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ABSTRACT

EFFICIENT UNBIASED ESTIMATING EQUATIONS
FOR ANALYZING STRUCTURED CORRELATION
MATRICES

Yihao Deng
Old Dominion University, 2006
Director: Dr. N. Rao Chaganty

Analysis of dependent continuous and discrete data has become an active area of
research. For normal data, correlations fully quantify the dependence. And histori-
cally, maximum likelihood method has been very successful to estimate the correla-
tions and unbiased estimating equation approach has become a popular alternative
when there maybe a departure from normality. In this thesis we show that the opti-
mal unbiased estimating equation coincides with the likelihood equations for normal
data. We then introduce a general class of weighted unbiased estimating equations
to estimate parameters in a structured correlation matrix. We derive expressions
for asymptotic covariance of the estimates, and use those expressions to determine
the optimal weights. We also study an important subclass of unbiased estimating
equations. The optimal weights for this subclass are not tractable, especially for the
familial correlation structure. We suggest approximations and study performance of

these approximate weights using simulations.

For familial binary responses we first investigate ranges of associations measures,
which include odds ratios, kappa statistics, and relative risks besides correlations.
Knowing and understanding these ranges is important for developing efficient esti-
mation methods. We study estimation of the familial correlations using a probit
model and stochastic representation of the latent variables. We discuss some ex-
tensions of our results to nuclear families. Some real life examples are presented to

illustrate the estimation methods.
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CHAPTER 1
INTRODUCTION

Continuous and discrete repeated measurements data naturally arise in many re-
search studies in biomedicine, psychology, health and social sciences. Hence there
is a strong need for developing efficient and easy-to-implement statistical estimation
methods for analyzing such data. In a seminal paper Godambe (1960) introduced the
theory of unbiased estimating equations for independent observations. This theory
was extended for correlated and dependent data by Liang and Zeger (1986), who
introduced generalized estimating equations. In recent years generalized estimation
equations and methods based on unbiased estimating equations have become a popu-
lar alternative to the traditional maximum likelihood estimation. However, unbiased
estimating equations for structured correlation matrices have not been explored sys-
tematically. The main goal of this thesis is to adequately address unbiased estimating
equations, derive important properties, and develop efficient methods for estimating

the correlation parameter in structured correlation matrices.

I.1 The General Setup

The classical setup for the longitudinal data analysis is as follows. Suppose that
we have n independent subjects or clusters in a sample. On subject 7 or cluster
i, we observe response y; = (¥, Y2, - - -, Yit;)’, where y;; for j = 1,2,...,¢; could
be a continuous measurement or binary (for example, it could be an indicator of
yes/no, success/failure or present/absent). The expected value of y; is given by
;= (fa, paz, - - -, i) and the variance covariance matrix of y; is assumed to be
V. = (0ij0i0ujk) for j,k =1,2,...,t; and a; = 1 if j = k. The general setup is
presented in Table 1.1.

In addition to the response variable y;, we have a covariate matrix X} containing
measurements on some covariates for subject or cluster ¢. Here X! is a matrix with
t; rows and p columns. We assume that the mean p, of response y; is a function of

X! and an unknown regression parameter 3, that is, p; = ¢(X;3) for some known

This dissertation follows the style of Journal of the American Statistical Association.
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Table 1.1: General setup

subject response mean covariance matrix
: 2
? Yia Hi ag; 01020412 ... 004,044,
2
Yi2 Hi2 0i10520421 ) cee 03204,0642,
2
Yit; Hit; Ti104t; X1 0204, Xg2 - - - Oit.

function g(-).

Generally, the goal is to estimate 3 efficiently. However, in some analysis, the
correlation parameters o; = (12, Gits, - - -, Qu;—13;) for @ = 1,2,...,n maybe of
research interest, and we need to efficiently estimate them as well. Many books
focusing on the analysis of longitudinal data are available, for example, Diggle et al.
(2002) and Fitzmaurice et al. (2004). A comparison and review of various estimation
methods can be found in Zeger and Liang (1992) and Wu et al. (2001). A likelihood
approach for efficient parameter estimation is facilitated by general linear models,

which we discuss in the next section.

1.2 Generalized Linear Models

Generalized linear models (GLMs) were introduced by Nelder and Wedderburn
(1972). GLMs provide a unified class of models for regression analysis of independent
observations, which could be continuous or discrete. Possible applications of GLMs
in various fields of study can be found in McCullagh and Nelder (1989) and Myers
et al. (2002). There are three key components in generalized linear models: the
marginal response distribution, a linear predictor, and a link function. The detailed

description of these components is as follows.

(1) The first component is the distribution of the response variable y;;. In GLMs
it is assumed to belong to the exponential family. The probability density
function or probability mass function can be written as

Yij0i; — b(0s;)

f(yij;ei;‘ﬁ) = exp{ (@)

+c(yij,¢>} (12.1)
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where the functions a(-), b(-) and ¢(-) are known. From (1.2.1), we can check
that the mean and variance of y;; are E(y;;) = pi; = ¥'(0;;) and Var(y;;) =
b (6:5)a(®), respectively. Thus, the variance of y;; is a function of its mean, and
this function is often referred to as the “variance function”. In some specific

examples, a($) = ¢/w, where w is a known prior weight.

(2) The second component in GLMs is the linear predictor 7;;. This is simply a

linear combination of the covariates and the regression parameters, that is,

= X8 = Zﬂkx”k

(3) The third component is the link function g(-). This function specifies the rela-
tionship between the linear predictor 7;; and the expected value u;; of y;; as
ni; = g(pi;). The link function g¢(-) is known as the canonical link function

when g(u;;) = 6;;.
Below are two common examples of GLMs.

Example 1.1 Suppose y;; are independently distributed as univariate normal. The

probability density function of y,; is
1 —(yi5 — pij)?
[, 045,0) = exp{__(a_a)_}

3
27mfj 203;

2
Yoty — 15,/2 1
= exp {L]—ZJ— - = (y?j/ofj + log(27ra,-2j )}
o3 2
so that 6;; = p;, ¢ = 0. In this case a(¢) = ¢, b(8;;) = 07;/2 and c(y;;,¢) =
{y,] [0} + log(2n0? )} It is easy to check that the link function is the identity

function, g(pi;) = pij-

Example 1.2 Suppose y;; are independently distributed as binomial with parameters
ni; and p;;. The probability mass function of y;; is
ngj!

f y--,9~~,¢ — : PDis Yij — Dij Nij —Yij
( 1371 ) (nlj yl])|yu| 15 ( 1])

qu'
= exp {yulog (1 f ) + nnlog(l _pn) + log ((n _ y]..)ly..l>}
i ij ) Yiz*

so that 6;; = log (—1—2”2)—) , & =1 and thus a(¢) = ¢, b(0;;) = ni;log {1 + exp(6;;)}
—py

" J
and c(yij, ¢) = log ((nij _n;])' y,-j!)' The link function is g(pi;) = log (1 ’_‘U“ ij.).
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Table 1.2 contains the canonical link and variance functions for some common

univariate distributions with mean p.

Table 1.2: Canonical link and variance functions

Distribution Canonical link function Variance function
Normal Identity n=u 1
Binomial Logit n = log (L) 7 (1 — H)
1—p n
Poisson Log n = log(u) L
Gamma Inverse n=1/u p?
Inverse Gaussian Inverse square 7 = 1/u? ud

In GLMs the estimation of the regression parameter 3 is carried out by the
principle of maximum likelihood. We illustrate this method and present some details

on how to compute the standard errors with an example.

I.3 Maximum Likelihood Estimate

In this section, we present some details of maximum likelihood estimation for the
longitudinal setup described in Section I.1. Assume that the distribution of y; is
multivariate normal with mean p; = X/3 and covariance matrix V; = V;(o?, o).

The likelihood function is

1 1
e T Vi { 2 2

and the log-likelihood is

L(B,V,) = —XiB) Vi (yi — XiB)

(1.3.1)

1 n B n n
(B, Vi) = —3 {Z(yz- —XiBYV (yi — XiB) + ) log|Vi| +log(2m) D t,} :
i=1 i=1 i=1
(1.3.2)
Taking the partial derivative of (1.3.2) with respect to 3 and equating to zero, we
get

va- yi — (}:XV lx')ﬂ = 0.

i=1
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Solving this equation gives the maximum likelihood (ML) estimate of 3 as

n -1 5
B = (Z xiV;lxg) D> XVl (1.3.3)
=1

i=1

Similarly, differentiating with respect to o? and «;, and equating to zero, we have

- v;! " log|V;

> X'ﬁ)'a 7 (i - XiB) + Ogl,?l = 0, (1.3.4)
=1 i=1

> (i = XiBY - Ve S '—X’B)+Zk’glv| - 0. (1.35)

i=1

Using the identities

8a,- B |V1| aai
olvy _10V;
9ey,  Viltr (Vi aa,.>
ov;! 10V,
i — _V— -
801 e’ V
equation (1.3.5) can be written as
& ov;'
;tr{ o (slez—Vi)} = 0, (1.3.6)

where €; = y; — X3 is the residual. Later, we will use this form (1.3.6) of the ML
equation to make comparisons with the unbiased estimating equation approaches.
The solutions to the equations (1.3.4) and (1.3.6) are usually not in the closed form,
and a nonlinear optimization algorithm is often used to solve (1.3.3), (1.3.4) and

(1.3.6) simultaneously.

The covariance matrix of regression parameter estimate 3 is obtained by finding

the inverse of the Fisher information matrix, which is given by

S

An estimate of Ig is >, X; VX! where V. = V(62 &;) is the covariance matrix
evaluated at the estimated parameters &; and a;. More generally, the covariance ma-

trix of the parameter 8 = (3,5, &) with &° = (62,...,62) and & = (&, ..., &)’
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though complicated can be obtained by taking the inverse of the Fisher information

matrix
- 2 2 2 ]
-1 E @ E @)—2 E —8@ (1.3.7)
E{ai;ﬁ} E{arfai} E{%}

evaluated at 8.

For non-normal correlated models the likelihood function is intractable and calcu-
lating the ML estimates pose computationally challenging problems. An alternative
method is the generalized estimating equation approach which we briefly discuss in

the next section.

1.4 Generalized Estimating Equations

As an alternative to the full likelihood approach Liang and Zeger (1986) introduced
the generalized estimating equations (GEEs). Their approach does not require com-
plete specification of the likelihood function and can be thought as an extension of
GLMs for correlated observations. The general form of the generalized estimation

equation is

iDéV{ l(yi—ui(ﬁ)) =0, (1.4.1)

where D; = dp,/88 and V; = ¢ A7 R A is the so-called “working” covari-
ance matrix, ¢ is a scale parameter, R; is the “working” correlation matrix depending
on a;, and A; = diag(c) for j = 1,2,...,¢;. Since p; = g7'(n;) = ¢7'(X]B) and
usually g¢(-) is a nonlinear function, an iterative algorithm described below, is required
to get the solution to (1.4.1).

(1) With initial values of a(®, ag-’ ), solve (1.4.1) for 3. Denote the solution as BY.
At the kthstep for k= 1,2, ...

(2) Compute the estimate of ;; using the residuals sfk) =Yy — I (,B(k)).
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_1
(3) Compute the Pearson residuals as ng) = A, () (yi — ( ﬁ(k))).
(4) Update o using zgk) to get a®, and ng)-

(5) Update 3 using the equation

n ’ -1 n
kD) _ gk OB (1) ™ Obs OB (v (. _ o
(6) Check convergence criteria for |3%+) — 8®| and |a®+) — a®)|. If the criteria

are met, then stop; otherwise, go to (2) and repeat steps (2) — (6).

For the GEE method the updating o;; and « in steps (2) and (4) is done using the

(k) (k) and the estimate of

method of moments. The variance o;; is estimated by &;
is computed using the residuals z;. For example, if the working” covariance matrix

is of the form ¢2?R;, and R; has an exchangeable structure, the estimates are given

by
& = ! Y z,(J; — L)z
2¢(N*_p) — 1 1 1 1
where
YRS o PR
- 2 L 1 \Ui

>

1 <&,
R AN
N_pi=1

with N =37  t; and p is the number of regression parameters to be estimated.

The covariance matrix of 3 is given by the sandwich estimator I3 I; Iy where

IO — Za,"'zv lap’z

Il = Z aﬂzv 1(jOV yz)V,‘_I 88%1 .

In the above Cov(y;) is estimated by €;e}, which is consistent even if the “working”
correlation matrix is misspecified. The GEE estimation method has been imple-

mented in popular commercial statistical packages like SAS and S-Plus.
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An important property of the GEE approach is that, even the “working” corre-
lation matrix is misspecified, the estimate of 3 is still consistent, but there could
be some loss in efficiency (Hardin and Hilbe, 2003). Since the introduction of the
GEEs, numerous authors have addressed this loss in efficiency issue and suggested
many alternative approaches to overcome this problem (for example, Prentice and
Zhao, 1991; Qu et al., 2000). In particular, Prentice and Zhao (1991) suggested to
estimate the correlation parameters simultaneously with the regression parameter,
taking into account the covariance of y; and v;. Their estimating equation, known

as GEE2, can be written as

aE(Yi) 0 '

n -1
3 B Vi Cov(yi, vi) yi — E(yi)
i—1 BE(V’l) aE(Vl) COV(yi, Vz') Wi Vi — E(Vi)
o8 o
where v; = vech{(y; — p;)(y: — it;)'}, vech being the usual vech operator, and W; is

the covariance matrix of v;. Prentice and Zhao (1991) have shown that use of GEE2

could improve efficiency of the regression parameter.

1.5 Overview of the Thesis

The overall goal of the thesis is to study alternative, robust and efficient methods
for estimating the correlation parameter in structured matrices. These methods will
also improve the efficiency of the regression parameter. Apart from this introductory
chapter, wherein we have briefly reviewed generalized linear models, maximum likeli-
hood method and the generalized estimating equations approach, this thesis consists

of five additional chapters.

In Chapter 11, we consider the simple case where the responses in the longitudinal
data are continuous and the number of repeated measurements per subject are equal
(balanced data). We first explore properties of the common correlation structures in
longitudinal analysis, and then present details for the maximum likelihood estimates
and their asymptotic distributions under the assumption of normality. In a recent
paper Wang and Carey (2004) introduced unbiased estimating equations based on
Cholesky decomposition of the inverse of the structured correlation matrix. Extend-
ing their idea we introduce a number of unbiased estimating equations for estimating

the correlation parameter. In order to gain insight for selecting the best among these
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unbiased equations, we derive the asymptotic variance of the estimates and study
the asymptotic relative efficiencies in the special case where ¢t; = 3 for all z. We
derive closed form expressions for the exchangeable and the first order autoregressive

structures.

In Chapter III, we generalize the results of Chapter II to the unbalanced case,
that is, to the case where t;’s are unequal. It is well known that for Gaussian vari-
ables the likelihood equation for regression parameter (3) is the optimal estimating
equation in the sense of Godambe (1960). As an important result, we show that
for Gaussian variables, the likelihood equations for estimating the correlation are
also optimal in the sense of Godambe (1960). We then introduce a general class
of unbiased estimating equations for estimating the correlation parameter. We de-
rive the asymptotic variances of the estimates for several common structures. These
asymptotic variance expressions were used to derive the optimal weights for com-
mon structured correlation matrices including exchangeable and AR(1). We simplify
the variance expressions for Gaussian variables. For the AR(1) structure, since the
optimal weight matrices are complicated we provide simpler approximations which
will yield nearly optimal estimates. We present some simulation results to study the
efficiency of the estimates obtained as solutions to the various unbiased estimating

equations. A real life data analysis is presented to contrast the various estimates.

In Chapter IV, we focus our attention on a correlation structure that has been
widely used to model intra-family correlations. This correlation structure, known
as the familial structure, has one parameter representing the correlation between
the parent and siblings (parent-sibling correlation), and another parameter which
measures the intra-correlation between the siblings (sibling-sibling correlation). We
first study some properties of the familial correlation structure, and then discuss ML
estimation of the unknown parameters, under the assumption of normality. As an
alternative to the ML estimation, we construct a general class of weighted unbiased
estimating equations, and discuss the selection of optimal weights. It turns out that
the optimal weights are the same whether we minimize the determinant or the trace of
the asymptotic covariance matrix. However, these optimal weights are complicated.
We suggest simple approximations that are straightforward to construct. Simulation

results and real life data analysis are also presented in this chapter.

In Chapter V, we generalize the results of the previous chapter to a nuclear family
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consisting of two parents and siblings. After discussing the general properties of the
familial structure and ML estimation of the parameters, we turn our attention to the
unbiased estimating equation approach. As before we derive optimal weights which
minimize the determinant or the trace of the asymptotic covariance matrix. We also

suggest some approximate weights that are nearly optimal.

The results of the previous chapters are mainly applicable for continuous data.
However, in medical, biological and social studies the outcomes are binary in several
research studies. Unlike Gaussian variables, the ranges of the familial correlations
and other measures of associations depend on the marginal means. Knowing and un-
derstanding the ranges of these association measures is crucial for developing efficient
methods of estimation. In Chapter VI, we study the ranges of familial correlations,
odds ratios, kappa statistics, and relative risks for binary variables. We also study
stochastic representations of some latent variable models for familial binary data,

and explore possible efficient methods of estimation.

Lastly, we give a summary of our methods for analyzing structured correlation
matrices with continuous or binary outcomes. Our investigations show that the
weighted unbiased estimating equations are a good alternative to maximum likeli-
hood. For common correlation structures, weighted unbiased estimating equations
give rise to efficient or nearly efficient estimates, in the sense of the asymptotic
variances. These weighted estimating equations are easy to implement, reduce the
computational burden, and have less convergence problems when compared with ML

estimates.
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CHAPTER 11
UNBIASED ESTIMATING EQUATIONS

In this chapter, we will discuss simple and popular correlation structures
parametrized by a single parameter. We assume the number of observations on
each subject are the same, that is, the longitudinal data is balanced. As is custom-
ary in generalized linear models, we assume the variance is constant within subject
measurements, or in a cluster. Special attention is given to multivariate normal

distribution in this chapter.

The organization of this chapter is as follows. We first present some properties of
the common correlation structures, namely exchangeable and first order autoregres-
sive structures. In Section I1.2 we present details of ML estimation for estimating the
regression and the correlation parameters for Gaussian data. The asymptotic covari-
ance matrix of ML estimates are also given explicitly for these two correlation struc-
tures. In Section II.3, using the approach based on Cholesky decompositions of the
correlation matrices, first suggested by Wang and Carey (2004), we construct several
unbiased estimating equations for the correlation parameter. We derive asymptotic
properties of the estimates as well. In Section II.4, we consider a general class of
estimating equations. This general class contains as special cases the equations in
Section I1.3 which are based on the Cholesky decompositions. To further understand
the unbiased estimating equation approach, we illustrate the method in a special case
when t = 3, in Section I1.5. Explicit expressions for the Cholesky decomposition ma-
trices, estimating equations, and asymptotic variances are given. We compare the

estimates of the correlation parameter via asymptotic relative efficiency.

