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The reduction of storm surge by vegetation canopies:
Three-dimensional simulations

Y. Peter Sheng,1 Andrew Lapetina,1 and Gangfeng Ma2
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[1] Significant buffering of storm surges by vegetation can-
opies has been suggested by limited observations and sim-
ple numerical studies, particularly following recent Hurricanes
Katrina, Rita, and Wilma. Here we simulate storm surge
and inundation over idealized topographies using a three-
dimensional vegetation-resolving storm surge model coupled
to a shallow water wave model and show that a sufficiently
wide and tall vegetation canopy reduces inundation on land
by 5 to 40 percent, depending upon various storm and can-
opy parameters. Effectiveness of the vegetation in dissipat-
ing storm surge and inundation depends on the intensity
and forward speed of the hurricane, as well as the density,
height, and width of the vegetation canopy. Reducing the
threat to coastal vegetation from development, sea level rise,
and other anthropogenic factors would help to protect many
coastal regions against storm surges. Citation: Sheng, Y. P.,
A. Lapetina, and G. Ma (2012), The reduction of storm surge by
vegetation canopies: Three-dimensional simulations, Geophys. Res.
Lett., 39, L20601, doi:10.1029/2012GL053577.

1. Introduction

[2] We analyze the effectiveness of coastal vegetation as
natural barriers against storm surges and waves. Sparse
observations have found a decrease in storm surge of nearly
1 m over a 20 km transect [Krauss et al., 2009]. But the few
existing observations are not sufficient to quantitatively
determine the importance of different vegetation parameters,
such as density, width, and height, in blocking storm surge
and reducing inundation, because of their inability to isolate
the effects of vegetation-induced drag and Reynolds Stresses
from changes in bathymetry, bottom friction, and individual
storm characteristics.

2. Recent Past Studies

[3] Recent numerical simulations of storm surge over
vegetation canopies [Loder et al., 2009;Wamsley et al., 2010]
used a two-dimensional storm surge model and parameterized
the vegetation-induced friction with a Manning coefficient
(0.1–0.3) an order of magnitude larger than that for sand
(0.02). This 2D approximation, however, fails to adequately
account for the complex flow over and within vegetation

in storm and non-storm conditions. This study uses a 3D
model and explicitly accounts for the drag forces (skin
friction drag and profile drag) introduced by the vegetation
canopy throughout the water column, as well the creation of
turbulent kinetic energy (TKE) by the wakes behind vegeta-
tion [Nepf and Vivoni, 2000], and Reynolds stresses associ-
ated with shear.

3. This Study

[4] We use a three-dimensional vegetation-resolving
storm surge model with idealized topography to estimate the
effect of vegetation canopies on storm surge and inundation.
The inundation is defined as the total inundation volume
generated by a storm. The effect of vegetation on total inun-
dation volume is measured by a quantity defined as the
Vegetation Dissipation Potential (VDP), which is the percent
reduction of total inundation volume (TIV) due to the presence
of vegetation canopy. VDP, determined for a given simula-
tion is:

VDP ¼ 1� TIVð Þv
TIVð Þ0

¼ 1�

ZZ
Landward area

Hv dxdyZZ
Landward area

H0 dxdy
ð1Þ

where H (x, y) is the maximum water level over the course
of an entire simulation, and where the subscript v indicates
the presence of a vegetation canopy and the subscript 0
indicates the absence of a canopy. The VDP represents
the maximum possible vegetation-induced reduction of inun-
dation by taking into account all effects of the canopy in all
directions and using a change in maximum occurring water
level over a large area, allowing comparison between different
hurricanes. This approach enables accurate calculation of the
total dissipative effects of the vegetation canopy for an entire
storm over an entire domain. For example, if 10 km3 is
the total inundation volume from a given hurricane with no
vegetation present, but a vegetation canopy reduced this
volume to 6 km3, the vegetation dissipates 40% of the storm
surge, and the VDP is 40%. The benefit of this spatially
integrated metric over the single-point metric (Hv/Ho at a
given x, y location) is demonstrated by the significant spatial
variability of Hv/Ho [Loder et al., 2009] which underscores
the need for a spatially integrated vegetation dissipation
potential (VDP) to quantify the impacts of vegetation on a
regional scale.

