+n6)/total))) 
        linenum=linenum+1 
         
    elif num==2: 
        print('-----------Data corresponding to Z---------------------') 
        # file2.write('Average Positive Z: '+str(str((p1+p2+p3+p4+p5+p6)/6))) 
        # file2.write('\n') 
        # file2.write('Average Negative Z: '+str(str((n1+n2+n3+n4+n5+n6)/6))) 
        # file2.write('\n') 
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        sheet1.write(linenum, 0, 'Average Positive Z:') 
        sheet1.write(linenum, 1, str(str((p1+p2+p3+p4+p5+p6)/total))) 
        linenum=linenum+1 
        sheet1.write(linenum, 0, 'Average negativee Z:') 
        sheet1.write(linenum, 1, str(str((n1+n2+n3+n4+n5+n6)/total))) 
        linenum=linenum+1 
     
    # print('Positive Average: '+str((p1+p2+p3+p4+p5+p6)/6)) 
    # print('negative Average: '+ str((n1+n2+n3+n4+n5+n6)/6)) 
    # print('\n') 
     
#==========================================================================
===========================  
     
global file2,linenum 
import xlwt  
from xlwt import Workbook  
  
wb = Workbook()  
sheet1 = wb.add_sheet('Sheet 1')  
   
 
 
linenum=0     
# file2 = open("Result.txt","w")  
for file in text_files: 
    if file != 'filepath.txt' and file != 'Result.txt' : 
        Data_points = pd.read_csv(file,delimiter = "\t") 
        DP=np.asarray(Data_points) 
        sheet1.write(linenum, 0, '--------------'+file+'------------') 
        linenum=linenum+1 
        # file2.write('--------------'+file+'------------') 
         
        # file2.write('\n') 
        # sheet1.write(linenum, 0, '\n') 
        # linenum=linenum+1 
         
        for i in range(3): 
            Iterate(i,DP, file)         
# file2.close() 
wb.save('Result.xls') 
f.close() 
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