I1.1 Common Correlation Structures

The most common correlation structures in longitudinal analysis are exchangeable
(EXCH) and first order autoregressive (AR(1)). In this section, we will study prop-

erties of these correlation matrices.
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I1.1.1 Exchangeable Correlation Structure

The exchangeable correlation structure is defined as

-1 o a-
a l ... «a
R =(1-al+ad = | _ 7 ° (2.1.1)
a o ... 1
L Jxt

where I is the identity matrix, J is a matrix of ones and « is the common correlation.
The eigenvalues of R are Ay =1+ (t — 1)aand A; = (1 — o) for i = 2,3,...,t. The

necessary and sufficient condition for R to be positive definite is

1
e . 2.1.2
t_1<a<1 ( )

The determinant of R is (1 — a)*"*[1+ (¢ — 1)a], and the inverse is given by

L 1 B a
R™ = l—aI (1—01)[1-%—(15—1)a]J
[ 14+ (t - 2)a —a - ]
1+ (t—1)a 1+Et—lga 14 (-1
-« 1+(t—2)a —o
. 1+(t-1Da 1+(t-1a  1+(E-1a [ (21.3)
1-a . . - :
—o — 1+(t—2)a
| 1+ (t—1)a 14+(t—-1a  14+(E—-1a

In Appendix A.1, the Cholesky decomposition matrices of R and R™! are presented.

I1.1.2 First Order Autoregressive Correlation Structure

The first order autoregressive correlation structure is defined as

o 2 ot-1
1 o .. al™?
R = o« 1 ... o8 (2.1.4)
ol ot=2 o3 1
L dixt
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where o is the correlation between adjacent variables. The determinant of R is
(1 —o®)*"!. And the necessary and sufficient conditions for R to be positive definite

is
-l<ax<l. (2.1.5)

The inverse of R is given by

1
R! = T (I+a200-—aC1)
[ 1 - 0 ]
—a 14+a® —-a ...
1 0 —a 14a% ... 0 0
- 1 - o2 : : : .. : : ’ (2.1.6)
0 . 1402 —a

=3 _a 1 -

where Cy = diag(0,1,1,...,1,0) and C; is a tridiagonal matrix with 0 on the main di-
agonal and 1 on the upper and lower diagonals. Appendix A.2 contains the Cholesky

decomposition matrices of R and R™1.

I1.2 Maximum Likelihood Estimate

For Gaussian model the log-likelihood function can be written as

11

¢ = —3 {}3 Z(Yi — X!BYR Y (y; — XiB) + nlog|R| + ntlog(c?) + nt log(27r)} .
i=1

Recall that the maximum likelihood estimate of the unknown parameters under mul-

tivariate normality assumption can be obtained by solving the system of equations

(1.3.3), (1.3.4) and (1.3.6) simultaneously. Further simplifications of those equations

give us

n -1,
8 = (Z XiR;1X§> > XR;lyi,
i=1

i=1

1 n
o = —> (yi— XiB)R7\(y: - XiB), (22.1)
i=1
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and the estimate of « is obtained by solving the equation

> { e

The following identities are useful to find the asymptotic variances of the ML esti-

(i - xzaxyi—xm)'—azm} ~ 0. (222)

mates via Fisher Information.

oL 1 _
= = ;ZX,-R "y — Xi0)
i=1

oB
LA Z(y — X{BY R (y; — X/6)
g_;‘; _ _glagxiR—lxg
5{% _ _%;:;X,R—l (v: — XB)
o - £33 x 2 (y. - xi8)
5?;5)—2 _ %_£;(y,-—Xgﬂ)’R”l(yi—Xiﬂ)
3732222 _ é%i;(yi—xl,@) B v - Xi8)
% - ;( x’ﬁ)’aZR_( X’ﬁ)—§82§§lm'

Since E(y;) = X!8 and E {(y; — X!B)(y;: — X!8)'} = Cov(y; —X!3) = 6°R, we have

0% 1 «— i

i=1

0 Foad4
B188o02 = ° E{aﬁaa} =
gl 2¢ | __nt
022 f 204
00 n oR™!
B 80282a B 5‘—2tr( 82! Rl )
AN 5°R- log|R|
E{a—a5 = —2{“< 807 R)+ B0 }
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Thus the Fisher information matrix is given by

1 « _
EQ-ZX,.Ri D¢ 0 0
i=1
nt n oR™!
ot _" 2.2.3
0 55 2g2 tr e R ( )
n oR™! n ’R™? &?log|R|
_ 0 'zT.z‘“( 90 R) ‘z‘{“( 92 R)*W}_

When R has an exchangeable structure, Lee (1988) has shown that maximum

likelihood estimates of o and o2 are

Yoy tr((J = D)ese))

T - DT (e
. 1 ¢ ,
62 = " zl: tr (ee;) .
For the exchangeable structure we also have
OR™! 1
aaR N l—a[I_l—i—(t—l)aJ]
PR 2 t—2[1+(t—1)a]
0o’ R = (1-—a)? [I + 1+ (t-1)al? J]
therefore,
oR™! tit — 1o
tr( da R) T (-1 +(t—1Da]
; azR—lR 2t + (- 1)
"\ 8a2 T (1—a) 1+ (t—1)a)
& log|R| —t(t —1)[1 + (¢ — 1)o7
da? 1-—0)? 1+ (t—1)a)?

Thus the lower right partition of the Fisher information is given by

nt
204
—nt(t — Do

—nt(t — 1)
202(1 — o)1 + (t — 1)q]
nt(t — D1+ (¢ - 1) |°

202(1—a)[1+ (t —1)a]

21— a)?[L + (t — 1)a]?

and therefore the asymptotic variances of 62 and &, are

20%
t

[1+(—1)a®] eand

t(til) [@-a)n+ (- 1al]
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respectively, as in Chaganty (2003).

When R has an AR(1) structure, the maximum likelihood estimate of « is not in
a closed form. In this case we have
oR™! 1 9
aa R = (1_—(12)3[2(1(1—%-00) - (1 +« )CI]R
o’R7! 2
0o’ R = (1—a?)3 [(

and therefore,

1+ 302)(I+ Co) — a3+ az)Cl]R

o(ZR) - He

O 1—a?
2 -1 _ 2
tr °R R) = 4(t — 1)(1+?)
Oa? (1-a?)?
dloglR| = —2(—-1)(1+a?)
da? B (1—a?)?
The lower right partition of the Fisher information is given by
nt —n(t — 1o
204 0%(1 —a?)
—nt—Da nt-1)1+a?) |’
0%(1 — a?) (1 - a2)?

and thus the asymptotic variances of 67 and &, are

204(1 + a?) t(1 — a?)?
202 +t(1 - a?) an (t—1) [202 +t(1 - a2)]

respectively, as in Chaganty (2003).

II.3 Unbiased Estimating Equations Based on Cholesky Decompositions

Unbiased estimating equations provide an alternative method of estimating corre-
lation parameters. The unbiasedness guarantees that the estimates are consistent.
Recently, Wang and Carey (2004) introduced an unbiased estimating equation that is
based on Cholesky decomposition of the inverse of the correlation matrix. Suppose
that R™' = B;A;B] = B,A,B),, where B, is a lower triangular matrix with unit
diagonal elements, B, is an upper triangular matrix with unit diagonal elements,
and A; and A, are corresponding diagonal matrices. See the Appendix for details

on Cholesky decompositions of different correlation structures.
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Let Z = 02 Z £i€; = Z z;Z,, where z; is the Pearson residual. Then Wang
'r-l
and Carey (2004) S estlmatmg equation can be written as
0B, 0B _
Up: t AB +—AB,|Z; = 0. 2.3.1
] (Gaams Foan)2) 2

The equation U; is unbiased since

E(U,) = tr{(aBlA,B’ 8B“AuB;) R}

0 oa
= tr aBlB‘lBlA,B aB“B;IBuAuB;, R
O Oa
B, _, 0B,
= B'4+ —B;'} = 0.
{aa O } 0

The last equality holds because 0B, /da (or 0B, /0«) is a lower (or upper) triangular
matrix with diagonal elements 0 and also B, (or B 1) is a lower (or upper) triangular

matrix with 0 on the diagonal.

Using the idea of Wang and Carey (2004), we can construct many other estimat-
ing equations based on the Cholesky decomposition matrices similar to U;. Some

examples are

Uy : {(‘9]3’1{-1 ]z R—l) Z} =0 (2.3.2)
Us : {(aB’ “B;) Z} =0 (2.3.3)
0B; 0A,; 0B, 0A, _
: / —"A,B! = 2.3.4
Uy {(6046 AB; + e Ba B)Z} 0 (2.3.4)
0B, 0\, = 0B, 8A
: —R 2.3.
Us {<8a Oa Ba aa (23.5)
0B, 0A; 0B, 0A,
: = 0. 2.3.
e ] (i 7. aaB)z} 00
It is easy to verify that the estimating equations U;, for ¢ = 2,...,6 are unbiased.
Therefore the solutions é&;, ¢ = 1,...,6 to these equations are consistent estimates

of a. It follows from the general theory of unbiased estimating equations, these esti-
mates are asymptotically normal. The following lemma facilitates the computation

of asymptotic variances under the assumption of normality.
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Lemma 2.1 Let z;x1 be a multivariate normal vector with mean 0 and covariance

matriz X. Let A, B be two square matrices of order t and Z = zz'. Then

Cov {tr(AZ),tr(BZ)} = tr(BZAX) +tr(B'ZAX).

Proof. Note that

(1) Cov {vec(Z)} = (Iz +I34)(Z Q@ X)

(2) ved'(A)(D ® B)vec(C) = tr(A’'BCD’) (Harville, 1997, page 342)

(3) ved' (B )1y = vec'(B)

where I2 is the t* x t? identity matrix and ;) is the £? x t? permuted identity matrix

given by

Iey =

! /

Ell E12
! /

E21 E22

' !
Etl 2

/
Elt

’
E2t

/
Ett

where E,; is a ¢ X t matrix of zeros except for the (r,s)th element being 1 for
r,s =1,2,...,t (Vonesh and Chinchilli, 1997, page 22). Now

Cov {tr(AZ),tr(BZ)} = E{tr(AZ)tr(BZ)} — E {tr(AZ)} E {tr(BZ)}
= E{vec'(Z')vec(A)vec' (B')vec(Z)} — tr(AX)tr(BX)
= tr {vec(A)vec'(B')Cov{vec(Z)}}
+ vec'(X)vec(A)vec (B')vec(X) — tr(AX)tr(BX)
= tr {vec'(B')Cov{vec(Z)}vec(A)}
= vec'(B’) (Iz + I11p) (X ® X)vec(A)
= vec(B') (X ® X)vec(A) + vec'(B) (X ® X)vec(A)
= tr(BEAY) + tr(B'SAY)
= tr(BXAXY) + tr(B'2AY)

and this complete the proof of the lemma. ¢

The next theorem, due to Chaganty and Shi (2004), is useful to derive the asymp-

totic variances of the parameter estimates obtained from unbiased estimating equa-

tions.
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Theorem 2.1 Let z; be independent random vectors of dimensiont;, i =1,2,...,n.
Assume that t; < t for all i. Let o be a parameter of fizred dimension, and the

multivariate functions h(z;, &) be such that
Y E{hi(z, o)}
i=1

Define Mp(e) = 1377, Cov {hi(z;, @)} and Li(ar) = =1 3"  E{0h(z;, a)/0c'}.

Suppose & is the solution of the unbiased estimating equation

1 n
— hi(z;,
- ; (z;, @)

Then under usual reqularity conditions we have
Jn (6 —a) ~ AMVN (O,I;anI'n—l) . (2.3.7)

Here AMVN stands for Asymptotically Multi- Variate Normal.

Using Lemma 2.1 and Theorem 2.1, we can get the asymptotic variances of &;,

1 <17 < 6. These are given by

tr { (32AB] + 2A,B,) R (2AB] + £:A,B,) R}

+tr{(a—BLAlB'+ BuA,B,) R (ZAB] + 2+A,B,) R}
[br {4 (52AB] + B2 A.B,) R}]’

al

tr{(R™ + F¢RT) R (FZR + FuR) R}
+tr{(BR"+ R R(ZR + 2R R}
[ir {32 (R~ + R R}]’

tr{ (G + ) (5 + 5}
+tr{ (2R + ZBuR1) R (L 4 a—Em)}
[ir {7 (R~ + ZeR1) R}]’

(44

a2

f—M

tr { (2B; + 2£+B!) R (2B, + £:B,) R}
+tr{ (2B + +B.)'R (&B] + 2B,) R}
[ir {2 (52B{ + 5B, R}]”

a3
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8B; A 8B, A oB; 6A aA
e { (9 A+ %R0 A B, R (2 OA A B + %2 L) R)
’
o u{(@oAam s Peofenn) R(BMAD + Ba2br,B) R}
ad4 = 2
a8 (8B, 8A B, 9A
[tr {% (m“az‘AtBi + Ba Ba AuBL) R}]
(s o) (e + o) )
B dA p-1 , 0B, A -1\ 1 (0BLoA -1 |, 9By 0A, -
, +tr{ Bofir-1+ Puoup-l) R m‘%‘Rl‘F%"AaaRI)R}
O =
és
o (oBioAi - 8B, A, -
tr{a; (%‘TJR 't G e R 1) R}]
tr{(a_Bi%“,Q&aAu) (Q&aAL 9B, oA, )}
da Oa da Oa da Oda da  Ba
8B dA -1, 8B, 0A. -1\ (8B 8A; , 8B, oA,
i { (PR + 2e2har) R (S + i)
B 3 (6B, oA p-1 , 0B, A . p— 2
[tr{a_a (a—a‘W‘R T+ %R I)R}]
aB; 8A B, 3A, 8B, A 8B, 8A,
tr { (92 2AuB; + u2fuB, ) R (921 00uB; + 222 2Mup) ) R}
8B, 8A 8B, OA, "1y (8B, 9A 8B, dA,
sirf (2himy+ 22a2uny) R (S 2n)+ oM )R )
0‘%‘6 - 8 (aB, 8A 5B aA 2 (238)
[tr{m (%‘m‘Bi + —aTx"BLﬁ“) R}]

I1.4 Classes of Unbiased Estimating Equations

A general form for the six unbiased estimating equations that we discussed in the

previous section is given by
tr{WR™(Z-R)} = 0, (24.1)
where W is some weighting matrix. Equation (2.4.1) is unbiased since
E[tr{WR(Z-R)}] = tr{WR'(E(Z)-R)} = 0.

Using Lemma 2.1 and Theorem 2.1, we can see that the asymptotic covariance of the
estimate of the correlation parameter obtained from solving (2.4.1) is given by

Cov {tr (WR™! (Z—-R))} _ Cov {tr (WR1Z) — tr(W)}

[E {%tr (WR™ (Z - R)) }] 2 [E {5‘% (6 (WRIZ) + (W) }] 2
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Cov {tr (WR'Z)}

[E {5% tr (WR“IZ)H 2
_ o (WRIWR+ WY’ (242)

o (W R)]

An interesting subclass of (2.4.1) is obtained if we place the constraint tr(W) = 0,

that is, the subclass consists of equations of the form
tr {WR™Z} = 0 subject to tr(W) = 0. (2.4.3)

This subclass of estimating equations is useful when the parameter space is con-
strained. Unlike the general class (2.4.1) of estimating equations, which may pose

computational problems, the subclass can yield relatively simple estimates.

The asymptotic variance expressions for the subclass (2.4.3) are the same as that
of the general class (2.4.2) since in the derivation of the asymptotic variance, the
extra term tr(W) can be taken as a constant. It drops out when we take the first

order partial derivative of the estimating equation.

A closer look at the six unbiased estimating equations (U;,1 < i < 6) that we
discussed in the previous chapter reveals that those equations fall in the subclass.

The weighting matrices W’s for the different estimating equations are as follows:

B,

Up: W= %%B;‘Jraaa B,

. 0B, 9B,
Up: W= Jo da
Us: W= %A;‘Brl+a£“A;1Brl

B; A B, O0A, . _

Us: W= %EI%ZIB’_IJraaa 68a B,

_ _ 0B,0A; 0B, oA,
Us: W= oo 8a+8a oo

. _ aBlaAl —1-1 a:Buaf‘u -1n-1
U6. W— 55—831\1 Bl + aa aa Au Bu

II.5 Special Cases

In this section we will study asymptotic properties of the six unbiased estimating

equations in the special case where t; = 3 for all z. Suppose first R is exchangeable,
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that is, R = (1—-a)I+aJ. The B

decomposition of R~}
1
-
B, = | T¥a
-«
1+a
1 —«a
B, =10 1
0 O
Thus we have
0B,
EA[B; =
0B, ,
—a-a—AuBu =
oB
R =
0B, ., _
el = a
0B, _,
Gl T
0B,
aa B:,' = C2

1420?40 —(14+2a+3a®>+a®) a2+ 2a+a?)

-a(2+2a+a2) ~(1+4+2a+3a?+a®) ~1+2a%+03 ]

22

and A matrices involved in the Cholesky

are
i 1+a T
0
A= o)1+ 20) 0
1 0 A =
0 1~ a2
—a 1 0 0 1
—a 1 0 0 ]
1;}—aa 1 0
Ay = 1-a?
14« 0 0 1+«
1 I (1 —a)(1+2a) |
0 0 0 l
—(1+ ) o o

—(14+a) —(142a+20?) a2+ 3a+2a?)

o2+3a+202) —(1+2+27) —(1+a)]

a a ~(1+a)

0 0 0

0 0 0 ]
—(1+4+a) o a

o a —(1+ a)
0 0 0
0 0 0 ]
—(1+a) o «

—(1+0) —~(1+2a+3a®+a®) a(2+3c+3a®+a?)

a2+3a+3a*+a%) —(1+2a+3a2+a®) —(1+a) ]
—(1+a)
0

o
0

o
0
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and
[ T
0 0 0
0B,; OA v
e amABl = | -Q+aP(+a)  a(+a)2+a)  a(+a)z+a)
| —(1+a)’(2+a) —(1+4a+90°+7a%) a(3+9a+13a% +8°) |
[ a3+ 90+ 1302+ 80%) —(1+4a+9a°+70%) —(1+a)’2+a) |
0B, Ay . _, \
90 9g MeBu = o3 a(l+a)(2+a) a(l1+ a)(2+a) -1+ a)?2+a)
i 0 0 0 ]
[ 0 0 0 ]
0B, OA; . _,
o e = G -1+ a)2+a) a2+ a) a2+ a)
| —(2+20-30% -40®) —(14+3a+7a% +40®) «(3+5a+4a?) |
] a(3+5a+4a?) —(1+3a+7a%+403) —(2+2a— 302 — 403) ]
8By OAy . .
e ba X a2+ a) a2+ a) -1+ a)(2+a)
| 0 0 0 |
[ 0 0 0 ]
0B; 0A,
EEI%;IB; = & | (1+a)(2+a) a2+ a) a2+ a)
| —(14+0)(24+0a) —(1+3a+70?+40%) of3+6a+8a®+4a%) |
[ a(3+6a+8a%+40%) —(1+3a+70?+40%) —(1+a)2+a) |
8B, 0A, .,
ba o v T o(2+a) o(2+a) ~(1+)(2+0)
] 0 0 0 |
where the constants ¢;’s are
1
i =
(1-a)1+a)?(1+2a)
1
o = ———
P (1+e)p
2c
C =
s (1= a)3(1 + a)3(1 + 20)3
2a
C. =
! (1= a)*(1+a)*(1+20)®
2a
Cy, =

(1 —a)2(1+a)*(1 +20)?

