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ABSTRACT 

 

LONGITUDINAL TIDAL DISPERSION COEFFICIENT ESTIMATION AND TOTAL 
SUSPENDED SOLIDS CHARACTERIZATION IN THE JAMES RIVER 

 

Beatriz E. Patino 
Old Dominion University, 2016 

Director: Dr. Jaewan Yoon 
 

 

The longitudinal dispersion coefficient is a parameter used to evaluate the effect of cross-

sectional variations on substance mixing mechanisms in estuaries influenced by tide, wind and 

internal density variations.  Considering a two dimensional approach, this study aims at 

evaluating a tidal area of the lower James River at approximately 19 miles upstream from the 

mouth at the Chesapeake Bay, in the City of Newport News, and applies an experimental 

procedure based on in-situ salinity concentrations to estimate the dispersion coefficient in the 

area where receives a discharge from the HRSD James River Wastewater Treatment Plant, and 

further characterizes Total Suspended Solids (TSS) mixing and transport mechanisms in the 

surrounding area.  In-situ data collection was carried out twice a day during two consecutive 

days (July 21st and July 22nd, 2016) to measure salinity, turbidity, temperature and velocity.  

Subsequently, Control Volume (CV) approach method with Steady State Response Matrix 

(SSRM) was applied to characterize the transport mechanism of Total Suspended Solids among 

eight segments in the study area, with two of them acting as boundary conditions. Statistical 

General Linear Model (GLM) method was used to develop in-situ correlationship between 

Turbidity and Total Suspended Solids from historical HRSD James River plant data series during 

the years 2001 through 2015.  Then measured Turbidity values were used to estimate 

corresponding Total Suspended Solids concentrations used in the study.  The results obtained 

during this research suggest that in the study area of the James river, dispersive mechanisms of 

Flood cycles influence the transport of TSS towards the upstream, reducing the effect of 

advective movement from the Warwick River towards the lower reach of the James. 
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1 

CHAPTER 1.   

LONGITUDINAL DISPERSION COEFFICIENT ESTIMATION IN ESTUARIES 

 

1.1. Introduction 

 Understanding substance mixing and transport phenomena is fundamental and essential 

processes to correctly predict the fate of any pollutant in the aquatic environment, and 

subsequently evaluate the attainability of desired water quality standards in loco. Resultant 

reactivity and physical transport per substance vary depending on the substance characteristic 

and corresponding mechanisms and processes of mass transport -- Advection, Diffusion and 

Dispersion, receiving body of water, and other environmental conditions. 

When a pollutant enters surface water, physical processes such as advection and 

dispersion, and spatial velocity distribution dominates the initial mixing and spatiotemporal 

spread of the pollutant in the adjacent areas. In rivers and streams where advection dominates, 

dispersive transport due to mixing is generally small compared with advective transport (Martin, 

1999). Estuaries, on the other hand, are coastal bodies of water with free connection to the open 

sea that have complex temporal transport and circulation processes controlled by tides and 

freshwater influx.  So that bidirectional flow and dispersive motion incur dynamic and complex 

progressions in flow, velocity and depth as well as result mixing and transport mechanisms.  

Dispersion and mixing processes in estuaries are greatly influenced by intrinsic salinity 

distribution. For instance, in highly salinity-stratified polyhaline estuaries, despite weak mass 

exchange among the interfacial region, effective vertical mixing within each layer is more 

pronounced. The existence of stratification as well as complex tidal fluctuations modifies the 

effects of vertical mixing and friction and therefore dispersion of substances introduced in low-

level outfalls has evidenced markedly differences from dispersion of those introduced into the 

freshwater flow (Martin et al., 1999). Thus salinity gradients can be used effectively to estimate 

segmental dispersion coefficients in estuaries. The longitudinal dispersion coefficient is a 

complex parameter applied to describe the turbulent diffusivity driven by the velocity 

distribution in an estuarine segment, and its numerical value varies significantly depending on 

the influence from freshwater discharge, tidal variations, bed friction, channel topography and 

density gradients (Shana et al., 2011). 
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 In terms of transport and fate modeling approach, dispersion is typically applied in one or 

two dimensional models or when averaging transport over a recurring event such a tidal cycle, 

where non-uniformities in velocities, temperatures or concentrations prevail.  

On the other hand, one dimensional models are applicable when topography and 

bathymetry of the estuary result in a long, narrow and sufficiently unstratified condition, then 

flow velocity, salinity and concentration of any dissolved substance are assumed to be dependent 

only on the relative distance from the mouth of the estuary. Under one dimensional 

approximation, all mixing mechanisms aggregate into one single longitudinal dispersion 

coefficient that is typically determined by using natural tracers such as salinity gradient (Fischer, 

1979). 

 

1.2. Factors affecting Dispersion, Mixing and Transport in Estuaries 

 To understand the mixing phenomena in estuaries, it is necessary to first evaluate 

spatiotemporal variability in physical processes in the body of water. According with Fischer 

(1979) and Martin et al. (1999), the most important factors influencing dispersion, mixing and 

transport of substances in estuaries are tides, Coriolis force, freshwater inflow and 

meteorological effects. 

 

Tides: 

Ocean tides are produced by interaction of the gravitational fields of the earth, moon and 

sun. The effect of tides causes (1) time-variable mixing through frictional interaction with the 

bottom and overlying freshwater flows, and (2) spatially asymmetric flow patterns during ebb 

and flood through interaction with the bottom topography. Tides are expressed in terms of 

amplitude and tidal current (over ebb and flood velocity fields).  The tide amplitude refers to the 

variation of water level about a datum level, which is produced by the effect of moon and solar 

gravitational fields, commonly known as spring and neap tidal cycles.  

Tidal waves can be treated as long-period within a linear system composed of a number 

of tidal constituents representing the periodic change in the relative positions of the earth, moon 

and sun (Fig. 1.1.). 

 

𝜁(𝑡) =  𝜁0 + ∑ 𝑓𝑖ℎ𝑖cos (𝜔𝑖𝑡 + 𝛼𝑖)𝑁
𝑖=1   Eq. (1.1) 
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Fig. 1.1. Tidal wave configuration 

  

 

where ζ(t) is the total variation of the water surface elevation at time t and N is the 

number of tidal constituents necessary to describe the time-varying water surface elevations at a 

specific location. ζ0 is the mean height above some datum, fi is a dimensionless factor for 

reducing the mean amplitude to the year of prediction, hi is the tidal amplitude, ωi is the angular 

speed of the tidal constituent, αi the phase shift and t is the time.  Tidal current characteristic in 

estuaries varies significantly with horizontal water movements associated with the rising and 

falling tides.  Each time the water changes directions there is a period of no net current, known as 

the slack water. (Martin et al., 1999). 

Another variation in tidal circulation and mixing patterns would occur when a particle 

become “trapped” during flood tide and remain in a specific location until ebb tide move it out of 

the embayment. This process is known as “tidal trapping” and it is associated to changes in 

bathymetry that creates velocity variations and turbulence. 

 

The Coriolis force: 

The Coriolis force affects wide and open estuaries resulting in all objects in motion on 

the earth’s surface to be deflected to the right in the northern hemisphere, or left in the southern 

hi 

𝜻(𝒕)  
𝜻𝟎  

𝒕  
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(Martin et al.,. 1999). In the northern hemisphere, less-dense water in wide estuaries affected by 

this force, moves to the right, while in the southern hemisphere, moves to the left. The relative 

importance of the Coriolis force can be estimated from the dimensionless Rossby number (R0), 

which is the ratio of the period of rotation to the time of advection (Fischer et al.,. 1979), given 

by: 

 

𝑅0 = 𝑈
𝐿𝑠𝑓

 Eq. (1.2) 

 

where   

 U = Horizontal velocity of the current 

Ls = Characteristic length scale for the estuary such as its width.  

f = Coriolis parameter 

 

When Rossby numbers (R0 <0.1) are in a low range, Coriolis effect is considered as an 

important factor for dispersion, mixing and transport of substances in estuaries.  

 

Freshwater inflow: 

Magnitude of freshwater flowing into an estuary has a significant impact on mixing 

characteristic. In some estuaries, the volume of freshwater is sufficient to maintain a density 

differential over large distances before being completely mixed into seawater. Increased 

freshwater inflow can change the character of an estuary from well-mixed to partially mixed or 

stratified in a wedge-shaped layer formation. Decreased inflow can have the opposite effect with 

a concomitant increased upstream intrusion of seawater. Freshwater inflows can also affect the 

duration of the flood and slack currents. As a result, the ebb current often lasts longer than the 

flood current (Martin et al., 1999). 

 

Meteorological effects: 

Meteorological effects include wind forcing and atmospheric pressure forcing. Wind 

effects include generation of circulation patterns by seasonal weather, modification of circulation 

patterns by localized weather and generation of waves and storm surges (Martin et al., 1999). 
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The effects of winds vary with the wind speed, direction, duration and size and shape of 

the estuary. Winds can result in wave action, promoting vertical mixing while surface currents 

can form due to sustained winds. 

In stratified estuaries, the effects of winds may be restricted to surface layers. In estuaries 

with relatively small freshwater inflows and with a small tidal range, wind is the dominant force 

in driving the overall circulation and in generating turbulent mixing (Martin et al., 1999). 

 

1.3. Estuaries Dispersion Coefficient Estimation 

Fischer (1979) indicated that mixing in estuaries results from a combination of small 

scale turbulent diffusion and larger scale variation of advective mean velocities. The main role of 

turbulent diffusion is to transfer mass between stream lines while longitudinal dispersion 

manifests when flows along with different stream lines are going at different speeds.  

Dispersion is considered as a turbulent eddy gradient process, and its magnitude will 

depend on the shear in the horizontal velocity, combined with the vertical turbulent diffusion. 

The dispersion increases as the rate of diffusion decreases (Dyer, 1997). Dispersion coefficient, 

E, is defined as the ratio of the non-advective transport rate of salt (or other substances) through 

a unit cross-sectional area to the salinity gradient along the main axis of the estuary (Shana et al., 

2011).  Thus dispersion coefficient is an essential component to describe and characterize 

complex substance mixing and transport phenomena occurring in the estuarine body of water. 

To express the diffusive property of the velocity distribution in the water, a parameter, 

longitudinal dispersion coefficient, Ex, is used to express the effect of cross sectional variations 

and mixing mechanisms in estuaries contributed by tide, wind and internal density variations.  

Larger dispersion coefficient values are expected in the salinity intrusion region of the 

estuaries compared to the ones found in the freshwater tidal portion. The dispersion coefficient in 

the fresh water portion accounts for the longitudinal mixing due to turbulent diffusion and shear 

induced velocity distribution in the transverse and vertical directions. In the saline portion, the 

velocity distribution is less uniform and the dispersion coefficient is closely related to 

gravitational circulation that depends on the salinity distribution. (Wilber, 1986) 

According with Schnoor (1996), there are no simple formulas to estimate the longitudinal 

dispersion coefficient in an estuary. It can be experimentally obtained from: 
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- Spatiotemporal salinity data over tidal cycles 

- Spatial distribution of dye (tracer) experiments 

- Temporal distribution of dye (tracer) experiments 

 

Estimation of Dispersion coefficient from salinity data in an estuary: 

As salinity decreases from the ocean to the upstream brackish portion of the salinity 

intrusion, it is considered as the “nature’s own tracer” of the longitudinal dispersion in an estuary 

(Schnoor, 1996). A mass balance differential equation for salinity, a conservative substance, at 

steady state is expressed by: 

 

𝐸 𝑑2𝑆
𝑑𝑥2

− 𝑢 𝑑𝑆
𝑑𝑥

= 0 Eq. (1.3) 

 

Applying boundary conditions 

 

B.C. 1 : S = S0 at x = 0 

B.C. 2 : S = 0 at x = - ∞ 

 

then the general solution yields to 

 

𝑆 = 𝑆0𝑒
𝑢𝑥

𝐸�       for  x ≤ 0 
𝑆 = 𝑆0               for  x > 0 Eq. (1.4) 

 

where 

 S = Salinity concentration, ML-3 

 S0 = Initial concentration at x = 0, ML-3  

u  = Net (tidal-averaged) velocity due to freshwater flow, LT-1 

x  = Distance from the mouth to upstream river (negative values), -L 

E = Dispersion coefficient, L2T-1 

  

The final equation is derived after taking natural log, and then it can be used to obtain the 

average longitudinal dispersion coefficient, E from the inverse of the slope. 
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𝑙𝑛 𝑆
𝑆0

= 𝑈
𝐸
𝑥 Eq. (1.5) 

 

Estimation of Dispersion coefficient from Dye (tracer) data in an estuary: 

Dyes such as fluorescent Rhodamine WT are often used to determine the mixing and 

transport characteristics of a substance effluxed into a natural water body. For large rivers and 

estuaries, the tracer can be assumed to be well mixed with depth and across the channel (lateral 

or transverse direction). (Schnoor, 1996). 

Dye studies are generally performed during high water slack tide and low water slack tide 

with the purpose of obtaining accurate measurements of non-tidal velocity. Either an impulse 

discharge or a continuous input of dye can be administered at an upstream location. Measured 

mass concentration distribution at downstream from the injection point can be used to determine 

parameters such as velocity and dispersion coefficient (Chapra, 2008). 

General mass balance partial differential equation that describes an impulse discharge to 

a 1-D estuary is given by: 

 
𝜕𝐶
𝜕𝑡

= 1
𝐴
𝜕
𝜕𝑥
�𝐸𝐴 𝜕𝐶

𝜕𝑥
� − 1

𝐴
𝜕
𝜕𝑥

(𝑄𝐶) − 𝑘𝐶 Eq. (1.6) 

 

where C is the concentration of the dye tracer (ML-3) and k is the first-order degradation 

rate constant (T-1) if the dye contains a non-conservative substance.   

Under a steady flow conditions (tidal-averaged) and relatively constant cross sectional 

area, equation Eq. (1.6) can be simplified and its general solution for an 1-D estuary can be 

derive by the integration as shown in Eq. (1.7).  Eq. (1.7) is then further transformed into a 

linearized form given in Eq. (1.8) to estimate the dispersion coefficient, E.  

