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ABSTRACT

EFFICIENT UNBIASED ESTIMATING EQUATIONS 
FOR ANALYZING STRUCTURED CORRELATION 

MATRICES

Yihao Deng 

O ld D om inion U niversity, 2006 

D irector: D r. N. Rao Chaganty

Analysis o f dependent continuous and discrete data has become an active area o f 

research. For norm al data, correlations fu lly  quan tify  the dependence. And h is to ri­

cally, m axim um  like lihood  m ethod has been very successful to  estim ate the correla­

tions and unbiased estim ating equation approach has become a popular a lterna tive  

when there maybe a departure from  norm ality. In  th is  thesis we show th a t the o p ti­

m al unbiased estim ating equation coincides w ith  the like lihood equations fo r norm al 

data. We then in troduce a general class o f weighted unbiased estim ating equations 

to  estim ate parameters in  a structured corre lation m a trix . We derive expressions 

fo r asym ptotic covariance o f the estimates, and use those expressions to  determ ine 

the op tim a l weights. We also study an im po rtan t subclass o f unbiased estim ating 

equations. The op tim a l weights fo r th is  subclass are not tractab le , especially fo r the 

fa m ilia l corre lation structure. We suggest approxim ations and study performance of 

these approxim ate weights using sim ulations.

For fa m ilia l b ina ry responses we firs t investigate ranges o f associations measures, 

which include odds ratios, kappa sta tistics, and re lative risks besides correlations. 

Know ing and understanding these ranges is im portan t fo r developing efficient esti­

m ation methods. We study estim ation o f the fa m ilia l correlations using a p ro b it 

model and stochastic representation o f the la ten t variables. We discuss some ex­

tensions o f our results to  nuclear fam ilies. Some real life  examples are presented to  

illu s tra te  the estim ation methods.
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1

CHAPTER I 

INTRODUCTION

Continuous and discrete repeated measurements data n a tu ra lly  arise in  many re­

search studies in  biom edicine, psychology, hea lth  and social sciences. Hence there 

is a strong need fo r developing efficient and easy-to-im plem ent s ta tis tica l estim ation 

methods fo r analyzing such data. In  a sem inal paper Godambe (1960) in troduced the 

theory o f unbiased estim ating equations fo r independent observations. Th is theory 

was extended fo r correlated and dependent data by Liang and Zeger (1986), who 

in troduced generalized estim ating equations. In  recent years generalized estim ation 

equations and methods based on unbiased estim ating equations have become a popu­

la r a lterna tive  to  the tra d itio n a l m axim um  like lihood estim ation. However, unbiased 

estim ating equations fo r s tructured corre lation m atrices have not been explored sys­

tem atically. The m ain goal o f th is  thesis is to  adequately address unbiased estim ating 

equations, derive im po rtan t properties, and develop efficient m ethods fo r estim ating 

the corre lation param eter in  structured corre lation matrices.

1.1 T h e  G e n e ra l S e tu p

The classical setup fo r the long itud ina l data analysis is as follows. Suppose th a t 

we have n  independent subjects or clusters in  a sample. On subject i  or cluster 

i,  we observe response y , =  (yi i , y l2 , ■ ■ ■ ,U iu )\ where yl3 fo r j  =  1 ,2 ,... ,L  could 

be a continuous measurement or b ina ry (fo r example, i t  could be an ind ica to r o f 

yes/no, success/failure or present/absent). The expected value o f is given by 

Hi =  • • •, f iit ,) ' and the variance covariance m a trix  o f y , is assumed to  be

V t =  (OijOikCtijk) fo r j , k  =  1 ,2 , . . . ,  t j and — 1 i f  j  =  k. The general setup is 

presented in  Table 1.1.

In  add ition  to  the response variable y*, we have a covariate m a trix  X ' containing 

measurements on some covariates fo r subject or cluster i.  Here X ' is a m a trix  w ith  

U rows and p columns. We assume th a t the mean Hi ° f  response y* is a function  o f 

X ' and an unknown regression param eter (3, th a t is, Hi =  ^ (X '/3 ) fo r some known

This dissertation follows the style of Journal of the American Statistical Association.
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Table 1.1: General setup

subject response mean covariance m a trix
i Vii Mil ai l ancr^a iu

Vi2 Mi2 ail<^i2a i21 a l Vi2(Jiti (Xi2ti

Uiti Miti &iti 1 0 ’i2^ iti a iti2 ■ ■ ■ °iU

function g(-).

Generally, the goal is to  estim ate (3 efficiently. However, in  some analysis, the 

corre lation parameters ct, =  (a n 2 , 01*13, . . . ,  a 'i{t j_ i} f i)/ fo r i  =  1 , 2 , . . . , n  maybe of 

research in terest, and we need to  e ffic ien tly  estim ate them  as well. M any books 

focusing on the analysis o f lo ng itud ina l data are available, fo r example, D iggle et al. 

(2002) and F itzm aurice et al. (2004). A  comparison and review o f various estim ation 

methods can be found in  Zeger and Liang (1992) and W u et al. (2001). A  like lihood 

approach for efficient param eter estim ation is fac ilita te d  by general linear models, 

which we discuss in  the next section.

1.2 G e n e ra liz e d  L in e a r M o d e ls

Generalized linear models (G LM s) were in troduced by Nelder and W edderburn 

(1972). G LM s provide a unified class o f models fo r regression analysis o f independent 

observations, w hich could be continuous or discrete. Possible applications o f G LM s 

in  various fields o f study can be found in  M cC ullagh and Nelder (1989) and Myers 

et al. (2002). There are three key components in  generalized linear models: the 

m arginal response d is trib u tio n , a linear pred icto r, and a lin k  function. The detailed 

description o f these components is as follows.

(1) The firs t component is the d is trib u tio n  o f the response variable y ij. In  G LM s 

it  is assumed to  belong to  the exponentia l fam ily. The p ro b a b ility  density 

function  or p ro b a b ility  mass function  can be w ritte n  as

f{yij\Qu4>) =  exp { ^ ~ ( ^ y — +  c ( j/y .^ ) |  (1-2-1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3

where the functions a(-), b(-) and c(-) are known. From  (1.2.1), we can check

th a t the mean and variance o f ytj are E (t/y ) =  p jj =  & '(% ) and V a r(^ j)  =  

6 "(% )o (0 ), respectively. Thus, the variance o f yXj  is a function  o f its  mean, and

examples, a(<p) =  f>/w, where w  is a known p r io r  weight.

(2) The second component in  G LM s is the linear pred icto r % . Th is is sim ply a 

linear com bination o f the covariates and the regression parameters, th a t is,

(3) The th ird  component is the lin k  function  g(-). Th is function  specifies the rela­

tionsh ip  between the linear p red icto r r]Xj  and the expected value p ij o f yXj  as 

rjij =  g (p ij) . The lin k  function  g(-) is known as the canonical lin k  function  

when g (p ij)  =  9{ j .

Below are two common examples o f GLM s.

E x a m p le  1.1 Suppose y^  are independently distributed as univariate normal. The 

probability density function  o f yxj  is

so that Oij =  p.ij, (j) =  a?-. In  this case a((p) =  (j), 6(% ) =  0? /2  and c(yij,(j>) —

function, g (p ij)  =  Pi3-

E x a m p le  1.2 Suppose yxj  are independently distributed as binom ial w ith parameters 

n,ij and p ^ . The probability mass function  o f yXJ is

th is  function  is often referred to  as the “variance function ” . In  some specific

v

~ 2 { y i j / ai j  +  tog^TTofj)}. I t  is easy to check that the link  function  is the identity

The link  function  is g (p ij)  =  log

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 1.2 contains the canonical lin k  and variance functions fo r some common 

un ivaria te  d is tribu tions w ith  mean /j,.

Table 1.2: Canonical link  and variance functions

D is trib u tio n  Canonical lin k  function  Variance function
Norm al Id e n tity 7/ =  n

/  \
1

B inom ia l Log it
" - ^ ( i - m )

n  ( l

Poisson Log Tj =  log (jl) M
Gamma Inverse V =  1/m M2
Inverse Gaussian Inverse square v =  i/m 2 M3

In  G LM s the estim ation o f the regression param eter (3 is carried out by the 

princip le  o f m axim um  like lihood. We illu s tra te  th is  m ethod and present some details 

on how to  com pute the standard errors w ith  an example.

1.3 M a x im u m  L ik e lih o o d  E s tim a te

In  th is  section, we present some details o f m axim um  like lihood estim ation fo r the 

long itud ina l setup described in  Section 1.1. Assume th a t the d is trib u tio n  o f y l is 

m u ltiva ria te  norm al w ith  mean Hi =  X '/3  and covariance m a trix  V * =  V j(< r? ,a j). 

The like lihood function  is

m v ' ] =  w r e - . - k  m '3xp B  P '  ~  x w 'v r ~(y i ~  ■
(1.3.1)

and the log-like lihood is

4 0 .  Vi) =  - i | ^ ( y i -X ' /3 ) 'V -1(yI - X ' 3 )  +  X i loglV ‘l +  log(2’r) E * < l -t i=1 i=l i=l J
(1.3.2)

Taking the p a rtia l derivative o f (1.3.2) w ith  respect to  (3 and equating to  zero, we 

get

n /  n \

E x-Vr'y. -  | E X-V.~'X0 '3 =
i=1 \i=l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Solving th is  equation gives the m axim um  like lihood (M L) estim ate o f /3 as

/  n  \  — * n

3 = I Y. x, v.-'x; I ^XiV-Vi. (1.3.3)
\i=l /  t=l

S im ila rly, d iffe ren tia ting  w ith  respect to  a \  and a *, and equating to  zero, we have

^ ( y .- X W ^ O r .-X W  + E ^ 1 = °' (L3-4>

+  =  0 . (1.3.5)
i=1

Using the identities

doLi
2 = 1  2 = 1

aiogiVii i a|vt
da* I V j I doti

™  -  v .„ (v ,-.» .
da.i \  1 da.i

=  _ v - ^ v - >
S a ,  1  f c ,  1  ’

equation (1.3.5) can be w ritte n  as

Vi)} = ° ’ (L3‘6)

where £i — y i — X^/3 is the  residual. Later, we w ill use th is  form  (1.3.6) o f the M L 

equation to  make comparisons w ith  the unbiased estim ating equation approaches. 

The solutions to  the equations (1.3.4) and (1.3.6) are usually no t in  the closed form , 

and a nonlinear op tim iza tion  a lgorithm  is often used to  solve (1.3.3), (1.3.4) and 

(1.3.6) sim ultaneously.

The covariance m a trix  o f regression param eter estim ate (3 is obtained by find ing  

the inverse o f the Fisher in fo rm ation  m a trix , which is given by

I *  =

A n estim ate o f lp  is X iV l“ 1X^ where V * =  Vt(<T2, 6ci) is the covariance m a trix  

evaluated a t the estim ated parameters and S j. M ore generally, the covariance ma­

tr ix  o f the param eter 0  =  (/3, <r2, a ) ' w ith  a 2 = (<r2, . . . ,  <r2) ' and a  =  ( S i, . . . ,  a „ ) '

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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though com plicated can be obtained by tak ing  the inverse o f the Fisher in fo rm ation

m a trix

evaluated a t 0 .

E
d2i

}d/32
E | &  }  

d<r2d /3 J

T , f  \
\  dad /3  J

E
d2i

E

E

d/3d<r2
d2i

d (c r2)2
f  d2i  \  
\  dadcr2 J

E , SH \
DfUJa J

E ;
d<r2d a  J

E
f  d2l  \  
\ d a 2 J

(1.3.7)

For non-norm al correlated models the like lihood  function  is in tractab le  and calcu­

la ting  the M L estimates pose com putationa lly challenging problems. A n  a lterna tive  

m ethod is the  generalized estim ating equation approach which we b rie fly  discuss in  

the next section.

1.4 G e n e ra liz e d  E s tim a tin g  E q u a tio n s

As an a lte rna tive  to  the fu ll like lihood  approach Liang and Zeger (1986) introduced 

the generalized estim ating equations (GEEs). T he ir approach does not require com­

plete specification o f the like lihood function  and can be thought as an extension o f 

GLM s fo r correlated observations. The general form  o f the generalized estim ation 

equation is
n

E D iv ."‘ ( y < - * * ( ( £ ) )  =  o , (14 .1 )
i=1

where D* =  d /^ /d /3  and V * =  </> A i“1/,2R “ 1A i“1'/2 is the so-called “w orking” covari­

ance m a trix , </> is a scale param eter, R j is the “w orking” corre lation m a trix  depending 

on a i; and =  diag ( a j)  fo r j  =  1 ,2 , . . . ,  t {. Since /x4 =  =  fl-_1(X '/3) and

usually g(-) is a nonlinear function , an ite ra tive  a lgorithm  described below, is required 

to  get the so lu tion to  (1.4.1).

(1) W ith  in itia l values o f a ^ ° \ solve (1-4.1) fo r (3. Denote the so lution as f3 l̂ \  

A t the k th  step fo r k =  1 ,2 ,...

(2) Com pute the estim ate o f using the residuals e =  y , — ( ( 3 ^  j .
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(3) Com pute the Pearson residuals as z f^  =  A * 2(/a*) ^  ^ 0 ^ ^ .

(4) Update a  using z-*^ to  get a ^ ,  and V ® .

(5) Update /3 using the equation

=  /3(fc) +

(6) Check convergence c rite ria  fo r |/3^fc+1̂  — /3 ^ | and |a^fc+1̂  — a ^ | .  I f  the c rite ria  

are m et, then stop; otherwise, go to  (2) and repeat steps (2) -  (6).

For the GEE m ethod the updating  and a  in  steps (2) and (4) is done using the 

m ethod o f moments. The variance aX] is estim ated by e f^ e f^  and the estim ate o f a  

is com puted using the residuals z*. For example, i f  the “w orking” covariance m a trix  

is o f the form  a2R i, and R j has an exchangeable structure, the estimates are given 

by

a  =

where

N '  =
i=1

* = inrp±<*
i=1

w ith  N  =  X ir= i h  an(i  P is the num ber o f regression parameters to  be estim ated. 

The covariance m a trix  o f /3 is given by the sandwich estim ator Iq 1 I i  Iq 1 where

A
0 f - '  d(3 1 S/3 ’

1 = 1

' '  =  E f v . - C o v (y i) V , - ^ .
1=1

In  the above C ov(yt) is estim ated by sl e [) which is consistent even i f  the “w orking” 

corre lation m a trix  is m isspecified. The GEE estim ation m ethod has been im ple­

mented in  popular com m ercial s ta tis tica l packages like  SAS and S-Plus.
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A n im portan t p rope rty  o f the GEE approach is th a t, even the “w orking” corre­

la tion  m a trix  is m isspecified, the estim ate o f j3 is s t ill consistent, b u t there could 

be some loss in  efficiency (H ard in  and H ilbe, 2003). Since the in trodu c tion  o f the 

GEEs, numerous authors have addressed th is  loss in  efficiency issue and suggested 

many a lte rna tive  approaches to  overcome th is  problem  (fo r example, Prentice and 

Zhao, 1991; Qu et al., 2000). In  pa rticu la r, P rentice and Zhao (1991) suggested to  

estim ate the corre lation parameters sim ultaneously w ith  the regression param eter, 

tak ing  in to  account the covariance o f y* and V j. T he ir estim ating equation, known 

as GEE2, can be w ritte n  as

where Vj =  vech {(y j — /X j)(y t — ^ q )'}, vech being the usual vech operator, and W j is 

the covariance m a trix  o f v*. Prentice and Zhao (1991) have shown th a t use o f GEE2 

could im prove efficiency o f the regression param eter.

1.5 O v e rv ie w  o f th e  T h e s is

The overall goal o f the thesis is to  study a lterna tive , robust and efficient methods 

fo r estim ating the corre lation param eter in  structured matrices. These methods w ill 

also im prove the efficiency o f the regression param eter. A p a rt from  th is  in trodu c to ry  

chapter, wherein we have b rie fly  reviewed generalized linear models, m axim um  lik e li­

hood m ethod and the generalized estim ating equations approach, th is  thesis consists 

o f five add itiona l chapters.

In  Chapter I I ,  we consider the sim ple case where the responses in  the long itud ina l 

data are continuous and the number o f repeated measurements per subject are equal 

(balanced data). We firs t explore properties o f the common corre lation structures in  

long itud ina l analysis, and then present details fo r the m axim um  like lihood estimates 

and th e ir asym ptotic d is tribu tions under the assum ption o f norm ality. In  a recent 

paper Wang and Carey (2004) in troduced unbiased estim ating equations based on 

Cholesky decom position o f the inverse o f the structured corre lation m a trix . Extend­

ing th e ir idea we in troduce a num ber o f unbiased estim ating equations fo r estim ating 

the corre lation param eter. In  order to  gain insigh t fo r selecting the best among these

0
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unbiased equations, we derive the  asym ptotic variance o f the estimates and study 

the asym ptotic re la tive  efficiencies in  the special case where U =  3 fo r a ll i.  We 

derive closed form  expressions fo r the exchangeable and the firs t order autoregressive 

structures.

In  Chapter I I I ,  we generalize the results o f Chapter I I  to  the unbalanced case, 

th a t is, to  the case where V s  are unequal. I t  is w ell known th a t fo r Gaussian vari­

ables the like lihood equation fo r regression param eter (/3) is the op tim a l estim ating 

equation in  the sense o f Godambe (1960). As an im po rtan t result, we show th a t 

fo r Gaussian variables, the like lihood equations fo r estim ating the corre lation are 

also op tim a l in  the sense o f Godambe (1960). We then in troduce a general class 

o f unbiased estim ating equations fo r estim ating the corre lation param eter. We de­

rive  the asym ptotic variances o f the estimates fo r several common structures. These 

asym ptotic variance expressions were used to  derive the op tim a l weights fo r com­

mon structured corre lation m atrices includ ing  exchangeable and A R (1 ). We s im p lify  

the variance expressions fo r Gaussian variables. For the A R (1) structure, since the 

op tim a l weight m atrices are com plicated we provide sim pler approxim ations which 

w ill y ie ld  nearly op tim a l estimates. We present some sim ulation results to  study the 

efficiency o f the estimates obtained as solutions to  the various unbiased estim ating 

equations. A  real life  data analysis is presented to  contrast the various estimates.

In  Chapter IV , we focus our a tten tion  on a corre lation structure  th a t has been 

w idely used to  model in tra -fa m ily  correlations. Th is corre lation structure , known 

as the fa m ilia l structure , has one param eter representing the corre la tion between 

the parent and siblings (parent-sib ling corre la tion), and another param eter which 

measures the in tra -co rre la tion  between the siblings (s ib ling -sib ling  corre la tion). We 

firs t study some properties o f the fa m ilia l corre lation structure, and then discuss M L 

estim ation o f the unknown parameters, under the assum ption o f norm ality. As an 

a lterna tive  to  the M L estim ation, we construct a general class o f weighted unbiased 

estim ating equations, and discuss the selection o f op tim a l weights. I t  tu rns ou t th a t 

the op tim a l weights are the same whether we m inim ize the determ inant or the trace o f 

the asym ptotic covariance m a trix . However, these op tim a l weights are com plicated. 

We suggest sim ple approxim ations th a t are stra ightfo rw ard to  construct. S im ulation 

results and real life  data analysis are also presented in  th is  chapter.

In  C hapter V , we generalize the results o f the previous chapter to  a nuclear fam ily
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consisting o f tw o parents and siblings. A fte r discussing the general properties o f the 

fa m ilia l s tructure  and M L  estim ation o f the parameters, we tu rn  our a tten tion  to  the 

unbiased estim ating equation approach. As before we derive op tim a l weights which 

m inim ize the determ inant or the trace o f the asym ptotic covariance m a trix . We also 

suggest some approxim ate weights th a t are nearly optim al.

The results o f the previous chapters are m a in ly applicable fo r continuous data. 

However, in  m edical, b io log ica l and social studies the outcomes are b inary in  several 

research studies. U nlike Gaussian variables, the ranges o f the fa m ilia l correlations 

and other measures o f associations depend on the m arginal means. Know ing and un­

derstanding the ranges o f these association measures is crucia l fo r developing efficient 

methods o f estim ation. In  Chapter V I, we study the ranges o f fa m ilia l correlations, 

odds ratios, kappa sta tis tics, and re la tive  risks fo r b inary variables. We also study 

stochastic representations o f some la ten t variable models fo r fa m ilia l b ina ry data, 

and explore possible efficient methods o f estim ation.

Lastly, we give a sum m ary o f our m ethods fo r analyzing structured corre lation 

m atrices w ith  continuous or b ina ry outcomes. O ur investigations show th a t the 

weighted unbiased estim ating equations are a good a lte rna tive  to  m axim um  lik e li­

hood. For common corre la tion structures, weighted unbiased estim ating equations 

give rise to  efficient or nearly efficient estimates, in  the sense o f the asym ptotic 

variances. These weighted estim ating equations are easy to  im plem ent, reduce the 

com putational burden, and have less convergence problem s when compared w ith  M L 

estimates.
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CHAPTER II 

UNBIASED ESTIMATING EQUATIONS

In  th is  chapter, we w ill discuss sim ple and popular corre la tion structures 

param etrized by a single param eter. We assume the num ber o f observations on 

each subject are the same, th a t is, the long itud ina l data is balanced. As is custom­

ary in  generalized linear models, we assume the variance is constant w ith in  subject 

measurements, or in  a cluster. Special a tten tion  is given to  m u ltiva ria te  norm al 

d is trib u tio n  in  th is  chapter.

The organization o f th is  chapter is as follows. We firs t present some properties o f 

the common corre lation structures, nam ely exchangeable and firs t order autoregres­

sive structures. In  Section I I .2 we present details o f M L  estim ation fo r estim ating the 

regression and the corre lation parameters fo r Gaussian data. The asym ptotic covari­

ance m a trix  o f M L  estimates are also given e x p lic itly  for these tw o corre lation struc­

tures. In  Section I I .3, using the approach based on Cholesky decompositions o f the 

corre lation m atrices, firs t suggested by W ang and Carey (2004), we construct several 

unbiased estim ating equations fo r the corre lation param eter. We derive asym ptotic 

properties o f the estim ates as well. In  Section I I .4, we consider a general class o f 

estim ating equations. Th is general class contains as special cases the equations in  

Section I I .3 w hich are based on the Cholesky decompositions. To fu rth e r understand 

the unbiased estim ating equation approach, we illu s tra te  the m ethod in  a special case 

when t  =  3, in  Section I I .5. E x p lic it expressions fo r the Cholesky decom position ma­

trices, estim ating equations, and asym ptotic variances are given. We compare the 

estimates o f the corre lation param eter v ia  asym ptotic re la tive efficiency.

I I .  1 C o m m o n  C o rre la tio n  S tru c tu re s

The m ost common corre lation structures in  long itud ina l analysis are exchangeable 

(EXC H ) and firs t order autoregressive (A R (1 )). In  th is  section, we w ill study prop­

erties o f these corre lation m atrices.
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I I .  1.1 E xch a n g e a b le  C o rre la tio n  S tru c tu re

The exchangeable corre lation structure  is defined as

R  =  (1 — a ) I  +  a J  =

1 a  

a  1

a  a

a

a
(2.1.1)

t x t

where I  is the id e n tity  m a trix , J  is a m a trix  o f ones and a  is the common corre lation. 