Let z,s be the (r,s) element of Z. Ignoring the constants c;, 1 <4 < 5, we can see
that the six unbiased estimating equations reduce to six polynomial equations. They
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are given by

Up:

Us:

Us:

Uy :

Us:

Us :

(2211 + 2233)a® + (3211 — 2212 — 2293 + 3233)a?

+(2211 — 2212 — 2213 + 2209 — 2293 + 2233) 0 — (2212 + 2213 + 2203) = 0
(211 — 212 + 2213 — 203 + 233)0® + (2211 — 3212 + 4213 — 3223 + 2233)0°
+(2211 — 2212 + 2290 — 2293 + 2233)a — (2212 + 2213 + 2293) = O

(z11 + 233)a4 + (3211 — 712 — 223 + 3Z33)a3 + (3211 — 3212 — 3223 + 3233)a2
+(2211 — 2212 — 2213 + 2292 — 2293 + 2233)a — (2212 + 2213 + 2293) = 0
(8211 + 8233)a® + (13211 — 7212 — 2213 + 2209 — T203 + 13233)0

+(9211 — 10212 — 8213 + 6292 — 10293 + 9z33)a?

+(3211 — Tz12 — 10213 + 4200 — Tz03 + 3233)a — (3212 + 4213 + 3293) = 0
(4211 — 4z12 + 8213 — 4203 + 4233)a® + (5211 — T212 + 6213 + 2200 — T2p3 + 5233)a?
+(3z11 — 4212 — 4213 + 4202 — 4293 + 3233)a — (3212 + 4213 + 3223) = 0
(4211 + 4z33)a* + (8211 — 4212 — 4293 + 8233)a®

+(6211 — Tz12 — 2213 + 2220 — T293 + 6233)02

+(3211 — 4212 — 6213 + 4202 — 4293 + 3233)a — (3212 + 4213 + 3223) = 0.

Solving these equations, we get six estimates of «, which we denote them as

&, Gy, . . ., Gg, respectively. Using the formula (2.3.8), we can check that the asymp-

totic variances of these six estimates are

2 3+12a4100% — 120° — 200* — 60° + 5a° + 4a” + 40®
T = (3+ 32 + 2a2)?

2 _ 64200+ 60% —240® —3a* + 1105 — 30 — 1107 — 208
%60 = 23 + 20 + a2)?

6 + 24 + 240 — 8a® — 27a* — 2505
—T7a® — 30" + 608 + 8a° + 2a1°
s 2(3 4+ 3a + 302 + o)?
17 + 115a + 30102 + 3350° — 48a* — 574a°
—593a® — 13507 + 198a® + 256a° + 128a1°

i 2(5 + 120 + 14a? + 8a3 )2
2 17 + 73a + 74a? — 62a® — 125a* + 9a® + 78 — 3227 — 32a8
o 2(5 + 6a + 402)?
17 + 81 + 1282 + 5003 — 109a* — 183a°
2 —80a® — 16a” + 1602 + 64a° + 32a1°
ag

2(5+ Ta + 802 + 4a?)?

Figure 2.1 shows the plot of the above asymptotic variances for values of a in the
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feasible region. The plot also contains the asymptotic variance of the ML estimate.

Since ML estimate is the optimal, we computed the asymptotic relative efficiencies

Variance

T 1 T T ; T T T T T T T T T T T
05 04 03 -02 01 00 01 02 03 04 05 06 07 08 09 1.0

o

Figure 2.1: EXCH: Variances of & through &g and MLE.

(ARE) of the six estimates as the ratio of the asymptotic variances with respect to
the variance of the ML estimate, that is, ARE(&;,41) = 03 /o fori=1,2,...,6.
Figure 2.2 shows the relative efficiencies of the six estimates. We can see from
Figure 2.2, U, yields an estimate that has high efficiency when o takes moderate or
large positive values. And equation U, yields an estimate that is highly efficient when
a takes negative values. In general, there is no uniformly “best” equation among the

Six.

We now consider the case where the correlation structure is AR(1). Here we have

1 a o 1 —a 0
R = a 1l al, R = 5| —a 1+0® —a
l1—«
a2 a 1 0 - 1
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1.0 | T
0.8 | s
3 0.6
| =
2
2
b= i
Woa- 4
0.2 .E ..........
0.0~ I T T I I 1 T ! I T T T T T T !
05 04 03 02 01 00 01 02 03 04 05 06 07 08 09 1.0
o
Figure 2.2: EXCH: ARFEs of &; through &g.
The matrices involved in the Cholesky decomposition of R™! are
_ - 1
1 0 0 T~ 0 0
B[ = — 1 0 Al = 0 1
0 1 1—a?
I IRl 0 0o 1
a0 ] Lo o
B, = —a Ay = | 0 70 (1)
0 1 0 0
- - 1—a?
Therefore,
9B 0 0 O 5B a -1 0
1 u
—AB; = — AB, = d —
801 Al 1 d1 1 (87 0 aa u 1 0 x 1
0 -1 « 0 0 O
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5B 0 0 0
a—alR—l = d1 -1 a 0
a —(1+a?) «
B [« —-(1+a?) « ]
80;‘13-1 = d |0 a -1
0 0 0
- [0 0 0]
0 -1 o
9B [ a =1 0 |
BauB:‘ = a -1
0 0 O
0B; OA - 0 00 -
1 l '
NI NB = d, | -
da B T ? 01 al 0
-1 «
B, OA [« -1 0
P 2AB, = d -1
Oda Oa v 2 g 3 0
0B, 0A 0 0 0 -
1 -1
—_— = d2 —]_ (04 0
da do
a —(14+a?) «o
9B 9A [ o -(1+a?) « ]
u <7 -1 — d _1
Oda Oda 2 g C(; 0
0B; OA - 000 -
l Ry
Py _ g | =
da da ¥ 01 al 0
-1 «
8B, OA o -1 0
u u 7 — d _ ,
da Oa 510 @ !
] 0 0 O |
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—see  MLE
0'5 1 L R
= ——— U1, U3,U4,U6
0.4
@ 0.3
o
c
]
|
©
> 0.2
0.1
00 °
[ I 1 T L | T I T
-1.00 0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
a

Figure 2.3: AR(1): Variances of &; through &g and MLE.

where the constants are

1 2 2a

h = 1-o? d = (1—a?)s ds = (1—a?)?’

In this case the four estimating equations U;, Uz, U, and Us are equivalent and

simplify to
(211 + 2292 + 233)0 — 2(212 + 223) = 0.
Further, the two equations U, and Us are equivalent and reduce to

(212 + 2’23)Of2 — (211 + 2213 + 2292 + 233)a + 2(212 + 223) = 0.

Hence,
2
Gy = (ratas) o 1,3,4,6
Z11 + Z22 + 233
and
& = (z11 + 2213 + 2222 + 233) — \/(211 + 2213 + 2292 + 233)% — 8(212 + 223)?

2(2!12+223)
for kK = 2,5.
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N e R e SRS L L T T R
0.8
0.6
w
(74
<
0.4
027 ¢ ——— U1,U3, U4, U6
v eveossosoon U2, Us
0.0 1_
T | T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
o

Figure 2.4: AR(1): AREs of & through &s.

The asymptotic variances of these estimates are obtained from (2.3.8) as
6 2 2
O -3 H2 k134006

G 1-02

5 ifk = 2o0rb5.

Figure 2.3 contains the plot of these variances and the variance of the ML es-
timate. As before we calculated the asymptotic relative efficiences as the ratios
(02,/02,) of the asymptotic variances with respect to the variance of the ML esti-

mate. Figure 2.4 shows the graphs of these relative efficiencies.

It is clear from the graph, equation U, (equivalently U, Us and Us) is better than
U, (or Us). Further Uy is almost as good as the likelihood estimating equation.

In summary we can conclude that &, is a good estimate for both the exchange-
able and AR(1) structures when the underlying correlation is positive. It is a good

competitor to the ML estimate.
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Since all these six estimating equations belong to the subclass of weighted es-
timating equations (2.4.3), we wonder whether there exists an efficient estimating

equation within this subclass. We explore this issue in the next chapter.
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CHAPTER III
EXTENSIONS TO UNBALANCED DATA

In Chapter 11, we have studied the behavior of unbiased estimating equations in the
balanced case. Even though in practice the data is unbalanced, the results throw
some light on what we can expect in general. We now extend the results of the
previous chapter to more general situations. We assume that the longitudinal data
is unbalanced but the within cluster or subject variance is constant, that is, the
covariance matrix of the repeated measurements on subject i is V; = ¢?R;(a) where

R;(a) is a function of the unknown parameter a.

The organization of this chapter is as follows. In Section III.1, we study ML
estimation under the multivariate normality assumption, derive asymptotic distribu-
tions for common correlation structures. As an important result we show that ML
estimating equation for the correlation parameter is Godambe optimal. In Section
II1.2, we extend the general class and the subclass of unbiased estimating equations
studied in the previous chapter, to the unbalanced situation. We derive asymptotic
properties of the estimates under the assumption of normality. Several expressions
are simplified further under special correlation structures. In Section III.3, we discuss
the relative efficiencies under the normality assumption, and when there is a violation
of the normality assumption. Finally, in Section III.4, we illustrate the estimation

methods using a real life data set and contrast them with ML estimates.

III.1 Maximum Likelihood Estimate
Suppose that y; is multivariate normal with mean X3 and covariance matrix V; =
R, for 1 < i < n. The log-likelihood function is

11 - -
= 2 {;5 Z(Yi - X8R (y: - XiB) + Z log|R;| + log(o?) Z t;
i=1 i=1

i=1
+ log(2) Z t,-} .
i=1
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We assume that R; is a function of an unknown parameter «. Taking derivatives we

can see that the ML estimating equation for o reduces to

n -1
1 tr {61;; (eie; — 02R.,-)} =0

2
o
i=1

or equivalently,
n a .
Ztr {R;IT%R;‘ (eig} — az&)} = 0, (3.1.1)
i=1

where €; = y; — X!3. The ML estimate &;, of « is simply the root of the above equa-

tion (3.1.1). The following derivatives are useful to simplify the Fisher information

matrix.

0% 1< e

a3 - —;ZI:X,-Ri X;

0% 1 & _ ,
S = i KR X

i=1
o 1 <~ IR/’
5800 = ;ZXz‘ o (vi — XiB)

82€ 1 - 1 = ’ ! -1 !
d(0?)? T 944 Eti g8 ZZ:(Yi - X:B)'R (v — XiB)

=1
0% 1 & , o OR;! ,
ao,gaa - 20,4 ;(yﬁ_xzﬂ) 8@ ( Xﬂ)
020 1 < , o LOR! . " 8%log|R,|
%z - 2 gg(yz_xiﬂ) 52 (y: — XiB) — 2 —652—'

0% 1 < 1
i=1

¢
— 0 B{gas] = 0

1 » 82R[ " 8log|R;|
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In matrix notation the Fisher information can be written as

- 1 n
= > XRX; 0’
=1
1
0 5 Zti
1 « 6R‘1
0 ——2? . tI‘( a
L =1

) {Xn:t (a? R;! ‘)+i821§ilfii} d

OI

1 dR;!
‘72“( P Ri)

i=1

We now further simplify the above matrix under common correlation structures.

Suppose that R; is exchangeable. Then

OR;!
o ( 9a R‘)
O’R;!
tr( oo RL)

8*log|Ry|

ti(ti — l)a
(1 — Ol)[]. + (ti — 1)(1]
2ti(ti — 1)[1 + (ti —_ 1)(12]

(1—a)?[1+ (t: — 1)of?
—t,‘(ti - 1)[1 + (t, — 1)0[2]

oa?

(1—a)?[1+4 (¢t —1)of?

The lower right part of the Fisher information matrix is

1
207 2"

—t t (t;— D
2022 1—a)[1+ (t:—1)q]

(t; — 1)
272; (11— )1+ (t; — 1)a]

"Ltk — D[+ (8 — 1)?]
Z (1—a)?[1+(t; — Daf?

Taking the inverse of the above matrix we get the asymptotic covariance matrix of

the ML estimates of (02, a)’ as

1)a?]

i=1

e it — D)1+ (t; —
> [1+(t~—1)a]2

B 2E:l—l-t—l

ti(t; — D[ + (& — Dax

s ti(ti —
(1-a)o ; TG _-1a = 1a
)2Zti

where wp = {Zt,} {En:

i=1 =1

1+ (G- L)aP

2) " gti—Da |
R =t

Suppose now that R; has an AR(1) structure. In this case we have

32R¢_1 At —1)(1 +0o?)
" ( a2 R”') (- o
*log|R;| —2(t; — 1)(1+ a2)
da? (1 - a?)?
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The lower right part of the Fisher information simplifies to
1
- t;
204; 02 1—a2 {Zt }
- e 14 a?
0%(1 - a?) {;ti_n} (1-a2)? {Zt }

And again taking the inverse of the above matrix we get asymptotic covariance matrix
of the ML estimates of (02, @) as

n

2(1 + o)t Zti —np a(l—a?)o? {z": t; — n}

1= 1 =1

a(l —o?) Zt -n (1—a2)22ti
i=1
n n 2
where wa = ( 1+a {Zt}{Zti—n}—QaZ {Zti—n} .
i=1 i=1

We now show that the ML equation (3.1.1) is the optimal estimating equation in

wAa

the sense of Godambe (1960). First it is easy to check that we can write equation
(3.1.1) as

Zt { —R;! (eie, — o°Ry) R;l} = 0. (3.1.2)
Using the identity (Rao and Rao, 1998)
tr(A'BCD’) = tr(BCD'A’) = vec'(A)(D ® B)vec(C)

for any matrices A, B, C and D of appropriate order, we can rewrite equation (3.1.2)

as

i {M}, R;' @ RY) {vec(e;e}) — a?vec(Ry) }

i=1 o

which is equivalent to

En: {aveCh(&) } Gi(R;' ® R")G; {vech(e:€) — o’vech(R;)} = 0. (3.13)

— Ja

Here G; is the duplication matrix defined in Harville (1997, page 352). Now if
H; = (G/G;)"'G, we have vech(g;e}) = H;vec(g;€]) = (G.G;) ' Glvec(e;el). The

covariance matrix of vech(e;e}) is

Cov {vech(g;e))} = H;Cov {vec(e;e})} H;
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= (G}Gi)'GiCov{vec(e:€))}Gi(G.G;) ™"
A(GIG) G (T + Ty ) (Rs ® R)GH(GIG)
20%(G}G:i) ' Gi(R: ® Ri)Gi(GiG:) ™,

where Iz and I, ., are defined in proof of Lemma 2.1. Since E{vech(e;e;)} =

o?vech(R;), the optimal estimating equation according to Godambe (1960) is

> {av_ec;;l)} GGi(G{R: ® RiG) "' G|Gi{vech(e:€}) — o’vech(Ry)} = 0.

i=1

(3.1.4)

Comparing the terms in equations (3.1.3) and (3.1.4), we find that the only difference
is the middle term. We will show that equation (3.1.3) is equivalent to (3.1.4) by prov-
ing that the middle terms are equivalent. Notice that H; is defined as (G.G;)™'G/,
and (R;®R;)™! = R;'®R;!, using the identities below (Harville, 1997, page 358),

D R'OR'G; = GH;(R; 'R 1)G;

(2) {Hi(R; @ R;)G:}™! = Hi(R{'@R; )G,

we have

G(R'®RHG; = GGH,R'®R;HG;
= G/G;{H;(R;®R;)G;}™*
= GIG{(G/G:)'Gi(R; ® R;)G;}!
= GjGi{GR;®R,G;}'GIG;.

Thus the middle terms of (3.1.3) and (3.1.4) are equivalent. Therefore, the likeli-
hood estimation equation for the correlation parameter and the Godambe’s optimal

estimating equation are identical.

II1.2 Classes of Unbiased Estimating Equations

In general, a class of unbiased estimating equations for estimating correlation pa-

rameter can be written as

Us = Y tr{W.R;' (zz, —R))} = 0, (3.2.1)
=1
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where W; is a weighting matrix and z; is the Pearson residual of y;. It is easy to verify
that E(Ug) = 0 since E(z;z;) = R,;. Hence Ug is an unbiased estimating equation and
the solution of (3.2.1) is a consistent estimate of o. Notice that likelihood equation of
a for normal data is of the form Ug. By Lemma 2.1 and Theorem 2.1, the asymptotic

variance of the root & of equation (3.2.1), is given by
Cov tr {W,R; " (z:z; — R;)
Cov (Ug) {; { j

[E (%—)] [E {5% Zt (W:R;? (2.7, - Ry)) }]

n n
Cov {Z tr (WiRi—lzizg) - Z tr(W.

o
P (o e

Cov Z tr (WiRi_lzizg) }

i=1

2
8 & o
|:E {'a—a 1=Zl tr (WiRi 1z,-zi) }]

Y tr (WiR'WR; + W7)
= = : (3.2.2)

oo (w0

We will now study the problem of choosing the optimal weights which minimize

the asymptotic variance (3.2.2). Using the identities (Magnus and Neudecker, 1999)
0 _ _
Wi {tI‘ (WiRi IW:Rq)} = 2R4W,Rl 1
0
o (e (W)) = 2w,

%] OR;! R
5w, {tr (W" 30 R“')} = R

and equating the derivative of (3.2.2) with respect to W; to zero we get

n -1
{Z tr (W,- agz R) } {RW,R;* + Wj}
j=1
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- -1 ! 2 aR:l
=S " t(W;R;'WIR,; + W) » Ry A =0 (323)

=1

for i = 1,2,...,n. Note that all the traces are scalars. The above equation can be

written as

-1
{Rq-W,-R;1+W;}+c{ -8?; } =0

where the constant .
Z tr (W,R;"W/R; + W?)

j=1
r\ Wi 8a

R;!, we have

CcC =

oR;? _,0R;
B equals —R; o

Since

W.R! ’ — ?& -1
{RRWR; '+ W)} = c{aaRi }

Post multiplying by R; we get

(3.2.4)

RW, + (RW,)} = c{é—)&}-

Ou

Under the additional assumption R; W, is symmetric, a solution to equation (3.2.4)
OR.:

isW, =R, 1—(,%. Interestingly, the ML equation (3.1.1) uses this weighting matrix.

