Old Dominion University ODU Digital Commons

Computer Science Faculty Publications

Computer Science

1998

Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+

Melissa E. Tiffany

Michael L. Nelson Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs Part of the <u>Computer Sciences Commons</u>, and the <u>Digital Communications and Networking</u> <u>Commons</u>

Repository Citation

Tiffany, Melissa E. and Nelson, Michael L., "Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+" (1998). *Computer Science Faculty Publications*. 30. https://digitalcommons.odu.edu/computerscience_fac_pubs/30

Original Publication Citation

Tiffany, M.E., & Nelson, M.L. (1998). Creating a canonical scientific and technical information classification system for NCSTRL+. NASA Technical Memorandum: 208955. Hampton VA: NASA Langley Research Center.

This Report is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

NASA/TM-1998-208955

Creating A Canonical Scientific and Technical Information Classification System for NCSTRL+

Melissa E. Tiffany Computer Sciences Corporation, Hampton, Virginia

Michael L. Nelson Langley Research Center, Hampton, Virginia

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that help round out the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at *http://www.sti.nasa.gov*
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Phone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320

NASA/TM-1998-208955

Creating A Canonical Scientific and Technical Information Classification System for NCSTRL+

Melissa E. Tiffany Computer Sciences Corporation, Hampton, Virginia

Michael L. Nelson Langley Research Center, Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199

December 1998

Available from the following:

NASA Center for AeroSpace Information (CASI) 7121 Standard Drive Hanover, MD 21076-1320 (301) 621-0390 National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161-2171 (703) 487-4650

Creating a Canonical Scientific and Technical Information Classification System for NCSTRL+

Melissa E. Tiffany Computer Sciences Corporation NASA Langley Research Center MS 157D Hampton, VA 23681 m.e.tiffany@larc.nasa.gov Michael L. Nelson NASA Langley Research Center MS 158 Hampton, VA 23681 m.l.nelson@larc.nasa.gov

Abstract

The purpose of this paper is to describe the new subject classification system for the NCSTRL+ project. NCSTRL+ is a canonical digital library (DL) based on the Networked Computer Science Technical Report Library (NCSTRL). The current NCSTRL+ classification system uses the NASA Scientific and Technical (STI) subject classifications, which has a bias towards the aerospace, aeronautics, and engineering disciplines. Examination of other scientific and technical information classification systems showed similar discipline-centric weaknesses. Traditional, library-oriented classification systems represented all disciplines, but were too generalized to serve the needs of an STI oriented digital library. Lack of a suitable existing classification system led to the creation of a lightweight, balanced, general classification system that allows the mapping of more specialized classification system to give equal weight to all STI disciplines, while being compact and lightweight.

1 Introduction

Digital libraries (DLs) are quickly gaining acceptance and use in the scientific and research communities. NCSTRL+ is a canonical digital library based on the Networked Computer Science Technical Report Library (NCSTRL). The aim of NCSTRL+ is to provide users with a unified interface for multi-disciplinary/multi-genre searching [13]. One of the problems NCSTRL+ seeks to address is how to facilitate searching for information across diverse collections of specialized scientific and technical information. The two main stumbling blocks for users wishing to search for scientific and technical information are the lack of uniformity among individual DLs and the reliance of the DLs on discipline-specific jargon.

The answer is to create a new canonical classification system. It must be general enough allow more specialized subject categories to be mapped into it, since the purpose is to incorporate specialized classification systems, not replace them. The new system must also be balanced to represent all disciplines equally and avoid over-specialization. Finally, the new system must also be lightweight, or it will be too cumbersome to work with efficiently.

2 Background

The NCSTRL+ prototype utilized the NASA Scientific and Technical Information (STI) categories [12] (Appendix B). They were chosen because the subjects were already familiar to most users [13], and the structure of the system was relatively close to what was desired (Table 1).

Main Subject Category	Subject Code
Aeronautics	01
Astronautics	12
Chemistry and Materials	23
Engineering	31
Geosciences	42
Life Sciences	51
Mathematical and Computer Sciences	59
Physics	70
Social Sciences	80
Space Sciences	88

Table 1. NASA Scientific and Technical Information Topics

The main problem with the NASA STI classification system is that it has a rather noticeable bias towards aeronautics, astronautics, and engineering topics to the detriment of other subjects. For example, there are 67 main and subcategories under engineering, but only 20 for mathematics and science combined. Social sciences and life sciences exhibit a similar lack of depth in their respective categories.

In order to ensure equal representation within each subject category, it would be necessary to redistribute the number of subcategories allocated to each main subject. It would also be desirable to separate mathematics and computer science into separate categories.

3 Existing Specialized Classification Systems

It would be easiest to replace the NASA STI system with a preexisting scientific or technical classification system. Unfortunately, most scientific and technical classification systems suffer from the same problem as the NASA STI system: the tendency to catalog subjects within the discipline in minute detail, ignoring ancillary subjects or giving them only a cursory categorization. There is a tendency to catalog what you know extremely well, while ignoring the categories that do not directly affect your profession. A summary of the specialized classification systems considered and why they were ultimately rejected for NSTRL+ can be seen in Table 2. Figure 1 shows a relative placement of both specialized and general classification systems, and how none fall into the desired range. Examining these discipline-specific classification systems underscores the fact that although they do an excellent job of creating classification structures in their subject specialty, they lack the breadth of subject matter required for a general purpose classification system.

