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When dealing with complex systems, all decision making occurs under some level of uncertainty. This is due to the physical
attributes of the system being analyzed, the environment in which the system operates, and the individuals which operate the
system. Techniques for decision making that rely on traditional probability theory have been extensively pursued to incorporate
these inherent aleatory uncertainties. However, complex problems also typically include epistemic uncertainties that result from
lack of knowledge. These problems are fundamentally different and cannot be addressed in the same fashion. In these instances,
decision makers typically use subject matter expert judgment to assist in the analysis of uncertainty. The difficulty with expert
analysis, however, is in assessing the accuracy of the expert’s input. The credibility of different information can vary widely
depending on the expert’s familiarity with the subject matter and their intentional (i.e., a preference for one alternative over
another) and unintentional biases (heuristics, anchoring, etc.). This paper proposes the metric of evidential credibility to deal with
this issue. The proposed approach is ultimately demonstrated on an example problem concerned with the estimation of aircraft
maintenance times for the Turkish Air Force.

1. Introduction

Real-world decision making is always performed under
uncertainty. This uncertainty is present in the physical
attributes of the system being analyzed, the environment
in which it operates, and the individuals which operate the
system. Decision makers must make decisions which best
incorporate these uncertainties. With some problems, such
as determining the probability of a terrorist attack on a
given target, assigning probabilistic estimations to uncertain
parameters is impossible due to the lack of statistical
evidence upon which to base probabilistic estimates. Given
these complex problems, decision makers often solicit sub-
ject matter expert opinion to provide estimates on uncertain
parameters within a model. While this is a valid approach,
soliciting expert opinions introduces additional uncertainty
due to the varying degree of knowledge of the expert about
the subject matter (i.e., one individual may truly be the
world renowned expert in a field whereas others are merely

seasoned practitioners). Additionally, as human beings, they
have the potential for intentional and unintentional biases.

The challenge when performing this type of analysis, in
which expert judgment is essential to address uncertainty,
is in assigning “weights” to the information provided by
different experts in accordance with the level of expertise
the expert provides. The credibility of different experts can
vary widely depending on the expert’s familiarity with the
subject matter and their intentional (i.e., a preference for
one alternative over another) and unintentional biases (e.g.,
heuristics, and anchoring). While expert opinion in an area
that is of little familiarity to the expert may be not be entirely
correct, there is no reason to believe that the information
should be ignored completely, as the expert may have a par-
ticular insight to bring to the analysis. Further, the principle
of complementarity [1] indicates that no one individual has
complete knowledge of a complex system; thus, additional
perspectives are value-added. Additionally, even though
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human beings have inherent biases and prejudices, the infor-
mation they provide should not be completely discounted.
This paper develops an approach to address these problems.

This paper begins with a background discussion about
uncertainty analysis, expert judgment elicitation, evidence
combination, and expert biases. It then develops an approach
which allows the decision maker to determine a level of
credibility to use in incorporating each expert’s evidence. The
proposed approach is demonstrated on an example problem
concerned with the estimation of aircraft maintenance
times for the Turkish Air Force. Finally, conclusions and
recommendations for future work are presented.

2. Background

Uncertainty is typically separated into aleatory uncertainty
and epistemic uncertainty (see, e.g., [3, 4]). “Aleatory
uncertainty is also referred to as variability, irreducible
uncertainty, inherent uncertainty, stochastic uncertainty, and
uncertainty due to chance. Epistemic uncertainty is also
referred to as reducible uncertainty, subjective uncertainty,
and uncertainty due to lack of knowledge” ([5], p. 10-2).
Aleatory uncertainty refers to variation which is inherent to
a given system, typically as a result of the random nature of
model inputs. Aleatory uncertainties are typically modeled
as random variables described by probability distributions,
where decision makers typically make assumptions about
the distribution’s descriptive statistics (i.e., its mean and
variance). “Epistemic uncertainty as a source of nonde-
terministic behavior derives from lack of knowledge of
the system or the environment” Oberkampf et al. [6].
Oberkampf and Helton [5] elaborate on this definition:

The key feature stressed in this definition is
that the fundamental source of epistemic uncer-
tainty is incomplete information or incomplete
knowledge of some characteristic of the system
or the environment. As a result, an increase in
knowledge or information can lead to a reduction
in the predicted uncertainty of the response of
the system, all things being equal. Examples of
sources of epistemic uncertainty are: little or no
experimental data for a fixed (but unknown)
physical parameter, a range of possible values
of a physical quantity provided by expert opin-
ion, limited understanding of complex physical
processes, and the existence of fault sequences
or environmental conditions not identified for
inclusion in the analysis of a system (p.10-2).