Thus we have an alternative derivation of the optimality of the ML equation.

We now look at some specific cases. Suppose that R; = (1 — o)I; + aJ;. The

optimal weighting matrix is given by

OR; {1 o

Wi = RIS = 1——aIi_(1-a)[1+(ti—l)a)]Ji}{Ji—Ii}

1 1
—L ;.
1—01{1+(1t,-—1)oz‘]z }

Substituting this into the estimating equation (3.2.1), gives us the best estimating

I

equation:

1)C¥ ’ - ti(t,,;—].) _
Zt {{1+(t _1) }2.] I}Zizi+a(1—a);m = 0,
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and this coincides with the ML equation. Now suppose R; has an AR(1) structure.

In this case the optimal weighting matrix is given by

_10R; OoR;!
R da b«

where Cgy; and C;; are of order ¢; and are similar to Cy and C;, respectively. It

R, = (—1—_1aﬁ {(1-a*)Cu —2a(I; + Coi) } Ry,

turns out even in this case, the best unbiased estimating equation is same as the ML

equation and it is given by

itr{(l—FaQ)Cli——Qa( +Ch)}z1z +2a 1—-ao? {zt —n} = 0.

i=1
We will now focus our attention on the subclass of (3.2.1) with added restriction
tr(W;) = 0 for all 4. Explicitly, the subclass takes the form

Ztr {WR;'z;z;} = 0 subject to tr(W;) = 0. (3.2.5)

The asymptotic variance of the estimate from this subclass of equations is same as
before except for the constraint tr(W;) = 0 for all 7. To get the optimal weights we
need to minimize the asymptotic variance subject to the restrictions on the weights.
Introducing Lagrange multipliers ()\;) and equating to zero the derivative of (3.2.2)
with respect to W;, we get

{Z ir ( i )} (RWR! + W)
(R on ) () o

i=1

which can be further simplified as

R!
{R,lW,Rz_l + W:} +c {Rqaacl } — CziIi = O, (326)
where c; and co; are constants. Equation (3.2.6) is equivalent to

= (3.2.7)

Unfortunately, (3.2.7) does not have an explicit solution for the optimal weight W;

RW, + (RW,) = czi&—cl{@}.

since the constant terms are complicated. However, when R; has an exchangeable

structure we have an explicit solution, which is

_ pafRe (o 0K,
Wi = R, Ja dia (R Ba)
. (J—1L).

(1—-a)[1+ (t — 1)
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The constant could be ignored when ¢; = ¢t and thus
W,‘ = Ji - Iz' or Wi = R,, — Ii . (328)

The estimating equation with the above weights turns out to be

ztr{(m.] I)ziz;} = 0. (3.2.9)

This equation does not have a closed form solution except in the case t; = ¢ for all i.

But the asymptotic variance of the estimate is in a closed form
23 it — 1)
2 =1
[0 2% =

¢ ~ t;(t; — 1) ’
[; (1—a)[1+ (- l)a]}

Now suppose that R; has an AR(1) structure. In this case the optimal weights
are difficult to obtain. But one possibility is to choose W; = R; — I;. Substituting
these weights in the estimating equation (3.2.1) we get

Ztr{( i+ Cio) — C,-l)z,-z;} -0, (3.2.10)

where C;g is matrix Cqy of order ¢; and C;; is matrix C; with order ¢; as defined in

Section I1.1.2. Equation (3.2.10) has a closed form solution which is given by
Z tr (Cilzizg)
i=1

Z tr{(I, + Cm)zizg}

i=1

[o3
[

The asymptotic variance of & is

n

Z (ti —-1- tia2 + azt‘)
[Z(ti - 1)}

=1
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The unbiased estimating equations based on Cholesky decomposition of R; ! can

be easily extended to the unbalanced case. They are given by

Ul . Zt {(thAh aazBC:iAm'B;i> ziz;} =0
Ug : Zt {(thR_l %R_l> Zizé} =0

Uy: Zt {(613" BIZ’AHBH@;;’ 8§“’AMB'> } = 0.

Clearly, they fall into the subclass of unbiased estimating equations with different
weights. Unfortunately, none of them are optimal when R; has an exchangeable or

an AR(1) structure.

1.0 =

0.8

Efficiency
o

(-]

{

o
>
t

0.2

0.0
-0.1 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.1: EXCH: Efficiency of optimal & (n=30).
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II1.3 Relative Efficiency

In this section we study the small sample relative efficiencies of the estimates obtained
using the unbiased estimating equations in the subclass (3.2.5) with different weights
using simulations. First, we look at the efficiencies for multivariate normal data and
then we explore the case when there is a departure from normality. Since correlation
is scale invariant in our simulations we fixed the variance to be 1. The simulation

steps are as follows.

'_>,' 0.6

c

2

2

=

W o4
0.2 ——— n=10

n=30

0.0 1 T T T T T T T T T T 1 T

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 8.2: EXCH: Efficiencies of & for small and large sample size.

(1) Generate n integers {t;,1 < ¢ < n} for the number of repeated measurements (or

sizes of the clusters) ranging from 2 to 6 from the discrete uniform distribution.

(2) For i = 1,2,...,n, generate t; univariate standard normal random numbers and

stack them into a column vector z;.
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(3) For a fixed value of o, construct the correlation matrix R; (exchangeable or

AR(1)).
1 1
(4) Let y; = R?z;, where R? is the square root of R;. Clearly E(y;) = 0 and
Cov(y;) = Ra.
: : : : 1
(5) Solve equation (3.2.5) with optimal weight W, = r(t,-—_l)—a(']i —I;) and

simplified weight W; = R; — I; (or equivalently, solve equation (3.2.9)) to get
estimate &g of o for exchangeable correlation structure. Similarly, use the
weight W; = R; — I; in (3.2.5) (or equivalently, solve (3.2.10)) to get &g for
the AR(1) structure.

(6) Solve (3.1.1) to get the ML estimate &y, of a.
(7) Calculate error squares 72 = (45 — @)? and 77 = (&1 — a)?.
(8) Repeat steps (1) — (7) a large number of times (r), say r = 10,000 times, and

calculate > 7% and 3 72, the sum of error squares for the estimates.

Then the relative efficiency of &g to & is given by

2
Eff (G5, 61) = %:g .
S

Table 3.1: Efficiency of o for various sample sizes

o t=4 t=6 =9 t=15 t=20
0.0 1.0103 1.0032 1.0021 1.0010 1.0003
0.1 1.0079 1.0033 1.0008 1.0006 0.9997
0.2 1.0037 0.9991 0.9968 0.9985 0.9981
0.3 0.9940 0.9918 0.9922 0.9947 0.9959
0.4 0.9820 0.9800 0.9858 0.9890 0.9905
0.5 0.9614 0.9654 0.9743 0.9829 0.9873
0.6 0.9533 0.9572 0.9558 0.9750 0.9813
0.7 0.9269 0.9270 0.9376 0.9448 0.9601
0.8 0.9236 0.9073 0.9129 0.9248 0.9312
0.9 0.9387 0.9073 0.8895 0.8947 0.8885
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5 0.6
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0.2 n=30
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-1.00 0.75 0.50 -0.25 0.00 0.25 0.50 0.75 1.00

o
Figure 3.3: AR(1): Efficiencies of & for small and large sample size.

Figure1 3.1 shows the relative efficiency of &g obtained using weight W; =

1 + (ti — 1)C¥
ture is exchangeable, for n = 30. It is clear that the unbiased estimating equation

(J; — L;) with respect to the ML estimate, when the correlation struc-

approach with optimal weights is nearly as good as the ML estimate.

Figure 3.2 shows the relative efficiencies of the estimate &g using W; = R;—1I; and
an exchangeable correlation matrix, for n=10, 30. The plot of the relative efficiencies
when the correlation structure is AR(1) is in Figure 3.3. It is clear from these plots

the unbiased estimating approach yields highly efficient estimates for normal data.

For balanced data, the estimates obtained using the unbiased equations from the
subclass is identical to ML estimate for exchangeable structure and is also as good as
the ML estimate for AR(1) structure. The plot of the efficiency for AR(1) structure

is in Figure 3.4. Some numerical results are also presented in Table 3.1.
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Figure 3.4: AR(1): ARE of & for balanced data (t = 3).

To study the robustness of the estimates, we simulated data from a multivariate
t distribution (Johnson et al., 1972), which was used by many authors as a model
to study the departure from normality. To simulate random numbers from the mul-
tivariate t distribution, we first generated random normal variables z; according to
the procedure described above. Then we generated random numbers (};) from a

Chi-square (x2) distribution with 5 degrees of freedom. The ratios are the

i
desired multivariate ¢ random variables. Figures 3.5 and 3.6 show the asymptotic

relative efficiencies of the estimates &g, when the correlation matrix is exchangeable
and AR(1), respectively. It is clear from the plots the estimates remain efficient when

there is a departure from normality.
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Figure 3.5: EXCH: Efficiency of & for non-normal responses.

II1.4 An Hlustrative Example

Here we will illustrate our new methods of estimation with a real life example. The
data is from the AIDS Clinical Trial Group (ACTG) Study 193A (Fitzmaurice et al.,
2004). This is a randomized, double-blind, study of AIDS patients with advanced
immune suppression (CD4 counts of less than or equal to 50 cells/mm3). The pa-
tients in this study were assigned to dual or triple combinations of HIV-1 reverse
transcriptase inhibitors. Specifically, patients were randomized to receive one of four
daily regimens containing 600mg of zidovudine: zidovudine alternating monthly with
400mg didanosine; zidovudine plus 2.25mg of zalcitabine; zidovudine plus 400mg of
didanosine; or zidovudine plus 400mg of didanosine plus 400mg of nevirapine (triple
therapy). Measurements of CD4 counts were collected at baseline and at 8-week inter-
vals during follow-up. However, the CD4 count data are unbalanced due to mistimed

measurements and missing data that resulted from skipped visits and dropouts. The
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Figure 8.6: AR(1): Efficiency of & for non-normal responses.

number of measurements of CD4 counts during the first 40 weeks of follow-up varied
from 1 to 9, with a median of 4. The response variable is the log transformed CD4
counts, log(CD4 counts + 1), available on 1309 patients. The categorical variable
Treatment is coded as 1 = zidovudine alternating monthly with 400mg didanosine, 2
= zidovudine plus 2.25mg of zalcitabine, 3 = zidovudine plus 400mg of didanosine,
and 4 = zidovudine plus 400mg of didanosine plus 400mg of nevirapine. The vari-
able week represents time since baseline (in weeks). Table 3.2 shows an abbreviated

version of the data set.

The regression and the correlation parameter estimates obtained using the un-
biased estimating equation Ug and the ML estimates are in Table 3.3 for the ex-
changeable correlation structure. The estimates and the standard errors are very

similar.

Parallel results for the AR(1) correlation structure are in Table 3.4. Once again,
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Table 3.2: Partial list of AIDS data

Age

Subject Treatment (years)

Gender

(1=M,0=F) Week log(CD4 + 1)

1

o R R R W N NN DN e e s

1313
1313
1313
1313
1313

2

WWWWH B RPBPRBERRERNDNNDNNDNDN

pd et b ek e e e s

36.43
36.43
36.43
36.43
36.43
36.43
47.85
47.85
47.85
47.85
47.85
47.85
60.29
36.60
36.60
36.60
36.60

15.84
15.84
15.84
15.84
15.84

1

g S g g

0.00
7.57
15.57
23.57
32.57
40.00
0.00
8.00
16.00
23.00
30.71
39.00
0.00
0.00
7.14
16.14
32.43

0.00
7.29
20.00
27.00
35.00

3.135
3.045
2773
2.833
3.219
3.045
3.068
3.892
3.970
3.611
3.332
3.091
3.738
4.119
4.111
4.710
2.833

4.984
4.159
4.407
3.556
3.466

NOTES: Source: Fitzmaurice et al. (2004), Applied longitudinal analysis.
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the estimates and the standard errors are in agreement. This example shows that the

unbiased estimating approach, which is simpler to implement, is a great alternative

to the ML estimation approach.
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Table 3.3: Parameter estimates with EXCH correlation structure

Us (SE.) MLE (SE)
Intercept 2.3326 (0.1469) 2.3325 (0.1453)
Treatment 0.0760 (0.0228)  0.0761 (0.0229)
Age 0.0116 (0.0031)  0.0116 (0.0031)
Gender 01175 (00765) 01175 (0.0788)
Scale 1.0689 — 1.0665
& 0.6412 (0.01299) 0.6388 (0.01230)

Table 8.4: Parameter estimates with AR(1) correlation structure

Us (SE.) MLE (S.E.
Intercept 2.3737 (0.1437)  2.3721 (0.1351)
Treatment 0.0620 (0.0223) 0.0628 (0.0212)
Age 0.0109 (0.00306) 0.0109 (0.00291)
Gender 10.1330 (0.0742) -0.1328 (0.0738)
Scale 1.0702 — 1.0568 —
& 0.7031 (0.01002) 0.6906 (0.00976)
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CHAPTER IV
ANALYSIS OF FAMILIAL STRUCTURE

The correlation structures that we have studied in the previous chapters contain
only a single parameter. In this chapter we consider structures that are character-
ized by more than one parameter. More specifically we focus our attention on a
structure that has been widely used to study the inter-relationships in familial data,
that is, data collected on families including parents and children. Numerous authors
have studied the analysis of familial data and proposed several methods of estima-
tion, which are either moment based or likelihood. For example, Donner and Koval
(1980) studied likelihood estimation of intra-class correlation. Srivastava (1984) dis-
cussed likelihood estimation of inter-class correlation using transformation. Eliasziw
and Donner (1990) compared different methods for inter-class correlation estimation.
Srivastava et al. (1988) extended the work in Srivastava (1984) to the simultaneous
estimation of intra- and inter-relationships, and Konishi et al. (1991) addressed the
inferences on the correlations between different family members. However, there is
no literature on parameter estimation through estimating equations approach and

there is almost no discussion about the optimality of the correlation estimates.

The organization of this chapter is as follows. We first study properties of the
familial correlation structure in Section IV.1. In Section IV.2 we discuss maximum
likelihood estimation of the familial correlations for normal data. We derive the
asymptotic covariance matrix of the ML estimates as well. As an alternative approach
to estimation of the familial correlations, we present a general class of unbiased
estimating equations and a useful subclass in Section IV.3. We study asymptotic
properties of the estimates obtained solving those unbiased estimating equations.
Since the optimal weights which minimize the asymptotic variances, are not in a
simple form, we suggest some simpler weights that are nearly optimal. Expressions
for the asymptotic covariance matrices for the near optimal weights are also given in
Section IV.3. Simulation results to compare relative efficiencies under the normality
assumption are presented in Section IV.4. Finally, results from a real life data analysis

are given in Section IV.5.
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IV.1 Familial Correlation Structure

A correlation model that has been widely used to model associations within families

is the structure

1 p p
P
1 1
R, = - = |lpal..al|. (411
p].,; (1—a)Ii+aJ,- .
| pa a ... 1]

Here p is the correlation between the mother (or parent) and her children, and « is

the common correlation among t; children.

To find the necessary and sufficient conditions for R; to be positive definite, let
us consider the Helmert matrix
i 1 1

ju—
—d
J

SIS
=3,

- S-S5

H...§|H§iH§
"éli‘\’ %

1 1 ; —(t,.:— 1)
L VEG—1) VEa—1) Valti—1) 0 Jhti—1)

of dimension ¢;. It is easy to verify that M; is an orthogonal matrix, that is, M;M; =

Ii.Let

1 0o

Qiz '
o vl ]
[ 1 VEp 0o ... |
Vip 1+t —1a 0 ... 0

- 0 0 l—a ... 0

| O 0 0 ... 1-a]

Since R; is positive definite if and only if €2; is positive definite, the necessary and

sufficient conditions for positive definiteness are
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(1) ~FH <a<1l,

(2) tip? <1+ (t; — D

For example, when t; = 2, the conditions become

1
1) ~l<a<l (2) - +a <p< , (4.1.2)
and when ¢; = 3, the conditions reduce to
1 1+2 1+2
1) -5<a<l ()~ +3a<p< +a. (4.1.3)

These ranges are shown in Figure 4.1. The area enclosed by the outer curve is the
feasible region for t = 2 and the inner curve encloses the feasible region when ¢ = 3.

In general, the feasible range becomes narrower as ¢ increases.

1.0

0.5

P 0.0

0.5

-1.0

Figure 4.1: Range of (p,a) whent =2 andt =3.
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The inverse of the familial correlation matrix is given by

1+ (t — e —p v

R — 1—%—(-—1)cv—tip2 14+ (t— Da—tp2 "
t P L o/ J
1+(t—1)a—t,p2 l—-a' (Q1-a)1+@-Da—tp] "’

Appendix A.3 contains details of the Cholesky decompositions of R; and R; . Let
o? be the marginal variance of observation on the parent and o2 be the common
variance of observations on the children. If y; is a vector consisting of observations

on the mother and her children, then the covariance matrix of y; is

2
(25 g10pp ... 010pp
o100p O ... 0100
Vi =
2

0'10’0p g1090x ... 2 i

1

— AIRA’

where A; = diag(o?,02,...,03).

IV.2 Maximum Likelihood Estimate

Recall that the ML estimates of the correlation parameters can be obtained by solving

equation (1.3.6), which is same as

g tr { 63”_1

in—Vi)} = 0.

Using the identity

vl OV,
N VA adi vl
Ja oo

we can rewrite the ML equation for a as
n
9]
—1 i
> {v,. 4
=1

For the familial covariance matrix we have a = (p, o)’ and the above is equivalent to

-1 (sieg—Vi)} = 0.

Zt {R‘ —— R (z;Z, —m)} (4.2.1)
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where z; is the Pearson residual and R, is the familial correlation matrix. The ML

equation for o2 = (02, 02) given in (1.3.4) can be simplified as
Ztr{ ; a — Vi (i€} - V,-)} = 0. (4.2.2)

The elements of the Fisher information matrix for the parameters a = (p, &)’ and

= (0%,02) are

9% i, 0A P 0ATE 1
—E{m} - Z“{ e e A"R"A}

¢ " [8ATEORI .
_E{aazaa} - Ztr{ do? OJa RiAz}
o = O*R;! 0%og|Ry|
o) = an () e )

The asymptotic covariance matrix of the estimates, obtained by solving (4.2.2) and
(4.2.1), is the inverse of

0% 0%
B {a (02)? } -E {80’28a }
_E 626 _E 6_2{
0o?0a do?

Notice that equation (4.2.1) can also be expressed as

zn: {M}I Gi(R;! ® R;1)G; {vech(z;z,) — vech(R;)} = 0,

i=1 dex

and a similar argument as in Section II1.1 proves that ML equation for o is Godambe

optimal.

