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ABSTRACT

CONSTRUCTION OF AN ESCHERICHIA COLILAC REPRESSOR-BASED 
SYSTEM TO STUDY HUMAN CYTOMEGALOVIRUS GENE EXPRESSION

Laura Fernanda Cageao-Luchetti 
Eastern Virginia Medical School and Old Dominion University, 1999 

Director: Dr. Richard M. Stenberg

An Escherichia coli lac repressor-based system was developed to study the roles 

of human cytomegalovirus (HCMV) genes during viral replication. To this end, a 

recombinant HCMV expressing the lac repressor was generated (RV/orc), and an 

HCMV-specific promoter was targeted for conditional expression by inserting the lac 

operator sequence. The promoter of a nonessential gene was chosen in order to be able 

to assess parameters of repression and derepression of the operator-containing promoter 

in the endogenous locus, without having virus growth dependent on the specific inducer 

isopropylthiogalactoside (IPTG). The feasibility of this approach to conditionally 

express an HCMV promoter was demonstrated by analyzing lac operator-containing, 

HCMV US9 promoters in CAT reporter constructs, using RVlac and IPTG in transient 

assays. This study demonstrates that efficient repression mediated by the lac repressor 

can be achieved, and this repression is efficiently reversed by IPTG. In addition, the 

operator-containing US9 promoters were inserted into the endogenous locus to 

investigate the impact of the operator insertion on basal promoter expression in the 

context of the virus, before these constructs are used to study conditional expression in 

the viral genome. It was observed that US9 endogenous promoter expression was not 

affected significantly by the operator insertions. Because attempts to isolate a 

recombinant virus containing the operator-containing US9 promoter and expressing the
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lac repressor were unsuccessful, future studies should target the insertion of the 

operator-containing US9 promoter and the lac repressor gene into two separate 

recombinant viruses. These viruses could be used in coinfection experiments to address 

conditional US9 gene expression. Furthermore, alternative sites for insertion of the 

operator sequence within the US9 promoter should also be evaluated. After 

demonstrating the feasibility of this approach in the context of the viral genome, the 

system can then be adapted to target putative essential HCMV genes.
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CHAPTER I 

INTRODUCTION 

Cytomegaloviruses: classification and general characteristics

Cytomegaloviruses (CMV) are animal DNA viruses that are widely distributed in 

nature. These viruses belong to the Herpesviridae family, and were initially defined as 

salivary gland viruses, due to the central role played by this organ as a target for virus 

replication. Later, the name cytomegalovirus (CMV) was proposed, to reflect the virus 

induced cytomegalia, a phenotype characterized by enlargement of the cell, and the 

distinct cytopathology involving both nuclear and cytoplasmic inclusions in the infected 

cell. This name also reflects the role of this virus in congenitally acquired cytomegalic 

inclusion disease (CID) (reviewed by Mocarski, 1996).

Human Herpesvirus S (human cytomegalovirus (HCMV)) has been the most 

studied cytomegalovirus, and is the prototype of the betaherpesvirinae subfamily. A 

significant characteristic of this subfamily is the restricted host range of all of its 

members. They all present a long replicative cycle, and infection proceeds rather slowly 

in cells in culture. A typical feature of cytomegalovirus-infected cells is cytomegalia. 

Like all herpesviruses, CMV persists in the infected host for life (see Viral Pathogenesis 

section in this chapter) (reviewed by Roizman, 1996).

HCMV is strongly species specific. It will not replicate or cause disease in any 

animal species other than humans (reviewed by Huang and Kowalik, 1993). The virus is 

generally acquired early in life, usually causing only mild symptoms upon primary 

infection. Between 50-80 % of the adult population is seropositive for HCMV, and a 

significant number of individuals shed the virus in bodily fluids. Symptomatic disease is

The model journal for this dissertation is Virology.
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rarely observed in the immunocompetent host. On the other hand, HCMV has become 

significantly important as a human pathogen in the last two decades because of its 

involvement in serious morbidity and even mortality in immunocompromised patients.

Such patients include those receiving immunosuppressive post transplant therapies, as well 

as acquired immunodeficiency syndrome (AIDS) patients (see Viral Pathogenesis section).

Human cytomegalovirus: discovery and isolation

Infection of permissive cells with cytomegalovirus results in cell enlargement and 

the formation of intranuclear inclusions. In the early 1900s, these cytomegalic cells 

presenting inclusion bodies were thought to result from protozoan or syphillitic infection. 

Jesionek and Kiolemeoglou described these enlarged cells in several organs of infected 

fetuses in 1904. Even earlier, Ribbert had observed these cells in kidney sections of a 

stillborn infant in 1881. These cellular changes were also reported after the examination of 

numerous postmortem submaxillary glands and other tissues from infants (reviewed by 

Huang and Kowalik, 1993). All of this evidence led to the term “cytomegalic inclusion 

disease” (CID) in early studies, when the virus had still not been identified (reviewed by 

Britt and Alford, 1996).

Lipschutz was the first investigator to propose that CID was caused by a virus. In 

1921, he defined the intranuclear inclusions that he observed as being similar to herpetic 

lesions. The first experimental evidence that CID was caused by a virus was provided by 

Cole and Kuttner in 1926. These investigators used a guinea pig model, and showed that 

filtered homogenates of salivary glands bearing intranuclear inclusions were infectious for 

animals with no previous signs of CID. When histopathologic studies of the salivary
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glands of infected animals were compared with the histologic changes observed in the 

salivary glands of infected humans, the causative agent was proposed as “salivary gland 

virus”.

HCMV was first isolated independently by Smith, and Rowe et al. in 1956, and by 

Weller et al. in 1957. Rowe and coworkers isolated the currently commonly used 

laboratory strain AD 169. This strain was inadvertently isolated instead of adenovirus from 

the adenoidal tissue of a child who had undergone tonsil and adenoidectomies (Huang and 

Kowalik, 1993). Smith and Weller independently isolated the virus from infants with 

generalized CID. Weller et al. first used the term “cytomegalovirus” to reflect the 

cytopathology produced by these viruses. Following the isolation of HCMV in the late 

1950s, serological studies showed that HCMV causes a common, usually subclinical 

infection that occurs worldwide. The incidence of HCMV infection is more pronounced in 

the very young and old, as well as in immunocompromised individuals. Electron 

microscopic work on the morphology of the virus, as well as the finding that its large 

genome was composed of DNA, led to the classification of CMV as a member of the 

Herpesviridae family (reviewed by Britt and Alford, 1996).

Structure of the virion

CMV virions present the typical structure of the herpesvirions. The architecture of 

the virion consists of a core, a capsid, a tegument (also referred to as matrix), and an 

envelope. The core contains the viral genome (see section below). This is a linear, double­

stranded DNA molecule in the form of a torus. The capsid presents icosadeltahedral 

symmetry, with a diameter of 100 -110 nm. It is constituted by the major (150 kilodalton
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(kD)) and minor (40 kD) capsid proteins. These proteins are analogous to the 

predominant Herpes Simplex Virus 1 (HSV-l) capsid proteins (Gibson, 1981). The 

tegument, an amorphous material surrounding the capsid, consists of twenty different 

proteins, most of which are phosphorylated. This proteinacious structure is believed to be 

responsible for the anchorage of the envelope to the capsid. Some of the most studied 

tegument phosphoproteins are pp65 (the most abundant virion protein), pplSO, pp71, 

pp28, and pp64. However, the roles of the tegument proteins, with the exception of the 

virion transactivator pp71, remain undefined. The virion envelope is derived from the 

infected cell plasma membrane and contains at least eight viral glycoproteins in the form of 

spikes, present in four complexes (Pereira et al., 1992). Half of these HCMV 

glycoproteins, gB, gH, gL, and gM, are homologous to four essential HSV-l 

glycoproteins. gB is the major HCMV glycoprotein, and is a predominant target for 

neutralizing antibodies (Britt et al., 1990). Neutralizing antibodies are also directed to 

other viral glycoproteins (Pachl et al., 1989), like gH. The viral glycoproteins are involved 

in virus attachment, penetration and entry into the host cell, as well as in cell-to-cell spread 

(reviewed by Roizman, 1996).

Virions in the Herpesviridae family are pleomorphic; the sizes range from 120 to 

300 nm in diameter. This variation is due to differences in the amount of tegument, or to 

the state of the envelope. Like all herpesviruses, cytomegaloviruses are sensitive to low 

pH, lipid solvents, and heat (reviewed by Mocarski, 1996).
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The viral genome

The herpesvirus DNAs are linear and double-stranded. They vary in molecular 

weight (120 to 230 kilobase pairs (kbp)) and base composition (31 to 75 G + C mole %). 

One important characteristic of these viral DNAs is their sequence arrangement. Many 

herpesvirus DNAs contain repeated sequences both internally and at the termini. This 

feature allows for the classification of the herpesviruses into six different groups (A, B, C, 

D, E, and F), based on the six different classes of genomes of the herpesviruses (reviewed 

by Roizman, 1996).

Cytomegaloviruses have the largest genomes of any of the herpesviruses (180 to 

230 -240 kbp) and of any known animal viruses. HCMV DNA is approximately 50 % 

larger than HSV DNA (reviewed by Gibson, 1993). In addition, the HCMV genome 

contains a greater density of repeated sequences than that of any other herpesvirus. 

Particularly, highly repeated regions include the DNA replication origin, orilyt, and two 

transcriptional enhancers. Like HSV, HCMV presents a complex arrangement of unique 

and inverted repeats that leads to the existence of four genome isomers (genome 

arrangement of group E). The genome presents a unique long component (UL) and a 

unique short component (US). Each component is flanked by repeated sequences in an 

inverted orientation located at the genomic termini and the UL-US junction. Both the UL 

and US genome components can invert relative to each other to generate four isomeric 

forms (reviewed by Mocarski, 1996). HCMV virions consist of equimolar concentrations 

of these four genomic isomers.

The genome of the HCMV AD169 strain has been completely sequenced 

(European Molecular Biology Laboratory Sequence Database accession number X17403).
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It contains 208 predicted open reading frames (ORFs) (Chee et al., 1990), many of which 

present high degree of DNA sequence homology. These ORFs are believed to originate 

from gene duplication and have been grouped into gene families. At present, little is 

known about the function of many ORFs belonging to the various gene families 

(Mocarski, 1996).

The overall genomic DNA sequence homology among the HCMV strains is 

approximately 95 %. Restriction mapping analysis of the viral genome has shown that 

clinical isolates and laboratory-adapted strains are related. However, deletion of genomic 

sequences occurs after serial undiluted passage of the virus in culture. It is believed that 

these deletions have led to the loss of some of the host range capabilities of the laboratory- 

passaged strains AD 169 and Towne, when compared to the more limited passaged, more 

virulent viruses, such as Toledo. At least 19 genes present in clinical isolates are not found 

in laboratory strains (Cha et al., 1996).

Viral pathogenesis

Pathogenicity

CMV pathogenicity involves a complex balance between acute and persistent 

infections. The immunocompetency of the infected individual plays a major role in the 

outcome of viral infection. For HCMV, it is currently unclear if the virus is present in a 

chronic (with continuous production and release of low levels of infectious virus) or true 

latent (with no detectable infectious virus) state in persistently infected humans. 

Macrophages and endothelial cells have been proposed as major sites of HCMV 

persistence (reviewed by Fish et al., 1995). In contrast, it has recently been demonstrated
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that latent murine CMV (MCMV) is harbored in the spleen, the lung, and the kidney of 

infected mice (Pollock and Virgin, 1995), (Kurz et al., 1997).

Generally, primary infection with HCMV occurs during early childhood. Typically, 

the virus initially infects ductal epithelial cells within the salivary gland. This is a site of 

persistent viral replication following primary infection. Transmission occurs via direct or 

indirect person-to-person contact, by the urine of infants, and the saliva from healthy 

seropositive individuals (reviewed by Mocarski, 1996). The virus is present in 

oropharyngeal secretions, urine, tears, feces, semen, cervical and vaginal excretions, breast 

milk, and blood.

After primary infection, cytomegaloviruses remain persistently in their hosts for life 

in a quiescent state. These viruses have evolved to coexist in equilibrium with the host. 

Persistence is achieved by inducing immunosuppression in the host, and by inhibiting 

immune recognition (Campbell et al., 1989 and 1992), (Campbell and Slater, 1994),

(Jones et al., 1995). In humans, reactivation of the virus results in recurrent infections with 

a variety of clinical manifestations in immunosuppressed individuals, such as after organ 

transplantation, during pregnancy, and in numerous AIDS and cancer patients.

Studies focusing on the pathology of HCMV infection have demonstrated that 

when severe disseminated disease occurs (see following section), HCMV can be found in 

virtually all organs of the infected host (reviewed by Britt and Alford, 1996). The virus 

replicates in the genitourinary tract and the kidneys. In AIDS patients, the gastrointestinal 

tract is involved. In newborns with CID, HCMV is present in the bile duct epithelium in 

the liver. Another site of HCMV replication is the respiratory tract, typically, the mucosa 

of the upper respiratory tract in immunosuppressed individuals. In the lungs, infected cells
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are found in the alveolar and bronchial epithelium. Recently, HCMV infection of adult 

AIDS patients has been shown to involve the central nervous system (CNS). CNS 

involvement is also reflected in both generalized and focal structural brain damage when 

severe fetal HCMV infection occurs (reviewed by Britt and Alford, 1996).

The cell types that are targets for virus replication include epithelial, endothelial 

and glial cells (reviewed by Mocarski, 1996). The infected cells are typically large, the 

cytoplasm becomes limited, and the nuclei are prominent. Within the nucleus, the 

chromatin is marginated, and the characteristic inclusions surrounded by a clear halo are 

observed. In addition to the cell types mentioned above, HCMV infects monocytes, and 

this is believed to play a central role in viral pathogenesis (reviewed by Campbell, 1999), 

(Michelson, 1997).

The murine model has been used extensively to address the role of 

monocytes/macrophages in CMV infection. This role is dual: MCMV infected- monocytes 

disseminate the virus within the infected host (Stoddart et al., 1994), and serve as 

precursors of infected macrophages in the spleen, the lungs and the liver. On the other 

hand, CMV- infected macrophages trigger the early, non-specific immune response to the 

virus (see below). Also, as well as allowing productive viral replication, the macrophage 

has been implicated in MCMV latency (Pollock et al., 1997), (Mitchell et al., 1996).

Several antiviral cytokines are produced by CMV-infected macrophages: tumor necrosis 

factor alpha (TNFa), interleukins IL-8, IL-ip, IL-12, IL-6, and interferon IFNa/f) 

(reviewed by Mocarski, 1996), (Orange and Biron, 1996), (Ruzek et al., 1997) (reviewed 

by Campbell, 1999). Although these cytokines may control the extent of CMV replication 

in the macrophage, they fail to completely eradicate the virus. Clearly, the interaction
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between CMV and the monocyte/macrophage is intricate, and multiple factors seem to 

regulate the outcome of infection.

The murine model has been successfully used to study the immune responses to 

CMV infections (reviewed by Campbell, 1999). In the early stages of MCMV infection, 

innate non-specific immunity is responsible for controlling virus replication in acutely- 

infected mice. Natural killer (NK) cells are a significant non-specific defense against CMV. 

These cells are activated soon after infection, and effectively control early MCMV 

infection in the target organs. In the early stages of infection, the production of IFNa/p by 

the infected macrophage also represents a significant non-specific antiviral defense. This 

defense is effective via direct antiviral activity, as well as the enhancement of NK cell 

cytotoxicity (reviewed by Campbell, 1999). However, these innate immune responses do 

not completely eliminate the virus in acutely-infected mice. Cell-mediated immunity 

involving CD4 and CD8 T lymphocytes is responsible for clearing MCMV infections from 

target organs. Antibodies, on the other hand, do not participate in clearing a primary 

infection, but they control the extent of recurrent infections following reactivation of latent 

MCMV.

In humans, cell-mediated immune responses to CMV are essential for controlling 

viral infection. pp65 and pplSO tegument phosphoproteins are the principal targets of 

cytotoxic T lymphocytes (CTLs) (McLaughlin et al., 1994). Other targets of CTLs are the 

immediate-early protein IE72 and gB (Borysiewicz et al., 1988).
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Cytomegalovirus-associated disease 

Like other herpesviruses, HCMV is ubiquitous, and the majority of the human 

population tests positive for CMV infection by adulthood. In most cases, infection of a 

healthy individual is clinically undetectable. Rarely, however, infection may result in a 

mononucleosis syndrome clinically identical to the mononucleosis syndrome associated 

with Epstein-Barr virus (EBV) infection (reviewed by Britt and Alford, 1996).

In contrast, individuals with immature or compromised immune systems may suffer 

from a variety of disorders associated with HCMV infection. CMV infection is the most 

common congenital viral infection in humans. In the United States, the incidence is 

1-2 % per live births. The majority of these infants present subclinical infections. 

Transmission in utero can result from either primary infection of, or reactivation of latent 

virus in, the mother. The clinical manifestations include brain damage, mental retardation, 

deafness, ocular damage, as well as hepatic disease and pneumonia. Severe cases of 

disseminated disease are fatal. Less severe cases will develop central nervous system 

abnormalities in the first two years of life. Infants with congenital HCMV infection excrete 

large quantities of the virus persistently for years after birth. This provides a significant 

reservoir for virus spread in the population (reviewed by Britt and Alford, 1996),

(reviewed by Chang and Lee, 1993).

HCMV is one of the most significant opportunistic pathogens that infects AIDS 

patients. Syndromes associated with HCMV infection in AIDS patients comprise almost 

every organ system. Most frequently involved are the CNS (reviewed by Wiley and 

Nelson, 1993), the gastrointestinal system, and the lung. Diseases like CMV pneumonitis, 

retinitis, encephalitis, esophagitis, gastritis, hepatitis, and enterocolitis are frequently
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observed (reviewed by Fiala et al., 1993), (Jacobson, 1995). Because of the poorer 

prognosis of CMV-seropositive patients with AIDS, and the observation that HCMV 

regulatory proteins can regulate expression of the Human Immunodeficiency Virus Long 

Terminal Repeat (HIV LTR) (Barry et al., 1990), (Biegalke and Geballe, 1990), it has 

been proposed that HCMV acts as a cofactor in the progression to and development of 

AIDS. This has been supported by the colocalization of both viruses in brain cells of AIDS 

patients (Nelson et al., 1988), and by the fact that under certain conditions HCMV has a 

positive regulatory effect on HIV replication (Lathey et al., 1994). Some reports, 

however, have revealed that HIV and HCMV do not cooperate, and in fact seem to 

interfere with replication (Jault et al., 1994), (Koval et al., 1991). To date, the role of 

HCMV in AIDS progression is still poorly understood, and the data obtained under 

different experimental conditions are inconclusive. Therefore, the participation of HCMV 

in AIDS development remains speculative.

In patients receiving allografts, HCMV represents a significant pathogen which can 

cause severe post transplant complications. The source of HCMV can be reactivated virus 

in the seropositive recipient, or virus harbored in the transplanted organ from a 

seropositive donor. Clearly, at greater risk for primary infection are seronegative 

recipients of organs from seropositive donors. Generally, the severity of HCMV infection 

and disease correlates with the degree of immunosuppression of the patient. The kidney 

was the first organ in which allograft transmission of CMV was observed. It was later 

demonstrated that CMV can be transmitted in transplants of liver, bone marrow, heart, 

and heart-lung (reviewed by Smyth et al., 1993). Between 60 and 100 % of renal allograft 

recipients develop HCMV infection. Rates are similar for cardiac and hepatic
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transplantation. On the other hand, HCMV infection occurs in 32 to 70 % of bone marrow 

transplant recipients. The incidence of disease caused by HCMV in the post transplant 

period is between 20 and 60 %. The clinical manifestations of HCMV infection in allograft 

transplant recipients include leukopenia, thrombocytopenia, lymphocytosis, elevated 

hepatic transaminases, and prolonged fever. Life-threatening complications include 

HCMV infection of the gastrointestinal tract, hepatitis, and pneumonia. HCMV 

pneumonia is the most significant infectious syndrome in bone marrow transplant patients.

If left untreated, this complication can cause the death of 80 % of the patients (reviewed 

by Britt and Alford, 1996) (reviewed by Winston, 1993).

Antiviral chemotherapy 

Several antiviral agents have been used to treat HCMV disease in cases of 

congenital infection, immunocompetent individuals presenting mononucleosis syndrome, 

and immunosuppressed cancer and transplant patients with variable severity of clinical 

symptoms (reviewed by Britt and Alford, 1996). Leukocyte interferon, interferon 

stimulators such as measles virus and pyran copolymer, nucleoside drugs [iodo- 

deoxyuridine, fluorodeoxyuridine, cytosine arabinoside, adenine arabinoside (ara-A, 

vidarabine), and acyclovir (ACV)] have been used individually and in combined 

therapeutic regimens with little or no clinical benefit. More recently, a nucleoside drug, 

9-(l,3- dihydroxy-2-propoxymethyl) guanine (ganciclovir, GCV), and phosphonoformic 

acid (foscamet) have been shown to have potent antiviral properties in vitro and in vivo. 

Foscamet is an inhibitor of the viral DNA polymerase. The triphosphate active form of 

GCV causes nucleic acid chain termination, as well as inhibiting the viral DNA
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polymerase. GCV and foscamet have been used in cases of HCMV pneumonitis, hepatitis, 

esophagitis, retinitis and colitis in patients with AIDS, as well as to treat CMV infection in 

allograft recipients. However, after prolonged treatments with either GCV or foscamet, 

resistance becomes a common threat. This resistance reflects the appearance of HCMV 

mutant strains within the infected individual. These resistant strains contain mutations in 

the DNA polymerase gene (UL54) (Baldanti et al., 1995 and 1996), (Lurain et al., 1996), 

and/or in the UL97 open reading frame (ORF) (Wolf et al., 1995 and 1995), (Baldanti et 

al., 1995), (Smith et al., 1996), which encodes a phosphotransferase that is required for 

phosphorylation of GCV to its active form (Baldanti et al., 1995), (Sullivan et al., 1992), 

(Littler et al., 1992), (Biron et al., 1986) (see Spontaneous mutants section below). It is 

presently clear that new antiviral drugs need to be developed in order to efficiently control 

HCMV infections. Targets in the development of these new drugs include the DNA 

processivity factor (UL44 ORF), and a protease activity (UL80 ORF) (reviewed by Britt 

and Alford, 1996).

Vaccines

The first trials using live attenuated vaccines to prevent CMV disease were done in 

renal transplant patients. The HCMV Towne strain was used. This vims was shown to be 

immunogenic in these patients, did not cause CMV-associated disease, and failed to 

reactivate after the patients were subjected to immunosuppressive regimens (reviewed by 

Marshall and Plotkin, 1993), (reviewed by Adler, 1995).

In the last few years, vaccine development for the prevention of HCMV disease 

has been focused on subunit vaccines. Candidate HCMV proteins to be produced from
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recombinant expression systems include the major envelope glycoprotein gB, the envelope 

glycoprotein gH, and the pp65 lower matrix phosphoprotein. The most promising 

candidate for a subunit vaccine is gB (reviewed by Adler, 199S). When gB was cloned 

into a canarypox (ALVAC) vector, and the recombinant virus (ALVAC-gB) was 

administered to experimental animals, both humoral and cellular immune responses were 

elicited (Gonczol et al., 199S). Moreover, human inoculations with isolated gA/gB 

glycoprotein complex have been reported (Gonczol et al., 1990). CMV specific responses 

of neutralizing antibodies and lymphocyte proliferation were developed in human 

volunteers.

