
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Computational Modeling & Simulation 
Engineering Theses & Dissertations 

Computational Modeling & Simulation 
Engineering 

Summer 2018 

Analysis of Bulk Power System Resilience Using Vulnerability Analysis of Bulk Power System Resilience Using Vulnerability 

Graph Graph 

Md Ariful Haque 
Old Dominion University 

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds 

 Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and 

Computer Engineering Commons 

Recommended Citation Recommended Citation 
Haque, Md A.. "Analysis of Bulk Power System Resilience Using Vulnerability Graph" (2018). Master of 
Science (MS), Thesis, Computational Modeling & Simulation Engineering, Old Dominion University, DOI: 
10.25777/fqw2-xv37 
https://digitalcommons.odu.edu/msve_etds/14 

This Thesis is brought to you for free and open access by the Computational Modeling & Simulation Engineering at 
ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation Engineering 
Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please 
contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/14?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


   

 

ANALYSIS OF BULK POWER SYSTEM RESILIENCE  

USING VULNERABILITY GRAPH 

by 
 

Md Ariful Haque 
B.S. December 2006, Bangladesh University of Engineering and Technology  

M.B.A. June 2016, IBA, University of Dhaka, Bangladesh 
 
 

A Thesis Submitted to the Faculty of 
Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE 

MODELING AND SIMULATION 

OLD DOMINION UNIVERSITY 
August 2018 

 
 
 
 
 

Approved by:  
                                                                                                                                                                                                             

Sachin Shetty (Director)  
                                                                                   
                                                                                    Yuzhong Shen (Member)  
                     
                                                                                    Hong Yang (Member) 

  
                                             

 
 
 
 



   

 

ABSTRACT 
 

ANALYSIS OF BULK POWER SYSTEM RESILIENCE  
USING VULNERABILITY GRAPH 

 
Md Ariful Haque 

Old Dominion University, 2018 
Director: Sachin Shetty 

 

Critical infrastructure such as a Bulk Power System (BPS) should have some 

quantifiable measure of resiliency and definite rule-sets to achieve a certain resilience 

value. Industrial Control System (ICS) and Supervisory Control and Data Acquisition 

(SCADA) networks are integral parts of BPS. BPS or ICS are themselves not vulnerable 

because of their proprietary technology, but when the control network and the corporate 

network need to have communications for performance measurements and reporting, the 

ICS or BPS become vulnerable to cyber-attacks. Thus, a systematic way of quantifying 

resiliency and identifying crucial nodes in the network is critical for addressing the cyber 

resiliency measurement process. This can help security analysts and power system 

operators in the decision-making process. This thesis focuses on the resilience analysis of 

BPS and proposes a ranking algorithm to identify critical nodes in the network. Although 

there are some ranking algorithms already in place, but they lack comprehensive 

inclusion of the factors that are critical in the cyber domain. This thesis has analyzed a 

range of factors which are critical from the point of view of cyber-attacks and come up 

with a MADM (Multi-Attribute Decision Making) based ranking method. The node 

ranking process will not only help improve the resilience but also facilitate hardening the 

network from vulnerabilities and threats.  



   

 

The proposed method is called MVNRank which stands for Multiple 

Vulnerability Node Rank. MVNRank algorithm takes into account the asset value of the 

hosts, the exploitability and impact scores of vulnerabilities as quantified by CVSS 

(Common Vulnerability Scoring System). It also considers the total number of 

vulnerabilities and severity level of each vulnerability, degree centrality of the nodes in 

vulnerability graph and the attacker’s distance from the target node. We are using a 

multi-layered directed acyclic graph (DAG) model and ranking the critical nodes in the 

corporate and control network which falls in the paths to the target ICS. We don't rank 

the ICS nodes but use them to calculate the potential power loss capability of the control 

center nodes using the assumed ICS connectivity to BPS.  Unlike most of the works, we 

have considered multiple vulnerabilities for each node in the network while generating 

the rank by using a weighted average method. The resilience computation is highly time 

consuming as it considers all the possible attack paths from the source to the target node 

which increases in a multiplicative manner based on the number of nodes and 

vulnerabilities. Thus, one of the goals of this thesis is to reduce the simulation time to 

compute resilience which is achieved as illustrated in the simulation results.
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CHAPTER 1 

INTRODUCTION 

The ever-increasing instances of cyber-attacks on critical infrastructures have motivated 

researchers to analyze and develop methods to safeguard infrastructures. The North American 

Electric Reliability Corporation (NERC) has defined Bulk Power System (BPS) [4] as “facilities 

and control systems necessary for operating an interconnected electric energy supply and 

transmission network”. NERC recommends using the term “BPS” when referring to the 

interconnected network or power grid. ICS and SCADA are integral parts of BPS. ICS is also 

critical components facilitating operations in different important industries such as electricity, 

water, oil and gas, transportation and manufacturing. Adverse events in ICS may be caused today 

by not only natural disasters but also by smart cyber-attackers. Any adverse event on the ICS of 

BPS may disrupt the critical services and may result in safety risks to people and the 

environment1.  

The North American Reliability Corporation (NERC) is working along with the 

Department of Defense (DoD) in standardizing and developing processes to prevent and 

minimize the threats and impacts of cyber-attacks on the BPS. Typical cyber-security actions 

primarily focus on intrusion detection techniques to detect threats and take necessary measures 

based on detected threats such as introducing and implementing patches. Though intrusion 

detection is an important security task, there is always a need for methods and techniques to 

make the BPS resilient and lessen cyber vulnerabilities. In the past, the most common threats 

faced by the ICS or BPS were in the physical domains with adverse events such as physical 

attacks, failures and natural disasters. As a consequence, a lot of efforts have been made to 

                                                 
1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references. 
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analyze the resilience and survivability of ICS in the presence of such threats, but some recent 

events show that those systems are at more risk due to cyber-attacks which normally takes time 

to identify and respond to. There have been numerous approaches developed to quantify the 

resilience of BPS. In one recent work, Sachin et al. [5] have quantified the resilience metrics for 

BPS by taking into consideration path costs and critical functionality constructed by the 

vulnerabilities presented in different hosts using a graph model. Computation of resilience 

metrics is highly time-consuming. This thesis uses the resilience metric defined in the above 

article and proposes a ranking algorithm that can help reduce the simulation time to calculate the 

resilience. 

This thesis has analyzed different resilience frameworks of BPS in scholarly articles. The 

proposed ranking approach is to help network analysts make the BPS network security measures 

harder to exploit. The proposed method has been supported by necessary simulation results and a 

comparison with a previously published conference paper.   

 

1.1 Motivation 

Some recent reports on cyber-attacks, claiming a number of incidents that have occurred 

in the national infrastructure, confirm that the US energy sector, especially the power grid and 

SCADA systems are constantly under cyberattack [6].  According to the report, during the fiscal 

year 2014, there were 79 hacking incidents where energy companies were the targets, and 

between April 2013 and 2014, threat actors hit 37% of energy companies, making the energy 

sector one of the most critical industries under cybersecurity perspective. Some of those targeted 

attacks on the energy sectors in recent times are discussed in detail in chapter 2. There is no way 
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we can ignore the need to have more research to safeguard the US energy sector and other 

critical sectors. 

The purpose of this thesis work is to analyze different ways to make the electric power 

system network, specifically the BPS/ICS networks to harder to exploit. One BPS security 

measure is to analyze the resilience frameworks currently in place. The major goal of this thesis 

is to quantify the resilience metrics of BPS and develop an approach to suggest which network 

elements can be influential in the resilience improvement process considering the network 

structure that already exists. Knowing which systems or system components is important for 

improving resilience of the network against cyber-attacks and software vulnerabilities can give 

the network analyst a proper direction. This can facilitate the power system operators in the 

network hardening and optimization process. This thesis sheds light on the network elements 

which can be considered critical for improving the resilience of target systems by ranking them.  

   

1.2 Problem Description 

 For this thesis work, a multi-layered directed acyclic graph (DAG) model derived from 

NIST SP 800-82 has been used.  For real bulk power systems, the corresponding DAG may have 

several tens of thousands of nodes at the different layers such as the corporate layer and the 

control system layer. In addition, one single node may have multiple active vulnerabilities. As a 

consequence, when the vulnerability graph is being generated by using some tools or programs, 

the size and complexity exceed human capability to visualize and analyze it. Therefore, it is 

important to identify relevant nodes of the graph which are critical from a resilience standpoint 

to facilitate the network analyst. One of the ways to identify and rank the critical nodes in the 

vulnerability graph is to develop a ranking algorithm. Given a ranked attack graph, the regulator 
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or the system administrator can focus on relevant nodes to figure out where to start deploying 

security measures. Ranking algorithms for attack graphs have been proposed before in scholarly 

articles reviewed in detail in chapters 3 and 4, but in those works, which considered graph 

theory, nodes represents system states and edges represents conditions for transitions between 

states. Some papers used the Bayesian probability-based approach. Most of the works that are 

currently in place do not consider multiple vulnerabilities and the combined effects on the nodes 

to be ranked and the attacker behavior, thus resulting in a partial scenario from a cybersecurity 

perspective.  

 

1.3 Method and Procedure 

To develop a node ranking algorithm that can improve bulk power system resilience in a 

systematic manner, this study reviews the literature on related subjects such as resilience, risk, 

SCADA security, cyber-physical system security of ICS and SCADA network, graph theory, 

attack-graph in analyzing cyber-security and vulnerability assessment frameworks, etc. There are 

a lot of factors that need to be considered when trying to identify and rank the critical nodes in a 

vulnerability graph model. Some targets may be lucrative to attackers because of the potential 

damage impact on the network by exploiting the target. To reach a target, in a vulnerability 

graph, the attacker may exploit several intermediate nodes in the corporate and control network 

layers before reaching to the target physical system layer. The number of intermediate nodes 

may not be the same for different target nodes. That is why the ranking of the nodes should not 

be the same each time; rather, the ranking should be changed dynamically based on the target 

node.  
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This thesis is proposing an MADM approach-based algorithm which considers several 

crucial factors respective to the vulnerability graph model. The algorithm considers asset value 

of the intermediate nodes, the exploitability and impact scores of vulnerabilities as quantified by 

CVSS (Common Vulnerability Scoring System). It also takes into account the total number of 

vulnerabilities each node has and the severity level of each vulnerability. Other factors 

considered important are degree centrality and the attacker’s position in the shortest paths to the 

target node. Unlike most of the works, we have considered multiple vulnerabilities for each node 

in the network while generating the rank because only considering the most exploitable 

vulnerability may not give a complete analysis of resilience as because the most exploitable 

vulnerability may have the least possible impact on the network and vice versa. For verification 

purposes, we have used a sample network and construct a database that extracts most of the 

vulnerability information from the National Vulnerability Database (NVD). For validation, as we 

are lacking real system data, we have used statistical analysis and comparison of our rank with a 

previously published paper.    

 

1.4 Contribution of The Thesis 

This thesis contributes in many ways to the analysis of the resilience of the bulk power 

system. Some of the major contributions of this thesis are highlighted below. 

• Most of the existing works on ranking either rank the vulnerability separately to patch or 

rank the nodes by considering the most exploitable vulnerability. Some of the attack 

graph analysis considers some pre and post-conditions for an attacker to be successful to 

exploit a target. In a real system network, although it is necessary to consider the pre and 

post-conditions, the attacker is able to penetrate the network bypassing those pre and 
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post-conditions. This work considers multiple vulnerabilities that each host may have, 

which means the work not only considers the most exploitable vulnerability but also it 

considers the comprehensive effects of all the exploitable vulnerabilities and their 

impacts. As we know, the most exploitable vulnerability may have the least possible 

impact, so an attacker will always want to consider the benefits that he may achieve by 

exploiting a vulnerability. Thus, the ranking formulation that we are proposing is a 

comprehensive approach.  

• Most of the works formulate ranking of network nodes based on the exploit metrics only. 

This work considers both exploit and impact metrics. The work expands its analysis by 

considering some other critical factors such as asset value of the hosts, degree centrality 

of the node in the graph and attacker relative position in the network. Thus, the ranking is 

robust. 

• The resilience equation that is being used in the thesis work is highly time-consuming if 

the network size is large. The ranking provides a systematic approach to consider the 

most critical nodes sequentially and thus help reduce the computation time of resilience. 

Using the ranking reduces the resilience computation time by nearly 50% which can be 

useful for large networks’ resilience computation.  

• The thesis can help power system operators to evaluate their corporate and control 

network security measures and thus assist them in hardening network security.   
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CHAPTER 2 

BACKGROUND OF THE THESIS 

Critical Infrastructures are the lucrative target of cyber-attacks by cyber-criminals. 

Although the ICS within the critical infrastructures are not directly vulnerable to security flaws 

themselves due to their proprietary technologies and isolated commands and control methods of 

operation, the extensive use of Information and Communication Technologies (ICT) in ICS and 

integration of ICT in ICS make them vulnerable to cyber-attacks. The same is true for the 

electric power grid SCADA network. There have been a lot of research activities to develop 

resilience framework specific to BPS (Bulk Power System), some of which will be discussed in 

this chapter. In this chapter, some of the recent cyber-attacks on the energy sectors have been 

presented in detail to focus our attention on protecting the energy sector’s control network from 

smart cyber-criminals.  This chapter also presents the existing frameworks and a comparison 

analysis between them and definitions of resilience and its quantification process. The chapter 

also addresses NIST SP 800-82 on which the DAG model has been developed which has been 

used in node ranking algorithm discussed in chapter 4.   

 

2.1 Interdependencies of Critical Infrastructures on SCADA or ICS 

Critical infrastructures often have interdependencies between various industrial sectors as 

well as interconnections between other business entities. Critical infrastructures are highly 

interconnected and mutually dependent in complex ways where information and communications 

need to be done between different hosts using the IT network systems. Thus, an incident in one 

infrastructure can affect other infrastructures either directly or indirectly through cascading and 

escalating failures. The electric power generation and distribution companies use distributed 
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SCADA control systems for its operation and monitoring. For example, some SCADA systems 

are used to monitor and control electricity distribution by collecting data from remote terminal 

units and issuing commands to remote field location devices from a centralized control center.  

As electric energy is necessary for running almost all other sectors, it is often considered 

to be one of the most prevalent sources of disruptions of interdependent critical infrastructures. 

For example, if an attacker successfully penetrates any network element in the Corporate 

Network which is being used to communicate with enterprise networks and outside stakeholders, 

then he can gain access to other hosts in the same network and propagate to the next level. 

Taking advantage of the system components’ vulnerabilities, an attacker may reach and exploit 

some control system devices and can shut down a large generation or distribution unit. This 

would lead to loss of power at a transmission substation. The loss of power of this substation 

may cause a major imbalance in the power grid, triggering a cascading failure. Sometimes, 

because of loss of monitoring, the attacker may disrupt several power stations which could result 

in large blackouts. As almost all the industries are dependent on electricity, that could potentially 

affect oil and natural gas production, refinery operations, water treatment systems, wastewater 

collection systems, and pipeline transport systems and many other businesses. Thus, it can lead 

to a major national crisis.  

 

2.2 Cyber Incidents in Critical Infrastructures  

The energy sector, being a critical infrastructure always has a high attack risk from cyber-

criminals highly skilled in hacking technologies and procedures. Some of the global cyberattack 

incidents that have been taken place in the energy sector, nuclear power plants, etc. are explained 

in the following subsections.  
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2.2.1 Cyber-Attacks on the Ukrainian Power Grid 

There have been numerous events where a cyber-attack has been reported as the cause of 

the failure of the critical infrastructure system. One such attack was on the electric power grid of 

Ukraine in December 2015. [7-9].  According to the reports, a regional electricity distribution 

company of Ukraine had reported service outages to customers on December 23, 2015. The 

outages were due to a third party’s illicit passage into the company’s PC and SCADA systems 

networks. Due to the cyber-attacks on the SCADA systems, seven 110 kV and twenty-three 35 

kV substations were out of service for three to six hours. Later statements indicated that the 

cyber-attack impacted additional portions of the distribution grid and operators needed to switch 

to manual mode to restore the grid. The outages were originally thought to have affected 

approximately 80,000 customers. Later it was revealed that three different energy distribution 

companies were attacked, resulting in other outages that caused approximately 225,000 domestic 

and industrial customers to live without power across various zones within the country. A 

detailed analysis of the electric grid failure due to cyber-attack was done in [10, 11]. The analysts 

have identified that the intruders used spear phishing emails to plant the malware trojan named 

“BlackEnergy3”. Intruders exploited Microsoft Office vulnerabilities and got control of those 

document files that contained the malware which gave them a foothold into the Information 

Technology (IT) networks of the electricity companies. The intruder stole important credentials 

from the business networks and utilized virtual private networks (VPNs) to enter the ICS 

network and finally exploited and utilized the existing remote access tools within the SCADA 

environment for issuing commands directly from a remote station which is like an operator HMI 

(Human Machine Interface).   A flow diagram is given below. 
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2.2.2 Stuxnet worm attack on Iranian Nuclear Plant 

The Stuxnet Worm first emerged in summer 2010. Stuxnet was a 500-kilobyte computer 

worm that could infiltrate numerous computer systems. According to several reports and analysis 

[12-14], more than fifteen Iranian facilities were attacked and infiltrated by the Stuxnet worm. It 

is believed that this attack was initiated through a USB drive of one of the workers. One of the 

affected industrial facilities was the Natanz nuclear facility. The details of the events have been 

analyzed by researchers and experts. One such report [15] has mentioned that Stuxnet 

specifically made programmable logic controllers (PLCs) as the target, which allows the 

automation of electromechanical processes such as those used to control machinery on factory 

assembly lines and centrifuges for separating nuclear material. Stuxnet exploited four zero-day 

vulnerabilities [16] and Stuxnet functions by targeting machines using the Microsoft Windows 

operating system and networks, then seeking out Siemens Step7 software. Stuxnet reportedly 

compromised Iranian PLCs, collecting information on industrial systems and causing the fast-

rotating centrifuges to rip themselves apart.  

 

 

Fig. 1.  Flow Diagram of process followed by cyber attackers in Ukrainian Power grid 

compromise. 
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Fig. 2.  Flow Diagram of Stuxnet attack on Iranian Nuclear Centrifuges. 