4. A Vegetation-Resolving Storm Surge Modeling
System

[5] The coupled CH3D-SWANmodel, an integrated storm
surge-wave model, was selected in part for its demonstrated
skill in reproducing the observed storm surges and waves
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during hurricanes [Sheng et al., 2010a, 2010b; Davis et al.,
2010; Sheng and Liu, 2011]. The model includes a TKE
model to represent the vegetation-induced skin friction drag
and profile drag as well as the turbulence generation by the
wakes behind the vegetation, by simplifying a vegetation-
resolving Reynolds Stress turbulence model [Lewellen and
Sheng, 1980; Sheng, 1982]. In the mean flow equations, the
skin friction drag and the profile drag are proportional to the
wetted vegetation area and frontal vegetation area, respec-
tively, both using a quadratic stress law. In the TKE equation,
the generation of TKE by the turbulent wakes behind the
vegetation is included. The drag coefficients are set to 0.125
and 0.2 for skin friction drag and profile drag, respectively,
both consistent with the available literature [Novak et al.,
2000]. Detailed CH3D model equations and boundary con-
ditions can be found in Sheng et al. [2010a, 2010b] and
Sheng and Liu [2011], while detailed SWAN equations are
found in Booij et al. [1999] and Suzuki et al. [2012]. Detailed
vegetation-resolving TKE model equations are shown in the
Appendix. The TKE model is found to accurately simulate
unsteady flow and turbulence over vegetation canopy in
laboratory flume experiments [Neumeier, 2007] as well as
steady flows [Nepf and Vivoni, 2000].

5. Vegetation Effects on Mean Flow
and Turbulence

[6] The major improvement to understanding the physics
of storm surge provided here is the inclusion of drag, shear
and Reynolds stress from the vegetation to allow accurate
quantitative calculation of vegetation dissipation. Prior
efforts to study the influence of vegetation on storm surge

were limited to simulating it entirely as bottom friction, but
this study uses more realistic and complete physical model-
ing of flow through emergent and submerged canopies.
During a storm surge event, coastal vegetation starts as fully
emergent, and as water moves onshore, transitions to having
a water depth equal to canopy height. Eventually, the vege-
tation is fully submerged. Flow and turbulence structures are
highly dependent upon water depth to vegetation height
ratios in a non-linear fashion [Nepf and Vivoni, 2000], and the
inclusion of Reynolds Stresses, shear and drag in these
simulations is necessary and unprecedented.

6. Important Storm and Vegetation Parameters

[7] Important parameters of storms to consider include
storm intensity and forward speed. Storm intensity is dictated
by wind speed via the Saffir Simpson scale (http://nhc.noaa.
gov/aboutsshws.php), with higher maximum wind speeds
correlating to higher category storms. Forward speed, the
translational speed of the eye of the storm, determines the
duration over which the storm is driving water onshore.
Intuition and limited observations suggest that faster moving
storms will have higher dissipation, because there is less time
for the storm wind to overcome friction from the vegetation
canopy. Important parameters of the vegetation canopy to
consider are vegetation height, vegetation density, and width
of the vegetation zone. Laboratory experiments have dem-
onstrated that increases in vegetation height and density
cause flow reduction and turbulence production, which
would increase VDP [Neumeier, 2007; Nepf and Vivoni,
2000]. It is expected that wider canopies would result in
greater dissipation, but the rate of increase is unknown.

7. Three-Dimensional Numerical Simulations

[8] For these simulations, an idealized bottom slope of
1:1000 over 50 km of the continental shelf is used which
represents the typical bottom slope in the northern Gulf of
Mexico (Figure 1). Along the shoreline, at an elevation of
zero, and extending along the entire domain, is a strip of land
where vegetation is introduced. Winds are parameterized
from the Holland wind model [Holland, 1980], and waves
are included through two-way coupling between CH3D and
SWAN, which includes a vegetation model for wave energy
[Suzuki et al., 2012]. However, while waves are included in
the model simulation, their contribution to inundation is
negligible on gently sloping shelves where coastal vegetation
canopies exist [Resio and Westerink, 2008], and observations
show that waves are depth limited and dissipated within a few
wavelengths from the canopy edge [Smith et al., 2010]. These
findings are consistent with our model results.