The eigenvalues o f R  are Ai =  1 +  (t — l) a  and A* =  (1 — a) fo r i  =  2 ,3 , . . . ,  t. The 

necessary and sufficient cond ition  fo r R  to  be positive defin ite  is

1
t -  1

< a  < 1 . (2.1.2)

The determ inant o f R  is (1 — a)* 1[1 +  (t — l)a ], and the inverse is given by 

1 _
R 1 =

a
1 — a  (1 — a ) [ l  +  (t — l) a ]  

1 +  ( t  — 2)ck — a

1 — a

—a
1 +  (t — l) a 1 +  (t -  l) a 1 +  (t -  l) a

—a 1 +  (f -  2)a —a

1 +  (t — l) a 1 +  (t -  l) a 1 +  (t — l ) a

—a —a 1 +  ( t -  2 )a
1 +  (t — l)a : 1 +  (t — 1)a 1 +  (t — 1)a

(2.1.3)

In  A ppendix A .l,  the Cholesky decom position m atrices o f R  and R  are presented.

II.1 .2  F irs t O rd e r A u to re g re s s iv e  C o rre la tio n  S tru c tu re

The firs t order autoregressive corre lation structure  is defined as

1 a a 2 . a* 1

a 1 a . a t-2

a 2 a 1 . . a t-3

o:t_1 a 4” 2 a l~3 . . 1
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where a  is the corre la tion between adjacent variables. The determ inant o f R  is 

(1 — a 2)4-1. A nd the necessary and sufficient conditions fo r R  to  be positive defin ite  

is

- 1  <  a  <  1 .

The inverse o f R  is given by

1
R _1 =

1 — a 2
( I  +  a 2C 0 -  aC x)

1 — a 2

1 —a 0 0 0

—a 1 +  a 2 —a 0 0

0 —a 1 +  c? . 0 0

0 0 0 . 1 +  a 2 —a

0 0 0 —a 1

(2.1.5)

(2.1.6)

where Co =  d ia g (0 ,1 ,1 , . . . ,  1, 0) and C i is a trid iagona l m a trix  w ith  0 on the m ain d i­

agonal and 1 on the upper and lower diagonals. Appendix A .2 contains the Cholesky 

decom position m atrices o f R  and R -1 .

I I . 2 M a x im u m  L ik e lih o o d  E s tim a te

For Gaussian model the log-like lihood function  can be w ritte n  as

i  =  — ̂  ^ ( Y i  — X '/3 ) 'R _1(y j — X (/3) +  n lo g |R | +  n tlo g (a 2) +  n£ log (27 r)| .

Recall th a t the m axim um  like lihood estim ate o f the unknown parameters under m ul­

tiva ria te  no rm a lity  assum ption can be obtained by solving the system o f equations

(1.3.3), (1.3.4) and (1.3.6) sim ultaneously. Further sim plifications o f those equations 

give us

/  n  \  — * n

13 =  I ^ X . R - 'X ; )  ^ X , R - 'y , ,
,1=1 /  1=1 

n

a2 =  (2-2.1)n t 
1 = 1
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and the estim ate o f a  is obtained by solving the equation

^ { ^ ( ( y i - x ^ X y i - x ' ^ ' - ^ R ) }  =  ° -  P -2-2)
i=1 ' '

The fo llow ing iden tities are useful to  find  the asym ptotic variances o f the M L  esti­

mates v ia  Fisher In fo rm ation.

i  n

a0 & >=i
d l  n t

d a 2 2o2 2 a 4+  ^  X > <  -  X W 'R_1(y < -  x '<«
1= 1

d£ 1 v /(a V 0 R  d log|R |

i=l

o p

d2i

± ± X , R ~ ' X ' i

dQ do2 a
1 = 1

- 5 4 E x >R _ 1 ( y < - x w

8 7<9/3<9a: (72 ' So:
1= 1

d 2t

d (a 2)2 2a4 er1
1= 1

5 ^ 5  =
1= 1

^  1 Y Y -  v m 'a2R _1rv  v '* n  « ^ 2iog |R |
^  2 J y i_  ^  " ^ 2 - ( y< _  _  9 ■d a 2 2 a 2 d a 2 2 9 a 2

1 = 1

Since E(y<) =  X '/3  and E { ( y j -  X J/3 )(y i -  X '/3 ) '}  =  C o v (y i-X '/3 )  =  cx2R , we have

‘ ( S )  -  4 s ™ - ' * ;

' { &  - »  “ ' { & } - •
J d 2t  |  n t

i  d ^ 2) 2 j  =  ~ 2 ^ 4
^  f  d 2i  \  _  n  f d R - i  X

\  d a 2d a  J 2cr2 \  d a  J

>{S
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Thus the Fisher in fo rm ation  m a trix  is given by

i=1
0

0

0

n t n

n
2 a 2

t r

2<r4 
d R "1

■tr

0

/ d R r 1
R

da

2er2 \  da  

\  d a 1 J d a 2 J

(2.2.3)

W hen R  has an exchangeable structure , Lee (1988) has shown th a t m axim um  

like lihood estimates o f a  and o 2 are

Q-l  =
E IL i t r ( ( J  — I)g jg () 

( * - l ) E L i t r ( e ^ )

°L
i=1

For the exchangeable structu re  we also have 

d R -1 1
da

d2R ~ 1
d a 2

R  =  

R  =

1

1 — a  
2

( T ^

1 +  (t — l) a

t - 2 [ l  +  ( t - l ) a ]  ' 
[ !  +  ( * -  l) a ]2

therefore,

t r  —- — R

tr

da  
d2R _1

(  d a 2 

d2log|R |

R  -

t ( t  — l)o ;
(1 -  a ) [ l +  (t -  l)a ] 
2 t ( t -  l ) [ l  +  ( t — l ) a 2} 
(1 — a )2[ l +  (t — l) a ]2 
- t ( t -  ! ) [ !  +  ( £ -  l) a 2]

d a 2 (1 — a )2\\  +  (t — l) a ]2

Thus the lower rig h t p a rtitio n  o f the Fisher in fo rm ation  is given by

n t —n t( t  — l ) a
2 a 4 

-n t( t — l)o ;
2cr2( l  — a ) [ l +  ( i — l)a ] 
n t( t  — 1)[1 +  (t — l)o r2]

_ 2cr2( l  -  a ) [ l +  { t -  l ) a j  2(1 -  a )2[ l +  (t -  l) a ]2 _ 

and therefore the asym ptotic variances o f b \  and oll are

(1 — a ) [ l +  (t — l)o ;]
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respectively, as in  Chaganty (2003).

W hen R  has an A R (1 ) structure, the m axim um  like lihood estim ate o f a  is no t in  

a closed form . In  th is  case we have

<9R-
R  =

d a  (1 — a 2) 2

d2R - i 2

j 2 a ( I  +  Cq) — (1  +  a 2)C i R

d a 2 

and therefore,

R  =  ( i  -  'o?y  [(1 + 3q2)(1 + Co) ~ q(3 + q2)Ci]R

tr

da  
( d2 R - 1.
\  d a 2 

d 2log|R |

R  =

1 — a 2 

4 (f — 1)(1 +  a 2)
(1 -  a 2) 2 

—2 (t — 1)(1 +  a 2)
d a 2 (1 — a 2) 2

The lower rig h t p a rtitio n  o f the Fisher in fo rm ation  is given by

n t —n (t  — l ) a
2 a4 cr2( l  — a 2)

—n (t — l ) a  n ( t  — l ) ( l  +  a 2)
a 2( l  — a 2) (1 — a 2) 2

and thus the  asym ptotic variances o f d \  and c*l are

2cr4( l  T  cn2)
2d2 +  t (  1 — a 2) 

respectively, as in  Chaganty (2003).

and
t (  1 -  a2)2

(t — 1) [2a2 + 1( 1 — a 2)]

I I .3  U n b ia se d  E s tim a tin g  E q u a tio n s  B ased on  C h o le sky  D e c o m p o s itio n s

Unbiased estim ating equations provide an a lte rna tive  m ethod o f estim ating corre­

la tion  parameters. The unbiasedness guarantees th a t the estimates are consistent. 

Recently, Wang and Carey (2004) in troduced an unbiased estim ating equation th a t is 

based on Cholesky decom position o f the inverse o f the corre lation m a trix . Suppose 

th a t R _1 =  B /A /B ; =  B u A ^B ^, where B ; is a lower triangu la r m a trix  w ith  u n it 

diagonal elements, B u is an upper triangu la r m a trix  w ith  u n it diagonal elements, 

and A ; and A u are corresponding diagonal m atrices. See the A ppend ix fo r details 

on Cholesky decompositions o f d ifferent corre la tion structures.
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1 n i  n

Let Z  =  — -  )  £ je ' =  — \  ZjzL where z* is the Pearson residual. Then Wang 
n a 2 ■£—' n  'i=l i=l

and Carey (2004)’s estim ating equation can be w ritte n  as

(A : t r { ( ^ A , B ! +  ^ A . . B ; ) z }  = 0 .  (2.3.1)

The equation U\ is unbiased since

EW> = tr{ ( l r A'B; + l f A”B« )R}

=  tr{ ( l lB'-iB'A-B; + l f B«IB“A“B”) R}
f  ^ B j , <9BU _  , 1

=  tr { ^ B ' +  a f B” }  =  ° -

The last equality holds because d B  i f  da  (or d B  u/d a )  is a lower (or upper) triangu la r 

m a trix  w ith  diagonal elements 0 and also B z_1 (or B " 1) is a lower (or upper) triangu la r 

m a trix  w ith  0 on the diagonal.

Using the idea o f Wang and Carey (2004), we can construct m any other estim at­

ing equations based on the Cholesky decom position m atrices s im ila r to  U\. Some 

examples are

t r { ( ^ R_1 +  l f R_1) z }  - °  (2-3-2)

+  =  0 (2.3.3)

U2 : t r

U3 : t r

U4 : t r

U5 : t r

Ue : t r

d a  da  
d B i d A i A r%/ 9 B U dA
da  da A ' B ‘ + d - t a- t K B « ) 2 }  =  °  (2-34)
3B , 9 A ,r _, +  Z 1 =  0 (2.3.5)
da  da  da  da

U d B id A i  d B u d A u

1  v a r & r B ‘ +  & r B “ ) z /  =  0  -  ( 2 3 ' 6 )

I t  is easy to  ve rify  th a t the estim ating equations [/,, for * =  2 , . . . ,  6  are unbiased. 

Therefore the solutions oii, i  — 1 , .. .  , 6  to  these equations are consistent estimates 

o f ck. I t  follows from  the general theory o f unbiased estim ating equations, these esti­

mates are asym pto tica lly norm al. The fo llow ing lemma facilita tes the com putation 

o f asym ptotic variances under the assum ption o f norm ality.
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Le m m a  2.1 Let ztx i be a m ultivariate norm al vector w ith mean 0 and covariance 

m atrix  S . Let A , B  be two square matrices o f order t and Z  =  zz '. Then

Cov { tr (A Z ) , tr (B Z ) }  =  tr (B S A S )  +  tr (B 'E A E ).

Proof. Note th a t

(1) Cov {v e c (Z )} =  ( I t2 + I (t>t)) ( S 0 S )

(2) v e c '(A )(D  0  B )vec(C ) =  tr (A 'B C D ')  (H arv ille , 1997, page 342)

(3) vec/(B ') I (t t) =  vec '(B )

where I t 2 is the t 2 x  t 2 id e n tity  m a trix  and I( tit) is the t 2 x t 2 perm uted id e n tity  m a trix  

given by

E,i rp/
11 12

F / F /21 22

E t T7I/
t l ^ t 2

Eit
E '2t

E '

where E rs is a t  x t  m a trix  o f zeros except fo r the (r, s )th  element being 1 fo r 

r, s — 1 ,2 , . . . ,  t  (Vonesh and C h inch illi, 1997, page 22). Now

Cov ( tr (A Z ) , tr (B Z ) }  =  E { tr (A Z ) tr (B Z ) }  -  E ( tr (A Z ) }  E { tr (B Z ) }

=  E {v e c '(Z /)vec(A )ve c '(B /)vec(Z )} — tr (A E ) tr (B E )

=  t r  (ve c (A )ve c '(B /)C o v {ve c (Z )}}

+  vec'(E )vec(A )vec/(B ')ve c (E ) — tr (A £ ) tr (B E )

=  t r  {vec/(B ')C o v {v e c (Z )}v e c (A )}

=  vec '(B ') ( l t2 + 1(t,t)) (£  ® £ )ve c (A )

=  vec^BOCS 0  S )ve c(A ) +  v e c '(B )(£  0  S )vec(A )

=  t r ( B £ A £ ')  +  t r ( B '£ A £ ')

=  t r ( B £ A £ )  +  t^ B 'S A S )

and th is  complete the p roo f o f the lemma, o

The next theorem , due to  Chaganty and Shi (2004), is useful to  derive the asymp­

to tic  variances o f the  param eter estimates obtained from  unbiased estim ating equa­

tions.
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T h e o re m  2.1 Let z* be independent random vectors o f dimension L , i  =  1 ,2 , . . .  ,n . 

Assume that L  <  t  fo r  a ll i.  Let ot be a parameter o f fixed dimension, and the 

m ultivariate functions h fa ,  a )  be such that

n

^ E { / i j ( z i , a ) }  -  0
1= 1

Define M „ ( a )  =  £ Cov {h i{z u a ) }  and I n (a ) =  - ^ Y ^ ^ i d H z u r f / d a ' } .  

Suppose a  is the solution o f the unbiased estimating equation

1 n
- y ' / i i (zi ,a )  =  0 .

i=1
Then under usual regularity conditions we have

y/n  { a - a )  ~  A M V N  ( o , . (2.3.7)

Here A M V N  stands fo r  Asym ptotically M u lti-V aria te  Normal.

Using Lemma 2.1 and Theorem  2.1, we can get the asym ptotic variances o f ch, 

1 <  i  <  6 . These are given by

^  ®  a ,b ; + t-A .B !,)  R  © a ,b : +  I f  a „b ;) R}
= +  to { ( ^ a ,b ;  +  ^ A „ B Q ' R  ( f 1 a,b; +  a»b;,) r }

[ to { J ; @ A 1B : +  t f A „ B i ) R } ] 2

=

tr { ®  R - 1 +  ^ R - 1) R © R ' 1 +  I f  R -1) R}
+  t r {(dB, p - 1  , dB±

d a  ^  “l" da ■r - ^ ' r ^ r - '  +  ^ r - ^ r }

to {(
+  t r { (

dB, , dB,
da  da

M i H ^ R - '  +  f f R - O R } ] '  

) ( £  + * ) }

=

‘r { © b ; +  f f  bl) r  © b ; +  f f  b :) r } 
+to { ( ^ b ; +  f f B;) 'R  ( fL B; +  r }

[ t o { | ; ( l ‘B i+ lfB '„ )R } ] -
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* * 4  =

t r  {  R  ( f ^ A , B {  +  f ^ A uB ' )  r }

+ ^ { ( ^ ^ a ,b ; +  ! ^ a ub ; ) ' r  ( ^ ^ a ,b { +  ^ ^ a ub ; )  r |  

[ * { &  ( t& ^ B J  +  f ^ A uB (,) r } ] 2

*65 =

t r   ̂ I I ta 'l ta 'R  1 +  d a  d aUd B ,  d A ,  
d a

+ t r { (
9Bz d A j  p  — 1 
9a d a

■{(

K & (
t r  J I ^S i & A l  -l  3b„ aA„ \  /  d B ,  d A ,

* * d a  d a  d a  d a  J  ̂  9a 9a +

9a 9a

3b „ aA„
9a d a

+  tr
)}

9B/ d A i  p^— 1 | 9B^ d A ^  -p —
9a 9a d a  d a

p  ( d B i d A . ,  . 3B„ 9Au )
t J  ^ 9a d a  9a 9a J  j

[ tr  { £  ( f ^ R " 1 +  ^ ^ R - 1)  r } ] '

*d 6 =

4-̂  f  {  9Bz d A i  x>/ i 9B„ dAu id/ \  t> (  9Bz d A i  T>t t 9B„ d A 1t -d/ \  td I
t r  { { - d ^ - d Z - B l  +  - d ^ ^ ^ u )  R  d ^ - d t ^ i  +  - d ^ - d ^ - V u )  R )

i j._ I ( 3Bi 3 A ip / i 3B„ 3 A „p / \  p  ( 3B( 3A(-p/ , 3B„ 3 A „p / \  p  I 
+  tr<  { s t S E r i i l  +  - d ^ s t ^ u )  R ^ a a  d a  B l +  - d ?  3 ^ B u J R j

K * (
3B| d A ,
d a  d a B i + 9B1t n /  9At 

9a u 9a > } ] '
(2.3.8)

I I . 4 C lasses o f U n b ia se d  E s tim a tin g  E q u a tio n s

A  general form  fo r the six unbiased estim ating equations th a t we discussed in  the 

previous section is given by

t r  {W R -1  (Z  — R ) }  =  0 , (2.4.1)

where W  is some w eighting m a trix . E quation (2.4.1) is unbiased since

E [tr  {W R " 1 (Z  -  R ) } ]  =  t r  { W R 1 (E (Z ) -  R ) }  =  0 .

Using Lemma 2.1 and Theorem  2.1, we can see th a t the asym ptotic covariance o f the 

estim ate o f the corre la tion param eter obtained from  solving (2.4.1) is given by

Cov { t r  (W R " 1 ( Z - R ) ) }

(z-R))}

Cov { t r  (W R ^ Z )  -  t r ( W ) }

E{ l ; (tr(WR"12;) +tr(w >)}
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Cov { t r  (W R - 1Z ) }

E{ ^ tr(WR" 2 
t r  (W R ~1W /R  +  W 2)

t r  { W ^ L ^ R ^
da j

(2.4.2)

A n  in teresting subclass o f (2.4.1) is obtained i f  we place the constra in t tr (W )  =  0, 

th a t is, the subclass consists o f equations o f the form

t r  {W R - 1Z }  =  0 subject to  tr (W )  =  0 . (2.4.3)

This subclass o f estim ating equations is useful when the param eter space is con­

strained. U nlike the  general class (2.4.1) o f estim ating equations, which may pose 

com putational problems, the subclass can y ie ld  re la tive ly  sim ple estimates.

The asym ptotic variance expressions fo r the subclass (2.4.3) are the same as th a t 

o f the general class (2.4.2) since in  the deriva tion o f the asym ptotic variance, the 

extra  te rm  tr (W )  can be taken as a constant. I t  drops ou t when we take the firs t 

order p a rtia l derivative o f the estim ating equation.

A  closer look a t the six unbiased estim ating equations (Ui, 1 <  i  <  6 ) th a t we 

discussed in  the previous chapter reveals th a t those equations fa ll in  the subclass. 

The w eighting m atrices W ’s fo r the d ifferent estim ating equations are as follows:

U n W  =

U2 : w -  -

U3 : w -  -

UA : w -  :

U5 : w -  -

U6 : w -  -

d B t
+

+

<9B„
d a  da
d B iA - i-R - i . <9B„ x !

B - +  & r A “ B |
d B id A t  j  d B u d A u x 

B t +  —-------- — R
da  da  
d B t d A t

+

da  da  
d B u d A u

da  da  da  da  
d B id A t  j  j  d B u d A u j  x 

B | +  B -

I I . 5 Special Cases

In  th is  section we w ill s tudy asym ptotic properties o f the six unbiased estim ating 

equations in  the special case where U — 3 fo r a ll i.  Suppose firs t R  is exchangeable,
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th a t is, R  =  (1  — a ) I  +  a J . The B  and A  m atrices involved in  the Cholesky 

decom position o f R -1  are

-a
1 +  a
—a

1 +  a

0 0

1 0

—a 1

1 + a
( l - a ) ( l  +  2a) 

0

0

0

1

1 — a 2 
0  1

B u =

1 —a 

0  1 

0  0

-a
l  +  o  
—a

l  +  o  
1

1

0

0
1

1 — o 2
0  0

0

0

l  +  o
(1 — o ) ( l  +  2o)

Thus we have 

d B t
da

A 0 , =  ci

dB
da

- a ub ;

~ d ^ R

^B y  J ^ _ l

da

d B t

5 B U ,

Ci

Cl

Cl

=  c2

C2

0 0 0

— ( l  +  o ) o  a

—(1 +  a) — (1 +  2a  +  2a 2) a (2 +  3a  +  2a 2)

a (2 +  3o  +  2a 2) —( l  +  2a  +  2o 2) —( l  +  o)

a a  —( l  +  o)

0 0 0

0

— (1  +  a )
— 1 +  2a2 +  a 3

a(2 +  2a +  a 2) 

a  

0

0  0

a a

-(1 +  2a  +  3a 2 +  a 3) a (2 +  2a  +  a 2)

-(1  +  2a  +  3a 2 +  a 3) — 1 +  2a 2 +  a 3 

a  —(1 +  a)

0  0

0 0 0

—(1 +  a ) a  a

— (1 +  a ) —(1 +  2a  +  3a 2 +  a 3) a (2 +  3a  +  3a 2 +  a 3)

a (2 +  3a  +  3a 2 +  a 3) —(1 +  2a  +  3a 2 +  a 3) —(1 + a )

a  a  —( 1 + a )

0 0 0
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and

dB i d A  i 
da  d a

A ;B j =  c3

dB^ dAu 
d a  d a

A„B'U

dB; dA
d a  d a

R

dB u d A „ T>_ 1
d a  d a

R

dB; dA; , 
d a  d a  1

dBudAu , 
d a  d a  u

C3

=  c4

c4

C5

C5

0 0 0

- ( 1  +  c*)2(2 +  a ) a ( l  +  a )(2  +  a ) a ( l  +  a )(2  +  a )

—(1 +  a )2(2 +  a )  - ( l  +  4a +  9a2 + 7 a 3) o(3 +  9a +  13a2 +  8a3)

a(3  +  9a +  13a2 +  8a3) — (1 +  4a +  9a2 +  7a3) —( l  +  a )2(2 +  a )

a ( l  +  a )(2  +  a ) a ( l  +  a )(2  +  a ) —( l  +  a )2(2 +  a)

0 0 0

0 0 0 

— ( l  +  a )(2  +  a ) a (2  +  a ) a (2  +  a)

— (2 +  2a — 3a2 — 4a3) —(1 +  3a +  7a2 +  4a3) a (3  +  5a +  4a2)

a (3  +  5a +  4a2) — (1 +  3a +  7a2 +  4a3) — (2 +  2a — 3a2 — 4a3)

a(2  +  a ) a(2 +  a ) —( l  +  a )(2  +  a)

0 0 0

0 0

—( l  +  a )(2  +  a ) a(2  +  a ) a (2  +  a)

— ( l  +  a )(2  +  a ) —(1 +  3a +  7a2 +  4a3) a (3  +  6a +  8a2 +  4a3)

0

a(2  +  a)

a(3 +  6a +  8a2 +  4a3) — (1 +  3a +  7a2 +  4a3) —( l  +  a )(2  +  a )  

a(2  +  a ) a(2 +  a ) —( l  +  a )(2  +  a )

0 0 0

where the constants c j’s are

ci

c2

C3

c4

c5

( 1 - a ) ( l  +  a )2( l  +  2a)
1

(1 + a )3
2a

( 1 - a )3( l  +  a )3( l  +  2a)3
2a

( 1 - a )3( l  +  a )2( l  +  2a)3
2a

(1 — a )2( l  +  a )3( l  +  2a)2

Let zrs be the (r, s) element o f Z . Ignoring the constants c,, 1 <  i  <  5, we can see 

th a t the s ix  unbiased estim ating equations reduce to  six po lynom ia l equations. They
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are given by

U\ : {2z\\ +  2z33)a 3 +  (3z\\ — 2z\2 — 2^23 +  3z33)a2

+ (2 z \i — 2 z\2 — 2^13 +  2^22 — 2^23 +  22:33)0  — (2 z12 +  2zj3 +  2^23) =  0 

U2 : (211 — Z12 +  2^13 — Z23 +  ^33) « 3 +  (2zn — 3zi2 +  4zi3 — Sz23 +  2z33)a 2

+ (2 zn — 2z i2 +  2^22 — 2^23 +  2^33)0: — (2 z i2 +  2z i3 +  2^23) =  0

U3 : {z \i +  Z33)a 4 +  (3zn — Z12 — Z23 +  3z33)a:3 +  (3zn — 3zi2 — 3z23 +  3z33)a2

+ ( 2z n  — 2z i2 — 2z i3 +  2Z22 — 2Z23 +  2z33) a  — (2z 12 +  2 z \3  +  2Z23)  =  0 

U4 : ( 8 zn  4- 8 z3 3 )a 4  4- (13zn -  7zi2  -  2z i3  4  2 z2 2  -  7z23 +  13z33)a3

+  ( 9 z n  — IO Z12 — 8z 13 4  6Z22 — IO Z23 +  9z33) a 2
+ (3 z n  -  7 z i2  -  IOZ1 3  +  4z2 2  -  7z2 3  +  3z33)a  -  (3zJ 2  +  4z i 3  +  3 z2 3 ) =  0

U5 : (4zn  -  4 z i2  +  8 z 1 3  -  4 z2 3  +  4z3 3 )a 3  +  (5zn  -  7z i 2  +  6z i3 +  2 z2 2  -  7 z2 3  +  5z3 3 )a 2

+ (3 z n  — 4 z i2  — 4 z i3  4  4 z2 2  — 4z23 +  3 z3 3 )a  — (3 z i 2  +  4 z i3  +  3 Z2 3 ) =  0  

U& : (4zn  +  4z3 3 )a 4  4- (8 z n  -  4zi2  -  4 z2 3  +  8 z3 3 )a 3

+ ( 6 zn  -  7z1 2  -  2zis +  2z2 2  -  7z2 3  +  6 z3 3 )a 2

+ (3 z n  — 4zi2 — 6 Z1 3  +  4z22 — 4z23 4  3z33)a — (3zi2 +  4zj3 +  3 Z2 3 ) =  0 .