Epistemic uncertainty often becomes an issue when expert
opinion is required to solve a problem. In trying to determine
the likelihood of a terrorist attack on a given building, a
decision maker may solicit many expert opinions due to a
lack of sufficient knowledge about the problem. In doing
so, the decision maker is introducing additional uncertainty
into the analysis, both in the lack of knowledge about
the credibility of the experts being solicited and in the
experts’ own intentional (i.e., a preference for one alternative
over another) and unintentional (heuristics, anchoring, etc.)

biases that influence the information they provide. Epistemic
uncertainty can be reduced with increased information, but
aleatory uncertainty is a function of the problem character-
istics itself.

Oberkampf et al. [7] describe various methods for esti-
mating the total uncertainty in a model by identifying all
sources of variability and uncertainty. Traditionally, uncer-
tainty has been handled with probability theory, but recent
developments maintain that representing all uncertainty
information in the same manner is inappropriate and, in
order to be analyzed appropriately, several experts believe
that aleatory and epistemic uncertainty should be addressed
separately (e.g., [8–15]).

Traditional quantification of uncertainty uses probability
theory, which represents uncertainties as random variables
by utilizing a probability density function which presents
the probability information about the variable. Probability
theory, however, has problems separating aleatory from
epistemic uncertainty [8]. As a result, various techniques
including Dempster-Shafer theory [16, 17] have gained
increased use in recent years as techniques that can ade-
quately separate differing types of uncertainty. Other theories
such as generalized information theory [18] and approxi-
mate reasoning [19] have also proven useful in characterizing
uncertainty.

Modern approaches to deal with epistemic uncertainty
include fuzzy sets [20, 21], Dempster-Shafer theory [16, 17,
22], and possibility theory [23]. Dempster-Shafer theory was
chosen for use in this paper due to its strong theoretical
basis, large number of recent example problems to draw
from, and versatility of Dempster-Shafer theory to represent
and combine potentially dissimilar evidence from various
sources. A brief discussion of the mathematics of Dempster-
Shafer evidence theory is provided in the approach section
(Section 3) of this paper.

In addition to dealing with uncertainties present in
the problem domain, analysts must also understand what
inherent biases are incorporated into an individual’s thought
process. The following section discusses biases that may
influence an expert’s judgment.

2.1. Biases. Whenever an expert is utilized as a source of
information, their beliefs and experiences bias how they view
the problem and what information they choose to provide
to help solve the problem. These biases take the form of
either intentional or unintentional biases. Intentional biases
are a result of the expert’s willful decision to bias the results
of their assessment. This willful deceit can occur due to
preference of one alternative over another. The expert may
prefer one alternative over another due to gains that he/she
stands to receive as a result of the analysis. An example would
be a company that is using expert judgment to assess its
building’s level of security. If the expert were to have an
interest in convincing the company that their security levels
were subpar (such as if the expert owned his/her own security
company), then the expert may intentionally bias the results.
Alternatively, the expert may have a reason not to prefer a
particular alternative and may intentionally bias the results
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accordingly. Typically, these intentional biases are easier
for an outside observer to recognize as strong connections
between the expert and his/her intentionally biased choice
(such as significant financial connections) should emerge. It
is important to note that the vast majority of experts will not
exhibit this behavior, but it is important for the analyst to be
cognizant of the potential for this bias nonetheless.

It is mistakenly assumed that because an individual is
an expert in a particular subject matter, he/she is perfectly
capable of providing accurate likelihood estimates for par-
ticular events. Even without intentional biases to account
for, all human beings have unintentional cognitive biases
that affect the information that is elicited from them. These
cognitive biases include behaviors such as the availability
heuristic, conjunction fallacy, representativeness heuristic,
and anchoring.