 

Initially, the cause of the failures of centrifuges in the nuclear plant was not discovered, 

but in June 2010 Iranian authorities contracted computer security specialists in Belarus to 

examine their computer systems [17].  The security firm finally discovered multiple malicious 

files on the Iranian computer systems and identified that these malicious files were the Stuxnet 

worm. Although Iran has not published specific details regarding the impacts of the attack, it was 

estimated that the Stuxnet worm destroyed 984 uranium-enriching centrifuges which are nearly 

one-fifth of Iran's nuclear centrifuges.  A flow diagram of the attack steps is depicted in Fig. 2. 

As a protective measure after the Stuxnet attack, Siemens released a detection, quarantine and 

removal tool for Stuxnet. Siemens recommends contacting customer support if an infection is 

detected and advises installing Microsoft updates for security vulnerabilities and prohibiting the 
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use of third-party USB flash drives [18]. Siemens also advises immediately upgrading password 

access codes [19]. The worm's ability to reprogram external PLCs may complicate the removal 

procedure which is also alarming for the electric power grid SCADA system. In another report 

[20], an SAP researcher discussed the impact of Stuxnet on electric grid monitoring and control 

systems such as SCADA/DCS. The analysis mainly focused on the assessment of existing 

security considerations and posed some thoughts on the next generation SCADA/DCS systems 

from a security perspective. 

 

2.2.3 Dragonfly 

“DragonFly”, the scandalous hacking group that has been in operation since at least 2011 

is interested in targeting the United States and European companies in the energy sector [21]. 

Security firm Symantec is warning that a series of recent cyber-attacks not only compromised 

US and European energy sector companies but also pointed out that the intruders are increasingly 

gaining hands-on access and knowledge to the power grid operations – which Symantec 

professionals thought to be enough to control the ICS and may lead to potential outages in North 

America and Europe [22].  

The Dragonfly group, also popularly known as “Energetic Bear”, are suspected to have 

been running their operation since at least 2011. As reported, Dragonfly initially focused and 

targeted defense and aviation companies in the US and Canada before shifting its focus mainly to 

US and European energy firms in early 2013 [23].  During the past several years, including 2014, 

Dragonfly malware infiltrated hundreds of business computers in a regular successful endeavor 

to gather information on the industrial control systems across the United States and Europe [24]. 

During analysis by security firm Symantec it was found that the attack was performed in an 
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organized way over an extended period and used infection methods that were difficult to detect. 

The malware gathered data and information that are imperative to the operation of the impacted 

systems across the energy and pharmaceutical sectors.  It has been identified that the operational 

mode of “Dragonfly” involves targeting the victim and its purpose is to steal information. The 

malware is often treated as an Advanced Persistent Threat (APT), meaning that the malware is 

designed to become occupant on the victim’s system to collect information over an extended 

period without being identified. APT execution of automated industrial processes requires expert 

knowledge of both information technology and the use of particular industrial systems [25].  

According to the report published by SANS Institute [24] in February of 2013, Symantec 

identified a spear-phishing email effort that appeared to target specific organizations to seek 

organizations’ confidential information. The email assault continued until June 2013. Around 

that time, the attack started utilizing the watering-hole technique which involved redirection of 

website addresses to those maintained and controlled by the Dragonfly group. Software with 

malicious contents was secretly kept on those sites, and it was found that victims themselves 

were transferring those malicious contents to various company networks unknowingly. The 

cyber-attackers also began to utilize websites hosted by ICS product vendors to insert the 

malware directly into software that would be downloaded and used by the professionals working 

with ICS systems in those companies. 

There are other cyber-attack events worth mentioning that turned professionals’ attention 

towards the security measures of their networks but those are not being presented here because 

of the scope of this thesis.   

 



   

 

14 

2.3 Literature Review of Resilience Definitions and Resilience Frameworks 

Industrial Control Systems (ICS) are critical components facilitating operations in vital 

industries such as water, electricity, oil and gas, transportation and manufacturing [26]. For that 

reason, any adverse events in ICS may both cause critical services to fail and may hamper or 

create risk to people and the community. That’s why there has been research and analysis on the 

formal definitions of resilience and much effort has been given by scholars all around the world 

to formulate a framework for resilience. In this literature review section, some of those efforts 

are summarized with the critical analysis on those frameworks applicability towards 

safeguarding electrical energy systems or ICS systems in BPS.  

 

2.3.1 NAS Definition of Resilience 

The National Academy of Science (NAS) in their report “Disaster Resilience: A National 

Imperative”, has defined the term resilience as “The ability to prepare and plan for, absorb, 

recover from, or more successfully adapt to actual or potential adverse events” [27].  The 

definition was created to keep in mind the perspective of natural disasters, the definition seems to 

have good application towards the energy systems strength or ICS network strength in protecting 

its critical resources from diverse attacks and failures. Although it is a broad definition, but it 

doesn’t focus on quantitative aspects of the resilience; rather, it mainly focuses on the qualitative 

aspects.  

 

2.3.2 Measurable Resilience for Actionable Policy Framework 

Igor Linkov et al. [28] have identified two challenges for quantification of resilience in 

complex systems. The first challenge is to relate quantitative risk assessment to the resilience of 
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the system. In most of the systems, quantitative risk assessment is treated as the dominant 

paradigm for system design and management, but in many cases, such as if sudden disastrous 

conditions happen, the traditional risk analytical approach may become ineffective. Therefore, 

according to the authors, it needs to treat resilience measurement as a distinguishable novel 

analytical approach separate from the traditional risk assessment, but resilience and risk may be 

complementary to each other.  The second challenge is related to the fragmentation of resilience 

into separate disciplines, including engineering infrastructure, environmental management, and 

cybersecurity. 

 

 

Fig. 3.  Resilience Metrics proposed by Igor Linkov et al. [28]. 
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In the proposed resilience metrics, as shown in Fig. 3, mapping of system domains across 

an event management cycle of resilience function has been presented where the cells of the 

metrics provide guidelines that need to be researched and combined into the overall system 

resilience measurement process. 

The authors have considered four separate domains for information distribution across 

the networks: physical, information, cognitive and social. In their proposed resilience metric, 

each cell is representing what is important for developing quantitative and qualitative measures 

according to the NAS four stage definition of resilience as provided in section 2.3.1. Based on 

the framework presented earlier, a detailed resilience metric framework has been proposed in 

[29] by the authors with the guidelines explained in details. Also, Roege et al. in their article 

“Metrics for energy resilience” [30] explained the resilience metric framework in terms of 

energy systems. Their study synthesizes previously proposed metrics and other emergent 

resilience literature to provide a multi-dimensional model intended for use by the practitioners 

and others associated with energy delivery systems. 

  

2.3.3 R4 Resilience Framework  

According to Kathleen and Bruneau [31], the term “Resilience” is emphasized to improve 

the capacity of physical and human systems to respond to and recover from adverse events. A 

more Resilient system should have fewer probabilities of failure. It should also reduce the 

consequences of failure and take less time for recovery.  
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Fig. 4.  R4 Resilience Framework [31]. 

In other words, resilience can be measured by the functionality of a complex system after 

an adverse event and by the time it takes for the system to return to normal operational levels of 

performance as the system was performing before the adverse event occurs. The 

Multidisciplinary Center for Earthquake Engineering Research (MCEER) investigators proposed 

an R4 framework for resilience, where the researchers have identified four main characteristics 

of a system to be resilient from adverse events which are depicted in Fig. 4. The interpretation of 

the four components of resilience as defined in [31] is given below: 

 Robustness: “The ability of the system, system elements and other units of analysis to 

withstand disaster forces without significant degradation or loss of performance”. 

 Redundancy: “The extent to which systems, system elements or other units are substitutable, 

i.e., capable of satisfying functional requirements, if significant degradation or loss of 

functionality occurs”. 

Resilience

Robustness

Redundancy

Resourceful
ness

Rapidity
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 Resourcefulness: “The ability to diagnose and prioritize problems and to initiate solution by 

identifying and mobilizing material, monetary, informational, technological and human 

resources”. 

 Rapidity: “The capacity to restore functionality in a timely way, containing losses and 

avoiding disruptions”.  

The framework has been discussed based on the perspective of the transportation system 

as an example in the referenced paper, but this can be equally applicable in the power system 

domain. From the perspective of Bulk Power Systems, robustness refers to the ability of the ICS 

or SCADA systems to withstand the adverse impact caused either by a disaster event or cyber-

attacks. In other terms, how much the system can maintain its most critical services and 

availability during an adverse event. Redundancy can be thought of as the availability of critical 

functionalities through alternate ICS systems such as redundant RTU, PLC, etc. Resourcefulness 

refers to the system and human capacity to diagnose the problem, identify and application of the 

best solution with shorter loss of the functionality and services. Rapidity refers to the time 

duration within which the system can be restored to its pre-adverse events conditions and provide 

normal services without loss or reduction in service availability. 

 

2.3.4 Conceptual Framework for Urban Energy Resilience  

Ayyoob Sharifia and Yoshiki Yamagatab [32] have proposed a definition of resilience 

with respect to energy systems by reviewing extensive technical literature as claimed by the 

authors. Their study defines energy resiliency as a range of preparation, absorption, recovery, 

and adaptation measures that ensure availability, accessibility, affordability, and acceptability of 

energy supply, transmission, and distribution over time. The authors also emphasized the need 
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for considering the criteria and indicators that can address both mitigation and adaptation aspects 

of urban climate changes related to energy resiliency.  

 

Fig. 5.  Conceptual Framework of Urban Energy Resilience [32]. 

 

In the above referenced article, the authors proposed an energy resilient urban system 

framework able to ensure availability, accessibility, affordability, and acceptability of energy 

supply, under varying conditions, through enhancing its ability to plan/prepare for disaster, 

absorb its initial shocks, recover rapidly and adapt and self-organize. The conceptual diagram 

illustrating the relationship between the concepts discussed in the article is being depicted here in 

Fig. 5. 

 

2.3.5 Resilience Frameworks for Engineered and Infrastructure Systems  

 In the article, “A metric and frameworks for resilience analysis of engineered and 

infrastructure systems” [33],  Royce Francis and Behailu Bekera have proposed a resilience 
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analysis framework and a metric for measuring resilience. The proposed analysis framework 

consists of system identification, resilience objective settings, vulnerability analysis, and 

stakeholder engagement which are closely related to each other.  

 

 

 
Fig. 6.  Resilience framework [33]. 

 

The implementation of this framework is focused on the achievement of three resilience 

capacities: adaptive capacity, absorptive capacity, and recoverability. The proposed resilience 

analysis framework is presented in Fig. 6. This framework depicted in Fig. 6 consists of five 

components. 

1. system identification 

2. vulnerability analysis (before, during and after disruption) 
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3. resilience objective setting (identifying goals such as normal performance or basic identity to 

be achieved or sustained)  

4. stakeholder engagement (coordination, cooperation& information sharing) and 

5. resilience capacities.  

The proposed resilience approach emphasizes an assessment of the system’s ability to (i) 

identify and absorb potential disruptions; (ii) develop adaptive means to manage and 

accommodate changes within or around the system; and (iii) establish response behaviors 

targeted at either building the capacity to withstand the disruption or recover as quickly as 

possible after an impact. These capacities are in line with the definitions provided by NAS in 

section 2.3.1. 

 

2.4 NIST SP 800-82 Guidelines  

 This section presents the SCADA systems overview and NIST CSSP Defense-In-Depth 

recommended architecture for ICS security. This architecture is used as a base in our model and 

algorithm development. That is why we need a thorough understanding and discussion of the 

important guidelines and recommendations as proposed in NIST SP 800-82. 

 

2.4.1 SCADA Systems Overview 

SCADA systems are used to control dispersed assets. Centralized data acquisition and 

monitoring and control are some of the important functionalities of the control system network 

where the SCADA system can be hosted. SCADA systems integrate data acquisition systems 

with data transmission systems and HMI software to provide a centralized monitoring and 

control system for numerous process inputs and outputs [34]. SCADA systems are designed to 



   

 

22 

collect field information, transfer it to a central computer facility, and display the information to 

the operator graphically or textually, thereby allowing the operator to monitor or control an 

entire system from a central location in near real time. Typical field devices include PLC 

(programmable logic controller), RTU (Remote Terminal Unit), IED (Intelligent Protective 

Device) such as the relay and modem, etc.  

 

Fig. 7.  Generic SCADA and ICS communication network in energy sector. 

 
 

Fig. 7 shows a generic SCADA and ICS communication network for the energy sector. 

The control center is normally hosted with control servers, historians, HMI (Human Machine 

Interface), operator terminals and monitoring workstations, etc. The filed locations consist of the 

ICS such as PLC, RTU, and IED where communication is established with the control center 

through using some modem or WAN cards using communication networks such as WLAN 

communication.  
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2.4.2 NIST ICS Security Architecture  

The National Institute of Standard and Technology (NIST) has provided several 

guidelines for designing ICS network architecture in its “Guide to Industrial Control Systems 

(ICS) Security” [35]. In general, the ICS network should be separate from the corporate network 

in terms of traffic flow. Internet, FTP, email, WAP and remote access services are normally 

permitted in the Corporate network for business communications, but the same services should 

not be allowed on the ICS network. If ICS network traffic is not separated and being carried with 

the corporate network traffic, the ICS networks can be subjected to DoS (Denial of Service) or 

Man-in-the-Middle attacks. If the two networks are not separated, then the security flaws present 

in the corporate network due to software vulnerabilities can affect the security of the ICS or 

control system network. Often practical issues, such as the cost of maintaining separate traffic by 

creating a homogenous network, can lead to the connection between the ICS and the corporate 

network, which can have a high-security risk. NIST has suggested that in those cases, it should 

be protected by boundary protection devices such as the use of a firewall and DMZ. A DMZ is a 

separate network segment that connects directly to the firewall. Servers containing the data from 

the ICS that needs to be accessed from the corporate network are put on the DMZ. The ICS-

CERT recommended practices working group provides additional guidance as recommended 

practices [36]. 

ICS network should be segregated. This can be done by implementing logical network 

separation such as using VLAN (Virtual Local Area Networks), Encrypted Virtual Private 

Networks (VPNs), IP filtering, maintenance of whitelists instead of blacklists and used of 

boundary protections. Boundary protection devices can control the flow of information between 

interconnected security domains to protect the ICS against malicious cyber adversaries.      
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Fig. 8.  Corporate Network and Control Network Separation Example Using Firewall  

[35]. 

  

Fig. 8 shows an initial consideration by NIST, where the corporate network and control 

network are being separated by using a firewall in between them. Outside users and enterprise 

networks communicate with the corporate network through the firewall, router and traffic 

passing through the internet or WAN. Any communication that comes from the outside world 
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through the internet or WAN can pose threats to the ICS, so those traffic communications should 

be separated using firewalls between the corporate and control network so that the unnecessary 

communication between these two layers can be controlled. An illustration of this network is 

given here. Let us say that the data historian resides on the control network and no firewall 

between the corporate and control layer is present to control the traffic communication. The 

enterprise world or the outside users may communicate with the data historian and normally this 

communication occurs at the application layer as Hypertext Transfer Protocol (HTTP) request. 

Flaws in the historian’s application layer code could result the data historian being compromised. 

Once the historian is compromised, the remaining network elements on the control network 

becomes vulnerable. Thus, a firewall rule must exist that controls the traffic from the corporate 

layer to the control layer.  

Although the above network segregation improves network security, it doesn’t diminish 

the communication between the corporate and control layer; thus, security threats to the ICS 

network controlled by the control layer remain. Thus, another separation can be implemented 

using a DMZ, where the DMZ can host the data historian. If the DMZ hosts the data historian 

being separated from the control layer using a firewall, then the Corporate network need not 

communicate with the control layer; rather, it needs to communicate with the DMZ layer. An 

illustration is given in Fig. 9. 
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Fig. 9.  Corporate Network and Control Network Separation Example Using DMZ and 

Firewall [35]. 

 

According to NIST, the use of firewalls with the ability to establish a DMZ between the 

corporate and control networks can offer a significant improvement in the security of ICS. Each 

DMZ holds one or more critical components, such as the data historian, the wireless access point, 

etc. In effect, the use of a DMZ- capable firewall allows the creation of an intermediate network. 

To create a DMZ, the firewall requires offering three or more interfaces. One of the interfaces is 

connected to the corporate network, the second interface is connected to the control network, and 
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the remaining interfaces are connected to the shared or insecure devices such as the data 

historian server or wireless access points on the DMZ network. NIST recommends that the 

firewall rulesets should be such that only connections between the control network and DMZ that 

are initiated by control network devices are permitted.  

 

2.4.3 NIST CSSP Recommended Defense-In-Depth Architecture  

In general, any single security solution cannot be adequate for protecting the ICS. That is 

why a multiple layer strategy involving multiple overlapping security mechanisms is being 

recommended by researchers so that the impact of a failure in any mechanism can have minimal 

impact on the ICS. This technique is also known as the defense-in-depth security strategy. Fig. 

10 shows the ICS defense-in-depth architecture strategy. The strategy has been developed by the 

DHS Control Systems Security Program (CSSP) NCCIC/ICS-CERT Recommended Practices 

committee.  

The CSSP Defense-In-depth strategy for ICS has been described in  “Control Systems 

Cyber Security: Defense in Depth Strategies” [37]. The strategy includes the use of firewalls, 

DMZs, and intrusion detection capabilities throughout the ICS architecture. The use of multiple 

demilitarized zones in the architecture provides the added capability to separate functionalities 

and access privileges and has proved to be very effective in protecting large system architectures 

comprised of networks with different functional operations. 
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Fig. 10.  NIST CSSP Recommended Defense-In-Depth Architecture [37]. 

 
The thesis provides the details of NIST in this report because the work has followed the 

strategy and used the strategy to generate a directed acyclic graph (DAG) model for resilience 

calculation of bulk power systems and the generation of node ranking algorithms based on the 

DAG model. The vulnerability graph model discussion is provided in Chapter 3.  