Solving these equations, we get six estim ates o f a, which we denote them  as 

& i, d2> • • •) d 6, respectively. Using the form ula (2.3.8), we can check th a t the asymp­

to tic  variances o f these six estimates are

3 +  12a +  10a2 -  12a3 -  20a4 -  6 a 5 +  5a6 +  4a7 +  4a8
4

J i
&4

a l

(3 +  3 a  +  2 a 2)2 
6 +  2 0 a  +  6 a 2 -  2 4 a 3 -  3 a 4 4- 1 1 a 5 -  3 a 6 -  1 1 a 7 -  2 a 8 

2(3 +  2 a  +  a 2)2

6 +  2 4 a  4- 2 4 a 2 -  8 a 3 -  2 7 a 4 -  2 5 a 5

—7 a 6 — 3 a 7 4- 6 a 8 +  8 a 9 4- 2 a 10 

2(3 +  3 a  +  3 a 2 +  a 3)2 

17 +  115a +  3 0 1 a2 +  3 3 5 a3 -  4 8 a 4 -  57 4 a5

- 5 9 3 a 6 -  1 3 5 a7 +  1 9 8 a8 +  2 5 6 a9 +  1 2 8 a10 

2(5 +  12a  +  1 4 a 2 +  8 a 3)2 
17 +  7 3 a  +  7 4 a 2 -  6 2 a 3 -  125a4 +  9 a 5 +  78a 6 -  3 2 a 7 -  3 2 a 8

a l

“ 5 2(5 +  6 a  +  4a2) 2

17 +  81a +  128a2 +  50a3 -  109a4 -  183a5

-8 0 a 6 -  16a7 +  16a8 +  64a9 +  32a10

“ 6 2(5 +  7a +  8 a 2 +  4a3) 2

Figure 2.1 shows the p lo t o f the above asym ptotic variances fo r values o f a  in  the
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feasible region. The p lo t also contains the asym ptotic variance o f the M L estim ate. 

Since M L  estim ate is the optim al, we com puted the asym ptotic re la tive  efficiencies

MLE
U1
U2
U3
U4
U5
U6

0.4 -

0.3 -

0O

0.1 -

0.0 -

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a

Figure 2.1: EXCH : Variances o f a i  through a 6 and M LE.

(AR E) o f the six estimates as the ra tio  o f the asym ptotic variances w ith  respect to  

the variance o f the M L  estim ate, th a t is, A R E (d j, a jf) =  cr?^/ cr?i fo r i  =  1, 2 , . . . ,  6 . 

F igure 2.2 shows the re la tive  efficiencies o f the six estimates. We can see from  

Figure 2.2, U4 yie lds an estim ate th a t has high efficiency when a  takes m oderate or 

large positive values. A nd equation U2 yie lds an estim ate th a t is h igh ly  efficient when 

a  takes negative values. In  general, there is no un ifo rm ly “best” equation among the 

six.

We now consider the case where the corre la tion structure  is A R (1 ). Here we have

1 a a 2 1 1 —a 0

R = a 1 a ' R  ’  =  1-------51 — c r
—a  1 +  a 2 —a

a 2 a 1 0 —a 1
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1.0 -

0.8 -

> *  0.6 -

0.4 -
U1
U2
U3
U4
U5
U6

0.2 -

0.0 d

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a

Figure 2.2: EXCH: AREs o f oti through &6.

The m atrices involved in  the Cholesky decom position o f R  1 are

1

Therefore,

m

da

B , =

B u =

1 0  0  

- a  1 0

0  - a  1

1 - a  0 

0  1 - a

0  0  1

a *b ; =  dx

a , =

A u —

1 — a 2 

0

0

1 0

o 1

0  0 

1
0

1 — a 2 

0  0

1 — a 2 
0  1

0

0

1 — a 2 -

0 0 0 a - 1 0
d B u ,

d i - 1 a 0 =  <fl 0 a - 1

0 - 1 a 0 0 0
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f ! R -
da

5 B U i

"aS"

a B ‘ R '

,
& r B “

0 0 0

=  d i — 1 a  0

a  — (1  +  a 2) a

a  — (1  +  a2) a

=  di 0  a  — 1

0 0 0

0 0 0 

- 1  a  0 

0  - 1  a

a  - 1  0

0  a  - 1  

0 0 0

d B t d A t 
da  da A 3 ;  =

d B u d A u ,

d B t
da  da

d B u d A u , 
da  da

d B id A i 
d a  da  1

d B u d A u , 
da  da  u

L

0 0 0

=  d2 - l a 0

0 - 1 a

a - 1 0

=  d2 0 a - 1

0 0 0

0 0

=  d2 - 1 a

a — (1  +  a '

a - ( 1  +  a 2)

CSII 0 a

0 0

0 0 0

— d3 - 1 a 0

0 - 1 a

a - 1 0

COII 0 a - 1

0 0 0

0

0
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MLE 
U2, U5
U1,U3, U4, U6

0.5

0.4

0> 0.3

0.2

0.1

0.0

- 1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

a

Figure 2.3: A R (1 ): Variances o f a i  through d 6 and M LE. 

where the constants are

a 1 j  J ôc
1 =  2 =  (1 -  a 2)3 3 =  (1 -  a 2)2 '

In  th is  case the four estim ating equations U\, C/3, U\ and U6 are equivalent and 

s im p lify  to

(•Zll +  2^22 +  Zzf)a — 2 (z i2 +  Z23) =  0  •

Further, the two equations U2 and U5 are equivalent and reduce to

fyl2 +  Zzf)® 2 — {zi \  +  2^13 +  2^22 +  Zzz)ot +  2(zi2 +  Z23) =  0  .

Hence,
2 (z i2 +  Z23) c J 1 O /t ca k — ---------------------  fo r k =  1 ,3 ,4 , 6

•Zll +  Z 22  +  Z 33

and

~ _  (-^11 +  2zi3 +  2^22 +  Z33) — y j {z \\ +  2zi3 +  2^22 +  Z 3 3 ) 2 - 8fyi2 +  2:23)2

2(^12  +  Z23)
fo r k =  2, 5 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



29

 U1.U3, U4, U6
U2.U5

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

a

Figure 2.f :  A R (1 ): AREs o f through a 6.

The asym ptotic variances o f these estimates are obtained from  (2.3.8) as

a 6 -  3a2 +  2
. , i f  k =  1 ,3 ,4  or 6

2 =  I  A&* l 1 — a2
i f  A: =  2 or 5.

Figure 2.3 contains the p lo t o f these variances and the variance o f the M L  es­

tim ate . As before we calculated the asym ptotic re la tive efficiences as the ratios 

(cr|L/c r|.)  o f the asym ptotic variances w ith  respect to  the variance o f the M L esti­

mate. F igure 2.4 shows the graphs o f these re la tive  efficiencies.

I t  is clear from  the graph, equation U4 (equivalently U\, Us and Uq) is be tte r than 

U2 ( or U5). Further U4 is alm ost as good as the like lihood estim ating equation.

In  sum m ary we can conclude th a t a 4 is a good estim ate fo r bo th  the exchange­

able and A R (1) structures when the underlying corre lation is positive. I t  is a good 

com petitor to  the M L  estim ate.
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Since a ll these six estim ating equations belong to  the subclass o f weighted es­

tim a tin g  equations (2.4.3), we wonder whether there exists an efficient estim ating 

equation w ith in  th is  subclass. We explore th is  issue in  the next chapter.
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CHAPTER III 

EXTENSIONS TO UNBALANCED DATA

In  Chapter I I ,  we have studied the behavior o f unbiased estim ating equations in  the 

balanced case. Even though in  practice the data is unbalanced, the results th row  

some lig h t on w hat we can expect in  general. We now extend the results o f the 

previous chapter to  more general s ituations. We assume th a t the long itud ina l data 

is unbalanced b u t the w ith in  cluster or subject variance is constant, th a t is, the 

covariance m a trix  o f the repeated measurements on subject i  is Vj =  <j2Ri(a) where 

Rj(a) is a function  o f the unknown param eter a.

The organization o f th is  chapter is as follows. In  Section I I I . l ,  we study M L 

estim ation under the m u ltiva ria te  no rm a lity  assumption, derive asym ptotic d is trib u ­

tions fo r common corre lation structures. As an im po rtan t result we show th a t M L 

estim ating equation fo r the corre lation param eter is Godambe optim al. In  Section 

I I I . 2, we extend the general class and the subclass o f unbiased estim ating equations 

studied in  the previous chapter, to  the unbalanced s itua tion . We derive asym ptotic 

properties o f the estimates under the assum ption o f norm ality. Several expressions 

are sim plified fu rthe r under special corre lation structures. In  Section I I I . 3, we discuss 

the re la tive efficiencies under the no rm a lity  assum ption, and when there is a v io la tio n  

o f the no rm a lity  assum ption. F ina lly , in  Section III.4 , we illu s tra te  the estim ation 

methods using a real life  data set and contrast them  w ith  M L  estimates.

I I I . l  Maximum Likelihood Estimate

Suppose th a t y* is m u ltiva ria te  norm al w ith  mean X -/3 and covariance m a trix  V j =  

a2R u for 1 <  i  <  n. The log-like lihood function  is

n n n

£ ( y ,  -  X ' / 3) 'R - '  (y, -  XJ0 ) +  £  log lR il +  log(<x2) £  U
1=1 1=1 1=1

+  log(27T 1 .
i=1 J
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We assume th a t R* is a function  o f an unknown param eter a. Taking derivatives we 

can see th a t the M L estim ating equation fo r a  reduces to

» -i

or equivalently,

i=1 v '

^ t r j R ^ ^ R - 1 (eis'i -  a2R i) |  =  0 , (3.1.1)
i= i   ̂ ^

where e* =  y ; — X '/3 . The M L  estim ate a L o f a  is sim ply the roo t o f the above equa­

tio n  (3.1.1). The fo llow ing derivatives are useful to  s im p lify  the Fisher in fo rm ation  

m a trix .

d2i

9F
d2l

d(3da2 a

i= i

j= i

d(3da a2 ^  da  
1 = 1

d2i
^  i  X >  -  x ^ ) ,R r , (y< -  x ^ >d (a 2)2 2a4 a1 . ,v ' t= i t= i

—  £ ( y , - x ' / 3 ) ' ^ - ( y i - x '/3)
do2 da  2a4 ̂  1 da

1 = 1

1=1 t=l

Thus the elements o f the Fisher in fo rm ation  are 

‘ { 0 }  -

■ { £ . } - «  “ * ( S  = “

*{SM
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In  m a trix  no ta tion  the Fisher in fo rm ation  can be w ritte n  as

o'  o'
i= l

o

2ff4
1 A  ( d  RT 1 \  1 f , A

»=i N '  \ i= i

i  ^  ( 9 R r 1n

i=1 
>-1

da

\  o a z j  *r~t o a zt= i

We now fu rthe r s im p lify  the above m a trix  under common corre la tion structures. 

Suppose th a t R* is exchangeable. Then

'<9R,-1 _  \  t i ( t i - l ) a
t r

t r

da  

d2R 7 1
(  d a 2 

d2 lo g lR il

RiJ =

=

(1 -  a ) [ l  +  (U -  l) a ]  

2 ti( t j -  1)[1 +  (tj -  l ) a 2} 
(1 -  a )2[ l  +  (U -  l)a :]2 

- U i t i  -  1)[1 +  (U -  l)o :2]
d a 2 (1  — a )2[ l +  (t i — l)a :]2

The lower rig h t p a rt o f the Fisher in fo rm ation  m a trix  is

—  V "
2a4 2 s l i

1 71

9^2 E r i - !
-  l)o :

1 = 1

t i ( t i  l)o;

2 ( j2 ^  (1  -  a ) [ l +  (U -  1 )ck]

t i ( t i  — 1 ) [1 +  (U — 1 )a 2] 
2 - j  a  -

. 2<j2 ( !  -  a ) [1 +  (*i -  ! )« ]  (1 ~  +  (tf ~  1)a l

Taking the inverse o f the above m a trix  we get the asym ptotic covariance m a trix  o f 

the M L estimates o f (a2, a ) ' as

t i ( U  -!)[! + ( U  -  l)o;2] , i 2 -  l ) a

2
UIe

J-jL1 Vr* ± ) O t  J / I  ^ 2  Li \ H  ± ) t X

[1 +  (U -  1)«]2 1 ^ l  +  ( t , - l ) a

(1 - a )2 £ ‘  

where a.E =  «, W E  M * i “  1 )[1  +  ( ‘ ‘ “  1)a*

1= 1

1 = 1 1 = 1

V -'' t i ( t i  — l)ci!
[1 +  ( ti -  l ) a ]2 J | ^ l  +  ( t i - l ) a j  

Suppose now th a t R* has an A R (1) structure . In  th is  case we have

2(U -  1 )a

t r

da

( d2n ~ \
\  d a 2 

^ lo g jR il
d a 2

R i  =

1 — a 2 

4 (tj — 1 )(1  +  a 2)
( I - a 2)2 

-2 (U  -  1)(1 +  a 2) 
(1  -  a 2)2
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The lower rig h t pa rt o f the Fisher in fo rm ation  sim plifies to

t o
-a f vE ‘<

-a

2a4 a 2( l - a 2) } ^1=1 ' '  ̂ i= l
n  "1 o (  n

a2( 1 — a 2) E*<-
1 +  a

n
(1  -  a 2)2 Iv ' I 1=1

E ‘<

n

n

And again tak ing  the inverse o f the above m a trix  we get asym ptotic covariance m a trix  

o f the M L  estimates o f (a2, a ) ' as

u A

i  n  l i n

^  t i — n  > a ( l — a 2)cr2 < t i  —

i= l J I i= 1

—n l  (1  — a 2) 2 5 ~^tj

n

*=i i= i

nwhere u A =  (1  +  oc2) J  ~  n  j  _  2q;2

We now show th a t the M L  equation (3.1.1) is the op tim a l estim ating equation in  

the sense o f Godambe (1960). F irs t i t  is easy to  check th a t we can w rite  equation

(3.1.1) as

(3.1.2)
1= 1  ^

Using the id e n tity  (Rao and Rao, 1998)

tr (A 'B C D ')  =  tr (B C D 'A ')  =  ve c '(A )(D  0  B )vec(C ) 

fo r any m atrices A , B , C  and D  o f appropriate order, we can rew rite  equation (3.1.2)

as

^ 2  { (Ri  1 0  R ’ ^  ( yec(£i£ i ) _  ^v e c C R i)} =  0 ,
i= l  ̂ ^

which is equivalent to

G K R r1 ®  R r 1) ^  {vech(ete() -  u 2vech(R i ) }  =  0 . (3.1.3)
i= l  ̂ '

Here G j is the dup lica tion  m a trix  defined in  H a rv ille  (1997, page 352). Now if  

H i =  (G 'G i) - 1G ', we have v e c h ^ e ')  =  H ivec(£ i£ () -  (G 'G j)_1G 'vec(£ i£ '). The 

covariance m a trix  o f vech(£j£ ') is

C ov{vech (£ i£ ()} =  H jC o v {v e c (£ j£ ')} H (
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=  (G;Gj) - 1G'Cov{vec(eie')}Gi(G'G i ) - 1 
= ^(GJGO-’G; ( l t? + 1, ( R , *  ® Ri)G j(G 'G i)-1 
=  2^ (G 'G i) - 1G'(Ri ® R i)Gj(G!Gi) - 1,

where I t? and I(ti ,ti ) are defined in  p roo f o f Lemma 2.1. Since E {v e c h ^ e ') }  =  

a2vech(R i), the op tim a l estim ating equation according to  Godambe (1960) is

G /iG i (G 'R i ® R ,G i ) - 1G :G i {vech(ei£ ' ) - (T2vech(R i ) }  =  0 .
i= i  ̂ '

(3.1.4)

Com paring the term s in  equations (3.1.3) and (3.1.4), we find  th a t the only difference 

is the m iddle term . We w ill show th a t equation (3.1.3) is equivalent to  (3.1.4) by prov­

ing th a t the m iddle term s are equivalent. N otice th a t H t is defined as (G 'G j)_1G ', 

and (R j ® R j) _1 =  R ^ 1 ®  R ” 1, using the identities below (H arv ille , 1997, page 358),

(1) R - 1 ® R - 'G i =  G iH i (R “ 1 <g> Rj_1)G i

(2) {H j(R i <g> R i )G i } _1 =  H ^ R r ^ R - 1) ^

we have

G ' t R - 1 ® ^ 1) ^  =  G 'G jH i(R t_1 <8 > Rjr l )G i 

=  G 'Gj{Hi(R j ® R i)G i } _1 
=  G 'G i-K G 'G i^ G 'tR i ® R i) ^ } - 1

=  G(Gi{G'Rj ® R iGi}_1G/iGi.

Thus the m iddle term s o f (3.1.3) and (3.1.4) are equivalent. Therefore, the lik e li­

hood estim ation equation fo r the corre lation param eter and the Godambe’s op tim a l 

estim ating equation are identica l.

III.2  Classes of Unbiased Estimating Equations

In  general, a class o f unbiased estim ating equations fo r estim ating corre lation pa­

ram eter can be w ritte n  as

n

UG =  ^ t r j W i R - ^ Z i z ' - R , ) }  =  0,  (3.2.1)
i= 1
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where W j is a w eighting m a trix  and zt is the Pearson residual o f y*. I t  is easy to  ve rify  

th a t E (Ug) =  0 since E (z iz'i ) =  R j. Hence Ug is an unbiased estim ating equation and 

the so lution o f (3.2.1) is a consistent estim ate o f a. Notice th a t like lihood equation of 

a  fo r norm al data is o f the form  Ug - B y Lemma 2.1 and Theorem  2.1, the asym ptotic 

variance o f the roo t d  o f equation (3.2.1), is given by

Cov {Ug)

E
dUG
da

Cov j E tr { w iR ._1 -  R -.)}

EI ^ E tr(w‘R."‘ (z<zi - Ri))
i= l

Cov J £ t r  ( W iR r 1̂  -  £ > ( W 0

I  i=1 i= 1

d
E i  I E t r  (W iR r 'z iZ ')  +  £  t r f W J

i=  1

C o v j ^ t r  ( W .R - ^ ^ ; )

d
E i ^ £ t r (w *R r l z *z9

i—1

(W iR ^ W 'R , +  W ?)
i=1

i= l v '

(3.2.2)

We w ill now study the problem  o f choosing the op tim a l weights which m inim ize 

the asym ptotic variance (3.2.2). Using the iden tities (Magnus and Neudecker, 1999)

d
( t r t W i R ^ W ' R i ) }  =  2 R iW iR tr 1 

d
d W i

{ t r ( W ? ) J  =  2 W -

aw;MWî N} = ^
and equating the derivative o f (3.2.2) w ith  respect to  W j to  zero we get

E tr(w ;«*)} {R jW jR ,-1  +  W '}
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-  jx j l i t W jR - 'W 'R j  +  W j) J  { r ^ }  = 0 (3.2.3)

fo r % =  1 , 2 , , n.  Note th a t a ll the traces are scalars. The above equation can be 

w ritte n  as

{R iW iR r 1 +  W ' } + c | R i ^ ^ |  =  0

where the constant
n

E t r ( W j R - 1W ;.R J + W j)

^  f  d R ; 1 ^

g tr( w ^ R

d R ,-1  j S R j  j
Since — —  equals — R . —— R . , we have 

da  da

{ R , W , R - ‘ + W ' }  =  c { ^ R - ‘

Post m u ltip ly in g  by R j we get

{R iW i +  (R iW i) '}  =  (3.2.4)

Under the add itiona l assum ption R j W j  is sym m etric, a so lution to  equation (3.2.4)

is W j =  R r 1- — . In teresting ly, the M L  equation (3.1.1) uses th is  w eighting m a trix . 
da

Thus we have an a lte rna tive  deriva tion o f the o p tim a lity  o f the M L equation.

We now look at some specific cases. Suppose th a t R j =  (1 — a ) I j +  « J j. The 

optim a l w eighting m a trix  is given by

W  =  R 1 —
1 1 da

=  -------- T ~  r— J j  — I j  \  .
1 -  a  \  1 +  ( t i -  l ) a  J

S ubstitu ting  th is  in to  the estim ating equation (3.2.1), gives us the best estim ating 

equation:

f  l  +  ( t i - l ) a 2 ,  t A t i - l )

g t r  {  {1  +  (t, -  W J‘ ~ h )  Z iZ i + a ( 1 - ° ) g l t  ( t ,  -  l ) a  =  0>
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and th is  coincides w ith  the M L  equation. Now suppose R* has an A R (1) structure. 