The availability heuristic [24, 25] refers to the practice
of basing probabilistic evidence on an available piece of
information in one’s own set of experiences. That is to say,
humans estimate the likelihood of an event based on a similar
event that they can remember. Further, since newer events are
fresher in our minds, they influence our reasoning in larger
proportion than older events. Since experts have a larger set
of experiences to draw from, and thus more available data,
it is likely that their propensity for the availability heuristic
will decrease as their experience level increases. However, a
more naı̈ve expert may be able to provide a better result if
he/she has experienced a relevant event recently, whereas an
expert in the field with many years of relevant experience
(none of which are recent), may not be as likely to provide
useful information.

Another bias that humans incorporate when providing
uncertainty estimates is the conjunction fallacy. This fallacy
occurs when individuals identify specific scenarios as being
more likely than general ones. Tversky and Kahneman [26]
explored this phenomenon and found that this mistake is
commonly committed despite the fact that it is mathemat-
ically impossible for the joint probability of two events to be
more likely than the probability of either of the individual
events. Individuals often make this mistake as the specific
scenario seems more realistic to them and it is possible
that experts can be prone to this type of fallacy as well.
While experts are less prone to this type of behavior, the
phenomenon is still something that analysts should be aware
of when eliciting expert opinion.

The representativeness heuristic [25] occurs when com-
monalities between objects are assumed. For example, an
expert has estimated the probability of attack against a
building before and assumes the current building that is
being analyzed is similar to his/her previous work, and
therefore, estimates the probabilities to be similar. There may,
in fact, be a glaring difference between the two problems that
the expert is overlooking.

Another bias is the anchoring and adjustment heuristic,
observed by Tversky and Kahneman [24]. Humans anchor
their judgments and base subsequent observations on the
initial value that was provided to them. In other words,
if the expert is provided a baseline value, he/she can be
influenced to a degree where subsequent probability values

will be anchored by the provided baseline value. Even experts
can be influenced to provide probabilistic values close to
values that the analyst desires by anchoring the questions that
are asked when eliciting their opinion.

The biases discussed here are only a few of the possible
that may affect experts. The important takeaway with respect
to biases, both intentional and unintentional, is that deci-
sion makers must be cognizant of their effect on results
obtained when eliciting expert judgment. Any approach that
incorporates expert judgment must take into the account the
presence of biases and adjust its approach accordingly.

An approach is developed in the next section which
provides a method for dealing with these biases when using
expert judgment to address epistemic uncertainty.

3. Solution Approach

3.1. Dempster-Shafer Theory. Dempster-Shafer theory is a
mathematical theory of evidence, defined by three important
functions: the basic probability assignmentfunction (BPA or
m), the belief function (Bel), and the plausibilityfunction
(Pl). The seminal work on the subject is [17], which is
an expansion of [16]. In evidence theory, uncertainty is
separated into belief and plausibility, whereas traditional
probability theory uses only the probability of an event to
analyze uncertainty. Belief and plausibility provide bounds
on probability. In special cases, they converge on a single
value, probability. In other cases, such as in the evidence
theory representation of uncertainty, belief, and plausibility
represents a range of potential values for a given parameter,
without any assumptions on the likelihood of the underlying
data.

In evidence theory, for a sample space X, degrees of
evidence are assigned to subsets (events) of X. A subset
(x) with a nonzero degree of evidence is called a focal
element. Based on available information, a basic probability
assessment (BPA), denoted by m(x), can be defined as

m(x) ≥ 0 for x ⊂ X (1a)

∑

x ⊂ X

m(x) = 1. (1b)

An BPA is provided by experts in lieu of a traditional
probability assessment. Imagine a scenario in which experts
are being asked to predict weather occurrences in a given
city. Two experts (E1 and E2) are providing their opinions
on the likelihood of three weather occurrences (W1, W2, and
W3). The potential weather phenomena are as follows: W1 is
sunny, W2 is cloudy and W3 is rainy.

In this case, the objective is to find the likely weather
occurrence. As such, X = {W1, W2, W3} and the frame of
discernment representing all possible categories of evidence,
2X = {W1, W2, W3, W1 ∪ W2, W2 ∪ W3, W1 ∪ W3, W1 ∪
W2∪W3}.