 

𝐶 = 𝑀
2𝐴√𝜋𝐸𝑡

𝑒𝑥𝑝 �−(𝑥−𝑢𝑡)2

4𝐸𝑡
− 𝑘𝑡� Eq. (1.7) 

 

𝑙𝑛𝐶 = −𝜙2

4𝐸𝑡
+ 𝑙𝑛 � 𝑀

2𝐴√𝜋𝐸𝑡
� − 𝑘𝑡 Eq. (1.8) 
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where 

C = Concentration of dye, ML-3 

Ф = (x-ut) = Distance of the dye measurement from the peak concentration, L 

M = Mass of dye injected, M 

A = Average cross-sectional area of the estuary, L2 

E = Longitudinal dispersion coefficient, L2T-1  

t  = Time since release of the dye 

x  = longitudinal distance with x = 0 being the location where the dye was released and 

 downstream distance is positive, L 

u  = Net non-tidal velocity, LT-1 

k  = Sum of the first-order reaction rate coefficients for disappearance of the dye, T-1  

 

Thus, spatial distribution of dye mass concentration is expressed in Eq. (1.8), and a plot 

of lnC versus ф2 will yield a straight line with slope, which is  -1/(4Et). 

 

1.4. Problem Conceptualization 

 Water quality modeling in estuaries requires analysis on factors that influence 

hydrodynamic and hydromorphologic processes of the estuarine body expressed with a 

combination of advective and dispersive transport phenomena. Among these factors, tidal 

fluctuations is one of the most influential in forms of freshwater discharge and salt water 

intrusion fluxes that will dictates a particular dominance of either advective or dispersive 

transport in the estuarine body. A fundamental parameter describing such dominance in 

transports is the dispersion coefficient, E.  Dispersion coefficient is highly site-specific, and is 

essential to accurately represent the effect of cross-sectional variations and mixing mechanisms 

in estuaries caused by tide, wind and internal density variations. 

 Estimation of dispersion coefficient in estuaries is a complex process compared to that of 

unidirectional stream and riverine environments, and in most cases it includes a release of dye at 

a controlled source location followed by continuous monitoring at selected number of stations 

over multiple tidal cycles.  Alternatively, estuarine dispersion coefficient can be estimated by the 

application of the salt balance equation that uses the natural salt gradient presented in different 

segments of the estuary along with the averaged velocity over multiple tidal cycles.  
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There are few of previous water quality studies that had estimated dispersion coefficients 

for selected tributary rivers into the Chesapeake Bay such as the study carried out in the James 

River at the Nansemond River mouth by Dr. Albert Kuo of the Virginia Institute of Marine 

Science (VIMS) in 1974 in which a method for predicting the concentration distribution of a 

sewage effluent in the James River from a location where a sewage outfall of the Nansemond 

Sewage Treatment Plant was proposed to be built.  Another study was conducted in the 

Rappahannock River by Anne Catherine Wilber in 1986, whose purpose was to predict the 

dispersion coefficient considering the effect of vertical shear and transverse shear of the tidal 

flow in the freshwater portion of the estuary and the effects of gravitational circulation in the 

saline portion of the estuary. Yet the overwhelming majority of these studies were based upon 

the segmentation of the river over an extensive longitude (~ 20 Km) that estimated dispersion 

coefficients were in a very low-resolution and may not facilitate a necessary spatial accuracy 

required for predicting complex mixing and transport phenomena of substance in a finer scale or 

in a smaller area 

 In this study, in-situ samplings of the natural salt gradient at a tidal section of the James 

River were collected to estimate dispersion coefficients, then Total Suspended Solids mixing and 

transport phenomena in a tidal area of influence receiving the HRSD James River Treatment 

Plant discharge were characterized by using a Control Volume (CV) Finite Segment Method 

(FSM). 

 

1.5. Objectives  

Objective of this study is to estimate high-resolutioned, in-situ dispersion coefficients in the 

area of the James River in Newport News where receives an effluent discharge from the HRSD 

James River Wastewater Treatment Plant, and to characterize subsequent advective and 

dispersive transports of Total Suspended Solids in its estuarine body of water.  The main 

objectives are: 

- To use spatiotemporal salinity concentration measurements over tidal cycles to estimate 

site-specific longitudinal and lateral tidal dispersion coefficients in a small area of the 

lower James River influenced by the Warwick River inflow and the James River 

Wastewater Treatment Plant 
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- To develop a site-specific General Linear Model (GLM) by utilizing historical 

TSS/Turbidity data pair series obtained from the James River Treatment Plant, and to 

estimate TSS concentrations from Turbidity measurement collected in situ in this study  

- To apply the Finite Segment Method (FSM) and the Steady State Response Matrix 

(SSRM) to characterize Total Suspended Solids mixing and transport mechanisms in the 

study area with Control Volume (CV) approach and compare the estimated results under 

per tidal cycle and per tidally averaged cycles.  
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CHAPTER 2.  

LITERATURE REVIEW 

 

As previously discussed, dispersion is the primary factor controlling speed, magnitude 

and direction of transport of substances introduced in estuaries, and magnitude of dispersion is 

highly influenced by the longitudinal cross-sectional variation of velocities in the water.  

Subsequently, corresponding dispersion coefficient is a very site-specific parameter, and is 

required to be estimated in-situ to adequately predict mixing and transport of substances in the 

estuarine water.   This chapter describes and summarizes previous research works on estimating 

the dispersion coefficient. 

 

2.1. Dispersion studies  

Several studies had been conducted to estimate dispersion coefficient with the purpose of 

studying hydrodynamics, salinity intrusion or predicting fate and transport of pollutants in 

estuaries.  

 

James River, Virginia – Pritchard (1950) 

In 1950, extensive measurements were undertaken in the James River estuary by 

averaging measured data over one or more tidal cycles. The section of the estuary investigated 

was delineated between 20 and 45 Km above the mouth of the river, and a number of sampling 

stations were operated for three periods with a minimum sampling period of four days during 

which serial measurements of tidal current, salinity and temperature were taken. (Dyer, 1997) 

During this study, it was observed that the low water/ebb-cycle salinities were noticeably 

lower than the high water/flood-cycle values, and in some cases having concentrations at high 

water about 4 times higher than those at low water (Fig. 2.1). With respect to the velocity 

measurements, the cross-sectional mean value of the horizontal diffusive flow was calculated as 

less than 5% of the mean flow, indicative of a dominant advective tidal transport characteristic. 
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Fig. 2.1. Salinity distribution in the lower James. Left hand, high water; right hand,  
  low water. (Dyer, 1997) 

 

 

The main purpose of Pritchard’s study was to investigate the salt balance and the 

advective and diffusive properties in the lower reach of the James River estuary. The final 

outcome revealed that the salt flux rises with the tidal velocities, and the horizontal advective 

term and the vertical non-advective term (turbulent) term were most dominant in the study area, 

with the vertical advective term becoming important at mid-depth near the halocline. Reported 

value of vertical Eddy diffusion coefficient Kz was 9 cm2/s. 

 

Duwamish River, WA – Hugo Fischer (1965) 

In 1965, Fischer carried out a research in the tidal Duwamish River, WA, at the upstream 

reach of the point of discharge from the Renton Sewage Treatment Plant (today known as King 

County South Treatment Plant). The purpose of this study was to provide an exact description of 

the movement and dispersion of the sewage effluent introduced in the study reach and to make a 

detailed investigation of the basic mechanics of dispersion in a natural environment. 
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The study consisted in four trials of longitudinal dispersion experiments in which a dye 

(Rhodamine B) was injected upstream from the study reach with a series of observation stations 

established at downstream sections throughout the reach. Dye concentrations were measured and 

aerial photographs were taken over two consecutive days.  

Two different methods of predicting dispersion coefficients were employed in Fischer’s 

study; Integration of Taylor equilibrium profile and Numerical analysis. Integration of Taylor 

equilibrium profile is to determine diffusive transport by applying the conservation of mass 

equation: 

 
𝜕𝐶
𝜕𝑡

+ 𝑢 𝜕𝐶
𝜕𝑥

= 𝜕
𝜕𝑦
𝐸𝑦

𝜕𝐶
𝜕𝑦

+ 𝜕
𝜕𝑧
𝐸𝑧

𝜕𝐶
𝜕𝑧

 Eq. (2.1) 

 

where 

 c = Concentration at a point   

 u = Velocity at a point, in the x direction 

x = Coordinate in the longitudinal direction 

y = Coordinate in the vertical direction 

z = Coordinate in the lateral direction 

Ey = Turbulent diffusion coefficient in the y direction 

Ez = Turbulent diffusion coefficient in the z direction 

 

From lateral variations in dye concentrations, experimental values of Ez were calculated 

with a numerical integration of the mass balance equation from which values of dispersion 

coefficient were obtained. 

In Numerical analysis approach, computers were used to solve a step-by-step simulation 

of the physical process, where the total flow was divided by vertical lines into n cylindrical 

stream tubes of area A1, A2… An, with n ≤ 10 (Fig. 2.2.) to capture variations in lateral and 

vertical directions. Each stream tube then was assigned with a velocity value obtained from 

actual measurements. 
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Fig. 2.2. Division of flow into stream tubes. (Fischer, 1965) 

 

 

Findings of this study revealed significant tidal influence over dye concentration at river 

segments adjacent to the estuary, whereas in the most upstream locations, river segments behave 

as a normal uni-directional river, with the dispersion influenced largely by the bed friction.  

Dispersion coefficient estimates from two methods were very close to the estimates 

calculated from the dye study field data that validated the application of both Integration of 

Taylor equilibrium profile and Numerical analysis methods. It was also found that the accuracy 

of the Numerical analysis method is constrained to; a) uniform channel geometry and b) larger 

measurement points in the cross section to accurately capture variations in dye concentration. 

 

James River, VA at the Nansemond River mouth – Albert Kuo (1974) 

In the Hampton Roads area of Virginia, the Virginia Institute of Marine Science (VIMS) 

have conducted dye studies to evaluate dispersion and transport of pollutants in the James and 

the Rappahannock River During the summer of 1974, Kuo, A. and Jacobson, J.P. developed a 

method for predicting the concentration distribution of a sewage constituent in the James River 

from a location where a sewage outfall of the Nansemond Sewage Treatment Plant was 

proposed. In their study, Rhodamine WT day was use to conducted two dye studies to simulate 

release of pollutants during flood and ebb cycles.   

A number of assumptions used in the study include; a) due to the shallow water depth (in 

comparison to the horizontal dimensions) of the water body at the study site, the vertical 

variation of water constituents outside of the initial mixing zone is considered as negligible 

compared to the horizontal variations, and b) water quality problem is severe due to a weak 

density stratification occurred during summer time. 
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Two separate releases of the dye and subsequent mixing and transport were monitored for 

a period of four days in each dye study. Two moving boats equipped with flow-through 

fluorometers and navigation units traversed the study area at slack waters before ebb and flood. 

Collected data were transferred to a chart of the area and contours of equal dye concentration 

were drawn yet the study did not estimate resultant dispersion coefficients.   

It was observed that the initial plume at the first Slack before Flood (SBF) was narrow 

and long (about 6 miles long and less than 1 mile wide); at the following Slack Before Ebb 

(SBE), the dye cloud reached from shore to shore and dispersed over broad areas with several 

patches. At the second SBF the dye cloud further dispersed and moved downriver. By the fourth 

SBF the dye dispersed over a large area and much of the dye left the James and went into the 

Chesapeake Bay. The observations of dye concentration distribution clearly show the effects of 

advective transport occurred at SBF and its subsequent dispersive transport between SBF and 

SBE, where the salinity intrusion of the flood cycle increase the dispersive movement of dye 

concentrations over the area of study. The SBE and SBF were selected as they are the extremes 

of the tidal excursion and therefore the most significant periods to identify variations of 

concentration fields with phase of tide. Goal of the study was to predict the distribution of the 

concentration of the parameters of interest, Residual Chlorine in particular concern for possible 

adverse effects over oyster and clam larvae.  

 

Rappahannock River, VA – Anne Catherine Wilber (1986) 

The Rappahannock River, a partially-mixed estuary in the Virginia coastal plain, was 

simulated with a real-time, hydrodynamic and salinity intrusion model based on the one-

dimensional equation of conservation of volume, momentum and mass. 

Applying finite difference scheme, the estuary was divided into 44 unequal segments by 

locating 45 transects from the fall line to the mouth of the Chesapeake Bay.  In Wilber’s study, 

estimation of dispersion coefficient was formulated by applying three dispersion terms to reflect 

following effects:  

 

- Effect of vertical shear of the tidal flow 

- Effect of transverse shear of the tidal flow 

- Effects of gravitational circulation  
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The first two terms were applied in the freshwater portion of the estuary where dispersion 

coefficient accounts for the longitudinal mixing due to turbulent diffusion and shear induced 

velocity distribution in the transverse and vertical directions. The last term was applied to the 

saline portion of the estuary where the effect of gravitational circulation depends on the salinity 

gradient. 

The model was then calibrated for hydrodynamic parameters and longitudinal salinity 

distribution intrusion using the field data obtained from an intensive survey conducted on the 

lower Rappahannock during July 30 and 31 1973 (spring tide period) at slack water.  Model 

estimates were then compared with the field data, and results indicated that the predicted currents 

were lower than the measured due to predictions made for average current speed while field 

measurements were taken in the channel, where speeds were the highest. 

For longitudinal salinity distribution, the model estimates were accurate for a wide range of 

freshwater inflow rates; however, in the middle of the salinity intrusion region, the predicted 

salinities were lower than the measured while in the inner region of the intrusion the predicted 

values were higher, indicative of complex mixing mechanisms in saline region of the river. 

Study concluded that by incorporating the effect of gravitational circulation in the saline 

portion of the estuary, dispersion coefficient can be more accurately predicted, given that the 

dispersion due to of gravitational circulation effect is several orders of magnitude larger than due 

to the shear flow. On the other hand, shear flow was the prime source of dispersion in the 

freshwater portion of the estuary where the current speed was greatest. 