In  th is  case the op tim a l w eighting m a trix  is given by 

a p  /TR-1  1

= “ & r R‘ =  (1 3 ^ ) 5  { ( ! - “ 2)C« -  2“ (!< +Co.)} R*.

where C 0j and C u  are o f order U and are s im ila r to  C 0 and C i, respectively. I t  

tu rns ou t even in  th is  case, the best unbiased estim ating equation is same as the M L 

equation and it  is given by

n f  n 1
^ t r  { ( l  +  a2) Cli -  2a (Ij +  C li)} Zjz'+  2a (l -  a2) < — n > =  0 .
i=l I i=1 J

We w ill now focus our a tten tion  on the subclass o f (3.2.1) w ith  added restric tion

t r ( W j )  =  0 fo r a ll i. E xp lic itly , the subclass takes the form
n

^ ^ t r  { W j R “ 1Zjz ' }  =  0 subject to  t r ( W j )  =  0. (3.2.5)
t= i

The asym ptotic variance o f the estim ate from  th is  subclass o f equations is same as 

before except fo r the constra in t t r ( W j )  =  0 fo r a ll i. To get the op tim a l weights we 

need to  m inim ize the asym ptotic variance subject to  the restrictions on the weights. 

In troducing  Lagrange m u ltip lie rs  (A*) and equating to  zero the derivative o f (3.2.2) 

w ith  respect to  Wj, we get

j l >  (w ‘̂ - R) } (R'w'Rr‘+ w;}

-  { | > ( W l R - 'W 'R i +  W J) J  { r . ^ }  -  ^ 1, { t r  ( w . ^ L R . )  } ' =  0
O a  J 'J [  \  O a  J  )

which can be fu rth e r sim plified  as

f SR—11
{R ,W iR “ 1 + W ' } +  =  0,  (3.2.6)

where c\ and c2t are constants. Equation (3.2.6) is equivalent to

R iW < +  (R iW i y  =  02^ - d j ^ } .  (3.2.7)

U nfortunate ly, (3.2.7) does not have an e xp lic it solution fo r the op tim a l weight W j 

since the constant term s axe com plicated. However, when R j has an exchangeable 

structure  we have an e xp lic it so lution, w hich is

W i =  R ‘ a 7 - d i a g ( R i  a r )

1 ( J i - i i ) -(1 -  a ) [ l  +  {ti  -  l) a ]
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The constant could be ignored when U — t  and thus

W i =  Jt -  I i  or W i =  R , -  l i . (3.2.8)

The estim ating equation w ith  the above weights tu rns out to  be

Ziz' l =  ° '  (3-2'9)

This equation does not have a closed form  so lu tion  except in  the case U =  t  fo r a ll i. 

B u t the asym ptotic variance o f the estim ate is in  a closed form

n

2 Y ^ U i U - l )
2 _ ___________ i= 1________________
a r n i  2 '

_____ t j ( t j  — 1 )______

^  ( ! - « )  [ l  +  ( * i - ! ) « ] _

Now suppose th a t R j has an A R (1) structure . In  th is  case the op tim a l weights 

are d iffic u lt to  obtain. B u t one poss ib ility  is to  choose W * =  R j — I*. S ubstitu ting  

these weights in  the estim ating equation (3.2.1) we get

n

^ t r | ^ a ( I i  +  C i0) -  C ti ) z i z ' j  =  0 , (3.2.10)
2=1

where Cjo is m a trix  Co o f order t t and C l \ is m a trix  C i w ith  order t% as defined in  

Section I I . 1.2. E quation (3.2.10) has a closed form  solution which is given by

n

^ t r ( C i i Z i z ' )
i=i

«  =  ~  •
^ t r { ( I i +  C i0)zi z ' }
i= l

The asym ptotic variance o f a  is

y ;  {U — 1 -  Ua2 +  a 2ti)
2= 1

i 2

_i=l
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The unbiased estim ating equations based on Cholesky decom position o f R { 1 can 

be easily extended to  the unbalanced case. They are given by

Ui  :

U2 :

Ui  :

d B ui A \  .1
A-nBii H A UjB uiJ  ZjZj j  =

I V

1 = 1  v  x

o

5 >i=l 
n

2>ui=l  ̂v

■ ^ Z i Z ' j  = 0

f  ( 9 B n  d A .u  . dBui $AUj , > ,
& T +  - a T - a T A " i B “ < ) z ‘z<

0 .

C learly, they fa ll in to  the subclass o f unbiased estim ating equations w ith  different 

weights. U nfortunate ly, none o f them  are op tim a l when R , has an exchangeable or 

an AR (1) structure.

1.0 -

0.8 -

0.2 -

0.0 d

- 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a

Figure 3.1: EXCH : Efficiency o f optimal a  (n=30).
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I I I . 3 Relative Efficiency

In  th is  section we study the sm all sample re la tive  efficiencies o f the estim ates obtained 

using the unbiased estim ating equations in  the subclass (3.2.5) w ith  d ifferent weights 

using sim ulations. F irs t, we look at the efficiencies for m u ltiva ria te  norm al data and 

then we explore the case when there is a departure from  norm ality. Since corre lation 

is scale invarian t in  our sim ulations we fixed the variance to  be 1. The sim ulation 

steps are as follows.

1.0

0.8

£ 0.6
e
0)
o
i t
111 0.4

0.2

0.0

n = 10 
n = 30

i i i i i i i i i i r~ 
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

a

Figure 3.2: EXCH : Efficiencies o f a  fo r  small and large sample size.

(1) Generate n  integers { U , l  <  i  <  n }  fo r the num ber o f repeated measurements (or

sizes o f the clusters) ranging from  2  to  6  from  the discrete un ifo rm  d is trib u tio n .

(2) For i  =  1 ,2 , . . .  ,n,  generate i* un ivaria te  standard norm al random  numbers and

stack them  in to  a colum n vector z*.
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(3) For a fixed value o f a , construct the corre lation m a trix  R j (exchangeable or 

A R (1 )).

1 1
(4) Le t y i =  Rj2Zi, where R? is the square roo t o f Rj. C learly E(yj) =  0 and 

C ov(y i) =  R j.

(5) Solve equation (3.2.5) w ith  op tim a l weight W j =   ---- —-— —— (Jj — I,)  and
1 +  (ti  — l ) a

sim plified  weight W * =  R j — I j  (or equivalently, solve equation (3.2.9)) to  get 

estim ate as  o f a  fo r exchangeable corre lation structure. S im ila rly, use the 

weight W j =  R j — I j  in  (3.2.5) (or equivalently, solve (3.2.10)) to  get as  for 

the A R (1) structure.

(6 ) Solve (3.1.1) to  get the M L  estim ate a L o f a.

(7) Calculate error squares r |  =  (as — a )2 and r 2 =  (ocl — a ) 2.

(8 ) Repeat steps (1) -  (7) a large num ber o f tim es (r), say r  =  10,000 tim es, and

calculate r |  and r 2, the sum o f error squares fo r the estimates.

Then the re la tive  efficiency o f as  to  &l is given by

E f f (as , a L) =  5 4 .

Table 3.1: Efficiency o f a  fo r  various sample sizes

a t  =  4 t  =  6 t  =  9 t  =  15 t  =  20

0 .0 1.0103 1.0032 1 .0 0 2 1 1 .0 0 1 0 1.0003
0 .1 1.0079 1.0033 1.0008 1.0006 0.9997
0 .2 1.0037 0.9991 0.9968 0.9985 0.9981
0.3 0.9940 0.9918 0.9922 0.9947 0.9959
0.4 0.9820 0.9800 0.9858 0.9890 0.9905
0.5 0.9614 0.9654 0.9743 0.9829 0.9873
0 .6 0.9533 0.9572 0.9558 0.9750 0.9813
0.7 0.9269 0.9270 0.9376 0.9448 0.9601
0 .8 0.9236 0.9073 0.9129 0.9248 0.9312
0.9 0.9387 0.9073 0.8895 0.8947 0.8885
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1.0 -

0.8 -

> •  0.6 -

0.2 - n = 30 
n = 10

0.0 i

- 1.00 -0.75 -0.50 0.00 0.25 0.50 0.75 1.00-0.25

a

Figure 3.3: A R (1 ): Efficiencies o f a  fo r  small and large sample size.

Figure 3.1 shows the re la tive  efficiency o f as  obtained using weight W j =

 -------- — (Jj — Ij) w ith  respect to  the M L estim ate, when the corre lation struc-
1 +  ( t j  — ljQ !
tu re  is exchangeable, fo r n — 30. I t  is clear th a t the  unbiased estim ating equation 

approach w ith  op tim a l weights is nearly as good as the M L  estim ate.

Figure 3.2 shows the re la tive  efficiencies o f the estim ate as  using W j =  R j—Ij and 

an exchangeable corre lation m a trix , fo r n=10, 30. The p lo t o f the re la tive efficiencies 

when the corre lation structure  is A R (1) is in  F igure 3.3. I t  is clear from  these p lots 

the unbiased estim ating approach yields h igh ly efficient estimates for norm al data.

For balanced data, the estim ates obtained using the unbiased equations from  the 

subclass is identica l to  M L  estim ate fo r exchangeable structure  and is also as good as 

the M L estim ate fo r A R (1) structure. The p lo t o f the efficiency fo r A R (1) structure  

is in  F igure 3.4. Some num erical results are also presented in  Table 3.1.
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Figure 3.f :  A R (1 ): A R E  o f a  fo r  balanced data (t =  3).

To study the robustness o f the estimates, we sim ulated data from  a m u ltiva ria te  

t  d is trib u tio n  (Johnson et a l., 1972), which was used by m any authors as a model 

to  study the departure from  norm ality. To sim ulate random  numbers from  the m ul­

tiva ria te  t  d is trib u tio n , we firs t generated random  norm al variables z* according to  

the procedure described above. Then we generated random  numbers (A,) from  a
z •

Chi-square ( y 2) d is trib u tio n  w ith  5 degrees o f freedom. The ra tios — . 1 ■■ are the
v /V 5

desired m u ltiva ria te  t  random  variables. Figures 3.5 and 3.6 show the asym ptotic 

re la tive efficiencies o f the estimates as, when the corre lation m a trix  is exchangeable 

and A R (1 ), respectively. I t  is clear from  the p lots the estimates rem ain efficient when 

there is a departure from  norm ality.
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Figure 3.5: EXCH: Efficiency o f a  fo r  non-normal responses.

III.4  An Illustrative Example

Here we w ill illu s tra te  our new m ethods o f estim ation w ith  a real life  example. The 

data is from  the A ID S  C lin ica l T ria l G roup (A C T G ) S tudy 193A (F itzm aurice et al., 

2004). Th is is a randomized, double-blind, study o f A ID S  patients w ith  advanced 

immune suppression (CD4 counts o f less than  or equal to  50 ce lls/m m 3). The pa­

tien ts in  th is  study were assigned to  dual or trip le  com binations o f H IV -1  reverse 

transcriptase inh ib ito rs . Specifically, patients were random ized to  receive one o f four 

da ily  regimens containing 600mg o f zidovudine: zidovudine a lte rna ting  m onth ly w ith  

400mg didanosine; zidovudine plus 2.25mg o f zalcitabine; zidovudine plus 400mg o f 

didanosine; or zidovudine plus 400mg o f didanosine plus 400mg o f nevirapine (trip le  

therapy). Measurements o f CD4 counts were collected at baseline and a t 8-week in te r­

vals during fo llow -up. However, the CD4 count data are unbalanced due to  m istim ed 

measurements and m issing data th a t resulted from  skipped v is its  and dropouts. The
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Figure 3.6: A R (1 ): Efficiency o f a  fo r  non-norm al responses.

num ber o f measurements o f CD4 counts during the firs t 40 weeks o f fo llow -up varied 

from  1 to  9, w ith  a m edian o f 4. The response variable is the log transform ed CD4 

counts, log(C D4 counts +  1), available on 1309 patients. The categorical variable 

Treatm ent is coded as 1 =  zidovudine a lte rna ting  m onth ly w ith  400mg didanosine, 2 

=  zidovudine plus 2.25mg o f zalcitabine, 3 =  zidovudine plus 400mg o f didanosine, 

and 4 =  zidovudine plus 400mg o f didanosine plus 400mg o f nevirapine. The vari­

able week represents tim e since baseline (in  weeks). Table 3.2 shows an abbreviated 

version o f the data set.

The regression and the corre lation param eter estimates obtained using the un­

biased estim ating equation Us and the M L  estimates are in  Table 3.3 fo r the ex­

changeable corre la tion structure . The estimates and the standard errors are very 

s im ilar.

P aralle l results fo r the A R (1) corre lation structure  are in  Table 3.4. Once again,
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Table 3.2: P a rtia l lis t o f A ID S  data

Subject Treatm ent
Age

(years)
Gender 

(1 =  M , 0 =  F) Week log(C D4 +  1)
1 2 36.43 1 0 .0 0 3.135
1 2 36.43 1 7.57 3.045
1 2 36.43 1 15.57 2.773
1 2 36.43 1 23.57 2.833
1 2 36.43 1 32.57 3.219
1 2 36.43 1 40.00 3.045
2 4 47.85 1 0 .0 0 3.068
2 4 47.85 1 8 .0 0 3.892
2 4 47.85 1 16.00 3.970
2 4 47.85 1 23.00 3.611
2 4 47.85 1 30.71 3.332
2 4 47.85 1 39.00 3.091
3 1 60.29 1 0 .0 0 3.738
4 3 36.60 1 0 .0 0 4.119
4 3 36.60 1 7.14 4.111
4 3 36.60 1 16.14 4.710
4 3 36.60 1 32.43 2.833

1313 1 15.84 0 0 .0 0 4.984
1313 1 15.84 0 7.29 4.159
1313 1 15.84 0 2 0 .0 0 4.407
1313 1 15.84 0 27.00 3.556
1313 1 15.84 0 35.00 3.466

NOTES: Source: Fitzmaurice et al. (2004), Applied longitudinal analysis.

the estimates and the standard errors are in  agreement. This example shows th a t the 

unbiased estim ating approach, which is sim pler to  im plem ent, is a great a lterna tive  

to  the M L  estim ation approach.
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Table 3.3: Parameter estimates w ith E X C H  correlation structure

Us (S.E.) M LE  (S.E.)
In tercept 2.3326 (0.1469) 2.3325 (0.1453)
Treatm ent 0.0760 (0.0228) 0.0761 (0.0229)
Age 0.0116 (0.0031) 0.0116 (0.0031)
Gender -0.1175 (0.0765) -0.1175 (0.0788)
Scale 1.0689 — 1.0665 —
Q! 0.6412 (0.01299) 0.6388 (0.01230)

Table 3.4-' Parameter estimates w ith A R (1 ) correlation structure

Us (S.E.) M LE  (S.E.)
In tercept 2.3737 (0.1437) 2.3721 (0.1351)
Treatm ent 0.0620 (0.0223) 0.0628 (0 .0 2 1 2 )
Age 0.0109 (0.00306) 0.0109 (0.00291)
Gender -0.1330 (0.0742) -0.1328 (0.0738)
Scale 1.0702 — 1.0568 —

a 0.7031 (0 .0 1 0 0 2 ) 0.6906 (0.00976)
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CHAPTER IV 

ANALYSIS OF FAMILIAL STRUCTURE

The corre lation structures th a t we have studied in  the previous chapters contain 

only a single param eter. In  th is  chapter we consider structures th a t are character­

ized by more than one param eter. M ore specifica lly we focus our a tten tion  on a 

structure  th a t has been w ide ly used to  study the in ter-re la tionships in  fa m ilia l data, 

th a t is, data collected on fam ilies includ ing  parents and children. Numerous authors 

have studied the analysis o f fa m ilia l data and proposed several methods o f estim a­

tion , which are e ither m oment based or like lihood. For example, Donner and Koval 

(1980) studied like lihood estim ation o f intra-class corre lation. Srivastava (1984) dis­

cussed like lihood estim ation o f inter-class corre lation using transform ation. E liasziw  

and Donner (1990) compared different methods fo r inter-class corre lation estim ation. 

Srivastava et al. (1988) extended the w ork in  Srivastava (1984) to  the simultaneous 

estim ation o f in tra - and in ter-re lationships, and Konish i et al. (1991) addressed the 

inferences on the corre lations between d ifferent fam ily  members. However, there is 

no lite ra tu re  on param eter estim ation through estim ating equations approach and 

there is alm ost no discussion about the o p tim a lity  o f the corre lation estimates.

The organization o f th is  chapter is as follows. We firs t study properties o f the 

fa m ilia l corre lation structu re  in  Section IV . 1. In  Section IV .2  we discuss m axim um  

like lihood estim ation o f the fa m ilia l correlations fo r norm al data. We derive the 

asym ptotic covariance m a trix  o f the M L estim ates as well. As an a lte rna tive  approach 

to  estim ation o f the fa m ilia l correlations, we present a general class o f unbiased 

estim ating equations and a useful subclass in  Section IV .3 . We study asym ptotic 

properties o f the estim ates obtained solving those unbiased estim ating equations. 

Since the op tim a l weights w hich m inim ize the asym ptotic variances, are no t in  a 

sim ple form , we suggest some sim pler weights th a t are nearly optim al. Expressions 

fo r the asym ptotic covariance m atrices fo r the near op tim a l weights are also given in  

Section IV .3 . S im ulation results to  compare re la tive  efficiencies under the no rm a lity  

assum ption are presented in  Section IV . 4. F ina lly , results from  a real life  data analysis 

are given in  Section IV .5 .
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IV . 1 Familial Correlation Structure

A  correlation model th a t has been w idely used to  model associations w ith in  families 

is the structure

R i -
l  pH

p l i  (1 — a ) I i  +  a J j

’ 1 p P ■ ■ P

1 p 1 a  . . a

= p a 1 . . a

p a a  . . 1

(4.1.1)

Here p is the correlation between the m other (or parent) and her children, and a  is 

the common correlation among U children.

To find the necessary and sufficient conditions for R j to  be positive definite, let 

us consider the Helmert m a trix

M i =

1 l
V u V u

7 7 s
v'e y / 6

l 1

1

V u

0

2

“ 7 6

1

V u

0

0

( t i - 1 )

. -  1) y / t i ( t i  -  1) y /U (ti -  1) y / t i ( t i  -  1)

o f dimension U. I t  is easy to  verify th a t M * is an orthogonal m atrix , th a t is, M jM (  =  

L . Let

1 o'
Ri i

° i M ' _
1 OJ

Oi M i j 

1 y /tlp  0

x /tip  1 +  (ti — l)o : 0

0 0 1 - a

0 0 0

0

0

0

1 — 0!

Since R i is positive definite i f  and only i f  f i j  is positive definite, the necessary and 

sufficient conditions for positive definiteness are
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(1)

(2) t ip 2 <  1 +  ( t i ~  l ) a .

For example, when t i  =  2, the conditions become

(1) — 1 <  a  <  1 (2) -  <  p <  , (4.1.2)

and when U =  3, the conditions reduce to

. . 1 . . / 1 —|— 2a  / 1 —(— 2a  . .
( l ) - - < a < l  (2) -  y — 3 —  < P <  Y ^ —  • (4 1 -3)

These ranges are shown in  Figure 4.1. The area enclosed by the outer curve is the 

feasible region for t  =  2 and the inner curve encloses the feasible region when t  =  3. 

In  general, the feasible range becomes narrower as t increases.

1.0

0.5

P

-0.5

-1.0
0.5 1.0-1.0 -0.5 0.0

a

Figure J^.l: Range o f (p,ot) when t  =  2 and t  =  3.
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The inverse o f the fam ilia l correlation m a trix  is given by 

l  +  ( t i -  l ) a  - p

R r 1 =
1 +  (ti -  l ) a  -  Up2 

~P
1 +  (ti -  l ) a  -  Up2 

a  — p2

i :

1 +  (ti — l ) a  — t ip2 1 -  a  (1 — a ) [ l  +  (ti -  l)a : -  Up2]

Appendix A .3 contains details of the Cholesky decompositions o f Rj and R “\  Let 

a \ be the m arginal variance o f observation on the parent and o \ be the common 

variance of observations on the children. I f  y j is a vector consisting o f observations 

on the mother and her children, then the covariance m a trix  of y j is

V, =

0 i 0100 P ■■■ 0i0q P

0100  P

0i0qP 0100a

<Tia0a

=  A f Rj A|

where A j =  d ia g (o f, . . . ,  a$).

IV . 2 Maximum Likelihood Estimate

Recall th a t the M L  estimates o f the correlation parameters can be obtained by solving 

equation (1.3.6), which is same as

Using the iden tity

£ t r { * g W v , ) }  -  o .
i= l v J

dot { d a  i ’

we can rewrite the M L  equation for ot as

<9V-
-> 'V f 1 ( e r f  -  V ()

dot 1

For the fam ilia l covariance m a trix  we have at =  (p, a ) ' and the above is equivalent to

^ j R - ' ^ R - M z i z ' - R , ) )  =  0, (4.2.1)
1=1  ̂ '
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where z; is the Pearson residual and R i is the fam ilia l correlation m atrix . The M L

The elements o f the Fisher in form ation m a tr ix  for the parameters a  — (p, a ) ' and 

<r2 =  (cr2,(Jo)' are

The asym ptotic covariance m a trix  o f the estimates, obtained by solving (4.2.2) and

(4.2.1), is the inverse of

and a s im ilar argument as in  Section I I I . l  proves th a t M L  equation for a  is Godambe 

optimal.