Suppose the following information is collected: Expert
one (E1) says it will be rainy or sunny with 90% probability,
while Expert two (E2) says it will be sunny or cloudy with
75% probability.
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The BPA for expert one can then be stated as

mE1(W1∪W3) = 0.90, mE1(W1∪W2∪W3) = 0.10.
(2)

The second piece of evidence (mE1(W1 ∪W2 ∪W3)) is
due to the fact that nothing is known about the remaining
evidence, so it must be allocated to what is termed the
remaining frame of discernment. That is, since nothing
is known (except that weather must occur), a judgment
cannot be made about the unknown frame of reference (the
remaining 0.10 is not specified by the expert, so it is specified
as being either W1 or W2 or W3).

The BPAs for the second expert can be stated as

mE2(W1∪W2) = 0.75, mE2(W1∪W2∪W3) = 0.25.
(3)

In other words, E1 says the weather phenomena are most
probably W1 or W3, while E2 says the weather phenomena
are most probably W1 or W2. The sources of evidence can
be combined using the Dempster rule of combination as
follows:

m12(A) =
∑

B∩C=A
m1(B)m2(C)

1− ∑

B∩C=∅
m1(B)m2(C)

. (4)

This equation yields the combined evidence of experts 1
and 2 that support A (which is composed of the intersection
of B and C). This can be applied recursively to combining
the evidence of more than two experts. For example, the
results obtained from combining experts one and two can
then be combined with expert three in order to determine
the combination of the three experts’ evidence. The order in
which the experts’ evidence is combined is irrelevant.

Dempster’s rule of combination has been subject to
criticism in that it tends to ignore conflict available within
the evidence (as pointed out by [27]) and attributes evidence
supporting conflict to the null set [22]. Additional combi-
nation rules deal with this complication, but they require
that the relative importance (in the case of this approach,
the evidential credibility values) of each expert is known.
Information on additional rules of combination is provided
in Agarwal et al. [8] and Sentz and Ferson [28]. For the
purposes of this paper, it will be assumed that the evidence
provided does not have a large enough level of conflict that
using Dempster’s rule will adversely affect the results. The
approach presented here can be generalized to other rules of
combination if desired.

The evidence of the two weather experts can then be
combined as in Table 1.

Given this combined BPA, the evidence can now be used
to form belief and plausibility bounds on the uncertainty.
Belief in any set is the sum of all probabilities of all subsets
of that set. It represents any proof that has been provided (it
is believed) that a particular event is true.

Belief values for the individual events in the aforemen-
tioned problem are

BelE1,E2(W1) = mE1,E2(W1) = 0.675,

BelE1,E2(W2) = 0,

BelE1,E2(W3) = 0.

(5)

On the other hand, plausibility is more general. It
represents the degree to which it is plausible that a particular
event is true. Another way to look at belief is it is a
measure of the degree to which an event will happen, whereas
plausibility is a measure of the degree to which an event could
happen.

Plausibility values for the individual events in the afore-
mentioned problem are

PlE1,E2(W1) = mE1,E2(W1) + mE1,E2(W1∪W3)

+ mE1,E2(W1∪W2)

+ mE1,E2(W1∪W2∪W3)

=0.675 + 0.225 + 0.075 + 0.025 = 1,

PlE1,E2(W2) = mE1,E2(W1∪W2)

+ mE1,E2(W1∪W2∪W3)

=0.075 + 0.025 = 0.10,

PlE1,E2(W3) = mE1,E2(W1∪W3)

+ mE1,E2(W1∪W2∪W3)

=0.225 + 0.025 = 0.25.

(6)

More information on the mathematics and application of
evidence theory can be found in Dempster [16] and Shafer
[17].

3.2. Evidential Credibility. When expert judgments are
elicited, and epistemic uncertainty is introduced due to lack
of knowledge about the credibility of the evidence provided
by experts, however, a modified version of evidence theory
must be developed to deal with this additional layer of
uncertainty. In this modified approach, the proposed expert’s
modified BPA, m∗

i (x), is given as

m∗
i (x) = mi(x)ECi(x), (7)

where mi(x) is as defined in (1a) and (1b) and ECi(x) is the
evidential credibility value, with i and x being the indices cor-
responding to the particular expert and event, respectively.