DNA vaccination has been tested with expression vectors containing UL83 ORF 

(encoding the pp65 tegument phosphoprotein). Intramuscular injection of mice with these 

constructs resulted in the generation of pp65 antibodies in 60% of the injected mice 

(Pandeetal., 1995).

The replicative cycle

General characteristics 

HCMV has a highly restricted host range in cell culture. Only cultured primary 

human cells permit viral replication. The source of these cells has usually been fibroblasts 

from the skin or the lungs. It is believed that cellular factors involved with differentiation 

play critical roles in permissiveness for HCMV replication. For example, it has been shown 

that transcription from the HCMV major immediate early promoter (MOEP) increases with 

differentiation (Nelson and Groudine, 1986). More recently, Angulo and Ghazal (1995) 

reported that retinoic acid (an essential regulator of cell differentiation) activated the
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MtEP and enhanced the production of virus progeny in human foreskin fibroblasts infected 

with the HCMV Towne strain. The restriction on host cell range, both in cells in culture 

and in vivo, is revealed by a restrictive viral gene expression, and has been proposed to 

represent a postpenetration block (LaFemina and Hayward, 1986), (Nelson et al., 1987). 

Cytomegaloviruses differ from many other herpesviruses in that CMV replication does not 

result in the shut off of the host cell metabolism; rather, cellular DNA, RNA and protein 

synthesis are stimulated by CMV. The significance of this event is still not understood 

(reviewed by Mocarski, 1996). Furthermore, the HCMV envelope is not only involved in 

virus attachment and entry, but also transduces signals that ultimately result in fos,jim , 

and myc gene expression. In addition, HCMV infection derepresses cellular enzymes 

involved in cell proliferation. The virus also induces the expression of genes involved in 

cellular DNA replication, such as DNA polymerase, topoisomerase II, and ornithine 

decarboxylase (reviewed by Huang and Kowalik, 1993).

Attachment and Penetration 

The initial event of viral replication involves attachment of the virus to the cell 

surface. Attachment occurs rapidly and efficiently, not only in permissive, but also in 

nonpermissive cells. This suggests that receptors for CMV are widely distributed on the 

surface of many cell types (LaFemina and Hayward, 1983 and 1986), (Nelson et al.,

1987). Compton et al. (1993) demonstrated that the virus initially attaches to extracellular 

heparan sulfate proteoglycans. This interaction involves viral envelope glycoproteins, 

including gB. Following this interaction, binding of the virus to specific cell membrane 

glycoproteins of 32 and 34 kD occurs. These ‘Viral receptors” are present on the surface
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of endothelial, epithelial, fibroblast, and monocytic cells (Nowlin et al., 1991). In addition, 

CD 13 is an aminopeptidase that seems to be involved in stable binding prior to penetration 

(Soderberg et al., 1993). Penetration occurs after attachment, and it involves the fusion of 

the viral envelope with the plasma membrane. Specifically, viral glycoproteins gH/gL 

interact with a cellular protein of 92.5 kD (Keay and Baldwin, 1992) and annexin II 

(Wright et al., 1994) (reviewed by Compton, 1995). Following penetration, the de­

enveloped viral capsids are rapidly delivered to the nuclear pores, and the viral DNA is 

introduced into the nucleus, where it subsequently circularizes. Once the viral DNA is 

present in the nucleus, the host cell RNA polymerase II is responsible for transcribing the 

viral genes.

Immediate-earlv gene expression 

CMV gene expression occurs in a coordinated, sequential fashion. The viral genes 

are divided into three kinetic classes, on the basis of time of expression. These classes are 

immediate-early (IE), early (E), and late (L). The genes expressed first during viral 

replication are the immediate-early genes. These genes are expressed without requiring de 

novo viral protein synthesis. Mapping of the regions expressed at immediate-early times 

during HCMV infection has revealed several areas on the HCMV genome: UL36-38,

UL122-123 (IE1/ IE2) (the major IE locus), TRS1-IRS1, and US3 (Wathen and Stinski, 

1982), (Kouzarides et al., 1988), (Colberg-Poley et al., 1992), (Stenberg et al., 1984,

1985 and 1989), (Stasiak and Mocarski, 1992), (Weston, 1988). The most abundantly 

expressed immediate-early genes are IE1 (UL123) and IE2 (UL122). These transcripts 

arise via differential splicing, and the protein products share amino acid sequences present
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in common exons (reviewed by Stenberg, 1993), (reviewed by Mocarski, 1996).

Expression of the major IE locus is controlled by a strong transcriptional enhancer, 

the major immediate-early promoter (MIEP). The structure of the M1EP presents a 5’ 

modulator sequence, an enhancer containing repeated elements and transcription factor 

binding sites, the promoter region including the TATA box, and a leader sequence 

(reviewed by Ghazal and Nelson, 1993). Both repeated elements and unique sequences are 

involved in the regulation of IE transcription. A large number of known and/or predicted 

cellular transcription factor binding sites, including CREB/ATF, AP-1, serum response 

elements (SRE), SP1, TFHD/TBP, p53, and NFxB, among others, are central to the 

transcriptional control from the MIEP. Analogous enhancers are present in the immediate- 

early gene locus of murine CMV and simian CMV (reviewed by Mocarski, 1996). The 

initial activation of the MIEP is mediated by host cell factors and pp71 (UL82), a virion 

associated tegument protein. During HCMV infection, expression from the MIEP is first 

activated, then repressed. Activation differs significantly under permissive and 

nonpermissive conditions, and this is independent of viral proteins (Nelson et al., 1987), 

(reviewed by Ghazal and Nelson, 1993).

The protein product from IE1 is a 72 kD phosphoprotein (IE72), originally 

identified as the major immediate-early protein (Stinski, 1978). The next most abundant 

immediate-early gene product is encoded by IE2; this is also a nuclear phosphoprotein of 

86 kD (IE86). IE1 and IE2 transcripts share the first three exons, and IE72 and IE86 

share 85 amino acids at the amino terminal region. These IE proteins regulate the 

expression of the immediate-early genes, as well as subsequent early gene expression. 

Other minor proteins are expressed from the major IE locus. The first IE proteins
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synthesized from this region following penetration and uncoating are the 72 kD protein, 

and the 55 kD protein, a positive activator of the MIEP (Baracchini et al., 1992). These 

proteins appear I hr after virus adsorption. At 2.5 hs, the 38 kD, the 86 kD, and 97 kD 

proteins are produced (reviewed by Stenberg, 1993).

IE72 and IE86 exert both positive and negative regulation on viral gene expression 

(Depto and Stenberg, 1989), (Klucheret al., 1989), (Klucher and Spector, 1990),

(Hermiston et al., 1990), (Pizzomo and Hayward, 1990), (Cherrington et al., 1991). 

Particularly relevant for the outcome of viral infection is the interaction between IE72 and 

IE86 to regulate the MIEP (Stenberg et al., 1990). IE72 autostimulates its own 

transcription by transactivating the MIEP via NFtcB sites, whereas IE86 is responsible for 

the shut off of IE1/ IE2 expression during replication through its ability to repress MIEP 

function (Lang and Stamminger, 1993). Immediate-early gene expression is reduced (a 

complete shut off is not observed) during the early phase, but it is resumed late in infection 

(Stenberg et al., 1989).

IE72 cooperates with IE86 and other transactivators to regulate the subsequent 

cascade of gene expression. IE72 interacts with SP-1, E2F-1, and CTF-l (Hayhurst et al.,

1995), (Lukac et al., 1994), (Margolis et al., 1995). IE86 is a sequence-specific DNA 

binding protein thought to be essential for the switch from immediate-early to early gene 

expression. IE86 has been defined as a promiscuous transactivator. Promiscuous 

activation of heterologous promoters has been found to be TATA box dependent, and 

involves direct interaction with TF11D (Hagemeier et al., 1992). IE86 interacts with 

several components of the cellular transcription machinery, such as TBP (Jupp et al.,

1993), TFIIB (Caswell et al., 1993), CREB (Lang et al., 1995), CBP (Schwartz et al.,
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1996), and c-jun (Scully et al., 1995). The exact mechanism used by IE86 to transactivate 

is still unknown. The relative contributions of protein-protein interactions with host 

transcription factors and of direct binding to DNA are still not fully understood. It has 

been shown that both the amino terminal and carboxy terminal regions of EE86 are 

involved in transactivation.

Although IE1 and IE2 have been shown to be central to the regulation of viral 

gene expression, other immediate-early genes whose functions are still undefined are 

expressed at immediate-early times. These likely play regulatory roles that influence the 

outcome of infection. Additional immediate-early genes important for the regulation of 

HCMV gene expression are UL36-UL38 (Colberg-Poley et al., 1992), (Kouzarides et al.,

1988), TRS1 and IRS1 (Stasiak and Mocarski, 1992), and US3 (Colberg-Poley et al.,

1992), (Weston, 1988). These genes encode products that are believed to function with 

IE1 and DE2 to regulate transcription during HCMV infection.

Early gene expression 

Following the immediate-early phase, the early genes are expressed (reviewed by 

Mocarski, 1996). These genes are divided into subclasses on the basis of time of 

expression. Using a temperature -sensitive mutant of HCMV that is impaired in DNA 

replication (ts66), Stenberg et al. demonstrated that the early mRNAs are differentially 

regulated relative to the time of DNA synthesis. This gave rise to the classification of the 

early genes into three subclasses: those genes that are transcribed early and repressed late, 

those that are expressed at equal levels at early and late times, and those transcripts that
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are produced at low levels early, and which are upregulated late (reviewed by Stenberg,

1993).

Studies on several early promoters have shown that both IE1 and IE2 are required 

for maximal promoter activation (Chang et al., 1989), (Depto and Stenberg, 1989),

(Staprans et al., 1988), (Stenberg et al., 1990). Discrete sequences containing direct and 

inverted repeats within early promoters have been shown to be involved in the regulation 

of promoter activation (Kerry et al., 1994 and 1996). These repeated sequences vary 

significantly among different early promoters (reviewed by Stenberg, 1993). In addition to 

IE1 and IE2, cellular proteins, such as ATF (Kerry et al., 1997), USF (Klucher and 

Spector, 1990), CREB (Lang et al., 1995), AP-1 (Wade et al., 1992), and E2F (Staprans 

and Spector, 1986), have been shown to interact with HCMV early promoters to regulate 

expression. It is believed that several other cellular proteins may act in conjunction with 

IE1 and IE2 to regulate the expression of early promoters through the diversity of 

regulatory sequences observed in these promoters (reviewed by Stenberg, 1993).

Many early genes encode viral functions involved in DNA replication. These are 

the DNA polymerase (UL54), the major early single-stranded DNA binding protein 

(UL57), the DNA polymerase processivity factor (UL44), and a helicase-primase complex 

composed of three subunits (UL105, UL102, and UL70). HCMV DNA replication occurs 

in the same series of steps as for other herpesviruses. After infection, the viral genome 

circularizes in the nucleus of the infected cell. This occurs approximately 4 hs post 

infection. Viral DNA synthesis peaks at 18 to 24 hs, and at 60 to 80 hs post infection.

These peaks are concomitant with cellular DNA replication (reviewed by Mocarski,

1996). HCMV DNA replication occurs from a sequence of 1.5 kbp, orilyt, between
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92,200 and 93,700 bp on the genome (Anders et al., 1992). These sequences are rich in 

clustered and dispersed repeated elements. Several trans-acting factors have been found to 

be required for orifyt replication. These are: UL54, UL57, UL44, UL105, UL102, UL70,

IE1 and 2 (UL122-123), UL36/UL37/UL38, TRS1/IRS1, UL112-113, and UL84 (Pari 

and Anders, 1993), (Pari et al., 1993). Four of these loci (UL36-38, UL112-113, IRSl 

and TRS1) cooperate with IE1 and IE2 to activate the expression of replication genes 

(Iskenderian et al., 1996). DNA replication occurs by a rolling circle mechanism, and 

results in the formation of concatemers.

Late gene expression 

Late genes are expressed after the onset of viral DNA replication These include 

structural proteins of the capsid, the tegument, and the glycoproteins of the envelope (see 

section on Structure of the virion in this chapter). To date, very few late genes have been 

studied in terms of the regulation of their expression. Some of the work reported has 

involved the true late virion phosphoprotein pp28 (UL99) (Depto and Stenberg, 1992), 

(Kohler et al., 1994), (Kerry et al., 1997), the true late gene UL94 (Wing et al., 1998), 

viral glycoproteins (Geballe et al., 1986), and the IE2 late protein p40 (Jenkins et al.,

1994). Consequently, late gene expression is currently poorly understood. The reason why 

these promoters are exclusively expressed at late times in infection, and what viral and/or 

cellular proteins are involved in the regulation of late gene expression is still undefined.
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Virion assembly

During the late phase, cleavage of the replicated DNA into genome length 

monomers occurs. This newly synthesized DNA is inserted into maturing, pre-formed 

nucleocapsids. Maturing nucleocapsids bud from the inner nuclear membrane at specific 

areas of the membrane containing viral glycoproteins. The virions then accumulate in the 

perinuclear space and subsequently move into cytoplasmic vesicles. Whether the virus 

follows a single path for envelopment and egress, or deenvelopment and reenvelopment in 

the cytoplasm occurs, is still not clear (reviewed by Mocarski, 1996).

Identification of viral functions

The current understanding of HCMV gene function has been derived mostly from 

in vitro studies. The roles of IE proteins in the regulation of viral gene expression 

(reviewed by Stenberg, 1993), as well as the participation of early viral trans-acting 

factors in the regulation of expression of early genes (reviewed by Spector et al., 1990), 

have been defined in the context of transient expression assays. These studies have 

provided important information on how viral proteins regulate expression from viral 

promoters of different kinetic classes. However, they have not answered questions 

regarding the essential nature of the viral genes or the actual roles of these genes in the 

context of a natural infection of cells in culture.

To date, very few studies have assessed HCMV gene function during a natural 

infection of cells in culture. The systems used have relied primarily on random and site- 

specific mutagenesis to generate mutant viruses (see below).
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Random mutagenesis 

The classical approach to study gene function in many virus families has depended 

largely on conditional-lethal mutants. For animal viruses, temperature-sensitive (ts) 

mutants, generated by UV or chemical random mutagenesis, have been used mostly. 

Although a complete set of mutants is rarely obtained, ts mutants have been utilized 

successfully to study viral protein functions of many viruses, including Herpes Simplex 

virus (HSV) (Subak-Sharpe, 1974) (Schaffer et al., 1970, 1971 and 1973) (Timbury,

1971) (Esparza et al., 1974) (Bone and Courtney, 1974) (Brown et al., 1973) (Marsden et 

al., 1976), (Preston et al., 1988), (Weiretal., 1989).

In contrast, very few HCMV ts mutants have been isolated and characterized to 

date (reviewed by Stenberg, 1993), (reviewed by Mocarski, 1996). Yamanishi and Rapp 

(1977) initially isolated eight ts mutants obtained by mutagenesis with nitrosoguanidine. A 

total of twenty-one ts mutants had been isolated and reported by 1979 (Yamanishi and 

Rapp, 1979). Four of these mutants were DNA-negative mutants belonging to different 

complementation groups. These mutants were used to demonstrate that viral DNA 

synthesis is not required for the HCMV-induced cellular DNA replication. Attempts to 

generate mutants with S-bromodeoxyuridine were unsuccessful. Stenberg isolated an 

HCMV ts mutant (ts 66) that is impaired in DNA replication. This mutant was useful to 

study the differential regulation of transcription of several early genes relative to the time 

of viral DNA synthesis (reviewed by Stenberg, 1993). In contrast with the scarcity of 

HCMV ts mutants, as many as 24 complementation groups of MCMV ts mutants have 

been isolated and analyzed (Tonari and Minamishima, 1983), (Sammons and Sweet,

1989), (Akel et al., 1993).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Although ts mutants have traditionally played an important role for defining gene 

function, there are some problems inherent to them. First, ts mutants produced by UV or 

chemical random mutagenesis may contain numerous silent nonlethal mutations in several 

genes. In addition, if a ts mutation is introduced into the DNA sequence encoding a 

domain shared by more than one viral function, the resulting phenotype cannot be 

correlated to a particular viral gene. Lastly, in many instances, tight ts mutants are hard to 

obtain; leakiness is revealed by plating efficiencies with a low permissive to nonpermissive 

ratio, and this complicates the analysis of the resulting phenotype.

Site-specific mutagenesis 

As an alternative to random mutagenesis, site-specific insertion or deletion of 

genes was first developed for the study of HSV gene function by Post and Roizman in 

1981. This protocol is based on the generation of recombinant viruses obtained as a result 

of the double recombination between intact viral DNA and a DNA fragment containing 

the mutation (deletion or insertion), and a selectable marker. Using this approach, viable 

mutants can be obtained as long as the deletions or insertions affect genes that are 

dispensable for growth of the virus in culture. In order to be able to generate recombinant 

viruses with mutations in essential genes, the original recombination protocol had to be 

adapted by generating a host cell line expressing the gene that complements the mutation 

in the recombinant virus. These complementing cells allow for the propagation of the null 

mutants.

For HCMV, deletion mutants have been generated by inserting prokaryotic 

reporter genes, such as (3-galactosidase and P-glucuronidase, into the viral genome
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(Spaete and Mocarski, 1987), (Jones et al., 1991), (Jones and Muzithras, 1992), (Ripalti 

and Mocarski, 1991), (Takekoshi et al., 1991), (Browne et al., 1992), (Kaye et al., 1992). 

Using this approach, Jones et al. demonstrated that the US 10 and US11 gene products are 

nonessential for viral replication in cells in culture. By constructing a deletion mutant using 

a similar approach, Kaye et al. showed that the UL16 gene encodes a glycoprotein that is 

nonessential for replication of HCMV in culture. Similarly, Browne et al. demonstrated 

that the UL18 gene, which encodes the viral homologue of the cellular MHC Class I heavy 

chain, is dispensable for growth of the virus in human fibroblasts in culture. Thus, these 

procedures have allowed for the isolation of viruses with nonlethal mutations, namely, 

viruses with deletions of genes that are dispensable for the replication of HCMV in tissue 

culture. These deletion mutants have allowed for the definition of 41 ORFs dispensable for 

growth of HCMV in vitro. These ORFs are TRL4 -TRL14, UL1 - UL10, UL16, UL18, 

UL20, UL33, UL128, IRS1, US1 - US13, and US27. The protein products of most of 

these genes have still not been defined, but they are believed to play critical roles in viral 

pathogenesis within the natural host.

Because only primary human cells are permissive for HCMV replication in culture, 

the identification of essential genes has been hindered due to the lack of permanent cell 

lines to complement virus null mutants. In the last two years, reports by Mocarski et al. 

(1996) and Greaves and Mocarski (1998) represent the first attempts to generate 

recombinant HCMV with mutations in putative essential genes. Using cosmids derived 

from the Toledo and Towne strains, Mocarski et al. generated an HCMV mutant deleted 

of the IE1 gene. The protein product of TE1 (IE72) has long been thought to be essential, 

but direct experimental evidence supporting this notion is lacking. In addition, Greaves
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and Mocarski isolated a second DEI deletion mutant, which lacked exon 4 of the major IE 

locus. The IE 1-negative viruses were propagated in an IE 1-expressing human fibroblast 

cell line (ihfie 1.3). At low multiplicities of infection (MOIs), the deletion mutants failed to 

replicate in human fibroblasts in culture. However, at MOIs of more than 3 plaque- 

forming units (PFU) per cell, virus yields were comparable to those of wild type virus. The 

authors speculated that at high MOIs, the IE 1-deficient viruses are capable of growing 

with wild type kinetics due to compensation for the lack of the IE1 gene product by virion 

transactivators, which could function in place of IE 1 to regulate the initial events of the 

cascade of HCMV gene expression.

Spontaneous mutants 

Spontaneous mutants have also been useful for elucidating the functions of HCMV 

genes. For example, Zipeto et al. (1993) identified a spontaneous HCMV deletion mutant 

lacking the pplSO matrix phosphoprotein gene. Together with pp65, pplSO is the main 

component of the viral matrix. The authors failed to plaque-purify the deletion mutant, 

therefore they concluded that the variant was growth-defective and dependent on co- 

infecting wild type virus for replication. This suggested that pplSO is an essential viral 

function.

Several spontaneous HCMV drug resistant mutants have been isolated from 

individuals undergoing antiviral treatments with ganciclovir or foscamet (see Antiviral 

chemotherapy section in this chapter). These mutants have been very valuable tools for 

analyzing the efficacy, selectivity and mode of action of these antiviral drugs, as well as for
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identifying the viral gene functions that are targets of these drugs: the UL97 and UL54 

genes.

The number of HCMV mutants isolated and studied to date is clearly insufficient 

to unveil the roles of the more than 200 predicted ORFs in the AD 169 genome. Because 

only very few HCMV ts mutants have been generated, and because the lack of 

complementing cell lines has prevented the generation of HCMV null mutants, a 

significant number of viral essential gene functions have not been defined yet. In contrast, 

as mentioned above, deletion mutants have allowed for the definition of 41 ORFs 

dispensable for growth of HCMV in vitro.

At present, our understanding of the HCMV DNA coding capacity is mostly based 

on comparisons with HSV-1. Approximately 25 % of the ORFs are predicted to code for 

functions involved in viral DNA replication and metabolism, and the remaining 75 % is 

believed to code for structural proteins, and proteins involved in virion maturation 

(reviewed by Mocarski, 1996). Clearly, alternative methods need to be designed to study 

HCMV essential gene functions in the complex genetic environment of the HCMV- 

infected cell. These methods should allow for the stringent control of gene expression in 

order to be able to define the roles of individual viral gene products. Some of these 

methods are discussed in the following section.
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Inducible systems for the study of gene expression

Inducible expression systems in mammalian cells 

Inducible expression systems have been used to elucidate the function of many 

genes in bacteria, yeast, and Drosophila sp. Recently, similar strategies have been 

developed for mammalian cells. Some of these systems consist of promoters that are 

induced by endogenous control elements, such as promoters responsive to heavy metal 

ions (Mayo et al., 1982), (Brinster et al., 1982), (Searle et al., 1985). Other systems 

consist of promoters responsive to heat shock (reviewed by Nouer, 1991) or hormones 

(Hynes et al., 1981), (Klock et al., 1987), (Israel and Kaufman, 1989). All of these 

systems have generally suffered from leakiness of the inactive state and, in some cases 

such as the metallothionein promoter (Mayo et al., 1982), (Brinster et al., 1982), or the 

mouse mammary tumor virus promoter (Hynes et al., 1981), they show rather modest 

levels of induction. More importantly, the induction of transcription in these systems 

results in pleiotropic effects caused by the inducers themselves. For example, elevated 

temperature or glucocorticoid hormones (Lee et al., 1988) affect the expression of many 

cellular genes, in addition to the gene under study. This complicates the analysis of the 

resulting phenotype.

In an attempt to create highly specific regulatory circuits controlled by exogenous 

effectors, inducible systems that exploit prokaryotic elements have been constructed for 

the study of gene activity in higher eukaryotic cells. Bacterial regulatory proteins and 

operator sequences are particularly useful to control transcription in mammalian cells. A 

distinct advantage is that the recognition DNA sequence (the operator) for the regulatory 

protein (the repressor) is relatively unique to the gene being studied (Simons et al., 1984).
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Thus, monospecific control systems, which are modulated by effectors that are inert to the 

physiology of the cell, can be established in eukaryotic cells.