 

Sumjin River, Korea – Shana et al., (2011) 

Three years of hydrographic data taken at low and high tides along with the main 

longitudinal axis of the Sumjin River Estuary (SRE) in Korea were used to estimate the spatial 

and temporal variation of the effective longitudinal dispersion coefficient.  

In addition to the longitudinal dispersion coefficient estimation, the effects of freshwater 

discharge, tidal height and salinity gradient corresponding to the spatially varying longitudinal 

dispersion coefficient were examined. 

In this research, twenty-five (25) conductivity-temperature-depth (CTD) sensors were 

installed per monitoring station replicated in a 1 km resolution along the saline intrusion portion 

of the estuary. Subsequently, a total of 24 longitudinal salinity transects were obtained at low and 
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high tide during spring tide in each season from August 2004 to April 2007. 

To determine the longitudinal dispersion coefficient, the author applied the salt balance 

equation, integrated with respect to x (Savenije, 1986; 1989; 2005) with equilibrium between 

advective and dispersive fluxes under tidal average conditions: 

 

𝐷𝑖(𝑥) =  

𝑄𝑆𝑖(𝑥)
𝐴𝑖(𝑥)�

𝜕𝑆𝑖
𝜕𝑥

 Eq. (2.2) 

The numerator in Eq. (2.2) represents the advective rate of transport of salt seawards by 

the river flow, Q per unit area of cross-section, A(x) and the denominator represents the 

longitudinal salinity gradient. 

The results indicated that the range of the dispersion coefficient was rather broad at high 

water slack (HWS) (values varied between 100 and 494 m2/s) and narrower at low water slack 

(LWS) due to different tidal amplitudes. The spatially varying dispersion coefficient had 

maximal values (> 300 m2/s) near the mouth at high water, and decreased gradually toward 

upstream with fluctuations.  The temporally varying dispersion coefficients were positively 

correlated with river discharges at both low and high tide, where the estimated values increased 

with increasing river discharge and decreased with diminishing river discharges. 
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CHAPTER 3.  

STUDY SITE 

 

 Study site locates in the partially-mixed lower reach of the James river estuary in 

Virginia; a tidal section at approximately 19 miles upstream from the mouth at the Chesapeake 

Bay, in the City of Newport News.  The area comprises approximately 330,000 m2 (longitude: 

1100 m, width: 300 m) along the shore in the merging point of the Warwick River and the James 

River. The area is surrounded by a recreational park, a residential area and a wastewater 

treatment plant (James River Wastewater Treatment Plant). 

Study area was selected with the purpose of characterizing area’s mixing and transport of 

substances by advective and dispersive processes in a tidal estuarine body of water. 

 

 

 
Fig. 3.1. Map of Area of Study 

 

 

Although the James River has been subject to diverse source of pollutions along its 340 

miles length and subsequently many water quality studies had been carried out for estimating the 
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amount of nutrient loading into the Chesapeake Bay, there is no previous studies of dispersion 

coefficient estimation, or substance mixing and transport characterization performed in this 

particular area of the river, with an exception of the study developed by Pritchard back in 1950 in 

a low-resolution, meso-scale effort.  

In the study area, the James River receives the inflow of the Warwick River, a 14-mile-

long body of water surrounded by residential and commercial areas of York County, the City of 

Newport News and the Fort Eustis U.S. Army base. Due to the high population density along its 

watershed, there are multiple nonpoint sources of pollution mainly associated to wildlife, grazing 

livestock, urban/suburban runoff, failed and malfunctioning septic systems, and uncontrolled 

discharges (DEQ, 2007) that drain directly into the Warwick River or its tributaries such as 

Lucas Creek, Stoney Run Creek and Deep Creek.  

The only reported point source of pollution in the study area is the James River 

Wastewater Treatment Plant effluent whose submerged 60” and 48” diameter outfall pipes 

extend about 0.7 miles from the shore line that is configured with a 48” and 30” diffusers (Figure 

3.2.).   

Reported amount of TSS discharged by the plant during the two days of in-situ sampling 

(July 21st and 22nd 2016) conducted in this study was an average value of 1.3 mg/L at 12.46 

MGD of flow, for a total loading of 0.061 Kg/d.  With measured field sampling data, this study 

focuses in characterizing mixing and transport mechanisms of Total Suspended Solids in the 

River including the effect of TTS influx from the James River Wastewater Treatment Plant 

effluent discharge. 



 

 
 

20 

  
Fig. 3.2. HRSD James River Plant Outfall – Source: HRSD 
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CHAPTER 4.  

METHODOLOGY 

 

4.1. Assumptions and Limitations 

Estuaries are dynamic bodies of water with very complex hydromorphology and 

hydrodynamics, highly influenced by atmospheric processes, river discharge and salinity 

intrusion, it is critical to evaluate those site-specific factors to characterize and accurately predict 

mixing and transport phenomena. 

The main objectives of this study are to use in-situ salinity concentrations to estimate the 

longitudinal dispersion coefficient, and consequently perform a characterization of Total 

Suspended Solids mixing and transport mechanisms over a tidal section of the James River, 

evaluating the influence of advective and dispersive processes.  

 

4.1.1. Total Suspended Solids and Turbidity relationship 

Total Suspended Solids and Turbidity are parameters used to evaluate clarity of water 

contributed by organic and inorganic matters.  Both parameters are directly influenced by runoff, 

industrial, domestic wastewater discharge, aerial deposition and resuspension processes. 

Major difference between TSS and turbidity is that TSS is a measurable, mass-

quantitative parameter whereas turbidity is a relative, qualitative parameter.  Estimation of TSS 

requires a lengthy and tedious laboratory process whereas turbidity measurement can be obtained 

instantaneously.  As a result, turbidity is far more frequently used for describing level of water 

clarity. 

In this study, to obviate time consuming method required for determining Total 

Suspended Solids concentrations, a site-specific General Linear Model (GLM) was developed by 

utilizing 15-year TSS/Turbidity data series for the effluent discharge from the James River 

Treatment Plant.  Resultant GLM was then used to synthesize TSS as the dependent variable 

with an independent variable of field measured turbidity from the study site.  Estimated TSS data 

were used subsequently in Finite Segment Method (FSM) and the Steady State Response Matrix 

(SSRM) to characterize the Total Suspended Solids mixing and transport in the study area.  
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Following General Linear Model (GLM) analysis procedure was implemented for this 

study to develop an in-situ relationship between Turbidity and TSS. 

 

Univariate Procedure – Extreme Outliers identification: 

From 15-year TSS/Turbidity data series for the effluent discharge from the James River 

Treatment Plant, data distribution, statistical parameters and outliers from the entire data set of 

the dependent variable (TSS) were analyzed by using the Univariate procedure in the Statistical 

Analysis System (SAS) software.  Extreme TSS outliers beyond 3*Interquartile Range (IQR) 

were identified and screened to prepare a TSS/Turbidity model data series which has 3832 data 

pair observations. The extreme outliers were identified as any value equal or greater than 27.3 

mg/L of TSS. 

 

Univariate procedure – Normality test: 

Normality test was a necessary procedure to determine if the dependent variable (TSS) is 

normally distributed and therefore applicable to General Linear Model (GLM). TSS/Turbidity 

model data series of 3832 observations were examined with Kolmogorov-Smirnov (K-S) test at 

alpha=0.05 significance in the Univariate procedure, SAS. p-value from K-S test was less than 

0.05, indicative of non-normality of the dependent variable, TSS.  Alternatively, using a larger 

sample size condition, Central Limit Theorem was applied to the dependent variable, TSS, as 

approximately normally distributed for further analysis.  

 

General Linear Model procedure – Least-Square Regression Analysis (with Intercept 

suppressed): 

General Linear Model (GLM) development for the TSS and Turbidity relationship was 

the final step to determine if a real correlation between the two parameters existed. The linear 

least-square regression method with intercept suppression at alpha=0.05 was used for the 3832 

Paired observations. Results showed that the proposed least-square model was valid (p-value < 

0.05), indicating a contributing relationship between independent variable, turbidity and 

dependent variable, TSS. Estimated model performance was also evaluated with f0 ratio 

(=MSR/MSE), which was greater than 25. 
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 General form of the least-square regression model is expressed as; 

 
𝑦� = 𝛽̂0 + 𝛽̂1𝑥  (with intercept) Eq. (4.1) 

𝑦� = 𝛽̂1𝑥   (with intercept suppressed) Eq. (4.2) 
where 

 𝑦�  = Dependent variable (TSS) 
 x  = Independent variable (Turbidity) 
 𝛽̂0  = Intercept  
 𝛽̂1 = Regressor coefficient 

 

 Once estimated, estimated regression model validity is tested with a test of hypothesis on 

the correlation between the dependent and the independent variable: 

 

 H0: 𝛽̂𝑖     = 0 

 Ha: At least one 𝛽̂𝑖   ≠ 0 

 

 where 𝛽̂𝑖  represents the estimated regressors.   

 

 The null hypothesis H0, with a 95% level of confidence, tests if none of the independent 

variables or regressors is correlated to the dependent variable. For this evaluation, two scenarios 

were possible: 

 

 1. Rejection of Null Hypothesis (If p value is less than α = 0.05). In this case, the 

alternative hypothesis (Ha) becomes the final conclusion of the test that with a 95% level of 

confidence there is an insufficient evidence indicating that all regressors coefficients are zero; 

therefore, it will be highly likely that at least one or more regressors is different than zero, 

which means that there is a relationship between dependent and independent variable. 

 2. Non-Rejection of Null Hypothesis (If p value is equal to or greater than α = 0.05). 

In this case we conclude that with a 95% level of confidence there is sufficient evidence 

indicating that that all regressors are zero, indicating no correlation between dependent and 

independent variables. 

 



 

 
 

24 

 

Table 4.1. Test of Hypothesis results 
 P value F Value R2 

Hypothesis 1  
(Normality Test) <0.0100   

Conclusion 
with a 95% level of confidence there is insufficient 
evidence indicating that the TSS data came from a 
normally distributed system.  Alternatively, Central Limit 
Theorem was applied to assume normality. 

  

Hypothesis 2  
(Linear Regression) <0.0100 54073.1 0.9338 

Conclusion 

with a 95% level of confidence there is insufficient 
evidence indicating that all regressors coefficients are 
zero; therefore, it will be highly likely that at least one or 
more of the regressors is different than zero, which means 
that there is a relationship between dependent and 
independent variable. 

Good model 
performance 

(F>25) 

93.38% of 
the data is 

represented 
in the 

regression 
analysis 

 

 

The statistical analysis carried out by using the data set of Total Suspended Solids and 

turbidity from the effluent discharge of a wastewater treatment plant indicated a valid correlation 

between these two parameters (p-value < 0.05), providing sufficient evidence at 95% level of 

confidence indicating that TSS and Turbidity had a linear relationship.  Estimated model 

performance was also evaluated with f0 ratio (=MSR/MSE), which was greater than 25. 

(Appendix IV shows the SAS outputs). 

Estimated General Linear Model (GLM) to the site-specific to study area is expressed as; 

 

𝑇𝑆𝑆 (𝑚𝑔
𝐿

) = 1.71487 ∗ 𝑇𝑢𝑟𝑏𝑖𝑑𝑖𝑡𝑦 Eq. (4.3) 

 

Equation 4.3 will be valid over a TSS range between 1.5 mg/L and 27.5 mg/L according 

with the results of the Histogram.  
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4.1.2. Steady State Assumption and two-dimensional approach 

 

Although some estuaries may never be considered as steady-state systems due to 

continuous weather influences contributing to river flow, tidal ranges and sediment distribution; 

this study will assume general steady state conditions of flow and tidal characteristic at study 

site. 

Estuaries water quality studies generally consider two-dimensional models due to the 

sufficiently large width of estuaries where variations in longitudinal and transversal directions 

are considered more influential than vertical changes in salinity gradients. The relative 

shallowness in the section of the river in the study area is the rationale to apply a two-

dimensional approach in modeling TSS mixing and transport mechanisms.  According with Wo-

Seng Long (1993), there are two dimensional vertically averaged hydrodynamic models for 

water quality estimation: 

- Intratidal calculations: Where the tidal flows are explicitly taken into account. This 

approach is appropriated for the detailed description of the distribution that results from highly 

time-variable inputs of mass such as a spill or a storm water overflow. 

- Intertidal calculations: Where only the net, non tidal flows are considered. This model 

is more appropriate for the seasonal time scale that characterizes the intratidal hydrodynamic 

model calculations averaged over the tidal cycle in order to produce the net non-tidal flow 

distribution. 

This study considered the Intertidal calculations approach that the TSS concentrations per 

segment are evaluated, applying average values of the two tidal cycles evaluated, and then 

comparing them with the concentrations obtained per flood and ebb cycles for a posterior 

verification. 

 

4.1.3. Data requirements 

Estuarine data collection requires simultaneous sampling at several locations and time 

intervals over a complete tidal cycle. The data collection usually involves collecting in-situ data 

such as water depth, velocity, salinity, temperature, water quality, pollutants loading, freshwater 

flow and the estimation of dispersion, reareation, settling, etc. 
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Where lateral or vertical mixing is strong, centre-line data or depth averaged data may be 

sufficient to represent water quality characteristics, and therefore the amount of cross sections 

needed can be reduced considerably. The data are usually collected in the summer with low 

freshwater flow and at maximum temperature, that should theoretically represent the “worst” 

condition for the water quality in the estuary. If water quality objectives can be satisfied at this 

time of the year, then they can usually be achieved through the year (Rinaldi et al., 1979). 

 

4.2 Methods 

 

4.2.1. Finite Segment Method 

The finite segment method is a technique that signifies and evaluates partial differential 

equations in the form of algebraic equations. Values are calculated at discrete places on a meshed 

geometry. “Finite segment” refers to the small segment surrounding each node point on a mesh. 

In the finite segment method, volume integrals in a partial differential equation that contain a 

divergence term are converted to surface integrals, using the diverge theorem. These terms are 

then evaluated as fluxes at the surface of each finite segment. (Miller, E.G., 1960). 