Name of Specialized Classification Scheme	Reason Rejected
Center for AeroSpace Information (CASI)	Too large, bias towards aerospace
Defense and Technical Information Center (DTIC)	Heavy emphasis on defense technology
Global Change Master Directory (GMCD)	Earth science specific categories
Physics E-print Archive	Categories are not well-balanced
American Mathematical Society (AMS)	Too many categories
Association for Computer Machinery (ACM)	Categories too discipline-specific
American Institute of Physics (AIP)	Too complex

Figure 1. Complexity vs. generality in classification systems considered for NCSTRL+.

3.1 Center for AeroSpace Information (CASI)

The Center for AeroSpace Information (CASI) catalogs bibliographic citations for Scientific and Technical Aerospace Reports (STARs). CASI has subject categories and major subject terms [4]. The problem with the subject category is that there are 76 subject categories to choose from—far too many for the NCSRL+ project. In addition, CASI takes its major subject terms from the *NASA Thesaurus* [11], which again, reflects a NASA bias towards aerospace, aeronautics, and engineering. Another level of classification is added by allowing multiple terms to be entered into the secondary subject field, again, from the *NASA Thesaurus*. *Thesaurus* terms are arranged in a hierarchy that is too detailed and complex to easily incorporate into NCSTRL+.

3.2 Defense and Technical Information Center (DTIC)

The Defense Technical Information Center (DTIC) subject categories are also overly specialized, this time in subjects of special interest to the Department of Defense. DTIC has 25 main subject categories and 251 subcategories, with a military emphasis [6]. The main categories are numbered, with subcategories also numerically differentiated. It classifies to three levels deep. For example, the Astronomy and Astrophysics category only has three subheadings (Table 3), while the Guided Missile Technology subject category has nine distinct subcategories (Table 4).

Due to its heavy emphasis on defense technology and issues, the DTIC classification system was not considered an appropriate candidate to replace the NASA STI subject categories.

03-	–Astronomy and Astrophysics
01	Astronomy
02	Astrophysics
03	Celestial Mechanics

Tuble bi bitle fibil enemy and fibil epitybles subcategoine	Table 3. DT	C Astronomy	and Asti	rophysics	subcategori
---	-------------	-------------	----------	-----------	-------------

16—Guided Missile Technology		
01	Guided Missile Launching and Basing Support	
02	Guided Missile Trajectories, Accuracy and Ballistics	
02/01	Guided Missile Dynamics, Configurations and Control Surfaces	
03	Guided Missile Warheads and Fuzes	
04	Guided Missiles	
04/01	Air- and Space-Launched Guided Missiles	
04/02	Surface-Launched Guided Missiles	
04/03	Underwater-Launched Guided Missiles	
05	Guided Missile Reentry Vehicles	

Table 4. DTIC Guided Missile Technology Subcategories

3.3 Global Change Master Directory

The Global Change Master Directory (GCMD) allows users to search by subject for Earth Science data. It has 11 main categories, all relating to specific areas of expertise in the Earth Sciences [8]. The GCMD catalogs data three levels deep, which allows for very specific searches (for example: Cryosphere: Sea Ice: Ice Types). However, GCMD is too limiting to be a general classification system because it categorizes only Earth Science topics.

3.4 Physics E-print Archive

The Physics E-print Archive stores papers primarily written for the physics community, but also has papers on mathematics, nonlinear science, and computer science [15]. They have rudimentary subject classifications that seem to have arisen more out of necessity than intent. Most of the subcategories are under the main "Physics" category. High Energy Physics has 4 main categories (Experiment, Lattice, Phenomenology, and Theory). Mathematics is one major category, with individual disciplines in mathematics listed as subcategories. Simply put, the Physics E-print archive is not structured enough to be useful. The Physics E-print archive classification system does not provide a clear, balanced set of main and subcategories, nor does it list subjects unrelated to physics. This is understandable considering the targeted user group of this server and its evolutionary development.

3.5 American Mathematical Society (AMS)

The American Mathematical Society's Mathematics Subject Classification [2] is geared specifically to classify mathematical papers and information. The Mathematics Subject Classification system has 95 main categories, ranging from "Algebraic Geometry" to "Abstract Harmonic Analysis". While this categorization system does list other disciplines among its main categories, it lists them only if they are in some way related to mathematics. In addition to being a large classification system, it is also quite involved. The instructions deem it "extremely helpful for both readers and classifiers to familiarize themselves with the entire classification system" [2]. A classification system that requires extensive familiarity to implement and search is not suitable for the purposes of NCSTRL+.

3.6 Association for Computer Machinery (ACM)

The Association for Computer Machinery (ACM) Computing Classification System [3] uses the alphabetical letters A-K to denote main categories, separated by a period from numbers to denote subcategories (the exception to this rule is the "Miscellaneous" subcategory at the end of each main category. It is denoted by an "m"). Again, the emphasis on one particular discipline renders this classification system incomplete for NCSTRL+.

3.7 American Institute of Physics (AIP)

Probably the most complex classification system considered was that of the American Institute of Physics (AIP). It is called the Physics and Astronomy Classification System (PACS). Not only was PACS an enormous list (around 150 pages long), but it had a potentially confusing and complicated indexing scheme. According to the description,

The PACS indexing categories are labeled by six-character Codes consisting of four numbers followed by a fifth character that can be either an uppercase letter or a plus or minus ...[the] sixth character is a lowercase character that serves as a check character [1].