The Escherichia coli lac operon 

Some systems utilized to study inducible gene expression in mammalian cells are 

based on the Escherichia coli lac operon. The operon model (a cluster of genes encoding 

enzymes of a particular metabollic pathway that are controlled by a single promoter from 

which a single polycistronic mRNA is transcribed) was proposed by Jacob and Monod.

This operon is the classic example of negative regulation of transcription by a repressor 

protein. The elements in this operon include a regulator gene ( / )  encoding the repressor, 

which is under the control of a separate promoter that regulates its constitutive 

expression, an operator site within the operon promoter, and a set of three contiguous 

structural genes (z ,y , a) encoding the inducible enzymes P-galactosidase, galactoside 

permease, and thiogalactoside transacetylase, respectively. For Escherichia coli, the 

physiologic inducer is allolactose, which is formed from lactose by transacetylation.The 

/ gene produces a 37 kD polypeptide that aggregates to form a tetrameric repressor 

protein. Each subunit consists of 360 amino acids, with a total molecular weight of 

154,520. The lac operator is a 27 base pair DNA sequence containing a 16-base 

hyphenated palindrome. It presents 2-fold symmetry that matches the symmetry of the 

tetrameric repressor. The tetramer binds to the operator very tightly and rapidly when 

E coli is grown in the presence of glucose or glycerol and in the absence of lactose. This 

binding results in the block of transcription of the structural genes. As a result, |3- 

galactosidase, an enzyme that is required to hydrolize lactose to galactose and glucose, is
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present at very low levels (5 -10  molecules per cell). However, when lactose, but not 

glucose, is present in the culture medium, the inducer (allolactose) binds to the repressor 

with high affinity, and causes an allosteric change in conformation that drastically reduces 

the affinity of the repressor for the operator. This results in transcription of the structural 

genes, and the concentration of P-galactosidase increases to several thousand molecules 

per cell.

The lac repressor-operator interaction has been thoroughly characterized 

(reviewed by Miller and ReznikofF, 1980). The dissociation constant of the repressor- 

operator complex is 10'13 M.The rate constant for association (* 1010 M"1s l) is very high, 

which indicates that random association with and dissociation from the DNA is probably 

not the mechanism for repressor binding to the operator. Rather, it is suggested that 

facilitated transfer of the repressor to the operator occurs (Fickert et al., 1992). The 

tetrameric repressor associates to DNA in a nonspecific manner, and this is followed by a 

looping event that brings the repressor in contact with the operator. This is known as the 

intersegment transfer mechanism. The lac repressor binds 4x106 times more strongly to 

its operator than to other sites on the chromosome. These characteristics of the lac 

repressor-operator interaction are essential for the application of a highly specific 

regulatory system for the study of gene expression in eukaryotic cells.

The lac repressor-operator gene expression system in eukaryotic cells 

Brown et al. (1987) was one of the first groups to test the lac repressor-operator 

system in mammalian cells. They used the chloramphenicol acetyl transferase (CAT) 

reporter gene driven by operator-containing variant S V40 early promoters. Repression
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was observed when the reporter constructs were cotransfected with a plasmid encoding 

the lac repressor. Isopropylthiogalactoside (IPTG), a non-metabolizable inducer, was used 

to relieve repression. The same group described the regulation of a stably integrated CAT 

gene by the lac repressor in monkey cells (Figge et al., 1988).

In 1987, another report on the use of the lac repressor-operator system in 

mammalian cells presented evidence that the lac repressor produced in mouse cells can 

block transcription from an unintegrated CAT gene driven by the Moloney sarcoma virus 

enhancer containing a lac operator insertion. Derepression was observed when cells were 

exposed to IPTG (Hu and Davidson, 1987). Later, this group proceeded to combine the 

repressive / inducible lac system with induction by glucocorticoids and metal ions in order 

to achieve higher levels of inducibility. The system presented a high-level-inducible 

promoter (containing a lac operator sequence and a metal-responsive element) that was 

regulated by both derepression of the lac repressor system, and induction by 

glucocorticoid and Cd2+ (Hu and Davidson, 1990).

Other reports have shown the successful application of the lac repressor- based 

gene expression system in mammalian cells. Deuschle et al. (1989) utilized the lac 

repressor protein and the coliphage T3 RNA polymerase to regulate transcription of the 

firefly luciferase gene downstream of a phage T3 promoter containing a lac operator 

sequence, in rabbit kidney cells. Repression factors comparable to those observed in 

prokaryotes were obtained. In addition, the lac repressor system was used efficiently to 

regulate expression of genes transcribed by RNA polymerase m  in mammalian cells 

(Syroid et al., 1992).
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A different approach for utilizing the lac repressor protein to control mammalian 

gene expression was developed by Labow et al. (1990). They converted the lac repressor 

into a mammalian transcriptional activator by fusing the transcription activation domain 

from the HSV-l virion protein 16 (VP 16). This fusion protein (LAP) was a potent 

activator of various promoters containing up to 21 lac operator sequences in different 

positions relative to the transcription start site. The activation was efficiently inhibited by 

IPTG, although it never completely eliminated activation by LAP.

The versatility of the applications of the lac repressor-based system is also 

illustrated by the adaptation of the system for the regulation of gene expression in plant 

cells (Wilde et al., 1992), as well as the utility of the system to study the interactions 

between HCMV and HTV-1 to control viral gene expression in brain cells (Moreno et al.,

1997).

Lac-regulated vaccinia virus gene expression 

Most of the work published to date reporting the use of the lac repressor-operator 

system for the study of gene expression in eukaryotic cells has been done with vaccinia 

virus. Rodriguez and Smith (1990) adapted the lac repressor-operator system to study 

inducible gene expression in vaccinia virus. Recombinant viruses containing the lac i gene 

and the lac operator sequence were generated, to study the vaccinia virus gene encoding a 

14 kD membrane protein. They demonstrated that this viral protein is not essential for the 

production of intracellular progeny virus, but it is absolutely required for the envelopment 

of the virus particles in the Golgi apparatus prior to egress from the cell.
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Zhang and Moss (1991), (Zhang et al., 1992) constructed recombinant vaccinia 

viruses constitutively expressing the lac repressor, and containing lac operator sequences 

in endogenous promoters, to study the roles of vaccinia virus genes F18R and G8R. From 

these studies it was concluded that the F18R gene product, an 11 kD virion associated 

protein, is required for virion assembly. In addition, the G8R gene product was shown to 

be an essential late transcription factor. Other genes studied by this group include genes 

involved in virus morphogenesis, such as D13L (Zhang and Moss, 1992), D6R (Hu et al.,

1996), and A8L (Hu et al., 1998) genes. Using the lac repressor-operator system, all of 

these genes were shown to encode proteins that are essential for viral assembly.

Recently, a different group of investigators (Klemperer et al., 1997) used the lac 

repressor-operator system to construct an inducible II gene in recombinant vaccinia virus. 

They found that the 35 kD protein product, which is expressed at late times during 

infection, is essential for the latest stages of viral assembly.

The Tetracycline repressor system

Another inducible system utilizing the E.coli Tetracycline (Tet) resistance operon 

has been developed to control gene expression in mammalian cells. The Tet resistance 

operon and the lac operon regulate gene expression in a similar manner. One of the 

applications of this system includes the fusion of the tetracycline repressor with the Herpes 

simplex virion transactivator VP 16 to generate a chimeric transactivator that can be 

regulated by tetracycline (Gossen and Bujard, 1992), (Kim et al., 199S). Kim et al. used 

the tetracycline repressor fused to VP16 (tTA) to regulate expression of the 

^-glucuronidase reporter gene driven by tetracycline operator-containing promoters
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derived from the HCMV US 11 promoter. In transient assays, efficient repression was 

observed when two or three tetracycline operator sequences were placed adjacent to the 

TATA box. Repression was also significant in cells constitutively expressing tTA that 

were infected with recombinant HCMV containing the operator derivative of the US 11 

promoter driving the expression of the (3-glucuronidase gene. This repression was 

efficiently relieved by tetracycline.

The HCMV US9 gene: a target for testing lac repressor-mediated control of HCMV

gene expression

In the following chapters, a comprehensive analysis of the expression of lac 

operator-containing, HCMV US9 promoters is presented. This analysis is central to the 

main objective of this project, which was to test the lac repressor-based system using an 

HCMV specific promoter. Subsequently, because of the nonessential nature of the US9 

gene for HCMV replication in human fibroblasts in culture (Jones and Muzithras, 1992)

(see below), the endogenous US9 promoter can be targeted for conditional expression 

using the lac repressor system, without jeopardizing the production of virus progeny, or 

having virus growth dependent on IPTG. The feasibility of this approach to study HCMV 

gene expression can therefore be assessed. Parameters of repression and IPTG 

derepression can be tested and optimized, without compromising the production of 

progeny virus to any of these variables. These experiments will significantly contribute to 

the long-term goal of the project: to apply the lac repressor-based system to study the 

roles of putative essential HCMV genes in the context of a natural infection of cells in 

culture.
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The US9 gene encodes an envelope glycoprotein whose exact role during HCMV 

infection is still unknown. This gene is contained within the Hind EQ X region of the 

HCMV AD 169 strain. The genes contained in this region have been defined as the US6 

gene family (US6 through US 11). The members of this gene family encode proteins of 

about 180 - 250 amino acids. They present hydrophobic regions at their amino and 

carboxy termini, and a signal sequence and transmembrane domain have been identified. 

These proteins also contain N - X - T/S N-linked glycosylation addition sequence. All this 

evidence has suggested that the US6 gene family encodes related glycoproteins.

The US6 family members have been shown to be dispensable for growth of 

HCMV in human fibroblasts in culture. This was demonstrated by Jones and Muzithras 

(1992), who generated a series of recombinant HCMV by inserting the (3-glucuronidase 

gene into the HCMV genome in a manner that resulted in the deletion of one or more of 

the US6 gene family members. The recombinant viruses grew with similar kinetics to wild 

type virus. On the other hand, in a study on retinal CMV disease, Pereira et al. (1995) 

demonstrated that viruses with deletions in US9 and US8 / US9 were not capable of 

spreading from cell to cell, and infection of polarized retinal pigment epithelial cells with 

these viruses resulted in the formation of smaller plaques. It was concluded that the US9 

glycoprotein is essential for spread of the virus in these cells. More recently, Maidji et al. 

(1996) used HCMV deletion mutants to demonstrate that the US9 accesory glycoprotein 

is essential for cell-to-cell transmission of the virus in polarized human retinal pigment 

epithelial cells. When HCMV mutants deleted in US9 were compared with HSV-1 

deletion mutants that are unable to express glycoproteins gE and gl, both HCMV and 

HSV-1 mutants were impaired in spread across lateral membranes of the infected cells.
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In terms of the expression of the US9 gene, Jones and Muzithras (1991) demonstrated 

that the 1.7kb US9-US8 transcript is expressed with early kinetics. They showed that this 

mRNA was most abundant at 24 hs post infection, and its abundance was greatly reduced 

by 48 to 72 hs post infection.
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CHAPTER n  

SPECIFIC OBJECTIVES

The aim of this study was to construct an Escherichia coli lac repressor-based 

system to control HCMV gene expression. The system includes the lac repressor protein 

(encoded by the lac i gene), its cognate operator DNA sequence, and the specific inducer 

IPTG. In order to test the feasibility of this approach to study HCMV gene expression, a 

lac repressor expressing HCMV (RVlac) was generated by homologous recombination 

resulting in the insertion of the lac i gene into a region of the HCMV genome that is 

dispensable for growth of the virus in culture. RVlac was used to assess lac repressor 

protein production in RV/ac-infected cells in culture, as well as lac repressor activity using 

operator-containing HCMV US9 promoters in transient assays. In these assays, the 

appropriate number and relative position of the operator sequences could be determined 

for effective /ac-mediated repression of the operator-containing US9 promoters, and 

restoration of promoter activity by IPTG.

The promoter of the US9 gene was chosen for this study because: a) this gene is 

known to be nonessential for virus replication in tissue culture, and b) the US9 gene is 

adjacent to the site of insertion of the lac i gene, so insertion of both the operator- 

containing US9 promoter in place of the endogenous promoter and the lac i gene could be 

accomplished in a one step recombination event. Because of the nonessential nature of the 

US9 gene, future analysis of parameters of repression and derepression of operator- 

containing promoters can be performed in the endogenous locus, without having virus 

growth dependent on IPTG. In this way, the feasibility of this approach to control HCMV 

gene expression in the context of the viral genome could be tested.
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This conditional expression system would allow assessment of the functional roles 

of HCMV putative essential gene products during viral replication. HCMV putative 

essential genes can be targeted for conditional expression by constructing recombinant 

viruses containing lac operator sequences in their promoters. These promoters can be 

acted upon by the lac repressor produced from the same recombinant virus or a 

coinfecting recombinant HCMV. In this way, the effect of the loss of expression of the 

target gene on virus replication can be addressed.

The specific objectives of this study were:

1) To generate recombinant HCMV that expresses the lac repressor (KWlac). The gene 

encoding the lac repressor (lac i gene) was inserted into the HCMV genome by 

homologous recombination. The strategy involved the replacement of the marker gene 13- 

glucuronidase (P-giu) in the US9-US10 intergenic region of the RV134 (parental 

recombinant HCMV) genome. RV/ac was characterized in terms of lac repressor protein 

expression, and repression capabilities of the lac repressor produced, using operator- 

containing heterologous promoters in transient assays.

2) To construct operator-containing US9 promoters. The lac operator sequence was 

positioned at different sites within the US9 promoter. The resulting variant promoters 

were inserted into the viral genome (specific objectives 3 and 4), and tested for promoter 

expression (specific objective 6).

3) To generate recombinant HCMV containing operator-containing US9 promoters 

(RVUS9op). Operator-containing US9 promoters were inserted into the viral genome by 

homologous recombination, as described in specific objective 1. The resulting recombinant
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viruses contained the operator-containing US9 promoter in the endogenous locus. To 

validate the use of these operator-containing promoters for future analysis of conditional 

US9 gene expression in the context of the viral genome, US9 gene expression was 

examined (steady-state levels of US9 mRNA) in RVUS9op-infected cells to control for 

the impact of the operator insertion in the US9 endogenous locus.

4) To generate recombinant HCMV containing the lac / gene and the operator-containing 

US9 promoter (RV/acUS9op). The construction and isolation of RV/acUS9op was 

pursued in order to obtain a recombinant HCMV that would contain the complete 

conditional expression system for analysis in the context of the viral genome. The gene 

encoding the lac repressor and the operator-containing US9 promoter were inserted into 

the viral genome as described in specific objectives 1 and 3.

5) To analyze the growth properties of the recombinant viruses in vitro. One step 

growth curves were performed to determine if the insertion of the lac i gene and/or the lac 

operator sequence in the HCMV genome has an impact on the rate of virus replication.

6) To assess expression of operator-containing US9 promoters. The operator-containing 

US9 promoters were tested in CAT reporter constructs in transient assays, in order to 

analyze the intrinsic effect of the operator insertion on promoter activation by HCMV 

immediate-early proteins IE1 and IE2, or wild type AD 169 virus. In addition, RVlac- 

mediated repression of these promoters in CAT reporter constructs, and the ability of 

IPTG to restore promoter activity were assessed.
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CHAPTER m  

MATERIALS AND METHODS

Cells. Primary human foreskin fibroblasts (HFF) were grown in Minimum Essential 

Media Eagle (MEM) (Gibco BRL, Rockville, MD), supplemented with 10% heat- 

inactivated newborn calf serum (Gibco BRL, Rockville, MD), 0.03 % L-glutamine 

(Sigma, St. Louis, MO), 0.006 % Penicillin (Sigma, St. Louis, MO), and 0.01 % 

Streptomycin (Sigma, St. Louis, MO). HFF cells were passaged weekly. COS-1 cells 

(African green monkey, SV40 transformed kidney fibroblasts) were obtained from the 

American Type Culture Collection (ATCC) (ATCC Number: CRL-1650, Rockville, MD) 

(Gluzman, 1981), and were propagated in MEM, containing S% heat-inactivated fetal calf 

serum (Gibco BRL, St. Louis, MO), 0.03 % L-glutamine, 0.006 % Penicillin, and 0.01 % 

Streptomycin. All cells were incubated at 37 0 C, 5% CO2 .

Viruses. The viruses used in this study were the HCMV strain AD 169 and its 

derivative RV134, containing the Escherichia coli (3-glucuronidase marker gene, under 

the control of the 2.7 HCMV early promoter, and inserted in the US9-US10 intergenic 

region of the AD 169 genome. RV670, a recombinant HCMV deleted of IRS 1, US1 

through USS, and the US6  family, was obtained from Dr. T. Jones (Jones and Muzithras, 

1992). Viruses were grown in cultured primary human foreskin fibroblasts (HFF) for the 

preparation of high-titer stocks. The stocks were titered by plaque assay in HFF cells, 

using standard procedures.

Plasmid constructions. Standard plasmid cloning and plasmid preparation 

techniques were performed (Maniatis et al., 1987). Restriction endonuclease digestion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

protocols were conducted as suggested by the manufacturers (Promega, Madison, WI,

New England Biolabs, Beverly, MA).

Plasmid pMIEP/ac / (shown in Figure 1) was constructed by inserting the 1.6 

kilobase (kb) Escherichia coli lac i gene in place of the IE I cDNA downstream of the 

HCMV major immediate-early promoter (MIEP) in the pIE72kD expression vector. The 

MIEP consists of a HindiII to &/II fragment of 800 nucleotides derived from plasmid 

p760CAT (Stinski and Roehr, 1985), obtained from Dr. Stinski, and the 1.8 kb IE 1 cDNA 

(encoding the HCMV immediate-early protein IE72) is a Ss/II to HindiII fragment. The 

lac i gene (modified to include the SV40 T antigen nuclear localization signal) was derived 

from the p3’SS eukaryotic Lac Repressor expressing vector in the Lac Switch inducible 

mammalian expression system (Stratagene, La Jolla, CA). A unique Xbal site 15 

nucleotides upstream of the 5’ end of the lac i gene was used to linearize p3’SS. The linear 

DNA molecules were extracted with phenol, and subsequently with chloroform. Following 

ethanol precipitation, these molecules were treated with DNA Polymerase Large (Klenow) 

fragment (New England Biolabs, Beverly, MA). Previously kinased &/II linkers were then 

ligated to the linear vector. The resulting clones were screened for the presence of the 

&/II linkers. Digestion of pIE72kD with 5 5 /D, followed by partial digestion with 

Hindm, and ligation of the &/Q to Hindlll 1. 6  kb fragment containing the lac i gene, 

allowed for the generation of pMIEP/ac i.

Plasmid pRVMIEPlac i was constructed by inserting the MIEP-/ac / gene Hindm  

cassette derived from plasmid pMIEP/ac /, into a unique Hind m  site upstream of the 

US9 promoter in the recombination vector pRV3 (shown in Figure 3). This Hindm  site 

was generated by inserting a BamHl -Xbal -Hindlll linker into a unique Apal site in the
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US9-US10 intergenic region (5’GGGATCCGCTCTAGAGCAAGCTTGGGCC3’). 

pRV3 contains genes from a nonessential region of the HCMV genome (US8  through 

US11) that provide the appropriate flanking sequences to allow homologous 

recombination into the viral genome. The clone in which the orientation of the lac i gene 

conforms to the direction of transcription of the neighboring genes was isolated.

Plasmid pUS9CAT (Figure 11) was constructed by cloning the US9 promoter- 

leader as a 310 nucleotide (-269 to +41) Hindlll fragment, from pRV3 (which had been 

modified with the insertion of a Hindlll site into the 5 5 /1 1  site at +40 in the leader 

sequence), into a unique Hindlll site upstream of the chloramphenicol acetyl transferase 

(CAT) gene in pSVOCAT.

Plasmid pUS9opCAT (shown in Figure 11) was generated by inserting the lac 

operator sequence 5’GAATTGTGAGCGGATAACAATTTC3’ flanked by Sstll linkers 

into a unique 5 5 /11 site at nucleotide position +40 in the leader sequence of the US9 

promoter-leader in pUS9CAT.

To generate pUS9op(-16)CAT and pUS9op(-6)CAT (shown in Figure 11), the lac 

operator sequence 5’GAATTGTGAGCGGATAACAATTTC3’ was inserted at different 

alternative sites in proximity to the TATA box within the US9 promoter, by an 

overlapping PCR mutagenesis strategy (shown in Figure 12) based on modifications of 

PCR protocols previously described (Zhang and Moss, 1991). Two operator-containing 

US9 promoters, US9op(-16) and US9op(-6), with the lac operator sequence 16 or 6  

nucleotides upstream of the transcription start site, respectively, were generated using 

plasmid pUS9C AT as a template. Two separate PCR reactions were conducted for each 

operator-containing promoter. For the first reaction, primers pSVOl’:
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5’GCTCTGATGCCGCATAGTTAAGCC 3’, and US92: 5’

GCCTCTTTATATCGTCCCGACGTGACGCG 3’ were utilized. For the second reaction, 

the primers used were US93: 5’

CGCGTC ACGTCGCtGACGAT AT AAAGAGGC AGAATTGT GAGCGGAT AAC AATT 

TCCGGTGTTTCGGCTCCCGCAC 3’ (underlined sequence represents operator at -16)

or US93’: 5’

CGCGTCACGTCGGGACGATATAAAGAGGCACGGTGTTTCGGAATTGIGAGCG 

GATAACAATTTCGCTCCCGCAC 3’ (underlined sequence represents operator at -6 ), 

and CAT4’: 5’ GCGGGCAAGAATGTGAATAAAGGCCGG 3’. For each operator- 

containing promoter, these reactions rendered two overlapping products, which were 

subsequently treated with DNA Polymerase Large (Klenow) fragment (New England 

Biolabs, Beverly, MA), and then mixed together and PCR amplified using primers 

pSVOl’ (5’-most), and CAT4’ (3’-most), to generate the final operator-containing 

product. The final product was digested with Hindlll, purified by electrophoresis in 5% 

polyacrylamide, and ligated into //mc/IIl-linearized pSVOCAT, to generate 

pUS9op(-16)CAT (operator at -16) or pUS9op(-6)CAT (operator at -6 ). The presence of 

the operator sequence in these constructs was confirmed by DNA sequencing (Pharmacia 

LKB.A.L.F. DNA Sequencer, Piscataway, NJ).

Recombination plasmids pRVUS9op-16 and pRVUS9op-6 (Figure 11) were 

constructed by inserting the operator-containing US9 promoters derived as HirtdUl to 

Ssfll fragments from pUS9op(-16)CAT and pUS9op(-6)CAT, respectively, in place of the 

US9 promoter (removed as a Hindlll to &/II fragment) in pRV3.
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Recombination plasmids pRV/acUS9op-16 and pRV/aclTS9op-6 (shown in 

Figure 11) were derived from pRVUS9op-l6 and pRVUS9op-6, respectively, by 

inserting the MIEP-/ac / gene Hindlll cassette [derived from plasmid pRVMIEP/ac /

(Figure 3)] into a unique HindUl site upstream of the US9 promoter. The resulting clones 

were screened for orientation of the MIEP-/ac / gene cassette using Ss/H Clones in which 

transcription of the lac i gene proceeds in the same direction as the neighboring genes 

were isolated.

Plasmids pOpl3CAT and pOpRSVICAT (shown in Figure 8 A) were obtained 

from the Lac Switch inducible mammalian expression system (Stratagene, La Jolla, CA).

Plasmid pSVH (Depto and Stenberg, 1989) was obtained from Dr. Stenberg. This 

expression vector contains the genes encoding the HCMV immediate-early proteins IE1 

and IE2.