IV .3  C lasses o f  U n b ia se d  E s t im a t in g  E q u a tio n s

Suppose the correlation parameter a  =  ( c x i, . . . ,a q) is m ultidimensional. In  th is 

situation we could consider a more general class o f estimating equations

equation for <x2 =  (o f, o f) ' given in  (1.3.4) can be simplified as

(4.2.2)

=  f v  f a A p a R r 1 

\a < r2d a S  4 ^  \  a®-2 3 a

- * { £ }  -  i s M S * )
^ lo g lR il

I J O L - X  F f  d H  \
\  d  (<r2)2 J I  d a 2d a .J

/  \  _ E m \
( OCT2 OCX. J ( OCX1 J

Notice th a t equation (4.2.1) can also be expressed as

X ]  { 1 0  ^ G i { vech(ziz'i) -  vech (R j)} =  0 ,
T— 1 '** *i= 1

n

0 (4.3.1)
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where W j,- is some weighting m a trix  in  estim ating the j t h  component o f a .  For 

the fam ilia l correlation, we have oti =  p and a 2 =  a. The two equations in  (4.3.1) 

are

^ ^ t r  {W p jR ^ 1 (z,z ' — R , ) }  =  0 ,
i=1 
n

^ t r j W ^ R r ^ Z i z ' - R i ) }  =  0 ,
i= 1

where W ^  and W a, =  W 2, are the weighting matrices for estimating p and

a, respectively. Suppose a  =  (p, a ) ' is the solution of the above equations. From 

Lemma 2.1 and Theorem 2.1, i t  follows th a t the asym ptotic covariance m a trix  o f a  

is Iq 1I i I q -1 where

In = i= i t= i

w m

^  dP 
<9R:

da

I i  =

g t r { W ^ R , }  g t r { w ^ R , }

ti n

J 2  t r  { W ^ R - 1 +  W ^ }  £  tr  { W ^ R ^ W ^ R ,  +  W piW Qi}
i=1 2—1

n  n

X ) t r  { W o i V w ^ R i  +  W « W p i}  ^ t r j W ^ R r i w ^ R ,  +  W 2 J
1 = 1 2 = 1

To find the optim al weights, we may need to  m inim ize the covariance m a trix  in  

some sense. One crite ria  is to  use the determ inant o f the m a trix

where 

&  =

i p i i i y 1 =  f t - 1! - i i .- i  I M  =  k
Hoi2 «

Y t r  { W ^ R - 'W ^ R ,  +  W % ) Y  ‘ r { W ^ R - 'W ^ R  +  W j , }
1 = 1  1 = 1

n n

-  Y , ^  { W mR " 1W V R , +  W mW pi}  £ t r  { W ^ R - ' W ' ^  +  W ^ W * }
i= 1 i= l

^ t r j w ^ R ,
i= i t dp
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Equating the derivative o f the determ inant w ith  respect to  to  zero, and using 

the identities (Magnus and Neudecker, 1999)

d
M W ^ - 'W V R , ) }  = 2R,W,„R--1

9  M W 2* )}  =  2W 2
r \

{ t r  ( W ^ R - 'W V R , ) }  =  R ,W mR t 1

9  { t r  (W p jW aj ) }  =  W E

_ A _ { t r ( w ^ R < ) }  =

9  f t r  =  R ^ R  *
d W ^  \  V ^  da  J ^  da

and

trfW ^R r'W V R i} = tr {W ^R -'W ^R ,}  

tr {W,„W„,} =  tr {W („W„} ,

we have for « =  1 ,2 , . . . ,  n,

n

{ R iW ^ R r *  +  W ;  }  &  Y ,  t r  { W ^ R - 'W V R ,  +  W h  }
i = 1

n

-  {RjW qjR^1 + WE } Co {W pjR “1W ^R i +  WptWai}
i = 1

r 5RrM ,  a  r s r -* l
l  d p  J * 1 E ' t r {  *  d a

+ { R ‘ ^ “ } 5l =  ° -  (4-3-2>

Similarly, differentiate the determ inant w ith  respect to  W ai and equating to  zero, 

we have
n

{R iW o iR ” 1 +  W ^ }  f „  Y ,  t r  { W ^ R - 'W V R ,  +  W % }
1= 1

n

-  {R iW piR r1 +  w y  6  tr {W ^ R -1 W E R , +  W Ql}
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Here £0, £1 and a ll the traces are scalars. Looking at the component matrices in

(4.3.2) and (4.3.3), we can see th a t a solution is given by

r » - l5 R i jW pi =  R i and W ai =  R t .

Thus the optim al weights are identical to  those o f M L  equations in  th is  case.

Another criterion th a t we could use to  determine the optim al weights is to  m in­

imize the trace o f the covariance m atrix . The trace of I q 1I 1I q_1 is given by £2/ ^ 0 , 

where

£2 = ( E t r { W - ^ R * } )  E / t r { W p,R “ 1W(nR i + W ^i}

+ ( l > { W - ^ R> })  ^ t r f W ^ W V R . + W ^ }

+ ^ t r  j w . i ^ R i ] ]  ^ 2 t r { W qiR ^1 W ^ R i + W jL }
\ i = 1  ̂ '  /  i= l

+ ( l > { W ^ ^ R * } )  E t r i W ^ W ^  +  W A }

- 2 { j 2 tr { W ^ ^ " R i} )  ( E tr { W m ^ T R t} )  E  { w oiR,-1w ; ,R l +  w atw pi}

-2  ^ E t r { W a i^ “ R i} )  ( E t r { W ^ ^ " R l} )  E { W ^ R - ' W ^  +  W aiW „i}

and £0 is defined earlier before. Once again equating the pa rtia l derivative w ith  

respect to  W ^  to  zero, we get

| R iW piR " 1 +  Cl +  { R tW mR r 1 +  W 'a i}  c2

= 0 ’ (4 '3 '4)

where the constants are
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C2 w  * 5 T
pi da }

c3

"  ~ ( P {

( P ' {

E *  { " - ¥ * }

c4 =
>1=1

i>{w“iH) 
})

J=1
n

. i= l
a t  oaa

A  close examination o f the above expressions reveals tha t

5 R - 1

^ t r ^ W ^ ^ - R ,
t= i

£ t r { W <* R r 1W '„ iR j + W j i }

n
Y ,  { W mR - 1W ^ R t +  W aiW p i}
1=1

^ t r f W ^ R - ' W ^  +  W ^ }

n

J ]  { W aiR i“1W p iR j +  W aiW p j}  ) .

R iW p iR ^ 1 +  'W'pi =  c*R,

R i W ^ R ^ + W E  =  ^ R ,

dp
d R ^

da

and consequently the op tim a l weights are

T- , dR* . - . i d R i
W pi =  R j and W ai =  R j — .

Interestingly, these optim a l weights are the same as those obtained by m inim izing 

the determ inant o f the covariance m a trix  o f a .  Therefore, the optim al weights are 

same whether we m inim ize the determ inant or the trace.

We can also construct a subclass o f estim ating equations by adding the constraints 

t r ( W j j)  =  0 to  (4.3.1). The unbiased estimating equations in  th is subclass are

n

y ^ t r  { W p jR r 1 (zjZj -  R j ) }  =  0 subject to  tr(W p j)  =  0
i= l
n

t r  { W q jR " 1 (z jz ' — R j) }  =  0 subject to  t r ( W ai) =  0.
t=l

The asymptotic covariance m a trix  o f the parameter estimates for th is  subclass is the 

same as th a t o f the general class, which is given by except th a t we w ill

have additional constraints on the weights.
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Now to  find the optim al weights, we need to  firs t differentiate the determ inant 

l l ^ l i l o -1 ! w ith  respect to  W ^  and W Qi using Lagrange m ultip lie rs Aj. Thus to  get 

the optim al weights, we need to  solve

n

( B , W , A '  +  W J*} &  £  t r  ( W ^ R - 'W ' . R .  +
1=1

n

-  { R iW a iR r 1 +  W 'a i}  t r  { W ^ R " 1 +  W piW Qi}

+ { k ^ }  «> X >  = ° ’ (4 '3'5)

and

n

{ R iW ^ R " 1 +  W l , }  &  E t r  { W „ R - 1W ^ R j +  W £ }
2=1

n

-  { R i 'W ^ R r 1 + W ; t } e 0 ^ t r  { W ^ R ^ W V R ,  +  W piW m }

+{r<̂ “} 6 e Î̂ iI-̂ } - f1*3 = °' (4-3'6)
where £0 and £a are the same as before. Observing the patterns in  equations (4.3.5) 

and (4.3.6) and keeping in  m ind th a t a ll the traces are scalars, and using the re­

strictions tr(W p j)  =  0 and t r ( W aj) =  0, we can see tha t (4.3.5) and (4.3.6) can be 

reduced to  sim ilar expressions to  (3.2.7) w ith  different subscripts. This means tha t 

the optim al weights w ith in  the subclass cannot be obtained exp lic itly  for the fam ilia l 

correlation structure, either.

Now differentiating the trace o f w ith  respect to  and using Lagrange

m ultip lie rs A*, we get

{ R iW p iR - 1 + w ; t } £ oCl +  { R ,W aiR “ 1 +  W ’a i}  £o c2

+{r<¥}H#{ŵ *
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We get sim ilar equation for W ai. And both  equations do not have a closed form  

solution. Thus the optim al weights cannot be obtained explicitly. Com putation of 

the optim al weights is also problematic. We suggest using the simpler weights

’ 0 T  ' 0 0 'I and W  ai = I
0 0 J i -  u

where 0 is a square m a trix  w ith  a ll 0 elements and appropriate dimension. The 

estimating equations for p and a, w ith  these simpler weights are

-U p  1

S >
i= l

1 +  (U ~  l)a : — t ip 2 1 +  ( ti -  l ) a  -  Up2
1 +  ( t j — l)d!

1'

- P
1 +  ( t i ~  l ) a  -  t ip 2 l  +  ( ti — l ) a  — Up2

ZjZ • > =  0 ,

5 >
i= l

~ ( t i  -  1 )p  1
: l i

. 1 +  ( t i ~  1)CK -  t ip 2 1 a { t

0 '
1 - P 2

+  (ti -  l ) a  -  Up2
J i  li

=  0.

(4.3.7)

Using the identities

t r f W ^ R - ’ W ^ }  

t r lW ^ R j - 'W ^ R , }  

t r l W ^ R - ’ W V R i}  

t r  { W „ W m}

t r j w ^ R r }

dR.71
t r jW p i  

t r | w m

da

{ w - ^ l  =

t j [2 +  2( ti -  l ) a  +  ( ti -  l ) 2a 2 -  2t jp 2} 
1 +  ( ti — l ) a  — t ip 2

- t i ( t i  -  1 )2ap
1 +  ( U -  l ) a  -  Up2

t i ( t i  — ! ) [ !  +  ( t i  — l ) a  — p2]

1 +  (U -  1 )a  -  Up2

2U

0

t i ( t i  - 1)

—U[ 2 +  (U — 1)q]
1 +  (U -  1 )a  -  Up2 

U(t i  -  1 )p 

1 +  (U -  l ) a  -  tj/92

- t j ( t j  -  1)(1 -  p2)

(1 -  a ) [ l  +  (U -  l)a : -  Up2} ’
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we can check that the matrices Io and Ii reduce to

E —tj[  2 + (t j  — l)o:] — Ljp
j= i 1 +  ( U -  l ) a  — Up2 ^  1 +  (U — \ ) a  — Up2

V-'' t j ( t j  — l ) p  —t j ( t j  — 1)(1 — p2)
1 -1- ( t i  — 1 } r v  — 4 — rvVl -4- ( t -  — 1 \ r v  —^  1 +  (t i -  1 )a  -  Up2 “  (1 -  « ) [ !  +  (t i  -  l ) a  -  Up2}

y -  [2 +  (U -  l)a :]2 -  4Up2 ^  —U(U -  l ) 2ap
2 - ' 1 +  (U — l ) a  -  Up2i=1

- t i ( t i  -  l ) 2ap
^  1 +  (U -  l ) a  -  Up2

^  1 +  (U -  l ) a  -  Up2 

y y  U(U — 1)[2 +  2(U — l ) a  — (U +  1 )p2}

i= l 1 +  (tj -  l ) a  -  Up2

IV.4 Relative Efficiency

In  th is section we w ill study the relative efficiencies o f the various estimates discussed 

in  the previous sections for the fam ilia l correlations using simulations. The sim ulation 

steps are sim ilar to  th a t in  Chapter I I I  and are described below.

(1) Generate n  integers {U, 1 <  i  <  n }  for the number o f children in  each fam ily  

ranging from  2 to  4 w ith  the following p robab ility  d is tribu tion. The reason for 

using th is d is tribu tion  is th a t the number o f children in  the present day society 

are often less or equal to  4 and we need at least 2 children in  the fam ily  for 

sib ling-sibling correlation to  exist.

t i 2 3 4

p  ( ti) 0.4 0.4 0.2

(2) For i  =  1 ,2 , . . .  ,n , generate U univariate standard normal random numbers and

stack them in to  a column vector zj.

(3) For fixed value o f p and a, construct the fam ilia l correlation m a trix  R j.

1 1
(4) Let y j =  R 2z j, where R? is the square root o f R j.

(5) Solve equations in  (4.3.7) to  get estimates ps and &$.

(6) Solve equation (4.2.1) to  get M L  estimates pl and a.L .

(7) Calculate errors t $  =  (ps — P,&s — « )  and t l  =  ( p l  — P ,6 ll — o t) .
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(8) Repeat steps (1) -  (7) a large number o f times (r), say r  =  10,000, and stack 

errors in to  two r  x  2 vectors e$ and e^.

Then calculate the relative efficiencies based on trace and determ inant crite ria  as 

follows:

Efft ( a s , a L) =  f  and Eftd(& s ,ocL) =  •
tr(e '5e5) |ese5 |

Figures 4.2 and 4.3 shows different perspectives of the surface of efficiencies 

Efft (a s , <*£,) based on trace criteria, for different values o f p and a. Correspond­

ing efficiencies E ffe c ts , a ^ )  based on the determ inant criteria  are shown in  Figures 

4.4 and 4.5. Table 4.1 and 4.2 contain some numerical values o f these efficiencies 

for different values o f a  and positive p. The efficiencies can be obtained for negative 

values o f p by symmetry. A n  exam ination o f these Figures and Tables clearly show 

tha t the unbiased estimating approach yields h ighly efficient estimates over a wide 

range of the parameter space. Efficiencies for the case where the families are of equal 

size w ith  three children are given in  Figure 4.6 and 4.7. Notice th a t the efficiencies 

at the boundary o f feasible regions o f p and a  are very high.

Table 4-1: Numerical values o f efficiency based on trace crite ria

a

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.947 1.003 1.009 1.002 0.996 0.989 0.982 0.978 0.985 0.978
0.1 0.946 1.000 1.007 1.005 0.990 0.983 0.977 0.978 0.974 0.980
0.2 0.938 0.989 0.998 0.990 0.981 0.975 0.964 0.962 0.973 0.965
0.3 0.939 0.996 0.993 0.980 0.966 0.956 0.946 0.950 0.957 0.957
0.4 1.111 1.043 0.998 0.970 0.942 0.929 0.929 0.926 0.933 0.936
0.5 1.284 1.073 0.984 0.932 0.914 0.896 0.895 0.898 0.914
0.6 1.430 1.083 0.930 0.884 0.865 0.857 0.863 0.879
0.7 1.158 0.899 0.799 0.801 0.808 0.830
0.8 0.974 0.708 0.723 0.752
0.9 0.881 0.600
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Table 4-2: Numerical values o f efficiency based on determ inant crite ria

a

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.898 1.009 1.019 1.002 0.984 0.958 0.934 0.906 0.886 0.865
0.1 0.898 1.000 1.013 1.006 0.971 0.948 0.921 0.901 0.887 0.853
0.2 0.899 0.975 0.987 0.968 0.944 0.925 0.889 0.860 0.846 0.814
0.3 0.931 0.979 0.962 0.928 0.898 0.873 0.842 0.824 0.808 0.773
0.4 1.227 1.036 0.941 0.883 0.830 0.802 0.787 0.763 0.727 0.698
0.5 1.440 1.037 0.882 0.788 0.745 0.698 0.676 0.647 0.629
0.6 1.634 1.061 0.802 0.689 0.629 0.587 0.557 0.525
0.7 1.302 0.732 0.569 0.496 0.462 0.417
0.8 0.924 0.498 0.363 0.305
0.9 0.325 0.242

IV . 5 An Illustrative Example

In  th is section we apply the estim ation methods on a real life example. Dern and 

W iorkowski (1969) have discussed an interesting fam ilia l data. The data consists of 

pre- and post-storage measurements o f erythrocyte Adenosine Triphosphate (ATP) 

levels from  healthy Caucasian fam ily  members from  22 families. The pre-storage 

measurements were taken, in  most cases, im m ediately after phlebotomy or after 

arrival o f the sample in  the laboratory. The post-storage measurements, in  a ll cases, 

were taken after 21 days o f storage in  the refrigerator at 4 ±  1°C. A ll ATP  levels 

are expressed as /x-moles per grams of hemoglobin. In  add ition to  the A TP  levels, 

ages o f fam ily  members are also available for the analysis. Table 4.3 lists part of the 

orig ina lly data. The data is incomplete for three families in  the sense o f mothers’ 

presence. In  our analysis we dropped the three families, and used the complete data 

of 80 observations on the mothers and children in  the remaining 19 families. Table 4.4 

contains the results o f our analysis using the unbiased estim ating approach and the 

M L  approach. The estimates are sim ilar, bu t however, the standard errors obtained 

using the unbiased estim ating equations, are lower and hence preferable.
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Figure 4-3: Efficiency based on trace crite ria  (45° view).
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Figure 4-3: Efficiency based on trace crite ria  (225° view).
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Efficiency
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Figure 4-6: Efficiency based on trace crite ria : balanced case (45° view).
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Figure 4-7: Efficiency based on determ inant crite ria : balanced case f45° view).
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Table 4-3: P a rtia l lis t o f member A T P  levels in  22 fam ilies

Fam ily Member Age Pre-ATP Post-ATP
1 M other 50 — 3.30

Father 54 — 2.40
Son 24 — 3.76

Daughter 30 — 2.14
Daughter 26 ---- 2.55

2 M other 62 4.43 2.49
Father 62 3.72 1.79

Son 24 4.18 1.49
Son 41 4.81 2.84

Daughter 31 4.42 2.04
Daughter 38 3.65 1.17

3 M other 50 3.79 1.28
Father 45 4.54 3.07

Son 7 4.72 1.19

4 M other 55 5.42 3.65
Father 56 4.10 2.65

Son 23 5.30 2.16
Son 27 4.48 2.40
Son 19 4.85 3.28
Son 24 — 2.20

5 M other 57 4.71 2.23
Father 76 — 2.15

Son 32 4.19 1.33
Son 28 3.43 1.85

22 M other 45 5.29 3.27
Father — — —

Son 24 5.30 4.10
Son 20 5.25 3.67
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Table 4-4: Parameter estimates

Us (S.E.)________ M L E  (S.E.)
Intercept -0.7994 (0.3867) -0.7281 (0.4354)
Gender 0.1624 (0.0771) 0.1804 (0.0930)
ATP  (pre-storage) 0.7260 (0.0763) 0.7118 (0.0898)
Scale (mother) 0.5577 — 0.5569 —

Scale (siblings) 0.4617 — 0.5034 —

P 0.3404 (0.0236) 0.3864 —

a 0.4192 (0.0163) 0.5845 —
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CHAPTER V 

ESTIMATION OF NUCLEAR FAMILIAL STRUCTURE

In  Chapter IV  we have discussed the analysis of data collected on single parent fam­

ilies. Here we extend those results for data taken on nuclear families, th a t is, data 

taken on two parent families. The correlation structure to  model in tra -fam ily  as­

sociations w ill have additional parameters, for example we need to  account for the 

correlation between the parents and the correlation between the father and children. 

These additional parameters w ill require additional estimating equations, and the 

analysis poses challenging com putational problems. We brie fly  sketch the general­

izations, since the details are sim ilar to  the results in  Chapter IV .

The organization of th is chapter is as follows. We firs t study properties o f the 

general fam ilia l correlation structure in  Section V . l .  M L  estimation o f the parameters 

for normal data is presented in  Section V.2. Next, a general class and a subclass of 

unbiased estim ating equations for parameter estimation are presented in  Section V.3.

V . l  N u c l e a r  F a m il ia l  C o r r e l a t i o n  S t r u c t u r e

A  correlation model th a t is appropriate to  model associations w ith in  a nuclear fam ily 

is the structure

' 1 7 Pi Pi Pi ••• Pi

7 1 P2 P2 P2 ••• P2

Pi P2 1 a a a

Pi P2 a 1 a a

Pi P2 a a 1 . . . a

. Pi P2 a a a  ... 1

1 7 Pil<

7 1 P2I!

P iL  p2h  ( l - a ) I j  +  a:Jt

where 7  is the correlation between the two parents, p\ is the father-children correla­

tion, p2 is the m other-children correlation, and as before a  is the common correlation
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among the U children. Pre- and Post-m ultip ly ing R* by the m a trix  incorporating the 

Helmert m a trix  M j which we defined in  Chapter IV , we get

V 2  V 2  Q,i
j -  z l  0 '
y/2 y/2 '
Oj Oi M i

1 +  7

0

(pi +  P2) 

0

0

■ 1 1
0 '

A
R *

1 - i
0 -

V 2 7 1
u I

O i Oi M ' _

0

1 - 7

(pi +  P2) 

'I(P1 -P2)

^ (Pi -  P2) 1 +  (U -  l)a

0 0

0

0

0

l  — o 

0

0

0

0

0

l  — o

Clearly, the necessary and sufficient conditions for S7i, or equivalently R,, to  be 

positive definite are

(1) - 1  <  7  <  1

(2) —1 +  <  a  <  1

(3) t , (p\  +  p\ -  27p,p2) < (1 -  72)[1 +  (*i -  l)a] •

These conditions ensure th a t the determinants of a ll its principle minors of R, are 

positive. Condition (3) can be fu rther w ritten  as

(pi -  7P2)2 , 2 ^ l  +  ( t i - l ) a
1 — 72 + f t <  U '

which means th a t for fixed 7  and o  satisfying conditions ( 1 ) and (2 ), the graph o f p\ 

versus p2 is an ellipse. Figure 5.1 shows contour plots of a  versus (p i, p2) for given 

values o f 7  when U — Z. The inverse o f the fam ilia l correlation m a tr ix  is given by

1 - 0 2  00 ~  7

R r 1 =
0 0 - 7  1 - ^ 1

C
C iii

c
C2 I 1 a

Cii'

w

(1  — q)(piCi +  P2C2) +  <3 
( l - a ) [ l  +  ( i - l ) a ]

J i
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p2 0.0
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-0.5

- 1.0
- 1.0 -0.5 0.0 0.5 1.0

Pi

(b ) 7  =  0

pi
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Figure 5.1: Contour plots o f a  vs. (p\, p2).

1.0

0.5

p2 0.0

-0.5

- 1.0
- 1.0 0.0 0.5 1.0-0.5

where 

4> o

o\ -

4> 2 =

tpiP2
1 +  ( t -  1 )a  

tp l
1 +  { t -  l ) a

tp l
1 +  (f -  l) a  

C =  (1 -  <j>i ) ( l  -  f a )  -  ( 7  -  <t>o)2 

^  =  ~  < p2)(lP2 ~  P i )

C2 =

[1 +  (t -  l) a  -  tp l\[{  1 -  ^>i)(l -  <t>2) -  (7  -  4>o)2]

~ P 2  { lP 2  ~  P i ) ( 7  -  4>a)

[1 +  (t -  l ) a ] ( l  -  <p2) [1 +  (t -  1)<* -  tp%][(1 -  <t>i ) ( l  -  fa ) -  (7  -  fa ? ] '

Appendix A.4 contains the Cholesky decomposition matrices o f R j and R t_1.

As for the covariance m a tr ix  for the variables in  a nuclear family, i t  is reasonable 

to  assume the variances for parents are different from  those of the children. Let
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be the variance o f the measurement on the father, o \ be the variance for the mother 

and <Tq be the common variance among the children. The covariance m a trix  is

(71(727 O i O q P i 0 i &qP i  • ■ oioopi
0-1(727 A <?2&oP2 (72(70P2 • • & 2 & 0 P 2

O’l^'oP l & 2 & 0 P 2 a \a  . . a \a

CTidoPl & 2 & 0 P 2 a2a o \ . a \a

CF\CTqP \ a 2 a ( l p 2 o \a a2a  . (72

=  A f R i A f
1

where A t2 =  diag (erf, o$).

V .2  M a x im u m  L ik e lih o o d  E s tim a te

In  this section we discuss M L  estimation for norm al data collected on nuclear families. 