PACS would be difficult to implement outside of a physics environment, due to the level of expertise required to catalog information in that scheme. It would also be extremely time consuming to map other classification codes onto PACS. Users unfamiliar with physics terminology would have difficulty finding the correct categories to search in. Last, but not least, it classifies only physics and astronomy categories.

4 Existing Generalized Classification Systems

General classification systems were also considered for use in NCSTRL+. General classification schemes are specifically designed to classify a wide range of subjects in detail. The two most common general classification systems are the Library of Congress Classification System (LCC) and the Dewey Decimal System. It was found, however that the major shortcoming of a generalized classification system was its *generality*—too many subject categories were classified to make it useful for NCSTRL+ (Table 5).

Name of Generalized Classification Scheme	Reason Rejected
Library of Congress Classification	Too complex, too detailed
Dewey Decimal System	Too generalized

L

Table 5. Generalized Classification Schemes considered for NCSTRL+.

4.1 Library of Congress Classification (LCC)

The LCC system is well known to anyone who has visited an academic library. It consists of 21 main categories [10], with subcategories defined first by letters and then numbers. The LCC is a very large classification system intended for large collections. It

provides enough breadth and depth to classify almost any collection. The fact that the LCC is such a large, complete classification system is precisely why it is unsuitable for use in NSCTRL+: it provides too much detail. Finding a copy of the LCC on the web is also a challenge, not to mention adapting it for use in a digital library environment, as the Pharos team discovered [14]. Aside from the implementation problems that LCC provides, properly mapping another DL's subject headers into the Library of Congress Classification system would take a fair amount of skill and time, negating the whole idea of adopting a simple, yet complete classification system.

4.2 Dewey Decimal System

The Dewey Decimal System is used primarily by public libraries. It is, like the LCC, a general purpose classification system. It is much easier to use than the LCC, limiting itself to 10 major subjects, each with 10 secondary subjects [16]. Specificity is obtained by adding numbers after the decimal point. The 10 major areas are shown in Table 6.

000	Generalities
100	Philosophy and Psychology
200	Religion
300	Social Sciences
400	Languages
500	Science
600	Technology
700	Arts and Music
800	Literature
900	Geography and History

Table 6. Dewey Decimal System Main Classifications

The main advantage to the Dewey Decimal System is that is well known by most users. It is also reasonably compact, and easy to work with. The reason it was not chosen as the classifying system for NCSRL+ is that the subject headings are too general for a specialized library. While Dewey is appropriate for public libraries, it is simply not adequate for STI applications.

Generalized library classifications schemes have the breadth of subject matter to be used by NCSTRL+, but lack the depth required by a scientific and technical library. They can also be bulky and difficult to implement in a digital library environment, and may require additional expertise to effectively catalog information and map other library classifications into them.

5 Creating a New Canonical Classification System

To create a new canonical classification system for NCSTRL+, a structure of 11 major subject headings (similar to the Dewey Decimal System [16]) with 11 subclasses per subject heading was chosen.

Once the number of main and subcategories was decided upon, the next phase was deciding what main/subcategories should be used. For the most part, the original NASA STI topics remained. The mathematics and computer science topic was divided into separate categories, and some subclasses were incorporated into newly created generalized subclasses or removed altogether. To see an example of the reshuffling and pruning, refer to the NASA STI Aeronautics subject classification (Table 7) and compare it to the NCSTRL+ Aeronautics subject classification (Table 8).

In order to create the subcategory headers, sources that had previously been dismissed as too specialized to be used as a stand alone classification system were consulted to decide what constituted a "general" subcategory. For Chemistry and Materials, ChemDex Plus [5] was used.

The Geosciences subject was renamed Earth Sciences, to make it consistent with NASA's Earth Science Enterprise. To rework the subclasses, the dictionary was used, as well as the author's experience working with Earth Science data.

PACS [1] was useful in helping to solidify the subclasses for Physics and Space Sciences. PACS was a good detailed framework to check NCSTRL+'s general subclasses against (PACS categories were able to map to NCSTRL+ categories).

The Computer Science category was developed with the help of the ACM Computing Classification System [3]. What was to be listed was already known, and the ACM classification system helped to identify which items were subcategories and which were sub-subcategories.

Members of the NASA Langley Research Center's Technical Library staff with experience in cataloging reviewed the initial NCSTRL+ classification system. They suggested additions and clarifications, especially to the Aeronautics, Astronautics, Engineering, and Social Sciences categories. After the requisite changes were made, they gave their approval for its use as a classification system. The finished Canonical Classification System for NCSTRL+ can be seen in Appendix A.

01	Aeronautics
02	Aerodynamics
02-01	Aerodynamics Characteristics
02-02	Aerodynamics of Bodies
03	Air Transportation and Safety
03-01	Commercial and General Aviation
03-02	Helicopters and Ground Effect Machines
03-03	STOL/VTOL Aircraft
03-04	Supersonic Transport
03-05	Aircraft Noise and Sonic Boom
03-06	Aircraft Safety and Safety Devices
03-07	Clear Air Turbulence
04	Aircraft Communications and Navigations
05	Aircraft Design, Testing and Performance
05-01	Hydraulic and Pneumatic Systems
05-02	Auxiliary Electrical Systems
06	Aircraft Instrumentation
07	Aircraft Propulsion and Power
07-01	Jet Propulsion
08	Aircraft Stability and Control
09	Research and Support Facilities (Air)
09-01	Wind Tunnels