It is assumed in the 2-D finite segment model that each segment is completely mixed as a 

CMFR (Completely Mixed Flow Reactor).  Therefore the concentration gradient occurs only 

along the x- and y-axes over subsequent and adjacent segments, and the concentration gradient in 

the z-axis would be negligible. Since the segment topography is reflected to satisfy an equal 

steady-state volume in segment series, FSM is an ideal application to simulate estuaries with 

complex bottom topography without any difficulty. (Thomann, R.V., 1983). 

Then FSM uses the mass balance among segments by accounting for and calculating 

mass transport due to advection, dispersion, loading and decay over time. This procedure is 

referred to as Compartmentalization and interchange between compartments is simulated via 

bulk dispersion as shown in Figure 4-1. The assumption of complete mixing reduces the set of 

partial differential equations to ordinary differential equations (Schnoor, 1996). 
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Figure 4.1. Compartmentalization used in Finite Segment Method 

 

 

Compartmentalization is based on dividing the water body into “control volumes” 

assuming the complete mixed flow in each segment and identical volumes. The segment 0 and 

n+1 represent boundary segments and therefore there will be n unknowns with a system of n 

equations. (Chapra, 2008).  Then subsequent finite Segment Model is developed from the 

following second-order differential flux equations (Thomann and Muller, 1997). 

 

 

𝑉 𝜕𝐶
𝜕𝑡

= −𝑄 𝜕𝐶
𝜕𝑥
∆𝑥 − ∆𝑄𝐶 + 𝜕

𝜕𝑥
�𝐸𝐴 𝜕𝐶

𝜕𝑥
� ∆𝑥 − 𝑘𝐶𝑉   

𝑉 𝜕𝐶
𝜕𝑡

= −𝑄 𝜕𝐶
𝜕𝑦
∆𝑦 − ∆𝑄𝐶 + 𝜕

𝜕𝑦
�𝐸𝐴 𝜕𝐶

𝜕𝑦
� ∆𝑦 − 𝑘𝐶𝑉 Eq. (4.4) 

 

where C represents the concentration of Total Suspended Solids present on each segment, 

E is the dispersion coefficient, and k is the kinetic reaction constant. This flux relationship can be 

further expressed to reflect spatial invariant flow/discharges and dispersion coefficients in the 

segments (Thomann and Muller, 1997). 

 

𝑑𝐶
𝑑𝑡

= 𝐸𝑥
𝑑2𝐶
𝑑𝑥2

− 𝑈 𝑑𝐶
𝑑𝑥
− 𝑘𝐶   

n … i … 1 

i i-1 

2 0 i-1 i+1 n+1 n-1 

Load 

Advection 

Dispersion 

Reaction 

i+1 
Advection 

Dispersion 
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𝑑𝐶
𝑑𝑡

= 𝐸𝑦
𝑑2𝐶
𝑑𝑦2

− 𝑈 𝑑𝐶
𝑑𝑦
− 𝑘𝐶 Eq. (4.5) 

 

With control volume and steady state assumption, the mass balance in a finite segmental 

expression becomes: 

 

0 = 𝑊𝑖 + 𝑄𝑖−1,𝑖𝑐𝑖−1 − 𝑄𝑖,𝑖+1𝑐𝑖 + 𝐸′𝑖−1,𝑖(𝑐𝑖−1 − 𝑐𝑖) + 𝐸′𝑖,𝑖+1(𝑐𝑖+1 − 𝑐𝑖) − 𝑘𝑠𝑖𝑉𝑖𝑐𝑖

 Eq. (4.6) 
where 

𝑊𝑖  = Loading on segment i 

 𝑄𝑖−1,𝑖 = Flow from segment i-1 to segment i 

 𝑄𝑖,𝑖+1 = Flow from segment i to segment i+1 

 𝑐𝑖−1 = Concentration at the segment i-1 

 𝑐𝑖+1 = Concentration at the segment i+1 

 𝑐𝑖 = Concentration at segment i 

 𝐸′𝑖−1,𝑖 = Bulk dispersion coefficient between segments i-1 and i 

 𝐸′𝑖,𝑖+1 = Bulk dispersion coefficient between segments i and i+1 

 𝑘𝑠𝑖 = First order settling rate constant for segment i 

 𝑉𝑖 = Volume of segment i 

 

This equation considers n equations with n+2 unknowns (c0 through cn+1). Therefore, the 

Dirichlet boundary conditions are applied to specify the concentration at the boundary.  

A series of simultaneous equations will produce a matrix referred to as Steady State 

Response Matrix (SSRM) from which the mechanisms of Total Suspended Solids transport per 

each of the evaluated segments will be analyzed: 

 

(−𝑄𝑖−1,𝑖 − 𝐸′𝑖−1,𝑖)𝑐𝑖−1 + (𝑄𝑖,𝑖+1+𝐸′𝑖−1,𝑖 + 𝐸′𝑖,𝑖+1 + 𝑘𝑠𝑖𝑉𝑖) 𝑐𝑖 + �−𝐸′𝑖,𝑖+1�𝑐𝑖+1 = 𝑊𝑖

 Eq. (4.7) 
 

The n number of simultaneous equations can be written in matrix form: 
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[𝐴]𝑛x𝑛 x [𝑐]𝑛x1 = [𝑊]𝑛x1 Eq. (4.8) 
 

where A represents the matrix coefficients, c is the matrix of unknowns and represents 

the concentration of Total Suspended Solids in each segment affected by transport from to 

nearby segments, and W is the internal loading matrix which shows the existing values of TSS in 

each segment 

To determine the resultant concentration of TSS in each segment, the linear equations 

needs to be solved simultaneously 

 

[𝑐]𝑛x1 = [𝐴]𝑛x𝑛−1  x [𝑊]𝑛x1 Eq. (4.9) 
 

4.2.2. Constant Segment Volume for Finite Segment Method 

Segmentation of the study area included 10 segments of equal volume (5 segments 

longitudinal to the shore line and 5 segments in lateral configuration) as shown in Figure 4-2a. 

Initial proposed segment configuration included only 8 segments to evaluate mixing and 

transport of TSS from a point source (discharge of James River treatment plant). However, after 

further analysis of the field data and information obtained from HRSD about the effluent 

discharge, it was determined the need of adding two additional segments that would act as 

boundary conditions in the row of existing segments 6,7 and 8. These new segments were 

labeled as segment 1’ and segment 5’ and are transversal to the shoreline.  

 

Initial configuration of segments  

Segmental length and width (200 m) were selected to be extensive enough to collect at 

least three salinity samples within segment and to cover enough width to be out of shore as 

shown in Figure 4-2b. The volume of each segment was calculated with the purpose of 

identifying and selecting the smallest value as the control volume. Using the bathymetry 

information, the longitudinal cross sectional area between segments is calculated as trapezoidal 

area with D1 being the depth facing shore and D2 the depth toward the center of the River 
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Figure 4-2a. Segments configuration 

 

 

 
 

Figure 4-2b. Segmental Dimension and Sampling Locations 

 

 

1a 1b 1 2b 2a 2 3b 3a 3 4b 4a 4 5 5b 

231 m  

8 7 
1’ 6 5’ 

5a 

219 m 220 m 214 m 224 m 



 

 
 

31 

Table 4.2. Initial segments configuration 
 

Segment L (m) W(m) D1 (m) D2 (m) 
Cross 

Sectional 
Area (m2) 

Volume (m3) 

1 224 200 0.3 0.6 90 20160 
1’ 224 200 0.3 0.6 180 40320 
2 214 200 0.3 0.6 90 19260 
3 220 200 0.3 0.6 90 19800 
4 219 200 0.3 0.6 90 19710 
5 231 200 0.3 0.6 90 20790 
5’ 231 200 0.3 0.6 180 41580 
6 214 200 0.6 1.2 180 38520 
7 220 200 0.6 1.2 180 39600 
8 219 200 0.6 1.2 180 39420 

 

 

From the calculated volumes, segment 2 volume is selected as the control volume: 19260 

m3. With the control volume, it was necessary to determine the longitudinal interface area 

between segments to then calculate the width from the shore to the center of the river that 

allowed the segments to have the same volume to apply the Finite Segment Method. The 

resultant segments dimensions are shown in Table 4.5.  

 

4.3. Procedures and Calculations 

 

4.3.1. Data Collection 

In-situ data collections were carried out during Thursday July 21st and Friday July 22nd 

of 2016 at the eight selected locations (five along the shore and three parallel to the three 

centered segments in direction towards the center of the river) based on site accessibility, known 

bathymetry and proximity with the point source discharge of the James River Treatment Plant. It 

was necessary to consider the collection of at least three values of salinity per segment in order 

to compute an individual dispersion coefficient for each segment, and calculate TSS transport in 

2-D.  

For the additional two segments (1’ and 5’) added as boundary conditions, since no data 

was collected during the surveys of July 21st and 22nd, it was assumed that the salinity and 

velocity concentrations were equivalent of segments 1 and 5 respectively. However, 

concentrations of TSS for these two boundaries were taken from the latest report of the nearest 
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James River Station (LE.5.2.). The TSS concentration for August 13 2015 was 11 mg/L. 

Location of Station LE.5.2 is shown in Figures 4.3a and 4.3b. 

 

 

 
Figure. 4.3a. Location of monitoring station LE.5.2. 

 

 

 
Figure. 4.3b. Location of monitoring station LE.5.2. 
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LE.5.2
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4.3.1.1. Salinity, Turbidity and velocity 

Salinity concentrations, turbidity and velocity were sampled on-site. Salinity 

concentrations were measured using the Sper Scientific salinity probe model 850048C/S with 

0.01 ppt resolution (up to 10 ppt). Turbidity values were measured using Sper Scientific turbidity 

meter model LUTU-2016 with 0.01 NTU resolution between 0-50 NTU. The results are 

summarized in Tables 4.3 and 4.4 

 

 

Table 4.3. In situ data July 21st  
Water Temperature a.m.: 27 C – Water Temperature p.m.: 28 C 

Point/ 
Segment 

Segment 
Length (m) 

Salinity (ppt) Turbidity (NTU) Velocity (m/s) 

10:00 a.m. 4:00 p.m. 10:00 a.m. 4:00 p.m. 10:00 
a.m. 

4:00 
p.m. 

1a   8.86 8.09 6.98 6.74     
1 224 8.64 8.06 8.02 6.19 0.15 0.22 

1b/2a   8.81 8.01 7.94 7.16     
2 214 8.76 7.93 8.67 9.53 0.15 0.32 

2b/3a   8.65 7.91 7.08 8.15     
3 220 8.63 7.89 8.47 6.93 0.19 0.13 

3b/4a   8.58 7.82 8.22 5.51     
4 219 8.53 7.77 5.95 5.82 0.12 0.29 

4b/5a   8.51 7.73 9.89 5.14     
5 231 8.48 7.71 9.24 9.83 0.15 0.46 

5b   8.47 7.6 10.83 7.91     
6 214 8.73 8.16 5.23 10.29 0.22 0.3 
7 220 8.67 8.05 5.44 8.74 0.3 0.55 
8 219 8.66 7.78 5.89 5.81 0.14 0.13 
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Table 4.4. In situ data July 22nd   
Water Temperature a.m.: 28 C – Water Temperature p.m.: 30 C 
 

Point/Segment Segment Length 
(m) 

Salinity (ppt) Turbidity (NTU) Velocity (m/s) 
10:00 
a.m. 4:00 p.m. 10:00 a.m. 4:00 p.m. 10:00 

a.m. 
4:00 
p.m. 

1a   9.21 7.94 28.11 14.7     
1 224 9.18 7.85 24.8 9.47 0.22 0.14 

1b/2a   9.17 7.82 17.79 9.23     
2 214 9.21 7.94 22.03 24.69 0.23 0.21 

2b/3a   9.41 7.77 36.47 45.26     
3 220 9.25 7.76 22.82 13.48 0.15 0.23 

3b/4a   9.19 7.64 18.55 11.74     
4 219 9.25 7.59 12.91 15.67 0.22 0.25 

4b/5a   9.29 7.58 8.56 6.66     
5 231 9.26 7.57 13.54 13.47 0.21 0.14 
5b   9.25 7.54 11.47 10.51     
6 214 9.29 7.92 17.82 7.45 0.23 0.28 
7 220 9.27 7.71 13.74 9.61 0.23 0.4 
8 219 9.31 7.58 14.78 10.85 0.21 0.24 

 

 

4.3.1.2. Bathymetry 

Bathymetry in the study area was obtained from NOAA (National Oceanic and 

Atmospheric Administration) Nautical charts (NOAA Chart 12248), and was used for calculating 

the cross-sectional areas of the segments evaluated. NOAA Chart 12248 is shown in Figure 4.4. 
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Figure 4.4. Bathymetry of the Study Area (NOAA Chart 12248) 

 

 

Bathymetry data was used in estimating the cross sectional area of each studied segment 

from the control volume. With the cross sectional area, the final length of each segment was 

calculated: 
 

Segment 1 

 

A1 = Initial area calculated (trapezoid) 

A1 = 𝐵1+𝐵2
2

∗ 𝑊 

A1 = 0.6𝑚+0.3𝑚
2

∗ 200𝑚 

A1 = 90 m2 

 

A1’ = Available area  

A1’ = V/L 

L = Segment length 

A1’ = 19260 m3/224 m 

A1’ = 85.98 m2 (available area) 

Area of Study 

 



 

 
 

36 

 

W1 = Initial estimated width of segment = 200 m 

W1’ = Calculated width of segment 
𝐴1
𝐴1′

=
𝑊1

𝑊1
′ 

 

Substituting: A1, A1’ and W1, we have: W1’ = 191 m 

 

The same approach was used to determine the length of remaining segments. Table 4.5. 

shows the final segmental dimension used in the Finite Segment Method in this study: 

 

 

Table 4.5. Final Segmental Dimension Used in the Finite Segment Method 
Segment A1(m2) A1’ (m2) W1 (m) W1’ (m) L (m) Volume (m3) 

1 90 85.98 200 191 224 19259 

1’ 180 85.98 200 95.5 224 19259 

2 90 90 200 200 214 19260 

3 90 87.54 200 194 220 19259 

4 90 87.95 200 195 219 19261 

5 90 83.38 200 185 231 19261 

5’ 180 83.38 200 92.5 231 19261 

6 180 90 200 100 214 19260 

7 180 87.54 200 97 220 19259 

8 180 87.95 200 97.5 219 19261 

 

 

4.3.1.3. Wind Speed 

Wind plays an important role in wide estuaries through the generation of relatively strong 

currents, specifically in shallow areas such as the one object of this study. The wind can generate 

turbulent mixing that may have an influence in the values of velocity obtained during the 

monitoring sessions. Wind speed data observed during the two monitoring days was obtained 

from Weather Underground website (www.wunderground.com) and is shown in Table 4.6. 

http://www.wunderground.com)/
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Table 4.6. Wind Speed - Source: wunderground.com 
 

Date Wind speed (mph) 
July 21 2016 10:00 AM 3.5 calm 
July 21 2016 4:00 PM 6.9 E 

July 22 2016 10:00 AM 8.1 SW 
July 22 2016 4:00 PM 15 SSW 

 

 

4.3.1.4. Tides 

Tidal information is a fundamental mechanism for estuarine mass flux, and an essential 

element to calculate net estuarine flow, and to analyze the magnitude of the factors dictating 

dispersion coefficient characteristics such as velocity and salinity concentration gradient. Hours 

of in-situ monitoring (10:00 AM and 4:00 PM) were selected to coincide the rising and falling 

phases of the tidal cycle, to capture variations of flow and salinity concentrations over flood and 

ebb cycles. It was observed that the monitoring dates were influenced by the Spring Tides. 