The results are extensions o f the results th a t we have in  Section IV .2. We present 

main equations om itting  some details. The M L  estimating equation for correlation 

parameters is

i R T ^ Z i z J - R o j  =  0 ,  (5.2.1)
d a

where z* is the Pearson residual. The M L  equation for estim ating the variances is

E tr { v r , 3 3 vT1(** 'i - V 0 }  =  0, (5.2.2)
1=1  ̂ '

where cr2 =  (<7 2, cr2, ° q) ' and correlation parameter a  =  (7 , p i, P2 , a )1. Expressions

for the second order pa rtia l derivatives are

1 d2log [ p lo lo ^ )

2 ^  d(T2
1= 1

- { £ }  -  I g M S V ) * 2^ }
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Finally, the Fisher in form ation is

f  SH \  r a n  \
\S(<72)2/  I  d t r 2 d c t  J

[ o c r 2 o c x  J  [  o c x 1  J

V.3 Classes of Unbiased Estimating Equations

To estimate the correlation parameters in  a nuclear family, we could consider a general 

class o f estim ating equations given by

n

^ t r j W ^ M - R i ) }  =  0, (5.3.1)
i= 1

where W j i  are weights matrices. The range of j  equals 1 ,2 ,3 ,4  corresponding to  

the four correlation parameters 7, p i, p2 and a, respectively. Using Lemma 2.1 and 

Theorem 2.1, we can get the asym ptotic covariance m a trix  o f the unbiased estimating 

equation estimate d  =  (7, p i, p2, d ) ' as I 01I i I '0_1, where I 0 =  (urs) and I i  =  (vrs) 

and

urs =  ^ t r | w r i - ^ i - R , |

n

Vrs =  5 ^ t r  { W r iR “ 1W L R i +  W riW xs]
i= 1

w ith  ay] is the j t h  element o f a ,  th a t is, =  7, ap] =  p i, Of[3] =  p2 and q:[4] =  a .

To find the optim al weights, we could m inim ize the determ inant or the trace of 

th is asymptotic covariance m atrix . The resulting optim al weights coincide w ith  our 

results in  Chapter IV , and they are

W j i  =  R ~ 1^  for j  =  1 ,2 ,3 ,4. 
d am

We could also consider a subclass o f estim ating equations by adding the con­

stra in t t r ( W ji)  =  0 to  the equation (5.3.1). The asymptotic covariance m a trix  o f the 

estimates derived from  th is  subclass is same as th a t o f the general class. And as in  

Chapter IV , we do not have closed form  solutions for the optim al weights, either.
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Once again, to  fac ilita te  the construction o f the weights and to  avoid convergence 

problem th a t may occur, we suggest using the simpler weights th a t are close to  being 

optim al:

0 1 O' 0 0 1'
W,i = 1 0 O' w2i = 0 0 0'

Oi Oi 0 li Oi 0
0 0 o f 0 0 0/

i
W3i = 0 0 I'i w4i = 0 0 0t

i
Oi li 0 Oi Oi Ji- I i

corresponding to  the four correlation parameters, 7 , px, p2 and a  respectively. W ith  

these weights, the estim ating equations can be simplified as

7

Pi

P2

a :

E * '
i=1

E *i=l

Etr
1 = 1

E tr
1 = 1

10 1 - 0 1
c

C21'
\

1 — 02 
c

1 
w

 
0-e-

C i i ' ZiZj > =  0

Oi Oi 0 / >

t i (  1 t i(2
1 -  fi(p iC i +  P2C2) 

1 +  (ti -  l ) a
0 0 0 '

1 —^ 2 , 

c 1
0o - 7  

C
i i CiJi

0 0 O'

UCi *iC2
1 -  ti(p iC i +  P2C2)

1 +  (ti -  1 )a
<t> 0 — 7 ,

c 1
1 - 0 1

c
i i C2J i

0 0 0 '
0 0 0 '

( f i - i ) C i i i  (ti - 1K 2I i CsJi -  : p — 1 1 — a

ZiZi =  0

ZjZj =  0

ZjZ i =  0

where C, Ci and (2  are as defined before, and

, _  1 -  (tj -  1)(1 — Q)(piCi + P2C2)
“  (1 — a ) [ l  +  (ti — l)a ]

The elements o f the 4 x 4  m a trix  I 0 are
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n

U 11 =  £
2  — 0 1 — 0 2

n

U\2 =  ^2 , ^ 2
i= 1 

n

U l3 =  Y M l
i= l 

Ul4 =  0
n

« 2 2
_  f 1 — ^(PlCl +  P2C2) 1 02 1
”  ^  I  1 +  ( * * - ! ) «  +  C J

E
li 
~

i=1
71

^ ( 0 o - 7 )
C

“ 24 =  E M * i - D C l
i= l

V 'S  f  1 _  ^(P lC i +  P2C2) , I -  01 \

"" = h  X  ! + (*.-!)« + ^ r )
71

W34 =  -  1K 2

U(U — 1) {1 ~ {U — 1)(1 — a)(piCi +  P2C2)}
i=l

n

S  (1 -  o ) [ l  +  (U -  1)0 ]

and the elements o f the 4 x 4  m a trix  I i  are 

2C + 2 -  0i -  02 + 27(0o -  7)
“ 11 =  J 2

n

V12 =  E t , { c 2 + 7C, +  M ^ ° ^ 7 ) ^ (1 ~ fe > }

».s =  E ' » { c . + 7 C 2  +  ^ ~ 7 ) + ' , l ( 1 ~ ^ ) j
i= 1  ̂ ^
71

1114 =  — 1) (P1C2 +  P2C1)
i= l

Y f  fn  I Oi „  A | 1 ~  **(PlCl +  P2C2 ) (1 -  02){1  +  ( t j -  l ) a } l
=  | > | 2 +  % * ( . +  i  +  +  < )

=  | >  { ^ . 6  +  up, C, +  7{1 ~ 2>> +  ~ f  ~  }

»24 =  E  t,(tl -  1) { c ,{ l  +  (ti -  1)0) +  ^ 2C2>) }

V22

n

H23
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V'jt fo , f  | 1 ~ fi(PlCl +P2C2) (1 -  ^l){l + (*t ~ !)«} ]
•33 =  ^ « i | 2  +  2 t i « &  +  1 +  ( t ( _ 1 ) a  + --------------------- j ---------------------- )

i=l
'ST'x/j. i\ f,- ri . At , P2{1 ~ <i(PlCl + P2C2)} 1

V34 ~  -  !) |C 2\1 +  (f* -  1 )°} H j +   J

n

V44 = -  !){2 -  (*i -  l)(PlCl + P2C2)}-
1 = 1

These are useful to  calculate the asym ptotic covariance o f the estimates o f the 

correlation parameters.
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CHAPTER VI 

ANALYSIS OF FAMILIAL BINARY OUTCOMES

In  previous chapters, we have studied modelling and estimation o f correlation pa­

rameters for continuous responses. However, correlated discrete data, in  particu lar 

binary, are common in  many scientific studies includ ing medical, social and biological 

research. In  th is chapter we focus our a ttention on the analysis o f fam ilia l b inary 

data, th a t is, b inary data collected on families. Unlike continuous data, the ranges 

of correlations between b inary variables are constrained by the marginal means. The 

organization of th is chapter is as follows. We firs t study feasible ranges o f the cor­

relations, and more generally ranges of different measures o f associations for fam ilia l 

binary variables. These probabilistic results are im portan t for developing theoret­

ica lly sound methods o f estimation for the association measures. In  Section V I.2, 

we study la tent variable models for fam ilia l b inary variables. In  particular, we in­

vestigate stochastic representations for the m ultivaria te p rob it model (Ashford and 

Sowden, 1970). F inally, we present a b inary data analysis example to  illustra te  the 

estimation procedures.

V I. 1 Ranges of Measures of Associations

In  a recent paper Chaganty and Joe (2006) studied ranges o f correlation parameters 

between three b inary random variables for the unstructured and common structured 

matrices, for example, exchangeable and AR (1). Here we extend the ir results to  

the fam ilia l correlation structure. We also study the ranges o f other measures of 

association such as odds ratios, kappa statistics, and relative risks for fam ilia l b inary 

variables.

V I.1.1 Ranges of Correlation Coefficients

To begin w ith , le t t/j, y j be two b inary variables w ith  m arginal means pi, p j and 

correlation pij. I t  is well known (Chaganty and Joe, 2006) th a t a necessary and
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sufficient condition for the bivariate b inary d is tribu tion  o f (%, y f)  to  exist is

L(p i, P j) <  p ij <  U(pi, p j), (6.1.1)

where

L {P i,P j) =  max j
I  V TQj V PiPi J

U (P i,P j) =  m in i  . / ^ j  (6.1.2)
I  V V PM  J

for p i,Pj E (0,1) and qt =  1 — pi} qj — 1 — p j. Inequalities (6.1.1) can be obtained 

from the Frechet bounds applied to  bivariate b inary distributions.

F a m ilia l C o rre la t io n

Suppose now y \,yz , y$ are three binary variables w ith  means Pi, P2, P3 and fam ilia l 

correlation structure (4.1.1) w ith  t i =  2. We are interested in  finding the range of the 

correlations p and a  as a function ofpx, p2, P3. Let p^ =  P r(y j =  l , y j  =  1) =  E(?p y j), 

1 <  i  <  j  <  3, and p m  =  P r( j/ i =  y2 =  y3 =  1) =  E (j/i 3/2 2/3)- W ith  th is 

notation, the eight trivaria te  probabilities can be w ritten  as in  Table 6.1. We have 

the following result for the range of fam ilia l correlations for b inary random variables. 

Let Oi =  yJPiQi, where — 1 — p^.

Table 6.1: Trivaria te probability mass function

y \ II2 P3 P robab ility
1 1 1 P123

0 1 1 P23 — P123

1 0 1 Pl3 — Pi 23
1 1 0 P12 — P123

0 0 1 P3 — Pl3 — P23 +  Pl23
0 1 0 P2 — P12 — P23 +  P123

1 0 0 Pi -  P12 -  Pl3 +  Pl23
0 0 0 1 — Pi — P2 — P3 +  P12 +  Pl3 +  P23 — Pl23

T h e o re m  6.1 Consider three binary random variables y \, p2 and 2/3 with means p i,  

p2, pz in  the in terva l (0, 1) and structured correlation m atrix  R  given by (4-1.1) 

with parameters p and a  and U =  2. Then a jo in t  d istribution fo r  the three binary 

variables exists i f  and only i f  the fo llow ing two conditions are satisfied:
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(1) L (p2,p 3) <  a  <  U (p2,p 3)

(2) max{L(p1,p2),L(p1,p3) ,L1(a)} < p <  mm{U(p1,p2),U(p1,p3),Ui(a)}  

where

ol o2a3 +  P1P2P3 +  4i<M3
LAot) = ----------------- r----------

&\(P2 +  ^z)
tt i \ Oia2a3 +  p 1q2q3 +  qiP2P3 (c ,
t ' l ( “ ) =    '  ( 6 ' 1 ' 3 )

Proof: A  necessary and sufficient condition for the existence o f the jo in t d is tribu tion  

is tha t the eight triva ria te  probabilities given in  Table 6.1 are non-negative. This 

leads to  the condition

Pl23L =  m ax{0 ,P i2  +  Pl3 — Pl> P l2 +  P23 ~  P2, Pl3 +  P23 ~  P3 }

<  P123 <  m in {p 12,p i3, p23, I - P 1 - P 2 - P 3 +  P12 +  P13 +  P23}  =  Pi23u

or equivalently

P123L =  m a x {0 ,p i2  + P 13 - P l ,  P12 +P23 - P 2 , P 13 + P 23 ~Pz}
<  min{pi2,Pl3,P23, 1 - P l  - P 2 -P 3  + P 12 + P 13 + P 23}  =P\73U- (6.1.4)

There are sixteen pairwise inequalities in  (6.1.4) given by

( 1 ) P12 > 0
(2) Pi >  P12 Pl3 >  P l2 +  P13 -  Pl

(3) P2 >  Pl2 <*=>■ P23 >  Pl2 +  P23 -  P2

(4) 1 -  Pl - P2 +  Pl2 >  0
1 — Pl — P2 ~ PZ +  Pl2 +  Pl3 +  P23 > Pl3 + P23

(5) Pl3 >  0

(6) Pl >  Pl3 < = >  Pl2 >  Pl2 +  Pl3 -  Pl

(7) Pz >  Pl3 < = *  P23 >  Pl3 +  P23 -  PZ

(8) 1 -  Pl - PZ +  Pl3 >  0

«=► 1 ~  P l ~  P2 ~  P Z +  P l2 +  Pl3 +  P23 >  P l2 +  P23

(9) P23 >  0

(6.1.5)

(10) p2 >  p23 <̂ =t> Jh2 >  Pl2 +  P23 -  P2

(11) P3 >  P23 < = >  Pl3 >  Pl3 +P23 — P z

(12) 1 -  p2 -  P3 +  P23 >  0

■<=>■ 1 — P l — P2 — P3 +  Pl2 +  Pl3 +  P23 >  Pl2 +  Pl3 “  P l
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(13) Pia >  Pis +  P23 -  P3

(14) P13 >  P12 +  P23 -  Vi 1 ^

(15) P23 >  P12 +  P13 -  Pl

(16) 1 - P i  - P 2 - P 3 +  P1 2 + P 1 3 + P 23 > 0.

Note th a t p 12 =  P 1P2 +  P<?\cr2 , P 13 =  P 1P3 +  P& 1C3 , and p23 =  P2P3 +  a  a2a3. The 

firs t set of inequalities (1), (2), (3) and (4) in  (6.1.5) hold i f  and only i f  L (p i,p 2) <  

P <  U (p i,p 2)] the second set o f inequalities (5), (6), (7) and (8) in  (6.1.5) hold i f  and 

only i f  L (p i,p 3) <  p <  t / ( p i,p 3); the th ird  set o f inequalities (9), (10), (11) and (12) 

in  (6.1.5) hold i f  and only i f  L (p 2,p 3) <  a <  U (p2,p3). Inequalities (15) and (16) in

(6.1.6) hold i f  and only i f  L i ( a ) <  p <  U i(a ). As for inequalities (13) and (14) in

(6.1.6), i f  we define

a  a2a3 -  p ip 2q3 -  qig2p3 

<7i(<72 — <J3)
- a  a2a3 +  p iq2p3 +  qip2q3

0 1 (0 2  — <73)
P1P2Q3 +  Q1Q2P3

<J2(T3
PlQ2P3 +  9lP2g3

o2a3

then there exist three possibilities: (a) i f  a2 >  a3, then inequalities (13) and (14)

hold i f  and only i f  L 2(a) <  p <  U2(a ); (b) i f  a2 <  cr3, then inequalities (13) and (14)

hold i f  and only i f  U2(a) <  p <  L 2(a); (c) i f  o2 =  cr3 then inequalities (13) and (14)

hold i f  and only i f  a  <  m in {V i, V2}.

Now we w ill show th a t for L (p2,p 3) <  a  <  U (p2,p3), the conditions given by 

inequalities (13) and (14) are redundant under each case. W ith o u t loss o f gen­

erality, we firs t assume (a) cr2 >  cr3, we w ill show tha t U2(a ) always lies above 

m m {U (p i,p 2), U (p i,p 3) }  and L 2(a) always lies below m a x {L (p i,p 2), L (p i,p 3)} .  Note 

tha t U2(a ) and L 2(a) are linearly decreasing and increasing in  a, respectively. We 

only need to  show th a t at the po in t a* =  U(p2,p 3), U2(ot*) is greater than any o f the 

bounds U (p i,p 2) and U (p i,p 3) and L 2(a*) is less than any o f the bounds L (p i,p 2) 

and L (p i l p3). In  Table 6.2 and Table 6.3, we give the upper and lower bounds for 

p from  conditions U (p i,p 2), U (p i,p 3) and L (p 1,p 2), L (p i,p 3) under different situa­

tions, which w ill help us in  comparing the different quantities for the upper or lower 

bounds o f p.

L 2( a )

U2(a)

Vr

V2
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Table 6.2: m m {U (p 1,p 2) ,U (p i,p 3) }  fo r  p (a2 >  a3)

Pi <  qi Pi >  9i

P2 <  P3

p2 >  p3 min |

/Pi®»
V  9iPs
IP1Q2 IqiPs \

V  Q1P2 ’ V  P1Q3 J

\  l q 1P2 /P l^3 1
mm \V p i9 2  V 9 iP 3 J

jqm
V Pl?3

Table 6.3: maoc{L{pu p2), L {p u p3) }  fo r  p (a2 >  o3)

P i <  qi Pi >  9i

P2 <  P3 

P2 >  P3

m a x {
I V 9l92 V PlP3 J

/P lP3

V  9l93

Iqiqs
V  P1P3

___ f  Iq m  /pips )
maX 1 V  PlP2 ’ V  9l93 J

P2Q3
W hen p2 <  p3 or equivalently p2q3 <  PsQ2 , we have a *  =  U(p2,p 3) =  \ ------- , thenV Q2P3

TT , * \ PlQ3 -P2Q3 +  P i P3Q2 +  Qi Q3P2 /Pl<?3U2(a ) -  -
QlP3 O-l( 0 2  ~  O3 ) V  9iP3

Pl(P3?2 -  P293) -  Pl  ( \Z p 2 9 W P 3  -  <73) 

0 1 (0 2  ~  O3)
P\q2 - p i\ fp 2 m z fp 3

0-1 (0-2 — <73)
P li/ fc  (VP392 -  VP293)

>  0 .
o"i (o”2 -  a ^ )y /p i

This indicates that U2(a ) is at least greater than one of the upper bounds 

U (pi 1P2) and U ( p i , p z ) ,  which further indicates U2(a) >  m in{£/(p i, P2 ), U (pi, p3)}  

for L(p2,p 3) < a <  U (p2,p 3).

P3Q2W hen p2 >  p3 or equivalently p2q3 >  p3q2, we have a *  =  U(p2,p3) — . / ------- , then
V 33P2

t t  ( * \  _  ! q m  =  - P 3Q2 +  PiPsq2 +  qiqsP2 _  j qiPs
2 ^  V  Pi?3 0-1 (o-2 -  o-3) V  P i 93
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Qi(.P2 Q3 ~  P3 Q2 ) ~  Qi { y J v 2Q2Pz/qz ~  P3)

0 1 (0 2  ~  0 3 )
_  q m  -  91^ 292^ 3 /93  

<7 i (c t2 — <73)

_  Ply/P2 { y f m i  ~  y /P Z & )

<Ji((72 — 0 3)y /q i

which indicates th a t U2{a) is a t least greater than one o f the upper bounds 

U (p i,P 2) and U (p i,pz), w hich fu rthe r indicates U2 (a) >  m in {U (p 1,p 2) ,U (p 1,p 3) }  

fo r L(p2,p 3) < a <  U (p2,p 3).

Sim ilar argum ent shows th a t L 2(a) <  m a x {L (p i,p 2), L (p i,p 3)} .  Here we on ly give 

the m ain steps. W hen p2 >  p3 or equivalently p2q3 >  p3q2, we have a* =  U(p2,p3) =  

^ , a n d
P3?2

P2g3 -  PlP2q3 -  glg2P3 gigs 
<7l(<T2 - < T 3) \  PlP3

qi(p2q3 -  P392) +  qi -  93)

Oi(o2 — 03)
-q x y /q j (y/Psta -  y/PMs)

0 l (0 2  ~  0 3 )y/P3

P3Q2W hen p2 <  p3 or equivalently p2q3 <  p3q2, we have a* =  U (p2,p 3) =  . / ------- . Thus
q3P2

L { a* ) - i -  l P m  |  =  P3g2~ PlP2g3~ glg2P3 | lPlP3 
2 I  V  q^3 ) 01(02-03) V  9193

P\(p3q2 -  P2q3) + P i  ( \ /p 2q 2 P 3 lq 3  -  P3)

01(02 — 03)
_  -Ply/P2 (y^2g3 -  

01(02-03 )y /q i

and therefore L2(a) < p < U2(a) always yields redundant constrains when a2 > 03.
The case when <r2 <  03 follows by sym m etry. Now le t us assume (c) cr2 =  03 =  0 ,
the conditions are a <  m in {V i, V2}, which does not constrain p. I t  is easy to  ve rify

IP2Q3
th a t i f  (i) p2 <  1 /2  and p2 <  p3, then U(p2,p3) =  . ------ and

V 92P3

„  TT/ y 9 i(P 3 9 2 -P 293) ^ nVi -  u(p2,p3) -  -----—-----> 0
T T TT< \ Pl(P3?2 -P2?s) ^ nV2 - U ( p 2,p3) =  --------- -------------> 0
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(j2pZand ( ii)  p2 >  1 /2  and p2 >  P3 , then U(p2 ,pz) — . ------  and
V P2Q3

T / tt ,  \  P i ( P 2?3 - P 3 9 2 )  ^ nV i - U { p 2,p3) =  ---------- —----------> 0

Y/  TT,  \  9 l ( P 2?3 “ P 3® l) ^ ft
V2 - U { p 2 ,p3 ) =  ---------- =-------- > 0 .

<JA

This means th a t V\ and V2 always yie ld  redundant constraints on a. Therefore, 

we can conclude th a t the necessary and sufficient conditions for the three b inary 

random  variables to  exist are as stated in  Theorem  6.1. Th is completes the p roo f o f 

the theorem  o

I t  is in teresting to  note th a t when p2 — P3 =  p, a  — y/pq and q — 1 — p, the

necessary and sufficient conditions in  Theorem 6.1 fu rthe r reduce to

(1) m ax{— p/q, —q/p } <  a <  1

f  r , \ ~(acr2 +  pip2 +  qiq2) }  ^  ^  . f TT, N aa 2 +  P lq2 + qxp2 \
(2) max j  L (p i,p ) ,------------|  <  p <  mm j  U (p i, p ) ,-------------------  j

and when p2 =  1 — P3 =  p, we have

(1 ) - 1  <  a  <  m in {p /q , q /p }

(2) m ax | L (P l, q ), |  <  p <  m in | U {px,q), •

Further, when px =  p2 =  p3 =  p, a triva ria te  b ina ry d is trib u tio n  fo r y  w ith  corre lation 

structure  (4.1.1) exists i f  and only if

( 1 ) max { —p/q, —q /p } <  a  <  1

^  f  / / -(apq +  p3+  q3) \  ^ ^ 1  +  a
(2) m ax |  - p /q ,  - q / p , -----------— ------------> < P <  ■

More specially, i f  p  =  1/2, then the necessary and sufficient conditions become

(1) -1  < o, < 1 (2) < p  < 1 ± ^ .

These ranges form  a proper subset o f the constrain ts (4.1.2) given in  Section IV . 1, 

which are also the bounds fo r p and a  fo r Gaussian random  variables. Note th a t the
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tw o dim ensional region o f the ranges o f p and a  given by (4.1.2) contain the region 

given by (1) and (2) in  Theorem  6.1 fo r any p  =  (p i,p 2,p 3)•

F igure 6.1 and 6.2 show the feasible regions o f (a , p) fo r d ifferent p  and special 

cases when cr2 =  0 3 . For Gaussian variables, feasible region is the area enclosed by 

the parabola, whereas the embedded figure w ith in  the parabola is the feasible region 

fo r the b ina ry variables.

1.0

0.5

Po.o-

-0.5

-1.0
-1.0 -0.5 0.0 1.00.5

a

1.01

0.5

PO.O

-0.5

- 1.0
- 1.0 1.0-0.5 0.0 0.5

(a) px =  0.4, p2 =  0.2, p3 =  0.1 (b) p\ =  0.4, p2 =  0.3, p3 =  0.75

1.01

0.5

Po.o

-0.5

- 1 . 0-1
- 1.0 -0.5 0.0 0.5 1.0

a

(c) p i =  0.2, p2 =  0.4, p3 =  0.3

1.01

0.5

Po.o

-0.5

- 1.0 -*

-1.0 -0.5 0.0 0.5 1.0

(d) p i =  0.4, p2 =  0.3, p3 =  0.84

Figure 6.1: Region o f (ot,p) fo r  fa m ilia l structure.