DNA preparations. Infected HFF DNA was isolated using the Genomic Prep Cells 

and Tissue DNA isolation kit (Pharmacia Biotech, Piscataway, N.J.) following the 

manufacturer’s suggestions. DNA was quantitated on a spectrophotometer (Milton Roy 

Spectronic 1001 Plus) at 260 nm.

RNA preparations. Total RNA was isolated from infected HFF cells using the 

Qiagen Rneasy kit (Qiagen, Chatsworth, CA). The protocol was conducted as described 

by the manufacturer. RNA was quantitated on a spectrophotometer (Milton Roy 

Spectronic 1 0 0 1  Plus) at 260 nm.

Construction of recombinant HCMV. Recombinant viruses expressing the lac 

repressor, and/or containing a lac operator sequence in the US9 promoter in the 

endogenous locus were generated by a homologous recombination strategy involving the
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replacement of the ^-glucuronidase (fi-glu) marker gene in the US9-US10 intergenic 

region of the RV134 (parental recombinant HCMV) genome (see Figure 4). Homologous 

recombination resulted following cotransfection of infectious RV134 DNA and linearized 

recombination plasmid DNA into cultured primary human foreskin fibroblasts using a 

modification of the calcium phosphate precipitation procedure described in Current 

Protocols in Molecular Biology (1996, Volume 1, Unit 9.1, Supplement 36) (Ausubel et 

al., 1996). 8  ug of RV134-infected cell DNA and 1-2 ug of CsCl-purified, &i/I-linearized 

recombination plasmid DNA were added to 4S0 ul of sterile distilled water, followed by 

the addition of 50 ul of a 2.5 M CaCl2 solution. After gentle mixing, 500 ul of 2X Hepes- 

buffered saline (38.4 mM Hepes, 274 mM NaCl, 10 mM KC1, 1 .6  mM Na2 HPO4 , 0.2% 

dextrose, pH 7.05) were added dropwise to the DNA-CaCl2 mix, using a Pasteur pipette 

to mix gently. The DNA precipitate was allowed to form by incubating the mix at room 

temperature for 15 minutes. The DNA precipitate was then added dropwise onto a 

monolayer of primary human foreskin fibroblasts in a 1 0 0  mm-tissue culture plate, 

previously washed with 5 ml of IX Hepes-buffered saline. After an 8 -minute incubation at 

room temperature, 10 ml of HFF culture media were added. This was followed by 

incubation at 37° C for 4 hs. At this time, cells were shocked using 2 ml of a 15% glycerol 

solution, to increase the cellular uptake of DNA. After 45 seconds, the glycerol was 

removed, and 5 ml of HFF culture media were quickly added to wash out remaining 

glycerol. The media was removed 20 seconds later, and 15 ml of fresh culture media were 

added. Transfected cells were incubated at 37° C, with regular changes of fresh media 

every 4 days. Approximately 10 days after transfection, the first signs of cytopathic effect
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(CPE) were visible. When transfected cells reached 100% CPE, primary stocks of putative 

recombinant virus were harvested and stored at -80° C.

Isolation of recombinant HCMV. To identify the primary stocks that contained 

recombinant virus in addition to parental virus, the stocks harvested as described above 

were initially screened by PCR. HFF cells were infected with the primary stocks at a 

multiplicity of infection (MOI) of 2 plaque forming units (PFU) per cell, and at 72 hs post 

infection, cells were harvested and total infected cell DNA was isolated. For the 

identification of lac /-containing recombinant viruses, lac /-specific primers P3: 

5’CTCCCACCATGAAACCAGTAACG 3 \ and M2: 

5’GGTATCGTCGTATCCCACTACCG 3’ were used. These primers amplified 

835 nucleotides within the lac i gene. US9 promoter-specific primers 

US9opTC(scr)l: 5’ CCATATAAACGTGGGTTTCGGTGACCACAACC 3’, and 

US9op(scr)3: 5’ GACACCAGTGCCAGAAGAAGGAACAGGTGGAC 3’, were used for 

screening for operator-containing recombinant viruses. These primers amplified 

318 nucleotides containing the wild type US9 promoter. The presence of the 

24- nucleotide lac operator sequence resulted in the generation of a PCR product of 

342 nucleotides. The screening of primary stocks was also conducted by western blot 

analysis, for the identification of stocks containing recombinant viruses expressing the lac 

repressor, using an anti-/ac / polyclonal serum (Stratagene, La Jolla, C A) (see western 

blot analysis section below). In addition, the screening involved Southern blot analysis 

using a lac /-specific probe (see Southern blot section below). Southern blot analysis was 

also conducted using an AD 169 Hindm  X probe (spanning the HCMV AD 169 genomic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47

region US7 through US11), for the identification of primary stocks containing 

recombinant viruses (see Southern blot analysis section below).

Following the identification of primary stocks containing recombinant viruses, 

these pools of virus were screened by altered plaque phenotype (blue plaques [parental 

R.V134] or white plaques [recombinant]) in the presence of the chromogenic substrate for 

3-glu: 5-bromo-4-chioro-3-indolyI-3-D-glucuronide (X-glu) (Biosynth AG). This allowed 

for the isolation of recombinant viruses. HFF cells in monolayer were infected with 

primary stocks at an MOI of 10 PFU per plate. After adsorption of the virus at 37° C for 

2 hs, the inoculum was removed, and 10 ml of fresh culture media were added. 24 hs after 

infection, the infected cells were overlayed with minimum media (MEM) (Fisher Scientific, 

Pittsburg, PA) containing 10% heat-inactivated fetal calf serum, and 0.5% agarose. Cells 

were fed by additional overlays weekly. When plaques became visible macroscopically 

(approximately 2-3 weeks after infection), plaques were picked as agarose plugs, placed in 

individual wells of 24 well culture dishes, and incubated until CPE became visible. At that 

time, the cells were overlayed as described above, with the addition of 75 ug per ml of 

X-glu. After 3 days, wells with a clear overlay were considered negative for 

3-glucuronidase activity, suggesting the presence of recombinant virus.

Individual plaques were picked from clear wells as agarose plugs, and the virus 

was released from the agarose by incubating the plug in 3 ml of culture media for 

30 minutes, with frequent pipetting up and down. The resulting virus suspension was 

divided into 3 equal aliquots, and inoculated into each of 3 100 mm culture plates of HFF 

monolayers. After virus adsorption at 37° C for 2 hs, the inoculum was removed from 2 of 

the plates, and they were overlayed with fresh culture media until 100% CPE occurred. At
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that time, the cells were harvested for I) the generation of a high-titer stock, and 2) 

infected ceil DNA isolation for Southern blot analysis. When individual plaques became 

visible in the remaining plate, it was overlayed with MEM containing 10% heat-inactivated 

fetal calf serum, 0.5% agarose, and X-glu, and incubated at 37° C to verify the absence of 

blue plaque phenotype virus contamination during the selection of the white plaque 

phenotype virus.

PCR protocols. PCR reactions in this study were performed using Platinum Taq 

DNA Polymerase (Gibco BRL, Baltimore, MD), following the manufacturer’s 

suggestions. The reactions were conducted in an Ericomp Delta Cycler II System (San 

Diego, CA). The PCR products were analyzed by electrophoresis in 1.2 % agarose or 

5 % polyacrylamide gels, and visualized by staining with ethidium bromide. The gels were 

photographed with a Polaroid camera (Fotodyne Incorporated). The images presented in 

chapter IV were generated with a UMAX PowerLook U Scanner with Paintshop Pro 

version 5.0 Jacs Software.

Transient transfection assays. CAT reporter constructs were used to study the 

expression of operator-containing US9 promoters in the presence of either HCMV 

immediate-early proteins IE1 and IE2, using plasmid pSVH (Depto and Stenberg, 1989), 

or wild type virus (AD 169) or recombinant virus expressing the lac repressor (RV/ac). A 

DEAE-Dextran transfection protocol was performed as previously described (Stenberg et 

al., 1990). To carry out the aims mentioned above, the general protocol that was 

conducted was as follows. Plasmid DNA was added to a microfuge tube. 1 ml of sterile 

Tris buffered saline (30 mM Tris-HCl pH 7.5, 150 mM NaCl) (TBS) was added, and the 

DNA solution was mixed by vortexing. 0.5 mg DEAE-Dextran (Pharmacia, Uppsala,
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Sweden) were then added. This DNA solution was added to HFF cells on 100 mm culture 

plates, which had been previously washed with TBS. The cells were incubated at 37° C for 

30 minutes, with frequent rocking. This was followed by the addition of 10 ml of lOOuM 

chloroquine (Sigma, St. Louis, MO) in culture media. After the addition of chloroquine, 

the cells were incubated at 37° C for 3 hs. At that time, the media was replaced with fresh 

culture media, and the transfected cells were incubated at 37° C.

To study IE1 and IE2 activation of operator-containing US9 promoters, 5 ug of 

pUS9opCAT, pUS9op(-l6)CAT or pUS9op(-6)CAT (or pUS9CAT as control) were 

cotransfected with 5 ug of pSVH into HFF cells. Cells were harvested 48 hs post 

transfection and assayed for CAT activity. Plasmids pUS9op(-16)CAT and 

pUS9op(-6)CAT were also tested for activation by AD 169 virus. 10 ug of the reporter 

plasmid were transfected into HFF cells. 24 hs after transfection, the cells were infected 

with 2 PFU per cell of AD 169 virus. After 2 hs adsorption at 37° C, the virus inoculum 

was removed and fresh media was added. Cells were harvested 72 hs post infection and 

assayed for CAT activity.

To assess lac repressor mediated repression of operator-containing promoters 

(RSV promoters in pOpl3CAT and pOpRSVICAT, or US9 promoters in pUS9opCAT, 

pUS9op(-l6)CAT and pUS9op(-6)CAT), 10 ug of either plasmid was transfected into 

HFF cells. 24 hs after transfection, the cells were mock infected, or infected with 2 PFU 

per cell of AD169 (as control), or RV/ac. After adsorption at 37° C for 2 hs, the inoculum 

was removed and fresh media was added onto the infected cells. For IPTG derepression 

experiments, IPTG (Fisher Scientific, Pittsburg, PA) was added after virus adsorption to 

final concentrations of 0, 0.2,0.4, 0.8, or 2 mM. The cells were exposed to IPTG-
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containing media until the indicated times of harvest. Cells were harvested at 24, 48, and 

72 hs post infection, and assayed for CAT activity.

In order to assess expression of the lac repressor, COS-1 cells were transfected 

with 10 ug of pMIEP/ac / using the general transfection protocol described above. 48 hs 

after transfection, cell extracts were prepared for western blot analysis.

Chloramphenicol acetvl transferase (CAT) assay. CAT activity was determined as 

previously described (Depto and Stenberg, 1989). Transiently transfected cells were 

washed with cold Tris buffered saline (TBS) twice. Using 1 ml of TBS, cells were scraped 

into microfuge tubes, pelleted by centrifugation, and subsequently resuspended in 100 ul 

of 0.25 M Tris-HCl pH 7.8. Three cycles of freeze-thaw were done, and the cell extracts 

were centrifuged to spin out cell debris. The supernatants were transferred to new 

microfuge tubes, and heat inactivated at 68° C for 10 minutes. For the acetylation reaction,

20 ul of the heat-inactivated extract was added to a reaction mix containing 0.1 uCi l4C- 

Chloramphenicol (Amersham, Chicago, IL), 70 ul of 0.25 M Tris-HCl pH 7.8, 34 ul of 

sterile distilled water, and 20 ul acetyl CoA [4 mM] (Boehringer Mannheim, Indianapolis, 

IN). The reaction was incubated at 37° C for 30 minutes. To stop the reaction, 750 ul of 

ethyl acetate were added, immediately followed by vortexing and centrifugation of the 

sample for 1 minute. The top aqueous phase was recovered and dried down. The residue 

was resuspended in 20 ul of ethyl acetate, and spotted onto a thin layer chromatography 

(TLC) plate (E. Merck, Darmstadt, Germany). Separation of the reaction products was 

achieved by partition chromatography in a chamber containing 190 ml chloroform and 

10 ml methanol, for 1 h. The TLC plate was exposed to X-Ray film (Fuji) with an
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intensifying screen at -80° C overnight. Percent acetyiation was quantitated on the TLC 

plate by phosphorimager analysis (Molecular Dynamics, Sunnyvale, CA).

Southern blot analysis. The Southern blot protocol was performed as described by 

Maniatis et al. (1987). 2.S ug of ///wi/III-digested, infected cell DNA was loaded onto a 

0.8% agarose gel, and subjected to electrophoresis at 22 volts overnight. The gel was then 

stained with ethidium bromide for 45 minutes, and subsequently photographed.

Depurination was done by submerging the gel in 0.25 M HC1 at room temperature for 10 

minutes, followed by denaturation in 0.5 M NaOH, 1.5 M NaCl, at room temperature for 

45 minutes. The gel was then soaked in a neutralizing solution (1 M Tris-HCl pH 8.0, 1.5 

M NaCl) at room temperature for 45 minutes. After that, the DNA was transferred from 

the gel onto a positively-charged nylon membrane (Pall Biodyne, Pall Biosupport, East 

Hills, NY) in 10X SSC (1.5 M NaCl, 150 mM sodium citrate pH 7.0) overnight. The 

following day, the DNA in the blot was UV cross-linked to the membrane (150 J), and 

baked at 80° C for 1 h. Hybridization was conducted using the Boehringer Mannheim 

Genius System. The DNA probes used were the 5.2 kb AD 169 HindiII X fragment, which 

spans the US7 through US11 region of the HCMV genome, and a lac /-specific probe, 

which was derived by digesting pMIEP/ac / with &/II and Hindlll, to render a 1.6 kb 

fragment containing the lac i gene. The probes were generated with Klenow DNA 

Polymerase by random primed incorporation of digoxigenin (DIG)-labeled deoxyuridine- 

triphosphate. The blots were exposed to the hybridization solution (containing 7 ng/ml of 

DIG-labeled DNA probe), at 42° C overnight in a Micro Hybridization Incubator, Model 

2000 (Robbins Scientific, Sunnyvale, CA). Southern blots were washed 3 times in 2X 

SSC, 0.1% SDS at room temperature. This was followed by 3 washes in 0.5X SSC, 0.1%
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SDS at 65° C. Detection of the hybridized DNA fragments was done using an antibody- 

conjugate [anti-digoxigenin alkaline phosphatase conjugate (anti-DIG-AP)], and a 

chemiluminescent substrate for alkaline phosphatase (Disodium 3-(4-methoxyspiro[l,2- 

dioxetane-3, 2 ’ -( 5 ’-chloro)tricyclo [3.3.13,7]decan)-4-yl)phenylphosphate) (CSPD, Tropix, 

Inc. Bedford, MA).The blots were immediately exposed to X-Ray film (Fuji) with an 

intensifying screen at room temperature. The images presented in chapter IV were 

generated with a UMAX PowerLook II Scanner with Paintshop Pro version 5.0 Jacs 

Software.

Northern blot analysis. HFF cells in 100 mm culture plates were mock infected, or 

infected with wild type AD 169, parental RV134, or recombinant viruses at an MOI of 

2 PFU per cell. Virus was allowed to adsorb at 37° C for 2 hs. The inoculum was then 

removed, and fresh culture media was added. Infected cells were harvested 24,48, and 

72 hs post infection, and total RNA was isolated. Northern blot analysis was conducted 

following the protocol described by Maniatis et ai. (1987), with modifications. One tenth 

of the total RNA recovered was loaded onto a I % agarose gel containing 

6.6 % formaldehyde. The RNA was subjected to electrophoresis at 70 volts for 4 hs. After 

electrophoresis, the gel was photographed, and subsequently washed 3 times with sterile 

distilled water. The RNA was then transferred to a Magna charge nylon membrane 

(Osmonics Inc. Westborough, MA) in 10X SSC, overnight. The following day, the RNA 

was fixed to the membrane by UV cross-linking (150 J), and baking at 80° C for 2 hs. The 

membrane was hybridized at 42° C overnight, to 107cpm of a radiolabeled DNA probe to 

the US9 gene [a HindlU-EcoRl fragment of 1578 nucleotides derived from pRV3. This 

fragment comprises the US8 and US9 open reading frames (see Figure 3)]. The
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[a32P]dCTP-labeled probe was generated using the Boehringer Mannheim Random 

Primed DNA labeling kit (specific activity 2 x 109cpm/ug). Following hybridization, the 

blot was subjected to 2 washes in 2X SSC, 0.1% SDS, at room temperature, followed by 

2-3 washes in 0. IX SSC, 0.1% SDS at 50° C. The blot was exposed to X-Ray film (Fuji) 

with an intensifying screen, at -80° C overnight. The RNA in the blot was quantitated by 

phosphorimager analysis (Molecular Dynamics, Sunnyvale, CA), and was expressed in 

arbitrary units. To correct the data for multiplicities of infection, the blot was stripped by 

boiling in 0.1% SDS for 10 minutes. The RNA in the blot was hybridized to a radiolabeled 

DNA probe to the UL99 (pp28) gene. This probe was derived from plasmid p28Sl 

(Depto, 1991) as a 1 kb Smal fragment from Xbal-C, comprising the entire pp28 gene 

sequences. Radiolabeling of the pp28 probe, hybridization, washes, autoradiography, and 

quantitation were performed as described for the US9 probe.

Western blot analysis. Western blot analysis was conducted to assess lac repressor 

protein expression a) in cells transfected with pMIEP/ac /, b) in cells infected with primary 

stocks of putative recombinant virus, to identify those containing lac /-positive 

recombinant viruses, and c) in cells infected with purified lac /-positive recombinant 

viruses. Protein expression was determined at 24,48, and 72 hs post infection. The 

protocol was conducted as previously described (Stenberg et al., 1989). Cells were lysed 

in 30 mM Tris-HCl pH 7.5, 1% SDS, and scraped into a microfuge tube. 60 ul of the 

lysate were treated with 3 ul of (3-mercaptoethanol, and loaded on a 12.5% SDS- 

polyacrylamide gel. Electrophoresis was performed at 8 milliamps, overnight. The proteins 

in the gel were then electroblotted onto a Nitropure nitrocellulose membrane (MSI, 

Westboro, MA), at 100 volts for 2 hs, at 4° C. The membrane was subsequently treated
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with a protein-blocking solution for 1 h. After that, the blot was incubated with a rabbit 

anti-/ac i polyclonal serum (Stratagene, La Jolla, CA), for I h at room temperature. This 

was followed by 3 washes using RIPA-5 buffer (30 mM Tris pH 7.5, 0.5M NaCl, 12 mM 

deoxycholic acid, 1% NP40,0.1% SDS) at room temperature. A goat anti-rabbit 

polyclonal serum conjugated with horseradish peroxidase (Sigma, St. Louis, MO) was 

used as secondary antibody, and the incubation proceeded at room temperature for 1 h.

3 RIPA-5 washes were then done at room temperature. Chemiluminescent detection was 

performed by ECL (Amersham Life Science, Buckinghamshire, England), which includes 

luminol as the luminescent substrate for horseradish peroxidase. The blot was exposed to 

X-Ray film (Fuji) at room temperature, using an intensifying screen. The images presented 

in chapter IV were generated using a UMAX PowerLook II Scanner with Paintshop Pro 

version 5.0 Jacs Software.

Growth curve analysis of recombinant HCMV. HFF cells were seeded onto 25 cm2 

culture flasks. Cells were infected at an MOI of 2 PFU per cell, with either parental virus 

RV134 or the recombinant viruses. Infections were performed in duplicate. After virus 

adsorption at 37° C for 2 hs, the inoculum was removed, and fresh culture media was 

added. The infected cells were incubated at 37° C. Total virus was harvested daily (day 1 

through day 7 post infection), by freezing the infected cells at -80° C, followed by thawing 

at 37° C. The infected cells were then scraped into the media, and the resulting virus 

suspension was transferred to a 50 ml conical tube for sonication (30 seconds). Total 

infectious virus was quantitated by plaque assay on HFF cells seeded on 6 well culture 

dishes, using standard procedures. Titers were expressed as log io PFU/ml.
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CHAPTER IV 

RESULTS

Construction and characterization of an & coli lac repressor-expressing HCMV

Cloning of the lac / gene into an HCMV expression vector 

To generate a lac repressor expressing virus (RV/ac) (see specific objectives in 

chapter II), the 1.6 kb lac i gene was first cloned downstream of the HCMV major 

immediate-early promoter (MIEP) in the pIE72kd expression vector to generate 

pMIEP/drc / (Figure 1). The MIEP has been extensively used to express various HCMV 

genes (reviewed by Stenberg, 1993). Because the MIEP is a very strong promoter that is 

activated by several viral and cellular transcription factors, and is expressed throughout 

the course of HCMV infection, it was hypothesized that this promoter would allow for the 

expression of sufficient amounts of the lac repressor protein to efficiently block 

transcription from operator-containing promoters during all times after infection. Elevated 

levels of protein are necessary because the lac repressor has to kinetically outcompete the 

binding of transcription factors involved in the formation of an initiation-competent 

transcription complex at the operator-containing promoter site. Such competition depends 

on the free concentrations of the transcription factors and the repressor, as well as the 

rates of complex formation with their respective DNA binding sites. Because little is 

known about these parameters for different promoters and cell types, the intracellular 

concentration of lac repressor should be high.

Before inserting the MIEP-/ac / gene cassette into the virus, pMIEP/ac / (see 

Figure 1) was first tested for expression of the lac repressor by transfecting it into COS 

cells. COS cells are an established cell line derived from African green monkey kidney
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FIG. 1. Cloning of the lac i gene into an HCMV expression vector.Thel.6 kb 

lac i gene was derived from plasmid p3’SS (Lac Switch inducible mammalian 

expression system, Stratagene, La Jolla, CA). The lac i gene was cloned 

downstream of the HCMV Major Immediate-Early Promoter (MIEP) in place 

of IE1 cDNA in pIE72kd to generate pMIEP/ac /. H. Hindlll site, S: SstH site.
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fibroblasts. These cells have been transformed by an origin-defective mutant of Simian 

Virus 40 (SV40) that codes for wild type T antigen (Gluzman, 1981). These transformed 

cells produce T antigen, which makes them a suitable transfection host for expression 

vectors containing S V40 origin of replication. COS cells were transfected with the 

expression vector pMIEP/ac /, or pMIEP/ac / and pS VH, an expression vector containing 

the SV40 origin of replication and encoding IE1 and IE2 proteins. These viral 

transactivators regulate MIEP expression along with cellular transcription factors (see The 

Replicative Cycle in chapter I). As a negative control for lac repressor expression, COS 

cells were transfected with pS VH alone. Cell extracts were prepared for western blot 

analysis 48 hs after transfection. The procedure was followed as previously described 

(Stenberg et al., 1989) (see Materials and Methods). A rabbit anti-/ac / polyclonal serum 

was used to detect lac repressor protein in the cell extracts. The results are presented in 

Figure 2. Lac repressor protein was undetectable in cells transfected with pSVH alone. On 

the other hand, significant levels of expression of the lac repressor protein were observed 

in cells transfected with pMIEP/ac /. Similar levels of lac repressor were observed in cells 

transfected with pMIEP/ac / and pSVH, suggesting that, at least under the experimental 

conditions used, expression was mostly affected by cellular transcription factors. The 

molecular weight of the repressor polypeptide was 37kD as expected. These results 

demonstrated that the lac i gene can be expressed from the MIEP to significant levels, 

suggesting that insertion of the MIEP-/ac / gene cassette into the HCMV genome to 

generate recombinant virus RV/ac would likely result in the production of elevated levels 

of the lac repressor protein during the course of infection with RV/ac. However, lac
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FIG. 2. Lac repressor expression from pMIEP/ac /. COS ceils were transfected with 

either 10 ug of pMIEP/ac /, or 5 ug of pMIEP/ac i and 5 ug of pSVH, or 10 ug of 

pSVH alone as a negative control. 48 hs after transfection, cell extracts were prepared 

for western blot analysis. A rabbit anti-lac i polyclonal serum was used for the 

detection of the 37 kilodalton-/ac repressor polypeptide. The numbers indicate 

molecular weight markers in kilodaltons.
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repressor protein expression would have to be measured in RV/ac-infected cells to 

confirm these speculations (see corresponding section below).