IV.3 Classes of Unbiased Estimating Equations

Suppose the correlation parameter @ = (a,...,q,) is multidimensional. In this

situation we could consider a more general class of estimating equations

i“{WﬁRf '(mz - R)} = 0, (43.1)
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where W; is some weighting matrix in estimating the jth component o; of a. For
the familial correlation, we have oy = p and oz = a. The two equations in (4.3.1)

are
> tr {W,R;" (mzi ~Ry)} = 0,
i=1

> tr {WuR;! (ziz; —R;)} = 0,
=1

where W,; = Wy, and W,; = Wy, are the weighting matrices for estimating p and
a, respectively. Suppose & = (p, &)’ is the solution of the above equations. From

Lemma 2.1 and Theorem 2.1, it follows that the asymptotic covariance matrix of &
is I; 'L, I, ! where

Su{walin) Se{wlrn)

I, = n —1 -1
Ztr{w 6R } Ztr{ 3R R,}
| =1
> tr {W, R "W, R; + W} Ztr {W,R'W. R + W, Wy}
I, = 1—1

Ztr {WaiR "W, R; + W W, } Z tr {WoiR; "W, R; + W2}
i=1 =1

To find the optimal weights, we may need to minimize the covariance matrix in

some sense. One criteria is to use the determinant of the matrix

- Ll _ ¢
IGli_ 1 &

|1611116‘1‘ = |151|'|11|‘ = TAE =2
0

where
& = Ztr {W,R;'W/,R; + W%} Ztr {W,R'WLR; + W2}

- Etr {WoR'W/ R, + Wy, W ,; } Ztr {W,R"W,R; + W, W}

o - S{win S Rf%}
S S )
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Equating the derivative of the determinant with respect to W, to zero, and using
the identities (Magnus and Neudecker, 1999)

aW (W,R{'W,R))} = 2R,W, R’
—W;{tr(wfn-)} - 2W,

5w, (7 (WaR{'WLR)} = RWaR/
e ((WaWa)} = W,

) oR; OR;
Wm'{t( 7 dp )} - g

s, o AR B R1_<9R;1
oW ,; " da N da

Q

and

tr (W, R, "W, R;} = tr {W,R;'W_.R;}
tr {Wm‘W,n'} = tr {Wdeai};

we have for i = 1,2,...,n,
{(RW,R; 1+ W} & Ztr {WaR'W,R; + W,
—{RWLR T+ W} & Ztr {WLR W, R, + W, Wy, }
R S B
R e <

Similarly, differentiate the determinant with respect to W,; and equating to zero,

we have

{RWLR T+ W} & Ztr {W,R'W,,R; + W2}

=1

—{RW,LR '+ W} & Ztr {W,R'W,LR; + W, W, }

R )
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oR;! & OR;!
—— t —— i¢c = 0. 4.3.3
R a S {waT R = 0 (43)
Here &, & and all the traces are scalars. Looking at the component matrices in

(4.3.2) and (4.3.3), we can see that a solution is given by

W, = R{l% and W, = R:l R,
dp Oa
Thus the optimal weights are identical to those of ML equations in this case.

Another criterion that we could use to determine the optimal weights is to min-
imize the trace of the covariance matrix. The trace of I 11116—1 is given by &/&2,

where

tr {W,R; "W/, R; + W,

M=

-,
It
-

=

tr {W,.R; "W/ R, + W2}

-
1l
-

tr {Wa R TWLR,; + W2,

-,
Ii
-

tr {WoR; "W, R; + W2,

NE

M:

o
Il

F2) 1 - SR
o {Wai da R‘}) ; {WaRTTWL R, + Woi Wi}

S
N
NgE

g
——

z
NE
9|
—-

&
——
N———
N

iMgs

oR;!

M=

tr {W,,, }) > {WuR'W, R + W, W, }

(B )

and & is defined earlier before. Once again equating the partial derivative with

Il
—

respect to W, to zero, we get

(RW, R+ W, e + {RWLR T + W, ¢

-1 -1
+{ma?; }c;;—i—{Ria?; }c4 =0, (4.3.4)

where the constants are

- (Sefwtng) (o)
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(B )
(

)

}) ).
(z tr {Wo,R]"W,R; + W2, })
W)

(

{WuR'W, R; + WaiW,n.})

Ztr {WLR'"W, R, + W2, )

-1
Cy4 = ( tr {WmaR }
i=1

A close examination of the above expressions reveals that

_ aR‘
RW,R'+W,, =
RWLR '+ W, = amaRi
Oa
and consequently the optimal weights are

OR; OR;

, = Rj1— d W, = R
W, R; 9 an i P 5y

Interestingly, these optimal weights are the same as those obtained by minimizing
the determinant of the covariance matrix of a. Therefore, the optimal weights are

same whether we minimize the determinant or the trace.

We can also construct a subclass of estimating equations by adding the constraints

tr(W;;) = 0 to (4.3.1). The unbiased estimating equations in this subclass are
Ztr {WP’iRi_l (z:2; — Rz)} =0 subject to tr(W,) = 0

> tr {WuR (zz; —R;)} = 0 subject to tr(Wo;) = 0.

i=1
The asymptotic covariance matrix of the parameter estimates for this subclass is the
same as that of the general class, which is given by I 11116_1, except that we will

have additional constraints on the weights.
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Now to find the optimal weights, we need to first differentiate the determinant

|Ig llllg_ll with respect to W,; and W,,; using Lagrange multipliers A;. Thus to get

the optimal weights, we need to solve
(RW,R; 1+ W'} & Ztr {WuR;'W! R, + W2,
—{RWLR "+ W} & Ztr (W, RTWL R, + W, W, )

(8 o)

{aR_}&Ztr{ 3R71m} 21g =0, (435)

and
{RWLRT+ W} & Ztr {W,R'W/_ R, + W2}
=1

—{RW,R;* + W} & Ztr {W,R'W, R, + W, Wy, }
-1 n -1
R 6 S [
oR; OR;! Ai
{ } & Ztr{ R;} - -2—11’58 = 0, (4.3.6)

where £ and &, are the same as before. Observing the patterns in equations (4.3.5)

and (4.3.6) and keeping in mind that all the traces are scalars, and using the re-
strictions tr(W,;) = 0 and tr(W,;) = 0, we can see that (4.3.5) and (4.3.6) can be
reduced to similar expressions to (3.2.7) with different subscripts. This means that
the optimal weights within the subclass cannot be obtained explicitly for the familial

correlation structure, either.

Now differentiating the trace of I 11116_1 with respect to W,; and using Lagrange

multipliers \;, we get

{R'iniR_l + W, } §0 a+ {RquR—l + W, i} 50 C2

-1 -1
[
+{ ag— }<§OC4+§2ZtI’{ GR_ R,}) +%i‘1i§g =0
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We get similar equation for W,;. And both equations do not have a closed form
solution. Thus the optimal weights cannot be obtained explicitly. Computation of

the optimal weights is also problematic. We suggest using the simpler weights
0 1 0 o0
sz' = : and Wai = ¢
li 0 0o J i Ii

where 0 is a square matrix with all 0 elements and appropriate dimension. The

estimating equations for p and «, with these simpler weights are

_tip 1 !
§ 1+ (t—Da—tp® 14+ (t—Da—tp2 " A
> tr 1+ (t — o —p | mE =0,

1+ (ti— Da—tip? " 1+ (4 — Do — tip?

n 0 0/
Ztr —(ti—1)p 1 1—p? It z;z, p =0.
i=1 + (¢ —1)a—tp2 l—a |14+t —Da—tp2 "

(4.3.7)

Using the identities

t:[2 + 2(t; — Da + (t; — 1)2a? — 2t,p°]
1+ (t — Do — t;p?
—t;(t; — 1)%ap
14t — o —t;p?
ti(ti — 1)1+ (t: — o — p’]
14 (t; — Do — typ?

tr {W,R;'W,R,} =

tr {W,R]'W,.R;} =

tr {WuR'W, R} =

tr {W2} = 2t
tr {Wm'Wm'} =0
tr {W2i} = ti(ti - 1)

—1 — . . —
wlw, aR, t[2+ (t: — 1)af
1+ (t — Do — tip?

)
o { R“l } _ ti(t; — 1)p
)

1 + (ti — 1)0[ — tip2
{ 8R‘
tr

—ti(t: — 1)(1 - p°)
(1—a)[1+ (- Da—1tp?]’
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we can check that the matrices Iy and I; reduce to

[ Z 4[24 (4 — 1)o] i ti(ti — Dp

1+ (ti - l)a — t,'p2 14 (ti - l)a - t,;p2

IO — iﬁl " i=1
ti(ti — L)p —ti(ti — 1)1 — p%)
I ;1+(t,~—1)a—t,~p2 ;(l—a)[1+(ti—1)a—tip2]
[ i [2 + (t; — 1)a]? — 4t z": —ti(ti — 1)%ap

L = o (& = Do = tip? n 1+ (ti—1)a-— tip?

D —ti(ti — 1)%ap ti(ti — D[2 4+ 2(t; — a — (& + 1)p?]
Z 14+ (6 — Do — tip? E 14+ (t — Da — t;p?

=1

IV.4 Relative Efficiency

In this section we will study the relative efficiencies of the various estimates discussed
in the previous sections for the familial correlations using simulations. The simulation

steps are similar to that in Chapter III and are described below.

(1) Generate n integers {t;,1 < ¢ < n} for the number of children in each family
ranging from 2 to 4 with the following probability distribution. The reason for
using this distribution is that the number of children in the present day society
are often less or equal to 4 and we need at least 2 children in the family for

sibling-sibling correlation to exist.

ti 2 3 4
P(t;) 04 04 02

(2) For i = 1,2,...,n, generate t; univariate standard normal random numbers and

stack them into a column vector z;.
(3) For fixed value of p and «, construct the familial correlation matrix R;.
(4) Let y; = Ri% z;, where Ri% is the square root of R,;.
(5) Solve equations in (4.3.7) to get estimates ps and ég.
(6) Solve equation (4.2.1) to get ML estimates g1, and &,

(7) Calculate errors 7s = (ps — p, &s — @) and 71, = (pr, — p, &1, — ).
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(8) Repeat steps (1) — (7) a large number of times (r), say r = 10,000, and stack

errors into two r X 2 vectors eg and ey,.

Then calculate the relative efficiencies based on trace and determinant criteria as

follows:

tr(efer)
tr(eses)

_ leer)
leses|

Eﬂt(as,aL) = and Effd(a&aL)

Figures 4.2 and 4.3 shows different perspectives of the surface of efficiencies
Effy(ag, @) based on trace criteria, for different values of p and . Correspond-
ing efficiencies Effg(as, @) based on the determinant criteria are shown in Figures
4.4 and 4.5. Table 4.1 and 4.2 contain some numerical values of these efficiencies
for different values of o and positive p. The efficiencies can be obtained for negative
values of p by symmetry. An examination of these Figures and Tables clearly show
that the unbiased estimating approach yields highly efficient estimates over a wide
range of the parameter space. Efficiencies for the case where the families are of equal
size with three children are given in Figure 4.6 and 4.7. Notice that the efficiencies

at the boundary of feasible regions of p and « are very high.

Table 4.1: Numerical values of efficiency based on trace criteria

o

p 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0947 1.003 1.009 1.002 0.996 0.989 0982 0.978 0.985 0.978
0.1 0946 1.000 1.007 1.005 0.990 0.983 0.977 0.978 0.974 0.980
0.2 0938 0.989 0998 0.990 0981 0975 0964 0.962 0973 0.965
0.3 0939 0996 0.993 0.980 0.966 0.956 0.946 0.950 0.957 0.957
04 1.111 1.043 0.998 0.970 0.942 0.929 0929 0.926 0.933 0.936

0.5 1.284 1.073 0.984 0.932 0914 0.896 0.895 0.898 0.914
0.6 1.430 1.083 0.930 0.884 0.865 0.857 0.863 0.879
0.7 1.158 0.899 0.799 0.801 0.808 0.830
0.8 0974 0.708 0.723 0.752
0.9 0.881 0.600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

Table 4.2: Numerical values of efficiency based on determinant criteria

o
p 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 0.898 1.009 1.019 1.002 0.984 0.958 0.934 0.906 0.886 0.865
0.1 0.898 1.000 1.013 1.006 0.971 0.948 0921 0.901 0.887 0.853
0.2 0.899 0975 0987 0968 0.944 0.925 0.889 0.860 0.846 0.814
0.3 0931 0979 0962 0928 0.898 0.873 0.842 0.824 0.808 0.773
0.4 1227 1.036 0.941 0.883 0.830 0.802 0.787 0.763 0.727 0.698

0.5 1.440 1.037 0.882 0.788 0.745 0.698 0.676 0.647 0.629
0.6 1.634 1.061 0.802 0.689 0.629 0.587 0.557 0.525
0.7 1.302 0.732 0.569 0.496 0.462 0.417
0.8 0.924 0.498 0.363 0.305
0.9 0.325 0.242

IV.5 An Illustrative Example

In this section we apply the estimation methods on a real life example. Dern and
Wiorkowski (1969) have discussed an interesting familial data. The data consists of
pre- and post-storage measurements of erythrocyte Adenosine Triphosphate (ATP)
levels from healthy Caucasian family members from 22 families. The pre-storage
measurements were taken, in most cases, immediately after phlebotomy or after
arrival of the sample in the laboratory. The post-storage measurements, in all cases,
were taken after 21 days of storage in the refrigerator at 4 & 1°C. All ATP levels
are expressed as p-moles per grams of hemoglobin. In addition to the ATP levels,
ages of family members are also available for the analysis. Table 4.3 lists part of the
originally data. The data is incomplete for three families in the sense of mothers’
presence. In our analysis we dropped the three families, and used the complete data
of 80 observations on the mothers and children in the remaining 19 families. Table 4.4
contains the results of our analysis using the unbiased estimating approach and the
ML approach. The estimates are similar, but however, the standard errors obtained

using the unbiased estimating equations, are lower and hence preferable.
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Figure 4.2: Efficiency based on trace criteria (45° view).
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Figure 4.3: Efficiency based on trace criteria (225° view).
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Figure 4.6: Efficiency based on trace criteria: balanced case (45° view).
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Figure 4.7: Efficiency based on determinant criteria: balanced case (45° view).
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Table 4.3: Partial list of member ATP levels in 22 famailies

Family Member Age Pre-ATP Post-ATP

1 Mother 50 3.30

Father 54 — 2.40

Son 24 — 3.76

Daughter 30 — 2.14

Daughter 26 — 2.55

2 Mother 62 443 2.49

Father 62 3.72 1.79

Son 24 4.18 1.49

Son 41 4.81 2.84

Daughter 31 4.42 2.04

Daughter 38 3.65 1.17

3 Mother 50 3.79 1.28

Father 45 4.54 3.07

Son 7 4.72 1.19

4 Mother 55 5.42 3.65

Father 56 4.10 2.65

Son 23 5.30 2.16

Son 27 4.48 2.40

Son 19 4.85 3.28

Son 24 — 2.20

) Mother 57 4.71 2.23

Father 76 — 2.15

Son 32 4.19 1.33

Son 28 3.43 1.85

22 Mother 45 5.29 3.27
Father — — —

Son 24 5.30 4.10

Son 20 5.25 3.67
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Table 4.4: Parameter estimates

Us (SE.) MLE (S.E)
Intercept -0.7994 (0.3867) -0.7281 (0.4354)
Gender 0.1624 (0.0771) 0.1804 (0.0930)
ATP (prestorage)  0.7260 (0.0763) 0.7118 (0.0898)
Scale (mother) 0.5577  — 0.5569  —
Scale (siblings) 0.4617  — 0.5034 —
F 0.3404 (0.0236) 0.3864 —
& 0.4192 (0.0163) 0.5845 —
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CHAPTER V
ESTIMATION OF NUCLEAR FAMILIAL STRUCTURE

In Chapter IV we have discussed the analysis of data collected on single parent fam-
ilies. Here we extend those results for data taken on nuclear families, that is, data
taken on two parent families. The correlation structure to model intra-family as-
sociations will have additional parameters, for example we need to account for the
correlation between the parents and the correlation between the father and children.
These additional parameters will require additional estimating equations, and the
analysis poses challenging computational problems. We briefly sketch the general-

izations, since the details are similar to the results in Chapter 1V.

The organization of this chapter is as follows. We first study properties of the
general familial correlation structure in Section V.1. ML estimation of the parameters
for normal data is presented in Section V.2. Next, a general class and a subclass of

unbiased estimating equations for parameter estimation are presented in Section V.3.

V.1 Nuclear Familial Correlation Structure

A correlation model that is appropriate to model associations within a nuclear family

is the structure

S 4 U 4 SRR 4]
Yy 1 p2 p2 p2 -.. p2
Pl a a ... «

Ri = |;mp ala

p op2 a a 1

o p2 a a o ... 1 |
1 v p11;

i Plli pzl.,; (]. — O!)Ii + aJ,- |
where 7 is the correlation between the two parents, p; is the father-children correla-

tion, p, is the mother-children correlation, and as before « is the common correlation
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among the ¢; children. Pre- and Post-multiplying R; by the matrix incorporating the
Helmert matrix M; which we defined in Chapter IV, we get
- 1 - -

I | }A i _1_ 0’
v2 v2 T V2 V2 T
Q = |1 -1 o' | Ri 1 - 0’
V2 V2o V2 V2o !
- 7 W
1+ 0 Tt 0 0
L
0 -y §(P1—p2) 0 0
t; t;
= §(p1+pz) \/;(pl—pg) 1+(t,—1)a 0 0
0 0 0 l—-a ... 0
| 0 0 0 0 oo 1—a |

Clearly, the necessary and sufficient conditions for £2;, or equivalently R;, to be

positive definite are

(1)-1<vy<1
2 -z <ea<l

(3) ta(p2 + p3 — 27p1p2) < (1 —*)[1 + (t: — 1)a].

These conditions ensure that the determinants of all its principle minors of R; are
positive. Condition (3) can be further written as
— 2 14 (t:— 1)
(p1 ’7P22) + pg < ( ) ’
1—x t;
which means that for fixed v and « satisfying conditions (1) and (2), the graph of p,

versus py is an ellipse. Figure 5.1 shows contour plots of a versus (p;, p2) for given

values of v when t; = 3. The inverse of the familial correlation matrix is given by

- 12¢2 ¢OE’Y gl1g _
R;' = ¢OC—’Y 12‘251 o
Gl (21, 1 I — (1—a)(prGi + p2(2) + .
L 144 244 1—a’ (1—a)[1+(t—1)a] 1.-
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1.0 1.0
0.51 0.5
P2 0.01 P2 0.01
0.5 051
.04 : . : . .01, . : : .
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pl pl
(a) 7 = 0.5 (b) v =0
1.0 1.0
0.5 0.5
P2 0.0 P2 0.0
051 0.5
4.0 : , . , 1.0 . — , .
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
pl pl
(c)y=04 (d) y=0.7
Figure 5.1: Contour plots of a vs. (p1, p2).
where
tp1p2
%0 1+ (t— o
tp}
¢1 1+ (t— Do
tps
& 1+ (t—1a
¢ = A-¢)A-¢2)— (v - )’
G (1—¢2)(vp2 —p1)
[1+(t = Do —tp3][(1 - ¢1)(1 — ¢2) — (v — ¢0)?]
G —p2 (vp2 — p1)(v — ¢0)

L+(E-Dal(l-¢2) [1+(t—1Da—tpdl[(1 - )1 - ¢2) — (= 60)?]