Table 7. NASA STI Aeronautics main and subcategories

000	Aeronautics, General
000-010	History of Aeronautics
010	Aerodynamics
020	Commercial and General Aviation
030	Aviation Safety
040	Instrumentation
050	Communications
060	Propulsion and Power
070	Design
080	Aircraft Control
090	Research and Support Facilities

Table 8. NCSTRL+ Aeronautics main and subcategories

6 **Related Projects**

Perhaps the most closely related project to the Canonical Classification System for NCSTRL+ is Pharos [14], an offshoot of the Alexandria Digital Library Project at University of California, Santa Barbara [7]. Pharos mapped newsgroups to the Library of Congress Classification subjects. It allowed users to type in keywords, and it returned the newsgroups that were most likely to contain the information the user was looking for. The Pharos authors detailed the difficulty they had in making LCC suitable for automated classification [7]. In particular, some of the cataloging conventions were redundant or inconsistent. Pharos was begun in 1997; however, it does not seem to have progressed past the demonstration stage. It is viable, but at present, it does not appear to be under further development.

Larson [9] has also done research with LCC categories and automated classification. After conducting experiments with differing methods of automatic classification, he concluded "fully automatic classification may not be possible" using the LCC, but conceded that "semiautomatic classification...appears to be effective" [9]. This bolsters the contention that the LCC (in its present form) is simply too large and too complex to be used for automatic classification.

The Scorpion research project used the Dewey Decimal System as the basis for its automatic classification system, and reported favorable results [17]. Dewey's class integrity (how well subject classifications are differentiated) and hierarchical structure were cited as the reasons for its success. The authors concluded "results indicate that Dewey is a very good knowledge base for automatic subject assignment tools" [17].

7 Future Work

Although the initial work of creating the main and subcategories for NCSTRL+ has been completed, work on the project continues. The current catalog of NCSTRL+ will need to be mapped to the new classification codes. As NCSTRL+ grows and incorporates the holdings of other DLs, those collections will also need to be mapped to the appropriate categories.

It is possible that the current list may be incomplete or inadequate to handle certain specialized classification schemes. To test this new classification scheme, it will need to be implemented. Feedback from users should be encouraged, and the system will probably need to be adjusted to better serve the users.

Another area that can be explored is whether or not an additional level of subcategorizing is useful (or necessary). It may turn out that two levels of classification are not enough. Again, only a real world test will give the necessary data to decide the relative merit of this classification system.

8 Conclusions

Most scientific and technical classification schemes are too narrow in their focus to adequately fill the demands of NCSTRL+. They catalog within their areas of expertise in great detail, but only give cursory, if any, attention to fields outside of their specialties. In addition, the plethora of specialized, highly technical subclasses often found in scientific and technical classification systems can be confusing for a user unfamiliar with that particular subject.

On the other hand, traditional library cataloging systems offer general classification subjects that are familiar to a majority of users. The drawback is that these systems were created to catalog large, diverse collections in minute detail. Not only is this level of classification not necessary, it is not wanted. Also, the general subject categories of traditional library cataloging systems are not completely relevant to NCSTRL+.

Since existing classification systems were either too complex or too generalized to be used to catalog NCSTRL+, a canonical classification system was created to fill the need for a lightweight, general-purpose classification system. The goal is to provide a balanced classification system that will be familiar enough to allow novice users to find the information they are looking for, even if they lack specific keywords or terms.

The new classification system presents a set number of main categories, each with a set number of subcategories. All disciplines relevant to the STI holdings are given equal weight in the listing. Specific topics can be placed appropriately under each subcategory. Existing, specialized categorization schemes can also be mapped at the subcategory level to allow users to search across diverse DLs. For viability, the NCSTRL+ classification system has been reviewed and approved by members of NASA Langley Research Center's technical library cataloging staff.

Acknowledgements

We would like to thank Nancy Kaplan, Garland Gouger, and John Ferrainolo of the NASA Langley Research Center Technical Library for their assistance in reviewing and contributing to this classification system.

References

- American Institute of Physics, "1998 Physics and Astronomy Classification System (PACS)." http://www.aip.org/pacs/pacs.html
- 2. American Mathematical Society, "Mathematics Subject Classification (1991)." http://www.ams.org/msc
- Association for Computing Machinery, "ACM Computing Classification System (1998)." <u>http://www.acm.org/class/1998/overview.html</u>
- 4. Center for Aerospace Information Technical Report Server, http://www.sti.nasa.gov/RECONselect.html
- 5. ChemWeb ChemDex Plus, "Subject Headings." http://www.chemweb.com/databases/chemdex/chemdex.exe?action=browse
- 6. Defense Technical Information Center, "Subject Category Coverage." http://www.dtic.mil/dtic/subcatguide/#subcats/
- R. Dolin, D. Agrawal, A. El Abbadi, & J.Pearlman, "Using Automated Classification for Summarizing and Selecting Heterogeneous Information Sources," *D-Lib Magazine, the Magazine for Digital Library Research,* January, 1998. <u>http://www.dlib.org/dlib/january98/dolin/01dolin.html</u>
- 8. Global Change Master Directory, "Science Keyword Interface." http://gcmd.gsfc.nasa.gov/param_search/top.html
- 9. R. R. Larson, "Experiments in Automatic Library of Congress Classification," *Journal of the American Society for Information Science*, 43(2), 1992, pp. 130-148.
- 10. Library of Congress Classification System http://geography.miningco.com/library/congress/bllc.html
- 11. NASA Thesaurus http://www.sti.nasa.gov/98Thesaurus/98thes.htm
- 12. NASA Scientific and Technical Information Program, "NASA STI Topics." <u>ftp://ftp.sti.nasa.gov/pub/scan/SCAN-TOPICS</u>