For a given a , the unatta inab le  range o f p fo r b inary variables is

- y / ( l  +  a ) /2  <  p <  m in m a x {L (p i,p 2) ,T (p i,p 3) ,L i( a ) }
p€A

or

m a x m m {U (p i,p 2) ,U (p i,p 3) ,U i( a ) }  < p <  y / ( l  +  a ) /2
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1.0

Po.o

- 1.0
- 1.0 -0.5 0.0 0.5 1.0

a

(a) p i -- 0.4, p2 =  p3 =  0.3

a

(c) Pi =  p2 =  P3 =  0-3

1.0

0.5

PO.O

-0.5

- 1 .0  -L

- 1.0 -0.5 0.0 0.5 1.0

1.0

0.5

PO.O

-0.5

- 1.0
- 1.0 -0.5 0.0 0.5 1.0

(b) p i =  0.4, p2 =  0.2, p3 =  0.8

1.0

0.5

Po.o

-0.5

- 1.0
- 1.0 -0.5 0.0 0.5 1.0

(d) P l = p 2 = p 3 =  0.5

Figure 6.2: Region o f (a, p) fo r  fa m ilia l structure: special cases.

where A  =  [p G (0, l ) 3 : L (p2, p3) <  ot <  U (p2, p3)]. Table 6.4 contains the range o f 

p, com puted num erically, th a t is una tta inable by fa m ilia l b ina ry variables fo r given 

values o f a.

A  V a ria n t o f  F a m ilia l C o rre la tio n

Suppose th a t the parent-sib ling corre lation has an auto-regressive pattern . In  

th is  case a reasonable m odel fo r the fa m ilia l correlations between a parent and the 

firs t and second ch ild  is the structure

(6.1.7)

1 P P2
R  = P 1 a

P2 a 1

For Gaussian variables, the ranges o f parameters p and ot fo r the structure  (6.1.7)
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Table 6.4-' Unattainable range o f p fo r  given a

a U natta inable range of P
-0.9 (-0.2236, -0.2205) U (0 .2 2 1 2 , 0.2236)
-0 .6 (-0.4472, -0.4448) u (0.4460, 0.4472)
-0.3 (-0.5916, -0.5892) u (0.5904, 0.5916)
0 .0 (-0.7071, -0.6988) u (0.7013, 0.7071)
0 .1 (-0.7416, -0.7202) u (0.7201, 0.7416)
0 .2 (-0.7746, -0.7416) u (0.7418, 0.7746)
0.3 (-0.8062, -0.7616) u (0.7613, 0.8062)
0.4 (-0.8367, -0.7877) u (0.7871, 0.8367)
0.5 (-0.8660, -0.8158) u (0.8143, 0.8660)
0 .6 (-0.8944, -0.8428) u (0.8433, 0.8944)
0.7 (-0.9220, -0.8762) u (0.8748, 0.9220)
0 .8 (-0.9487, -0.9119) u (0.9123, 0.9487)
0.9 (-0.9747, -0.9533) u (0.9531, 0.9747)

are given by

—1 <  p <  1 and p3 -  (1 -  p V l  +  P2 <  a  <  p3 +  (1 -  p2) \ / l  4- p2 , 

or equivalently,

a  and T^ i a ) <  P <  T2L(a ) ,
5Vd

or - 1  <  a < ----- —  and T iS(a) <  p <  T2S(a)- T2M(a) <  p <  T2L(a ) ,

5v/3
or ——  < a <  1 and Tis {a) <  p <  TXM{ot)\ T1L(a ) <  p <  T2L( a ) ,

where Txs, T im , TXl  and T2s, T2m , T2l  are the roots o f the equations p3 +  

y jp & — p4 — p2 +  1 =  a  and p3 — y /p 6 — p4 — p2 +  1 =  a  fo r fixed value o f a  in  

the range o f (—1 , 1 ), respectively. Note th a t Txs <  TXM <  T \l  and T2S <  T2M <  T2L.

We have the fo llow ing result fo r the ranges o f p and a  fo r b ina ry variables.

T h e o re m  6.2 Let y  =  (yx, y2, y f) be a binary vector w ith mean p  =  (p i, p2, p3), 

0 <  Pi <  1, and correlation m atrix  R  given by (6.1.7) w ith parameters p and a. Then 

a jo in t  binary d istribution fo r  y  exists i f  and only i f  the fo llow ing two conditions are 

satisfied:

(1) m a x {L (p i,p 2) , - y / U ( p 1,p 3) }  < p <  m m {U {p i,p 2), \ /U (p x,p 3) }
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(2) m ax{L {p2,p 3), L x(p), L 2(p )} <  a  <  m m {U {p2,P3), Ux(p), U2{p )},

where

L i  (p) =  {oX03p2 +  O1O2P -  Pl<M3 -  qiP2Pz)/(?2<73

L 2(p) =  (—<xi«r3P2 -  axa2p -  P1P2P3 ~  <M2<73) / ^ 2^3

Ul (p) =  {-V1&3P2 +  CTl0-2P +  P i P2Q3 +  QlQ2P3)/O2O3

U2{p) =  (OxU3p2 ~  0 \ 0 2p +  P\q2P3 +  q\P2q3)/o2<T3 ,

o r alternatively,

( i)  L (p2,p 3) < a <  U (p2,p3)

( ii)  m ax{L(pa ,p 2) , - \ / U ( p 1,p 3) , L \ (a )}  <  p <  m m {U {px,p2), \ /U (p x,p3 } , U [(a )}  

and p <  L'2(oc), p >  U'2{oc); p <  L'3(a ), p >  U'3{oc),

where

L \(a

L 2(oi

L '( a

U [(a

U'2{a

U '(a

o \ Q 2 ~  \ J o \ o l  ~  4(7!a 3 ( a 2 a 3 a  -  P ip2<?3 ~  gi92P3) 

____________2o~iQ-3_____________________
<U<?2 -  \Jo  1O2 +  4cricr3(cr20'3a -  Pl92P3 ~ glP2g3)

__________ 2 a xa 3_______________________
- 0 \ 0 2  -  \ / o { o 2 -  ^ i ( T 3( a 2(r3a  +  P 1P2P3 +  q i W h )

__________2o~icr3____________________
-<r\02 +  +  4<7!0 -3 (cr2q-3o: +  P2P3gl ~  g2gsPl)

__________ 2ai cr3________________
0W 2 +  \/o~?cr2 +  4 a ia3(a2a3a  -  Piq2p3 -  <?ip2g3) 

_________ 2ctiO~3_____________________
-0-1^2 +  \J a \a \ -  4q~i(T3(er2<73a + p ip 2p3 +  gig2g3) 

2(7! cr3

The p roo f o f th is  theorem  parallels the p roo f o f Theorem 6 .1 . A  necessary and 

sufficient cond ition  fo r the existence o f the jo in t d is trib u tio n  is th a t the eight tr iv a ri­

ate probab ilities given in  Table 6.1 are non-negative. Note th a t p i2 =  pxp2 +  p&io-2, 

P13 =  P 1 P3 +  P2 v \ 0 3 , and p23 =  P 2 P3 +  oca2<r3. Using the no ta tion  o f 16 pa ir­

wise inequalities in  (6.1.5) and (6.1.6), we have L (p x,p2) <  p <  U (p i,p 2) from  (1),

(2), (3) and (4); L (p i,p 3) <  p2 <  U (px,p3) or yJU(pu p3) <  p2 <  yJU{jpx,p3) 

from  (5), (6 ), (7) and (8 ); L (p2,p 3) <  a  <  U (p2,p3) from  (9), (10), (11) and (12);
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m a x {L i(o !),L 2 (Q!)} <  P <  m in { [/i(a ) , C/2 (a )}  from  (13), (14), (15) and (16). A  re­

arrangement o f these conditions results in  the other expression. Th is completes the 

proof o f the theorem , o

F igure 6.3 shows the perm issible range o f (a , p) fo r d ifferent values o f p . The 

feasible region fo r Gaussian variables is the area enclosed by the outer curve, and the 

embedded curve contains the feasible region fo r b ina ry variables.

1.01

0.5

Po.o

-0.5

-1.0-1
- 1.0 -0.5 0.0 0.5 1.0

1.01

0.5

Po.o

-0.5

- 1.0
- 1.0 -0.5 0.0 0.5 1.0a

(a) p i - 0.4, p2 =  0.3, pz =  0.25 (b) p i =  0.2, p2 =  0.4, pz =  0.3

1.01

0.5

PO.O

-0.5-

■1.0-1
- 1.0 -0.5 0.0 0.5 1.0

a

(c) P i = p 2 = p 3 =  0.5 (d) p i =  0.4, p2 =  pz =  0.3

Figure 6.3: Region o f (a, p ) fo r  varian t fa m ilia l structure.

1.01

0.5

PO.O

-0.5

- 1.0
- 1.0 -0.5 0.0

a
0.5 1.0

Theorem 6 .2  shows th a t fo r a fixed p G (—1, 1), the range o f a  unatta inable by 

b inary d is tribu tions  w ith  corre lation structure  (6.1.7) is given by

p3 -  (1  -  p2) \ / l  +  P2 <  «  <  m in m ax.{L(p2,pz), ^ i(p ) , L 2(p )}p €£>
or

m axm in {U (p 2,Pz), U i(p ), U2(p) }  <  a  <  p3 +  (1 -  p2) y / l  + p 2
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where 

B  = p e (0, l ) 3 : m a x{L (p 1,p2), - y /U ip ^ P z ) }  < P <  m in {f/(p i,p 2), ^ ( p i. P s ) } ]  •

Table 6.5 contains the unatta inab le  range o f a  calculated num erica lly fo r some 

given values o f p. The unatta inab le  range o f a  when p <  0 has a s im ila r pattern .

Table 6.5: Unattainable range o f a  fo r  given p

p U natta inable :range of a
0.1 (-0.9939, -0.9923) U (0.9934, 0.9959)
0.2 (-0.9710, -0.9689) u (0.9807, 0.9870)
0.3 (-0.9231, -0.9210) u (0.9635, 0.9771)
0.4 (-0.8407, -0.8364) u (0.9438, 0.9687)
0.5 (-0.7135, -0.7101) u (0.9258, 0.9635)
0.6 (-0.5303, -0.5271) u (0.9056, 0.9624)
0.7 (-0.2795, -0.2722) u (0.8996, 0.9655)
0.8 (0.0510, 0.1421) u (0.9024, 0.9730)
0.9 (0.4734, 0.6460) u (0.9301, 0.9846)

Extension to Nuclear Familial Correlation

A  na tu ra l extension would be to  consider a nuclear fam ily  w ith  two parents and 

more than tw o children. For example, we could consider corre lation structure  o f the 

form  (5.1.1) given in  Section V . l.  Recall th a t the necessary and sufficient conditions 

fo r (5.1.1) to  be positive defin ite  are

( 1 ) - 1  <  7  <  1

(2 ) -  A  <  “  <  1

(3) <,(/<; +  p l -  2'llhP 'i) <  (1 -  7 2)[1 +  (U -  1)q] •

The conditions fo r the existence o f a jo in t d is trib u tio n  fo r b ina ry random  variables 

w ith  corre lation structure  (5.1.1) are com plicated. However, note th a t the results 

in  Section V . l are necessary conditions fo r the existence o f the three dim ensional 

m arginal b inary d is tribu tions, corresponding to  the sub-correlation m atrices.
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V I. 1.2 Ranges of Odds Ratios

A n a lterna tive  measure o f association fo r b ina ry variables is the odds ra tio , w hich is 

less constrained than the correlations. The odds ra tio  fo r a pa ir o f b inary random  

variables xji and y j is defined as (Agresti, 2 0 0 2 )

, =  Pjvx =  =  i ) P ( y i  =  o,y j  =  o) =  PaO--  Pi -  Pj +  Pa) rfi1 o\
13 p {vi =  i .  y-j =  0 )P (y i =  0 , y j =  i )  (pi -  P ij)(p j -  p i j )

Note th a t E ( y i y f )  — =  P i j ( i p i j ) =  C ( p i , p j ,  i p i j )  where fo r fixed i p ,  the function

C (u , v, i p )  is the P lackett copula (Joe, 1997) given by

1 +  ( u  +  v ) ( i p  — 1) — y / [ \  +  (u +  v ) ( i p  — l ) ] 2 — 4 tp( ip — l ) i

C(u, v, ip) =  < , / x —  if  ^  #  1
2 (ip -  1)

uv if  ip =  1 .

For a fixed ip, C (u ,v ,ip )  is sim ply a b ivaria te  d is trib u tio n  function  w ith  un ifo rm  

(0,1) m argins. The next theorem  gives feasible ranges for the fa m ilia l odds ratios.

T h e o re m  6 .3  Let y\ and (y2, y%) be binary outcomes on a parent and two children, 

respectively. Suppose ip is the common odds ratio  between the parent and the two 

children, and let ipo be the odds ra tio  between the children. A  triva ria te  binary dis­

tribu tion  fo r  y  =  (?/i, 2/2? 2/3) with mean p =  (p i,P 2 ,Ps), 0 <  Pi <  1, exists i f  and only

i f

0 <  ipo <  0 0  and ipL ( p, ipo)  <  ip <  i p u ( P, i p o ) , (6.1.9)

where the lower bound ipL (p , ip 0) =  0  i f p i + P 2 + P 3 <  I+ P 23OA)) or p 1 + p 23 (ipo) >  1 - 

Otherwise, iP l(p , ipo) is the positive root o f the equation 1 — p\ — P2 — P3 +  P i2 (%) +  

P n ( x )  +  P23(ipo) =  0. The upper bound ipv (p, ipo) =  o o i f p i <  p 23 (ipo) or P2 + P 3 <  

P i + P 23(ipo)- Otherwise ipu( p, ipo) is the positive root o f the equation p23 ( ipo )~  P i2 ( x ) ~  

Pis(ar) + P i  =  0.

Proof. I t  is w ell known th a t the range o f ipij as a function  o f ptJ is [0 ,0 0 ), clearly, the 

range fo r ip0 is [0, 0 0 ). Notice th a t P i j ( i p )  =  C ( p i , p j , i p )  is increasing in  its  firs t two 

arguments and is also increasing in  ip  fo r ip e [0 ,0 0 ), and lim  P i j ( i p )  — m in ( j> i ,P j ) .
ij>—> 00

We w ill show th a t inequalities (13) and (14) in  (6.1.5) always hold fo r 0 <  ip <  0 0 . 

Le t g(ip) =  p12 -  P13 +  P3 ~  P23, i f  P2 >  Ps, then C (p i,p 2,ip) >  C (px,p z,ip) and 

p3 >  C (p2,ps, ipo) and therefore g(ip) >  0; i f  px >  p3, then C (p i,p 2,ip) >  C (p3,p2,ip)
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and p3 >  C (p i,p 3 , ip0) and therefore g(ip) >  0. Now we only need to  prove g(ip) >  

0 when p3 >  m ax{p !, p2}. Im ita tin g  the p roo f in  Chaganty and Joe (2006), le t 

V,v) C (u ,v ,ip ), then d C (u ,v ,ip ) /d u  =  P r(V  <  v\U  =  u ) is increasing in  v.

Consider g =  g(p\) as a function  o f p i varying in  [0,p3) fo r fixed values o f p2, p3 and 

ip, we have #(0) =  p3 -  P23 >  0 and g(p3) =  p3 -  C (p2,p3, ip) >  0. Since p3 >  p2, we

Thus g is nonnegative fo r a llp3 >  m ax{p1;p2}  and ip.  This proves (13). B y sym m etry, 

inequa lity  (14) also holds fo r 0 <  ip <  0 0 .

Also notice th a t fo r (15) in  (6.1.5), k ( i p )  =  p23 —p \2 ~ P \ 3 + P i  is decreasing in  ip and 

fo r (16) in  (6.1.5), l ( i p )  =  1 — p\ — p2 — p3 + P 12 + P 13 + P 23 is increasing in  ip  fo r fixed

In  add ition , i f  k ( i p )  and l ( i p )  are no t always nonnegative fo r ip  e [0 ,0 0 ), then (15) 

and (16) in  (6.1.5) hold i f  and only i f  iP l(P i,P 2 ,Pz) <  4> <  ipu(Pi,P2 ,P3)- The other 

twelve pairw ise inequalities in  (6.1.5) hold tr iv ia lly  fo r 0 <  ipo <  0 0  and 0 <  ip <  0 0 . 

Th is completes the p roo f o f the theorem , o

Table 6.6 contains the range o f ip given p i, p2, p3, and ipo fo r the d ifferent cases 

th a t can occur.

V I. 1.3 Ranges of Kappa Statistics

Another measure o f association between tw o b ina ry variables is the kappa s ta tis tic . 

Le t yi and y j be two b ina ry random  variables w ith  m arginal means Pi and p j. The 

kappa s ta tis tic  is defined as

also have

dg{p i) dp12 dp13
dpi dpx dpx

- P r(V  <  p2\U  =  p i)  — P r(V  <  p3\U =  p i)  <  0.

value o f ipo * In  order fo r k ( i p )  and l ( i p )  to  be nonnegative fo r a ll ip  G [0, 0 0 ), we m ust 

have k ( 0 0 ) >  0 and 1 (0 ) >  0. Therefore,

P23 >  Pi

P i +  P23 > P 2 + P 3

Pi +  P23 >  1

P i +  P2 +  P3 £  1 +  P23 ■

2(p«j ~  PiPj) _  2(p jj -  piPj)
Pi +  p j -  2p ^ j  piqj +  pjqi
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Table 6.6: Bounds fo r  the common odds ratio

Pi P2 P3 V’o P23 IpL ^ u
0.3 0.1 0.2 2 0.0315 0 oo
0.1 0.3 0.4 1.5 0.1407 0 oo
0.4 0.2 0.3 0.5 0.0390 0 24.5390
0.5 0.8 0.75 1.5 0.6128 0 oo

0.85 0.6 0.65 2 0.4281 0 oo
0.65 0.8 0.75 0.5 0.5816 0 22.0627
0.3 0.5 0.7 2 0.3859 0.0537 oo
0.6 0.3 0.35 4 0.1727 0.0265 oo
0.5 0.3 0.4 0.5 0.0866 0.0866 11.5492

See A gresti (2 0 0 2 ). Since m ax{0 ,p ; +  p3 — 1} <  pl3 <  m in {p ,, p.,}, we have

K i(p u p2) < k  < K u(pi,p2), (6.1.10)

where

V, ( - 2al> - 2 (1 - < 0 ( 1  - b )  }
=  \ a ( l  — 6) +  (1  — a)b ’ a ( l — b) +  (1  — a )6 j

r s ,  *  • f 2«(! - b) 2(! -  1A u(a, o) =  mm  < —-------—---r-^------— , — rT y- — > .
\  a ( l — b) +  (1  — a)b a ( l — b) +  (1  — a)b /

In  practice =  1 indicates a perfect agreement and — 0 indicates a com pletely 

random  agreement between the b ina ry variables yi and y3. Note th a t

Pi] =  PiPj +  Kij ^  ~  PiPj^j =  PiPj +  K ijd ij (6.1.11)

where =  (piqj +  qiP j)/2 . E quation (6.1.11) resembles the re la tion  between and 

the corre lation p ij. The equations are s im ila r except th a t a3, the geom etric mean 

o f Piq3 and Pjqi, is replaced by di3, which is the a rithm etic  mean o f Piq3 and p3qi- 
Therefore, i f  k  and kq denote the parent-sib ling and common s ib ling-sib ling  kappa 

sta tistics, the feasible ranges o f these tw o kappa’s can be deduced from  Theorem  6.1 

as

(1) Ki(p2,pz) <  Ko <  ATu(p2 ,p 3)

(2) m a x {tf/(p i,p 2 ),lf/(p i,P 3 ), ATi(ko)} <  k  <  m m {K u(p i,p 2), K u(p i,p 3), K 2(kq) } ,
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where

- ( k 0 d23 +  P1P2P3 +  Q1Q2Q3 )
* ( * > )  =   , , ,----------------

«12 +  «13
„  ,  X « 0  ^23 +  P i 92 93 +  91P2P3

«12 +  «13

V I. 1.4 Ranges of Relative Risks

Relative risk  is another im po rtan t measure o f association fo r b inary variables. The 

re lative risk  o f y j w ith  respect to  Pi is defined as the ra tio  o f the cond itiona l proba­

b ility  th a t y j =  1 given p i, or m athem atica lly (Agresti, 2002)

_  P(Pj =  1 \yt =  1) _  P i ^ l - P i )  , .

3lt P (v j =  Myi =  o) P i( P j~ P i j) '

Equation (6.1.12) can be rew ritte n  as

  0j\iPiPj
Pl3 1 +  (%  -  l)p i '

For the fa m ilia l b inary case, i t  may be reasonable to  assume th a t the re la tive  risk

o f the children given th e ir m other’s status is same, th a t is, #2|i =  $3|i =  0. Suppose

th a t a  is the s ib ling-s ib ling  corre lation. Then we have

OP1P2 <?PlP3
P12 — 7 -7 7 7 5 — — > P13 — .  (Q— 7T— , P23 — P2 P3 +  o:a2 (T3 .

I +  { 0 - 1  )p! l  +  { 0 - l ) p 1

A  triva ria te  b inary d is trib u tio n  fo r y  exists i f  and only if  the fo llow ing three conditions

hold:

(a) m a x {0 ,p i + p 2 -  1} <  P12 <  m in {p i,p 2}

(b) m ax{0 ,p2 +P3 -  1} <  P23 <  m in jj^ P s }

(c) m ax{0, +  P23 -  P2}  +  m ax{0, P i +  p2 +  P3 -  P12 -  P23 -  1}

<  P13 <  m in {p 12,p 23} +  m infpx -  pu ,p3 -  P23}  •

Note th a t conditions (a), (b) and (c) are equivalent to  (6.1.4) (see Chaganty and Joe, 

2006). I t  is easy to  check th a t (a) holds i f  and only if

m a x {0 ,1 -  9 2 /P 1 }  <  0  <  {9 i / (m a x (p 1,p 2) -  P i) }

and (b) holds i f  and only i f  L (p 2 ,p 3) <  a  <  U (p2 ,p3). However, s im p lifica tion  o f (c) 

is cumbersome and does not y ie ld  neat expressions fo r the jo in t range o f 0  and a.
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V I. 2 Multivariate Probit Model and Parameter Estimation

The classical m odel fo r analyzing m u ltiva ria te  b ina ry response variables y^ is the 

m u ltiva ria te  p ro b it m odel (Ashford and Sowden, 1970). The mass function  o f y* =  

(y n ,y i2 ,- - - ,y iu ) is siven bY

Pr(yi) — f  . . .  [  }  - e x p j - ^ - ^ |d 2i (6.2.1)
JCti - 'C i ( 27r )  2 | R i |2 ^ 1 J

where

( -o o ,H j)  i f  y j =  1

( f i j,  oo) i f  y j =  0

Note th a t P rfy j =  1 ) =  <ht i(/Lti ), where / i,  =  (h i , . . . ,  n t i) and d>t j(-) is the cum ulative 

m u ltiva ria te  norm al p ro b a b ility  function  o f dimension fy  Accurate com putation o f 

the jo in t p ro b a b ility  (6 .2 .1 ) is a challenging problem , and m any evaluation m eth­

ods and approxim ations were proposed (Henery, 1981; Genz, 1992 and Joe, 1995). 