 

 

  



   

 

29 

CHAPTER 3 

VULNERABILITY GRAPH ANALYSIS 

Graph theory-based analysis of network security has been done for years. Graphs consist 

of nodes, links and a mapping function that defines how nodes connect to one another [38]. The 

most widely used form of the graph in security analysis is Attack Graph. Attack graphs model 

the possible paths and path combinations that a potential attacker may use to exploit a target 

network or network element. Attack graph generation is a process that includes vulnerability 

information processing, collecting network topology and application information, determining 

reachability conditions among network hosts and applying the core graph building algorithm 

[39]. A vulnerability graph is a form of attack graph where the vulnerabilities present in the hosts 

or nodes form the edges between them. In this chapter, a literature review of different scholarly 

work on graph-based analysis of bulk power system security is presented. The chapter also 

includes the Directed-Acyclic-Graph model derived from NIST 800-82 SP “Guide to industrial 

control systems (ICS) security” guidelines, mathematical definition of Resilience and its 

components.  The CVSS base metrics have been presented here to explain how the scores have 

been used in our calculation. The rationale for using some of the factors for deriving the node 

ranking algorithm presented in chapter 4 is discussed at the end of the chapter.   

  

3.1 Literature Review on Graph Based Analysis of Network Security  

Attack Graphs or vulnerability graphs have been in use in network security analysis for a 

long time and are playing an increasingly key role in network security analysis. For decades, 

attack graph analysis has also been used in the analysis of critical infrastructure security such as 

ICS security, Smart Grid security and computer network security analysis. This section reviews 
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some of the scholarly articles that have used the attack graph in different forms to analyze the 

security perspectives in different domains especially ICS and power system domain.  

Phongphun Kijsanayothin and Rattikorn Hewett [40] have proposed an analytical 

approach to attack graph analysis for network security. In the paper, the authors have discussed 

how to use an attack graph to better protect the network and take cost-effective countermeasures 

by statistically analyzing the attack graphs using reasoning mechanisms based on logical 

expressions and conditional preference networks. Thaier Hamid and Carsten Maple [41] have 

proposed a graph theoretical approach to network vulnerability analysis and countermeasures. 

The automatic formation of vulnerability information has been troublesome. The paper proposed 

a cost metric based on Markov’s model using combinations of vulnerabilities score from CVSS 

and ranking algorithms. For each host, the authors developed a cost rank Markov’s model to 

reduce the complexity of the attack graph visibility.  Cynthia Phillips and Laura Painton Swiler 

[42] have discussed a graph-based system for network vulnerability analysis. The paper has 

presented a method for risk analysis of computer networks which is based on the idea of the 

attack graph having attack states and transitions between the states. The attack graph can be used 

to identify attack paths that are most likely to succeed. Kerem Kaynar [39] has done a systematic 

study of the methods applied in each phase of the attack graph generation process which includes 

the usage of attack graphs for network security. Zhang et al. [43], have proposed an effective 

method of attack graph generation by modeling the network security status considering the host 

computer, devices link relation and characteristics of attacks and used a forward-search, breadth-

first and depth-limited algorithm to produce the attack routes. Sheyner et al. [44], have presented 

an automated generation and analysis technique of attack graph, where the authors have used 

symbolic model checking algorithms to construct the graphs and FSM (Finite State Model) to 
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analyze the graph. Xinming Ou and Anoop Singhal [45], have discussed network security issues 

based on attack graph techniques where the researchers rely on the MulVAL [46] logical attach 

graph generation tool for generating the graph. The authors have also considered the 

vulnerabilities as reported in NVD by scanning the network using MulVAL (Multihost, 

multistage, Vulnerability Analysis). Zhiming Liu et al. [47] have presented complex network 

security analysis based on an attack graph model  where the authors have considered the 

scalability problem of attack graph generation when the network size grows. The authors have 

proposed an attack graph generation method for the complex network by analyzing the network 

framework and key nodes and then using algorithms to combine greedy policy, forward 

exploration and backward searching to generate the attack graph. Nayot Poolsappasit [48] has 

discussed the process of dynamic security risk management using Bayesian attack graphs. The 

author has proposed a risk management framework using Bayesian networks that enable a 

system administrator to quantify the chances of network compromise at various levels and has 

shown how to use this information to develop a security mitigation and management plan using 

the Bayesian attack graph. Williams et al. [49] have presented GARNET(graphical attack graph 

and reachability network evaluation tool) to facilitate attack graph analysis. The tool provides a 

simplified view of critical steps that can be taken by an attacker and of host-to-host network 

reachability that enables the exploits. The proposed tool also includes zero-day attacks and 

allows users to perform “what-if” experiments. Marcel Frigault and Lingyu Wang [50, 51] have 

proposed methods of measuring network security using Bayesian network based attack graphs. 

The authors focused on measuring the combined effects of the vulnerabilities instead of 

considering individual vulnerability effect and tried to capture the scenario where exploiting one 

vulnerability may make it easier for the attacker to exploit the second vulnerability. The work is 



   

 

32 

based on the Bayesian network based probabilistic model to compute security metrics. Another 

work by Marcel Frigault et al. [52] have also used a dynamic Bayesian network based model and 

incorporates temporal factors such as the availability of exploit codes or patches. Kyle Ingols et 

al. [53] have proposed a practical attack graph generation method for network defense. The work 

has used a multiple-prerequisite attack graph where the authors have used readily available 

source data to automatically compute network reachability, classify vulnerabilities and 

recommend actions to improve the network security.  Paul Ammann et al. [54] have discussed 

several issues on the scalable graph-based network vulnerability analysis. The authors have 

argued that attack graph represents more explicit information than is necessary for the network 

analyst and thus proposed a more compact and scalable representation of attack graph. S. Jha, O. 

Sheyner and J. Wing [55] have used attack graphs for network security analysis and proposed 

two formal analyses of attack graphs. The authors have presented a minimization analysis 

technique that allows analysts to decide which minimal set of security measures would guarantee 

the safety of the system. The authors have also provided a formal characterization and presented 

a greedy algorithm with provable bounds. Barbara Kordy et al. [56] have presented a discussion 

of attack and defense modeling techniques based on Directed-Acyclic-Graphs (DAGs) where the 

authors have summarized and compared existing methodologies and their features. Steven Noel 

et al. [57] have also used attack graphs for measuring the network security risk by using Markov 

modeling and Bayesian networks. Vivek Shandilya et al. [58] have discussed the use of attack 

graphs in security systems where the authors have presented a survey and critical study of state-

of-the-art technologies in attack graph generation used in the security system and have also 

identified the challenges and direction of the current research in using attack graphs. Peng Xie et 

al. [59] have also used Bayesian Networks for Cybersecurity analysis of computer systems. The 
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work is centered around near real-time security analysis and presents the efforts to identify the 

important types of uncertainty by using Bayesian networks to capture the security analysis. 

Sebastian et al. [60] have used attack graphs for intrusion detection using vulnerability 

information. The work mainly focuses on the integration of the attack graph workflow with an 

Intrusion Detection System (IDS) to improve alert and correlation quality. The vulnerability and 

system information are considered for the prioritizing of IDS alerts. Chunlu Wang et al. [61] 

have proposed a novel comprehensive network security assessment approach that supports 

automatic attack graph generation based on the correlated vulnerability database and quantitative 

vulnerability assessment utilizing Bayesian attack graphs. Yong Wang et al. [62] have discussed 

network vulnerability analysis to protect network security based on attack capability transfer 

using attack graphs. Based on the attack capability transfer, the authors have presented a new 

method for construction of an attack graph where the authors have considered network 

vulnerability quantitative analysis and security hardening method based on approximate greedy 

algorithm. Mohammed Alhomidi and Martin Reed [63] have presented risk assessment and 

analysis through population based attack graph modeling. The proposed attack graph-based risk 

assessment model helps organizations and decision makers make appropriate decisions in terms 

of security risks.   

In the power system domain, there have been numerous works that directly consider the 

attack graph-based analysis for measuring the cybersecurity of power sectors, specifically the 

control system of the power sectors. Chee-Wooi Ten et al. [64] have used attack-tree based 

analysis for attack and defense modeling of control systems used in the power sector. The 

researchers have proposed a SCADA framework and an attack-tree based methodology for 

impact analysis for the power system control networks. Nian Lie et al. [65] have proposed 
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MCDM (Multiple Criteria Decision Making) approaches for security assessment of 

communication networks of power control systems using an attack graph. The authors have 

decomposed the overall security assessments in two parts; one is the security analysis model for 

a power control system using an attack graph that includes a construction algorithm and 

vulnerability function, and another one is based on the quantification of the security degree in 

each control step which is a hybrid MCDM approach integrated with an analytic hierarchy 

process (AHP). Saman Zonouz et al. [66] have presented a security-oriented cyber-physical state 

estimation (SCPSE) for power grid critical infrastructures which at each time instant identifies 

the compromised set of hosts in the cyber network and the maliciously modified set of 

measurements obtained from power system sensors. The authors have used an attack graph 

template (AGT) for the analysis.  Yichi Zhang et al. [67] have considered SCADA cybersecurity 

in relation to the power system reliability. Reliability of the power system can be impacted by 

various cyber-attacks. The paper considered four attack scenarios for cyber components in 

networks of the SCADA systems where the authors have used two Bayesian attack graph models 

to illustrate the attack procedures and evaluated the probabilities of successful cyber-attacks. 

Ceeman et al. [68] have proposed CPIndex, a security-oriented stochastic risk management 

technique that calculates cyber-physical security indices to measure the security level of the 

underlying cyber-physical settings. The proposed CPIndex implements belief propagation 

algorithms on the created stochastic models combined with a novel graph-theoretic power system 

indexing algorithm to calculate the security-level of the system’s current cyber-physical state. 

The authors have used a dependency graph in modeling the CPIndex.  

Most of the above works related to the cybersecurity analysis of either the computer 

networks or electrical smart grid or SCADA systems have used the graph theory such as 
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Bayesian attack graph or Directed Acyclic graph or Markov process-based graph. In this thesis, 

the DAG model has been used because of the resilience equation that has been developed based 

on the DAG model. Also, the Bayesian attack graphs can illustrate the probabilistic approach by 

using the exploitability, but using Bayesian networks don’t incorporate impact caused by each 

vulnerability.   

 

3.2 DAG Model 

In an earlier work, Sachin et al. [5], developed a Directed Acyclic Graph (DAG) model 

based on the CSSP Defense-In-Depth Architecture presented in chapter 2. In this thesis, we have 

used the same DAG model for ranking critical nodes and thus used the DAG model for resilience 

calculation. The following subsections discuss the derivation of the DAG model and how the 

model is being used for resilience formulation. 
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Fig. 11.  Multi-layered DAG Model for Bulk Power System [5]. 

 

The graph is organized into 10 layers which correspond to security domains 

implementing security policies and protocols as described in NIST 800-82 report. Nodes in the 

higher layers are more critical than nodes in lower layers.  For example, to ensure operational 

resilience, the nodes in the control system LAN are more critical than the nodes in the corporate 

LAN. Some of the layers have been discussed in the following subsections: 
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1. Substation layer: This top layer corresponds to the substations of bulk power systems. There 

are three types of substations: power generation nodes or generators that generate the power, 

transmission nodes or transmitters that transmit the power among high voltage transmission 

lines, and distribution nodes that distributes the power to local distribution grids and end 

users. The power nodes are not directly attacked by the cyber-attackers; rather, the field 

location devices which control the power nodes are being targeted by the intruders. That is 

why field location devices are also being considered as nodes belonging to the substation 

layer. Typical components that can be found at field location nodes are Remote Terminal 

Unit (RTU) or Programmable Logic Controller (PLC) which control through some 

actuators/relays the process running on the node, some sensors which measure the physical 

state of the process, some communication equipment and Intelligent Electronic Devices 

(IED) for connection with the control server. This layer is the most important as an attack 

here can have an impact on the whole network. 

2. Control System LAN: The Control System Local Area Network (CS LAN) corresponds to 

the control center which includes equipment like control servers, communications routers, 

engineering workstations, Human Machine Interfaces (HMI), Application Servers and 

Historian databases which are all connected to a LAN. This layer is for monitoring alarms, 

performance data collections and reporting, and configuration change of the substation’s 

network, etc. 

3. Communication Wide Area Network: Substations need to communicate with the control 

system. Sensors at the field locations need to send their measurements to the control center, 

and the control center needs to process the received data with a control algorithm and send 

some commands to the actuators located at field locations. The control center needs to be 
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highly connected to the field location network and a Wide Area Network is needed as field 

locations are distributed over the whole country. 

4. Corporate Local Area Network: The corporate local area network is a group of hosts 

connected together for the business communications and outside enterprise communication. 

It consists of business workstations, web servers, email servers, DNS and application servers. 

Users of this layer don’t have in general the skills and the experience to operate on the 

Control System LAN. In addition, the Corporate LAN and the Control System LAN have 

very different traffic.  

5. Firewalls and DMZ layers: Ideally the Control System LAN should be physically isolated 

from the Corporate LAN to have a more secure network. However, in practice, some 

considerations like installation cost or network homogeneity make necessary a connection 

between both networks. Therefore, as guided in CSSP Defense-In-Depth architecture, the 

two networks should be at least logically separated by a boundary device like a Control 

System firewall and establish Demilitarized Zones (DMZ) between the Control System LAN 

and the Corporate LAN which can significantly reduce the chances of successful attacks 

because of traffic segregation. By creating a DMZ, no direct communication paths are 

required from the Corporate LAN to the Control System LAN. 

 The DAG model presented above has been elaborated in the following diagram by 

showing the nodes in each layer and the connectivity between them based on the CSSP Defense-

In-Depth Architecture.    
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Fig. 12.  Elaborated DAG Model for Bulk Power System. 
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3.3 Resilience Quantification From DAG 

This section presents the necessary definitions for the quantification of resilience for the 

BPS. Some of the most important topics to discuss are node vulnerability, channel vulnerability 

cost, critical functionality and resilience. 

 

3.3.1 DAG definition 

Generally, a graph is a 3-tuple defined by the set equation 𝐺𝐺 = [𝑁𝑁, 𝐿𝐿,𝑓𝑓], where 𝑁𝑁 is the 

set of nodes, 𝐿𝐿 is the set of links or edges between nodes and 𝑓𝑓 is a mapping function where 

𝑓𝑓: 𝐿𝐿 → 𝑁𝑁 × 𝑁𝑁, which maps links into pairs of nodes [38].  

 

3.3.2 Node Vulnerabilities and Edge Cost Definition 

 Each node in the vulnerability graph consists of one or more vulnerabilities associated 

with its product configuration. Such as, if the node is a Microsoft XP computer, then this host 

has the vulnerabilities of the Microsoft XP product. According to the DAG, there are as many 

edges between a source and a destination node as the number of vulnerabilities possessed by the 

destination node. That means, edges between node 𝑖𝑖 and 𝑗𝑗, where 𝑖𝑖 is the source node connected 

with destination node 𝑗𝑗, the number of edges between (𝑖𝑖, 𝑗𝑗) belongs to a set of all the 

vulnerabilities of node 𝑗𝑗 and being defined as 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖, where 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖 = {𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖1,

𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖2, 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖3, … . , 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑗𝑗}. As each vulnerability is scored by the base metrics of CVSS, the 

edge between two nodes has the quantitative values of Access Vector, Access Complexity, 

Access Authentication and Confidentiality Impact, Integrity Impact and Availability Impact. 

Thus, if an edge is being constructed between node (𝑖𝑖, 𝑗𝑗) by a vulnerability 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖1, then its 

Access Vector is denoted as 𝐴𝐴𝑉𝑉(𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑖𝑖1). Similarly, Access Complexity and Access 
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Authentication are denoted as 𝐴𝐴𝐶𝐶(𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑖𝑖1) and 𝐴𝐴𝐴𝐴(𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑖𝑖1). The edge cost corresponding to the 

vulnerability 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖1 is defined by the following equation [5]: 

𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗𝑖𝑖,𝑗𝑗1 = 10 − 20 × 𝐴𝐴𝐶𝐶(𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑖𝑖1) × 𝐴𝐴𝑉𝑉(𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑖𝑖1) × 𝐴𝐴𝐴𝐴(𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖,𝑖𝑖1) (1) 

The edge cost definition restricts the value as 0 ≤ 𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗𝑖𝑖,𝑗𝑗1 ≤ 10. The lower the cost, the more 

exploitable the vulnerability.  

 

3.3.3 Channel Vulnerability Path Definition 

 A channel vulnerability path 𝑒𝑒 is a sequence of vulnerabilities among 𝑁𝑁 nodes 

𝑖𝑖1, 𝑖𝑖2, … . . 𝑖𝑖𝑁𝑁 by exploiting 𝑁𝑁 − 1 vulnerabilities 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖1𝑖𝑖2 , 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖2𝑖𝑖3 , 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖3𝑖𝑖4 , … … , 𝑣𝑣𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑁𝑁−1𝑖𝑖𝑁𝑁 . 

The cost of the channel vulnerability path by exploiting the 𝑁𝑁 − 1 vulnerabilities between nodes 

𝑖𝑖1, 𝑖𝑖2, … . . 𝑖𝑖𝑁𝑁 is given by: 

𝑐𝑐(𝑒𝑒) = �𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣𝑗𝑗𝑖𝑖𝑘𝑘𝑖𝑖𝑘𝑘+1

𝑁𝑁−1

𝑘𝑘=1

 (2) 

The lower the cost of the channel vulnerability path, the easier it can be exploited by the attacker.  

 

3.3.4 Critical Functionality Definition 

Critical functionality (CF) is referred to as the functionality function [69] and 

performance of the system [70] and quality of the system [71]. One example of CF can be the 

percentage of nodes that are functioning [72]. From the perspective of the DAG graph, the 

critical functionality is evaluated by the level of availability of a given target node. The CVSS 

base metrics consider that a vulnerability can impact the availability of a node by none, partial 

and complete level. The impact of a vulnerability is calculated as follows. 
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𝐼𝐼𝐼𝐼 = 10.41 × �1 − (1 − 𝐼𝐼𝐶𝐶) × (1 − 𝐼𝐼𝐼𝐼) × (1 − 𝐼𝐼𝐴𝐴)� (3) 

From the base metrics definition, the critical functionality for each vulnerability can be defined 

as: 

𝐾𝐾𝑒𝑒(𝑡𝑡) = �
1 − 0 = 1, 𝑖𝑖𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡 𝑖𝑖𝑖𝑖 𝑉𝑉𝑛𝑛𝑉𝑉𝑒𝑒

1 − 0.275 = 0.725, 𝑖𝑖𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖𝑉𝑉
1 − 0.660 = 0.340, 𝑖𝑖𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡 𝑖𝑖𝑖𝑖 𝑐𝑐𝑛𝑛𝑖𝑖𝑖𝑖𝑉𝑉𝑒𝑒𝑡𝑡𝑒𝑒

 (4) 

 

 

Fig. 13.  Critical functionality based on availability impact [5] . 

