

FGMs reading vs Time during fast cool-down

- **Before performing a magnetic field scan**: we applied an external magnetic field of \sim 200 mG and cool the cavity to 12 K.
- We performed the magnetic field scanning test.
- These are plots of HPs reading and FGMs reading during magnetic field scan around the cavity axis.

l. Parajuli^{1 #}, J. Nice¹, G. Ciovati^{1,2}, W. Clemens² , J. R. Delayen^{1,2} and A. Gurevich¹ ¹Center for Accelerator Science, Old Dominion University, Norfolk, VA 23529, USA ²Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

DESIGN, COMMISSIONING AND PRELIMINARY RESULTS OF A MAGNETIC FIELD SCANNING SYSTEM FOR SUPERCONDUCTING RADIOFREQUENCY CAVITIES*

- \Box Are those hot-spots arose due to trapped magnetic flux lines (vortices)?
- How many vortices are pinned at the cavity surface, and what is their distribution?
- What cool-down conditions can minimize the trapping of vortices in the cavities?

 While testing SRF cavity performance at cryogenic temperatures, we typically observe several hot-spots (dissipative regions) around the cavity surface at a high RF field.

Do trapped vortices appear even if a cavity is screened from as low as stray magnetic fields? **We want to answer these questions.**

-
-
-
-
-
-

- MFSS consists of two brackets
- Each bracket can hold up to eight sensors
- The motor can rotate MFSS from 0-360 degrees around the axis of the cavity. Detail of the experimental design of magnetic field scanning system can be found on [5].

Fluxgate Working principle: Hall Effect \square Single axis HP useful in cryogenic temperature. \Box Active area 20 μ m \times 20 μ m. **Q** Sensitivity at room temperature is 50 $\frac{mV}{T}$ \overline{T} and sensitivity at 2 K, 4 K and 9 K is \sim 94 $\frac{nV}{a^T}$ μ ^T . Hall probe

- **Working principle**: **Change in resistance of ferromagnetic file with applied B-field.**
- □ Useful in cryogenic temperature.
- □ Single axis sensor with active area 0.7×0.8 mm^2 .
- □ Sensitivity at 4 K is ~ 200 $\frac{\mu V}{\mu T}$ μ ^T

OBJECTIVES OF THE EXPERIMENT

PRELIMINARY RESULTS

- **A New system** for measuring magnetic flux trapped in the walls of 1.3 GHz SRF cavities has been designed, built and tested at cryogenic temperature.
- \triangleright The system can detect the superconducting transition. Magnetic field scanning of a cavity surface was successfully carried out to measured the distribution of trapped magnetic fields around the cavity wall.
- Currently, we have used only four sensors in each bracket. In the future, we are planning to install 8 sensors in each bracket.
- \triangleright We plan to perform a magnetic field scan during a high power RF testing of cavities prepared with different surface treatments at different cool-down and different external magnetic fields.

SUMMARY AND FUTURE WORK

Before performing a magnetic scan: □ We did slow cool-down with $B_{ext} \sim 200$ mG and Δ T \sim 200 mK. \Box The cavity temperature was kept at 4.4 K immersing in liquid He. \Box We decreased the $B_{ext} \sim 2 \text{ mG}$. \Box The values shown in plots are trapped flux on the cavity surface.

Schematic of a cavity with hot-spots and

trapped vortices threading through it.

EXPERIMENTAL DESIGN

TYPES OF SENSORS

Fluxgate Magnetometer (FGM)

Hall Probe (HP)

- **Working principle: Magnetic and electric induction.**
- **O** Single axis magnetometer useful in cryogenic temperature.
- **Q** Cylindrical shape with diameter magnetometers 1mm and 28 mm long.
- \square Measure field as low as 0.1 nT up to 0.2 mT.

.

Anisotropic Magnetoresistance (AMR) Sensor