Tidal information collected from NOAA for Station ID 8638379 (referenced to Station 

ID 8638610 – Sewells Point) for July 21st and July 22nd is shown in Figure 4.5. Tidal variations 

over the month of July for station are also shown in Figure 4.6. 
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Figure 4.5. Tidal Cycles on July 21st and 22nd 

 

 

 
Figure 4.6. Water Levels for the month of July 2016 
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4.3.2.  Dispersion Coefficient  

As salinity is considered a “natural” tracer, it was possible to predict the longitudinal 

dispersion coefficient based on variations in salinity concentration along the area of study, and to 

apply Eq. (1.5) shown below and estimate its slope which contains the dispersion coefficient, E. 

 

𝑙𝑛 𝑆
𝑆0

= 𝑈
𝐸
𝑥   

 

where 

 S = Salinity concentration 
S0 = Source concentration at x = 0 
u  = Net (tidal-averaged) velocity due to freshwater flow 

x  = Distance from the mouth to upstream river (negative values)  
E  = Dispersion coefficient 

  
Estimation of dispersion coefficient was performed by considering following two 

intertidal calculation approaches: 

1. Average of salinity concentrations per segment and per tidal cycle (Ebb and Flood, 

respectively) 

2. Average of all salinity concentrations per segment collected during two 

consecutive days 

Detailed dispersion coefficient calculations for each approach are listed in Appendix I. 

The estimated error in the determination of dispersion coefficient values is ~ 20% based on the 

accuracy of the velocity, salinity and distance measurements. The results are summarized in 

Table 4.7. 
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Table 4.7. Dispersion coefficient values per segment 

Segment 
Dispersion Coefficient (m2/s) 

Flood Cycle Ebb Cycle Averaged Cycles 

1 and 1’ 10000 3000 4500 

2 -10000 5400 38000 

3 2400 3000 2600 

4 -34000 7000 11000 

5 and 5’ 9000 6000 8000 

6,7 and 8 46000 3200 5000 

 

 

4.3.3. Tidal Cycle Flow and Net Estuarine Flow 

To determine flow on each segment and between adjacent segments, two approaches are 

considered for a comparative study.  

1. Tidal Cycle Flow: Applicable to the characterization of TSS per tidal cycles. Tidal cycle 

flow is the product of average velocity per segment and segmental cross-sectional area in 

x- or y-direction where x-direction is along with the shoreline, and y-direction is lateral to 

the shoreline: 

 

Qi.j = AcUi,j Eq. (4.10) 

 

where 

 𝑄𝑖.𝑗 = Flow from segment i to j 

 𝐴𝑐   = Cross sectional area between segments i and j 

 𝑈𝑖,𝑗 = Average velocity between segments i and j 

 

2. Net Estuarine Flow: Used in the characterization of TSS for averaged cycles. Net 

Estuarine Flow, Qn, refers to the advective movement of water out of the estuary over a 

tidal cycle or a given number of tidal cycles (Chapra, 2008):  
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Figure 4.7. Net Estuarine Flow 

 

 

𝑄𝑛 =  2
𝜋
∗ 𝑞𝑒𝑇𝑒−𝑞𝑓𝑇𝑓

𝑇𝑒+𝑇𝑓
 Eq. (4.11) 

 

where 

𝑞𝑒 = Flow at ebb cycle  

𝑇𝑒 = Ebb cycle duration (25200 seconds) 

𝑞𝑓 =  Flow at flood cycle 

𝑇𝑓 =  Flood cycle duration (21600 seconds) 

In this approach, 𝑞𝑒 and 𝑞𝑓 are calculated using the tidal cycle flow, while 𝑇𝑒 and 𝑇𝑓 are 

defined from the tidal cycles duration for July 21st and 22nd obtained from NOAA. 

At each ebb and flood tidal cycle, flows were calculated with average segmental 

velocities and cross-sectional areas. The net estuarine flow was then calculated based on the 

obtained values of ebb and flood flows to subsequently be utilized in the Steady State Response 

Matrix, whether to determine the advective flow at the interface of the evaluated segments or to 
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determine the internal loading (W) per segment.  Results of Tidal Cycle Flow and Net Estuarine 

Flow are listed in Appendix II. 

 

4.3.4. Bulk Dispersion Coefficient 

Bulk dispersion coefficient, E’ is a bulk exchange flow going each way between 

compartments and is not equivalent to measured dispersion coefficients estimated from dye 

studies. (Schnoor, 1996)  

The bulk dispersion coefficient can be estimated from the values of the dispersion 

coefficient. This estimation requires determining the values of dispersion coefficient at the 

interface of the segments. One approach to calculate this interface values is to apply the weighted 

–difference formulation (Chapra, 2008): 
 

𝐸𝑗,𝑘 = 𝛼𝑗,𝑘𝐸𝑗 + 𝛽𝑗,𝑘𝐸𝑘 Eq. (4.12) 

 

where 

𝛼𝑗,𝑘 = ∆𝑥𝑘
∆𝑥𝑗+∆𝑥𝑘

 Eq. (4.13) 

𝛽𝑗,𝑘 = ∆𝑥𝑗
∆𝑥𝑗+∆𝑥𝑘

 Eq. (4.14) 

 

 𝐸𝑗  = Dispersion coefficient of segment j 

 𝐸𝑘= Dispersion coefficient of segment k 

 ∆𝑥𝑘 = Length of Segment k 

 ∆𝑥𝑗 = Length of segment j 

 

Once the values of dispersion coefficient at the interfaces are calculated, the bulk 

dispersion coefficient, E’ can be calculated by proportionalizing segmental dimension to the 

dispersion coefficient with interfacing cross-sectional area and centroidal distance as shown in 

Eq. (4.15): 

 

𝐸′𝑗,𝑘 = 𝐸𝑗,𝑘𝐴𝑐
∆𝑥

 Eq. (4.15) 
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  where 

 𝐸𝑗,𝑘 = Dispersion coefficient of Interface j,k 

 𝐴𝑐 = Cross Sectional Area of the interface  

 ∆𝑥 = Distance between segments – from centroid  

 

Calculated values of dispersion coefficient and bulk dispersion per interface were 

determined using an estimated error of ~ 20% based on the accuracy of the velocity, salinity and 

distance measurements. Results are listed in Appendix II and summarized in Table 4.8.: 

 

 

 Table 4.8. Dispersion and Bulk Dispersion Coefficient Values per Interface  

Interface 
Flood Ebb Averaged 

E (m2/s) E’ (m3/s) E (m2/s) E’ (m3/s) E (m3/s) E’ (m2/s) 

5,4 22000 8000 6000 2400 10000 3600 
4,3 18000 7200 4900 2000 7000 2700 
3,2 6000 25000 4200 1700 21000 8000 
2,1 10000 3800 4200 1700 22000 9000 
8,7 46000 18000 3200 1300 5000 2200 
7,6 46000 19000 3200 1300 5000 2200 
8,4 42000 42000 4400 4400 7000 7000 
7,3 31000 32000 3100 3200 4500 4500 
6,2 34000 33000 3900 3800 16000 16000 

 

 

4.3.5. Settling  

Settling losses can be formulated as a flux of mass across the surface area of the 

sediment-water interface. Thus, by multiplying the flux by area, settling can be developed as: 
 

𝑆𝑒𝑡𝑡𝑙𝑖𝑛𝑔 = 𝐾𝑠𝑉𝐶 Eq. (4.16) 

where 

 𝐾𝑠 = First Order settling rate constant (𝑣/ℎ) 

 𝑣 = Settling Velocity 
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 ℎ = Mean depth of segment 

 𝑉 = Segment Volume 

 𝐶 = Concentration of TSS at segment 

 

The settling velocity is the most fundamental property governing the motion of the 

sediment particles in water. In Stoke’s Law equation, this velocity depends principally on the 

size, shape and density of the particle and the viscosity and density of the water. Stoke’s Law 

represents the key processes associated to particle settling under a controlled setting, it is not 

practical to apply to uncontrolled, ambient waterbodies. As a result, many empirical formulas 

were proposed for estimating the settling velocities, especially for cohesive sediments in ambient, 

natural waterbodies (Zhen-Gang Ji, 2008). 

In this study, an empirical settling velocity, Ws, equation developed in studies using mud 

from the Severn estuary in the United Kingdom (Zhen-Gang Ji, 2008) was used to reflect 

cohesive sediments in the study site that are primarily composed by clay, silt and organic matter 

-- adsorbents of contaminants in water:  
 

𝑊𝑠 = 0.513𝑆1.29 Eq. (4.17) 

 

where 𝑊𝑠 is settling velocity in mm/s and S is the concentration of sediments, and Eq. 

(4.17) is applicable for S < 2 g/L 

The concentrations of sediments are estimated using the concentration of Total 

Suspended Solids of each segment. The values of TSS were estimated by applying study site-

specific General Linear Model described in 4.1.1.   

Calculated settling velocity (Ws) and the 1st-order Settling constant (Ks) per segment were 

determined using an estimated error of ~ 2% based on the accuracy of the turbidity and average depth 

measurements. Results are summarized in Tables 4.9, 4.10 and 4.11 
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 Table 4.9.  Settling velocity and first order settling constant at Flood Cycle 

Segment Turbidity 
(NTU) 

TSS Estimation 
(mg/L) 

Settling 
velocity (m/d) 

Average 
depth (m) Ks (1/s)  

1’  11 0.44 0.9 5.7E-06 
8 10.34 17.73 0.82 0.9 1.05E-05 
7 9.59 16.45 0.74 0.9 9.5E-06 
6 11.53 19.77 0.94 0.9 1.21E-05 
5’  11 0.44 0.9 5.7E-06 
5 11.39 19.53 0.92 0.45 2.37E-05 
4 9.43 16.17 0.72 0.45 1.85E-05 
3 15.65 26.84 1.39 0.45 3.58E-05 
2 15.35 26.32 1.36 0.45 3.50E-05 
1 16.41 28.14 1.48 0.45 3.81E-05 

 
 

 

  Table 4.10.  Settling velocity and first order settling constant at Ebb Cycle 

Segment Turbidity 
(NTU) 

TSS Estimation 
(mg/L) 

Settling 
Velocity (m/d) 

Average 
Depth (m) Ks (1/s)  

1’  11 0.44 0.9 5.7E-06 
8 8.33 14.28 0.62 0.9 8.0E-06 
7 9.18 15.74 0.7 0.9 9.0E-06 
6 8.87 15.21 0.67 0.9 8.6E-06 
5’  11 0.44 0.9 5.7E-06 
5 11.65 19.98 0.95 0.45 2.44E-05 
4 10.75 18.43 0.86 0.45 2.21E-05 
3 10.21 17.51 0.8 0.45 2.06E-05 
2 17.11 29.34 1.56 0.45 4.01E-05 
1 7.83 13.43 0.57 0.45 1.47E-05 
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 Table 4.11.  Settling velocity and first order settling constant at averaged Cycles 

Location Turbidity 
(NTU) 

TSS 
Estimation 

(mg/L) 

Settling 
velocity (m/d) 

Average 
depth (m) Ks (1/s)  

1’  11 0.44 0.9 5.7E-06 
8 9.33 16 0.71 0.9 9.1E-06 
7 9.38 16.09 0.72 0.9 9.3E-06 
6 10.2 17.49 0.8 0.9 1.03E-05 
5’  11 0.44 0.9 5.7E-06 
5 11.52 19.76 0.94 0.45 2.42E-05 
4 10.09 17.3 0.79 0.45 2.03E-05 
3 12.93 22.17 1.09 0.45 2.80E-05 
2 16.23 27.83 1.46 0.45 3.76E-05 
1 12.12 20.78 1 0.45 2.57E-05 

   Note: TSS values for boundaries 1’ and 5’ were estimated from Station LE.5 (Source: VECOS-VIMS) 
 

 

4.3.6 Internal Loading (W) 

Main objective of this study is to characterize the concentration of Total Suspended 

Solids in the study area by evaluating the interaction between advective and dispersive processes 

within control volume segments, and subsequently, to assess their influence in the final TSS 

concentration per segment at steady state condition. Therefore, it is necessary to first estimate the 

internal loading, or concentration of Total Suspended Solids on each of the evaluated segments 

to establish a baseline. 