 

Fig. 13. shows the critical functionality of the system for the none, partial and complete 

impact over a time period of T. The area encircled by the curves is a measure of the resilience of 

the system. Based on the DAG model and the definitions provided in the above sections, 

Resilience of a target node is defined as [5]:  

 

𝑅𝑅 =
1

|𝐸𝐸|�
𝑐𝑐(𝑒𝑒)
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒∈𝐸𝐸

× �
1
𝑇𝑇
� 𝐾𝐾𝑒𝑒(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
� (5) 
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 where, |𝐸𝐸| is the cardinality of 𝐸𝐸, 𝑐𝑐(𝑒𝑒) is the individual path cost, 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value of 

the cost of all the paths,  𝐾𝐾𝑒𝑒(𝑡𝑡) is the critical functionality based on the impact of vulnerabilities.  

 

3.4 CVSS Metrics  

Identification and assessment of vulnerabilities are one of the crucial factors in network 

security. This section focuses on the Common Vulnerability Scoring System and our choice of 

using CVSS Base Metrics for the edge weights calculation.  

 

3.4.1 Different Vulnerabilities Scoring Systems   

In computer and network security, a vulnerability refers to a weakness or a bug or an 

exposure of a software or hardware application, system, device or service which allows an 

attacker to exploit the system and possibly lead to loss of confidentiality, integrity, and 

availability. In most cases, vendors or manufacturers of hardware and software keep tracks of the 

vulnerabilities associated with their products in their own way. Over the past several years, some 

large computer security vendors and not-for-profit organizations have developed, promoted, and 

implemented procedures to rank information system vulnerabilities [73], such as National 

Vulnerability Database, US-CERT [74], ISS X-Force,  Symantec, Microsoft, Sun, Redhat, and so 

on. Some of those are discussed below.  

The NVD is the U.S. government repository of standards based vulnerability 

management data represented using the Security Content Automation Protocol (SCAP) [75]. 

Along with the other contents, the NVD includes databases of security-related software flaws 

and exploit and impact metrics. The NVD supports both Common Vulnerability Scoring System 
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(CVSS) v2.0 and v3.0 standards [76]. The NVD database provides CVSS base metrics which 

gives the quantitative score of each vulnerability.  

The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) 

collaborates with international and private sector Computer Emergency Response Teams 

(CERTs) to share control systems-related security incidents and mitigation measures [77]. 

The Symantec Security Response Threat Severity Assessment [78] evaluates computer 

threats (viruses, worms, Trojan horses and macros) and classifies them into clearly defined 

categories of risk for computer users [79]. Each threat is ranked high, medium or low severity 

based on the number of impacted computer systems. The three major threat components that are 

considered by Symantec to determine the severity rating are the extent to which a malicious 

program is un-noticeable, the damage that a malicious program causes if encountered and the 

rate at which a malicious program spread. 

Microsoft has its own vulnerability severity rating system [80] to help its customers 

understand the risk associated with each vulnerability. Their ratings are classified and defined as 

given in TABLE 1 below: 

TABLE 1  

MICROSOFT SECURITY SEVERITY RATING SYSTEM [1] 

Rating Definition 
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Critical 

A vulnerability whose exploitation could allow code execution without user 

interaction. These scenarios include self-propagating malware (e.g. network 

worms), or unavoidable common use scenarios where code execution occurs 

without warnings or prompts. This could mean browsing to a web page or 

opening email. Microsoft recommends that customers apply Critical updates 

immediately. 

Important 

A vulnerability whose exploitation could result in compromise of the 

confidentiality, integrity, or availability of user data, or of the integrity or 

availability of processing resources. These scenarios include common use 

scenarios where the client is compromised with warnings or prompts regardless 

of the prompt's provenance, quality, or usability. Sequences of user actions that 

do not generate prompts or warnings are also covered. Microsoft recommends 

that customers apply Important updates at the earliest opportunity.  

Moderate 

Impact of the vulnerability is mitigated to a significant degree by factors such as 

authentication requirements or applicability only to non-default configurations. 

Microsoft recommends that customers consider applying the security update. 

Low 

Impact of the vulnerability is comprehensively mitigated by the characteristics 

of the affected component. Microsoft recommends that customers evaluate 

whether to apply the security update to the affected systems. 

 

The Common Weakness Enumeration (CWE) [81] is a formal list of software weaknesses 

which serves as a common language for describing software security weaknesses and provides a 

common baseline standard for weakness identification, mitigation, and prevention efforts. 
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According to MITRE [82], Software acquirers want assurance that the software products 

that are being obtained are reviewed for known types of security flaws, and the acquisition groups 

in large government and private organizations are moving forward to use these types of reviews 

as part of future contracts. 

  

3.4.2 Why CVSS Metrics?  

There are a number of other vulnerability "scoring" systems managed by both 

commercial and non-commercial organizations as described in the previous section. They each 

have their way of scoring the severity; thus, they differ by what they measure. As the 

Information Technology management system requires identification and assessment of 

vulnerabilities across a broad range of hardware and software platforms manufactured and 

marketed by different vendors, it requires some common standards to quantify and evaluate the 

vulnerabilities associated with hardware or software products. The Common Vulnerability 

Scoring System (CVSS) is an open framework that provides quantitative scores of each of the 

vulnerabilities and is used by many other organizations such as NVD, ICS-CERT, MITRE, etc.  

The Forum of Incident Response and Security Teams (FIRST) has categorized CVSS into 

3 groups: Base, Temporal and Environmental [83]. Each group produces a numeric score ranging 

from 0 to 10. Each vulnerability has a textual representation that corresponds to a quantitative 

measure between 0 and 1. As defined by the FIRST, the Base group represents the intrinsic or 

inherent qualities of a vulnerability, the Temporal group reflects the dynamic characteristics of a 

vulnerability that change over time and the Environmental group represents the characteristics of 

a vulnerability unique to a specific user's platform and environment. Security-related 

professionals and researchers can benefit by using CVSS for scoring IT vulnerabilities. Thus, 
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this thesis uses the CVSS base metrics for calculating edge costs in the vulnerability graphs 

using the metrics under Base metric groups such as Access Vector, Access Complexity, Access 

Authentication, Confidentiality Impact, Integrity Impact and Availability Impact.  

 

3.4.3 Elaboration of CVSS Metrics 

As the CVSS Base metrics are being used for the calculation of resilience and developing 

of the ranking algorithm, so it is needed to discuss the Base Metrics elaborated on here.   

 
TABLE 2  

CVSS ACCESS VECTOR DESCRIPTION [2] 

Metric Value Description 

Local (L) 

A vulnerability that can be exploited only if the attacker has local or physical 

access to the system such as if he has a local account to login to the system. 

Examples of attacks using Local access are Firewire/USB attacks or local 

privilege escalations (by using sudo in Linux/Unix). 

Adjacent 

Network (A) 

A vulnerability that is exploitable with adjacent network access such as that 

which requires the attacker to have access to either the broadcast or collision 

domain of the vulnerable software.  Examples can be access to IP subnet, 

Bluetooth, IEEE 802.11, and local Ethernet segment. 

Remote 

Network (N) 

A vulnerability that is exploitable without having local network access or local 

access and can be performed remotely. An example of a network attack is an 

RPC (Remote Procedure Call) buffer overflow. 
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3.4.3.1 Access Vector (AV) 

This metric reflects how the vulnerability is exploited. The more remote an attacker can 

be to attack a host, the greater the vulnerability score. The possible value of the Access Vector 

and corresponding definition are given below in TABLE 2. 

 

3.4.3.2 Access Complexity (AC) 

FIRST defines the “Access Complexity” metric as “a measure of the complexity of the 

attack required to exploit the vulnerability once an attacker has gained access to the target 

system” [2]. In other words, it is the extent of technical hurdles that the attacker needs to 

overcome to launch a successful attack. There are vulnerabilities to which the attacker may gain 

access with less effort (e.g., in case of buffer overflow attack in an Internet service, the attacker 

needs to find the target system location; after that, the attacker can launch an exploit at his 

convenience). There are other vulnerabilities which require victims’ involvement in additional 

steps to successfully exploit the vulnerability, such as a vulnerability in an email client is only 

exploited after the user downloads and opens a malicious file attached to email. The lower the 

required complexity, the easier it is for the attacker to exploit and, thus, the higher the 

vulnerability score. TABLE 3 below lists the possible values of the access complexity metric. 

 
TABLE 3  

CVSS ACCESS COMPLEXITY DESCRIPTION [3] 

Metric Value Description 
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High (H) 

Specialized conditions exist, such as a race condition with a narrow window, 

or a requirement for social engineering methods that would be readily noticed 

by knowledgeable people. 

Medium (M) 

There are some additional requirements for access, such as a limit on the origin 

of the attacks, or a requirement for the vulnerable system to run with an 

uncommon, non-default configuration. 

Low (L) 

There are no special conditions for access to the vulnerability, such as when 

the system is available to a large number of users, or the vulnerable 

configuration is ubiquitous. 

 

3.4.3.3 Access Authentication (AA) 

FIRST defines “Access Authentication” as a “measure of the number of times an attacker 

has to authenticate to a target in order to exploit a vulnerability”. This metric doesn’t reflect the 

strength or complexity of the authentication process; it only gives an idea about the required 

number of authentications to provide credentials by an attacker before an exploit may occur.  The 

fewer authentication instances that are required, the easier it is to exploit and the higher the 

vulnerability score. The possible values for this metric are listed in TABLE 4. 

 
TABLE 4  

CVSS ACCESS AUTHENTICATION DESCRIPTION [2] 

Metric 

Value 
Description 
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Multiple 

(M) 

Exploiting the vulnerability requires that the attacker authenticate two or more 

times, even if the same credentials are used each time. An example is an attacker 

authenticating to an operating system in addition to providing credentials to 

access an application hosted on that system. 

Single (S) 
The vulnerability requires an attacker to be logged into the system (such as at a 

command line or via a desktop session or web interface). 

None (N) Authentication is not required to exploit the vulnerability. 

 

3.4.3.4 Confidentiality Impact (IC) 

The confidentiality impact (IC) metric has been defined by FIRST as the impact on the 

confidentiality of data processed by the system. Confidentiality refers to limiting information 

access and disclosure to only authorized users, as well as preventing access by, or disclosure to, 

unauthorized ones. Increased confidentiality impact increases the potentiality for loss of 

information and thus increases the vulnerability score. The possible values for this metric are listed 

in TABLE 5. 

 
 

TABLE 5  

CVSS CONFIDENTIALITY IMPACT DESCRIPTION [3] 

Metric Value Description 

None (N) There is no impact to the confidentiality of the system. 
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Partial (P) 

There is considerable informational disclosure. Access to some system files 

is possible, but the attacker does not have control over what is obtained, or 

the scope of the loss is constrained. An example is a vulnerability that 

divulges only certain tables in a database. 

Complete (C) 

There is total information disclosure, resulting in all system files being 

revealed. The attacker is able to read all of the system's data (memory, files, 

etc.) 

 

3.4.3.5 Integrity Impact (IC) 

According to FIRST, the Integrity Impact measures the impact to the integrity of a 

successfully exploited vulnerability. Integrity refers to the trustworthiness and guaranteed veracity 

of information. Increased integrity impact increases the vulnerability score. The possible values 

for this metric are listed in TABLE 6. 

 
TABLE 6  

CVSS INTEGRITY IMPACT DESCRIPTION [3] 

Metric Value Description 

None (N) There is no impact to the integrity of the system. 

Partial (P) 
Modification of some data or system files is possible, but the scope of the 

modification is limited. 

Complete (C) 
There is total loss of integrity; the attacker can modify any files or information 

on the target system. 
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3.4.3.6 Availability Impact (IA) 

This metric measures the impact to the integrity of a successfully exploited vulnerability. 

Integrity refers to the trustworthiness and guaranteed veracity of information. Increased integrity 

impact increases the vulnerability score. The possible values for this metric are listed in TABLE 

7.  

 
TABLE 7  

CVSS AVAILABILITY IMPACT DESCRIPTION [3] 

Metric Value Description 

None (N) There is no impact on the availability of the system. 

Partial (P) There is reduced performance or loss of some functionality. 

Complete (C) There is total loss of availability of the attacked resource. 
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CHAPTER 4 

MULTIPLE VULNERABILITY NODE RANK (MVNRANK) ALGORITHM 

This chapter focuses on the ranking algorithm. The node ranking algorithm that has been 

developed as part of the thesis has been called MVNRank which stands for Multiple 

Vulnerability Node Rank. As stated in previous chapters, MVNRank is an MADM (Multi-

Attributes Decision Making) based ranking algorithm. The node ranking process will not only 

help to improve the resilience but also facilitate the way to harden the network from 

vulnerabilities and threats by identifying critical nodes and provide suggestions for removing and 

reducing the exploitable paths. The proposed MVNRank (Multiple Vulnerability Node Rank) 

algorithm takes into account asset value, the exploitability and impact scores of vulnerabilities as 

illustrated in CVSS (Common Vulnerability Scoring System), the total number of vulnerabilities 

each product has and severity of each vulnerability, degree centrality of the nodes and also the 

relative closeness of the intermediate nodes in the shortest paths to target node. The next sections 

focus on some of the ranking algorithms based on graph theory and then the details of 

MVNRank in the subsequent sections. 

 

4.1 Literature Review on the existing ranking Algorithms 

 There have been numerous approaches developed to deal with the ranking of critical 

assets in a network or in other applications. One of the widely used ranking algorithms is 

Google’s PageRank Algorithm. Google's PageRank algorithm [84, 85] sorts the results of a 

query by the most relevant or important pages that match a given search string so that indexed 

pages can be listed in order of importance, making it easier for the user to find pages relevant to 

their search parameters. PageRank assesses the importance of a web page by the number of 
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pages linking to it as well as the importance of these pages. Xing et al. [86] have worked on the 

PageRank algorithm and proposed a weighted PageRank algorithm. The page rank algorithm 

approach is not directly applicable to the node ranking of this thesis because it does not consider 

the edge weights in the form of exploitability and impact scores of the associated vulnerabilities, 

but the basic concept of PageRank algorithm has been used in a different way while assessing the 

dynamic asset value based on the dependency relationship of the nodes which is one of the 

factors considered for the ranking of critical assets. Kijsanayothin et al. [87] have conducted 

exploit based analysis using Markov computational process and ranked nodes in the attack model 

in order of their likelihoods of being compromised. Pengfei Li and Xiaofeng Qiu [88] proposed 

an algorithm named NodeRank which is based on state enumeration attack graphs where the rank 

value of the nodes shows the likelihood of an intruder reaching this state. Xia Yang et al. [89] 

proposed DBRank for ranking vulnerabilities to patch in computing networks. DBRank 

prioritizes vulnerabilities based on the diffusibility and benefit of vulnerability exploitation. This 

is interesting because the authors have considered the impact as benefits of the attacker. Paul 

Barford et al., in their book "Cyber Situational Awareness"  [90], have explained two different 

methods to determine and prioritize critical assets: Analytic Hierarchy Process (AHP) and 

Decision Metric Analysis (DMA). Initially, this thesis considered some of the ways explained in 

DMA, but these methods don’t incorporate the exploit and impact base metrics which are critical 

in our case as we are using the network topology derived from NIST CSSP defense-in-depth 

architecture and the resilience formula depends on those exploitability and impact base scores. 

Sawilla, Reginald E., and Xinming Ou. [91] discussed the process of identifying critical attack 

assets in dependency attack graphs. Miura-Ko, Reiko Ann and Nicholas Bambos [92] proposed 

SecureRank which prioritizes vulnerabilities and network nodes based on the percentage of time 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Pengfei%20Li.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiaofeng%20Qiu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Xia%20Yang.QT.&newsearch=true
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a random attacker would spend while trying to exploit them. SecureRank takes into account the 

network topology and potential node interactions in calculating their relative risk and priority. 

The algorithm is good for prioritizing vulnerabilities but doesn't take into consideration all the 

possible path combinations that the vulnerabilities of the intermediate nodes may offer to the 

attacker. Mehta, Vaibhav et al. [93] proposed a way of ranking attack graphs where the authors 

considered nodes as system states and edges are transitions between states. 

 

4.2 MVNRank Algorithm Factors and Formulation 

To determine the cybersecurity metrics of a complex bulk power system network, it is not 

sufficient to consider only the effects of exploiting each individual vulnerability and the impact 

caused by that vulnerability. It is a must for the analyst to take into consideration all the possible 

attack intrusion and attack scenarios where an attacker may combine several exploits and launch 

a multi-stage multi-host attack to compromise the security of the ICS system [94]. The same is 

also necessary to improve node resilience. The MVNRank takes into account asset value, the 

exploitability and impact scores of each of the vulnerabilities, the total number of vulnerabilities 

each product has and severity of each vulnerability, and also the relative closeness of the 

intermediate nodes in the shortest paths to the target node. Considering the intermediate nodes in 

the shortest paths allows MVNRank to catch up with the multi-stage multi-host attack 

optimization. Also, the resilience equation used here takes into account all the possible path 

combinations due to the vulnerabilities of the intermediate nodes and their edge exploitability 

and impact. 
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4.2.1 Asset Value and Node Importance in Vulnerability Graph 

 In general, the Asset value refers to the importance of the files and data stored in a host or 

server. This is directly related to how much damage an attacker can do to a network by 

compromising the asset. For example, if an attacker can compromise a database server the 

information he can steal and thus the damage he can do to the network or organization is much 

greater than the damage done by compromising a workstation. Asset value is also a measure of 

the contribution of the node in the overall network compared to its peer nodes. For example, if an 

attacker can penetrate a workstation probably only the user or application of that workstation is 

compromised and at risk but no other machine in the network may be affected because they may 

not have application dependency on that workstation, but if the attacker can successfully 

compromise a server, then the users or workstations connected to that server may not be able to 

run the applications on that server. Hence, all the users connected to that server or dependent on 

the server’s application are impacted and are unable to get the service. That is why the server is 

more important than the workstation here.  In our network topology based on the NIST 800-82 

CSSP defense-in-depth architecture, the nodes in Control LAN layer such as Historian Servers or 

Application Servers are more critical in terms of asset value than the nodes in Corporate DMZ 

layers such as FTP Server, Email Server or Web Server, because if somebody can penetrate the 

control LAN system machine, he would have more access to the application of the power station 

network consisting of the Remote Terminal Units (RTU) and Industrial Control Systems (ICS). 