8. Simulation Results

[9] Results from two experiments are presented here. In
experiment 1, a Category 2 storm (maximum sustained winds
of 49 m/s) moves at 6.71 m/s (15 mph) onshore over vege-
tation canopies varying in height (50–125 cm), density (100–
300 stems/m2), and width (0.5–1.5 km), and the variability in
dissipation is found. In experiment two, a typical canopy
(75 cm tall, 200 stems/m2, 1 km wide) is forced with storms
of varying intensity (Category 1–5) (maximum sustained
winds between 33.8 m/s and 70.2 m/s) and forward speed
(4.47–8.94 m/s) (10–20 mph). Vegetation was a Spartina-like

Figure 1. Theoretical domain for evaluating the influence
of vegetation canopies on dissipating storm surge. Hashed
region in plan view denotes where the elevation is 0 and
vegetation may be present in Experiments 1 and 2. Dashed
line is hurricane path.
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canopy, with a stem diameter of 1.3 cm and a leaf area 8 times
that of the frontal area, like other studies using leafy vegeta-
tion [Lewellen and Sheng, 1980]. We consider landfalling
hurricanes which approach the coastline perpendicularly and
produce the highest possible storm surge compared to hurri-
cane approaching from other directions. Results for each
experiment are shown in Figures 2 and 3, respectively. The
model results follow similar trajectory and pattern as Loder
et al. [2009]. However, Loder et al. [2009] estimated the
vegetation dissipation by considering only a few selected
stations which, in combination with the use of a simplistic
2D model and Manning’s n approach to parameterize vege-
tation dissipation, produced excessively high vegetation
dissipation (�90%).

9. Discussion

[10] The first experiment clearly shows that dissipation is
greater in canopies of increased density, height and width. As
shown in Figure 2, VDP varies between 5–40%, it increases
approximately 3-fold when canopy density increases from
100 to 300 stems/m2, when canopy height increases from
50 to 125 cm, or when canopy width increases from 0.5 to
1.5 km. It is clear that the three factors are equally important
in increasing vegetation dissipation although canopy width
seems slightly more important. Increases associated with
density are results of greater drag within the canopy and
greater turbulence production. Increases associated with
height are results of the shift of shear layers upwards, which
reduces depth integrated flows within the canopy. Increases
from increased canopy width are a result of the canopy’s
influence on a greater spatial dimension of the surge.

10. Effect of Vegetation Parameters

[11] As shown in Figure 1, each simulation begins with
water levels at an elevation of 0, and water levels increase as
inundation occurs, with flood water eventually receding. The
result within the vegetation canopies is that at various times
some cells have emergent flow while others have fully
submerged flow, and some canopies have highly submerged
flow. Figure 4 illustrates this by showing a transect parallel
to the y-axis on the landward side of the hashed region

of Figure 1. Compared in each panel are maximum water
levels from a vegetation free simulation and the maximum
water levels with 1.5 km wide canopies. Note that for some
locations in 1–1.25 m canopies, flow is always emergent,
whereas shorter canopies have highly submerged flows.
Figure 4 also illustrates the inability of the variation in water
level at a single location to properly account for the total
influence of the canopy on the storm surge event, and thus
the value of the VDP.

11. Effect of Storm Parameters

[12] The second experiment shows that fast and strong
storms exhibit greater VDP as compared to slow and weak
storms. Fast storms have higher dissipation because onshore
winds are present for a shorter duration, indicating an
increased relative resistance of vegetation as compared to
slow storms with onshore winds lasting longer. VDP doubles
as the forward speed doubles from 4.47 to 8.94 m/s. Strong
storms blow faster winds, and because profile drag and skin
friction follow quadratic relationships, greater resistance to
inundation is observed, particularly at higher forward speed.
Also, strong storms blow stronger winds over a larger length
of canopy, utilizing the dissipative potential of a greater area
of canopy than weak storms. This agrees with limited
observations from slow moving and fast moving storms
[Resio and Westerink, 2008]. During a slow moving hurri-
cane, vegetation dissipation is rather low (VDP < 15%) even
in a Category 5 hurricane.

12. Conclusion

[13] Coastal vegetation can clearly play a role in reducing
storm surge and coastal inundation in gently sloping shelves.
Vegetation height, density, and width are greatly influenced
by numerous anthropogenic and natural factors. A better
understanding of the relationship between these factors (e.g.,
the destructive forces of storm surge, winds, waves, and
erosion; and sea level and salinity) and vegetation is needed

Figure 2. Dissipation of storm surge by vegetation canopies
for a Category 2 (maximum sustained winds of 49 m/s) storm
moving onshore at 6.71 m/s (15 mph).