The internal loading was calculated using the concentration of Total Suspended Solids 

times the Flow per segment and the values were determined using an estimated error of ~ 2% 

based on the accuracy of the turbidity and velocity measurements. The results are shown in Table 

4.12. 
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Table 4.12. Internal Loading Per Segment 

Segment 

Flood Cycle Ebb Cycle Averaged Cycles 

TSS 
estimate 
(mg/L) 

Q 
(m3/s) W (g/s) 

TSS 
estimate 
(mg/L) 

Q 
(m3/s) W (g/s) 

TSS 
estimate 
(mg/L) 

Qn 
(m3/s) W (g/s) 

1’ 11 
 

19.78 218 11 24.93 274 11 2.73 30 

8 17.73 15.83 281 14.28 16.71 239 16 1.08 173 
7 16.45 23.64 389 15.74 42.02 660 16.09 7.46 120 
6 19.77 20.7 409 15.21 26.1 397 17.49 2.86 50 
5’ 11 15.01 165 11 15.84 174 11 1.02 11.2 

5 19.53 15.01 293 19.98 25.01 500 19.76 4.16 82 

4 16.17 14.95 242 18.43 23.75 438 17.3 3.75 65 
3 26.84 14.88 399 17.51 15.76 276 22.17 1.03 22.8 
2 26.32 17.1 450 29.34 24.3 710 27.83 3.31 92 
1 28.14 16.34 460 13.43 15.48 208 20.78 0.51 10.6 

Note: TSS values for boundaries 1’ and 5’ were estimated from Station LE.5 (Source: VECOS-VIMS) 
 

 

4.3.7. TSS Characterization  

To find the concentration of Total Suspended Solids per segment influenced by resultant 

flux from the interaction of advective and dispersive processes among adjacent segments, Steady 

State Response Matrix (SSRM) method was used. 
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Figure 4.8. Segments diagram 

 

 

Segments 1, 1’, 5 and 5’ were used as boundary conditions and therefore no mass balance 

equations were developed.  

Resultant finite segment matrix includes a series of six equations with six unknown 

concentrations: 

 

Seg. 2: 𝐶2�𝑄2,1 + 𝑄2,6 + 𝐸′3,2 + 𝐸′2,1 + 𝐸′2,6 + 𝐾𝑆2𝑉2� − 𝐶3�𝑄3,2 + 𝐸′3,2� − 𝐶6𝐸′2,6 = 𝑊2 + 𝐶1𝐸′2,1 

Seg. 3: −𝐶2𝐸′3,2 + 𝐶3�𝑄3,2 + 𝑄3,7 + 𝐸′4,3 + 𝐸′3,2 + 𝐸′3,7 + 𝐾𝑆3𝑉3� − 𝐶4�𝑄4,3 + 𝐸′4,3� − 𝐶7𝐸′3,7 = 𝑊3 

Seg. 4: −𝐶3𝐸′4,3 + 𝐶4�𝑄4,3 + 𝑄4,8 + 𝐸′5,4 + 𝐸′4,3 + 𝐸′4,8 + 𝐾𝑆4𝑉4� − 𝐶8𝐸′4,8 = 𝑊4+𝐶5�𝑄5,4 + 𝐸′5,4� 

Seg. 6: 𝐶2�𝑄2,6 + 𝐸′2,6� − 𝐶6(𝑄6,1′ + 𝑄6𝑌 + 𝐸′7,6 + 𝐸′2,6 + 𝐾𝑆6𝑉6) + 𝐶7�𝑄7,6 + 𝐸′7,6� = 𝑊6 

Seg. 7: −𝐶3�𝑄3,7 + 𝐸′3,7� − 𝐶6𝐸′7,6 + 𝐶7�−𝑄7𝑌 + 𝑄7,6 + 𝐸′8,7 + 𝐸′3,7 + 𝐸′7,6 + 𝐾𝑆7𝑉7� − 𝐶8(𝑄8,7 +

𝐸′8,7) = 𝑊7 

Seg. 8: −𝐶4�𝑄4,8 + 𝐸′4,8� − 𝐶7𝐸′8,7 + 𝐶8�−𝑄8𝑌 + 𝑄8,7 + 𝐸′4,8 + 𝐸′8,7 + 𝐾𝑆8𝑉8� = 𝑊8 − 𝐶5′𝑄5′,8 

 

Collecting terms for Ci, TSS concentrations: 

 

 a = �𝑄2,1 + 𝑄2,6 + 𝐸′3,2 + 𝐸′2,1 + 𝐸′2,6 + 𝐾𝑆2𝑉2� 

 b = �𝑄3,2 + 𝐸′3,2� 

 c = 𝑊2 + 𝐶1𝐸′2,1 

 d = �𝑄3,2 + 𝑄3,7 + 𝐸′4,3 + 𝐸′3,2 + 𝐸′3,7 + 𝐾𝑆3𝑉3� 

1 2 3 4 5 

8 7 1’ 6 5’ 
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 e = �𝑄4,3 + 𝐸′4,3� 

 f = �𝑄4,3 + 𝑄4,8 + 𝐸′5,4 + 𝐸′4,3 + 𝐸′4,8 + 𝐾𝑆4𝑉4� 

 g = 𝑊4+𝐶5�𝑄5,4 + 𝐸′5,4� 

 h = �𝑄2,6 + 𝐸′2,6� 

 i = (𝑄6,1′ + 𝑄6𝑌 + 𝐸′7,6 + 𝐸′2,6 + 𝐾𝑆6𝑉6) 

 j = �𝑄7,6 + 𝐸′7,6� 

 k = �𝑄3,7 + 𝐸′3,7� 

 l = �−𝑄7𝑌 + 𝑄7,6 + 𝐸′8,7 + 𝐸′3,7 + 𝐸′7,6 + 𝐾𝑆7𝑉7� 

 m = (𝑄8,7 + 𝐸′8,7) 

 n = �𝑄4,8 + 𝐸′4,8�  

 o = �−𝑄8𝑌 + 𝑄8,7 + 𝐸′4,8 + 𝐸′8,7 + 𝐾𝑆8𝑉8� 

 p = 𝑊8 − 𝐶5′𝑄5′,8 

 

Then the Steady State Response Matrix can be developed as: 

 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑎 −𝑏 0 −𝐸′2,6 0 0
−𝐸′3,2 𝑑 −𝑒 0 −𝐸′3,7 0

0 −𝐸′4,3 𝑓 0 0 −𝐸′4,8

ℎ 0 0 −𝑖 𝑗 0
0 −𝑘 0 −𝐸′7,6 𝑙 −𝑚
0 0 −𝑛 0 −𝐸′8,7 𝑜 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝐶2
𝐶3
𝐶4
𝐶6
𝐶7
𝐶8⎭
⎪
⎬

⎪
⎫

=

⎩
⎪
⎨

⎪
⎧
𝑐
𝑊3
𝑔
𝑊6
𝑊7
𝑝 ⎭
⎪
⎬

⎪
⎫

 

 

Substituting values for three scenarios – Flood cycle averaged, Ebb cycle averaged, and 

Averaged cycles --, estimated Total Suspended Solids per segment influenced by resultant flux 

from the interaction of advective and dispersive processes among adjacent segments are 

summarized in Table 4.13. 
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Table 4.13. TSS concentration per segment 

Segment TSS concentration at 
Flood Cycle (mg/L) 

TSS Concentration on 
Ebb Cycle (mg/L) 

TSS concentration at 
averaged cycles (mg/L) 

2 23.75 16.36 25.48 
3 22.55 18.13 28.21 
4 21.73 19.16 25.74 
6 23.34 16.85 26.62 
7 22.66 18.64 34.80 
8 22.03 19.20 27.82 
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CHAPTER 5.  

ANALYSIS OF RESULTS AND CONCLUSIONS 

 

 

Estimation of site-specific longitudinal dispersion coefficient using variation in salinity 

concentrations was performed in a small study area of the tidal section of the James River in 

Newport News, Virginia. The procedure considered the variation in salinity concentrations per 

tidal cycle and per averaged tidal cycles with the purpose to estimate longitudinal and lateral 

dispersion coefficients along the shoreline, then further characterize estuarine mixing and 

transport mechanisms of Total Suspended Solids in the study area. 

Salinity and turbidity values collected during the two days of monitoring did not show 

significant variations in the transversal dimension, contrasting with the notorious changes in 

velocity measurements, which directly influence the values of Dispersion Coefficient. This site-

specific condition motivated the application of a two-dimensional model where only the vertical 

variation of salinity and velocity were considered negligible, allowing this shallow portion of the 

James River to be treated as a homogenous profile and a reasonable and simplistic evaluation of 

the characteristics of TSS transport in the evaluated segments. 

Velocity is a significant influencing component in the evaluation of TSS transport 

mechanisms due to its direct impact on the estimation of the dispersion coefficient.  In shallow 

and open areas of the estuary, wind is the most influencing factor contributing to the velocity 

variation. Variation in freshwater discharge is generally insignificant in comparison to the tidal 

velocity. During the days of the monitoring, the presence of relatively mild winds appeared to 

have little influence on the velocity values obtained. In contrast, the strong spring tidal force 

present during these days, seemed to have a direct influence in the relatively high values of tidal 

velocity and subsequent high values of estimated dispersion coefficient.  

Although dispersion coefficients of large magnitudes are expected in a wider river like 

the James River with strong influence of salinity intrusion and limited shear flow, estimated 

dispersion coefficients show a broad range (2572 m2/s through 46000 m2/s) of variations, and 

indicate evidence of its estuarine complexity where river flow, tidal range and sediment 

distribution are constantly changing due to the influence of weather conditions. This is 
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particularly clear in the observed negative values of dispersion coefficient during the flood cycle, 

where there is a strong influence of salinity intrusion towards the upstream part of the study area. 

Initial objective of this study was to evaluate mixing and transport of Total Suspended 

Solids in the study area receiving nearby effluent discharge from the HRSD James River 

Wastewater Treatment Plant.  However, in-situ sampling of TSS concentrations in the study 

were approximately 10 to 20 times higher than the actual concentration of TSS in the effluent 

discharge. This suggests that the actual TSS discharge of the plant will have a minimum or a null 

effect toward the concentration of TSS along the area of study. The seek approach of this study 

was then, to apply the Steady State Response Matrix (SSRM) method and evaluate the 

characteristics of TSS transport on three scenarios: Flood cycle averaged, Ebb cycle averaged, 

and Averaged cycles with the purpose of analyze resultant TSS concentration estimates with 

respect to in-situ measured TSS concentrations.  

The obtained results are summarized in the following Figures 5.1. through 5.3. 

 

 

 
Figure 5.1. Characteristics of TSS transport during flood cycle 
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During flood cycle, Finite Segment Method estimate results showed that segments 4, 6, 7 

and 8 were significantly influenced by dispersive mixing and advective transport of TSS from 

segments 2 and 3, which is expected considering that during flood cycle water moves from 

downstream of the estuary towards the upstream. 

 

 

 
Figure 5.2. Characteristics of TSS transport during ebb cycle  

 

 

During ebb cycle, Finite Segment Method estimate results showed that only segment 2 

experienced a significant drop in concentration, most likely, indicative of advective transport 

movement of TSS from segment 2 towards segments 1 and 6, with the latest showing a slightly 

increase on TSS concentration. Changes in concentrations for Segments 3 and 4 were almost 

negligible, which is expected due the similarity in TSS concentrations among these two segments 

and segment 5. 
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Figure 5.3. Characteristics of TSS transport during averaged cycles 

 

 

The Finite Segment Method estimate results for the averaged cycles evidence a high 

increase in concentrations of TSS for almost all segment evaluated, with the highest values on 

segments 6, 7 and 8. These results suggest that dispersive transport is dominant over advective 

transport in this particular area of the James River. 

The dispersive transport dominance was clearly evidenced with the high values of 

dispersion coefficient obtained for all three scenarios evaluated and it was further revealed with 

the estimated changes in concentration of TSS using the Finite Segment Method. For this 

particular area of study, tides exercise great influence over mixing and transport of substances 

more than the low volume of freshwater inflow coming from the Warwick River.  

One of the major assumptions of this study was to consider a steady state condition in 

order to apply the Finite Segment Method. This method allowed the simulation of TSS 

concentration in the area of study in a simplified manner through its segmentation and the 

evaluation of parameters collected during one tidal cycle per day for two consecutive days. This 

was particularly facilitated and feasible in the particular studied area, where the James River is 

wide and shallow, and the section of the river studied encompasses a small area. 
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It is important to recognize, however, that due to the constant variation of the estuary 

parameters influenced by atmospheric conditions that affect the dispersion coefficient and 

concentration of TSS, such as the velocity variations during spring and neap tides, it is 

recommended to include a wider range of weather conditions and apply a statistical approach 

such as a minimum of 10 days in order to obtain and estimate of the mean flow unaffected by 

wind (Dyer, 1997).  In similar manner, where estuary hydrodynamics are more complex, some 

authors recommend the application of monitoring procedures that involve repetitive sampling of 

three times on each tidal cycle at (1) high tide, (2), mean tide (half interval between high and low 

tide), and (3) low tide; repeated daily over 28-day period at a proper sample depth of about ¼ to 

1/3 distance to the bottom in order to capture variations and influence of spring and neap tides. 

The methodology applied to this study was used to establish Total Suspended Solids 

concentrations characteristic over time and distance in a small tidal section of the James River. 

The incorporation of the Finite Segment Method and the Steady State Response Matrix allowed 

the evaluation of the mechanisms of TSS transport as well as the analysis of influencing 

parameters such as Dispersion coefficient, Total Suspended Solids concentration and 

advective/dispersive flow dominance for this site-specific location.  

Finally, the site-specific General Linear Model (GLM) model, developed and utilized to 

obviate the time consuming method required for determining Total Suspended Solids 

concentrations, was successfully applied to sampled values of Turbidity obtained during this 

study for values of TSS between1.5 and 27.5 mg/L. Estimated Total Suspended Solids data was 

subsequently and successfully used in Finite Segment Method (FSM) and the Steady State 

Response Matrix (SSRM) to characterize the Total Suspended Solids mixing and transport in the 

study area.  

For values of TSS estimated well above 27.5 mg/l, such as the ones obtained in the 

SSRM for the averaged cycles on segment 7 and the ones estimated from in situ measurements 

of segment 2 at ebb cycle, it is possible that a different TSS/Turbidity relationship will apply. 
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APPENDIX I. 