Appendix A.4 contains the Cholesky decomposition matrices of R; and R;.

As for the covariance matrix for the variables in a nuclear family, it is reasonable

to assume the variances for parents are different from those of the children. Let o2
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be the variance of the measurement on the father, o2 be the variance for the mother

and o2 be the common variance among the children. The covariance matrix is

_ \ -
g3 01027%Y 01001 0O100P1 -.- 0100/
2
01027 gy 020002 0200P2 ... 020002
2 2 2
v 010001 020002 gy Oy Opx
i = 2 2 2
0100901 020002 Ogx (o Oox
2 2 2
_Ulaﬂpl 020002 e e Ty i
1 1
— 2R.A2
— A’R,A!
3 2 2 2 2
3 .
where A? = diag(o?,05,08,...,05).

V.2 Maximum Likelihood Estimate

In this section we discuss ML estimation for normal data collected on nuclear families.
The results are extensions of the results that we have in Section IV.2. We present
main equations omitting some details. The ML estimating equation for correlation

parameters is

D tr {R;I?ER;I (z:iz) — m)} = 0, (5.2.1)

— oo
where z; is the Pearson residual. The ML equation for estimating the variances is

= oV,
-1 ixr—1 _
;tr {V,. o Vi (eigi — V,-)} =0, (5.2.2)
2

where o2 = (02,02,02) and correlation parameter @ = (v, p1, p2, @)’. Expressions

for the second order partial derivatives are

1 1 1
0% e O%A.; 5 1 0A; o2 6A_E 1
—E = tr Az 4+ Ri_1 Af A2
{a(aZ)"’} Z ( = 057 1 )

8210g (0?0203%)
+3 Z Oo?

820 " (9ATEOR .
_E{aazaa} = Ztr{ 907 Do R“'AQ}

=1

P | I O’R;! 0%og|Ry|
'E{'a?} =22 {“(W‘“%W}
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Finally, the Fisher information is

ot 0%
- { 8 (02)? } —B {30’28a }
—E 826 _E 6_2£
do20a da?

V.3 Classes of Unbiased Estimating Equations

To estimate the correlation parameters in a nuclear family, we could consider a general

class of estimating equations given by
Ztr {W;R; ! (z:z, — R;)} = 0, (5.3.1)

where W;; are weights matrices. The range of j equals 1,2,3,4 corresponding to
the four correlation parameters -y, p;, p2 and «, respectively. Using Lemma 2.1 and
Theorem 2.1, we can get the asymptotic covariance matrix of the unbiased estimating
equation estimate & = (¥, p1, fa, @) as I3 I, ™", where Iy = (uys) and I; = (v,s)

and
R—l
Urs = Ztr{ ma ] R”L}
Vps = Ztr {W.R;"W, R, + W, W, }

with ay;) is the jth element of o, that is, ap =, o = p1, o3 = p2 and ayy = a.

To find the optimal weights, we could minimize the determinant or the trace of
this asymptotic covariance matrix. The resulting optimal weights coincide with our
results in Chapter IV, and they are
IR,

W, =R;*
’ day;)

for j =1,2,3,4.

We could also consider a subclass of estimating equations by adding the con-
straint tr(Wj;) = 0 to the equation (5.3.1). The asymptotic covariance matrix of the
estimates derived from this subclass is same as that of the general class. And as in

Chapter IV, we do not have closed form solutions for the optimal weights, either.
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Once again, to facilitate the construction of the weights and to avoid convergence

problem that may occur, we suggest using the simpler weights that are close to being

optimal:
0 1 0] (0 0 1
Wl'i = 1 0 01 Wz,’ = 0 O O;
0; 0; O 1, 0; O
0 0 0] [0 0 o
W;, = 0 0 1 Wy = 0 0 0; )
0; 1, O 0; 0; Ji—Ii

corresponding to the four correlation parameters, v, p1, p2 and a respectively. With
these weights, the estimating equations can be simplified as

n ¢ ¢
v Ztr{ 1-¢2 ¢o—7 Gl 2z p =0
i=1 ¢ ¢ :
L L Oi Oi OI
(r 1—t(p1Ca+p202),, )
. t: 1%
n tG ic2 1+(ti—Da °
p1: Ztr< 0 0 02 zizg » =0
i=1 1—¢2 do — Y
1, 1 J;
L C 1 C 1 Cl 1 i )
/ 7 3
y ’ ( % )
n . ' 1—ti(p1C1 + p2(2) ,,
p2: Ztr 4 ’ ti1 tf; 1+ (ti - l)a L Ziz; e =0
i=1 0 — Y 1-¢
1; 1; J;
L C % C 1 42 1 ] )
' 0 0 0]
n
a: Ztu 0 0 021 z;z, p =0
=1 (ti — )Gl (G — 1)1 (3Ji — mli
\ L

where (, (; and (; are as defined before, and

1—(t = 1)1 - a)(p1G1 + p2(a)

G A=)+ (6 Dol

The elements of the 4 x 4 matrix I, are
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U1

U2

U3

U4

Ug2

U3

Uy

U33

U3zq

Ugq

n

_ 22—¢é—¢2

1=1

= 1—ti(pG+pC2) | 1—¢o
Zti{ T+ -—Da ' ¢ }

Z ti(do — )

=1 ¢
Zti(ti -G

- 1—ti(piCi+p2la)  1—¢
Z:t{ T+&-Da | ¢ }
Zti(ti - 1)¢

=1

n

ti(t; — 1) {1 = (t: — D)1 — @) (&1 + p2G)}
2 (1—a)[l+(t—1)q

i=1

and the elements of the 4 x 4 matrix I; are

v =

012

13

V14

V22

V23

V24

n

224+2—¢1—¢2+2’Y(¢0—’Y)

= ¢
:i:ti {Cz + 96+ P (g0 — 1) zPZ(l - ¢2)}

gti {41 g+ P20 =) ng(l - m)}

éti(ti — 1)(p1l2 + p261)

é;t {2 oG+ ‘ltff’afl_ﬁ)”fﬂ L a-#){1 - (t: ~ 1)a}}

; ti {tmlcz ttipy + 18 _13({261 Jlr)/;zcz»)} L Bo—mQ1 <+ (t; — D} }
Suun{ots o 2 L)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74



75

n
1
vig = Yt {2 + 2tip2C2 +

=1

—ti(p1G1 + p2(2) + (-e){1+ (i - 1)0‘}}
1+t — Da ¢

vy = ;ti(ti -1) {C2{1 +(t; — Do} + p2{l ;i((/;:(_l ng(z)}}

Vg = Zn:ti(ti — {2 - (ti — 1)(p161 + p2(2) }-
=1

These are useful to calculate the asymptotic covariance of the estimates of the

correlation parameters.
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CHAPTER VI
ANALYSIS OF FAMILIAL BINARY OUTCOMES

In previous chapters, we have studied modelling and estimation of correlation pa-
rameters for continuous responses. However, correlated discrete data, in particular
binary, are common in many scientific studies including medical, social and biological
research. In this chapter we focus our attention on the analysis of familial binary
data, that is, binary data collected on families. Unlike continuous data, the ranges
of correlations between binary variables are constrained by the marginal means. The
organization of this chapter is as follows. We first study feasible ranges of the cor-
relations, and more generally ranges of different measures of associations for familial
binary variables. These probabilistic results are important for developing theoret-
ically sound methods of estimation for the association measures. In Section VI.2,
we study latent variable models for familial binary variables. In particular, we in-
vestigate stochastic representations for the multivariate probit model (Ashford and
Sowden, 1970). Finally, we present a binary data analysis example to illustrate the

estimation procedures.

VI.1 Ranges of Measures of Associations

In a recent paper Chaganty and Joe (2006) studied ranges of correlation parameters
between three binary random variables for the unstructured and common structured
matrices, for example, exchangeable and AR(1). Here we extend their results to
the familial correlation structure. We also study the ranges of other measures of
association such as odds ratios, kappa statistics, and relative risks for familial binary

variables.

VI.1.1 Ranges of Correlation Coefficients

To begin with, let y;, y; be two binary variables with marginal means p;, p; and

correlation p;;. It is well known (Chaganty and Joe, 2006) that a necessary and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

sufficient condition for the bivariate binary distribution of (y;, y;) to exist is

b = max{- [P - B
q:4; Dbip5
szJ a4ip;
U(p;,p;) = mm{ } 6.1.2
(pe.p;) Van;” \ pigs (6.12)

for p;,p; € (0,1) and ¢; = 1 —p;, g; = 1 — p;. Inequalities (6.1.1) can be obtained

where

from the Fréchet bounds applied to bivariate binary distributions.

Familial Correlation

Suppose now 1, Y2, ¥3 are three binary variables with means p,, ps, p3 and familial
correlation structure (4.1.1) with ¢; = 2. We are interested in finding the range of the
correlations p and o as a function of py, ps, ps. Let py; = Pr(y; = 1,9, = 1) = E(y: y5),
1<i<j<3 andpyos = Pr(ys = vo = y3 = 1) = E(y1y293). With this
notation, the eight trivariate probabilities can be written as in Table 6.1. We have

the following result for the range of familial correlations for binary random variables.
Let 0; = /Pi ¢;, Wwhere ¢; = 1 — p;.

Table 6.1: Trivariate probability mass function

Probability
P123
P23 — P123
P13 — D123
P12 — D123

D3 — P13 — P23 + D123
D2 — P12 — P23 + D123
D1 — P12 — P13 + D123
1—p1 —p2 — p3+ p12 + P13 + P23 — P123

O OO KOS
COoOROKOR R
COO O M- =g

Theorem 6.1 Consider three binary random variables y,, yo and y3 with means p,,
D2, p3 in the interval (0, 1) and structured correlation matriz R given by (4.1.1)
with parameters p and o and t; = 2. Then a joint distribution for the three binary

variables exists if and only if the following two conditions are satisfied:
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(1) L(p2,p3) < o < U(py, ps)

(2) max{L(p1,p2), L(p1,p3), ()} < p < min{U(p1, p2), U(pr, p3), U1 ()}

where
L _ 0 0203 + P1P2P3s + 19243
1) = —
(:}(02 + Ui)
Ui(a) = Q0203 1T P142493 T q1P2P3 . (6.1.3)
o1(o2 + 03)

Proof: A necessary and sufficient condition for the existence of the joint distribution
is that the eight trivariate probabilities given in Table 6.1 are non-negative. This

leads to the condition

P123r = max{0, p12 + p13 — P1, P12 + P23 — P2, P13 + P23 — P3}
< pi2s < min{pia, P13, P23, 1 — P1 — P2 — D3 + P12 + P13 + Pas} = Prasu

or equivalently

p12sr = max{0, p1a + P13 — P1, P12 + P23 — P2, P13 + P23 — P3}
< min{pi2, P13, P23, 1 —p1 — P2 — 3 + P12 + P13 + Pa3} = piosy-  (6.1.4)

There are sixteen pairwise inequalities in (6.1.4) given by

(1) p2>0
(2) p1>pi2 = pis2Pi2+tpPiz— N
(3) p2>p12 <= P23 2 P12+ P23 — P2
(4) 1-pi—p2+p12>0
<~ 1-—p1—p2—p3s+pi2+pi13+p23>pi13+pPs— D3
(5) P3=>0
(6) p1>pi3 < pr2pitp—n
() p3>pus <= P23 > P13+ P23 — D3 (6.1.5)
8) 1-pi—ps+p13>0
<= 1—p1i—pa—p3+p2t+piz+ P =Pi2tps— P2
(9) p2>0
(10) p2 > pas = D12 2 P12+ Pas— P2
(11) p3 > po3 <= P13 > pi3+DPas—Ps
(12) 1—p;—p3+p23 >0

< 1—p1—p2—p3+pi2+pi3a+Ps>pi2+piz—n
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(13) pi2 > p1s+ P23 — s
(14) pi3 > p12 + P23 — P2
(15) pa3 > pr2 +pi3 — 1
(16) 1—p1—ps—ps+pr2a+Pis+pas > 0.

(6.1.6)

Note that pi2 = pip2 + p 0102, P13 = p1p3 + po103, and paz = pep3 + a0z03. The
first set of inequalities (1), (2), (3) and (4) in (6.1.5) hold if and only if L(p;,ps) <
p < U(p, p2); the second set of inequalities (5), (6), (7) and (8) in (6.1.5) hold if and
only if L(p1,p3) < p < U(p, p3); the third set of inequalities (9), (10), (11) and (12)
in (6.1.5) hold if and only if L(p,,ps) < a < U(ps,ps)- Inequalities (15) and (16) in
(6.1.6) hold if and only if L;(a) < p < Ui(a). As for inequalities (13) and (14) in
(6.1.6), if we define

L 0203 — P1P293 — 142P3
2(a) =
g1 (02 - 03)
U _ —0 0203+ P192P3 + 1P2G3
o(a) =
o1 (0’2 - 03)
v, = PP + 4192P3
T =
0203
Vo = P192P3 + q1P2G3
=
0903

then there exist three possibilities: (a) if 0o > 03, then inequalities (13) and (14)
hold if and only if Ls(a) < p < Us(a); (b) if 02 < o3, then inequalities (13) and (14)
hold if and only if Us(a) < p < La(e); (¢) if o2 = 03 then inequalities (13) and (14)
hold if and only if @ < min{V}, V2}.

Now we will show that for L(ps,p3s) < a < U(ps2,ps), the conditions given by
inequalities (13) and (14) are redundant under each case. Without loss of gen-
erality, we first assume (a) o2 > o3, we will show that U,(«) always lies above
min{U(p1, p2), U(p1,p3)} and La(c) always lies below max{L(p1, p2), L(p1, p3)}. Note
that Uy(a) and Lo(a) are linearly decreasing and increasing in «, respectively. We
only need to show that at the point a* = U(ps, p3), Us(*) is greater than any of the
bounds U(pi, p2) and U(p1,ps) and Le(a*) is less than any of the bounds L(py, pa)
and L(p;,p3). In Table 6.2 and Table 6.3, we give the upper and lower bounds for
p from conditions U(py, p2), U(p1,ps) and L(py,p2), L(p1, p3) under different situa-
tions, which will help us in comparing the different quantities for the upper or lower

bounds of p.
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Table 6.2: min{U (p1,p2), U(p1,p3)} for p (02 > 03)

n<q DP1> Q1
P2 < Ps D143 min{ qQ1P2 ’ \/Pl% }
qQ1P3 D192 q1P3
. { y 4] qQ1P3 } d1P3
P2 > p3 min \/—,\/— —
q102 P143 D143

Table 6.3: maX{L(pl,Pz),L(Pl,p3)} for p (‘72 > 03)

n<q P1>q1
Dy < D3 ma.x{—\/plpz ,_\/Q1Q3 } _ [Nqs
7192 P’p3 P1P3
P1ips3 7192 DP1p3
P2 > Pps 7\ max{_\/—7_l—}
q143 D1P2 q143

P29q3

When p, < p3 or equivalently pags < psge, we have a* = U(pz, p3) = , /q— , then

- B2

This indicates that Us(a) is

2DP3

—P2q3 + P1P3q2 + q143D2

_ [P1gs
01P3

01(02 - 03)
p1(P3ge — P2gs) — M (\/p2Q2(I3/p3 - (I3)
o1(02 — 03)

P1g2 — P1+/ szzQ3/p3

01(02 - 03)

PV2: (VPs%2 — \/P23s )
o1(02 — 03)\/P3

at least greater than one of the upper bounds

>0.

U(p1,p2) and U(p;,ps), which further indicates Uzx(a) > min{U(p1, p2), U(p1,p3)}

for L(ps,p3) < a < U(pz2, ps)-

When p; > p3 or equivalently pags > p3gz, we have o* = U(ps, ps) = , / ps_;z , then
qs3p2

i)~ BB -

—P3q2 + P1P32 + 1G3p2
01(0o2 — 03)

q1P3
V "qs
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q1(p2gs — P3g2) — @1 (\/paqus/ g3 — pg)

01(02 - 03)
qQ1P2 — q14/ P2Q2P3/ q3
01(02 - 03)

P1vP2 (yP2ds — /Ps2)
o1(02 — 03)\/(1_3
which indicates that U,(a) is at least greater than one of the upper bounds
U(p1,p2) and U(pr,p3), which further indicates Uz(e) > min{U(p1,p2), U(p1.p3)}
for L(ps,ps) < & < U(p2, p3).

>0,

Similar argument shows that Lo(c) < max{L(pi,p2), L(p1,ps)}. Here we only give
the main steps. When p, > p3 or equivalently poqs > p3ge, we have a* = U(p,, p3) =

[43D2 _and
D3q2
Ly(a) — {_ [ 193 } _ D293 — P1P233 — N192Ps3 4 [ 4143
hps o1(o2 — 03) pips

q1(p2gs — P3g2) + @1 (\/ P2G2G3/P3 — Q3)

01(02 - 03)

~0v/% (VPs® — V/P2ls)

= <0.

o1(02 — 03)\/P3

When p, < p3 or equivalently pags < psga, we have o = U(ps,ps) = , /M . Thus
q3pP2

Lo(o") — {_ [P1Ps } _ Psg2—Pipags — @eps | [Pips
7193 01 (02 - 03) 9193
p1(psgz — p2gs) + M (\/ P292p3/qs — ps)
g1 (02 - 03)

—P1y/P2 (VP23 — V/Pslz )
01(02 - 03)\/@

and therefore Ly(a) < p < Uz(a) always yields redundant constrains when oy > o3.

<0,

The case when oy < o3 follows by symmetry. Now let us assume (c) g = 03 = 0,

the conditions are o < min{Vj, V3}, which does not constrain p. It is easy to verify

that if (i) p, < 1/2 and p; < ps, then U(ps, p3) = 4 /22—;;3 and
23

Vi —Ulpa,ps) = & (p3q22— Pats) >0

Vo —Ulp2,p3) = pl(png;- Pads) >0
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and (ii) p, > 1/2 and ps > ps, then U(ps,p3) = /(I2z3 and
D2G3

Vi —U(p2,p3) = h (pzq‘;z— Pags) >0

Va = U(pz,p3) = ql(pzq‘;z_ Pata) .