However, we could reduce the m u ltip le  in teg ra l to  a one-dimensional in tegra l for 

some structured corre lation m atrices using stochastic representations. For example, 

suppose th a t R j  is an exchangeable structure  w ith  param eter a.  Let Uo, U i , . . . ,  Uti 

be independent id en tica lly  d is tribu te d  as standard norm al. Consider the stochastic 

representation (K otz et al., 2000)

Z j  =  y f a  U o  +  y / l  —  a  U j  fo r j  =  1 , 2 , . . . ,  tj. (6.2.2)

I t  is easy to  ve rify  th a t

V a r ( Z j )  =  a  +  (1 — a) =  1 

Cov ( Z j , Z k) =  C ov(y /aU0, y / a U 0)

=  a  Cov(Uo, Uo)

=  a ,

and therefore the corre lation between Z j and Zk ( j  ^  k )  is given by

r, r r7 7  i  Cov { Z j,  Z k}
C orr \ Z i , Z k \  - —. ... - =  a .

31 y/Vav  ( Z j ) V a r  ( Z k)

Using the above stochastic representation, we can see th a t the m u ltip le  in tegra l in  

(6.2.1) can be reduced to

/ oo
<t>(u o) n p f j ( 1 ~  P j ) { l~Vij) du0 .

00 3=1
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where p j =  $  ( ^  Suppose th a t the corre lation m a trix  R* has a fam ilia r
V V l  -  a  )

structure  w ith  parameters p and a. In  th is  case we can in troduce another standard 

norm al random  variable Um , which is independent o f U j ’s. Consider the stochastic 

representation

Z j — \fo. Uq -F \ / l  — oc Uj

Z M =  +  \ 1 — —  Um  ■ (6.2.3)
y /a  V a

C learly, C o rr(Z 7, Z k) — a  fo r j  ^  k, and

=  1V a r(Z M) =  ^  +
a   ̂ a  J

n  r *7  ry  Cov { Z j , Z M}C orr {Z j,  Z m j  -  -  — —  —  -  p.
v/V a r(Z j )V a r(Z M )

In  th is  case we have

p r(y , =  l )  =  £  0 («o) *  { ^ = f )  n  *  i ^ T = r )  du° ■

Suppose th a t R j corresponds to  a fam ily  structure  th a t includes an add itiona l 

param eter 7  representing the corre lation between the parents. In  th is  case we can 

introduce independent standard norm al variables Up  and Up,  which are also inde­

pendent o f Uj and Um - Consider the stochastic representation

Z j — \ [ ol Uo -\- y / l  — ol Uj

Z M =  - ^ U 0 +  J l - ~ f + PlP2 ^ Um +  J ' Y - ^ U p  
V a  V a  V a

Z F =  - ^ U 0 +  J l  -  7 +  PlP2 UF +  a/7 - — U p . (6.2.4)
y a  V a  \  a

Clearly, C orr(Zy, Z k) — a. We can check th a t

n „  J2
Var ( Z „ )  =  £ +  + { 7 - * * }

Var  (Z F) =  d  +  | 1 _ 7 +  £ !pi ^ £ i |  +  { 7 _ £ l £ 2 }  
a  I a l l  a  J

=  1
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and

Cow {Z j,Z M}  =  C o v |v S f / o , - ^ f / 0|  

=  P2

Cov {Z j t Z F}  =  Cov jv ^ t / o , ^ = ^ o }  

=  Pi

Cov { Z M ,Z F}  =  C o v |- ^ - ^ o  +  y 9 — ^ U P, ^ U 0 + y j ^ f ^ U p }

=  P lE l + (7 _ E l E l X
a  X a  J

7-

Therefore,

^  _ _ r ^  v  i  C o v { Z j , Z M }
Corr {Z j ,  Z m }  -  ,■ ■ -  P2

V 'V ar(Z J)V a r(Z M )
r ,  r v  v  1 C o v { Z j , Z F }Coxv{Zj, Z F}  =  — = = = = =  =  Pl

Var (Z j )Var (Z F)
n  r v  v  i  C o v{Z M ,Z F}C o rr |z M , Z F \ — — ■ — -  ■— =  7.

v /V a r(Z M)V a r(Z F)

In  th is  case the m u ltip le  in teg ra l in  the expression fo r P r(y t =  1), reduces to  double 

in tegra l

J  4>{uv) J  <f>(uo)$ ("0*1 ) $  (ipi2) J]_ $  duo dup

or

J  <t>(u0) ]^ [ $  J 4> (up)^{'tpn )^{ip i2)d u p duQ

w ith

V’i i  =

Pi / P1P2H i i  j=UQ -  \ H --------- Up
 V_a V a

V a

A 2 =

P2 /  P1P2
P i2  -  \  7 -----------Up

  y q  V o

1 t | Pi P 2 - P 22
Q
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Note that while the stochastic representations solve computational difficulties, they 
however, add add itiona l constraints to  the param eter space. For example, the  feasible 

range fo r a  in  an exchangeable corre lation structu re  is [0, 1). For fa m ilia l structure, 

we have the range o f the corre lation param eters as

0 <  a  <  1 and p2 <  a  

which is also contained in  the region given in  Section IV . 1.

The m axim um  like lihood estimates o f the la ten t correlations can be obtained by 

m axim izing the log-like lihood

n

£ =  constant +  £  lo g {P r(y j)}  (6.2.5)
i= l

or solving the like lihood equations

1 <9Pr(y i) =

t r  Pr(yO 9 0

y '  1 d P r(y i)  =
^  P r(y j)  d a

C om putation o f M L  estimates and the asym ptotic standard errors o f the esti­

mates is extrem ely tim e consuming. A n  a lte rna tive  m ethod is to  solve the unbiased 

estim ating equation

i=l

where R i =  vech(R j), Zjz( =  vech(zjz ') and V , is the covariance m a trix  o f Z jZ'. We 

could also add the add itiona l res tric tion  t r (W i)  =  0 so th a t a subclass o f estim ating 

equations can be expressed as

n

^ t r j W . R - 1̂ }  =  0.
i= 1

V I.3  An Illustrative Example

To illu s tra te  the analysis o f b ina ry data, we m odify the fa m ilia l data set used in  

Section IV .5 . We have generated b inary data on the m other and her children by
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Table 6.7: Fam ilia l data set w ith binary outcomes

Fam ily Member Age Pre-ATP Post-ATP
2 M other 62 4.43 1 (2.49)

Son 24 4.18 1 (1.49)
Son 41 4.81 0 (2.84)

Daughter 31 4.42 1 (2.04)
Daughter 38 3.65 1 (1.17)

3 M other 50 3.79 1 (1.28)
Son 7 4.72 1 (1.19)

4 M other 55 5.42 0 (3.65)
Son 23 5.30 1 (2.16)
Son 27 4.48 1 (2.40)
Son 19 4.85 0 (3.28)

5 M other 57 4.71 1 (2.23)
Son 32 4.19 1 (1.33)
Son 28 3.43 1 (1.85)

22 M other 45 5.29 0 (3.27)
Son 24 5.30 0 (4.10)
Son 20 5.25 0 (3.67)

trunca ting  the A TP  levels using the medians as the cu to ff values. In  another word, 

i f  the post A TP  level o f m other is greater than  or equal to  the m edian 3.05 o f the 

sample data on m others’ post A TP  levels, i t  is coded as “0” , ind ica ting  high level; 

otherwise, i t  is coded as “ 1” , ind ica ting  low  level. S im ilarly, i f  the post A TP  level o f 

a ch ild  is greater than or equal to  the m edian 2.84 o f the sample data on ch ild ren ’s 

post A TP  levels, i t  is coded as “0” ; otherwise, i t  is coded as “ 1” . Therefore, we have 

b inary outcomes, representing low -high post A TP  levels fo r 19 fam ilies along w ith  

the covariates pre-ATP  levels, age and gender. Table 6.7 contains a p a rtia l lis t o f the 

m odified data set.

For th is  b ina ry data, we have com puted the M L  estimates o f the regression and the 

la ten t correlations using the p ro b it model, as w ell as using the unbiased estim ating
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equation approach. The param eter estimates, which are in  agreement, are presented 

in  Table 6.8.

Table 6.8: Parameter estimates fo r  fa m ilia l binary outcomes

U E E M L E
In tercept -7.8620 -7.4949
Gender 0.4345 0.4154
Pre-ATP 1.5842 1.5067
P 0.5129 0.6080
a 0.4884 0.5763
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CHAPTER VII 

SUMMARY

In  th is  thesis, we have studied a lte rna tive  approaches to  m axim um  like lihood for 

estim ating parameters in  structured corre lation m atrices th a t are usually employed 

in  analyzing long itud ina l and clustered or more generally correlated data. These 

a lterna tive  approaches are based on constructing general classes o f weighted unbiased 

estim ating equations using Cholesky decompositions o f the inverse o f the corre lation 

m a trix . W hen the response variables are d is tribu te d  as m u ltiva ria te  norm al, we 

have proved th a t the Godambe’s op tim a l unbiased estim ating equation coincides 

w ith  the like lihood equation. For a general class o f weighted unbiased estim ation 

equations, we have obtained op tim a l weights by m in im izing the asym ptotic variances. 

However, unbiased equations em ploying these op tim a l weights are d iffic u lt to  solve 

fo r some structures, fo r example the fa m ilia l corre lation structure . Therefore, we 

have in troduced an add itiona l constra in t on the weights and studied properties o f 

the subclass o f unbiased estim ating equations. We have also suggested, fo r common 

corre lation structures inc lud ing  the fa m ilia l structure , weights in  a closed form  th a t 

are close to  being optim al. Using sim ulations we have shown th a t these approxim ate 

weights y ie ld  h igh ly efficient and robust estimates, which are easy to  com pute and 

do not run  in to  com putational problems.

W hen the response variables are b inary, i t  is w ell known th a t the ranges o f com­

mon measures o f associations are restricted by the m arginal means. Understanding 

these restrictions is the key fo r developing efficient methods o f estim ation fo r the 

associations. In  th is  thesis we have studied ranges o f association measures includ­

ing correlations, odds ratios, kappa sta tis tics and re la tive  risks fo r fa m ilia l b inary 

variables. We have generalized the  classical m u ltiva ria te  p rob it m odel to  estim ate 

fa m ilia l correlations. C om puting the m axim um  like lihood estimates was fac ilita te d  

by the use o f a stochastic representation o f the la ten t fa m ilia l variables. We have 

also studied the use o f weighted unbiased estim ation equations. The results were 

comparable w ith  the m axim um  like lihood estimates.
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APPENDIX  

CHOLESKY DECOMPOSITIONS

We want to  decompose structured m a trix  R  in to  P r P ' or R ” 1 in to  B A B ' where 

P  and B  are upper (or lower) triangu la r m atrices w ith  u n it leading elements and T  

and A  are diagonal m atrices. The structures th a t R  assumes are: (1) component 

sym m etry (CS) (or exchangeable); (2) firs t order autoregressive (A R (1 )); (3) fa m ilia l 

(single parent); (4) nuclear fa m ilia l (tw o parents).

A .l Exchangeable Correlation M atrix

The exchangeable corre lation m a trix  is defined as R  =  (1 — a ) I  +  a  J  o f order t. The 

Cholesky decom position m atrices o f R  are:

" 1 0  . . .  0 0  ‘

a 1 . . .  0 0

P i —

a —  1 1+a • • • 0

a a a 
1+a * * ‘ l+ ( t—2)a 1 txt

" 1 0 0 0

0  1 — Q2 0 0

0

0

0

0

( l -a ) [ l+ ( t -2 )a l  
l + ( i—3)a

fi ^
0

-a ) [ l+ ( t - l ) a lU l+ ( t—2)a J

" 1 a  a al+ ( t -2 )a  ’ ' ’ 1+a

0 1 —  x • 1+a a

p u
0 0  . . .  1 a
0 0  . . .  0 1 _

txt
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r ( 1—a ) f l + ( t —l ) a l
l + ( t —2 ) a 0 0 0 '

0 ( l - a ) f l + ( i - 2 ) a l 0 0
l + ( t —3 ) a

0 0 .. 1 —  a 2 0

0 0 0 1

The inverse o f R  is w ell known as y r ^ I — (i-a )[i+ (t-i)a ]*^’ an<  ̂^he decom position 

m atrices o f R -1 are:

1 0 . 0 0 '
—a 1 . 0 0l+ ( t—2)a

—a —a . 1 0l+ ( t -2 )a l+ ( t—3)a '
—a —a . —a 1L l+ ( t —2)a l+ ( i - 3 ) a  '

f  l+ ( t —2) OL
0

l+ ( t - 3 ) a
( l-a ) [ l+ (t -2 )a ]

. . .  0  

. . .  0

0  '  

0

( l -a ) [ l+ ( t -

0

-pa]

0 0 1
1 — OL2 0

- 0 0 . . .  0 1 _

'  1 —a —a
' ‘ ’ l+ ( t -3 )a

—a
l+ ( t -2 )a

0 1 —a
• ‘ ’ l+ ( t—3)a

—a
l + ( t - 2 ) a

B u =

0 0 1 —a 
l+ ( t—2)a

_ 0 0 0 1
tx t

’ 1 0 0 0
-

0  T
1

- a 2 0 0

0

0

0

0

l+ ( t—3)a
0

l+ (t-2]
( l -a ) [ l+ (t -2 )a ]

0
a

* * • ( l -a ) [ l+ ( t —pa] J
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A.2 First Order Autoregressive Correlation M atrix

The firs t order autoregressive corre lation m a trix  is defined as

R =

1 a a 2 . a 4-1

a 1 a . a 4-2

a 2 a 1 . a 4-3

a 4-1 a 4-2 a 4-3 . . 1

then the decom position m atrices are:

J txt

1 0 . . . 0 0 " " l 0 . . .  0 0

a 1 ... 0 0 0 1 -  a 2 . . .  0 0

P/ = r*  = 1

a l~-2 a 4" 3 . . . 1 0 0 0 .. .  1 -  a2 0

a 4--1 a 4-2 . . . a 1 txt _ 0 0 .. .  0 1 - a 2

or

’ 1 a . .. a4-2 a 4~-l ’ 1 — a2 0 0 0 "

0 1 . . .  a 4-3 a l~-2 0 1 — a 2 . . . 0 0

P  u = r u =

0 0 .. .  1 a 0 0 ... 1 — a 2 0

_ 0 0 .. .  0 1
txt

0 0 0 1

txt

txt

The inverse o f R is known as (I +  a2C0 — aCi) where diagonal m a trix  Co =  

diag(0,1 ,1 , . . . ,  1,0) and C i is trid iagona l m a trix  w ith  0 on the m ain diagonal and 

1 on the upper and lower diagonals. The decom position m atrices o f R -1 are:

1 0 . . . 0 0 ' 1
1—a 2 0 . . 0 0 ’

— a 1 . . . 0 0 0 1
1—a 2 . 0 0

B i  = A t  = *

0 0 . . 1 0 0 0 . 1
1—a 2 0

0 0 . . . —a 1 _
txt

0 0 . . 0 1 _
txt
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" 1 —a  . . 0 0 ’  1 0 . 0 0

0 1 . . 0 0 0 1
1—a2 . 0 0

Bu = * Au —
0 0 . . 1 —a 0 0 1

1—a2 0

0 0 . . 0 1
txt

0 0 . . 0
1

1—a2 _

A.3 Familial Correlation M atrix

The fa m ilia l corre la tion m a trix  w ith  one parent is defined as

1 p l i x t

p l t x l  (1  — C l)Itx t +

then the decom position m atrices are:

R =
( t+ l)x ( t+ l)

r , =

or

1 0 0 0 0 "

p 1 0 0 0

I =
p

a —p2 

1 - P 2
1 0 0

r\ a —p2 a —p2 1
a —p2

0

1

P
n

1 - P 2
a —p2

1—p2+ ( t —3 ) ( a —p2) 
a —p2

P 1 - P 2 1—p2+ ( t —3 ) ( a —p2) 1--p 2+ ( l - 2 ) ( a - p 2) 0 + 1 )

’ 1 0 . . . 0 0
-

0 1 - p2 . . . 0 0

0 

_ 0

0

0

(1 —a ) [ l —p2+ ( t —2 ) ( a —p2)] 
1—p2+ ( f —3 ) ( a —p2)

0

0
(1—a ) [ l —p2+ ( i —l ) ( a - P2)]. . . 1—p2+ ( t —2)( a - p 2) . ( t+ l)x ( t+ l)

p „  =

1

0

0

0

0

l + ( t - l ) a  l+ ( t -2 )a  
al

o

o

0

l+ ( t -2 )a

1

0

0

1+a
a

1+a
a

1+a

1

0

p
a

a

a

1
( t+ l)x ( t+ l)
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r u =

1  <£!__
l + ( 4 - l ) a 0

( l -a ) [ l+ (4 - l )a l  
l+ ( t —2 ) a

0

0

0

0

0

0

0 0
(1—a ) ( l + 2 a )  

1 + a 0 0

0 0 0 1  — a 2 0

0 0 0 0 1
(4+l)x(4+l)

The decom position m atrices o f R  1 are:

or

B ; =
l + ( 4 - l ) a

0

1

A i =

l + ( 4 - l ) a  l + ( 4 - 2 ) a
—P —a

L l + ( 4 - l ) a  l+ ( t - 2 )a

l + ( 4 —l ) a
l+ ( t —l ) a —tp2

0

B u =

A*. —

1

0

0 0 

0 0

0
l + ( 4 —2 ) g

( l - g ) [ l + ( 4 - l ) g ]

0

0

0

0

. .  0 0 '

. .  0 0

. .  1 0

. .  —a 1 _

0

«] 0

1

( t+ l)x ( t+ l)

1—a2 
0

0

1

1 - P 2

(4+1) x  (4+1)

’  1
- p ( l - a ) - p (  1 —a )  1

—p ■ 1—P2+ ( 4 —3 ) ( a —p2) 1—P2+ ( 4 —2 ) ( a —p2)

0 1  .
p2 —a p2 —a

1—P2+ ( 4 —3 ) ( a —p2 ) 1—P2+ (4  2) ( a —p2)

0 0  . 1
p2 —a

1—p2+ ( 4 - 2 ) ( a —p2)

0 0  . 0 1

0 0 0

(4+1)  X (4+1)

l - p 2+ ( 4 - 3 ) ( g - p 2)
( l - a ) [ l - p 2+ ( 4 - 2 ) ( a - p 2)]

0

0
1—P2+(4—2)(g-p2) 

( l - a ) [ l - p 2+ ( 4 - l ) ( a -p 2)] J (4+1) x (4+1)
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A.4 Nuclear Familial Correlation M atrix

T h e  c o m p le te  ( tw o  p a r e n ts )  f a m i l i a l  c o r r e la t io n  s t r u c tu r e  is  d e f in e d  as

R =
1 7 P il'ix *

7 1 P 2 l'ix t

P l l t x l  P 2 l ( x l  (1  — a ) I tx t  +  Q;Jtx< (t+2) x (t+2)

i f  w e  d e f in e  0  =  1 -  P' +Pf _ 2̂ , 0 Q =  a  -  p' + j : % p lp 2  -, 0 O =  0 i  = tp*
l + ( t —l ) a  ’

to
a n d  0 2  =  1+ ( t_ 1) a ’ t h e n  t h e  d e c o m p o s it io n  m a tr ic e s  a re :

P i

1

7

P i

Pi

Pi

0

1
P 2 - 7 P1,Pi 1 _ 7 2

P2 —IP 1 
1—72 

P 2 -7 P 1
1 - 7 2

P2 - 1 P1
1—72

0

0

1

l/>
Ipg 
lP 
0a 
1/)

0

0

0

1
0a

0 + ( t - 3 )0 a
0a

0

0

0

0

1

0a
0 + (t -3 )0 a  0 + ( t - 2 )0 Q

0

0

0

0

0

1
(t+2) x (t+2)

T i  =

o r

1 0  0

0 1 -  72 0 

0 0 0

0 0 0

0 0 0

0 0 0

P «  =

0

0

0

(1 — p)\i>+(t-3)-0„ 
ip+(t-4)ipa

0

0

(l-p)[V+(t-2)y>„
ip + ( t-3 )ipa

0

0

0

0

0
(i-p)hH-(t-iV0«,l

ip + ( t- 2)ipa (t+2)x(t+2)

1 7-00 pi P! -£L- p i1—02 l + ( t —l)a  • • l + 2a 1+ a

0 1 P2 P2 P2
P2l + ( t - l ) a  ' ‘ l + 2a 1+ a

0 0 1 a
‘ l + 2 a

a
1+ a a

0 0 0 . 1 a
1+ a a

0 0 0 . 0 1 a

0 0 0 0 0 1
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r u =

o

o

0

0

0 0

1 - 0 2  0
Q ( l - g ) f l + ( t - l ) g l

0

0

l + ( t - 2 ) g

0

0

0 0 

0 0 

0 0

I - a 2 0 

0 1
( t+ 2 )  X ( t+ 2 )

The decom position m atrices o f R  are:

B ,=

1 0 0 . 0 0 0 '

7-00
1—02

1 0 . 0 0 0
7 P 2 -P 1 - p 2 1 . 0 0 0l + ( t —l ) g —tp^ l + ( t —l ) g

7 P 2 -P 1 - p 2 —g
. 1 0 0l + ( t —l ) g —tpj l + ( t —l ) g l + ( t —2 ) g  '

7 P 2 -P 1 - p 2 —g —a 1 0l + ( t —l ) g —1/>2 l + ( t —l ) g l + ( t —2 ) g  ' 1 - fa
7 P 2 -P 1 - p 2 —g —a —a 1

l + ( t —l ) g —t p | l + ( t —l ) g l + ( t —2 ) g  ' 1 + a ( t+ 2 )  x  ( t+ 2 )

A / =

or

B„ =

1

0

0

0 0

0

0

1 -0 2

0

0

0

0

0
l + ( t - 2 ) g

( l - g ) [ l + ( t - l ) g ]

0

0

1
- 7

- ( P 1- 7P2) - ( 1 —g ) ( p i —7P2)
1 1—72 0 ( 1 —7 2)

0 1 — (P2—7 P l) - ( 1 —g ) ( p 2 - 7 P i )
1- 72 0 (  1—7 2)

0 0 1 ~ 0 a
0

0 0 0 1

0 0

0 0 

0 0

1 01—g2 
0 1

0+(t-2)0Q

( t+ 2 )  x  ( t+ 2 )

—( i—g)(pi —7P2) 
[0+(t-2)0Q](l-72) 

-(l-g )(p2-7Pi) 
[0+(t-2)0a](l-72)

-0a 
0+(t-2)0c,

-0a

( t+ 2 )  x  ( t+ 2 )
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A-u

1 - 0 1 (7~</>o)2
1—02

0

0

0

0

1-0 2

0

0

0

0

0
l + ( t - 2 ) a  

(1 —a ) [ l + ( i —l ) a ]

0

0

0 0

0 0 

0 0

01—Q2
0 1

( t+ 2 )  x  ( t+ 2 )
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