Insertion of the lac i gene into the HCMV genome 

The next step was to insert the lac i gene (\HEP-/ac i gene cassette) into the viral 

genome. The experimental design consisted of a replacement recombination strategy to 

generate a recombinant HCMV containing the lac i gene (RV/ac) in place of a selectable 

marker gene. To this end, RV134, a recombinant HCMV containing the (3-glucuronidase 

(3-glu) marker gene located in a nonessential region of the viral genome (between US9 

and US 10 open reading frames) (Figure 4), was used as parental virus for the homologous 

recombination leading to the replacement of the 3-glu gene with the MIEP-/ac / gene 

cassette. Isolation of the resulting recombinant virus was achieved by screening for altered 

plaque phenotype: blue plaques (parental RV134) or white plaques (recombinant virus) in 

the presence of the chromogenic substrate for 3-glu: 5-bromo-4-chIoro-3-indoIyl-3-D- 

glucuronide (X-glu). The detailed experimental procedure was as follows. To generate 

RV/ac, the MIEP-/ac / gene cassette was first inserted into a unique Hindlll site between 

US9 and US10 in the recombination vector pRV3 (Figure 3). The clone in which the 

orientation of the lac i gene conforms to the direction of transcription of the neighboring 

genes (right to left in the prototype HCMV genome) was isolated. This construct, 

pRVMIEP/ac /, was used to insert the MIEP-/ac / gene cassette into the 3-glu locus in 

RV134 by homologous recombination directed by the appropriate flanking sequences 

(Figure 4). This was accomplished by cotransfecting infectious RV134 DNA and 

linearized pRVMIEP/ac / into primary human foreskin fibroblasts (HFF), using a calcium
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FIG. 3. Diagram of the recombination vector pRV3 and generation of 

pRVMIEP/ac /. The MIEP-/ac / gene expression unit was inserted into a unique 

Hindi.n site (generated by inserting the linker sequence 

5 ’GGGATCCGCTCTAGAGCAAGCAAGCTTGGGCC3 ’ into an Apal site) 

between US9 and US10 open reading frames in pRV3. This vector contains genes 

from a nonessential region of the HCMV genome (US8 through US11) that 

provide the appropriate flanking sequences to allow recombination into the viral 

genome. A clone in which transcription of the lac i gene proceeds in the same 

direction as the neighboring genes (right to left in the prototypic HCMV genome, 

as indicated by the arrow) was isolated and designated pRVMIEP/ac /.
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FIG. 4. Insertion of the lac / gene into the HCMV genome. The target region in the viral genome for 

insertion of the MIEP-lac i gene cassette was the Hindlll X fragment of the ADI 69 virus strain, which 

comprises open reading frames US7 through US11. This region is nonessential for viral replication in cells 

in culture. RV134 is the recombinant HCMV used as parental virus for the homologous recombination 

leading to insertion of the lac i gene into the viral genome. This vims contains the marker gene B - 

glucuronidase between US9 and US 10. RV134 produces blue plaques in the presence of the substrate for 

B -glu: X-glu. Homologous recombination occurs following cotransfection of RV134 DNA and a 

recombination plasmid containing the MIEP-/ac / gene cassette flanked by the appropriate flanking 

sequences (see Fig. 3) into HFF cells. This results in the replacement of the B-glu gene with the MIEP-/ac / 

gene cassette in the US9-US10 intergenic region, leading to the generation of a recombinant vims 

containing the lac i gene. This vims produces white plaques in the presence of X-glu. UL: unique long 

component of the HCMV genome, US: unique short component of the HCMV genome, H: Hindfll, E: 

EcoRl, arrows in the right-left direction indicate direction of transcription of the open reading frames in the 

Hindlll X region, and of the MIEP-Zorc i gene expression unit.
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phosphate precipitation procedure as described in Materials and Methods. Briefly, 8 ug of 

RV134 DNA and 2 ug of linearized pRVMIEP/ac / were transfected into HFF cells. 

Approximately 10 days after transfection, the first signs of cytopathic effect (CPE) were 

visible. When transfected cells reached 100% CPE, primary stocks of putative 

recombinant virus were harvested. In this manner, four primary stocks of virus were 

obtained.

In order to identify the primary stocks that contained recombinant viruses 

containing the lac i gene, the stocks, containing both wild type and recombinant viruses, 

were initially screened by PCR, using lac /-specific primers (see Materials and Methods). 

This initial screening involved infecting HFF cells with the primary stocks and harvesting 

the infected cells at 72 hs post infection. Total cell DNA was extracted, and was 

subsequently amplified by PCR using forward and reverse primers specific for the lac i 

gene. These primers amplify 835 nucleotides within the lac / gene. The PCR products 

were subjected to electrophoresis in 1.2% agarose, and were visualized by ethidium 

bromide staining. Figure 5 shows that a PCR product of the correct size (835 base pairs) 

was obtained for one stock of virus (RV3MIEP£ac3 4.26.95), indicating the presence of 

recombinant virus containing the lac i gene.

In order to isolate the recombinant virus, the lac /-positive primary stock 

(RV3MIEP£ac3 4.26.95) was screened by altered plaque phenotype. Briefly, HFF cells 

were infected with the lac /-positive stock at 10 PFU per plate. The infected cells were 

overlayed with minimum essential media (MEM) containing 10% heat-inactivated fetal 

calf serum and 0.5% agarose. Approximately 550 plaques were picked 2-3 weeks after 

infection, placed in individual wells of 24 well culture dishes and incubated until CPE
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FIG. 5. PCR screening for RVlac. Primary stocks resulting from the 

cotransfection of RV134 DNA and pRVMIEP/ac i were screened by PCR 

using lac i specific primers (Materials and Methods). HFF cells were infected 

with the primary stocks. At 72 hs post infection, the infected cells were 

harvested, and total cell DNA was isolated. The extracted DNA was PCR 

amplified using the lac i specific primers. The PCR products were analyzed 

by electrophoresis in 1.2 % agarose, and visualized by ethidium bromide 

staining. The numbers on the left represent molecular weight markers (MW 

lane) in kilobases. RV134 DNA was used as negative control. Plasmid p3’SS 

(which contains the lac i  gene) was used as positive control. Four primary 

stocks (designated RV3MIEP/ac, followed by sample number and date of 

harvest of the stock) were screened.
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became visible. At that time, cells were overlayed as described above, with the addition 

of 75 ug per ml of X-glu. After 3 days, wells with a white or clear overlay were 

considered negative for 0-glucuronidase activity. Four individual clear plaques were 

isolated, and high titer virus stocks were prepared for the four isolates. These 

recombinant viruses were designated RVlac 1, RVlac 2, RVlac 3, and RVlac 4.

Genetic characterization of recombinant HCMV containing the lac i gene (RVlac)

To confirm recombination of the lac i gene into the viral genome of the white 

plaque phenotype viruses isolated, as well as lac i gene insertion into the appropriate 

locus, RVlac DNA was analyzed by Southern blot. Total cell DNA was prepared from 

RV/ac-infected HFF cells (using the four RVlac isolates), and was digested with HindUl. 

The resulting DNA fragments were subjected to electrophoresis in 0.8% agarose, 

transferred to a nylon membrane and hybridized to DIG-labeled probes (see Materials 

and Methods). The probes used were the HCMV AD 169 HindiII-X probe (5.2 kb) (which 

spans the region US7 through US11) (see Figure 4), and a lac i probe, a 1.6 kb fragment 

containing the complete lac i coding sequence. Figure 6A shows that HindUl digestion of 

RVlac DNA (containing the MEEP-/ac / gene HindUl cassette) resulted in the generation 

of two fragments (1.8 kb and 3.4 kb) derived from the HindQl X  region. This contrasts 

with the single 5.2 kb fragment derived from AD 169 DNA digested with HindQl, which 

hybridized to the HindlU X  probe. The new banding pattern obtained with the 

recombinant virus suggests the presence of at least one additional HindUl site within the 

HindUl X  region, suggesting that the MIEP-/ac i gene HindUl cassette was inserted in the 

appropriate locus (US9-US10 intergenic region). The presence of a 2.4 kb fragment
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FIG. 6. Genetic characterization of RVlac by Southern blot analysis. To 

confirm the lac i gene insertion in place of the fl-glu gene in RV134, total cell 

DNA was prepared from RVlac- or AD169-infected HFF cells, and 

subsequently digested with HindlU. The resulting DNA fragments were 

subjected to electrophoresis in 0.8 % agarose, transferred to a nylon membrane, 

and fixed. The DNA in the blot was hybridized to an AD169 HindlU X DIG- 

labeled probe (Materials and Methods). This S.2 kilobase (kb) probe spans the 

US7 through US11 region of the AD169 genome, and was used in the Southern 

blot analysis depicted in panel A. Panel B shows the results of Southern blot 

analysis using a 1.6 kb lac i gene DIG-labeled probe (comprising the entire 

coding sequence of the lac i gene). The numbers on the left of the blots 

represent molecular weight markers (expressed in kb). AD 169 and RV134 

DNAs were used as negative controls for lac i gene-specific hybridization. MW 

lane in panel B: molecular weight markers.
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hybridizing to the lac i probe (shown in Figure 6B) confirms the presence of the lac i 

gene in the viral genome. The results obtained using both probes were identical for the 

four isolates of RV/ac.

Lac repressor expression in RV/ac-infected cells 

To determine if the lac repressor protein was expressed in RV/ac-infected cells, 

western blot analysis was conducted as described in Materials and Methods, using a 

rabbit anti-lac i polyclonal serum. HFF cells were infected with the four RV/ac isolates at 

an MOI of 2. As a negative control for lac repressor expression, cells were infected with 

RV134 at an equivalent MOI. Infected cells were harvested at 24 hs after infection, and 

cell extracts were prepared for western blot analysis. The results obtained (Figure 7 A) 

using the four RV/ac isolates indicated that these viruses are capable of expressing 

significant amounts of the 37 kD lac repressor polypeptide. This figure illustrates lac 

repressor expression at 24 hs post infection. In order to address expression throughout the 

course of infection, an experiment was conducted in which HFF cells were infected with 

RV/ac 1, and were harvested at 24, 48, and 72 hs after infection, for western blot 

analysis. As negative controls, mock and RV134 infections were performed similarly. 

Figure 7B shows that the repressor is expressed throughout the course of infection, with 

levels increasing at 48 and 72 hs. At those times after infection, low levels of two smaller 

bands were observed. These polypeptides increased at later times of infection, and likely 

represent degradation products of the 37 kD repressor polypeptide. RV/ac 1 was used in 

all the subsequent experiments in this study, and is referred to as RV/ac.
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B.

RVlacRV134MOCK
24 48 72 24 48 72 24 48 72

FIG. 7. Expression of the lac i gene product in RV/ac-infected ceils. (A) HFF 

cells were infected with four isolates of RV/ac at 2 PFU per cell. Cells were 

harvested at 24 hs, and cell extracts were prepared for western blot analysis. 

As a positive control, lac i gene expression in COS cells transfected with 

pMIEP/ac i was included in the analysis. A RV134-infected cell extract was 

used as negative control. (B) Lac i gene expression was measured in cells 

infected with RV/acl at 24,48, and 72 hs post infection. Cells that were mock 

infected, or infected with RV134 and harvested at the indicated times were 

used as negative controls. The numbers on the right of the blots represent 

molecular weight markers in kilodaltons.
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Biological function of the lac repressor expressed from RVlac

Before addressing the response of HCMV-specific, operator-containing promoters 

to repression by RVlac (see specific objectives in Chapter II), the lac repressor protein 

produced in RV/ac-infected cells was tested for its repression capabilities, using operator- 

containing promoters that differ in the number and relative positions of the operator 

sequences (pOpl3CAT and pOpRSVICAT, shown in Figure 8 A). These reporter 

plasmids were obtained along with the plasmid encoding the lac i gene (p3’SS) as part of 

the Lac Switch inducible mammalian expression system (Stratagene, La Jolla, CA) (see 

Materials and Methods).

Briefly, 10 ug of a CAT reporter plasmid containing lac operator sequences in the 

RSV promoter (either pOpl3CAT or pOpRSVICAT) (see Figure 8A) were transfected 

into HFF cells using the DEAE-Dextran transfection protocol described in Materials and 

Methods. At 24 hs after transfection, cells were infected with RVlac at 2 PFU per cell.

As controls, mock infection or infection with wild type virus AD 169 at an equivalent 

MOI were performed. At 24,48 and 72 hs post infection, cells were harvested and 

assayed for CAT activity as previously described (Depto and Stenberg, 1989) (see 

Materials and Methods). Figure 8B shows that infection of transfected cells with RV/ac 

resulted in a highly significant reduction in CAT activity (80% for pOpl3CAT and 100% 

for pOpRSVICAT), as compared with CAT activity in cells infected with wild type virus 

AD 169. It is worth noting that a more effective repression of promoter activity resulted 

when the operator sequence was adjacent to the TATA box (in pOpRSVICAT). These 

results suggest that sufficient amounts of functional lac repressor were present in the 

infected cells to significantly repress expression of the operator-containing promoters.
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FIG. 8. (A) Schematic diagram of reporter constructs pOpl3CAT and pOpRSVICAT. Lac operator- 

containing reporter constructs pOpl3CAT and pOpRSVICAT contain the Rous sarcoma virus (RSV)- 

Long Terminal Repeat (LTR) promoter, the lac operator sequence

5’TGTGGAATTGTGAGCGCTCACAATTCCACAGTC3’ inserted at various positions, and the 

chloramphenicol acetyl transferase reporter gene (from Stratagene Lac Switch inducible mammalian 

expression system). (B) Analysis of the biological function of the lac repressor produced from RV/ac. A 

representative experiment is shown. HFF cells were transfected with 10 ug of pOpl3CAT or 

pOpRSVICAT. At 24 hs after transfection, cells were mock infected, or infected with AD169 or RV/ac at 

2 PFU per cell. Infected cells were harvested at 24, 48, and 72 hs post infection, and cell extracts were 

assayed for CAT activity. Percent acetylation was quantitated by phosphorimager analysis.
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To determine if IPTG is capable of reversing the observed repression, and to 

establish the optimal concentration and time of exposure to IPTG for a maximal effect, an 

IPTG titration curve was performed in which CAT activity was expressed as a function of 

IPTG concentration. HFF cells were transfected with 10 ug of the reporter plasmid 

pOpRSVICAT (see Figure 8A), using the DEAE-Dextran transfection protocol described 

in Materials and Methods. At 24 hs after transfection, cells were infected with RVlac or 

AD 169, at 2 PFU per cell, and 18 hs after infection, IPTG was added to the media at 0,

10, 25, 50 and 100 uM. 7 hs after the addition of IPTG, cells were harvested and assayed 

for CAT activity as described previously. The results of these experiments are shown in 

Figure 9. Consistent with the experiments shown in Figure 8, repression in RV/ac 

infected cells in the absence of IPTG was highly significant (6.51% acetylation) when 

compared with the level of promoter activation in AD169-infected cells at all 

concentrations of IPTG tested (98% acetylation, data not shown). A 4-fold increase in 

CAT activity was observed in cells infected with RV/ac in the presence of 100 uM IPTG, 

as compared to the activity in cells infected with RV/ac in the absence of IPTG. The level 

of IPTG mediated derepression observed (about 40%), although significant, is probably 

insufficient to accurately assess conditional expression of an HCMV promoter in the 

context of the viral genome. Therefore, in order to obtain a more effective derepression, 

higher concentrations of IPTG, as well as different experimental conditions, such as time 

of exposure to IPTG, were also tested in subsequent experiments in this study (see 

corresponding section below).
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FIG. 9. IPTG induction of reporter CAT activity in RV/ac-infected cells. 

HFF cells were transfected with 10 ug of reporter plasmid pOpRSVICAT, 

and at 24 hs after transfection, cells were infected with AD 169 (data not 

shown), or RV/ac, at 2 PFU per cell. 18 hs after infection, IPTG was added 

to the media at 0, 10,25, 50, and 100 uM. 7 hs after the addition of IPTG, 

cells were harvested and assayed for CAT activity. Percent acetylation was 

quantitated by phosphorimager analysis. In AD169-infected cells, 98% 

acetylation was observed for all the IPTG concentrations tested (data not 

shown). A representative experiment is shown.
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Insertion of a lac operator sequence into an HCMV nonessential gene promoter

Central to the objectives of this project was to test the conditional expression of 

an HCMV promoter utilizing the lac repressor-based system. The main aim of this study 

was to address all the fundamental aspects of the system using an operator-containing 

HCMV promoter and RV/ac in transient assays, before assessing the feasibility of this 

approach in the context of the HCMV genome. To this end, an operator-containing 

HCMV promoter was constructed and characterized. The operator-containing 

promoter(s) was cloned into a CAT reporter construct for analysis of expression in 

transient assays (see corresponding section below). In addition, this promoters) was 

inserted into the HCMV genome in the endogenous locus, with or without the lac i gene 

adjacent to it, for future analysis of conditional expression in the context of the virus. The 

promoter of a nonessential gene was chosen because it would be suitable to test 

conditional gene expression in the context of the virus without affecting the production of 

progeny virus. In other words, the lack of expression of the operator-containing promoter 

in the repressed state would not affect the ability of the virus to replicate in culture. In 

this way, propagation of this recombinant virus would not be dependent on IPTG.

The US9 gene was chosen as a target for insertion of a lac operator sequence into 

its promoter because the US9 gene product is known to be dispensable for growth of the 

virus in tissue culture (Jones and Muzithras, 1992). Thus, a recombinant virus susceptible 

to conditional expression of the US9 gene offers the advantage to test a /ac-reguiated 

HCMV promoter in the context of a natural infection, and to perform experiments to
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establish optimal conditions for IPTG derepression. In addition, the US9 gene is located 

immediately adjacent to the site of the lac i gene insertion (see Figure 4). This permits the 

insertion of the lac i gene and the operator-containing US9 promoter into the virus in a 

single recombination event, and the blue-white plaque selection method can be used for 

the screening of the double insertion.

Several reports have addressed the insertion of single or multiple lac operator 

sequences into various target promoters (Hu and Davidson, 1987), (Rodriguez and Smith, 

1990). The obvious advantage of using multiple copies of the operator sequence is that 

higher levels of repression can be obtained (Rodriguez and Smith, 1990). However, it has 

also been observed that this is accompanied by a reduced ability of the inducer (IPTG) to 

restore promoter activity to wild type levels. Thus, the insertion of a single, 24-base lac 

operator sequence (5’GAATTGTGAGCGGAT AACAATTTC 3’) was favored in this 

study.

The approach for generating an operator-containing US9 promoter initially 

involved the insertion of one lac operator sequence into the leader of the US9 gene at a 

unique &/II site at +40 (see Figure 10). This first step allowed for a rapid and convenient 

cloning of the operator sequence. An oligonucleotide containing the lac operator 

sequence was inserted into the US9 leader in pUS9CAT (Figure 11) (see Materials and 

Methods).

The position of the operator sequence has been shown to be critical for effective 

repression mediated by the lac repressor (Rodriguez and Smith, 1990), (Hu and 

Davidson, 1987). Operator positions closer to the TATA box seem to result in higher
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5'CACGTCGGGACGATATAAAGAGGC 

AopCGGTGTTTCGopGCTCCC GC AC A
■ +1

-16 -6

CAGACGACGCGTCCGGGCGGCTTCC
SstU

TGCGGCCGGCCGCopGG-|CAT \3 '

+40

FIG. 10. Insertion of lac operator sequences into the HCMV US9 promoter. 

Partial sequence of the US9 promoter-leader upstream of the CAT gene in the 

reporter construct pUS9C AT. Op represents the lac operator sequence 

5’GAATTGTGAGCGGATAACAATTTC3 ’, cloned into a unique SstU site at 

+40 in the leader sequence to generate pUS9opCAT, or inserted by an 

overlapping PCR insertional mutagenesis protocol at the positions indicated -16 

and -6, to generate pUS9op(-16)CAT, and pUS9op(-6)CAT, respectively. The 

TATA box and the CAP site (G at +1) are indicated in bold. The CAT reporter 

plasmids containing these US9 variant promoters are represented in Fig. 11.
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FIG. 11. Schematic diagram of operator-containing plasmid constructions. A 

unique HindUl site upstream of the US9 promoter (gray box) in the 

recombination vector pRV3 was generated by inserting a BamHl-Xbal-HindQl 

linker (restriction enzyme recognition sequences are represented in bold in the 

linker sequence below) into a unique Apal site in the US9-US10 intergenic 

region (5’GGGATCCGCTCTAGAGCAAGCTTGGGCC3 ’). A unique Srtll 

site at +40 in the US9 leader sequence was modified with the insertion of a 

HindUl site. Plasmid pUS9CAT was generated by cloning the US9 promoter- 

leader (-269 to +41) HindIE fragment obtained from pRV3, into a unique 

HindUl site upstream of the chloramphenicol acetyl transferase (CAT) gene in 

pSVOCAT. Plasmid pUS9opCAT was generated by inserting the lac operator 

sequence 5’GAATTGTGAGCGGATAACAATTTC3’ (op) flanked by Sstll 

linkers (SopS) into a unique &/II site at +40 in the leader of the US9 

promoter-leader sequence in pUS9CAT. Using an overlapping PCR 

mutagenesis strategy, the lac operator sequence was inserted at -16 or -6 in the 

US9 promoter using pUS9CAT as template, to generate pUS9op(-16)CAT or 

pUS9op(-6)CAT, respectively. The US9 promoters containing the operator at 

-16 or -6 were cloned as HindlU-SstU fragments into pRV3 to replace the wild 

type promoter in pRV3, to generate the recombination vectors pRVUS9op-16 

and pRVUS9op-6, respectively. The MIEP-/ac i gene expression unit was 

cloned as a HindUl fragment (derived from pRVMIEP/ac i), into the unique 

HindUl site in the US9-US10 intergenic region in pRVUS9op-16 and 

pRVUS9op-6, to generate pRV/acUS9op-16 and pRV/ercUS9op-6, 

respectively. Transcription from all the constructs in this figure proceeds from 

right to left. The empty boxes represent HCMV open reading frames of the 

unique short component of the viral genome US8 through US 11, the CAT 

gene, the HCMV major immediate-early promoter (MIEP), and the lac i  gene.
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levels of repression, both for the lac repressor-based system (Brown et al., 1987), and the 

tetracycline repressor-based system (Kim et al., 1995). Therefore, strategies were 

developed for the insertion of the operator sequence at different sites in proximity to the 

TATA box within the US9 promoter. These strategies were based on modifications of 

PCR protocols previously described (Zhang and Moss, 1991). A DNA fragment 

containing the US9 promoter-/ac operator-CAT gene was assembled from PCR products 

(see Figure 12). As mentioned previously, insertion of the operator sequence in a US9 

promoter-CAT construct would allow for assessing the expression of the operator- 

containing promoters in transient assays, before analyzing these variant promoters in the 

context of the virus. Two PCR reactions were performed to amplify the 5’half or the 

3’half of the initial US9 promoter-CAT gene DNA fragment (obtained from pUS9CAT), 

utilising two different primer pairs specifically designed to target the operator sequence 

between the TATA box and the CAP site. This strategy was conducted in order to insert 

the operator sequence at two alternative positions in the US9 promoter [-16 or -6, relative 

to the transcription start site (+1)] (see Figure 10). For each operator location, the PCR 

reactions rendered two overlapping products, which were then mixed together and PCR 

amplified using the 5’-most and 3’-most primers (see Figure 12). Because a lac operator 

sequence was present in one of the internal primers, the resulting PCR product contained 

the lac operator in the US9 promoter upstream of the CAT gene. The final PCR product 

was digested with HindSl, purified by electrophoresis in 5% polyacrylamide, and ligated 

back into a unique HindlU site upstream of the CAT gene in pUS9C AT, to generate 

pUS9op(-16)CAT (operator at -16), and pUS9op(-6)CAT (operator at -6) (Figure 11).
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FIG. 12. Overlapping PCR mutagenesis strategy. The lac operator sequence

5’GAATTGTGAGCGGATAACAATTTC3’ was inserted between the TATA box and the CAP site in the 

HCMV US9 promoter (see Fig. 10). This was done by PCR amplifying a DNA fragment containing the US9 

promoter (dotted box) and the CAT gene (stripped box), using pUS9CAT as template (see Fig. 11). Two 

separate PCR reactions were conducted utilizing primers a+ b, or c+ d, to generate two overlapping PCR 

products (e or f, respectively) (see Materials and Methods for actual primers used), e and f  were mixed and 

PCR amplified using primers a+ d, to generate the final mutagenized product g (containing the lac operator 

sequence). The vertical bar in primer c, and in the DNA fragments f  and g, represents the lac operator. Two 

alternative insertion sites were developed: -16 or -6, relative to the transcription start site.