- M. L. Nelson, K. Maly, S. N. T. Shen, & M. Zubair, "NSTRL+: Adding Multi-Discipline and Multi-Genre Support to the Dienst Protocol Using Clusters and Buckets," *Proceedings of Advances in Digital Libraries 98*, Santa Barbara, CA, April 22-24, 1998, pp. 128-136.
- 14. Pharos http://pharos.alexandria.ucsb.edu
- 15. Physics E-print Archive, http://xxx.lanl.gov
- 16. Salt Lake Community College, "Dewey Decimal System." http://www.slcc.edu/lr/library/info/dewey.htm
- 17. R. Thompson, K. Shafer, D. Vizine-Goetz, "Evaluating Dewey Concepts as a Knowledge Base for Automatic Subject Assignment," *Proceedings of ACM Digital Libraries* '97, Philadelphia, PA, July 23-26, 1997, pp. 37-46.

Appendix A

A Canonical STI Classification System for NCSTRL+

Aeronautics	
000	Aeronautics, General & History
010	Aerodynamics
020	Commercial and General Aviation
030	Aviation Safety
040	Instrumentation
050	Communications
060	Propulsion and Power
070	Design
080	Aircraft Control
090	Research and Support Facilities
Astronautics	
100	Astronautics, General & History
110	Astrodynamics
120	Space Vehicles and Space Stations
130	Safety
140	Instrumentation
150	Communications
160	Propulsion and Power
170	Design
180	Navigation and Guidance Systems
190	Research and Support Facilities
Chemistry and M	aterials
200	Chemistry and Materials, General
210	Electrochemistry
220	Chemical Processes
230	Chemical Analysis
240	Organic Chemistry
250	Inorganic Chemistry
260	Physical Chemistry
270	Materials
270-010	Metallic
270-020	Non-metallic
270-030	Composite
280	Propellants and Fuels
290	Processing
Engineering and	Applied Technology
300	Engineering, General
310	Electrical Engineering
320	Communications
330	Electronics
340	Lasers and Masers
350	Fluid Mechanics and Heat Transfer
360	Mechanical Engineering
370	Instrumentation and Measurement

380 Structural Mechanics

390	Quality Assurance
395	Photography
Earth Sciences	
400	Earth Sciences, General
410	Geophysics
410-010	Geology
410-020	Seismology
410-030	Geomagnetism
420	Oceanography
430	Geography
430-010	Cartograpy
440	Energy Production
440-010	Energy Resources
450	Environmental Issues
450-010	Pollution
450-020	Global Warming
460	Atmospheric Science
460-010	Meteorology
460-020	Climatology
460-030	Climatological Phenomena
460-030	Upper Atmosphere
460-040	Satellites
470	Hydrology
Life Sciences	
500	Life Sciences, General
510	Biology
520	Biochemistry
530	Medicine
530-010	Aerospace Medicine
530-020	Clinical Medicine
530-030	Physiological Factors
540	Life Sciences Technology
540-010	Life Support Systems
550	Space Biology
550-010	Extraterrestrial Life
560	Biological Physics
570	Pharmacology
580	Psychology
580-010	Cognition
590	Botany
Mathematics	
600	Mathematics, General
610	Applied Mathematics
620	Theoretical Mathematics
630	Statistics
640	Numerical Analysis
650	Geometry
660	Topology
670	Probability
680	Logic
690	Mathematical Physics
	-

Computer Scienc	e
700	Computer Science, General
710	Computer Networks
710-010	Internet
720	Hardware
730	Software
730-010	Software Engineering
730-020	Programming Languages
740	Information Systems
740-010	Information Management
740-020	Database
740.030	Information Patriaval
740-030	Doto
750 010	Data Starage
750-010	Data Storage
750-020	Data Encryption
/50-030	Data Structures
760	Artifical Intelligence
770	Robotics
780	Artificial Intelligence
790	Human-Computer Interaction
Physics	
800	Physics General
805	Flementary Particles and Fields
805-010	Relativity
805-010	Unified Field Theories and Models
803-020	Statistical Dhysics
010	Statistical Physics
813	High Energy Physics
820	Thermodynamics
825	Quantum Physics
830	Solid-State Pysics
840	Gases, Plasmas, and Electrical Discharges
850	Optics
860	Nuclear Physics
870	Atomic and Molecular Physics
880	Condensed Matter
890	Acoustics
Social Sciences	a
900	Social Sciences, General
910	Law
920	Political Science
925	Government and Military Science
930	Economics
940	Business
940-010	Administration and Management
950	Communications and Media
960	Transportation
970	Technology Transfer
970	Sociology
970-020	Social Psychology
980	Education
985	Library and Information Science
990	History
995	Biography
	DioBrahily