Normally experienced network administrators assign an asset value from 0 to 1 to the network 

elements, where 1 is the highest asset value and 0 is no asset value. So far, we know that 

Google’s PageRank algorithm can put importance on the webpage based on the number of links 

pointing to this page as well the number of links pointing to those linked pages. For determining 
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the asset value of a node in our network topology, we are using almost a PageRank centrality 

approach in a different way by considering the number of predecessors each node has and the 

number of predecessors of the present node’s predecessors’ predecessor nodes until the attack 

origin node. We have assumed that every predecessor node has some application or service 

dependency on the successor nodes. Even if they don't have a dependency, there exists some sort 

of communication channel which can be exploited from the predecessor nodes to the successor 

node. Thus, the successor node's asset value is dependent on the predecessor's asset value. 

Let us consider, the graph is denoted as 𝐺𝐺(𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is a set of vertices or 

nodes and 𝐸𝐸 is the set of edges between nodes. 𝐼𝐼𝑉𝑉𝑡𝑡𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑁𝑁𝑛𝑛𝑑𝑑𝑒𝑒𝑖𝑖 is the set of 

all the nodes that fall in all the possible paths from the source s to target t. So, if 

the set of nodes 𝑉𝑉 is defined as 𝑉𝑉 = {𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … . . 𝑣𝑣𝑗𝑗−2, 𝑣𝑣𝑗𝑗−1, 𝑣𝑣𝑗𝑗} and there 

exists paths from source 𝑣𝑣1 to target 𝑣𝑣𝑗𝑗, which pass through all the other nodes, 

then 𝐼𝐼𝑉𝑉𝑡𝑡𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑁𝑁𝑛𝑛𝑑𝑑𝑒𝑒𝑖𝑖 = {𝑣𝑣2, 𝑣𝑣3, … , 𝑣𝑣𝑗𝑗−1: 𝑣𝑣1 = 𝑖𝑖 𝑖𝑖𝑉𝑉𝑑𝑑 𝑣𝑣𝑗𝑗 = 𝑡𝑡}. There are 

some nodes that may not fall in the paths from the specific source node to target 

node, hence, 𝐼𝐼𝑉𝑉𝑡𝑡𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑁𝑁𝑛𝑛𝑑𝑑𝑒𝑒𝑖𝑖 ⊂ 𝑉𝑉. Asset value of Node 𝑣𝑣𝑖𝑖 is denoted by 

𝐴𝐴𝑣𝑣𝑖𝑖 and can be found by considering the number of predecessor nodes as given 

below. 

 

 

𝐴𝐴𝑣𝑣𝑖𝑖 = 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖) + � 𝑁𝑁𝑃𝑃𝑃𝑃�𝑣𝑣𝑖𝑖� + � 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑘𝑘) +
𝑣𝑣𝑘𝑘∈𝑃𝑃𝑃𝑃(𝑣𝑣𝑗𝑗)

… …
𝑣𝑣𝑗𝑗∈𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖)

+ � 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑗𝑗)
𝑣𝑣𝑛𝑛∈𝑃𝑃𝑃𝑃(𝑣𝑣𝑚𝑚)

𝑣𝑣𝑛𝑛=𝑠𝑠

 
(6) 
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where, 𝐴𝐴𝑣𝑣𝑖𝑖 is the asset value of Node 𝑣𝑣𝑖𝑖 where 𝑣𝑣𝑖𝑖 ∈ 𝐼𝐼𝑉𝑉𝑡𝑡𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑁𝑁𝑛𝑛𝑑𝑑𝑒𝑒𝑖𝑖,  𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖) is the 

number of predecessors’ of node 𝑣𝑣𝑖𝑖 has, 𝑃𝑃𝑅𝑅(𝑣𝑣𝑖𝑖) is the set of all predecessors of node 𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 = 𝑖𝑖 

is the attack origin node such as for our case the Corporate Firewall 1. Thus, 𝐴𝐴𝑣𝑣𝑖𝑖  is the 

summation of the number of all the predecessor nodes plus the predecessors of the predecessor 

nodes until the starting point of attack (node 0). 

 

 

Fig. 14.  Asset Value Illustration. 

 

Fig. 14 demonstrates the illustration of the asset value equation. Let us say that we have source 

node 𝑖𝑖 = 𝑣𝑣0 and target node 𝑡𝑡 = 𝑣𝑣12. Then 𝐼𝐼𝑉𝑉𝑡𝑡𝑒𝑒𝑝𝑝𝑖𝑖𝑒𝑒𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡𝑒𝑒𝑁𝑁𝑛𝑛𝑑𝑑𝑒𝑒𝑖𝑖 =
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{𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣7, 𝑣𝑣8, 𝑣𝑣10}. Now, if we are interested to find the asset value of node 𝑣𝑣10, then 

𝑣𝑣𝑖𝑖 = 𝑣𝑣10, 𝑣𝑣𝑗𝑗 = {𝑣𝑣7, 𝑣𝑣8}, 𝑣𝑣𝑣𝑣 = {𝑣𝑣3, 𝑣𝑣4}, 𝑣𝑣𝑖𝑖 = {𝑣𝑣1, 𝑣𝑣2}, 𝑣𝑣𝑉𝑉 = 𝑣𝑣0 = 𝑖𝑖, 

𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖) = 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣10) = 2 and 𝑃𝑃𝑅𝑅(𝑣𝑣10) = {𝑣𝑣7, 𝑣𝑣8}. Now, we can add weights on 

the predecessor's value based on the distance of those predecessors from node 𝑣𝑣𝑖𝑖. 

Because only the direct predecessors can be directly dependent on successor's 

services or applications, the rest of the nodes are indirectly dependent on the 

current node's services and application and thus have reduced weight. The 

modified form of equation (6) including the distance-based weight method is 

given below: 

 

 

𝐴𝐴𝑣𝑣𝑖𝑖 = 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖) + �
1

𝐷𝐷(𝑣𝑣𝑗𝑗,𝑣𝑣𝑖𝑖)
× 𝑁𝑁𝑃𝑃𝑃𝑃�𝑣𝑣𝑖𝑖�

𝑣𝑣𝑗𝑗∈𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖)

+ �
1

𝐷𝐷(𝑣𝑣𝑘𝑘,𝑣𝑣𝑖𝑖)
× 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑘𝑘) +

𝑣𝑣𝑘𝑘∈𝑃𝑃𝑃𝑃(𝑣𝑣𝑗𝑗)

… …

+ �
1

𝐷𝐷(𝑣𝑣𝑛𝑛,𝑣𝑣𝑖𝑖)
× 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑗𝑗)

𝑣𝑣𝑛𝑛∈𝑃𝑃𝑃𝑃(𝑣𝑣𝑚𝑚)
𝑣𝑣𝑛𝑛=𝑠𝑠

 

(7) 

 

The above equation can be rewritten in short form as below:  

 

𝐴𝐴𝑣𝑣𝑖𝑖 = 𝑁𝑁𝑃𝑃𝑃𝑃(𝑣𝑣𝑖𝑖) + � �
1

𝐷𝐷(𝑣𝑣𝑘𝑘,𝑣𝑣𝑖𝑖)
× 𝑁𝑁𝑃𝑃𝑃𝑃�𝑣𝑣𝑖𝑖�

𝑣𝑣𝑘𝑘∈𝑃𝑃𝑃𝑃(𝑣𝑣𝑗𝑗)𝑣𝑣𝑗𝑗∈𝐼𝐼𝑁𝑁(𝑣𝑣𝑖𝑖)

 (8) 

 

where, 𝐼𝐼𝑁𝑁(𝑣𝑣𝑖𝑖) is the set of all intermediate nodes through which node 𝑣𝑣𝑖𝑖 is reachable 

from source node, 𝑃𝑃𝑅𝑅�𝑣𝑣𝑖𝑖� is the set of immediate predecessors of node 𝑣𝑣𝑖𝑖  and 𝑁𝑁𝑃𝑃𝑃𝑃�𝑣𝑣𝑖𝑖� is the 
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number of predecessors of node 𝑣𝑣𝑖𝑖 . It is to be noted that 𝐴𝐴𝑣𝑣𝑖𝑖 is not the same for the same host or 

node in the graph; it is different in the case of a different target node, because the intermediate 

nodes falling to the paths to the target are different when the target node is changed. 

 

 

 

Fig. 15(a).  Vulnerability Graph Example for determining Asset Value (b) Simplified 

form of Fig. 15(a) for asset value determination. 

  

In Fig. 15(a), there can be multiple vulnerabilities possessed by each node and the 

number of edges between the two nodes is equal to the number of vulnerabilities possessed by 

the destination node. For example, in (a), node 1 has 2 vulnerabilities, so there are two directed 

edges from node 0 to node 1. Similarly, node 6 has three vulnerabilities, that is why there are 

three edges from node 2 to node 6. To determine the asset value of each node as per the formula 

given in the equation, there is no need to consider the number of vulnerabilities or edges between 
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the nodes, only the number of predecessors and distance from the asset value determinant node 

are important. Thus, the figure in (a) has been simplified in (b) by removing multiple edges and 

keeping only one edge between each node for asset value calculation demonstration purposes.   

Let us first take node 10 as our target node from an attacker’s perspective. The attack 

origin node is thought to be node 0 for this example. Node 10 can be reachable from node 0 

through multiple paths such as 0→1→3→7→10, 0→1→4→7→10, 0→2→4→7→10 and 

0→2→4→8→10. Thus, the intermediate nodes that fall in the way of node 0 to node 10 are 1, 2, 

3, 4, 7 and 8.  Thus, we are interested in determining the asset value of node 1, 2, 3, 4, 7 and 8 

which values will be used in ranking of the nodes calculation. Node 1 and 2 have an asset value 

of 1 as they have only the origin node as the predecessor node, so the second component of the 

equation is zero for nodes 1 and 2.  

 

TABLE 8  

ASSET VALUE DETERMINATION EXAMPLE (NODE 7) 

Nodes  Number of Immediate 
Predecessors 

Distance from Asset value 
determinant node 

1, 2 1 2 

3 1 1 

4 2 1 

7 2 
0 (asset value  

determinant node) 

 

Thus, the asset value of node 7 can be calculated using the equation; the demonstration is given 

below: 
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𝐴𝐴7 = 𝑁𝑁𝑃𝑃𝑃𝑃(7) + �
1

𝐷𝐷(1,7)
× 𝑁𝑁𝑃𝑃𝑃𝑃(3) +

1
𝐷𝐷(1,7)

× 𝑁𝑁𝑃𝑃𝑃𝑃(4) +
1

𝐷𝐷(2,7)
× 𝑁𝑁𝑃𝑃𝑃𝑃(4)�

+ �
1

𝐷𝐷(0,7)
× 𝑁𝑁𝑃𝑃𝑃𝑃(1) +

1
𝐷𝐷(0,7)

× 𝑁𝑁𝑃𝑃𝑃𝑃(2)� 

 

𝐴𝐴7 = 2 + �
1
2

× 1 +
1
2

× 2 +
1
2

× 2� + �
1
3

× 1 +
1
3

× 1� 

 

𝐴𝐴7 = 2 + (0.5 + 1.00 + 1.00) + (0.33 + 0.33) = 5.16 

Thus, node 7 has an asset value of 5.16 when the target node is node 10. Similarly, for node 4, 

the asset value can be determined by using the equation and an illustration is given below:  

𝐴𝐴4 = 𝑁𝑁𝑃𝑃𝑃𝑃(4) + �
1

𝐷𝐷(0,4)
× 𝑁𝑁𝑃𝑃𝑃𝑃(1) +

1
𝐷𝐷(0,4)

× 𝑁𝑁𝑃𝑃𝑃𝑃(2)� 𝐴𝐴4 

𝐴𝐴4 = 2 + �
1
2

× 1 +
1
2

× 1� 

𝐴𝐴4 = 2 + (0.5 + 0.5) = 3.00 

Thus, node 4 has an asset value of 3.00 when the target node is node 10. This is also analogous 

with our basic concepts that the lower layer’s nodes (such as nodes belonging to Corporate DMZ 

or Corporate LAN) should have less asset value than the upper layer nodes (such as Control 

DMZ or Control System LAN layer). Also, nodes 1 and 2 have an asset value of 1.00 each as 

shown here: 𝐴𝐴1 = 𝑁𝑁𝑃𝑃𝑃𝑃(1) = 1,𝐴𝐴2 = 𝑁𝑁𝑃𝑃𝑃𝑃(2) = 1. 
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Fig. 16(a).  Intermediate nodes (bold) 

when target is node 10. 

 

Fig. 16(b).  Intermediate nodes when 

target is node 11. 

 

Referring to Fig. 16(a) and (b), when we shall try to optimize a different target such as 

node 11 instead of node 10, as a separate list of nodes such as in this case nodes 2, 5, 6 and 9 will 

be the nodes to calculate the asset value, because the paths from node 0 to node 11 are 

0→2→5→9→11 and 0→2→6→9→11. Thus, if the target node is changed, then the asset value 

is also changed. For example, if the target is 11, then we do not need to consider nodes 7 or 8, as 

they don’t fall on the paths to reach to target node 11 and they will have 0 asset value this time.  
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4.2.2 Distance and Reachability in Vulnerability Graph 

One of the crucial factors to be considered for node ranking is how far is the attack 

launch node from the target node. This gives an idea about the reachability of the attacker to the 

target node.  

 

 

Fig. 17(a).  Node Distance (Target Node is 10, attacker’s current position in node 9). 

Fig. 17(b).  Node Distance (Target Node is 10, attacker’s current position in node 5). 

Fig. 17(c).  Node Distance (Target Node is 10, attacker’s current position in node 3). 

For example, as in the above figure, if there are 10 nodes from 1 to 10 connected in direct 

hierarchy such as 1→2→3...→10, then if the attacker is now in node 9 as in Fig. 17(a), he is just 

1 distance away from the target, so the attacker can make greater damage than if he is now in 

node 5 as in Fig. 17(b) which is having a distance of 5 yet to reach to the target or if the attacker 
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is now in node 3 as in Fig. 17(c) which is having a distance of 7 yet to reach to the target. Which 

means, the attacker needs to put forth more effort and exploit more intermediate nodes 

vulnerabilities to reach to a certain target depending on his current position. In graph theory, 

eccentricity is defined as the maximum graph distance between two nodes. We need the shortest 

distance between two nodes. Distance 𝐷𝐷𝑖𝑖 is equal to the number of intermediate nodes in the 

shortest path to pass through to reach the target. Distance is defined as below:  

𝐷𝐷𝑖𝑖 = 𝑑𝑑(𝑣𝑣𝑖𝑖, 𝑡𝑡) (9) 

where 𝑑𝑑(𝑣𝑣𝑖𝑖 , 𝑡𝑡) is the shortest path length between node 𝑣𝑣𝑖𝑖 and target t. Relative Closeness is 

defined by the following equation (10): 

𝑑𝑑𝑖𝑖 =
1
𝐷𝐷𝑖𝑖

 (10) 

This means the greater the distance of the attacker’s current position from the target node, the 

smaller is the relative closeness value for that node which is an indication about the capability of 

the attacker to cause damage or exploit the target node. 

 

4.2.3 Degree Centrality in Vulnerability Graph 

The degree centrality of a node v is the fraction of nodes connected to it. It usually refers 

to the number of links incident upon a node or the number of ties the node has in the graph. For a 

given graph 𝐺𝐺: = (𝑉𝑉, 𝑒𝑒) where |𝑉𝑉| 𝑖𝑖𝑉𝑉𝑑𝑑 |𝑒𝑒|  denotes nodes and edges respectively, the degree 

centrality of a node 𝑣𝑣𝑖𝑖 in the graph G is defined as: 

𝐶𝐶𝑑𝑑(𝑖𝑖) = deg (𝑣𝑣𝑖𝑖) (11) 

We are considering the degree centrality to consider the reachability through the nodes. 
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4.2.4 Exploit Factor (EF) and Impact Factor (IF) of edges in Vulnerability Graph 

 Each Vulnerability is associated with CVSS base metrics which are Access vector (AV), 

Access complexity (AC), Access authentication (AA), Confidentiality Impact (IC), Integrity 

Impact (II) and Availability Impact (IA). The inputs taken from NVD database to process the 

calculation of Resilience and Node Ranking Metric are given in TABLE 9 and TABLE 10.  