DISPERSION COEFFICIENT CALCULATIONS PER SEGMENT  

 

 

A1.1. Per Tidal Cycle – Ebb Cycle 
 

 

Location Distance 
(m) 

Salinity 
(ppt) U (m/s) 

5b -1108 7.57   
5 -992.5 7.64 0.3 

4b/5a -877 7.66   
4 -767.5 7.68 0.27 

3b/4a -658 7.73   
3 -548 7.83 0.18 

2b/3a -438 7.84   
2 -331 7.94 0.27 

1b/2a -224 7.92   
1 -112 7.96 0.18 
1a 0 8.02   

    

 

Location Distance 
(m) Salinity (ppt) U (m/s) 

8 -436.5 7.68 0.19 
7 -217 7.88 0.48 
6 0 8.04 0.29 

  

 

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
5b -231 7.57 -0.011818916   
5 -115.5 7.64 -0.002614381 0.3 

5a/4b 0 7.66 0   
   Average U 0.3 

   E = 6000 m2/s 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

4b/5a -219 7.66 -0.009096879   
4 -109.5 7.68 -0.006489315 0.27 

4a/3b 0 7.73 0   

   Average U 0.27 
  E = 6750 m2/s 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
3b/4a -220 7.73 -0.014129972  

3 -110 7.83 -0.001276324 0.18 
3a/2b 0 7.84 0  

   Average U 0.18 
  E = 3000 m2/s 

 

 

 

 

 

 

 

 
 

 

 

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

2b/3a -214 7.84 -0.010152371   
2 -107 7.94 0.002522069 0.27 

2a/1b 0 7.92 0   

   Average U 0.27 
  E = 5400 m2/s 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
1b/2a -224 7.92 -0.012547216   

1 -112 7.96 -0.007509422 0.18 
1a 0 8.02 0   

   Average U 0.18 
  E = 3000 m2/s 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

8 -436.5 7.68 -0.045809536 0.19 
7 -217 7.88 -0.020101179 0.48 
6 0 8.04 0 0.29 

   Average U 0.32 
      E = 3200 m2/s 
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A1.2. Per Tidal Cycle – Flood Cycle 
 

 

 

Location Distance 
(m) 

Salinity 
(ppt) U (m/s) 

5b -1108 8.86   
5 -992.5 8.87 0.18 

4b/5a -877 8.9   
4 -767.5 8.89 0.17 

3b/4a -658 8.89   
3 -548 8.94 0.17 

2b/3a -438 9.03   
2 -331 8.99 0.19 

1b/2a -224 8.99   
1 -112 8.91 0.19 
1a 0 9.04   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Location Distance 
(m) 

Salinity 
(ppt) U (m/s) 

8 -436.5 8.99 0.18 
7 -217 8.97 0.27 
6 0 9.01 0.23 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
5b -231 8.86 -0.004504512   
5 -115.5 8.87 -0.00337648 0.18 

5a/4b 0 8.9 0   

  
 

Average U 0.18 
   E = 9000 m2/s 

 

 

 

 

 
 

 

 
 

 

 

 

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
4b/5a -219 8.9 0.001124227  

4 -109.5 8.89 0 0.17 
4a/3b 0 8.89 0  

   Average U 0.17 
           E = -34000 m2/s 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
3b/4a -220 8.89 -0.015625318   

3 -110 8.94 -0.010016778 0.17 
3a/2b 0 9.03 0   

   Average U 0.17 
   E = 2429 m2/s 

 

 

 

 

 

 

 

 
 

 

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

2b/3a -214 9.03 0.004439519   
2 -107 8.99 0 0.19 

2a/1b 0 8.99 0   

   Average U 0.19 
E = -9500 m2/s 
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SEGMENT 3 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 
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SEGMENT 2 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs 
Distance (m)) 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

1b/2a -224 8.99 -0.005546326   
1 -112 8.91 -0.014484933 0.19 
1a 0 9.04 0   

   Average U 0.19 
        E = 9500 m2/s 

 

 

 
 

 

    

       

 

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

8 -436.5 8.99 -0.002222223 0.18 
7 -217 8.97 -0.004449396 0.27 
6 0 9.01 0 0.23 

   Average U 0.23 
       E = 46000 m2/s 

 

 

 

 

 

 

y = 2E-05x - 0.0039 
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SEGMENT 1 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 
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SEGMENTS 6,7,8 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 
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A1.3. Averaged Cycles 
 

Location Distance 
(m) 

Salinity 
(ppt) U (m/s) 

5b -1108 8.22   
5 -992.5 8.26 0.24 

4b/5a -877 8.28   
4 -767.5 8.29 0.22 

3b/4a -658 8.31   
3 -548 8.38 0.18 

2b/3a -438 8.44   
2 -331 8.46 0.23 

1b/2a -224 8.45   
1 -112 8.43 0.18 
1a 0 8.53   

 

 

Location Distance 
(m) 

Salinity 
(ppt) U (m/s) 

8 -436.5 8.33 0.18 
7 -217 8.43 0.37 
6 0 8.53 0.26 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
5b -231 8.22 -0.007272759   
5 -115.5 8.26 -0.002418381 0.24 

5a/4b 0 8.28 0   

  
 

Average U 0.24 
  E = 8000 m2/s 

 

 

 

 

 

 

 

 

 
 

 

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
4b/5a -219 8.28 -0.00361664  

4 -109.5 8.29 -0.00240964 0.22 
4a/3b 0 8.31 0  

   Average U 0.22 
       E = 11000 m2/s 

 

 

 

 

 

 
 

 

y = 3E-05x + 0.0004 
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SEGMENT 5 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 

y = 2E-05x - 0.0002 
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SEGMENT 4- Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
3b/4a -220 8.31 -0.0155227   

3 -110 8.38 -0.007134394 0.18 
3a/2b 0 8.44 0   

   Average U 0.18 
           E = 2572 m2/s 

 

 

 

 

 

 

 

 

 
 

  

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 
2b/3a -214 8.44 -0.001184133   

2 -107 8.46 0.001182732 0.23 
2a/1b 0 8.45 0   

   Average U 0.23 
  E = 38333 m2/s 

 

 

 

 

 

 

 

y = 7E-05x + 0.0002 
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SEGMENT 3 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 

y = 6E-06x + 0.0006 
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SEGMENT 2 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 
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Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

1b/2a -224 8.45 -0.00942292   
1 -112 8.43 -0.011792589 0.18 
1a 0 8.53 0   

   Average U 0.18 
   E = 4500 m2/s 

 

 

 

 

 

 

 

 

 

 
 

 

Location Distance (m) Salinity (ppt) ln (S/So) U (m/s) 

8 -436.5 8.33 -0.023725905 0.18 
7 -217 8.43 -0.011792589 0.37 
6 0 8.53 0 0.26 

   Average U 0.27 
   E = 5400 m2/s 

 

 

 

 

 

y = 4E-05x - 0.0024 
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SEGMENT 1 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs 
Distance (m)) 

y = 5E-05x + 8E-07 
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SEGMENTS 6,7,8 - Ln (S/S0) vs Distance (m) 

Ln (S/S0) vs Distance (m) 

Linear (Ln (S/S0) vs Distance 
(m)) 



 

 
 

72 

 

APPENDIX II. 

TIDAL CYCLE FLOW AND NET ESTUARINE FLOW 

 

A2.1. Tidal Cycle Flow – Ebb Cycle 

 

 
 

Segment Distance* 
(m) Interface 

Cross 
sectional Area 
(X direction) 

(m2) 

U (m/s) Q (m3/s) 

5 -880.5  83.38 0.3 25.01 

  5,4 85.67 0.285 24.42 
4 -655.5  87.95 0.27 23.75 

  4,3 87.75 0.225 19.74 
3 -436  87.54 0.18 15.76 

  3,2 88.77 0.225 19.97 
2 -219  90 0.27 24.3 

  2,1 87.99 0.225 19.8 
1 0  85.98 0.18 15.48 

* from centroide     
 

 

   Segment Distance* 
(m) Interface 

Cross 
sectional Area 
(X direction) 

(m2) 

U (m/s) Q (m3/s) 

5' -880.5  83.38 0.19 15.84 

  5',8 85.67 0.19 16.28 
8 -655.5  87.95 0.19 16.71 

  8,7 87.75 0.335 29.4 
7 -436  87.54 0.48 42.02 

  7,6 88.77 0.385 34.18 
6 -219  90 0.29 26.1 

  6,1' 87.99 0.29 25.52 
1' 0  85.98 0.29 24.93 

* from centroide     
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Segment Distance* 
(m) Interface 

Cross sectional 
Area (Y direction) 

(m2) 
U (m/s) Qy (m3/s) 

8 -147.5  197.1 0.19 37.45 

  8,4 147.83 0.23 34 
4 0  98.55 0.27 26.61 

* from centroide     
 

    

Segment Distance* 
(m) Interface 

Cross sectional 
Area (Y direction) 

(m2) 
U (m/s) Qy (m3/s) 

7 -145.5  198 0.48 95.04 

  7,3 148.5 0.33 49.01 
3 0  99 0.18 17.82 

* from centroide     
 

      

Segment Distance* 
(m) Interface 

Cross sectional 
Area (Y direction) 

(m2) 
U (m/s) Qy (m3/s) 

6 -148.6  192.6 0.29 55.85 

  6,2 144.45 0.28 40.45 
2 0  96.3 0.27 26 

* from centroide     
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A2.2. Tidal Cycle Flow – Flood Cycle 
 

 

        

Segment Distance* 
(m) Interface 

Cross sectional 
Area (X direction) 

(m2) 
U (m/s) Q (m3/s) 

5 -880.5  83.38 0.18 15.01 

  5,4 85.67 0.175 14.99 
4 -655.5  87.95 0.17 14.95 

  4,3 87.75 0.17 14.92 
3 -436  87.54 0.17 14.88 

  3,2 88.77 0.18 15.98 
2 -219  90 0.19 17.1 

  2,1 87.99 0.19 16.72 
1 0  85.98 0.19 16.34 

* from centroide     
 

 

        

Segment Distance* (m) Interface 
Cross sectional 

Area (X direction) 
(m2) 

U (m/s) Q (m3/s) 

5' -880.5  83.38 0.18 15.01 

  5',8 85.67 0.18 15.42 
8 -655.5  87.95 0.18 15.83 

  8,7 87.75 0.225 19.74 
7 -436  87.54 0.27 23.64 

  7,6 88.77 0.25 22.19 
6 -219  90 0.23 20.7 

  6,1' 87.99 0.23 20.24 
1' 0  85.98 0.23 19.78 

* from centroide 
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Segment Distance* (m) Interface 
Cross sectional 

Area (Y direction) 
(m2) 

U (m/s) Qy (m3/s) 

8 -147.5  197.1 0.18 35.48 

  8,4 147.83 0.175 25.87 
4 0  98.55 0.17 16.75 

* from centroide     
 

        

Segment Distance* (m) Interface 
Cross sectional 

Area (Y direction) 
(m2) 

U (m/s) Qy (m3/s) 

7 -145.5  198 0.27 53.46 

  7,3 148.5 0.22 32.67 
3 0  99 0.17 16.83 

* from centroide     
 

 

       
Segment Distance* (m) Interface 

Cross sectional 
Area (Y direction) 

(m2) 
U (m/s) Qy (m3/s) 

6 -148.6  192.6 0.23 44.3 

  6,2 144.45 0.21 30.33 
2 0  96.3 0.19 18.3 

* from centroide     
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A2.3. Net Estuarine Flow 

 

 
 

Segment Distance* 
(m) Interface 

Cross Sec. Area 
(X direction) 

(m2) 

U Ebb 
(m/s) 

Q Ebb 
(m3/s) 

U Flood 
(m/s) 

Q Flood 
(m3/s) 

Qn 
(m3/s) 

5 -880.5  83.38 0.3 25.01 0.18 15.01 4.16 

  5,4 85.67 0.285 24.42 0.175 14.99 3.97 
4 -655.5  87.95 0.27 23.75 0.17 14.95 3.75 

  4,3 87.75 0.225 19.74 0.17 14.92 2.38 
3 -436  87.54 0.18 15.76 0.17 14.88 1.03 

  3,2 88.77 0.225 19.97 0.18 15.98 2.15 
2 -219  90 0.27 24.3 0.19 17.1 3.31 

  2,1 87.99 0.225 19.8 0.19 16.72 1.87 
1 0  85.98 0.18 15.48 0.19 16.34 0.51 

* from centroide       
 

 

Segment Distance* 
(m) Interface 

Cross Sec. Area 
(X direction) 

(m2) 

U Ebb 
(m/s) 

Q Ebb 
(m3/s) 

U Flood 
(m/s) 

Q Flood 
(m3/s) 

Qn 
(m3/s) 

5' -880.5  83.38 0.19 15.84 0.18 15.01 1.02 

  5',8 85.67 0.19 16.28 0.18 15.42 1.05 

8 -655.5  87.95 0.19 16.71 0.18 15.83 1.08 

  8,7 87.75 0.34 29.84 0.23 20.18 4.3 
7 -436  87.54 0.48 42.02 0.27 23.64 7.46 

  7,6 88.77 0.39 34.62 0.25 22.19 5.35 
6 -219  90 0.29 26.1 0.23 20.7 2.86 

  6,1' 87.99 0.29 25.52 0.23 20.24 2.8 
1' 0  85.98 0.29 24.93 0.23 19.78 2.73 

* from centroide       
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Segment Distance* 
(m) Interface 

Cross Sec. Area 
(Y direction) 

(m2) 

U Ebb 
(m/s) 

Q Ebb 
(m3/s) 

U Flood 
(m/s) 

Q Flood 
(m3/s) 

Qn 
(m3/s) 

8 -147.5  197.1 0.19 37.45 0.18 35.48 2.41 

  8,4 147.83 0.23 34 0.175 25.87 4.05 
4 0  98.55 0.27 26.61 0.17 16.75 4.2 

* from centroide       
 

 

Segment Distance* 
(m) Interface 

Cross Sec. Area 
(Y direction) 

(m2) 

U Ebb 
(m/s) 

Q Ebb 
(m3/s) 

U Flood 
(m/s) 

Q Flood 
(m3/s) 

Qn 
(m3/s) 

7 -145.5  198 0.48 95.04 0.27 53.46 16.87 

  7,3 148.5 0.33 49.01 0.22 32.67 7.2 
3 0  99 0.18 17.82 0.17 16.83 1.16 

* from centroide       
 

 

Segment Distance* 
(m) Interface 

Cross Sec. Area 
(Y direction) 

(m2) 

U Ebb 
(m/s) 

Q Ebb 
(m3/s) 

U Flood 
(m/s) 

Q Flood 
(m3/s) 

Qn 
(m3/s) 

6 -148.6  192.6 0.26 50.08 0.23 44.3 4.15 

  6,2 144.45 0.245 35.39 0.21 30.33 3.22 
2 0  96.3 0.23 22.15 0.19 18.3 2.22 

* from centroide       
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APPENDIX III. 