1000Space Sciences1010Astronomy1020Astrophysics1030Solar System1030-010Planetary Exploration1040The Moon1050The Sun1050-010Solar Astronomy	Space Sciences	
1010Astronomy1020Astrophysics1030Solar System1030-010Planetary Exploration1040The Moon1050The Sun1050-010Solar Astronomy	1000	Space Sciences
1020Astrophysics1030Solar System1030-010Planetary Exploration1040The Moon1050The Sun1050-010Solar Astronomy	1010	Astronomy
1030Solar System1030-010Planetary Exploration1040The Moon1050The Sun1050-010Solar Astronomy	1020	Astrophysics
1030-010Planetary Exploration1040The Moon1050The Sun1050-010Solar Astronomy	1030	Solar System
1040The Moon1050The Sun1050-010Solar Astronomy	1030-010	Planetary Exploration
1050The Sun1050-010Solar Astronomy	1040	The Moon
1050-010 Solar Astronomy	1050	The Sun
	1050-010	Solar Astronomy
1050-020 Solar Physics	1050-020	Solar Physics
1060 Stars	1060	Stars
1070 The Universe	1070	The Universe
1070-010 Stellar Systems	1070-010	Stellar Systems
1070-020 Interstellar Medium	1070-020	Interstellar Medium
1070-030 Galactic Objects and Systems	1070-030	Galactic Objects and Systems
1070-040 Extragalactic Objects and Systems	1070-040	Extragalactic Objects and Systems
1070-050 Space Radiation	1070-050	Space Radiation

Appendix B

NASA STI SCAN Topics

AERONAUTICS

01 AERONAUTICS (GENERAL) 02 AERODYNAMICS 02-01 AERODYNAMICS CHARACTERISTICS 02-02 AERODYNAMICS OF BODIES 02-03 AIRFOIL AND WING AERODYNAMICS 03 AIR TRANSPORTATION AND SAFETY 03-01 COMMERCIAL AND GENERAL AVIATION 03-02 HELICOPTERS AND GROUND EFFECT MACHINES 03-03 STOL/VTOL AIRCRAFT 03-04 SUPERSONIC TRANSPORT 03-05 AIRCRAFT NOISE AND SONIC BOOM 03-06 AIRCRAFT SAFETY AND SAFETY DEVICES 03-07 CLEAR AIR TURBULENCE 04 AIRCRAFT COMMUNICATIONS AND NAVIGATIONS 05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE 05-01 HYDRAULIC AND PNEUMATIC SYSTEMS 05-02 AUXILIARY ELECTRICAL SYSTEMS 06 AIRCRAFT INSTRUMENTATION 07 AIRCRAFT PROPULSION AND POWER 07-01 JET PROPULSION 08 AIRCRAFT STABILITY AND CONTROL 09 RESEARCH AND SUPPORT FACILITIES (AIR) 09-01 WIND TUNNELS

ASTRONAUTICS

12 ASTRONAUTICS (GENERAL) 13 ASTRODYNAMICS 13-01 CELESTIAL MECHANICS AND ORBITAL CALCULATIONS 14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE) 14-01 SPACECRAFT GROUND SUPPORT 14-02 TEST FACILITIES 14-03 SIMULATORS AND SIMULATION 14-04 STERILIZATION 15 LAUNCH VEHICLES AND SPACE VEHICLES **15-01 LAUNCH VEHICLES 15-02 SOUNDING ROCKETS 15-03 SPACE PROBES 15-04 SCIENTIFIC SATELLITES 15-05 REENTRY VEHICLES** 15-06 U.S.S.R SPACECRAFT **16 SPACE TRANSPORTATION** 16-01 SPACE TRANSPORTATION AND MANNED SPACECRAFT 17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING 17-01 SPACE COMMUNICATIONS **17-02 NAVIGATION SYSTEMS 17-03 GUIDANCE SYSTEMS** 17-04 TRACKING 18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE

18-01 SPACECRAFT ATTITUDE CONTROL AND STABILIZATION
18-02 RENDEZVOUS AND DOCKING
18-03 SPACE STATIONS
19 SPACECRAFT INSTRUMENTATION
19-01 SPACECRAFT AND AIRCRAFT INSTRUMENTATION
19-02 SENSORS AND TRANSDUCERS
20 SPACECRAFT PROPULSION AND POWER
20-01 ROCKET ENGINES, NOZZLES AND THRUST CHAMBERS
20-02 AUXILIARY PROPULSION
20-03 ELECTRIC PROPULSION

CHEMISTRY AND MATERIALS

23 CHEMISTRY AND MATERIALS (GENERAL) 23-01 CHEMICAL ANALYSIS 23-02 CHEMICAL PROCESSES AND ENGINEERING 23-03 LUMINESCENCE 23-04 PHOTOCHEMISTRY 24 COMPOSITE MATERIALS 24-01 REINFORCED MATERIALS AND FIBERS 24-02 COMPOSITE MATERIALS 25 INORGANIC AND PHYSICAL CHEMISTRY 25-01 CORROSION 25-02 METAL CRYSTALS 25-03 COATINGS 25-04 ELECTROCHEMISTRY **26 METALLIC MATERIALS** 26-01 ALUMINUM 26-02 BERYLLIUM 26-03 LIQUID METALS 26-04 STEEL 26-05 TITANIUM 26-06 REFRACTORY METALS 26-07 METALLURGY **27 NONMETALLIC MATERIALS** 27-01 PLASTICS 27-02 ADHESIVES 27-03 CERAMICS 27-04 ELASTOMERS 27-05 GRAPHITE 27-06 POLYMERS **28 PROPELLANTS AND FUELS** 28-01 LIQUID PROPELLANTS 28-02 SOLID PROPELLANTS 29 MATERIALS PROCESSING