 
TABLE 9  

CVSS EXPLOITABILITY BASE METRICS [2] 

Base Metrics Category Value Score 

Access vector (AV) 
Local (L) 0.395 

Adjacent Network (A) 0.646 
Remote Network (N) 1.0 

Access complexity (AC) 
High (H)  0.35 

Medium (M)  0.61 
Low (L)  0.71 

Access authentication (AA) 
Multiple (M) 0.45 

Single (S)  0.56 
None (N)  0.704 

   
 

TABLE 10  

CVSS IMPACT BASE METRICS [2] 

Base Metrics Category Value Score 

Confidentiality Impact (IC) 
None (N)  0.0 
Partial (P)  0.275 

Complete (C)  0.660 

Integrity Impact (II) 
None (N)  0.0 
Partial (P)  0.275 

Complete (C)  0.660 

Availability Impact (IA) 
None (N)  0.0 
Partial (P)  0.275 

Complete (C)  0.660 
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Each vulnerability represents an edge in the graph which has the weights that represents 

the exploitability and impact as calculated from the CVSS. Edge exploitability and impacts are 

the most important quantitative parameters that we have in quantification of resilience of a 

network or node, so we have taken into consideration both the exploitability and impact metrics 

of the vulnerabilities associated with the nodes while ranking them.  In TABLE 9 and TABLE 

10, we have represented the base exploitability and impact metrics as given in CVSS. The 

exploitability and impact have been calculated in CVSS by the below equations [2]: 

𝐸𝐸𝐸𝐸𝑖𝑖𝑉𝑉𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝐸𝐸𝑖𝑖𝑉𝑉𝑖𝑖𝑡𝑡𝐸𝐸 𝐼𝐼𝑐𝑐𝑛𝑛𝑝𝑝𝑒𝑒,𝐸𝐸𝐼𝐼 = 20 × 𝐴𝐴𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖 𝑉𝑉𝑒𝑒𝑐𝑐𝑡𝑡𝑛𝑛𝑝𝑝  

× 𝐴𝐴𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖 𝐶𝐶𝑛𝑛𝑖𝑖𝑖𝑖𝑉𝑉𝑒𝑒𝐸𝐸𝑖𝑖𝑡𝑡𝐸𝐸 × 𝐴𝐴𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖 𝐴𝐴𝑉𝑉𝑡𝑡ℎ𝑒𝑒𝑉𝑉𝑡𝑡𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖𝑛𝑛𝑉𝑉 
(12) 

or, 

𝐸𝐸𝐼𝐼 = 20 × 𝐴𝐴𝑉𝑉 × 𝐴𝐴𝐶𝐶 × 𝐴𝐴𝐴𝐴 (13) 

and,  

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡 𝐼𝐼𝑐𝑐𝑛𝑛𝑝𝑝𝑒𝑒, 𝐼𝐼𝐼𝐼 = 10.41 × 

�1 − �(1 − 𝐶𝐶𝑛𝑛𝑉𝑉𝑓𝑓𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡) × (1 − 𝐼𝐼𝑉𝑉𝑡𝑡𝑒𝑒𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡) × (1 − 𝐴𝐴𝑣𝑣𝑖𝑖𝑖𝑖𝑉𝑉𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑡𝑡)�� 
(14) 

or, 

𝐼𝐼𝐼𝐼 = 10.41 × �1 − (1 − 𝐼𝐼𝐶𝐶) × (1 − 𝐼𝐼𝐼𝐼) × (1 − 𝐼𝐼𝐴𝐴)� (15) 

Both exploitability score and impact score are in the scale of 0 to 10. To use weighted 

average method, we have scaled down the ES and IS to the scale 0 ~ 1 and called them 

exploitability factor (EF) and impact factor (IF). 

𝐸𝐸𝐸𝐸 =
𝐸𝐸𝐼𝐼
10

 (16) 

and,  

𝐼𝐼𝐸𝐸 =
𝐼𝐼𝐼𝐼
10

 (17) 
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The question here is that not all the vulnerabilities have the same exploitability and same 

impact on the network. Some of the vulnerabilities are highly critical with a CVSS base score of 

7.0 to 10.0 while others are moderately critical with a base score of 4.0 to 6.9 and others that are 

below 4.0 fall in the category of low severity. Thus, treating each of them on the same scale 

would give us a non-appropriate result. That is why we have introduced a weighted average 

method to weight each vulnerability based on its exploitability and impact score separately. The 

highly severe vulnerabilities have a weight of 0.5, while moderately severe vulnerabilities have 

been given a weight of 0.3 and low severity vulnerabilities are given a weight of 0.2. The 

summation of these three category weights are equal to 1.0 as needed. TABLE 11 illustrates the 

weighted ranges for exploit factor and TABLE 12 illustrates the weighted range values for 

impact factor.  

 
TABLE 11  

EXPLOITABILITY FACTOR WEIGHT 

EF Severity Weight 
0.7 ~ 1.0 High 0.5 

0.4 ~ 0.69 Medium 0.3 

0.0 ~ 0.39 Low 0.2 

 

TABLE 12  

IMPACT FACTOR WEIGHT 

IF Severity Weight 
0.7 ~ 1.0 High 0.5 

0.4 ~ 0.69 Medium 0.3 

0.0 ~ 0.39 Low 0.2 
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 The most interesting part of working with vulnerabilities is that a vulnerability may 

have a high exploit factor, but it may have a very low impact factor or vice versa. That is why 

using the above weighted approach, we have come up with the following two formulae for 

considering the exploitability and impact of the vulnerabilities along with their severity level. 

As the node 𝑣𝑣𝑖𝑖, has vulnerabilities from 1 to n, so 𝐸𝐸𝐸𝐸𝑖𝑖 and 𝐼𝐼𝐸𝐸𝑖𝑖 are an array of 

exploitability factor and impact factor for all the vulnerabilities of node 𝑣𝑣𝑖𝑖 and they are being 

defined as: 

𝐸𝐸𝐸𝐸𝑖𝑖 = �𝐸𝐸𝐸𝐸𝑖𝑖1 ,𝐸𝐸𝐸𝐸𝑖𝑖2 ,𝐸𝐸𝐸𝐸𝑖𝑖3 , … … ,𝐸𝐸𝐸𝐸𝑖𝑖𝑛𝑛� 

𝐼𝐼𝐸𝐸𝑖𝑖 = �𝐼𝐼𝐸𝐸𝑖𝑖1 , 𝐼𝐼𝐸𝐸𝑖𝑖2 , 𝐼𝐼𝐸𝐸𝑖𝑖3 , … … , 𝐼𝐼𝐸𝐸𝑖𝑖𝑛𝑛� 

Weighted Exploitability Factor for node 𝑣𝑣𝑖𝑖 having 𝑉𝑉 vulnerabilities is defined by: 

𝐸𝐸𝐸𝐸𝑤𝑤𝑖𝑖 =
∑ �𝑤𝑤𝑖𝑖𝑗𝑗 × 𝐸𝐸𝐸𝐸𝑖𝑖𝑗𝑗�
𝑗𝑗
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝑗𝑗
𝑗𝑗
𝑖𝑖=1

 (18) 

Weighted Impact Factor for node 𝑣𝑣𝑖𝑖 having 𝑉𝑉 vulnerabilities is defined by: 

𝐼𝐼𝐸𝐸𝑤𝑤𝑖𝑖 =
∑ �𝑤𝑤𝑖𝑖𝑘𝑘 × 𝐼𝐼𝐸𝐸𝑖𝑖𝑘𝑘�
𝑗𝑗
𝑘𝑘=1

∑ 𝑤𝑤𝑖𝑖𝑘𝑘
𝑗𝑗
𝑘𝑘=1

 (19) 

Both the weighted exploitability factor 𝐸𝐸𝐸𝐸𝑤𝑤𝑖𝑖  and weighted impact factor  𝐼𝐼𝐸𝐸𝑤𝑤𝑖𝑖  have a value from 

0 to 1. 

 

4.2.5 Physical Impact Factor of nodes in Vulnerability Graph 

In section 4.2.3, we have considered the impact factor based on the software 

vulnerability, but the same vulnerability may cause a different impact when it belongs to 

Corporate DMZ layer than when it belongs to the control system layer which controls ICS 
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Fig. 18.  Sample Network Connectivity Between Control System Lan Network and Field 

Device Network. 

 
(Industrial Control System) or SCADA network for electrical power generation and distribution 

system network. Mostly in the power system domain, the physical loss is quantified by the 

amount of power outage that can be caused by the attacker by exploiting a vulnerability. That is 

why it is important to consider the physical impact of the vulnerability.  

In this part, by connectivity we mean logical connections, an example of which can be 

any application or software already installed in the Configuration Server to operate the RTU's 

remotely or in the Data Acquisition Server to get real-time data from the RTU's to monitor its 

performance. Based on the logical connections we assumed in Fig. 18, Data acquisition server 

has logical connections with RTU1 and RTU1 is controlling 10 MW power distribution unit. 

Configuration Server is logically connected to all three RTU's, Engineering Workstation 1 is 

logically connected to RTU1 only and Engineering Workstation 2 has a logical connection or 

access to RTU2 and RTU3. RTU2 and RTU3 are controlling 20 MW power distribution unit 
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each. If RTU1 is compromised, there is the chance of losing 10 MW power. Similarly, if RTU2 

and RTU3 are compromised, then 20 MW of power is possible to be made unavailable by the 

attacker. Thus, each RTU has a fraction of power loss chance. If RTU1 is compromised then 

10/(20+20+10) or 20% of the total power is lost. Now, if Data Acquisition server is being 

compromised, it has the potential to impact 20% of the total power loss by compromising RTU1. 

Similarly, if Engineering workstation 2 is comprised, it has the potential to impact 

(20+20)/(10+20+10) or 80% of the total power loss. Thus, a network element in the Control 

system LAN network can have a physical power loss ranging from 0 (no power outage) to 1 

(maximum power outage), so, the expected fractional power loss can be defined as below. 

𝐸𝐸𝐸𝐸𝑖𝑖𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑑𝑑 𝑃𝑃𝑛𝑛𝑤𝑤𝑒𝑒𝑝𝑝 𝐿𝐿𝑛𝑛𝑖𝑖𝑖𝑖 𝐸𝐸𝑖𝑖𝑐𝑐𝑡𝑡𝑛𝑛𝑝𝑝,𝐸𝐸𝑃𝑃𝐿𝐿𝐸𝐸𝑖𝑖 =
∑ 𝐵𝐵𝑖𝑖𝑚𝑚𝑃𝑃𝑚𝑚𝑣𝑣
𝑚𝑚=1

∑ 𝑃𝑃𝑚𝑚𝑈𝑈
𝑚𝑚=1

 (20) 

 
Here, 𝐵𝐵𝑖𝑖𝑚𝑚 is a binary quantity (1,0) which means whether node 𝑣𝑣𝑖𝑖 is having an application or 

software installed that can access the RTU m i.e., whether node 𝑣𝑣𝑖𝑖 has some logical connections 

to reach RTU m or not. If the application is in place already, there are logical connections between 

node 𝑣𝑣𝑖𝑖 and RTU m and thus, 𝐵𝐵𝑖𝑖𝑚𝑚 = 1, otherwise 𝐵𝐵𝑖𝑖𝑚𝑚 = 0. Here,  

� 𝑃𝑃𝑚𝑚
𝑈𝑈

𝑚𝑚=1
= 𝑇𝑇𝑛𝑛𝑡𝑡𝑖𝑖𝑉𝑉 𝑃𝑃𝑛𝑛𝑤𝑤𝑒𝑒𝑝𝑝 𝐷𝐷𝑒𝑒𝑉𝑉𝑖𝑖𝑣𝑣𝑒𝑒𝑝𝑝𝐸𝐸 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝐸𝐸 𝑛𝑛𝑓𝑓 𝐼𝐼𝑉𝑉𝐸𝐸𝑖𝑖𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖𝑛𝑛𝑉𝑉 

� 𝑃𝑃𝑚𝑚
𝑣𝑣

𝑚𝑚=1
= 𝑇𝑇𝑛𝑛𝑡𝑡𝑖𝑖𝑉𝑉 𝑃𝑃𝑛𝑛𝑤𝑤𝑒𝑒𝑝𝑝 𝐶𝐶𝑛𝑛𝑉𝑉𝑡𝑡𝑝𝑝𝑛𝑛𝑉𝑉𝑉𝑉𝑒𝑒𝑑𝑑 𝐸𝐸𝐸𝐸 𝑖𝑖𝑉𝑉𝑉𝑉 𝑡𝑡ℎ𝑒𝑒 𝑅𝑅𝑇𝑇𝑅𝑅  

𝑤𝑤ℎ𝑖𝑖𝑐𝑐ℎ 𝑐𝑐𝑖𝑖𝑉𝑉 𝐸𝐸𝑒𝑒 𝑖𝑖𝑐𝑐𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑉𝑉𝑒𝑒 𝑓𝑓𝑝𝑝𝑛𝑛𝑖𝑖 𝑉𝑉𝑛𝑛𝑑𝑑𝑒𝑒 𝑖𝑖  

𝑅𝑅 = 𝑇𝑇𝑛𝑛𝑡𝑡𝑖𝑖𝑉𝑉 𝑁𝑁𝑉𝑉𝑖𝑖𝐸𝐸𝑒𝑒𝑝𝑝 𝑛𝑛𝑓𝑓 𝑅𝑅𝑇𝑇𝑅𝑅𝑖𝑖 𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖𝐸𝐸𝑉𝑉𝑒𝑒 𝑖𝑖𝑉𝑉 𝑡𝑡ℎ𝑒𝑒 𝑖𝑖ℎ𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑉𝑉 𝑖𝑖𝑛𝑛𝑤𝑤𝑒𝑒𝑝𝑝 𝑖𝑖𝐸𝐸𝑖𝑖𝑡𝑡𝑒𝑒𝑖𝑖 𝑉𝑉𝑒𝑒𝑡𝑡𝑤𝑤𝑛𝑛𝑝𝑝𝑣𝑣 and, 𝑉𝑉 =

𝑇𝑇𝑛𝑛𝑡𝑡𝑖𝑖𝑉𝑉 𝑁𝑁𝑉𝑉𝑖𝑖𝐸𝐸𝑒𝑒𝑝𝑝 𝑛𝑛𝑓𝑓 𝑅𝑅𝑇𝑇𝑅𝑅𝑖𝑖 ℎ𝑖𝑖𝑣𝑣𝑖𝑖𝑉𝑉𝐼𝐼 𝑉𝑉𝑛𝑛𝐼𝐼𝑖𝑖𝑐𝑐𝑖𝑖𝑉𝑉 𝑐𝑐𝑛𝑛𝑉𝑉𝑉𝑉𝑒𝑒𝑐𝑐𝑡𝑡𝑖𝑖𝑛𝑛𝑉𝑉𝑖𝑖 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑉𝑉𝑛𝑛𝑑𝑑𝑒𝑒 𝑣𝑣𝑖𝑖 . 

Mostly in the power system domain, people are concerned about the availability impact 

and integrity impact rather than the confidentiality impact, because the physical layer devices 
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such as PLC or RTU are hard coded and their information exposure is not treated with as much 

importance as the availability and integrity are treated. Because if the attacker can modify the 

existing PLC code, he can easily try to throw the system out of normal operation and perform 

unexpected operations, as we saw in the Stuxnet attack on the Iranian Nuclear Power plant, 

where the attacker was able to modify the code and destroy the centrifuges. Here, Impact factor 

using the integrity impact and availability impact is modified for the case of physical power loss 

calculation as below: 

𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃 = 1.1307 × �1 − (1 − 𝐼𝐼𝐼𝐼) × (1 − 𝐼𝐼𝐴𝐴)� (21) 

The factor 1.1307 comes from the calculation to make  𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃 equal to 1.0. The maximum value of 

𝐼𝐼𝐼𝐼 𝑖𝑖𝑉𝑉𝑑𝑑 𝐼𝐼𝐴𝐴 is 0.660. By putting those values on the right-hand side of the equation and considering 

𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃 = 1 on the left-hand side, the constant value comes to 1.1307, so considering the physical 

power loss using the same weighted approach as before as in TABLE 11, we can compute the 

weighted average power loss impact factor for node 𝑣𝑣𝑖𝑖 as below: 

𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑊𝑊𝑖𝑖
= 𝐸𝐸𝑃𝑃𝐿𝐿𝐸𝐸𝑖𝑖 ×

∑ 𝑤𝑤𝑖𝑖𝑙𝑙 × 𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑖𝑖𝑙𝑙
𝑗𝑗
𝑣𝑣=1

∑ 𝑤𝑤𝑖𝑖𝑙𝑙
𝑗𝑗
𝑣𝑣=1

 (22) 

The full form of 𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑊𝑊𝑖𝑖
 is found in equation (23) as below.  

𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑊𝑊𝑖𝑖
=
∑ 𝐵𝐵𝑖𝑖𝑚𝑚𝑃𝑃𝑚𝑚𝑣𝑣
𝑚𝑚=1

∑ 𝑃𝑃𝑚𝑚𝑈𝑈
𝑚𝑚=1

×
∑ 𝑤𝑤𝑖𝑖𝑙𝑙 × 𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑖𝑖𝑙𝑙
𝑗𝑗
𝑣𝑣=1

∑ 𝑤𝑤𝑖𝑖𝑙𝑙
𝑗𝑗
𝑣𝑣=1

 (23) 

 

4.2.6 MVNRank Algorithm Formula 

In the node ranking, we have considered the above properties which are asset value, 

relative closeness and the weighted exploitability factor, weighted general impact factor, 

weighted physical impact factor and the total number of vulnerabilities and the degree centrality 

of the node. Node Ranking Value of 𝑣𝑣𝑖𝑖  is found by the below equation: 
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𝑅𝑅𝑖𝑖 = 𝐴𝐴𝑣𝑣𝑖𝑖 × 𝑑𝑑𝑖𝑖 × 𝐶𝐶𝑑𝑑(𝑖𝑖) × 𝑁𝑁𝑖𝑖 × 𝐸𝐸𝐸𝐸𝑤𝑤𝑖𝑖 × �𝐼𝐼𝐸𝐸𝑤𝑤𝑖𝑖 + 𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑤𝑤𝑖𝑖� (24) 

  

The extended form of node ranking equation is given in equation (25) as below. 

𝑅𝑅𝑖𝑖 = 𝐴𝐴𝑣𝑣𝑖𝑖 × 𝑑𝑑𝑖𝑖 × 𝐶𝐶𝑑𝑑(𝑖𝑖) × 𝑁𝑁𝑖𝑖 ×
∑ 𝑤𝑤𝑖𝑖𝑗𝑗
𝑁𝑁𝑖𝑖
𝑖𝑖=1 × 𝐸𝐸𝐸𝐸𝑖𝑖𝑗𝑗
∑ 𝑤𝑤𝑖𝑖𝑗𝑗
𝑁𝑁𝑖𝑖
𝑖𝑖=1

× �
∑ 𝑤𝑤𝑖𝑖𝑘𝑘
𝑁𝑁𝑖𝑖
𝑘𝑘=1 × 𝐼𝐼𝐸𝐸𝑖𝑖𝑘𝑘
∑ 𝑤𝑤𝑖𝑖𝑘𝑘
𝑁𝑁𝑖𝑖
𝑘𝑘=1

+
∑ 𝐵𝐵𝑖𝑖𝑚𝑚𝑃𝑃𝑚𝑚𝑣𝑣
𝑚𝑚=1

∑ 𝑃𝑃𝑚𝑚𝑈𝑈
𝑚𝑚=1

×
∑ 𝑤𝑤𝑖𝑖𝑙𝑙 × 𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑖𝑖𝑙𝑙
𝑁𝑁𝑖𝑖
𝑣𝑣=1

∑ 𝑤𝑤𝑖𝑖𝑙𝑙
𝑁𝑁𝑖𝑖
𝑣𝑣=1

� 

(25) 

 

Here, 𝐶𝐶𝑑𝑑(𝑖𝑖) is the degree centrality of node 𝑣𝑣𝑖𝑖 and 𝑁𝑁𝑖𝑖 is the number of vulnerabilities of node 𝑣𝑣𝑖𝑖. 