This means that V; and V, always yield redundant constraints on «. Therefore,
we can conclude that the necessary and sufficient conditions for the three binary
random variables to exist are as stated in Theorem 6.1. This completes the proof of

the theorem o
It is interesting to note that when ps = ps = p, 0 = /pg and g = 1 — p, the
necessary and sufficient conditions in Theorem 6.1 further reduce to
(1) max{-p/q,—q/p} <a <1

2 2 2 2 2 2
—(ao” + + . ac” +p1g° + qp
(2) max{L(pl,p), ( 2p1p ng )} < p < min {U(pl,p), P1 L }
o0 20’10’

and when py = 1 — p3 = p, we have

(1) -1 < o < min{p/q, ¢/p}

(2) maX{L(pl,q), :0—(2%1)} < p < min {U(pl,q% M} -

20’1

Further, when p, = py = ps = p, a trivariate binary distribution for y with correlation

structure (4.1.1) exists if and only if

(1) max{—p/q, —q/p} <a <1

—(apg+p*+¢%) 1+ a
2 - — < p< .
()maX{ p/q,—q/p, - <ps—

More specially, if p = 1/2, then the necessary and sufficient conditions become

—(1+ o 1+«
—(A+e)  1to

)-1<a<l (9 = .

These ranges form a proper subset of the constraints (4.1.2) given in Section IV.1,

which are also the bounds for p and a for Gaussian random variables. Note that the
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two dimensional region of the ranges of p and o given by (4.1.2) contain the region

given by (1) and (2) in Theorem 6.1 for any p = (py, p2, p3)-

Figure 6.1 and 6.2 show the feasible regions of (a, p) for different p and special
cases when ¢ = 03. For Gaussian variables, feasible region is the area enclosed by
the parabola, whereas the embedded figure within the parabola is the feasible region

for the binary variables.

1.0 1.01
0.5 0.5
P 0.0 Po.of
051 0.5
1.0 — — : . 4.0— . , .
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
o o
(a) pp =0.4,p2=02,p3 =0.1 (b) p1 =0.4, p, =0.3, p3 =0.75
1.0 1.0
0.5 0.57
P 0.0 P 0.0
0.5 051
“1.01— — ; ; 04— —_ . .
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 05 1.0
o o
(C) Pr = 02, P2 = 04, pP3 = 0.3 (d) P11 = 04, P2 = 03, P3 = 0.84

Figure 6.1: Region of («, p) for familial structure.

For a given a, the unattainable range of p for binary variables is

—/A+a)/2<p< {)réiﬁmax{L(pl,m), L(p1,ps3), L1(a)}

or

Iglg}min{U(pl,pz), U(p1,p3), Ur(@)} < p < /(1 +@)/2
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1.0 1.0
051 0.5
P 0.0 Po.0
0.5 0.5
1.0t . . . .0 — — — :
-1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0
o o
(a) 1= 04, P2 =pP3 = 0.3 (b) 1= 04, P2 = 02, P3 = 0.8
1.0 1.01
0.5 0.5
P 0.0 P0.01
0.5 0.5
1.0 1 . . : 1.0 — s :
-1.0 0.5 0.0 0.5 1.0 -1.0 0.5 0.0 0.5 1.0
o o
() pr=p2=p3=03 (d) pr=p2=p3 =05

Figure 6.2: Region of (o, p) for familial structure: special cases.

where A = [p € (0,1)3 : L(py, p3) < @ < U(pz, p3)]- Table 6.4 contains the range of
p, computed numerically, that is unattainable by familial binary variables for given

values of a.
A Variant of Familial Correlation

Suppose that the parent-sibling correlation has an auto-regressive pattern. In
this case a reasonable model for the familial correlations between a parent and the

first and second child is the structure

1
R=}| p

2

P
a |- (6.1.7)
P 1

QR =

For Gaussian variables, the ranges of parameters p and « for the structure (6.1.7)
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Table 6.4: Unattainable range of p for given o

a Unattainable range of p
-0.9 (-0.2236, -0.2205) U (0.2212, 0.2236)
-0.6 (-0.4472, -0.4448) U (0.4460, 0.4472)
-0.3 (-0.5916, -0.5892) U (0.5904, 0.5916)
0.0 (-0.7071, -0.6988) U (0.7013, 0.7071)
0.1 (-0.7416, -0.7202) U (0.7201, 0.7416)
0.2 (-0.7746, -0.7416) U (0.7418, 0.7746)
0.3 (-0.8062, -0.7616) U (0.7613, 0.8062)
0.4 (-0.8367, -0.7877) U (0.7871, 0.8367)
-0.8660, -0.8158) U (0.8143, 0.8660)
(
(

05 (

0.6  (-0.8944, -0.8428) U (0.8433, 0.8944)
0.7  (-0.9220, -0.8762) U (0.8748, 0.9220)
0.8  (-0.9487, -0.9119) U (0.9123, 0.9487)

0.9  (-0.9747, -0.9533) U (0.9531, 0.9747)

are given by

—-l<p<land - (1—-p)V1+p2<a<p®+(1—-p)V1+p2,
or equivalently,

5v3 5v3

—— < a<

9 5\%

or —-l<a< . and Tis(a) < p < Tag(a); Top(a) < p < Top(e),

5f

or —<axl and Tis(a) < p < Tim(a); Tip(e) < p < Top(a),

and Tis(a) < p < Tyr(a),

where Tls, Tim, Tip and Thg, Torr, Tor are the roots of the equations p® +
VS —pt—p+1 = aand p® — /pS—pt—p2+1 = o for fixed value of « in
the range of (—1, 1), respectively. Note that T15 < Tipr < Ty and Tos < Topr < Top.

We have the following result for the ranges of p and « for binary variables.

Theorem 6.2 Let'y = (y1, Y2, y3s) be a binary vector with mean p = (p1, P2, P3),
0 < p; < 1, and correlation matriz R given by (6.1.7) with parameters p and . Then
a joint binary distribution for y exists if and only if the following two conditions are
satisfied:

(1) max{L(p1,p2), —/U(p1,p3)} < p < min{U(p1, p2), VU (P1,p3)}
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(2) max{L(ps, ps), L1(p), L2(p)} < a < min{U(ps, ps), U1 (p), U2(p)},

where

Li(p) = (01030’ + 0102p — P142g3 — Q1P2ps)/ 0203

L2(P) = (—0103P2 — 0102p — p1P2P3 — (I1Q2¢I3)/0203
Ur(p) = (—01030" + 01020 + P1Pags + 142p3) /0203
Ua(p) = (0103p° — 0109p + P1gaps + q1P2g3)/ 0203,

or alternatively,

(i) L(p2, p3) < a < U(pa, p3)

() max{L(p1,p2), —/U(p1,p3) , L ()} < p < min{U(p1, p2), vV U(p1,p3 }, Ui (@)}
and p < Ly(a), p 2 Up(a); p < Li(a), p = Uy(a),

where
Iy 0102 — \/020% — 40103(02030 — P1P2gs — ¢1Gap3)
1(a) = 2
0103
, 0102 — /0202 + 40103(02030 — P1gaP3 — q1P2G3)
Lz(a) =
20103
17 —0103 — \/020% — 40103(09030 + P1Paps + q1G243)
3(&) = 2
0103
Ulle) = —0o102 + \/0%03'*‘40103(020304'1)2])3(11 — G2G3P1)
1 20103
y 0103 + /0503 + 40103(02030 — P1gapPs — q1P2gs)
Us(a) =
20’10’3
, —0102 + \/020% — 40103(02030 + P1P2p3 + 010203)
Ug(a) == 20103 .

The proof of this theorem parallels the proof of Theorem 6.1. A necessary and
sufficient condition for the existence of the joint distribution is that the eight trivari-
ate probabilities given in Table 6.1 are non-negative. Note that py3 = p1 ps + p o109,
P13 = p1P3 + ptoi 03, and py3 = paps + aoy03. Using the notation of 16 pair-
wise inequalities in (6.1.5) and (6.1.6), we have L(p;,p2) < p < U(p1,p2) from (1),

(2), (3) and (4); L(p1,ps) < p* < Ulpr,p3) or V/U(p1,p3) < p° < +/U(p1,p3)
from (5), (6), (7) and (8); L(pa,p3) < a < U(p2,ps) from (9), (10), (11) and (12);
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max{Li(a), La(a)} < p < min{U:(a), Uz(a)} from (13), (14), (15) and (16). A re-
arrangement of these conditions results in the other expression. This completes the

proof of the theorem. <

Figure 6.3 shows the permissible range of (o, p) for different values of p. The
feasible region for Gaussian variables is the area enclosed by the outer curve, and the

embedded curve contains the feasible region for binary variables.

1.01 1.0
0.51 0.5
P 0.0 Po.0
0.5 0.5
1.0 : = . . 1.0 44 . , : ,
4.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
a ()
(a) p1 = 0.4, p» = 0.3, p3 = 0.25 (b) pr = 0.2, po = 0.4, p3 = 0.3
1.0 1.01
0.5 0.5-
P 0.0 Po.0;
0.5 0.5
-1.0- : — . , -1.0- — : — :
1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
04 o
() pr=p2=p3 =05 (d) pr =04, p2 =p3 =0.3

Figure 6.3: Region of («a, p) for variant familial structure.

Theorem 6.2 shows that for a fixed p € (—1, 1), the range of a unattainable by

binary distributions with correlation structure (6.1.7) is given by

= (1= )V1+p < a < minmax{L(ps,ps), L1(p), Lz()}

or

max min{U (pz, ps), Us(p), Us(p)} < @ < p* + (1 = p*) /1 + p?
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where
B= [P € (0,1)3 : max{L(p1,p2), —/U(p1,p3)} < p < min{U(p1,p2), \/U(p1,p3 }]

Table 6.5 contains the unattainable range of a calculated numerically for some

given values of p. The unattainable range of @ when p < 0 has a similar pattern.

Table 6.5: Unattainable range of a for given p

p Unattainable range of «
0.1 (-0.9939, -0.9923) U (0.9934, 0.9959)
0.2 (-0.9710, -0.9689) U (0.9807, 0.9870)
0.3 (-0.9231, -0.9210) U (0.9635, 0.9771)
0.4 (-0.8407, -0.8364) U (0.9438, 0.9687)
0.5 (-0.7135, -0.7101) U (0.9258, 0.9635)
0.6 (-0.5303, -0.5271) U (0.9056, 0.9624)
0.7 (-0.2795, -0.2722) U (0.8996, 0.9655)
(
(

0.8 (0.0510, 0.1421) U (0.9024, 0.9730)
0.9 (0.4734, 0. 6460) U (0.9301, 0.9846)

Extension to Nuclear Familial Correlation

A natural extension would be to consider a nuclear family with two parents and
more than two children. For example, we could consider correlation structure of the
form (5.1.1) given in Section V.1. Recall that the necessary and sufficient conditions

for (5.1.1) to be positive definite are

1) -1<vy<1
@) -gH<a<l1

(3) ti(pf + 3 — 2vp1p2) < (1 —¥*)[1 + (t: — 1)a].
The conditions for the existence of a joint distribution for binary random variables
with correlation structure (5.1.1) are complicated. However, note that the results

in Section V.1 are necessary conditions for the existence of the three dimensional

marginal binary distributions, corresponding to the sub-correlation matrices.
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VI1.1.2 Ranges of Odds Ratios

An alternative measure of association for binary variables is the odds ratio, which is
less constrained than the correlations. The odds ratio for a pair of binary random

variables y; and y; is defined as (Agresti, 2002)

Plyi=1,y;=1)P(y; =0,y; = 0) _ pii(1 — pi — pj + pij)
P(yi=1,y,=0)P(y; =0,y; = 1) (pi — pij)(p; — Pij)

Yij = (6.1.8)

Note that E(y.y;) = pij = pij(¥i;) = C(pi, pj, ¥i;) where for fixed 4, the function
C(u,v,) is the Plackett copula (Joe, 1997) given by

1+ wt o) - 1)~ VET @t )@ - DF - @ —Duv .
O, v,) = 20— 1) M7l
v if y=1.

For a fixed ¢, C(u,v, ) is simply a bivariate distribution function with uniform

(0,1) margins. The next theorem gives feasible ranges for the familial odds ratios.

Theorem 6.3 Let y; and (yz, y3) be binary outcomes on a parent and two children,
respectively. Suppose 1 is the common odds ratio between the parent and the two
children, and let 1o be the odds ratio between the children. A trivariate binary dis-
tribution for y = (1, Y2, ys) with mean p = (p1,p2,p3), 0 < p; < 1, exists if and only
if

0 < %o < oo and Pr(pP,%o) < ¥ < Yu(P,v0), (6.1.9)
where the lower bound 11(p,%0) = 0 if p1 +pa+ps < 1+p23(vo) or pr+pas(the) > 1.
Otherwise, ¥ (P, ¥o) is the positive Toot of the equation 1 — p; — p2 — ps + p12(z) +
P13(x) + pas(tho) = 0. The upper bound Yy (p, o) = 00 if p1 < pas(vbo) or p2 +ps <
D1+Dp23(0). Otherwise Yy (p, o) is the positive root of the equation pas(vo) —pi2(x)—
ps(z) +p =0.

Proof. It is well known that the range of ;; as a function of p;; is [0, 00), clearly, the
range for v is [0, 00). Notice that p;;(¢) = C(pi, pj, ) is increasing in its first two
arguments and is also increasing in 1 for ¥ € [0, 00), and 1}1_1’1;o pi;(¥) = min(p;, p;).
We will show that inequalities (13) and (14) in (6.1.5) always hold for 0 < 9 < oo.
Let g(¢)) = p12 — P13 + p3 — pas, if p2 > ps3, then C(p1,p2, %) > C(p1,p3,¢) and
ps > C(p2, ps, o) and therefore g(3) > 0; if p, > ps, then C(p1,p2,¥) > C(ps, p2, ¥)
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and p3 > C(p1,ps, o) and therefore g(¢)) > 0. Now we only need to prove g(¥) >
0 when p; > max{p;,p.}. Imitating the proof in Chaganty and Joe (2006), let
(U, V) ~ C(u,v,v), then dC(u,v,v¥)/0u = Pr(V < v|U = u) is increasing in v.
Consider g = g(p1) as a function of p; varying in [0, p3) for fixed values of p,, p3 and

1, we have 9(0) = p3 — pa3 = 0 and Q(Ps) =pP3— C(pz,m, Tﬁ) > 0. Since p3 > p,, we
also have

dg(p1) _ Op12  Opys

Op; op1 Op
= Pr(V <po|U =p1) —Pr(V < ps|U = p1) <0.

Thus g is nonnegative for all p3 > max{p;, p.} and 1. This proves (13). By symmetry,
inequality (14) also holds for 0 < 9 < oo.

Also notice that for (15) in (6.1.5), k(v0) = p23 — p12 — P13 + 1 is decreasing in ¢ and
for (16) in (6.1.5), [(¥)) = 1 —p1 — P2 — p3 + P12 + P13 + Pas3 is increasing in 9 for fixed
value of 1. In order for k(3) and (%)) to be nonnegative for all ¢ € [0, c0), we must
have k(o0o) > 0 and [(0) > 0. Therefore,

k(o) > 0 <= { P23 2 1
P1+ P23 2 P2+ ps
P1t+ps>1
Pr+p2+p3<1+ps.
In addition, if £(¢) and I(y)) are not always nonnegative for ¢ € [0,00), then (15)
and (16) in (6.1.5) hold if and only if ¥.(py, p2, p3) < ¥ < Yy(p1, P2, p3). The other

twelve pairwise inequalities in (6.1.5) hold trivially for 0 < 1y < 0o and 0 < 9 < c0.

[(0) >0 «— {

This completes the proof of the theorem. <

Table 6.6 contains the range of i given p;, p2, ps, and 9 for the different cases

that can occur.

VI1.1.3 Ranges of Kappa Statistics

Another measure of association between two binary variables is the kappa statistic.
Let y; and y; be two binary random variables with marginal means p; and p;. The

kappa statistic k;; is defined as
2(p;; —pip;) _ 2(pi; — pipj)

Y pitpi—2pip;  Pigi+Pid
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Table 6.6: Bounds for the common odds ratio

1L P2 Dp3 Yo pos YL Yy
03 01 0.2 2 0.0315 0 00
01 03 04 1.5 0.1407 0 00
04 02 0.3 0.5 0.0390 0 24.5390
05 08 0.75 1.5 0.6128 0 o0
0.85 06 0.65 2  0.4281 0 o0
0.65 0.8 0.75 0.5 0.5816 0 22.0627

03 05 0.7 2 0.3859 0.0537 00
06 03 035 4 0.1727 0.0265 00
05 03 04 0.5 0.0866 0.0866 11.5492

See Agresti (2002). Since max{0,p; +p; — 1} < p;; < min{p;, p;}, we have

Ki(p1,p2) < k < Ku(p1, p2), (6.1.10)
where
. —2ab —2(1 —a)(1—1b)
Ki(a,b) = max{a(l -b)+(Q—-a)’ a(l-0b+(1 —a)b} ’

K.(ab) — min{a( 2a(1 — b) 2(1 — a)b }

1-8)+(L—a)b’ a(l—b) + (1—a)b

In practice k;; = 1 indicates a perfect agreement and x;; = 0 indicates a completely

random agreement between the binary variables y; and y;. Note that

pi +pj
2

Pij = PiPj t+ Kij ( - pipj) = pipj + Kij dij (6.1.11)

where d;; = (pig; +¢ip;)/2. Equation (6.1.11) resembles the relation between p;; and
the correlation p;;. The equations are similar except that o; o}, the geometric mean
of pig; and p;q;, is replaced by d;;, which is the arithmetic mean of p;q; and p;q;.
Therefore, if £ and k¢ denote the parent-sibling and common sibling-sibling kappa
statistics, the feasible ranges of these two kappa’s can be deduced from Theorem 6.1

as

(1) Ki(p2, p3) < ko < Ku(p2,p3)

(2) max{Ki(p1, p2), Ki(p1,p3), K1(k0)} < £ < min{Ky(p1,p2), Ku(p1,p3), K2(%0)},
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where

—(ko daz + P1P2P3 + 11G2G3)

di2 + dis
Ko da3 + P19243 + q1P2P3

di2 + di3

Kl(fio) =

Kz(lio) =

VI.1.4 Ranges of Relative Risks

Relative risk is another important measure of association for binary variables. The
relative risk of y; with respect to y; is defined as the ratio of the conditional proba-
bility that y; = 1 given y;, or mathematically (Agresti, 2002)
Plyj =1y =1 _ py(1—p)
Ply;=Uyi=0)  pi(p; —pij)
Equation (6.1.12) can be rewritten as

00 = (6.1.12)

9j|ipipj
1+ (65 — 1)ps

For the familial binary case, it may be reasonable to assume that the relative risk

Pij

of the children given their mother’s status is same, that is, 03y = 03, = 6. Suppose
that «a is the sibling-sibling correlation. Then we have

0 p1p2 0 p1ps3

= — = — = + oy 03.