Figure 3. Dissipation of storm surge by a 75 cm tall
vegetation canopy of 200 stems/m2 for storms of varying
magnitude and forward speed.
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to more accurately quantify the dissipation of storm surge by
vegetation canopies.

Appendix A: Equations for the 1D TKEM
(Turbulent Kinetic Energy Model)

[14] The equations for the TKEM for 1D flow in the
presence of a vegetation canopy are shown [Lewellen and
Sheng, 1980; Sheng, 1982]. Both turbulent and viscous
stresses are considered. In the limit of no vegetation,
this TKEM and the Reynolds Stress Model (RSM) from
which this TKEM is derived are equivalent a well validated
vegetation-free TKEM and RSM [Sheng and Villaret, 1989].
[15] Mean Momentum Equation:

∂ui
∂t

þ uj
∂ui
∂xj

¼
"
Cf Aw þ CpAf 1þ u2j

q2

 !1=2
#
qui � 1

r
∂P
∂xi

� ∂
∂x

Av
∂ui
∂xj

� �

þ ∂
∂xj

v
∂ui
∂xj

� �
ðA1Þ

TKE Equation:

∂q2

∂t
þ uk

∂q2

∂z
¼ 2Cp e2 þ q2

� �1=2
Af e

2 � 2Cf Awq
3

þ 2Av
∂u
∂z

� �2

þ ∂v
∂z

� �2
" #

þ 0:3
∂
∂z

qL
∂q2

∂z

� �
� q3

4L

ðA2Þ

where (i, j, k) = (1, 2, 3), xi are coordinate axes, t is time,

(ui, uj, uk) are the mean velocity components, q ¼ u′lu′l
� �1=2

is
the total rms fluctuating velocity, k is molecular diffusivity,
L is the turbulence macroscale which is a measure of the

average turbulent eddy size, Cp is the profile drag coefficient,
Cf is the skin friction coefficient, Aw is the wetted area per
unit volume, Af is the frontal area per unit volume, q is
the square root of twice the TKE, and n is molecular vis-
cosity. The drag term shown in equations (A1) and (A2) is
different from those typically used by civil engineers or
ocean engineers, but is believed to be more accurate and
suitable for turbulent flow in vegetation canopies, since the
root mean square turbulent velocity is included in the
quadratic stress relationship. Cf is determined from:

Cf ¼ c1
v

qL

� �1=4

ðA3Þ

where n is molecular viscosity and c1 is a constant.
[16] The profile drag can also break up the eddies to

increase the dissipation which is accounted for by reducing
the dissipation length scale L, giving [Wilson and Shaw,
1977]:

dL
dz

����
���� ≤ 0:65 and L ≤

a
CpAf

L ¼ 0 at z ¼ 0
ðA4Þ

where a is a model constant dependent upon canopy
geometry. Av and Kv are turbulent eddy viscosity and diffu-
sivity, which can be derived from the RSM as:

Kv ¼
2Cp e2 þ q2ð Þ1=2Af w2 þ q3

4L
A1A2

Av ¼ A2
2

A1A2ð ÞKv

ðA5Þ

Figure 4. Maximum water levels on landward side of hashed region in Figure 1 for Category 2 storm in Experiment 1.
Solid blue line shows maximum water levels over the course of the storm for vegetation-free simulation, dashed lines show
maximum water levels when vegetation canopy present. All results shown for a 1.5 km wide canopy.
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where

A1 ¼ 2Cf Awqþ q

L
ðA6Þ

A2 ¼ Cf Awq 1þ s0:7
t

� �þ 0:75
q

L
ðA7Þ

A3 ¼ 2Cf s0:7
t Awqþ 0:45

q

L
ðA8Þ

st ¼ k
v

ðA9Þ

where st is the Schmidt number, and e2 = u2 + v2 + w2.
[17] The model’s ability to simulate flow and turbulence in

an unsteady flow flume experiment is shown in Figure A1
[Neumeier, 2007]. This laboratory experiment used real
Spartina anglica grasses, and shows both good correlation
between data and modeling, as well as the ability of the
model to simulate shear production, drag, and dissipation
within the canopy.
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