For the IT domain network except for the control system LAN, the nodes would not have the 

second impact factor component in equation 25, because they don't have any potential power loss 

which means they have a 0 value for the 𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑤𝑤𝑖𝑖 . Only the Control System LAN network nodes 

have this physical impact factor, so those nodes will have non-zero 𝐼𝐼𝐸𝐸𝑃𝑃𝑃𝑃𝑤𝑤𝑖𝑖  which would give 

them some priority over other nodes.  To normalize we need to find out the maximum value of 

the ranking value of all nodes, which is defined by: 

𝑀𝑀𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖 𝑁𝑁𝑛𝑛𝑑𝑑𝑒𝑒 𝑅𝑅𝑖𝑖𝑉𝑉𝑣𝑣 𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑒𝑒,  𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 = max
∀𝑖𝑖|∃𝑣𝑣𝑖𝑖∈𝐼𝐼𝑁𝑁(𝑣𝑣𝑡𝑡)

[𝑅𝑅𝑖𝑖] (26) 

Relative criticality of each node is found by dividing the node’s rank value by the maximum 

node rank value 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚. Thus, relative criticality of node 𝑣𝑣𝑖𝑖 has been found by dividing the 

corresponding 𝑅𝑅𝑖𝑖 by 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚. Thus,  

𝑅𝑅𝐶𝐶𝑖𝑖 =
𝑅𝑅𝑖𝑖

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
 (27) 

Here, 0 ≤ 𝑅𝑅𝐶𝐶𝑖𝑖 ≤ 1. Based on the relative criticality, it is possible to form the Node Rank metric 

which is sorted from highest 𝑅𝑅𝐶𝐶𝑖𝑖 towards lowest 𝑅𝑅𝐶𝐶𝑖𝑖 based on sorting. For example, if we have 4 
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nodes A, B, C and D and after calculating the relative criticality value we have found that 𝑅𝑅𝐶𝐶𝐴𝐴 =

1.00,𝑅𝑅𝐶𝐶𝐵𝐵 = 0.45,𝑅𝑅𝐶𝐶𝐶𝐶 = 0. 69,𝑅𝑅𝐶𝐶𝐷𝐷 = 0. 75, then the Node Ranking Metric (decision metric) is 

going to look like: 

�

𝐴𝐴 1.0
𝐷𝐷 0.75
𝐶𝐶 0.69
𝐵𝐵 0.45

� 

Here rank of the nodes are chronological values where the top node is the highest rank node and 

so on downwards.  

4.3 Flow Diagram of Ranking Metric Implementation  

Fig. 19 shows the flow diagram of the ranking metric which gives an overview of how 

the ranking metric is used for resilience improvement of a particular network element or the 

network itself. 

 

 

Fig. 19.  Flow Diagram for Resilience Improvement Using Ranking Metric. 
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As illustrated, the intermediate nodes are ranked and according to the order of the node 

the best product with either possible zero vulnerability or less vulnerability than the previous 

product is used to simulate and compare resilience value. The process repeats until the target 

resilience is reached. 

 

4.4 MVNRank Algorithm Implementation Pseudocode 

The ranking algorithm can be used for individual node resilience improvement and 

network resilience improvement. To improve the network resilience, it is necessary to provide 

the list of the target nodes and then it loops the node resilience algorithm with the number of 

target nodes that are given as input as the target node. The ranking algorithm pseudocode is 

given in Fig. 20 and Fig. 21. 
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Fig. 20.  Node Resilience Improvement Pseudocode. 
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Fig.  21. Network Resilience Improvement Pseudocode. 

 
 
 



   

 

78 

4.5 Rational Behind Factors Selection  

As this thesis is using a graph-based approach for resilience calculation and node ranking, 

some of the important properties of graph theory have been considered crucial factors in the 

ranking process. Then those properties have been found either useful or not useful based on their 

application towards the goal of this thesis. The properties that have been considered are the 

degree, in-degree, out-degree, closeness centrality, betweenness centrality and eigenvector 

centrality. Below is a short definition of all those properties from the graph-based theory 

followed by their application toward our algorithm generation. 

A. Degree, In degree, Out Degree 

The number of links—directed or undirected connecting a node to the graph is called the 

degree of the node; thus, degree denotes the number of links a node has with other nodes in the 

graph. When the graph is directed the out-degree of a node is equal to the number of outward-

directed links, and the in-degree is equal to the number of inward-directed links. In other words, 

out-degree is the number of tails, and in-degree is the number of heads connected to a node. For 

directed graphs, the node degree is the sum of in-degree & out-degree. In the directed acyclic 

graph model, the in-degree directly depends on the number of vulnerabilities the node has, and 

the out-degree is the number of vulnerabilities of the nodes where the node is a direct 

predecessor of those nodes. To evaluate a node based on the number of vulnerabilities, the in-

degree is more appropriate in the directed acyclic graph model.  

 

B. Degree centrality 

The degree centrality of a node 𝑣𝑣 is the fraction of nodes connected to it. It usually refers 

to the number of links incident upon a node or the number of ties the node has in the graph [95].  
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C. Betweenness centrality 

Betweenness centrality is a measure of a node within a graph which quantifies the 

number of times a node acts as a bridge along the shortest path between two other nodes. The 

betweenness centrality metric helps us understand how important a node is while considering the 

overall network attack scenarios.  

D. Closeness centrality 

Closeness centrality of a node is the average length of the shortest path between the node 

and all other nodes in the graph [95]. Thus, the more central a node is, the closer it is to all other 

nodes. The closeness of a node is the distance to all other nodes in the graph or in the case that 

the graph is not connected to all other nodes in the connected component containing that node. 

Closeness centrality is normalized by the minimum distance possible. Higher values of closeness 

indicate higher centrality. 

E. Eigenvector centrality 

Eigenvector centrality is a measure of the influence of a node in a network. It assigns 

relative scores to all nodes in the network based on the concept that connections to high-scoring 

nodes contribute more to the score of the node in question than equal connections to low-scoring 

nodes. Google's PageRank is a variant of the eigenvector centrality [96]. 

To find out which of the above metrics would contribute more in our goal to rank the 

nodes of a network based on their importance and thus to improve the resilience of the network, 

we have used a sample hypothetical network with the following data to get the vulnerabilities 

extracted from the NVD database. The data is given in TABLE 13. 
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TABLE 13  

PRODUCT MODEL SPECIFICATION FOR GRAPH PROPERTIES RELATION 

Node 
 

Vendor Product 
Number of 

Vulnerabilities 
Considered 

APPLICATION_SERVER Microsoft Windows Server 2003 45 
AUTHENTICATION_SERVER Microsoft Windows Server 2003 45 
BUSINESS_SERVER Microsoft Windows Server 2003 45 
BUSINESS_WORKSTATION Microsoft Windows Server 2003 45 
CONTROL_FW1_SERVER Cisco ASA5500 5 
CONTROL_FW2_SERVER Cisco ASA5500 5 
CORPORATE_FW1_SERVER Cisco ASA5500 5 
CORPORATE_FW2_SERVER Paloalto PANOS 7 15 
CS_DB_SERVER1 Microsoft SQL_SERVER 11 
DB_SERVER1 Microsoft SQL_SERVER 11 
EMAIL_SERVER1 Microsoft Windows Server 2003 45 
ENG_WORKSTATION1 Microsoft Windows XP 151 
FTP_SERVER1 Microsoft Windows Server 2003 45 
HISTORIAN_SERVER1 Microsoft SQL_SERVER 11 
HMI_COMPUTER1 Microsoft Windows XP 151 
SECURITY_SERVER1 Microsoft SQL_SERVER 11 
WEBAPPLICATION_SERVER1 Microsoft Windows Server 2003 45 
WEB_SERVER1 Microsoft Windows Server 2003 45 
WWW_SERVER1 Microsoft Windows Server 2003 45 

 

Based on the above data we constructed a network graph using the NetworkX module in 

python and compared the metrics presented earlier. Here the X axis is different nodes that have 

been given in column 1 of TABLE 13. From Fig. 22 and Fig.  23, it is seen that In-degree is 

almost equivalent to the number of vulnerabilities a node has and degree centrality is 

proportional to In-degree curve whereas eigenvector centrality, betweenness centrality, and 

closeness centrality are not directly proportional to the vulnerabilities that we are considering.  
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Fig. 22.  Relation between Vulnerability Numbers, Degree, In Degree and Degree 

Centrality derived from the sample network DAG Model. 

 

 

 

Fig. 23. Relation between Eigenvector Centrality, Betweenness Centrality and Closeness 

Centrality derived from the sample network DAG Model. 
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As I have given the complete mathematical expression for node ranking and relative 

criticality as in equations (25) and (26), I shall give some of the examples of using the software 

vulnerabilities and the rationale against choosing relative closeness as one of our parameters in 

determining the node criticality rankings in TABLE 14. 

 

TABLE 14  

RANKING VALUE WITH NODE DISTANCE 

Product Vuln No Ri (Di=1) Ri (Di=2) Ri (Di=3) Ri (Di=4) 

Microsoft XP 152 130.7 - - - 

Microsoft Vista 483 422.3 211.1 140.7 105.6 

Cisco ASA5500 5 4.24 - - - 

Paloalto PANOS 7 12 10.06 5.03 3.35 - 

 

As we can see from TABLE 14, Microsoft XP and Microsoft Vista operating systems 

have 152 and 483 vulnerabilities from 2013-2017. If both are 1 distance away from the target 

node where we are interested in improving resilience, we should consider replacing the 

Microsoft Vista node with some other node with fewer vulnerabilities and impact as calculated 

by equation (7); thus, Microsoft vista gets preference in node ranking over Microsoft XP. The 

reason behind this is as Microsoft Vista has 483 vulnerabilities it can offer more channel 

vulnerability paths for the attacker to exploit this node than Microsoft XP does. If the same 

Microsoft Vista installed host is 4 distances away and the Microsoft XP installed host is still one 

distance away from the target node, then their relative values come to 105.56 and 130.68 

respectively in this case, even if Microsoft Vista has more than 3 times the number of 
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vulnerabilities than Microsoft XP, we should consider the Microsoft XP host because the node 

ranking value is greater considering both the number of vulnerabilities and the relative closeness. 

The same thing applies to our second example, where the CISCO ASA5500 product has 5 

vulnerabilities and Paloalto PANOS has 12 vulnerabilities. If both of those FW’s are 1 distance 

away from the target node, we would surely need to consider PALOALTO PANOS over CISCO 

ASA5500 because of its higher node ranking value than CISCO ASA5500, but if the PANOS is 

3 distances away and ASA5500 is 1 distance away, then we should give priority to ASA5500 

because its value is still 4.24 while the PANOS value drops to 3.35. This way we can make 

important decisions by considering the current node’s distance from the target node.  

 

TABLE 15  

RANKING VALUE WITH CVSS EDGE WEIGHTS 

Product Vuln No Ri (Di=1) 

Microsoft Windows Server 2003 45 37.06362 

Microsoft Windows Server 2016 45 39.26116 

 

In TABLE 15, we have two distinct products with a similar number of vulnerabilities 

from 2017-2013, they both have 45 vulnerabilities. Based on the criticality of the vulnerabilities, 

windows_server_2016 has a node ranking value 39.26 which is greater than 

windows_server_2003’s node ranking value 37.06. That means we shall consider 

windows_server_2016 to be prioritized in node ranking over windows_server_2003 while 

replacing the nodes for improving the resilience.   

  



   

 

84 

CHAPTER 5 

VERIFICATION AND VALIDATION 

The analytical framework of the ranking algorithm has been verified using a small 

network setup. For this verification, we have used python NetworkX [97] module and a database 

that has been built using the XML files from NVD and MITRE. The NetworkX module 

integrated into python provides some means of graph calculations such as drawing of the graphs 

using Graphviz [98] or PyGraphviz [99] module called from NetworkX module. After the graph 

is constructed with the necessary nodes and edge parameters with weight values, it is possible to 

calculate the paths between nodes, shortest paths between nodes, degree parameters such as 

degree, degree centrality, closeness centrality and lots of other metrics, etc. For the simulation 

purpose, we have used multi-digraph [100] which facilities multiple parallel directed edges 

between nodes where each edge represents a vulnerability. For other calculations, customized 

procedures and functions have been defined to produce necessary outputs such as resilience 

calculation, node ranking value calculation, and graphs generation. All the output shown here are 

generated using python and custom-made functions. The following sections are going to discuss 

the network setup for the verification, different outputs to demonstrate the applicability of the 

node ranking algorithm based on the graph. Finally, the result has been compared with a 

previously published scholarly article to validate it against known results and check the ranking 

consistency.  
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5.1 Simulation Setup 

 

 
 

Fig. 24.  Sample Network Considered for Simulation Purpose. 
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Fig. 24 shows the sample network considered for simulation of the node ranking 

algorithm. The sample network consists of the minimum number of levels as represented by the 

DAG model. Each layer corresponds to the NIST-CSSP defense-in-depth architecture. The nodes 

in the Corporate DMZ layer are eMail Server, Web Server, FTP Server and Authentication 

Server. The Corporate LAN layer consists of Business Server, Web Application Server, and 

Business Workstation. The Control DMZ consists of Web Server, Security Server, and Database 

Server. The Control System LAN layer consists of Application Server, Historian, HMI, CS DB 

Server and Engineering Workstation. For this simulation, each node has been considered only 

once but in general, there can be hundreds of similar nodes or other different nodes that the 

network may consist of. 

 

 

Fig. 25.  Directed Acyclic Vulnerability Graph Generated from Sample Network Using 

NetworkX. 
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Fig. 25 shows the corresponding vulnerability graph which has been derived from the 

simulation in NetworkX with the specific product as in subsection. If a node has multiple 

vulnerabilities, then there are multiple directed edges towards that node, which means we have 

considered the possible number of vulnerabilities as reported in the NVD database corresponding 

to the vendor and product model. Each vulnerability constructs an edge in the vulnerability graph 

and each edge has the values of cost, impact, AV, AC, AA, II, IC and IA as its weight. 

 

5.2 Simulation Parameters 

TABLE 17 shows the product vendor and model used for simulation purposes. TABLE 

16 shows the simulation environment. Here, each product is associated with the last three years 

of vulnerabilities as defined in NVD database. Models for Generator Remote Terminal Units are 

not provided because they are thought to be nodes with power capacity only and not directly 

vulnerable if they can be isolated from the Corporate LAN and Corporate DMZ Layers.  

 
TABLE 16  

SIMULATION ENVIRONMENT SPECIFICATION 

Environment Specification 
Model DELL Latitude E5570 

Processor Intel Core i7 2.7GHz 
Memory 16 GB (15.7 GB Usable) 

Operating System Windows 7 6d Bit 
 
 
 

TABLE 17  

SIMULATION MODEL PRODUCT AND VENDOR SPECIFICATION 

Node Vendor Product Number of 
Vulnerabilities 

Corporate FW1 Cisco ASA5500 1 
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Email Server1 Microsoft Windows Server 2003 30 
FTP Server1 Microsoft Windows Server 2003 30 
Web Server1 Microsoft Windows Server 2003 30 

Authentication Server1 Microsoft Windows Server 2003 30 
Corporate FW2 Juniper SRX210 3 

Business Server1 Microsoft Windows Server 2016 45 
Business Workstation1 Microsoft Windows Server 2003 30 

Web Application Server1 Microsoft Windows Server 2016 45 
Control FW1 Cisco ASA5500 1 

WWW Server1 Microsoft Windows Server 2003 30 
DB Server1 Microsoft SQL Server 9 

Security Server1 Microsoft SQL Server 9 
Control FW2 Paloalto PANOS 7.1 12 

Application Server1 Microsoft Windows Server 2003 30 
CS DB Server1 Microsoft SQL Server 9 

Eng Workstation1 Microsoft Windows XP 0 
Historian Server1 Microsoft SQL Server 9 
HMI Computer1 Microsoft Windows XP 0 

 

5.3 Simulation Outputs and Analysis 

The simulation complexity generates when there are a lot of paths from a source node to 

the target node. The more multi-host multi-stage vulnerabilities there are, the greater the 

computation time required to calculate the path cost. Before going to the ranking demonstration, 

we are presenting here some of the path cost histogram to understand the network complexity in 

terms of computation. Path cost histograms of Security Server1, WWW Server1, 

CS_DB_Server1, and Application Server1 are given below. 



   

 

89 

 

Fig. 26.  Path Cost Histogram of Security Server 1. 

 
 

 

Fig. 27.  Path Cost Histogram of WWW Server 1. 
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Fig. 28.  Path Cost Histogram of CS DB Server 1. 

 

 

Fig. 29.  Path Cost Histogram of Application Server 1. 
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Almost all the path cost histograms follow the normal distribution and their paths increases with 

the distances from the source. Between two nodes an edge can have a maximum cost metric of 

10. The maximum cost 70 means there are 7 levels of nodes from the source to the target node. 

The degree distribution of the nodes for this simulation is given below.  

  

 

Fig. 30.  Degree centrality of the nodes in simulation network. 

 

There are two major objectives of the simulation that we are more concerned about: 

1. Ranking algorithm demonstration 

2. Demonstration of resilience improvement using the algorithm. 
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To demonstrate the ranking algorithm, two nodes have been chosen here, “Generator 

RTU2” and “Application Server1”. As stated before, the node ranking algorithm ranked the 

intermediate nodes that fall on the path to the target node, so for this case, “Generator RTU2” 

and “Application Server1” are two different targets for the demonstration of the node rank. 