Evidential credibility is a measure of the analyst’s con-
fidence in the expert’s estimated likelihood values; it acts
as a weight to adjust the likelihood estimate given by the
individual expert. An evidential credibility value of one
means that the analyst has complete confidence in the
expert’s estimate and it should be taken into account fully,
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Table 1: Combined expert evidence.

mE2(W1∪W2) = 0.75 mE2(W1∪W2∪W3) = 0.25

mE1(W1∪W3) = 0.90 mE1,E2(W1) = 0.675 mE1,E2(W1∪W3) = 0.225

mE1(W1∪W2∪W3) = 0.10 mE1,E2(W1∪W2) = 0.075 mE1,E2(W1∪W2∪W3) = 0.025

whereas an evidential credibility value of less than one
demonstrates the analyst’s reluctance to place full confidence
in the likelihood estimates provided by the expert. The
remainder of evidence not attributed to an event by the
expert (independent of his/her evidential credibility) is
allocated to the remaining frame of discernment as detailed
earlier in this section (with this evidence increasing as ECi(x)
approaches zero). If evidential credibility is calculated as
one for an expert, the adjusted BPA in (7) reverts to the
original form in (1a) and (1b). If the expert’s calculated
evidential credibility is zero, then his/her likelihood for the
specified event reverts to zero. If an expert is deemed to
have an evidential credibility of zero for all possible events,
all evidence for the given expert is allocated to complete
ignorance (m∗((∪x)∀x ∈ x) = 1). This reflects the
notion that the analyst has no confidence in the expert’s
predictions, based on his/her evidential credibility. For the
previous weather example, a single expert being polled with
no evidential credibility would result in an BPA of m∗

E1(W1∪
W2∪W3) = 1.0.

For the proposed approach, evidential credibility is
calculated in a manner derived from the Brier score (1950)
approach to evaluating experts, which is straightforward
and provides a good basis for the development of an
evidential credibility measure. Brier’s work is predicated
on the existence of verifiable data, whereas there is no
established “right” answer in many of the applications for
which this paper’s proposed approach is intended. There are
two options to deal with this complication: (1) develop a
Brier score based on the information that is present (e.g.,
historical data of similar systems) or (2) adjust the Brier
score to create a new scoring rule which reflects the lack of
available data. The author utilizes the second approach in this
paper, as the first approach is valid only in simpler systems
where the variance between new and old systems is trivial,
thus making the necessity of the method developed in this
paper unnecessary. The adjusted Brier score, then, is used to
calculate the evidential credibility as follows:

ECi(x) =
[

1−
∣∣∣ fi(x)−m(x)

∣∣∣
1/2
]

, (8)

where fi(x) is the ith expert’s estimate of the average of all
expert forecasts for event x and m(x) is the average of actual
expert predictions of event x.

Equation (8) reflects an error-function-based approach
to scoring experts’ evidence. Evidential credibility is not
intended to reflect the expert’s individual credibility, but
rather it provides a discount factor of the individual’s
knowledge about what the collective judgment of the experts
will be. This point is illustrated in (8), where the difference
between the expert’s prediction of the average estimation and
the actual average of the expert’s estimations (the error) is

calculated. The closer the two values are together, the lower
the prediction error of the expert is, and, thus, the more
knowledgeable the expert is proven to be. A true expert
would be able to provide an accurate prediction of an event
(mi(x)) and an estimate of what other experts would say
( fi(x)). If he/she is not accurate in this regard, the resulting
ECi(x) will be reduced. This makes an intuitive sense as the
true expert should understand what knowledge he/she has
that would alter his/her prediction relative to other experts.
If the expert is not able to do so, the analyst’s confidence
in his/her predictions should be reduced (as demonstrated
by an evidential credibility value of less than one) as they
are likely not as knowledgeable as originally predicted. If the
expert is not privy to additional information which biases
his/her predictions, he/she is likely to assume fi(x) = mi(x).