DISPERSION AND BULK DISPERSION COEFFICIENT CALCULATIONS 

PER INTERFACES  

 

A3.1. Per Tidal Cycle – Ebb Cycle 

 

Segment Volume (m3) Distance* (m) Interface ΔX (m) 

Cross sec. 
Area (X 

direction) 
(m2) 

E (m2/s) E'(m3/s) 

5 19260 -880.5  231  6000 
 

 
 

 5,4 225 85.67 6385 2431.12 
4 19260 -655.5  219  6750 

 
 

 
 4,3 219.5 87.75 4879.27 1950.6 

3 19260 -436  220  3000 
 

 
 

 3,2 217 88.77 4216.59 1724.92 
2 19260 -219  214  5400 

 
 

 
 2,1 219 87.99 4227.4 1698.49 

1 19260 0  224  3000 
 * from centroide   

 
 

   

 

 

Segment Volume (m3) Distance* (m) Interface ΔX (m) 
Cross sec. 
Area (X 

direction) (m2) 
E (m2/s) E'(m3/s) 

8 19260 -436.5  219  3200 
 

 
 

 8,7 219.5 87.75 3200 1279.27 
7 19260 -217  220  3200 

 
 

 
 7,6 217 88.77 3200 1309.05 

6 19260 0  214  3200 
 * from centroide   
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Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

8 19260 -147.5  97.5  3200  
   8,4 147.5 147.83 4383.33 4393.14 

4 19260 0  195  6750  
* from centroide   

 
   

 

 

Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

7 19260 -145.5  97  3200  
   7,3 145.5 148.5 3133.33 3197.93 

3 19260 0  194  3000  
* from centroide 

       

 

 

Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

6 19260 -148.6  100  3200  
   6,2 148.6 144.45 3933.33 3823.48 

2 19260 0  200  5400  
* from centroide   
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A3.2. Per Tidal Cycle – Flood Cycle 
 

  

Segment Volume 
(m3) Distance* (m) Interface ΔX (m) 

Cross sec. Area 
(X direction) 

(m2) 
E (m2/s) E'(m3/s) 

5 19260 -880.5  231  9000 
 

 
 

 5,4 225 85.67 21833.33 8313.16 
4 19260 -655.5  219  34000 

 
 

 
 4,3 219.5 87.75 18250.46 7296.03 

3 19260 -436  220  2429 
 

 
 

 3,2 217 88.77 6013.38 2459.94 
2 19260 -219  214  9500 

 
 

 
 2,1 219 87.99 9500 3816.92 

1 19260 0  224  9500 
 * from centroide   

 
 

   

 

Segment Volume 
(m3) Distance* (m) Interface ΔX (m) 

Cross sec. Area 
(X direction) 

(m2) 
E (m2/s) E'(m3/s) 

8 19260 -436.5  219  46000 
    8,7 219.5 87.75 46000 18389.52 

7 19260 -217  220  46000 
 

   7,6 217 88.77 46000 18817.6 
6 19260 0  214  46000 

 * from centroide   
     

  

Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

8 19260 -147.5  97.5  46000  
 

 
 8,4 147.5 147.83 42000 42093.97 

4 19260 0  195  34000  
* from centroide   

 
   

 

 
 



 

 
 

81 

Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

7 19260 -145.5  97  46000  
 

 
 7,3 145.5 148.5 31476.33 32125.33 

3 19260 0  194  2429  
* from centroide 

       

 

Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

6 19260 -148.6  100  46000  
 

 
 6,2 148.6 144.45 33833.33 32888.46 

2 19260 0  200  9500  
* from centroide   
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A3.3. Averaged Cycles 

 

 

Segment Volume 
(m3) Distance* (m) Interface ΔX (m) 

Cross Sec. Area 
(X direction) 

(m2) 
E (m2/s) E'(m3/s) 

5 19260 -880.5  231 83.38 8000 
 

 
 

 5,4 225 85.67 9540 3632.41 
4 19260 -655.5  219 87.95 11000 

 
 

 
 4,3 219.5 87.75 6795.6 2716.69 

3 19260 -436  220 87.54 2572 
 

 
 

 3,2 217 88.77 20699.7 8467.8 
2 19260 -219  214 90 38333 

 
 

 
 2,1 219 87.99 21802.72 8759.91 

1 19260 0  224 85.98 4500 
 * from centroide   

 
 

   

 

Segment Volume 
(m3) Distance* (m) Interface ΔX (m) 

Cross Sec. Area 
(X direction) 

(m2) 
E (m2/s) E'(m3/s) 

8 19260 -655.5  219 87.95 5400 
 

 
 

 8,7 219.5 87.75 5400 2158.77 
7 19260 -436  220 87.54 5400 

 
   7,6 217 88.77 5400 2209.02 

6 19260 -219  214 90 5400 
 * from centroide   
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Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross Sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

8 19260 -147.5  97.5 197.1 5400  
   8,4 147.5 147.83 7266.67 7282.93 

4 19260 0  195 98.55 11000  
* from centroide   

 
   

 

 

Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross Sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

7 19260 -145.5  97 198 5400  
   7,3 145.5 148.5 4457.33 4549.23 

3 19260 0  194 99 2572  
* from centroide       

 

 

Segment Volume 
(m3) Distance* (m) Interface ΔY (m) 

Cross Sec. Area 
(Y direction) 

(m2) 
E (m2/s) E'(m3/s) 

6 19260 -148.6  100 192.6 5400  
   6,2 148.6 144.45 16377.67 15920.29 

2 19260 0  200 96.3 38333  
* from centroide       
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APPENDIX IV. SAS OUTPUTS 

 

A4.1. Univariate procedure – Identification of Statistical parameters  
 for initial data set (3917 samples) 
 

 

JAMES RIVER PLANT 
EFFLUENT TSS 

** NORMALITY TEST ** 

 

The UNIVARIATE Procedure Variable: TSS 

         

   

Moments 
N 3917 Sum Weights 3917 
Mean 8.8058207

 

Sum 

 

34492.4 
Std Deviation 8.7019972

 

Variance 75.7247567 
Skewness 7.1437485

 

Kurtosis 86.0631198 
Uncorrected 

 

600272.0

 

Corrected SS 296538.147 
Coeff 

 

98.820967

 

Std Error Mean 0.13904077 
 

Basic Statistical Measures 
Location Variability 

Mean 8.805821 Std Deviation 8.7020

 Median 7.000000 Variance 75.7247

 Mode 7.000000 Range 172.0000

   Interquartile 
 

5.7000

  

Tests for Location: Mu0=0 
Test Statistic p Value 
Student's t t 63.33265 Pr > |t| <.0001 
Sign M 1958.5 Pr >= |M| <.0001 
Signed Rank S 3836702 Pr >= |S| <.0001 
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Tests for Normality 
Test Statistic p Value 
Kolmogorov-Smirnov D 0.205335 Pr > D <0.0100 
Cramer-von Mises W-Sq 61.87172 Pr > W-Sq <0.0050 
Anderson-Darling A-Sq 347.6066 Pr > A-Sq <0.0050 

 

 

Quantiles (Definition 5) 
Quantile Estimate 
100% Max 173.0 
99% 40.0 
95% 19.7 
90% 15.0 
75% Q3 10.2 
50% Median 7.0 
25% Q1 4.5 
10% 3.0 
5% 2.5 
1% 1.9 
0% Min 1.0 

 
Extreme Observations 
Lowest Highest 

Value Obs Value Obs 
1.0 63 100.0 3405 
1.0 51 108.0 2219 
1.4 3297 128.9 2231 
1.4 3285 150.0 152 
1.5 3706 173.0 2593 
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A4.2.  Univariate procedure – Normality Test for sorted data set (3832 samples) 

 

JAMES RIVER PLANT EFFLUENT TSS 

** NORMALITY TEST ** 

 

The UNIVARIATE Procedure Variable: TSS 

 

Moments 
N 3832 Sum Weights 3832 
Mean 7.89050104 Sum Observations 30236.4 
Std Deviation 4.62602283 Variance 21.4000872 
Skewness 1.31151615 Kurtosis 1.9492358 
Uncorrected SS 320564.08 Corrected SS 81983.7342 
Coeff Variation 58.627745 Std Error Mean 0.07473001 

 

Basic Statistical Measures 
Location Variability 

Mean 7.890501 Std Deviation 4.62602 
Median 7.000000 Variance 21.40009 
Mode 7.000000 Range 26.00000 
  Interquartile Range 5.60000 

 

Tests for Location: Mu0=0 
Test Statistic p Value 
Student's t t 105.5868 Pr > |t| <.0001 
Sign M 1916 Pr >= |M| <.0001 
Signed Rank S 3672014 Pr >= |S| <.0001 

 

Tests for Normality 
Test Statistic p Value 
Kolmogorov-Smirnov D 0.12417 Pr > D <0.0100 
Cramer-von Mises W-Sq 14.87134 Pr > W-Sq <0.0050 
Anderson-Darling A-Sq 93.61157 Pr > A-Sq <0.0050 
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A4.3. Linear Least – Square Regression – No intercept 
 

Linear Least-Square Regression Dependent Variable, Y: Total Suspended Solid (mg/l) 

Independent Variable, X: Turbidity (NTU) 

 

The REG Procedure Model: MODEL1 Dependent Variable: TSS 

 

Number of Observations Read 3832 
Number of Observations Used 3832 
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Note: No intercept in model. R-Square is redefined. 

Analysis of Variance 
 
Source 

 
DF 

Sum of 
Squares 

Mean 
Square 

 
F Value 

 
Pr > F 

Model 1 299355 299355 54073.1 <.0001 
Error 3831 21209 5.53612   
Uncorrected Total 3832 320564    

 

Root MSE 2.35290 R-Square 0.9338 
Dependent Mean 7.89050 Adj R-Sq 0.9338 
Coeff Var 29.81935   

 

Parameter Estimates 
 
Variable 

 
DF 

Parameter 
Estimate 

Standard 

Error 
 
t Value 

 
Pr > |t| 

Turbidity 1 1.71487 0.00737 232.54 <.0001 
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A4.4. Multiple Means Comparison – Duncan’s MRT for TSS 
 

Multiple Means Comparison, Duncan MRT Dependent Variable, Y: Total Suspended Solid (mg/l) 
Independent Variable, X: Turbidity (NTU) 

 

The ANOVA Procedure 

 

Class Level Information 
Class Levels Values 
Turbidity 125 1 1.04 1.07 1.08 1.1 1.12 1.13 1.15 1.17 1.18 1.19 1.21 1.22 1.23 1.24 1.25 1.26 1.27 

1.28 1.29 1.32 1.33 1.35 1.36 1.37 1.38 1.39 1.4 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 

1.49 1.5 1.51 1.52 1.54 1.55 1.57 1.58 1.59 1.6 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 

1.69 1.7 1.71 1.72 1.73 1.74 1.75 1.76 1.77 1.8 1.81 1.83 1.84 1.85 1.87 1.88 1.9 1.91 

1.92 1.94 1.95 1.97 1.98 1.99 2 2.02 2.03 2.05 2.07 2.09 2.15 2.17 2.18 2.19 2.2 2.23 

                       

            
YEAR 15 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

 

Number of Observations Read 3832 
Number of Observations Used 3832 

 
Multiple Means Comparison, Duncan MRT Dependent Variable, Y: Total Suspended Solid (mg/l) 

Independent Variable, X: Turbidity (NTU) 

 

The ANOVA Procedure 

 

Dependent Variable: TSS 

 

Source DF Sum of Squares Mean Square F Value Pr > F 
Model 138 81983.73424 594.08503 Infty <.0001 
Error 3693 0.00000 0.00000   

Corrected Total 3831 81983.73424    
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R-Square Coeff Var Root MSE TSS Mean 
1.000000 0 0 7.890501 

 

Source DF Anova SS Mean Square F Value Pr > F 
Turbidity 124 63845.14589 514.88021 Infty <.0001 
YEAR 14 30252.02679 2160.85906 Infty <.0001 

 

 

Multiple Means Comparison, Duncan MRT Dependent Variable, Y: Total Suspended Solid (mg/l) 
Independent Variable, X: Turbidity (NTU) 

 

The ANOVA Procedure 
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Multiple Means Comparison, Duncan MRT Dependent Variable, Y: Total Suspended Solid (mg/l) 
Independent Variable, X: Turbidity (NTU) 

 

The ANOVA Procedure Duncan's Multiple Range Test for TSS 

 

Alpha 0.05 
Error Degrees of Freedom 3693 
Error Mean Square 0 
Harmonic Mean of Cell Sizes 255.4232 

 

 

Number of Means 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Critical Range 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Means with the same letter 
are not significantly different. 

Duncan Grouping Mean N YEAR 
A 13.48 250 2008 
B 11.93 252 2007 
C 11.05 260 2009 
D 9.51 249 2002 
E 8.84 256 2010 
F 8.67 258 2006 
G 8.58 253 2004 

H 8.35 254 2003 
I 7.82 259 2005 
J 6.79 257 2001 
K 6.61 255 2011 
L 4.70 257 2012 
M 4.44 254 2013 
N 4.17 260 2015 
O 3.69 258 2014 
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