ENGINEERING

31 ENGINEERING (GENERAL)
32 COMMUNICATIONS AND RADAR
32-01 COMMUNICATION SATELLITES
32-02 COMMUNICATION EQUIPMENT
32-03 COMMUNICATION SYSTEMS
32-04 TELEMETRY
32-05 RADIO NOISE
32-06 COMMUNICATION THEORY
33 ELECTRONICS AND ELECTRICAL ENGINEERING

33-01 RADAR EQUIPMENT 33-02 SEMICONDUCTORS AND TRANSISTORS 33-03 ANTENNAS 33-04 ELECTRONIC COMPONENTS 33-05 CIRCUITRY 33-06 ELECTRICAL EQUIPMENT 33-07 AMPLIFIERS 33-08 FEEDBACK AND CONTROL THEORY 33-09 ELECTROMAGNETIC RADIATION 33-10 MICROELECTRONICS 33-11 MICROWAVE AND SUBMILLIMETER WAVE TECHNOLOGY 33-12 MAGNETISM 34 FLUID MECHANICS AND HEAT TRANSFER 34-01 BOUNDARY LAYER TECHNOLOGY 34-02 GAS DYNAMICS 34-03 FLUIDICS 34-04 FLUID FLOW 34-05 COMBUSTION PHYSICS 34-06 HEAT TRANSFER, BASIC 34-07 REENTRY HEAT TRANSFER 34-08 THERMAL PROTECTION 34-09 ABLATION 34-10 CRYOGENICS 35 INSTRUMENTATION AND PHOTOGRAPHY **35-01 PHOTOGRAPHY** 35-02 INFRARED TECHNOLOGY 35-03 INSTRUMENT STANDARDS AND CALIBRATION TECHNIQUES **35-04 TEMPERATURE MEASUREMENT 35-05 PRESSURE MEASUREMENT** 35-06 DISPLAY SYSTEMS 35-07 DATA RECORDING 35-08 GAS FLOW MEASUREMENT 36 LASERS AND MASERS 36-01 LASERS AND MASERS 36-02 LASER APPLICATIONS **37 MECHANICAL ENGINEERING 37-01 BEARINGS AND GEARS** 37-02 LUBRICATION AND LUBRICANTS 37-03 MACHINING 37-04 FRICTION AND WEAR 37-05 SEALS 37-06 WELDING 37-07 METAL FORMING 37-08 PUMPS **37-09 VACUUM TECHNOLOGY** 37-10 NONDESTRUCTIVE TESTING **37-11 TURBOMACHINERY** 38 OUALITY ASSURANCE AND RELIABILITY 38-01 QUALITY CONTROL AND RELIABILITY **39 STRUCTURAL MECHANICS 39-01 SHELLS** 39-02 STRESSES AND LOADS 39-03 STRUCTURE VIBRATION AND DAMPING **39-04 IMPACT PHENOMENA 39-05 STRUCTURAL FATIGUE** 39-06 SANDWICH CONSTRUCTION

39-07 STRESS ANALYSIS 39-08 STRUCTURAL TESTS AND RELIABILITY

GEOSCIENCES

42 GEOSCIENCES (GENERAL) 43 EARTH RESOURCES AND REMOTE SENSING 43-01 EARTH RESOURCES 43-02 GEODESY AND CARTOGRAPHY 44 ENERGY PRODUCTION AND CONVERSION 44-01 ENERGY RESOURCES 44-02 FUEL CELLS AND CHEMICAL BATTERIES 44-03 SOLAR SPACE POWER 44-04 NUCLEAR AUXILIARY POWER **45 ENVIRONMENT POLLUTION** 45-01 ENVIRONMENT POLLUTION CONTROL **46 GEOPHYSICS 46-01 UPPER EARTH ATMOSPHERE** 46-02 GEOLOGY AND SEISMOLOGY **46-03 GEOMAGNETISM** 47 METEOROLOGY AND CLIMATOLOGY 47-01 METEOROLOGICAL SATELLITES 47-02 WEATHER FORECASTING 47-03 MICROMETEOROLOGY 47-04 CLOUD RESEARCH 47-05 METEOROLOGICAL INSTRUMENTS **48 OCEANOGRAPHY** 48-01 WATER RESOURCES AND OCEANOGRAPHY

LIFE SCIENCES

51 LIFE SCIENCES (GENERAL) 51-01 BIOLOGY (GENERAL) **51-02 BIOCHEMISTRY 52 AEROSPACE MEDICINE** 52-01 AEROSPACE MEDICINE 52-02 CLINICAL MEDICINE 52-03 PHYSIOLOGICAL FACTORS 52-04 BIOLOGICAL RADIATION EFFECTS **53 BEHAVIORAL SCIENCES** 53-01 PSYCHOLOGICAL FACTORS 54 MAN/SYSTEMS TECHNOLOGY AND LIFE SUPPORT 54-01 LIFE SUPPORT SYSTEMS 54-02 CREW SAFETY AND PROTECTIVE CLOTHING 54-03 HUMAN ENGINEERING 54-04 MAN-MACHINE SYSTEMS 54-05 BIOINSTRUMENTATION 54-06 ROBOTICS **55 SPACE BIOLOGY** 55-01 EXTRATERRESTRIAL LIFE