82

■o
+o
ac
oo.

A+
<0
ec
oa.

■ ■J±1J IK 
o  
a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

The presence of the lac operator sequence in these constructs was confirmed by DNA 

sequencing.

Generation of recombinant viruses using the lac repressor-operator system

Insertion of the lac i gene and the lac operator- containing US9 promoter into the HCMV

genome

In order to utilise the lac repressor and the operator-containing US9 promoter to 

analyse conditional expression of the US9 gene in the context of the HCMV genome, the 

lac i gene and the operator-containing US9 promoter needed to be inserted into the viral 

genome in a manner that resulted in 1) adequate levels of lac repressor expression, 2) 

appropriate operator location, and 3) a measurable operator-repressor interaction in the 

context of viral infection. The lac operator sequence and the lac i gene can be inserted 

into a single recombinant HCMV, or into two recombinant HCMV that can be used in 

coinfection experiments. In this study, the complete expression system (the lac i gene, 

and the operator-containing US9 promoter) was inserted into a single recombinant 

HCMV. Because the US9 gene is located next to the site of insertion of the MIEP-/ac i 

gene cassette (see Figure 4), the introduction of both the operator-containing US9 

promoter in place of the endogenous promoter, and the lac i gene could be accomplished 

in a one step recombination event. Thus, the blue-white plaque phenotype screening 

method could be utilized to identify HCMV recombinants with the double insertion. 

Because the operator insertion may affect sequences that are relevant for promoter 

expression in the context of the viral genome, [these observations have been reported
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with other promoters (Kohler et al., 1994)], a control recombinant virus in which only the 

operator-containing US9 promoter was inserted upstream of the endogenous US9 gene in 

RV134 was generated. Both the operator at -16 and the operator at -6 were utilized for 

this purpose.

Recombinant HCMV containing an operator sequence at -16 or -6 in the US9 

promoter, with or without the lac i gene (MIEP-/ac / gene cassette), were constructed by 

the replacement recombination strategy described in previous sections for the generation 

of RV/ac. The strategy involved the insertion of the lac i gene in place of the (5-glu gene 

in the RV134 genome (see Figure 4), as well as the replacement of the endogenous US9 

promoter with the operator-containing US9 promoters. The recombination plasmids used 

were pRVUS9op-16 or pRVUS9op-6 (Figure 11), which were derived from pRV3 by 

replacing the US9 promoter with the operator-containing promoters from 

p(JS9op(-16)CAT and pUS9op(-6)CAT, and pRV/acUS9op-16 or pRV/acUS9op-6 

(Figure 11), which resulted from the insertion of the M5E?-lac i gene cassette into 

pRVUS9op-16 and pRVUS9op-6, respectively (see Materials and Methods).

In addition, a control recombinant virus (RVO) was generated. This virus was 

constructed by recombination between RV134 DNA and the recombination vector pRV3, 

which contains no operator or lac i gene insertions. The purpose for constructing this 

recombinant virus was to control for the impact of the linker sequences between US9 and 

US10 (see HindlU site in Figure 3) on US9 gene expression.

The recombination plasmids were linearized with Sail, and subsequently cotransfected 

with RV134 DNA into HFF cells, using the calcium phosphate precipitation protocol 

described. 8 ug of RV134 DNA and 1-2 ug of linearized recombination vector
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were used. When transfected cells reached 100% CPE, primary stocks of recombinant 

virus were harvested.

Screening for HCMV recombinants

In order to identify primary stocks that contained recombinant viruses, the 

screening was done by PCR, using lac /-specific and US9 promoter-specific primers (see 

Materials and Methods). Briefly, HFF cells were infected with the primary stocks, and 

infected cell lysates were obtained 72 hs. post infection for total cell DNA extraction. 

Subsequently, the DNA was amplified by PCR, using forward and reverse primers 

specific for the lac i gene or the US9 promoter. The PCR products were subjected to 

electrophoresis in agarose or polyacrylamide gels, and visualized by staining with 

ethidium bromide. Figure 13 shows the PCR products obtained using the lac /-specific 

primers to screen 18 primary stocks of virus derived from the cotransfection of RV134 

and pRV/acUS9op-16 or pRV/acUS9op-6. A band of 835 nucleotides could be detected 

as the PCR amplification product using the DNA from cells infected with several of the 

stocks, suggesting the presence of recombinant virus containing the lac / gene. Because 

some degree of nonspecific DNA amplification was observed in these experiments, 

Southern and western blot analyses were conducted to confirm these results (see below).

US9 promoter-specific primers were utilized to screen for operator-containing 

recombinant virus in the stocks derived from the cotransfection of RV134 with 

pRVUS9op-16, or pRVUS9op-6. These primers amplify 318 nucleotides within the US9 

promoter. The presence of the 24 base-operator sequence resulted in the amplification of 

a larger DNA fragment (342 nucleotides) relative to the wild type US9 promoter.
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FIG. 13. PCR screening for RV/acUS9op-l6 and RV7acUS9op-6. Primary 

stocks resulting from the cotransfection of RV134 DNA and 

pRV/acUS9op-16 or pRV/acUS9op-6 (see Fig. 11) were screened by PCR 

using lac i specific primers (Materials and Methods). HFF cells were infected 

with the primaiy stocks, and at 72 hs after infection, total cell DNA was 

prepared from the infected cells. The DNA was PCR amplified using the lac i 

specific primers. The PCR products were subjected to electrophoresis in

1.2 % agarose, and visualized by ethidium bromide staining. The numbers on 

the left represent molecular weight markers (in lanes MW) in kilobases. No 

DNA or RV134 DNA were used in PCR reactions as negative controls.

RVlac DNA and the recombination plasmid pRV/acUS9op-16 were used as 

positive controls. 18 primary stocks were screened. The nomenclature 

represents transfection experiment number, followed by sample number.

Panel C contains repeats of the PCR screening reactions for stocks 29-1 and 

24-1, which served as controls.
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Figure 13. Continued
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FIG. 14. PCR screening for RVUS9op-6 (panel A) and RVUS9op-16 (panel 

B). Primary stocks resulting from the cotransfection of RV134 DNA and 

pRVUS9op-6 or pRVUS9op-16 (see Fig. 11) were screened by PCR using 

US9 promoter specific primers (Materials and Methods). HFF cells were 

infected with the primary stocks, and 72 hs after infection, cells were 

harvested and total DNA was isolated. The DNA was PCR amplified using 

the US9 promoter specific primers. The resulting products were analyzed by 

electrophoresis in 5 % polyacrylamide or 1.2 % agarose, and visualized by 

ethidium bromide staining.The numbers on the right in panel A and on the 

left in panel B represent molecular weight markers in kilobases (MW lane in 

panel B). No DNA or RV670 (a recombinant HCMV deleted of the US9 

gene) DNA were used as negative controls. AD 169 DNA was used as 

positive control for the wild type US9 promoter. In panel B, RV134 and 

RV/ac DNAs were also used as positive controls for the wild type US9 

promoter. The positive control for operator-containing US9 promoter 14B3 

in panel B is a recombinant virus isolated from stock 21-4 (panel A) which 

contains the operator sequence at -6 in the US9 promoter. The nomenclature 

for the primary stocks screened includes transfection experiment number 

followed by sample number. A band indicating the presence of the operator 

sequence in the US9 promoter was detected for stocks 21-4 (panel A), 34-3 

and 34-4 (panel B).
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Figure 14A-B shows that three stocks were identified to contain operator-containing 

recombinant virus (21-4, 34-3, and 34-4), as evidenced by the presence of a smaller band 

(318 nucleotides) corresponding to the parental virus present in the stock, and a larger 

band (342 nucleotides) indicating the presence of operator-containing virus. The 

nomenclature of the primary stocks reflects transfection experiment number followed by 

sample number. Stock 21-4 was derived from the cotransfection of RV134 DNA with 

pRVUS9op-6. Several recombinant viruses were isolated from this stock (see 

corresponding section below). One of these viruses, 14B3, was used as a positive control 

for the PCR screening shown in panel B. Stocks 34-3 and 34-4 resulted from 

cotransfecting RV134 DNA with pRVUS9op-16.

In order to screen for the control virus constructed by cotransfecting RV134 and 

pRV3 (RVO), another pair of US9 promoter-specific primers were used. These primers 

(US9 1777. 5’CGATCCCTCCTCCTGATATG3\ and US9 2280: 5’ 

CTCGAGAGTACACTTACTGC3’) amplified 503 nucleotides upstream of the US9 

open reading frame in the wild type virus AD 169, and in RVO, but the presence of the p- 

glu gene in the parental virus RV134 resulted in the amplification of 3,000 nucleotides. 

Figure 15A-B shows the PCR products obtained when screening primary stocks derived 

from the cotransfection of RV134 and pRV3. The presence of a band of about 500 

nucleotides indicates the presence of recombinant virus (RVO) in stocks 34-2,28-5,35-2, 

33-3, and 34-7.

To confirm the PCR results, Southern blot analysis was performed using an 

AD169 H indlll X probe, in order to screen primary stocks for RVO, and for lac operator- 

containing viruses, and using a lac /-specific probe to identify lac /-positive stocks. HFF
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FIG. 15. PCR screening for RVO. Primary stocks resulting from the 

cotransfection of RV134 DNA and pRV3 (see Fig. 11) were screened by 

PCR using the primers described in Chapter IV. HFF cells were infected 

with the primary stocks, and 72 hs after infection, cells were harvested and 

total cell DNA was isolated. The DNA was subsequently PCR amplified. 

The resulting PCR amplified products were analyzed by electrophoresis in

1.2 % agarose, and visualized by ethidium bromide staining. The numbers 

on the left represent molecular weight markers in kilobases (MW lanes). No 

DNA or RV670 DNA were used as templates for PCR reactions that served 

as negative controls. AD169, RV134 and 14B3 (RVUS9op-6) DNAs were 

used as positive controls. The nomenclature of the primary stocks was as 

described in Figs. 13 and 14.
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cells were infected with the primary stocks. Infected cell DNA was prepared at 72 hs post 

infection, subsequently digested with HindSH, subjected to electrophoresis in agarose 

gels, blotted onto nylon membranes, and hybridized to DIG-labeled probes (see Materials 

and Methods). Figure 16A-B shows that Hindlll digestion of the DNA derived from the 

primary stocks identified by PCR to contain lac operator-containing recombinant viruses 

(21-4,34-3, and 34-4) (Figure 14A-B) resulted in the generation of two fragments 

derived from the H indlll X region (1.8 kb and 3.4 kb), corresponding to recombinant 

virus DNA as well as the 7.7 kb fragment corresponding to the Hindlll X region 

containing the P-glu gene in the parental virus RV134. These fragments were detected 

using the HindlU X  probe. For RVO, Southern blot analysis using the Hindlll X  probe 

failed to detect the bands corresponding to recombinant virus in the primary stocks. Only 

the 7.7 kb band, representing parental RV134 DNA was detected (Figure 16C). Possibly, 

the amount of recombinant virus in the stocks was too low to be detected using this 

technology, while these same stocks were shown to contain recombinant virus by PCR 

analysis (Figure IS). On the other hand, the use of the lac i probe resulted in the detection 

of one primary stock (34-6), derived from the cotransfection of RV134 DNA and the 

recombination plasmid pRV/acUS9op-16, containing the lac i gene (see Figure 17A).

This contrasts with the PCR data using the lac /-specific primers, where PCR 

amplification of the DNA derived from several primary stocks showed the presence of a 

lac /-specific product.

In order to identify primary stocks containing lac repressor-expressing virus, 

western blot analysis was conducted. HFF cells were infected with the stocks that had
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FIG. 16. Southern blot screening for RVUS9op-6 (panel A), RVUS9op-16 

(panel B), and RVO (panel C). Total cell DNA was prepared from cells 

infected with RV134, RV/ac, or the primary stocks previously screened by 

PCR. The DNA was digested with HindQl, and was subjected to 

electrophoresis in 0.8 % agarose. The DNA fragments were then transferred to 

a nylon membrane, fixed, and hybridized to the AD 169 Hindlll X probe 

described in Materials and Methods. The numbers on the right of the blots 

represent molecular weight markers in kilobases. The expected 1.8 kb and 

3.4 kb fragments (which indicate the presence of recombinant vims in the 

stock) were observed in stocks 21-4, 34-3, and 34-4.
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FIG. 17. Southern (panel A) and western (panel B) blot screening for 

RV/drcUS9op-16. (A) Total cell DNA was prepared from cells infected with 

AD169, 16A53 (RVUS9op-6, isolated from primary stock 21-4), RVO (352 

3B2) (negative controls), or RVlac (positive control), or the primary stocks 

previously screened by PCR. The DNA was digested with Hindlll, and was 

subjected to electrophoresis in 0.8 % agarose. The DNA was then 

transferred to a nylon membrane, fixed, and hybridized to the lac i gene 

specific, DIG-Iabeled probe described in Materials and Methods. The 

numbers on the left of the blot represent molecular weight markers (MW 

lane) in kilobases. A band of 2.4 kb was detected with the lac i probe for 

stock 34-6, indicating the presence of recombinant virus containing the lac i 

gene in the stock. (B) HFF cell extracts were prepared from uninfected cells, 

or 24 hs after infection with RV134 (negative control), RWlac (positive 

control), RV3MIEP/ac3 4.26.95 (see Fig. 5) (positive control), or the 

primary stocks previously screened by PCR. The cell lysates were subjected 

to electrophoresis in SDS-polyacrylamide, electroblotted onto a 

nitrocellulose membrane, and reacted with a rabbit anti-/ac / polyclonal 

serum. MW: molecular weight markers, expressed in kilodaltons on the 

right of the blot. Stock 34-6 contains recombinant virus expressing the lac 

repressor. The nomenclature of the primary stocks in both panels was as 

described in previous figures.
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tested positive for the lac i gene by PCR analysis, and 24 hs post infection, cells were 

lysed and harvested. The cell lysates were subjected to electrophoresis in SDS- 

polyacrylamide gels, electroblotted onto a nitrocellulose membrane, and reacted with a 

rabbit anti-/ac / polyclonal serum. Figure 17B shows that one stock (34-6, which had 

been identified by Southern blot analysis using the lac i probe) contains recombinant 

virus expressing the lac repressor.

These procedures allowed for the identification of primary stocks of virus that 

contained 1) operator-positive, lac /-negative recombinant virus (RVUS9op(-16) [stocks 

34-3 and 34-4] and RVUS9op(-6) [stock 21-4]), 2) operator-positive, lac /-positive 

recombinant virus (RV/acUS9op(-16) [stock 34-6]), and 3) operator-negative, lac i- 

negative recombinant virus (RVO [stocks 34-2, 28-5, 35-2, 33-3, and 34-7]).

Isolation of HCMV recombinants

Altered plaque phenotype screening was conducted on the primary stocks 

identified as described above, in order to isolate the recombinant viruses. This screening 

was performed as described for the isolation of RNlac. The recombinant viruses (white 

plaque phenotype viruses) isolated using these procedures were: 13 isolates of RVUS9 

op-6, 6 isolates of RVUS9op-l6, and I isolate of RVO. In spite of numerous attempts to 

isolate the double insertion recombinant virus RV/acUS9op-16 (more than 4,000 

individual plaques were picked and screened for the presence of the virus), this virus 

could not be isolated. Although several white plaques were obtained, these were found to 

contain false positive recombinant viruses, as determined by Southern and western
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blot analyses of 33 isolates. These viruses likely represent deletion mutants involving the 

3-glu locus as a result of abnormal recombination events. The reason(s) for failing to 

isolate the double insertion recombinant virus is unknown at this point. One possible 

explanation is that the presence of both the lac i gene and lac operator sequence in the 

recombination vector could result in expression of the lac repressor, followed by binding 

of the lac repressor produced to the operator sequence and thereby obstructing or 

preventing recombination. Thus, only very rarely would appropriate homologous 

recombination occur to generate the double insertion recombinant virus. The extremely 

small number of viruses resulting from this rare recombination event would make the 

isolation of such viruses highly unlikely.

Genetic characterization of the white plaque phenotype viruses 

To verify that the white plaque phenotype viruses isolated as described in the 

previous section are recombinant viruses where homologous recombination had occurred 

in the US9-US10 intergenic region in the viral genome, Southern blot analysis of 

recombinant virus infected cell DNAs was conducted as previously described (see 

Materials and Methods). The AD169 Hindlll X  DIG-labeled probe (5.2 kb) (spanning the 

region US7 through US 11 in the HCMV genome), was used. Figure 18 A shows that 

H indlll digestion of AD169 DNA resulted in the generation of a 5.2 kb fragment 

hybridizing to the H indlll X probe. On the other hand, H indlll digestion of recombinant 

virus DNA resulted in the generation of two fragments derived from the HindfO. X region 

(1.8 kb and 3.4 kb). Hybridization to the Hindis. X  probe resulted in the detection of 

these two bands when the DNAs of 13 isolates of RVUS9op-6 (Figure 18 A), 4 isolates of
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FIG. 18. Genetic characterization of white plaque phenotype viruses. Southern 

blot analysis of recombinant virus infected cell DNA was conducted, along 

with AD 169- and RWlac- infected cell DNAs as controls. The probe used to 

hybridize to ////w/BI-digested DNAs was the HindW. X probe described in 

Materials and Methods. (A) Isolates from stock 21-4 (RVUS9op-6). (B) 

Isolates from stock 34-3 (RVUS9op-16). (C) Isolate from stock 35-2 (RVO). 

The numbers on the right of the blots represent molecular weight markers in 

kilobases. The expected 1.8kb and 3.4 kb fragments hybridizing to the 

Hindm  X probe were observed for the white plaque phenotype viruses 

isolated, except 15D5 and 7D1 (panel B).
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RVUS9op-16 (Figure 18B), and 1 isolate of RVO (Figure 18C) were analyzed. For 

RVUS9op-16,4 of 6 isolated recombinant viruses presented the appropriate H indlll 

digestion pattern (20D6,4A6, 14C3, and 13B3).

Analysis of the growth properties of recombinant viruses 

To analyze the growth rate of recombinant viruses RVO, RV/uc, RVUS9op-16, 

and RVUS9op-6, and to compare them with the growth of parental virus RV134, one step 

growth curves were performed as described (Jones et al., 1991), (Kerry et al., 1997). In 

these experiments, the objective was to determine if the insertion of the lac i gene and the 

lac operator sequence has an effect on the rate of virus replication. HFF cells were 

infected with the indicated viruses at a multiplicity of infection (MOI) of 2. Total virus 

was harvested daily, and virus yields were determined by plaque assay on HFF cells, 

using standard procedures. Figure 19 shows the results of these experiments. No 

significant differences in the growth rates of the recombinant viruses relative to the 

parental virus RV134 were observed. This suggests that the insertions of the lac i gene 

and the lac operator sequence in the viral genome, and the phenotypes derived from these 

insertions, do not affect the rate of production of virus progeny. In addition, RVO also 

replicated at similar rates, which indicates that the presence of the linker sequences in the 

US9-US10 intergenic region does not have an impact on virus replication. These results 

have an important implication. They suggest that the components of the lac repressor- 

based system can be integrated into the HCMV genome for the assessment of conditional 

expression of an individual viral gene, without impacting on the capacity of the virus to 

produce progeny. Thus, the system is viable in the context of the viral genome. It is worth
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FIG. 19. One step growth curve analysis of recombinant viruses. HFF 

cells were infected at an MOI of 2 PFU per cell, with either parental 

virus RV134, or the recombinant viruses RV/ac, RVUS9op-6, 

RVUS9op-16, or RVO. Total virus was harvested daily, from day I to 

day 7 after infection. Infectious virus was quantitated by standard 

plaque assay on HFF cells. Titers were expressed as log,0PFU/ml.
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noting, however, that these observations with the US9 promoter should not be 

generalized to the study of conditional expression of all other HCMV genes, for which 

the use of the lac repressor-based system has to be optimized and tested.

Analysis of expression of operator-containing US9 promoters

Of vital importance to accomplish the objectives of this project was to demonstrate 

that the operator-containing US9 promoters can be efficiently repressed by the lac 

repressor, and that this can be relieved by IPTG. In addition, it was critical to demonstrate 

that the operator insertion has a minimal intrinsic effect on basal promoter expression, in 

order to validate the use of these promoters in this study.