Utilizing the above definition for evidential credibility,
individuals are incentivized to report their true predictions
for the pool of experts, as shading their predictions would
result in their evidential credibility being reduced and their
initial prediction, mi(x), being adjusted significantly by a
lower ECi(x) value. Thus, less evidential credibility means
the evidence provided by the expert (in terms of their
likelihood values) will be lessened as there is less confidence
in their estimates. It should be noted that if an expert is
not comfortable with providing a likelihood estimate for
a particular event, he/she may abstain from providing one
and the average prediction that is calculated will exclude any
individuals who choose to omit a response. As each response
provided by the experts has its own evidential credibility
value, there is no incentive for a particular expert to answer
more questions than he/she is comfortable with to artificially
inflate their ECi(x). If an event has only one expert providing
an estimate for its likelihood, there is no expert to contrast
with and therefore their evidential credibility is taken to be
one (since they are incentivized to tell the truth, there is
no reason to believe that their answer is anything less than
completely truthful, as they have no knowledge of how many
other experts will answer this particular question).

Additionally, the evidential credibility metric is useful in
combating biases facing experts. If an expert is prone to the
availability heuristic, conjunction fallacy, representativeness
heuristic, or anchoring, and these biases influence their
average predictions, their resultant evidence will be reduced
through a reduced ECi(x) value. Thus, the experts are
incentivized to examine their predictions before reporting
them and report their true values, free of intentional and
unintentional biases.

The approach proposed in this paper is useful for several
reasons.

(1) It has the benefit of assigning a separate evidential
credibility value for each expert and each event being
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estimated so that the opinions of experts with varying
levels of experience can be combined without having
to ignore experts with less experience.

(2) The evidential credibility measure is flexible and can
be utilized regardless of how much information each
expert chooses to provide for a particular problem.

(3) There is no need for this approach to have the “right”
answer a priori, as experts are ranked relative to one
another’s estimates and not relative to a correct base-
line. This is especially useful for complex problems as
the correct answer is often not known until after the
analysis occurs, if at all.

(4) This approach incentivizes experts to tell the truth,
both in their own estimates and in their predictions
of others’ estimates, limiting the effect of intentional
and unintentional biases on the resulting expert judg-
ments.

Utilizing the proposed approach, two example problems
are solved in the next section.

4. Example Discussion

The example demonstration of the proposed method for
calculating evidential credibility is drawn from Kudak and
Hester [2] and based on an example regarding maintenance
time estimation in the Turkish Air Force. Kudak and Hester
[2] explain how evidence theory was used to estimate main-
tenance times for damaged aircraft repairs. Three experts
were surveyed and asked to provide their estimates regarding
the three major statistically observed failure sources of
ignition, fuel, and electrical systems [29].

Hester and Kudak [2] describe the problem:

For wartime operations, Maintenance Time (MT)
of each specific failure can be divided into three
separate time intervals (x1, x2 and x3) as shown
in [Figure 1]. Expected Actual Time, Ea(t), is the
exact MT as assigned in [29] for normal operation
times. The first time interval, x1, represents times
less than the Best Time (defined by the expert
as the shortest maintenance time expected to
complete the failure, with a default time given as
5–10 % less than Ea(t), depending on the system).
The second interval, x2, represents the period
between Best Time and Worst Time (defined
by the expert as the longest maintenance time
expected to complete the failure, with a default
time given as 5–10% more than Ea(t), depending
on the system), and it includes the Expected Actual
Time Ea(t). The third time interval, x3, represents
times greater than the Worst Time. (pp. 56-57).

This example will be used to explore the evidential
credibility metric proposed in this paper.

Best time Worst time

x1 x2 x3

Ea(t)

Figure 1: Maintenance time intervals (adapted from Kudak and
Hester [2]).
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Figure 2: Belief and plausibility measures with and without eviden-
tial credibility.

5. Results and Analysis

The three experts discussed in Kudak and Hester [2] were
asked to provide their BPAs for the three time intervals
shown in Figure 1 and their combinations. Their BPAs are
provided in Table 2.

Using (4), these estimates can be combined to provide
belief and plausibility estimates as shown in Tables 3 and 4,
respectively.

Now, let us suppose that each expert is asked to provide
an estimate of the average of all expert forecasts, fi(x). In
the absence of greater knowledge about his or her fellow
experts, each individual assumes their estimates are equal to
the average, that is, fi(x) = mi(x), as discussed in Section 3.2.
Using (8), we can then calculate the ECi(x) for each event and
expert as shown in Table 5.

Using (7), modified BPAs can be generated for the
experts, as shown in Table 6.