MATHEMATICAL AND COMPUTER SCIENCES 59 MATHEMATICAL AND COMPUTER SCIENCES (GENERAL) 59-01 APPLIED MATHEMATICS 59-02 DATA PROCESSING 60 COMPUTER OPERATIONS AND HARDWARE 60-01 DIGITAL AND ANALOG COMPUTERS 60-02 AIRBORNE OR SPACEBORNE COMPUTERS 61 COMPUTER PROGRAMMING AND SOFTWARE 61-01 COMPUTER SOFTWARE 61-02 CAD/CAM 62 COMPUTER SYSTEMS 63 CYBERNETICS 63-01 CYBERNETICS AND BIONICS 63-02 ARTIFICIAL INTELLIGENCE 64 NUMERICAL ANALYSIS 64-01 NUMERICAL ANALYSIS 65 STATISTICS AND PROBABILITY 65-01 PROBABILITY AND STATISTICS 66 SYSTEMS ANALYSIS 67 THEORETICAL MATHEMATICS

PHYSICS

70 PHYSICS (GENERAL) **71 ACOUSTICS** 71-01 ACOUSTICS 71-02 ULTRASONICS 72 ATOMIC AND MOLECULAR PHYSICS 72-01 ATOMIC PHYSICS 72-02 MOLECULAR PHYSICS 73 NUCLEAR AND HIGH-ENERGY PHYSICS 73-01 NUCLEAR PHYSICS 73-02 RADIOACTIVITY 74 OPTICS **74-01 OPTICS** 74-02 LIGHT **75 PLASMA PHYSICS** 75-01 PLASMA APPLICATIONS 75-02 PLASMA DYNAMICS 75-03 MAGNETOHYDRODYNAMICS 76 SOLID-STATE PHYSICS 76-01 SOLID STATE DEVICES 76-02 SUPERCONDUCTIVITY 76-03 DIELECTRICS 76-04 EPITAXIAL DEPOSITION 77 THERMODYNAMICS AND STATISTICAL PHYSICS

SOCIAL SCIENCES

80 SOCIAL SCIENCES (GENERAL) 81 ADMINISTRATION AND MANAGEMENT 81-01 AEROSPACE MANAGEMENT 82 DOCUMENTATION AND INFORMATION SCIENCE 82-01 INFORMATION TECHNOLOGY 83 ECONOMICS AND COST ANALYSIS 84 LAW, POLITICAL SCIENCE AND SPACE POLICY 84-01 WORLD SPACE PROGRAMS AND AEROSPACE LAW 84-02 SPACE COMMERCIALIZATION 85 URBAN TECHNOLOGY AND TRANSPORTATION 85-01 URBAN TECHNOLOGY AND TRANSPORTATION

SPACE SCIENCES

88 SPACE SCIENCES (GENERAL)

89 ASTRONOMY 89-01 SOLAR ASTRONOMY 89-02 STELLAR ASTRONOMY AND COSMOLOGY 89-03 METEORS AND METEORITES 90 ASTROPHYSICS 90-01 GRAVITATION 90-02 ASTROPHYSICAL PLASMAS 91 LUNAR AND PLANETARY EXPLORATION 91-01 THE MOON 91-02 PLANETARY SCIENCES AND EXPLORATION 92 SOLAR PHYSICS 93 SPACE RADIATION 93-01 COSMIC RADIATION 93-02 SOLAR RADIATION AND ACTIVITY 93-03 RADIATION BELTS

REPORT DOCUMENTATION PAGE			Form Approv OMB No. 0704-	Form Approved OMB No. 0704-0188		
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.						
1. AGENCY USE ONLY (Leave bland	k) 2. REPORT DATE December 1998	3. REPORT TY Technical	T YPE AND DATES COVERED al Memorandum			
 4. TITLE AND SUBTITLE Creating a Canonical Scie System for NCSTRL+ 6. AUTHOR(S) Melissa E. Tiffany Michael L. Nelson 	entific and Technical Informa	tion Classification	5. FUNDING NUMBERS			
7. PERFORMING ORGANIZATION I	8. PERFORMING ORGANIZATION REPORT NUMBER					
NASA Langley Research Hampton, VA 23681-219	L-17797					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSORING/MONITORING AGENCY REPORT NUMBER			
National Aeronautics and Washington, DC 20546-0	NASA/TM-1998-208955					
11. SUPPLEMENTARY NOTES						
12a. DISTRIBUTION/AVAILABILITY STATEMENT Unclassified-Unlimited Subject Category 82 Distribution: Standard Availability: NASA CASI (301) 621-0390			12b. DISTRIBUTION COD	E		
13. ABSTRACT (Maximum 200 words) The purpose of this paper is to describe the new subject classification system for the NCSTRL+ project. NCSTRL+ is a canonical digital library (DL) based on the Networked Computer Science Technical Report Library (NCSTRL). The current NCSTRL+ classification system uses the NASA Scientific and Technical (STI) subject classifications, which has a bias towards the aerospace, aeronautics, and engineering disciplines. Examination of other scientific and technical information classification systems showed similar discipline- centric weaknesses. Traditional, library-oriented classification systems represented all disciplines, but were too generalized to serve the needs of a scientific and technically oriented digital library. Lack of a suitable existing classification system led to the creation of a lightweight, balanced, general classification system that allows the mapping of more specialized classification schemes into the new framework. We have developed the following classification system to give equal weight to all STI disciplines, while being compact and lightweight						
14. SUBJECT TERMS Digital Libraries Subject Categories Classification			15. NUMBER 0 28	OF PAGES		
<u>0</u> 2101m100, 540J001			16. PRICE COI AO3	DE		
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFIC OF ABSTRACT Unclassified	ATION 20. LIMITATIO OF ABSTR	N ACT		
NSN 7540-01-280-5500			Standard For	m 298 (Bev. 2-89)		