US9 promoter expression in pUS9opCAT 

The operator-containing US9 promoter-leader in pUS9opCAT was tested for the 

impact of the operator insertion on promoter expression, as well as its susceptibility to 

repression and derepression. To ensure that the insertion of the operator per se did not 

affect expression of the US9 promoter, transient transfection assays were conducted as 

described in previous sections. Briefly, pUS9opCAT, or pUS9CAT as control, was 

cotransfected with pS VH into HFF cells. The US9 promoter belongs to the early kinetics 

class, and is known to be activated by IE proteins (reviewed by Stenberg, 1993), (Spector 

et al., 1990). A CAT reporter construct containing the HCMV DNA polymerase promoter 

(ppolC AT) was used as a control of transfection. Cells were harvested 48 hs post 

transfection, and assayed for CAT activity as described in Materials and Methods. Figure 

20 shows a complete abrogation of CAT activity in cells cotransfected with pUS9opCAT
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FIG. 20. US9 promoter activation by HCMV immediate-early proteins IE1 

and IE2. HFF cells were cotransfected with 5 ug of pSVH (expressing HCMV 

IE1 and IE2), and 5 ug of pUS9CAT (containing the wild type US9 promoter), 

or 5 ug of pUS9opCAT (containing the operator sequence at +40). ppolCAT 

(containing the HCMV DNA polymerase promoter) was used as control of 

transfection, by cotransfecting 5 ug of ppolCAT with 5 ug of pSVH. Cells 

were harvested 48 hs after transfection, and cell extracts were assayed for CAT 

activity. Percent acetylation was determined by phosphorimager analysis. A 

representative experiment is shown.

pUS9CAT pUS9opCAT ppolCAT
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and pSVH, suggesting that the operator insertion at +40 has a negative impact on 

expression. Possibly, the presence of the operator sequence in the leader adversely 

affected the translation of the CAT mRNA (see Discussion).

pUS9opCAT was also tested for repression by the lac repressor in a transfection- 

RWlac infection experiment, which also included the reporter plasmid pOpRSVTCAT for 

parallel analysis. Briefly, pLJS9opCAT was transfected into HFF cells, and the 

transfected cells were infected with RWlac (at an MOI of 2) at 24 hs post transfection. As 

controls, mock infection or infection with wild type virus AD 169 at an equivalent MOI 

were performed. Cells were harvested at 24,48, and 72 hs post infection and assayed for 

CAT activity. The results of this experiment are shown in Figure 21. The data obtained 

with pOpRSVICAT is in accordance with the experiment presented in Figure 8B. On the 

other hand, very low levels of CAT activity were obtained from pUS9opCAT upon 

infection with wild type virus AD 169, in accordance with the results obtained with IE1 

and IE2 (Figure 20), supporting the conclusion that the operator insertion in p(JS9opCAT 

adversely affects promoter expression. Some degree of repression was observed (about 

50%) in cells infected with RWlac. Collectively, the results regarding promoter 

expression in pUS9opCAT indicated that alternative sites for operator insertions needed 

to be tested, in order to obtain higher levels of promoter expression in the absence of the 

repressor. To this end, the US9 promoters containing the lac operator sequence at -16 and 

-6 in the CAT reporter constructs pUS9op(-16)CAT and pUS9op(-6)CAT (Figure 11) 

were analyzed. The results of these experiments are described in the following sections.
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FIG. 21. Repression of the US9 promoter in pUS9opCAT. HFF cells were transfected with 10 ug of 

pOpRSVlCAT (control) or pUS9opCAT. 24 hs after transfection, cells were mock infected, or infected 

with AD169 or RV/ac at 2 PFU per cell. Infected cells were harvested at 24,48, and 72 hs post infection, 

and cell extracts were assayed for CAT activity. Percent acetylation was determined by phosphorimager 

analysis. A representative experiment is shown.
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Impact of the lac operator insertion at -16 or -6 on US9 promoter expression

It was of critical importance to first determine if the operator insertion per se had 

an impact on promoter expression in pUS9op(-16)CAT and pUS9op(-6)CAT. Ideally, the 

operator insertion would have minimal intrinsic effect on US9 promoter activation. Thus, 

such a promoter would be suitable to test conditional expression mediated by the lac 

repressor-based system both in transient assays and in the context of the viral genome. To 

address this question, transient transfection experiments were conducted to assess 

activation of these variant promoters by HCMV IE proteins IE I and IE2. The 

experiments were performed as described for pUS9opCAT, and they demonstrated that 

the lac operator sequence can be inserted into an HCMV promoter without significantly 

affecting its basal level of expression in transient assays. Figure 22 shows the results of 

those experiments. pUS9op(-16)CAT was activated to about 70% of wild type 

pUS9CAT, whereas pUS9op(-6)CAT was activated to about 20%. Thus, the operator 

insertion at -16 (closer to the TATA box) affected promoter activation by IE1 and IE2 to 

a lesser extent, suggesting that in this promoter the intrinsic impact of the operator 

sequence was minor. As a result, promoter activation did not differ significantly from 

wild type promoter activation by IE1 and IE2. However, because promoter expression in 

the endogenous locus could render different results for these promoters, given the higher 

level of complexity of regulation of promoter activity in the viral genome, both constructs 

were included for the generation of recombinant viruses in this study (see corresponding 

section in this chapter).

To further analyze the impact of the operator insertion on promoter expression in 

pUS9op(-16)CAT and pUS9op(-6)CAT, the effect of the presence of all viral proteins on
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FIG. 22. Impact of the operator insertion on US9 promoter activation by 

HCMV immediate-early proteins IE1 and IE2. HIT cells were cotransfected 

with 5 ug of pSVH (expressing IE1 and IE2), and 5 ug of either pUS9CAT 

(wild type US9 promoter), pUS9opCAT (operator at +40), pUS9op(-16)CAT 

(operator at -16), or pUS9op(-6)CAT (operator at -6). Cells were harvested 

48 hs after transfection, and cell extracts were prepared for CAT activity 

assay. Percent acetylation was quantitated by phosphorimager analysis. A 

representative experiment is shown.
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activation of the operator-containing US9 promoters in the CAT reporter constructs was 

addressed. Transfection of these constructs into HFF cells was followed by infection with 

AD 169 at 2 PFU per cell, 24 hs after transfection. Cells were harvested 72 hs post 

infection, and cell extracts were prepared and assayed for CAT activity. The results of 

these experiments are shown in Figure 23. In the presence of whole virus, activation of 

pUS9op(-16)CAT was approximately 2-fold that of the wild type promoter in pUS9CAT, 

and for pUS9op(-6)CAT, the level of activation was 6-fold relative to pUS9CAT. These 

data suggest that the presence of the operator sequence at positions -16 and -6 (relative to 

the transcription start site) in the US9 promoter results in the disruption of sequences that 

participate in the regulation of expression of the US9 promoter in the presence of all viral 

proteins. The analysis of these sequences within the US9 promoter and of the 

phenotype(s) associated is beyond the scope of this study.

Supporting the observations regarding IE1 and IE2-mediated activation of the 

operator-containing US9 promoters, expression of the promoter in pUS9op(-l6)CAT in 

the presence of AD 169 virus was affected by the operator sequence to a lesser extent. 

Overall, it was concluded that the operator sequence inserted at -16 has a lesser intrinsic 

effect on transient US9 promoter expression than does the operator insertion at -6. Thus, 

the US9 promoter with the operator insertion at -16 was considered more suitable for the 

analysis of /ac-mediated repression in transient assays.

However, a more complex level of regulation of promoter expression occurs in 

the viral genome. First, viral transactivators cooperate with cellular transcription factors 

to control viral promoter expression within the viral genome. Second, promoter
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FIG. 23. Impact of the operator insertion on US9 promoter activation by viral 

proteins. HFF cells were transfected with 10 ug of pUS9CAT (wild type US9 

promoter), pUS9op(-16)CAT (operator at -16), or pUS9op(-6)CAT (operator 

at -6). 24 hs after transfection, cells were mock infected, or infected with 

AD169 at 2 PFU per cell. Infected cells were harvested 24,48, and 72 hs post 

infection, and cell extracts were prepared for CAT activity assay. Percent 

acetylation was quantitated by phosphorimager analysis. A representative 

experiment is shown.
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expression in the endogenous locus is also affected by distant cis acting elements present 

in the viral genome. Thus, the activity of the operator-containing US9 promoters in the 

endogenous locus could vary significantly from that observed in the CAT reporter 

constructs. To address this question, both variant promoters were constructed into the 

recombination vector for insertion into the virus as described in this chapter. In this way, 

US9 promoter expression could be assessed in the endogenous locus to investigate the 

impact of the operator insertions in the context of the viral genome (see following 

section).

Impact of the lac repressor-based system on US9 gene expression in the context of the

viral genome

A key control for validating future experiments on conditional expression of the 

US9 gene in the context of the viral genome was to analyse US9 mRNA levels in 

RVUS9op(-16)- and RVUS9op(-6)- infected cells, to determine if the operator insertion 

per se has a significant impact on US9 gene expression. In addition, L7S9 expression was 

measured in RV/ac-infected cells, to control for the impact of the MIEP-/ac / gene 

cassette insertion adjacent to the endogenous US9 promoter. Moreover, US9 mRNA 

levels were also assessed in RVO- infected cells, in order to determine if the linker 

insertion per se affects US9 promoter activity in the context of the viral genome. In order 

to perform these controls, northern blot analysis was conducted on RNA isolated from lac 

/-negative viruses RVUS9op(-16)-, RVUS9op(-6)- or RVO- infected HFF cells, and from 

RV/ac-infected HFF cells. The results were compared to parental RV134 virus and wild 

type virus AD169. Briefly, total RNA was isolated from HFF cells infected with
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2 PFU per cell of either wild type virus, parental RV134 virus, RVO, RVUS9op(-16), 

RVUS9op(-6), or RVlac, at 24,48, and 72 hs post infection. RNA samples were 

subjected to northern blot analysis using a radiolabeled US9 specific probe as described 

in Materials and Methods. The results are presented in Figure 24.

Several observations can be made from the results obtained. First, in contrast with 

previously reported observations (Jones and Muzithras, 1991), US9 mRNA levels in cells 

infected with AD 169 did not differ significantly throughout the course of infection. The 

highest levels were observed at 24 hs, but these were not significantly reduced at 48 and 

72 hs post infection. Second, it was interesting to observe that for all the recombinant 

viruses, the kinetics of US9 gene expression was altered. All the recombinant viruses 

presented lower levels of US9 mRNA at 24 hs post infection. These levels increased at 48 

hs, and even more at 72 hs after infection. Thus, the US9 gene was expressed with early- 

late kinetics from all the recombinant viruses. Third, in addition to a change in the 

kinetics of expression, the highest US9 mRNA levels measured in cells infected with 

RVO, RVUS9op-16 and RVUS9op-6 (at 72 hs post infection) were approximately 2-fold 

those in cells infected with wild type AD 169 virus (at 24 hs post infection), or parental 

RV134 (at 72 hs post infection). For RV134 and RVlac, the highest US9 mRNA levels 

achieved (at 72 hs post infection) were approximately equal to those in cells infected with 

AD169 at 24 hs.

Overall, these results showed that the insertions done within and in proximity to 

the US9 promoter in the endogenous locus affected promoter expression in terms of time 

of expression, leading to a change in kinetics of expression of the US9 gene.
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FIG. 24. Impact of the lac repressor-based system on US9 gene expression in 

the context of the viral genome. Northern blot analysis was conducted on total 

RNA isolated from cells infected with AD 169, RV134, RV/ac, RVO, 

RVUS9op-16, or RVUS9op-6, at 2 PFU per cell, at 24,48, and 72 hs post 

infection (hpi). The RNA was subjected to electrophoresis in 1 % agarose, 

transferred to a nylon membrane, fixed, and hybribized to a radiolabeled US9 

specific probe ( a DNA fragment comprising the entire US9 and the majority 

of US8) (Materials and Methods). The RNA was quantitated by 

phosphorimager analysis, and is expressed in arbitrary units. A UL99 (pp28) 

specific radiolabeled probe was used to correct for multiplicities of infection. 

The results presented are average of the results from two replicate 

experiments.
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Furthermore, it led to a 2-fold increase in mRNA levels when the insertions were done at 

-6 and -16 in the US9 promoter (in RVUS9op-16 and RVUS9op-6), and when the linker 

sequences were inserted immediately upstream of the US9 promoter (in RVO). The 

mechanism(s) underlying these phenotypic changes are unknown at this point. They 

likely include disruption of sequences important for the regulation of promoter activation, 

which in turn influence the interactions of these sequences with viral and cellular proteins 

that participate in the control of US9 promoter expression. This led to a change in 

kinetics, and in the levels of mRNA produced. However, the magnitude of these changes 

is probably not significant in terms of the utility of the operator-containing US9 

promoters in the endogenous locus for the application of the lac repressor-based system 

to assess conditional viral gene expression. The implications of these results are 

presented in chapter V.

RV/aomediated repression of operator-containing US9 promoter 

The aim of the experiments described in this section was to assess /ac-mediated 

repression of operator-containing US9 promoter expression in transient assays. In 

previous sections it was hypothesized that pUS9op(-16)CAT would be a more suitable 

construct to test /ac-mediated repression in transient assays, since activation of this 

variant promoter in the presence of viral proteins occurs at levels comparable to those of 

the wild type US9 promoter. To this end, HFF cells were transfected with 10 ug of 

pUS9op(-16)CAT. At 24 hs after transfection, transfected cells were either mock 

infected, or infected with wild type AD 169 or RV/ac at 2 PFU per ceil. Cells were
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harvested at 24, 48, and 72 hs post infection, and cell extracts were prepared for CAT 

activity assay. The results are presented in Figure 25. RV/ac infection of cells transfected 

with pUS9op(-16)CAT resulted in a 90 % reduction in CAT activity when compared with 

wild type virus infection, indicating that the operator-containing US9 promoter in 

pUS9op(-16)CAT can be efficiently repressed by the lac repressor. This significant level 

of repression was maintained throughout the course of infection. These findings were of 

vital importance for this study: an operator-containing, HCMV-specific promoter that can 

be efficiently acted upon by the lac repressor produced from RV/ac demonstrates the 

feasibility of this approach to study HCMV gene expression.

Derepression of operator-containing US9 promoter by IPTG

Experiments utilizing IPTG were performed in order to assess derepression of the 

operator-containing US9 promoter in pUS9op(-16)CAT. Several reports on the use of the 

lac repressor based system in mammalian cells have shown that the IPTG concentrations 

used to achieve maximal derepression could be varied through a low dose (1-500 uM), a 

medium dose (0.5-15 mM), and a high dose (5-50 mM). Toxicity has been observed at 

concentrations higher than 50 mM (Figge et al., 1988). The times of exposure to IPTG, 

using operator-containing promoters upstream of the CAT reporter gene (Brown et al., 

1987), (Hu and Davidson, 1987) (Figge et al., 1988), (Labow et al., 1990), or the 

luciferase gene (Rodriguez and Smith, 1990), have varied in different studies, from 7-12 

hs, to up to 3 days.

Initially, an experiment to test toxicity was performed by exposing HFF cells to 0, 

5,10,25, and 50 mM IPTG for 72 hs. Figure 26 shows HFF monolayers that had been
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FIG. 25. Repression of the US9 promoter in pUS9op(-16)CAT. HFF cells 

were transfected with 10 ug of pUS9op(-l6)CAT. At 24 hs after transfection, 

cells were either mock infected, or infected with AD169 or RV/ac at 2 PFU 

per cell. 24,48, and 72 hs post infection, cells were harvested, and cell extracts 

were assayed for CAT activity. Percent acetylation was quantitated by 

phosphorimager analysis. A representative experiment is shown.
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FIG. 26. Exposure of HFF cells to increasing concentrations of IPTG. To 

test IPTG toxicity, HFF cells were exposed to 0,5,10,25, and 50 mM IPTG 

for 72hs. At that time, cells were photographed using a Photo Zoom inverted 

microscope (Bausch & Lomb), and a Pentax K1000 camera. The images 

presented were generated with a UMAX PowerLook II Scanner with 

Paintshop Pro version 5.0 Jacs Software.
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exposed to the indicated concentrations of IPTG for 72 hs. Morphology and cell viability 

did not seem to be affected by exposure to IPTG. Therefore, all the concentrations tested 

were considered to be nontoxic for HFF cells, thus suitable for use in the derepression 

experiments.

In this study, the procedure to assess IPTG derepression involved transfecting 

HFF cells with 10 ug of pUS9op(-16)CAT, and 24 hs after transfection, the cells were 

infected with RV/ac at an MOI of 2. After adsorption of the virus for 2 hs, the virus 

inoculum was removed, and fresh culture media containing 0, 0.2, 0.4,0.8 or 2 mM IPTG 

was added. A lower medium dose range was initially tested in order to find the minimum 

concentration of IPTG that was necessary and sufficient to efficiently cause derepression. 

Cells were harvested 72 hs post infection, and assayed for CAT activity as previously 

described (see Materials and Methods). Figure 27 shows that 0.8 mM IPTG was capable 

of derepressing pUS9op(-16)CAT expression to levels comparable to wild type levels. 

This is a significant finding, since it demonstrates that the system functions efficiently to 

reverse /ac-mediated repression of an HCMV promoter. Similar results were obtained 

when cells were exposed to 2 mM IPTG. The data suggest that 0.8-2 mM IPTG could be 

the optimal levels of inducer to utilise in the analysis of the operator-containing US9 

promoter in the viral genome. However, the conditions for IPTG induction, in terms of 

IPTG concentration and time of exposure to IPTG, will have to be optimized for studying 

conditional expression of the US9 promoter in the context of the viral genome.

The observations in the last two sections demonstrate that /ac-mediated repression 

(using a recombinant HCMV expressing the lac repressor), and IPTG derepression can be 

readily achieved using an HCMV-specific promoter in transient assays. This validated
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FIG. 27. Titration of IPTG for induction of pUS9op(-l6)CAT in cells infected 

with RVlac. HFF cells were transfected with 10 ug of pUS9op(-16)CAT. At 

24 hs after transfection, cells were infected with either AD169 or RVlac at 2 

PFU per cell. After virus adsorption for 2 hs, IPTG was added at 0,0.2,0.4, 

0.8, or 2 mM. Cells were harvested 72 hs post infection, and cell extracts were 

assayed for CAT activity. Percent acetylation was quantitated by 

phosphorimager analysis. Results shown correspond to a representative 

experiment.
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efforts to construct this system into the virus for future analysis of conditional gene 

expression during the course of HCMV infection of cells in culture.
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CHAPTER V 

DISCUSSION

HCMV essential genes encode protein functions that are absolutely required for 

replication of the virus in cell culture. In other words, deletion or mutation of such genes 

is lethal. Thus, these genes are believed to play central roles in the replicative cycle, 

leading to the production of virus progeny. To date, these genes have not been directly 

tested for their roles in virus replication. Hence, their essential nature remains 

speculative, and it is mostly based on homologies with HSV-1 essential genes. The 

unavailability of a significant number of HCMV conditional-lethal mutants, and the lack 

of cell lines to complement virus null mutants, have presented an obstacle for addressing 

the role of individual essential viral gene products in the context of a natural infection 

(reviewed by Stenberg and Kerry, 1995). Therefore, the need for the development of new 

methodologies to address gene expression in the context of the HCMV genome, as well 

as for the propagation of viruses with mutations/deletions in genes likely to be essential, 

is presently clear.

In this study, a conditional expression system was developed to study the 

functional roles of HCMV gene products during viral replication. This approach is based 

on the Escherichia coli lac repressor protein, the lac operator DNA sequence to which 

the repressor binds with high affinity and sequence specificity, and the specific inducer 

IPTG. By using this system, HCMV putative essential genes can be targeted for 

conditional expression by constructing recombinant viruses containing lac operator 

sequences in target promoters. These operator sequences within the target promoters can 

be acted upon by the lac repressor produced from the same recombinant virus or a
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coinfecting recombinant HCMV. The effect of the loss of expression of the target gene 

on virus replication can then be assessed.

Several questions were addressed in this study. Can the lac repressor-operator 

system be inserted into the HCMV genome to study viral gene expression? Specifically, 

can the lac repressor be expressed from recombinant HCMV? Will the lac repressor 

produced recognize the lac operator sequence in an HCMV promoter, in a CAT reporter 

construct to first test the system in transient expression assays, as well as in the 

endogenous locus in the viral genome? Will this interaction block promoter activation? 

What levels of repression and IPTG-mediated derepression can be achieved? These 

objectives were successfully accomplished by generating a lac repressor expressing 

recombinant HCMV and a lac operator-containing, HCMV-specific promoter, and 

analyzing the lac operator-repressor-IPTG interactions in the context of such a promoter. 

The approaches used and the relevant findings in this study are discussed in this chapter.

The lac repressor-operator system has been shown to regulate the expression of 

transfected and integrated reporter genes in mammalian cells (Brown et al., 1987), (Hu 

and Davidson, 1987), (Deuschle et al., 1989), (Figge et al., 1988), as well as in 

recombinant vaccinia virus-infected cells (Rodriguez and Smith, 1990 and 1990), (Fuerst 

et al., 1989), (Zhang and Moss, 1991). As a novel transcriptional regulatory system in 

mammalian cells, the lac repressor-operator interaction offers significant advantages for 

use as a conditional genetic switch. Firstly, the use of these prokaryotic elements, which 

are inert to the physiology of the eukaryotic cell, can potentially be applied for the 

stringent regulation of expression of any chosen HCMV gene. In this manner, the target
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gene, and therefore viral replication, can be externally controlled. Secondly, the 

repressor-operator interaction is highly specific. The lac operator sequence is present 

extremely infrequently in the genomes of mammalian cells. Therefore, only the gene 

under study is susceptible to regulation by the lac repressor. This strikingly contrasts with 

other gene expression systems, like induction mediated by hormones, heavy metals, or 

heat shock, where the inducers can affect the expression of several genes simultaneously. 

Thirdly, the system can be allosterically regulated by IPTG, allowing for the reversion of 

the repressed phenotype. This is an important aspect for the application of the system in 

this study, due to the absolute requirement of IPTG for the propagation of recombinant 

viruses with repressible promoters of essential viral genes.

For use in an eukaryotic environment, the gene encoding the lac repressor {lac i 

gene) contained a modified initiation codon (GTG to ATG) for efficient translation in an 

eukaryotic cell. Also, the gene was modified to include the SV40 T antigen nuclear 

localization signal, in order for the protein product to localize to the nucleus. Transport 

into the nucleus was thought to be of critical importance if the repressor was to be used to 

regulate transcription of HCMV genes, which occurs in the nucleus and depends on the 

cellular RNA polymerase n. However, in one of the earliest reports using the lac 

repressor in mammalian cells, Hu and Davidson (1987) showed that expressing a lac 

repressor lacking a nuclear localization signal resulted in 10% of the total repressor 

localized to the nucleus, and 90% to the cytoplasm. Although the majority of the 

repressor molecules were present in the cytoplasm, those present in the nucleus were 

biologically active and repressed operator-containing promoters by 90%. Nonetheless, in 

this study, the presence of a nuclear localization signal was considered to be important;
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since larger amounts of the repressor protein will be localized in the nucleus, lower levels 

of expression of the protein will be needed to effect regulation.

The initial goal was to construct a recombinant HCMV that expresses the lac 

repressor from the HCMV major immediate-early promoter (M1EP) (RV/ac) (Specific 

objective 1). This recombinant virus would allow for the assessment of lac repressor 

protein expression in the infected cells throughout the course of infection. In addition, 

RV/ac could be used to test operator-containing HCMV promoters in transient assays. 

These assays would determine the most appropriate number and relative position of the 

operator sequences for effective /ac-mediated repression, to validate the insertion of such 

promoters into the virus for analysis in the context of the viral genome. The MSEP-lac i 

gene expression unit was inserted between open reading frames US9 and US 10, a 

transcriptionally barren region in the HCMV genome. Expression driven by the MIEP 

allowed for the lac repressor to be produced immediately afrer infection, and throughout 

the course of viral replication. As presented in Figure 7, significant levels of the 37 kD 

repressor polypeptide were observed at 24,48, and 72 hs post infection. A priori, the 

amounts of the repressor polypeptide present in the RV/ac-infected cells were presumed 

to be sufficient to form enough repressor tetramers to efficiently block transcription from 

operator-containing promoters, although there were no previous data to support that 

assumption. The fact that significant levels of the repressor were observed during the 

complete replicative cycle has an important implication: expression of the lac repressor 

gene under the control of the MTF.P would allow for the repressor to be available in the 

RV/ac-infected cell for the regulation of expression o f operator-containing HCMV 

promoters of all kinetic classes in the context of the viral genome.
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The next question addressed in this study was to determine if the lac repressor 

produced in RV/ac-infected cells would recognize its cognate operator sequence, and 

regulate expression from operator-containing promoters. Initially, this question was 

approached by analyzing the lac repressor-operator interaction using operator-containing 

heterologous promoters and RV/ac in transient assays. To this end, CAT reporter 

constructs driven by lac operator-containing RSV-LTR promoters (pOpl3CAT and 

pOpRSVIC AT) were used (see Figure 8A). The number and relative position of the 

operator sequences were different for these two constructs. pOpl3CAT contains three 

tandem operator sequences immediately downstream of the RSV promoter, while 

pOpRSVIC AT contains two operator sequences, one of which is located adjacent to the 

TATA box, and the other one is present downstream of the RSV promoter.