Below is the output of the relative criticality value for the above two nodes as given in Fig. 31 

and Fig. 33. 

 

 

Fig. 31.  Python Output of Ranking Metric when Target Node is “GENERATOR 

RTU2”. 
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Fig. 32.  Ranking Metric Output when Target Node is “GENERATOR RTU2”. 

 

Fig. 32 demonstrates that “APPLICATION_SERVER1” has the rank order 1 when the 

target node is “Generator RTU2”. Similarly, “CS_DB_SERVER1” has rank order 2. This means 

when considering improvement of resilience for “Generator RTU2”, the network analyst should 

consider “APPLICATION_SERVER1” first and then “CS_DB_SERVER1” for patching or 

removing vulnerabilities. 
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Fig. 33.  Python Output of Ranking Metric when Target Node is 

“APPLICATION_SERVER1”.  

 

 

Fig. 34.  Ranking Metric Output when Target Node is “APPLICATION_SERVER1”. 
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Fig. 33 represents the relative criticality value when the target node is 

“APPLICATION_SERVER1”. The same has been plotted in bar chart format in python in Fig. 

34. Here, when the target node is “APPLICATION_SERVER1”, the 

“CONTROL_FW2_SERVER1” has rank order 1 and “WWW_SERVER1” has the rank order 2, 

so these nodes need to be patched in order to improve the resilience of “Application Server1” 

node. The nodes that are ranked in two different target cases are different; thus, the algorithm is 

dynamic because it doesn’t give the same rank for the same node all the time. 

 

 

Fig. 35.  Path cost Vs Path Impact Heatmap of Security Server. 

  
 Heatmap of channel vulnerability path cost vs path impacts is shown in Fig. 35.  The 

same heatmap is shown for Control Firewall 2 in Fig. 36. The heatmaps reveal that most of the 

channel vulnerability paths are in the center with medium ranges of path costs and medium 

ranges of path impacts, so we can’t say that lower path cost leads to high impacts or vice versa. 
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Fig. 36.  Path cost Vs Path Impact Heatmap of Control Firewall 2. 
 

  

 One of the major concerns of the simulation of this type of network is that each node 

may have millions of incoming paths combinations from the original entry point as stated before. 

For example, in our simulation Email Server1 has only 30 incoming paths, but Security Server1 

has 129600 incoming paths which is the combination of different exploitable vulnerabilities from 

the origin node as shown in Fig. 37.  Again, Control Firewall2 has 8294400 (8.29M) paths and 

Application Server1 has 248832000 (248.8M) paths as in Fig. 38. The more total paths, the 

longer it takes to simulate the resilience of that node.  
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Fig. 37.  Simulation Time (Maximum Paths Number ≤ 129600). 

 

 

Fig. 38.  Simulation Time (Maximum Paths Number ≤ 248832000). 

 

 In Fig. 37 and Fig. 38, we have found that the resilience computation time sharply 

increases when the number of paths increases. While Fig. 37 shows simulation time for resilience 

and paths computation up to 0.13M paths, Fig. 38, shows the simulation time for the same up to 
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248.8M paths. Application Server1 has 248.8M paths and it takes 2537.342 seconds (42.23 min) 

to compute the resilience and 387.924 seconds (6.47 min) to compute the total number of paths 

in the vulnerability graph.  

 

 

Fig. 39.  Number of Exploitable Paths Reduction Over Simulation Trials for Three 

Selected Nodes (WWW_Server1, Security_Server1, Control Firewall1). 
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Fig. 40.  Resilience Over Simulation Trials for Three Selected Nodes (WWW_Server1, 

Security_Server1, Control Firewall1). 

 

 For demonstration of the ranking algorithm, we have selected three nodes that reach 

resilience value 1.0 after 3 trials; that means after 3 trials no path exist from the source node 

towards the target node. Fig. 39 shows the path reductions over simulation trials for the three 

selected nodes and Fig. 40 shows the resilience value over simulation trials where nodes have 

been selected as per rank order. As after three trials no path exists from source to the target node, 

so the resilience reaches 1.0. For number of paths log scale has been used for proper 

demonstration and the actual value is shown in (x,y) co-ordinate format. After 3rd trials the value 

of paths become 0, but due to use of log scale we have taken it as 1.   

 



   

 

100 

 

Fig. 41.  Comparison of Number of Simulation Trials Needed to Reach Resilience Value 1.0 for 

Four Selected Nodes (Secrutiy_Server1, WWW_Server1, Control Firewall1, DB_Server1) using 

100 Monte Carlo Simulation Average. 

 
 

 

Fig. 42.  Comparison of Simulation Time Required to Reach Resilience Value 1.0 for Four 

Selected Nodes (Secrutiy_Server1, WWW_Server1, Control Firewall1, DB_Server1) using 100 

Monte Carlo Simulation Average. 
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Fig. 43.  Comparison of Simulation Time Required to Reach Resilience Value 1.0 using 

20 Monte Carlo Simulation Average. 

 
 
 Fig. 41 shows a comparison of the required number of trials to reach a resilience value 

of 1.0 for the four selected nodes. Using the ranking order, we can reach to target resilience value 

1.0 for those nodes in 3 trials but using random order it needs more simulation trials such as up 

to 7 in some cases. Similarly, Fig. 42 and Fig. 43 show two different comparisons of the total 

simulation time required to reach the resilience value of 1.0 for some nodes using ranking and 

random order. Simulation time using the ranking order is less in most of the cases as shown by 

the blue dots. For demonstration purposes, we have chosen nodes other than power station nodes 

because resilience computation time is much higher for power station nodes and needs high 

computing resources, but the results are equally applicable to power station layer nodes also.  
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With the previous simulation results, the improvement in simulation time is demonstrated, but 

we don’t know how much time is improved. To know that, we have done some comparison 

between the collected two sets of data and done some regression analysis as given below. 

 

 

Fig. 44.  Simulation time comparison using rank order and without rank order. 

 

The regression analysis shows that almost 50% time can be reduced by using the ranking 

algorithm as given below. 
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Fig. 45.  Regression Analysis. 

 

  

Fig. 46.  Q-Q Plot of Simulation Times to Check Normality. 

 

The Q-Q plots of the simulation times don’t show strongly that the simulation time data are 

normally distributed. This may be because of insufficient data. There always remains the concern 

regarding the scaling issue. That is why we have taken some other simulation outputs for the 
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network with nodes numbered from 20 to 200. The simulation outputs of 20 Monte Carlo 

averages are given in the below figures.  

 

 

Fig. 47.  Number of Network Nodes Vs Resilience Computation Time (Nodes are having 

1 Vulnerability). 

 

Fig. 47 shows the resilience computation time for a node (Security Server1) in Control 

DMZ layer for a different number of nodes. In this case nodes have only 1 vulnerability. Fig. 48 

shows the resilience computation time for a node (Security Server1) where each node is having 3 

vulnerabilities. The computation time is much less when there is only 1 vulnerability per host. 

The computation time is much higher with increment in number of nodes and when each host has 

3 vulnerabilities. Fig. 49 shows a comparison of both Fig. 47 and Fig. 48. Log scale is used to 

facilitate the comparison.   
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Fig. 48.  Resilience Computation Time Vs Number of Network Nodes (Nodes are 

having 3 Vulnerabilities). 

 

 

Fig. 49.  Resilience Computation Time Comparison Vs Number of Vulnerabilities. 

 

It is necessary to evaluate the computation time for the ranking metrics. This is given in Fig. 50 

and Fig. 51.  
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Fig. 50.  Rank Computation Time Vs Number of Nodes. 

 

 

Fig. 51.  Resilience and Rank Computation Time Vs Number of Nodes. 
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5.4 Validation 

This section is going to present the validation of the ranking algorithm that we have 

proposed. Because of the restrictions of information disclosures followed by the power sector 

companies, there is no formal data available regarding the network structures and rankings of 

network elements which can be compared with our simulation data. Also, the direct 

quantification of resilience has not been conducted by the scholarly research to our knowledge. 

Thus, we have taken a model presented in [87] which also works for node ranking based on the 

exploitability metrics where they have followed Markov states transition probabilities for the 

ranking calculation. The state transition graph is given in Fig. 52. 

 

Fig. 52. Sample State Transition Graphs [87]. 

 

For validation purposes, the same state transition graph has been considered where the 

states are considered as nodes and transitions between states are considered edges between 

nodes. Additionally, the dummy source and target node have been considered so that the states 

which are nodes in this case, can be ranked using the ranking algorithm. The DAG model form 

of the graph as drawn from the figure is depicted in Fig.  53. 
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Fig. 53.  DAG Model for Fig. 52. 

 

The vulnerabilities that have been considered in the work by Kijsanayothin et al. are 

presented here with their CVE id and descriptions in TABLE 18 and the scores of those 

vulnerabilities are presented in TABLE 19. 

 

TABLE 18  

VULNERABILITIES FOR SAMPLE NETWORK  

Vulnerability CVE Number Details 
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V1 CVE-2006-5794 

Unspecified vulnerability in the sshd Privilege 

Separation Monitor in OpenSSH before 4.5 causes 

weaker verification that authentication has been 

successful, which might allow attackers to bypass 

authentication [101]. 

V2 CVE-2006-5051 

Signal handler race condition in OpenSSH before 4.4 

allows remote attackers to cause a denial of service 

(crash), and possibly execute arbitrary code if 

GSSAPI authentication is enabled, via unspecified 

vectors that lead to a double-free [101]. 

V3 CVE-2004-0148 

wu-ftpd 2.6.2 and earlier, with the restricted-gid 

option enabled, allows local users to bypass access 

restrictions by changing the permissions to prevent 

access to their home directory, which causes wu-ftpd 

to use the root directory instead [101].  

 

TABLE 19  

SAMPLE NETWORK VULNERABILITY SCORES 

Vulnerability Exploitability Impact AC AV AA IC II IA 

V1 10 6.4 1.0 0.71 0.704 0.275 0.275 0.275 

V2 8.6 10 1.0 0.61 0.704 0.660 0.660 0.660 

V3 3.9 10 0.395 0.71 0.704 0.660 0.660 0.660 
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TABLE 20 below demonstrates the calculations using the MVNRank algorithm where the nodes 

are ranked based on the relative criticality (RCi) value.  

 

TABLE 20  

RANKING VALUE CALCULATION FOR SAMPLE NETWORK 

States/Nodes Ai di Ni Cd(i) EFwi IFwi Ri RCi Rank 

S0 1 0.33 1 0.75 1.0 0.64 0.1584 0.0183 5 

S1 5.5 0.33 3 1 0.86 1.0 4.257 0.493 2 

S2 4 0.33 2 1 1.0 0.64 1.6896 0.196 3 

S3 6 0.5 3 1.5 1.0 0.64 8.64 1.0 1 

S4 6 1 1 0.25 0.39 1.0 0.585 0.0677 4 

 

The ranking order of Mehta et al. and Kijsanayothin et al. is presented in TABLE 21 and 

compared with our ranking approach. 

  

 

TABLE 21  

RANKING VALUE COMPARISON FOR SAMPLE NETWORK 

States/Nodes 

Mehta et 
al.’s 

approach 

Mehta et 
al.’s 
Rank 
Order 

Kijsanayothin 
et al.’s  

Approach 

Kijsanayothin’s 

et al.’s 

Rank Oder 

RCi Rank 

S0 0.150 3 0.150 4 0.0183 5 

S1 0.145 4 0.1287 5 0.493 2 
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S2 0.102 5 0.1658 3 0.196 3 

S3 0.209 2 0.2548 2 1.0 1 

S4 0.394 1 0.394 1 0.0677 4 

 

 

Both Mehta et al. and Kijsanayothin et al. have used the Markov states transition model. 

In those works, the authors found that S4 is the highest value ranked state because it seems to be 

the target. In our ranking, S4 is not the highest ranked node because it only contains one low 

exploitability (V1, exploitability 3.9) vulnerability. Thus, the nodes that can help (S3, S2, S1) 

reach this S4 node should a higher rank than S4 which is found in our rank order. In our rank, S3 

is the highest ranked node because it has direct incoming paths (vulnerabilities) from S0, S1, S2 

and it has direct outgoing paths to S4, no other nodes in the graph have direct paths to S4 except 

S3. In our approach, S1 has the second highest rank because S1 has direct incoming paths from S0, 

S2, S3 and outgoing paths to S3 from which S4 is reachable. Thus, the ranking order seems more 

reasonable than the other two approaches.  

To validate our results, we have compared them statistically with the approaches of 

Mehta and Kijsayanothin using a non-parametric test method which is a Wilcoxon signed ranked 

test. TABLE 22 presents the comparison of rank values between our approach compared with 

Mehta et al.’s approach and TABLE 23 shows rank values of our approach compared with 

Kijsayanothin et al.’s approach.  
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TABLE 22  

RESULTS COMPARISON OF MVNRANK AND MEHTA APPROACH 

States/Nodes 
Mehta et al.’s  

𝑋𝑋1𝑖𝑖 

Our Approach 

𝑋𝑋2𝑖𝑖 

S0 0.150 0.0183 

S1 0.145 0.493 

S2 0.102 0.196 

S3 0.209 1.0 

S4 0.394 0.0677 

 

TABLE 23  

RESULTS COMPARISON OF MVNRANK AND KIJSAYANOTHIN APPROACH 

States/Nodes 
Kijsayanothin et al.’s  

𝑋𝑋1𝑖𝑖 

Our Approach 

𝑋𝑋2𝑖𝑖 

S0 0.150 0.0183 

S1 0.1287 0.493 

S2 0.1658 0.196 

S3 0.2548 1.0 

S4 0.3007 0.0677 

 

We have used the R software for generating the outputs of comparison with the Kijsayanothin 

approach and our approach. Below are the results shown from the R software output in Fig. 54.  
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Fig. 54.  Wilcoxon Signed Rank Test Output Using Kijsayanothin and Our Approach 

 

The results show the values in the two samples are close with probability values greater than 0.5 

for each of the cases. The 95% confidence interval is -0.2330 ~ 0.7452, which indicates a strong 

similarity of the median of the two data sets. The corresponding boxplot is given in Fig. 55 

below. 
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Fig. 55.  Boxplot of Ranking Value of Kijsayanothin Approach and Our Approach 
 

The above boxplot shows that the data of the two approaches are from two different 

distributions, but their median is almost similar. We have also plotted the boxplots of the Mehta 

approach, Kijsayanothin approach and our approach in the below diagram to have a comparison 

which is presented in the below. 
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Fig. 56.  Boxplot of Rank Value of Kijsayanothin, Mehta and Our Approach 
 

Again, the boxplots show that although the distributions are different in three approaches, but 

their median is almost similar which validates our approach with other approaches. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

Improving resilience of network element or the network is not a straightforward process. 

It accounts for the combination of the effects by changing different parameters for the 

intermediate nodes as ranked by MVNRank. The proposed ranking method addresses the total 

exploitable path combinations that are offered to the attacker due to existing vulnerabilities in the 

network elements. The factors considered in calculating relative criticality are important from a 

network security analysis perspective as described in previous chapters. The simulation time is 

very high with a large number of nodes, so we have demonstrated the results using a small-scale 

simulation setup, but this ranking algorithm can be implemented in a large-scale network to rank 

and prioritize the network elements while trying to make particular network elements more 

resilient to cyber-attacks. MVNRank considered the possibility of potential physical damage in 

terms of electric power loss that can be accomplished by an attacker while ranking the nodes. 

This highlights the importance between traditional IT network elements and control system LAN 

elements. This node ranking algorithm can be useful in large power system network cyber 

resilience optimization processes. 

 

6.1 Limitations & Challenges  

This thesis has some limitations and challenges. Those are discussed below.  

a) Firewall and security policies: The research doesn’t consider the firewall and security 

policies; rather, it considers only the vulnerabilities of the firewall product models. Our idea is to 

integrate the policies in future works.    
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b) High memory consumption and higher simulation time: As the network grows larger, 

memory consumption increases due to exponential increment in the number of paths in the graph 

model and computation of the path costs and impacts required for resilience calculation take a 

long simulation time. That is why this resilience improvement method may not be suitable for 

online simulation purposes; rather, because of its high simulation time it is being considered as 

an offline method of simulation.  

c) Scaling: Although scaling is not a problem using the model, it will increase the 

simulation time and will need high-performance computing resources.  

d) Power system physical connectivity consideration: This thesis mainly focuses on the 

ranking of the cyber nodes which can help reach a particular ICS in the bulk power system 

network. The study doesn’t consider the physical bus system-based calculation of power loss 

capability of the individual generators or associated RTU’s. In future, we plan to include the 

IEEE standard bus systems-based calculation for power loss potentials by the field location 

devices. 

 

6.2 Future Works 

As stated in the limitation and challenges section, we don’t yet consider the physical bus 

systems to compute the power damage capability of each RTU and the firewall security policies. 

In the future, we plan to include firewall policies and physical bus system-based calculation of 

potential power damage of RTU to resemble real and robust network scenarios. The inclusion of 

firewall policies will provide some future research goals to be achieved by the ranking 

algorithms and resilience improvement process. Physical bus-system based power damage 
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capability calculations can give a robust cyber-physical network scenario which would also lead 

to some other research objectives.  

Overall, this thesis captures some of the analytics to be addressed in the bulk power 

system resilience improvement process within the scope of graduate study. There are 

opportunities to improve the ranking algorithm proposed in this thesis, and there is a long way to 

go with the research of bulk power system resiliency research.  
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APPENDICES 

APPENDIX A: DATABASE SCHEMATIC FOR SIMULATION DESIGN 

For simulation purposes, we have developed a database in MySQL Workbench. The 

database has been built using the xml file from the NVD website [102] and is used for simulation 

purposes. The database schema mainly consists of three tables: base_metrics, operatingsystem 

and firewall. The schematic diagram of the tables is given below in Fig. 57. 

 

 

Fig. 57.  Simulation Database Schematic. 

 
The product vendor, model and associated vulnerabilities are stored in the firewall and 

operatingsystem table. For example, if the product is CISCO ASA5500, then the product is listed 
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in the table firewall. Each vulnerability has a CVE id that is compared with the base_metrics 

table. The Base_metrics table has all the quantitative values for the vulnerabilities identified by 

the CVE id. 
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