Using (4), these modified BPA assignments can be com-
bined to provide belief and plausibility estimates (including
evidential credibility) as shown in Tables 7 and 8.

Further, belief and plausibility values for each of the three
time ranges (x 1, x 2, and x 3) can be compared graphically as
shown in Figure 2.

It is clear from investigating Figure 2 that evidence sup-
porting x2 has decreased when evidential credibility is taken
into account. While baseline belief and plausibility estimates
indicate a narrow band at x2, incorporation of evidential
credibility widens this band and allocates associated evidence
to both x1 and x3. Further investigation of Tables 5 and 2
to determine the cause of this change reveals that Expert 3
is likely the reason behind the adjusted estimates. His/her
low evidential credibility (0.42, as shown in Table 5) with
respect to estimating x2 reduces the credibility of his/her
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Table 2: BPA Assignments (adapted from Kudak and Hester, [2]).

mi{x1} mi{x2} mi{x3} mi{x1, x2} mi{x1, x3} mi{x2, x3} mi{x1, x2, x3}
Expert 1 0 0 0.2 0.6 0 0 0.2

Expert 2 0 0.3 0 0 0 0.3 0.4

Expert 3 0.1 0.65 0 0 0 0 0.25

Table 3: Belief values.

Bel123{x1} Bel123{x2} Bel123{x3} Bel123{x1, x2} Bel123{x1, x3} Bel123{x2, x3}
0.04 0.794 0.044 0.911 0.085 0.857

Table 4: Plausibility values.

Pl123{x1} Pl123{x2} Pl123{x3} Pl123{x1, x2} Pl123{x1, x3} Pl123{x2, x3}
0.142 0.915 0.088 0.955 0.205 0.959

Table 5: Evidential credibility values.

ECi{x1} ECi{x2} ECi{x3} ECi{x1, x2} ECi{x1, x3} ECi{x2, x3}
Expert 1 0.82 0.44 0.63 0.37 1.00 0.68

Expert 2 0.82 0.87 0.74 0.55 1.00 0.55

Expert 3 0.74 0.42 0.74 0.55 1.00 0.68

Table 6: Modified BPA assignments incorporating evidential credibility.

m∗
i {x1} m∗

i {x2} m∗
i {x3} m∗

i {x1, x2} m∗
i {x1, x3} m∗

i {x2, x3} m∗
i {x1, x2, x3}

Expert 1 0.00 0.00 0.13 0.22 0.00 0.00 0.65

Expert 2 0.00 0.26 0.00 0.00 0.00 0.17 0.57

Expert 3 0.07 0.27 0.00 0.00 0.00 0.00 0.65

Table 7: Modified belief values incorporating evidential credibility.

Bel∗123{x1} Bel∗123{x2} Bel∗123{x3} Bel∗123{x1, x2} Bel∗123{x1, x3} Bel∗123{x2, x3}
0.04 0.45 0.07 0.58 0.11 0.60

Table 8: Modified plausibility values incorporating evidential credibility.

Pl∗123{x1} Pl∗123{x2} Pl∗123{x3} Pl∗123{x1, x2} Pl∗123{x1, x3} Pl∗123{x2, x3}
0.40 0.89 0.42 0.93 0.55 0.96

strong evidence supporting this event (an BPA of 0.65,
as shown in Table 2). Thus, it would be worthwhile for
the analyst to seek more information from expert 3 to
determine why he/she felt so strongly about x2 and yet did
not provide an accurate estimate with respect to his/her
fellow experts ( fi(x2)). Similar analyses can be undertaken
to support Kudak and Hester’s [2] discussion regarding
fuel and electrical systems, or in any other problem where
evidence theory is an appropriate candidate for uncertainty
quantification.

6. Conclusions

This paper proposed an approach for including a measure
of evidential credibility into analysis when eliciting expert
opinion to estimate epistemic uncertainty in a problem. It
is the hope of the author that this approach can be extended
to other evidence theory combination rules in the future in
order to further explore its usefulness. Other scoring rules
(specifically Prelec [30] and Matheson and Winkler [31])
should also be explored for use in this approach. Further,
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it is also thought that this approach, while demonstrated on
a single case study in this paper, must be further explored to
ensure its validity and utility.
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