P12 1+ (0 - Up P13 1+@—pm P23 P2D3 203
A trivariate binary distribution for y exists if and only if the following three conditions
hold: |

(a) max{0,p1 + p2 — 1} < p12 < min{p1, p2}
(b) max{0,p; + ps — 1} < py3 < min{p,, ps}
(c) max{0, p12 + pas — p2} + max{0,p; + p2 +ps — P12 — p2s — 1}

< p13 < min{p1z2, p23} + min{p; — p12,P3 — Pas}-

Note that conditions (a), (b) and (c) are equivalent to (6.1.4) (see Chaganty and Joe,
2006). It is easy to check that (a) holds if and only if

max{0,1 — go/p1} < 0 < {q1/(max(p1,p2) — )}

and (b) holds if and only if L(p,,ps) < a < U(pa, ps). However, simplification of (c)

is cumbersome and does not yield neat expressions for the joint range of 6 and «.
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V1.2 Multivariate Probit Model and Parameter Estimation

The classical model for analyzing multivariate binary response variables y; is the
multivariate probit model (Ashford and Sowden, 1970). The mass function of y; =
(¥i1, Yiz, - - - » Yar;) is given by

R-1,,.
Pr(y,-)z/ / -—}—;exp{—E’Pb—"ﬁ}dzi (6.2.1)
c, Ja (2m)Z|Ry|? 2

c— { (—oo,)  if 4 =
3 .
(5, 00) ify; =0

where

Note that Pr(y; = 1) = @, (), where pu, = (11, - - ., piz,) and @y, () is the cumulative
multivariate normal probability function of dimension ¢;. Accurate computation of
the joint probability (6.2.1) is a challenging problem, and many evaluation meth-
ods and approximations were proposed (Henery, 1981; Genz, 1992 and Joe, 1995).
However, we could reduce the multiple integral to a one-dimensional integral for
some structured correlation matrices using stochastic representations. For example,
suppose that R; is an exchangeable structure with parameter .. Let Uy, Uy, ..., Uy,

be independent identically distributed as standard normal. Consider the stochastic
representation (Kotz et al., 2000)

Zj = \/5U0+\/1—an fOI'j=1,2,...,ti. (622)
It is easy to verify that
Var(Z;) = a+(1—a)=1
COV(Z]', Zk) = COV(\/& Uo, \/a Uo)

= & COV(U(), Uo)

= (84 5
and therefore the correlation between Z; and Z; (j # k) is given by

Cov {Zj, Zk}

\/Var(Z;)Var(Zy)
Using the above stochastic representation, we can see that the multiple integral in
(6.2.1) can be reduced to

Corr {Zj, Zk} =

o) ti
Priv) = [ o) [ (- 207 duo.
LA 1
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where p; = ® (ﬁ”\/-;_ﬂ‘g) Suppose that the correlation matrix R; has a familiar
-«

structure with parameters p and «. In this case we can introduce another standard
normal random variable Uy, which is independent of U;’s. Consider the stochastic

representation

Z; = \/_U0+\/1—aU

Iu = U, + 1——UM. (6.2.3)

f
Clearly, Corr(Z;, Zx) = « for j # k, and

2 2

Var(Zy) - 8_ G p_ -
Cov{Z ZM}
C Z'a Z = S B .
orr {Z;, Zm} VVar(Z;)Var(Zy) ’

In this case we have

i Bin — = Uo b u"—\/aug>
Pr(y; =1) = ug) ¢ | ———=— & L —=—— ) dug.
(Yz ) /_w¢( 0) 1_L2 H ( \/1—_5 0

Suppose that R; corresponds to a family structure that includes an additional
parameter <y representing the correlation between the parents. In this case we can
introduce independent standard normal variables Ur and Up, which are also inde-

pendent of U; and Ujs. Consider the stochastic representation

Zj = \/&Ug-f-Vl—OlUj

— 2
Zu — _pz_UOJr\/1_%@&%+ [ by
Va a @
2
Zr = AUG+\/1_7+MUF+,/7_PI_/)2UP. (6.2.4)
Ve a o

Clearly, Corr(Z;, Z) = a. We can check that

2 _ 2
Var(Zy) = %+ 1—7+&p27& +{’7—£1aﬂ} =1

9
Var(Zp) = %+ 1—7+&’—)"’a—p1— +{7—E‘Zp3} =1
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and

R

COV{Zj,ZM} = COV{\/_U(), 2 U()}

Cov{Z;, Zr} = Cov{\/&Ug,%Uo}

(67

Cov{Zum,Zr} = V{%UO+ [y _ﬂp_zyp,\/_ /7—%2UP}
_ P1p2 Plpz
= Sl
Therefore,
Corr{Z;, Zy} = CoviZ;, Zu} .
\/V&I'(Zj)V&I‘(ZM)
Corr{Z;, Zp} = Cov{Z;, Zr - n
v/ Var(Z;)Var(Zr)
Zym, 2
Corr{Zy, Zr} = Cov{Zu, Zr} — A,
‘ \/Var(ZM)Var(Zp)

95

In this case the multiple integral in the expression for Pr(y; = 1), reduces to double

integral

/_ : ¢ (up) /_ : $(uo)® (i) @ (in) Jli[s o (%) dug duy,

or

[ ¢uO>H<1>(“”\/— ) [ ) (5)® () iy

with

P SR ST
w‘l i1 \/a 0 o P
i

2
\ﬂ_7+w
a

iy — g — 7_01/72“

1 14
o

Vg = \/— .

_ 2
\/1_7+m_f>_z
(6
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Note that while the stochastic representations solve computational difficulties, they
however, add additional constraints to the parameter space. For example, the feasible
range for « in an exchangeable correlation structure is [0, 1). For familial structure,

we have the range of the correlation parameters as
0<a<1l and p’<a

which is also contained in the region given in Section IV.1.

The maximum likelihood estimates of the latent correlations can be obtained by

maximizing the log-likelihood

¢ = constant + Z log{Pr(y;)} (6.2.5)

i=1

or solving the likelihood equations

Computation of ML estimates and the asymptotic standard errors of the esti-
mates is extremely time consuming. An alternative method is to solve the unbiased

estimating equation

Gove - -

where R; = vech(R,), Ziz = vech(z;z}) and V; is the covariance matrix of ;:zz We
could also add the additional restriction tr(W;) = 0 so that a subclass of estimating

equations can be expressed as

Z tr {W,R; 'z,z; }
i=1

V1.3 An Illustrative Example

To illustrate the analysis of binary data, we modify the familial data set used in

Section IV.5. We have generated binary data on the mother and her children by
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Table 6.7: Familial data set with binary outcomes

Family Member Age Pre-ATP Post-ATP

2 Mother 62 4.43 1 (2.49)
Son 24 418 1(1.49)

Son 41 481  0(2.84)

Daughter 31 4.42 1 (2.04)
Daughter 38 3.65 1(1.17)

3 Mother 50 379 1(1.28)
Son 7 472 1(1.19)

4 Mother 55 542 0 (3.65)
Son 23 530  1(2.16)

Son 27 448 1 (2.40)

Son 19 485 0 (3.28)

5 Mother 57 4.71 1 (2.23)
Son 32 419 1(1.33)

Son 28 343  1(1.85)

22 Mother 45 5.29 0 (3.27)
Son 24 5.30 0 (4.10)

Son 20 525 0 (3.67)

truncating the ATP levels using the medians as the cutoff values. In another word,
if the post ATP level of mother is greater than or equal to the median 3.05 of the
sample data on mothers’ post ATP levels, it is coded as “0”, indicating high level;
otherwise, it is coded as “1”, indicating low level. Similarly, if the post ATP level of
a child is greater than or equal to the median 2.84 of the sample data on children’s
post ATP levels, it is coded as “0”; otherwise, it is coded as “1”. Therefore, we have
binary outcomes, representing low-high post ATP levels for 19 families along with
the covariates pre-ATP levels, age and gender. Table 6.7 contains a partial list of the
modified data set.

For this binary data, we have computed the ML estimates of the regression and the

latent correlations using the probit model, as well as using the unbiased estimating
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equation approach. The parameter estimates, which are in agreement, are presented

in Table 6.8.

Table 6.8: Parameter estimates for familial binary outcomes

UFEFE MLE
Intercept -7.8620 -7.4949
Gender 0.4345 0.4154
Pre-ATP 1.5842 1.5067
P 0.5129 0.6080
1o 0.4884 0.5763
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CHAPTER VII
SUMMARY

In this thesis, we have studied alternative approaches to maximum likelihood for
estimating parameters in structured correlation matrices that are usually employed
in analyzing longitudinal and clustered or more generally correlated data. These
alternative approaches are based on constructing general classes of weighted unbiased
estimating equations using Cholesky decompositions of the inverse of the correlation
matrix. When the response variables are distributed as multivariate normal, we
have proved that the Godambe’s optimal unbiased estimating equation coincides
with the likelihood equation. For a general class of weighted unbiased estimation
equations, we have obtained optimal weights by minimizing the asymptotic variances.
However, unbiased equations employing these optimal weights are difficult to solve
for some structures, for example the familial correlation structure. Therefore, we
have introduced an additional constraint on the weights and studied properties of
the subclass of unbiased estimating equations. We have also suggested, for common
correlation structures including the familial structure, weights in a closed form that
are close to being optimal. Using simulations we have shown that these approximate
weights yield highly efficient and robust estimates, which are easy to compute and

do not run into computational problems.

When the response variables are binary, it is well known that the ranges of com-
mon measures of associations are restricted by the marginal means. Understanding
these restrictions is the key for developing efficient methods of estimation for the
associations. In this thesis we have studied ranges of association measures includ-
ing correlations, odds ratios, kappa statistics and relative risks for familial binary
variables. We have generalized the classical multivariate probit model to estimate
familial correlations. Computing the maximum likelihood estimates was facilitated
by the use of a stochastic representation of the latent familial variables. We have
also studied the use of weighted unbiased estimation equations. The results were

comparable with the maximum likelihood estimates.
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APPENDIX
CHOLESKY DECOMPOSITIONS

We want to decompose structured matrix R into PT'P’ or R™! into BAB’ where
P and B are upper (or lower) triangular matrices with unit leading elements and T’
and A are diagonal matrices. The structures that R assumes are: (1) component
symmetry (CS) (or exchangeable); (2) first order autoregressive (AR(1)); (3) familial

(single parent); (4) nuclear familial (two parents).

A.1 Exchangeable Correlation Matrix

The exchangeable correlation matrix is defined as R = (1 — a)I+ aJ of order t. The
Cholesky decomposition matrices of R are:

- -

0
o
P, = :
a I_%a 1 0
L. a ifa ot 1+(tci‘2)a 1 - txt
1 o0 ... 0 |
0 1—-a% ... 0 0
I‘l = : :
A-a)(1+(t-2)a] 0
1+(t-3)e
0 (1=-a)[1+(t—1)a]
| 1+(t—2)a il
or
_ o o .
+(t—2)a °~°° 1t+a
0 1 1—_‘}"_0—
P,= :
0 o
0 ... 0 1
5 Jixt
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The inverse of R is well known as 1—131

matrices of R™! are:

B, =
A =
or
B,
0
A, =

B gl—a!]lﬂt—l!a

(-

1+(t—2)a

0

0

(1-o)[1+(t—2)0]
1+(—3)a

0
0

_ a
(Q-o)[14+(t-1)a]

1 0 0
1+(-t_32)a
1+(:f2)a 1+(;f3)a 10
i 1+(;(—12)a 1+(;‘—13)a —a 1 | xt
1+(t—2)cx 0
a){1+(t-1)a]
0 1+(t—3)a
(1—-a)[1+(t—2)af
1—1112 0
0 0 0
l —a 1+(;f3)a 1+(;f2)a
0 1 -0 -0
1+(t—-3)a 1+(i-2)a
—a
1+(-2)a
0 1
- = ixt
0 0
1
1-a? 0 0
14(t-3)a
0 (1-a)1+(t—2)a] 0
O 1+(t—2)a

104

= ixt

J, and the decomposition

txt

(T=a)[t+(t-1)e]

txt
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A.2 First Order Autoregressive Correlation Matrix

The first order autoregressive correlation matrix is defined as

then the decomposition matrices are:

[ 1 0
84
P, =
t—2 at—3
at—l at—Z
or
0 1
P, =

0

o o
1
o 1
at-2 ot-3

txt

The inverse of R is known as

txt

1
1-a?

105

t—1
o2
-3
1
Jixe
1 0 0 |
0 1—¢a? 0
0 1—a? 0
0 0 0 1—o?
< txt
1—o? 0 |
0 1-ao?
0 0 1-a® 0
0 0 0 1
txt

(I + a?Cy — aC,) where diagonal matrix Cy =

diag(0,1,1,...,1,0) and C,; is tridiagonal matrix with 0 on the main diagonal and

1 on the upper and lower diagonals. The decomposition matrices of R™! are:

B, =

1 O
—a 1
0

Reproduced with permission of the copyright owner.
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A

l—la:2 0 0
0 1—1a2 0 O
0 0 - 0
| 0

Further reproduction prohibited without permission.

= txt



or

1 —«

0 1

0 0
] 0

A.3 Familial Correlation Matrix

106

The familial correlation matrix with one parent is defined as

then the decomposition matrices are:

T, =

or

(1 0

p 1
Pl = _ 2
P —L?_pz
a— 2‘2
1—p2
a—p?
_ 1-p?

(1 0

0 1-p?

0 0 0
. 1
0 0 0 1-a? 0
A, = : :
1
— 0 0 1—a2 O
1
0 1 d s | 0 0 1-a? Jyxy
1 Pyt
Plixi (1 — o)lpxe + adixe (t4+1)x (t+1)
0 0 0 |
0 0 0
1 0 0
a—p? 1 0
1-p2+(t—3)(a—p2?)
a—p a—p? 1
1-p2+(t-3)(a—p?) 1-p?+(t-2)(a—p?) S (1) x(t+1)
(1—a)[1-p?+(t—2)(a—p?)] 0
1-p2+(t—3)(a—p?)
0 (1—a)1—p*+(t—1)(a—p?)]
1-p2+(t-2)(a—p?)  Jd (t41)x(t+1)
p F4 P 1
1+(t-1a  1+(t-2)a 1+o
1 a e 2
1+(t—2) 14+a
0 1 Tra
«
0

(t+1) X (t+1)
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_ 12 -
1— 1+(t—1a 0 0
0 (1-a)[1+(t-1)a
1+(—2)a
r, = : :
0 1-a?
i 0 0 1 (t+1)x (t+1)
The decomposition matrices of R™! are:
! 0 0 0]
T -T)a 1 U
B, = :
l+(:fl)a 1+(;f2)a 10
—p —a o
L 1+(t-1)a  1+(t-2)a = (t+1)x(t+1)
[ 1+(-1a 0 T
1+(t-1)a—tp?
0 1+ (t—2)ax
(I—a)[1+(-1)q]
A= : :
1
0 1—a? 0
L 0 1] (t+1)x (t+1)
or
(1 — p —p(1-c) —p(1-a) T
=P+ 11—+ 2)(a—p)
0 1 g oY S Y e
1-p2+(t-3)(a—p?) 1-p*+(t-2)(c—p?)
B, = : :
pPP—a
0 1-p2+(t—2)(a—p?)
B 0 1 = (t+1)x(t+1)
(1 0 0 0 ]
1
0 == 0 0
A, = : :
1-p%+(t=3)(a—p?) 0
(1-a)1—p2+(t—2)(a—p?)]
0 1-p%+(t-2)(a—p?)

(1-o)1-p2+(t-1)(c—p*)] d (t+1)x(t+1)
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A.4 Nuclear Familial Correlation Matrix

The complete (two parents) familial correlation structure is defined as

1 Y pllllxt
R= 0 1 P21
pilixi palixi (1 — a)lexe + @i (t+2)x (t+2)
if we define 9 = eitei—21pies y Yo = J—L—zﬂz FAL Gy = By = = =80
- —1—2— . = 0 = 1+(t e’ Y1 7 15 {E-1a’
2
and ¢; = Tﬁzﬁ&’ then the decomposition matnces are:
_ 7
0 0
Y 0 0
51 ui:,yzl 1 0 0
P, = : :
poBE ! 0
1 p2=YP1 Yo Yo
1—2 P Y+ (t—3)Ya
p p2=P1 Yo Yo Yo 1
| P15 Ty YH=3)va  PHE-2%a T ] (1y2)x(t+2)
(1 0 o 0 0 0 |
0 1-42 0 0 0 0
0o 0 ¥ 0 0 0
r'=1: : : . : . :
(1-p) [+ (t—=3)u
o 0 0 .. $+ (DY 0 0
o 0 o0 .. 0 Pt 0
Q=p)b(t=1)o]
0 0 0 .. 0 0 $HE-D%a  J (t12)x(t+2)
or
[ | 1=t __pm oo ]
1=¢: TH(-Da " T42a I+a A1
1 22 _&_ _&_ p
T+({t-Da " ° 1+2a 1+a 2
[03
0 0 1 H2a Tra &
P,= '
[
0 O 0 T+a
0 1 «
0 1
| 4 (t+2)x(t+2)
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[1-¢, -l 0 .0 0]
0 1— ¢y 0 .. 0 0
0 O (l—-a)[l+(t—l!a|
ru — l+(t—2)a
1-02 0
i 0 0 d t+2)x(t+2)

The decomposition matrices of R™! are:

1 0 0 ... 0 0 0
—2=¢%0 1
1-¢2
Yp2—p1 —p2
1+(t-Da—tp: 1+(t—1)a
B, = . .
Yp2—p1 —p2 —a 1 0
1+(t-1)a—tps 1+Et-Da 1+(-2)a ~°°
Yp2—p1 —p2 —a o
1+(t-1)a—tp: 1+(E-1a 1+(-2)a "' 1l+a
Yp2—PL1 —p2 - =
| 1+(t-Da—tpd 1+(E-Da 1+(t-2)a " 1+a J (t+2)x (t42)
[ ! 0 0 0 0 ]
_ 2
=
1
0 =% 1 (02)
+(i—-2)a
A= 0 L s oy 0 0
1
1—a? 0
B 0 0 0 0 1 J (t+2)x (t+2)
or
[ 1 _ Z(e=yp) —(-0)(e1—vp2) —(1-a)(p1—p2)
T T2 P17 T BrE2Yel(1-17)
0 —(p2=7p1) —(1-a)(p2—yp1) —(1-a)(p2—7p1)
1-v* ¢(1;'72) T [+H(E-2)¥a)(1-%)
B, 0 O 1 = D G
0 0 0 1 FHE-27a
B 00 0 0 1 J (t+2)x(t+2)
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i 1
0 0 O
— 2
1—¢1 - (‘yl—q;:)z)
0 1—1¢2 0 o
14-(t—2)a
A, = 0 0 A-o)1+(-Da] “** 0 0
0 0 0 e T2 0
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