Approximately 80-100% reduction in CAT activity was observed in cells transfected with 

these constructs and infected with RV/ac (Figure 8B), suggesting that 1) the repressor 

polypeptide was expressed at significant levels from the MIEP-/ac / gene cassette in the 

viral genome, 2) presumably formed homotetramers, prior to and/or after migrating into 

the nucleus, and 3) the functional repressor was present in sufficient amounts for efficient 

repression of the operator-containing promoters. From Figure 8B, it is evident that a more 

effective repression of promoter activity occurred when the lac operator sequence is 

positioned closer to the TATA box. In RV/ac-infected cells, CAT activity 80 to 100 times 

less than that obtained in the presence of wild type virus AD 169 infection represented a 

highly significant level of repression. This may, at least in part, be explained by the 

presence of multiple copies of the operator sequence. Sadler et al. (1980) have reported 

that the half-lives of operator-repressor complexes increase with increasing numbers of
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operators in tandem, thereby enhancing the repressor capabilities to sterically block the 

binding of the RNA polymerase to the transcription start site. However, the ability of 

IPTG to derepress such operator-containing promoters may be reduced.

When cells transfected with pOpRSVICAT and infected with RV/ac were 

exposed to IPTG, at concentrations ranging from 10 to 100 uM for 7 hs, CAT activity 

rose to levels 4 times of those of cells left untreated (Figure 9). This represents a modest 

level of derepression (about 40% of the level of promoter activity in AD169-infected 

cells), suggesting that the repression of this operator-containing promoter was not fully 

reversible. Several factors can contribute to this phenomenon. First, reversion with IPTG 

may be less easily achieved due to the presence of two operator sequences. Secondly, 

because of the limited permeability of the eukaryotic plasma membrane to IPTG [in 

E.coli, IPTG enters the cell using the inducible lac permease system (Kennedy, 1970)], 

significant amounts of the inducer may have been difficult to obtain inside the cell at the 

concentrations tested. Furthermore, the amounts of IPTG transferred from the cytoplasm 

to the nucleus may have been insufficient to act upon the repressor-operator complexes 

on the promoter in pOpRSVICAT. Lastly, the time of exposure to IPTG was probably 

insufficient, and was reflected in the magnitude of the response. From these experiments, 

it was concluded that higher concentrations of IPTG and longer times of exposure to the 

inducer needed to be tested in subsequent experiments in order to obtain a more effective 

derepression.

The next step represented a central goal of this project. This was to construct a lac 

operator-containing HCMV promoter (Specific objective 2) in order to insert it into the 

endogenous locus in the HCMV genome (Specific objectives 3,4, and 5) for future
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analysis of conditional expression in the context of a natural infection, and to test its 

susceptibility to RV/ac-mediated repression and derepression by IPTG in CAT reporter 

constructs in transient assays (Specific objective 6). The lac operator chosen was the 24- 

base pair sequence 5’GAATTGTGAGCGGATAACAATTTC3\ In terms of its structure, 

this operator sequence is an imperfect palindrome. Simons et al. (1984) showed that 

operators containing imperfect palindromes bind the lac repressor with an 88 % shorter 

half-life than perfect palindromes. This may result in a more effective derepression 

mediated by IPTG. Thus, an imperfect palindromic operator sequence was chosen for this 

study in order to be able to dissociate the repressor-operator complexes more easily in the 

presence of IPTG. This is part of concerted efforts that needed to be made to achieve 

significant levels of lac repressor-mediated repression that can be efficiently reversed by 

IPTG. The 24-base pair operator sequence was inserted at different positions within the 

HCMV US9 promoter (see below). The US9 gene was targeted for conditional 

expression because this gene is known to be dispensable for growth of the virus in 

primary human fibroblasts (HFF) in culture (Jones and Muzithras, 1992). Thus, the lack 

of expression of the US9 gene in the repressed state would not affect virus replication in 

HFF cells. This characteristic allows for the analysis of parameters of repression and 

derepression without having virus growth dependent on IPTG. Moreover, the US9 gene is 

located adjacent to the site of insertion of the MIEP-/ac / gene cassette in RV/ac. 

Therefore, recombinant viruses with the double insertion of the lac i gene and the lac 

operator sequence can be generated after a single recombination event. By utilizing a 

virus expressing the lac repressor and containing an operator-modified US9 promoter, the
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feasibility of the lac repressor-based system to study HCMV gene expression in the 

context of the viral genome can be assessed.

Initially, a single lac operator sequence was inserted at a unique &/II site in the 

leader sequence of the US9 gene, forty nucleotides downstream of the transcription start 

site (position +40). This approach was undertaken because it represented a quick and 

convenient insertion of the lac operator sequence into the US9 promoter-leader region. 

Although the majority of the reports to date have favored the insertion of operators within 

promoter sequences, lac operators have also been found to be biologically functional 

when positioned downstream of the promoter. Deuschle et al. (1986) observed that a lac 

repressor-operator complex can be formed and block transcriptional elongation when the 

operator was inserted downstream of the coliphage T5 promoter. A 90 % reduction of 

promoter expression was observed.

Alternatively, a single lac operator sequence was positioned 16 or 6 nucleotides 

upstream of the transcription start site in the US9 gene. The criterion was to place 

operator sequences at different positions relative to the TATA box. In the US9 promoter, 

the operator at -16 is 6 nucleotides downstream of the TATA box, while the one 

positioned at -6 is 16 nucleotides downstream of the TATA box. It has been suggested 

that the lac repressor bound to an operator immediately downstream of the TATA 

element sterically impairs the binding of the RNA polymerase to the transcription start 

site (Brown et al., 1987). The position of the operator has been demonstrated to be critical 

for effective repression mediated by the lac repressor (Rodriguez and Smith, 1990), (Hu 

and Davidson, 1987).
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Another aspect to be considered for the construction of the operator-containing 

US9 promoters was the number of operator sequences that needed to be inserted into the 

promoter. Reports on the use of the lac repressor-operator system in mammalian cells 

consistently show that tighter repression can be obtained with numerous operators in 

tandem array. This could be due to an enhanced stability of the repressor-operator 

complexes as a result of increased protein-protein interactions. Operators in tandem in 

specific spatial arrangements are thought to lead to the formation of intervening DNA 

loops upon binding of the repressor tetramers, which increases the stability of the 

interactions, leading to higher levels of repression (Besse et al., 1986), (Mossing et al., 

1986), (Kramer et al., 1987). However, these tandem operator insertions can have an 

intrinsic impact on promoter expression, leading to reduced promoter activity even in the 

absence of the repressor. For example, when analyzing the effect of several operator 

insertions on S V40 early promoter activation relative to the parental promoter upstream 

of the CAT gene, Hu and Davidson (1987) showed that 1) a single operator positioned 

between the transcription start site and the TATA box decreased CAT activity by about 

25%, 2) two tandem operator sequences resulted in 70% reduction in CAT activity, and 

3) three operators decreased CAT activity by approximately 85%. This indicates that the 

operator insertions per se resulted in decreased promoter activity. For the system to 

operate efficiently, it is desired that the operator have a minimal impact on promoter 

expression. This seems to be more easily achieved with single operator insertions.

In addition, the presence of several operators may result in lower levels of 

reversion of repression mediated by IPTG. This was observed by Rodriguez and Smith 

(1990), who studied an operator-containing late vaccinia virus promoter using the
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luciferase reporter system. When a single operator was inserted, IPTG induced luciferase 

activity to approximately 90% of the control levels. In contrast, when two operators were 

present, reversion was only 50%.

Taking into consideration all of the evidence presented above, and because it was 

hypothesized that the operator sequence at +40 may interfere with the translation of the 

US9 mRNA (see below), it was therefore concluded that a single lac operator sequence at 

either -16 or -6 should be inserted into the endogenous US9 promoter for future analysis 

of conditional promoter expression. However, the US9 promoter-Ieader containing the 

operator sequence at +40 was included in the experiments on transient expression of 

operator-containing promoters in CAT reporter constructs (see below), to compare its 

expression with that of the wild type US9 promoter, as well as with that of the US9 

promoters with operator sequences at -16 and -6. If the operator insertion at +40 proved 

to have no intrinsic effect on expression, and if it was efficiently acted upon by the lac 

repressor and IPTG, it would then be considered for insertion into the viral genome for 

future analysis.

By inserting the operator-containing US9 promoters into the viral genome, and 

assessing repression by the lac repressor and derepression by IPTG, the feasibility of this 

conditional expression system for the study of HCMV gene function during a natural 

infection of cells in culture can be evaluated. As explained at the beginning of this 

chapter, a HCMV gene can be targeted for conditional expression by inserting its 

promoter containing an operator into the endogenous locus by homologous 

recombination, provided a screening method is available to isolate the resulting 

recombinant virus. The operator-containing promoter in the endogenous locus can be
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acted upon by the lac repressor produced from the same recombinant virus, or a 

coinfecting recombinant HCMV. Thus, targeted gene expression and virus replication can 

be assessed in the repressed state. Addition of IPTG reverses the repression, and allows 

for expression of the target gene. In this study, the operator-containing US9 promoter and 

the lac i gene were constructed into a recombination vector (pRV/acUS9op) for insertion 

into the US9-US10 intergenic region in the HCMV genome by a one step homologous 

recombination event leading to the generation of a single recombinant HCMV. Although 

one pool of virus was identified to contain recombinant virus, the isolation of the virus 

with the double insertion was unsuccessful. The reason(s) for failing to isolate this 

recombinant virus is unknown. Possibly, the lac repressor produced from the 

recombination vector pRV/acUS9op in cells transfected with parental virus RV134 and 

pRV/acUS9op would bind to the operator sequence in the recombination vector. The 

repressor-operator interaction could therefore interfere with homologous recombination 

into the RV134 DNA, leading to aberrant or lack of recombination. Hence, appropriate 

recombination becomes a very rare event, which would be reflected in an extremely small 

number of the double insertion recombinant virus resulting from the transfection. 

Consequently, isolation of such a recombinant virus would be very difficult to achieve. 

These results suggested that future studies should address conditional expression of the 

operator-containing US9 promoters in the context of the viral genome by generating one 

recombinant virus containing the operator-containing US9 promoter and another 

recombinant virus that expresses the lac repressor, to be used in coinfection experiments. 

This approach has been successfully applied to vaccinia virus (Rodriguez and Smith, 

1990). Their report included the generation of a recombinant virus expressing the
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repressor protein and a series of viruses containing operator sequence(s) at different 

positions between the vaccinia virus late 4b promoter and the luciferase reporter gene. 

The data from coinfection experiments demonstrated optimal inhibition of luciferase 

activity which could be restored after treatment with IPTG.

Before new approaches are applied to address conditional expression of the 

operator-containing US9 promoters in the viral genome, it was necessary to determine if 

the operator insertions at -16 and -6 in the US9 promoter in the endogenous locus had an 

impact on US9 gene expression in the absence of the repressor. In order to answer this 

question (see below), recombinant viruses R.VUS9op-16 and RVUS9op-6 were 

generated. These viruses contain a single operator sequence located at -16 or -6, 

respectively, in the US9 promoter in the viral genome. In addition, a recombinant virus 

(RVO) containing the linker sequence used to perform the insertions between US9 and 

US 10 in the viral genome was generated, to control for the impact of such a sequence on 

endogenous US9 promoter expression.

The analysis of the growth properties of the recombinant viruses generated 

(RV/ac, RVUS9op-16, RVUS9op-6, and RVO) by one step growth curves showed that 

there were no significant differences in the rate of virus replication of the recombinant 

viruses relative to the parental virus RV134. This implies that the lac repressor based 

system can be integrated into the HCMV genome without impacting on the production of 

virus progeny.

In order to test the system in transient assays, expression of the operator- 

containing US9 promoters was assessed in CAT reporter constructs (Specific objective 

6). This included the analysis of promoter activity in the presence of HCMV immediate-
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early proteins IE1 and LE2, or wild type virus AD169, to investigate the impact of the 

operator insertion on basal promoter expression. To determine the viability of this system 

to conditionally express an HCMV promoter, the analysis on basal operator-containing 

US9 promoter activity was followed by experiments addressing RV/ac-mediated 

repression and restoration of activity of the operator-containing promoters by IPTG. The 

operator-containing promoter-leader sequence was tested in a CAT reporter construct 

(pUS9opCAT), in the presence of HCMV immediate-early proteins EE1 and IE2. From 

this experiment it was concluded that this operator location was not appropriate for the 

analysis of conditional expression of this promoter, since the operator insertion per se 

completely abrogated CAT activity (Figure 20). Very low levels of CAT activity were 

also obtained when cells transfected with pUS9opCAT were infected with AD 169 

(Figure 21). A possible explanation for these results is that, given the palindromic 

structure of the operator present in the leader sequence, the formation of a hairpin 

structure may have reduced the translatability of the CAT mRNA. Consequently, 

additional sites of insertion for the operator needed to be tested. Thus, the operator 

insertions at -16 and -6 in the US9 promoter were analyzed.

To resolve the question of whether the operator insertions at -16 and -6 were 

adequate for the objectives of this project, it was critical to determine the extent to which 

the operators affected promoter activation in the absence of the repressor. To answer one 

aspect of this question, the operator-containing US9 promoters were cloned into a CAT 

reporter plasmid and tested for activation by IE1 and IE2. Figure 22 shows that the 

operator positioned at -16 (in pUS9op(-16)CAT) had the least impact on promoter 

expression. Activation of this promoter was 70% that of the wild-type promoter. In
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addition, promoter expression in pUS9op(-16)CAT in the presence of all viral proteins 

(Figure 23) showed a lesser impact of the operator insertion, when compared to insertion 

at -6, relative to the wild type promoter in pUS9CAT. Clearly, these results suggested 

that the US9 promoter with the operator adjacent to the TATA box (at position -16) was 

the most appropriate promoter for an accurate analysis of repression by the lac repressor, 

due to a lesser effect on basal expression of the promoter by the operator insertion. 

However, because different outcomes can be expected in terms of the intrinsic influence 

of the operator at different positions relative to the TATA box when the promoter is 

analyzed in the context of the HCMV genome, both operator-containing US9 promoters 

were inserted into the endogenous locus to generate recombinant viruses RVUS9op-16 

and RVUS9op-6, as described above.

In order to determine the impact of the operator insertion on endogenous US9 

promoter expression, US9 mRNA was measured in cells infected with RVUS9op-16 and 

RVUS9op-6. It was desired that basal promoter activity would not be affected 

significantly by the operator insertion, in order to use these variant promoters to 

conditionally express the US9 gene using the lac repressor and IPTG. The results 

presented in Figure 24 demonstrate that the operator insertions at -16 and -6  in the US9 

promoter do not have a major impact on endogenous promoter expression. Although a 2- 

fold increase in US9 mRNA levels was observed in cells infected with RVUS9op-16 or 

RVUS9op-6, relative to the highest levels of US9 mRNA achieved in cells infected with 

AD169 or RV134, these changes do not reflect a significant influence of the operator 

insertion on basal promoter expression. It is worth noting that the operator insertion at -6 

may be more suitable to assess lac repressor-mediated repression, since US9 mRNA
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levels in cells infected with RVUS9op-6 were equivalent to wild type levels at 24 hs post 

infection, and increased approximately 2-fold at later times. Thus, basal levels of 

promoter expression were not decreased as a result of the operator insertion. On the other 

hand, US9 mRNA levels in cells infected with RVUS9op-16 were lower than wild type 

levels at 24 hs, so this operator insertion resulted in a reduction of basal promoter activity 

at early times. These data suggest that the operator insertions in the endogenous US9 

promoter, in particular, when the operator is positioned at -6  relative to the transcription 

start site, may be appropriate for the application of the lac repressor-based system to 

study US9 gene expression in the context of the viral genome.

Furthermore, it was interesting to observe that US9 mRNA at late times was 

higher than that at early times in cells infected with any of the recombinant viruses. This 

suggests that insertions within and upstream of the endogenous US9 promoter have an 

impact on the kinetics of US9 gene expression. This early-late pattern of gene expression 

may be of no relevance for the use of the lac repressor-based system to conditionally 

express the US9 gene, but it may be the subject of future studies on the regulation of 

endogenous US9 promoter expression. The decrease in US9 gene expression from 

RV134 at early times was also observed by Jones et al. (1991), although they reported 

that this was a slight reduction.

After analyzing the intrinsic impact of the operator insertions on basal US9 

promoter expression, both in transient assays and in the context of the viral genome, it 

was of critical importance to examine the ability of the lac repressor produced in KVlac- 

infected cells to repress the expression of the operator-containing US9 promoters, in 

order to demonstrate the susceptibility of an HCMV-specific promoter to regulation by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

the lac repressor. It was reasoned that because the operator insertion in pUS9op(-16)CAT 

had a lesser impact on basal promoter expression in transient assays, this reporter 

construct would be more suitable for the analysis of /ac-mediated repression in transient 

assays. The procedure involved transfecting cells with the CAT reporter construct and 

subsequently infecting with wild type virus AD 169 or RV/ac. A highly significant 

reduction in CAT activity was observed in the presence of the lac repressor, at 24,48, 

and 72 hs post infection (Figure 25). The repression observed was 10-fold, which is in 

agreement with reports by others (Hu and Davidson, 1987), (Deuschie et al., 1990), when 

using single operator insertions. Levels of repression of 30- to 50-fold have been reported 

when two operators in tandem were used (Hu and Davidson, 1987). The level of 

regulation by the lac repressor obtained in mammalian cells so far is substantially lower 

than that within the lac operon in E.coli. In bacteria, repression of expression can be 

1000-fold (Gilbert and Muller-Hill, 1970). One possibility for this significant difference 

is the DNA context in which the operator is located. The different molecular 

configurations of bacterial versus eukaryotic DNA (in this particular case, the viral US9 

promoter) may influence the formation and/or the stability of the operator-repressor 

complex, thus affecting the magnitude of the repression achieved. Another explanation 

relates to the transport of the lac repressor to the nucleus of the eukaryotic cell. It is 

possible that higher levels of repression were not obtained because of insufficient 

amounts of functional tetrameric repressor present in the nucleus of the RV/ac-infected 

cells. Although significant levels of the 37 kD polypeptide were detected at 24,48, and 

72 hs in RV/ac-infected ceils (see Figure 7), the efficiency of transport of the repressor
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from the cytoplasm to the nucleus, as well as the sufficiency of functional tetramers to act 

upon the operator sequence are unknown.

In contrast with these observations are the calculations by Figge et al. (1988), who 

stated that “....the concentration of repressor molecules required to achieve 99.9% 

operator saturation with repressor would be 5x1 O'8 M, which corresponds to 2000 

repressor tetramers per nucleus. We previously calculated that our cells (CV-1P cells) 

each contain approximately 4xl04 repressor tetramers. If 10% of these are contained 

within the nucleus as shown by Hu and Davidson (1987), then there is sufficient 

repressor present to achieve >99.9% saturation of a single chromosomal operator site”.

However, in the paper by Figge et al., a single operator-containing SV40 hybrid 

early promoter-CAT gene cassette had been stably integrated into high molecular weight 

DNA. In this study, as well as in others using plasmids bearing operator-modified 

promoters, the number of operator sequences within the nucleus is likely to be much 

higher. Therefore, the amount of repressor required for efficient saturation of all the 

operator sites within the nucleus may be substantially higher as well. Finally, although 

the magnitude of the response is far lower than in bacteria, the repression obtained is 

probably stringent enough to assess regulation of expression of the operator-containing 

US9 promoter accurately.

To assess IPTG-mediated derepression of pUS9op(-16)CAT in RV/ac-infected 

cells, concentrations of IPTG ranging from 0 to 2 mM were used, and cells were exposed 

to IPTG for 70 hs following infection with RV/ac. According to the reports on IPTG 

induction in mammalian cells, the conditions chosen in this study represent a medium 

dose of IPTG (high doses range from 5 to 50 mM, and toxicity has been reported at
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concentrations higher than SO mM), and a maximal time of exposure (in other studies, 

exposure to the inducer ranged from 7-12 hs to up to 3 days). A significant level of 

derepression (about 80%) of pUS9op(-16)CAT was achieved with 0.8 and 2 mM IPTG 

(Figure 27). This degree of derepression is concordant with those obtained by others (60- 

80%) (Hu and Davidson, 1987). Although the repressed phenotype was not fully 

reversed, the results obtained may still be significant. A plateau seems to have been 

reached at 0.8 mM IPTG, but testing higher concentrations of IPTG may result in 100% 

reversion.

The amounts of IPTG required to obtain 80% derepression in these experiments 

are about 10-20 times higher than those that result in maximum induction in E.coli (0.1 

mM) (Cho et al., 198S). A possible explanation is that the amount of IPTG that actually 

enters into the cytoplasm, and is subsequently transferred to the nucleus, may be 

significantly less than the concentrations present in the culture media. In addition, the rate 

at which IPTG binds the operator-bound repressor in the nucleus may be slower than in 

E.coli, resulting in derepression with slow kinetics compared to the induction process in 

bacteria.

Overall, the IPTG derepression experiments suggest that IPTG can enter the 

RV/crc-infected cells, and act upon the repressed operator-containing US9 promoter to 

significantly relieve the block on promoter expression, leading to activation to 80% of the 

parental promoter expression levels. These conclusions strictly apply to the transient 

expression system. In other words, for repressed operator-containing US9 promoters in 

the viral genome, the conditions for IPTG derepression would have to be optimized.
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All the observations discussed above relate to the central objective of this project, 

i.e., the analysis of /ac-mediated repression of operator-containing US9 promoters in 

transient assays using CAT reporter constructs, and the ability of IPTG to reverse the 

repressed phenotype. Future studies, however, will analyze the lac repressor-based 

system in the context of the HCMV genome.
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CHAPTER VI 

CONCLUSIONS

An Escherichia coli lac repressor-based system was developed to study HCMV 

gene expression in the context of the viral genome. Two major aspects were investigated: 

a lac repressor expressed from recombinant HCMV, and an operator-containing HCMV 

specific promoter for which lac repressor-mediated repression and restoration of 

promoter activity by IPTG can be efficiently achieved. The system was first tested in 

transient expression assays, to assess the feasibility of this approach to conditionally 

express a HCMV specific promoter. The repressor produced from recombinant HCMV 

(RV/ac) efficiently repressed operator-containing heterologous promoters in CAT 

reporter constructs in transient assays. The repression observed was reversed by IPTG. 

Different operator insertion sites within the HCMV US9 promoter were tested to assess 

the impact of the operator sequence on basal promoter expression, both in transient 

assays (using CAT reporter constructs), and when these promoters were inserted into the 

viral genome. Basal promoter expression was affected to a lesser extent in transient 

assays when the operator sequence was inserted at -16. Thus, this promoter was chosen 

for the analysis of lac repressor-mediated repression in transient assays. The viability of 

this system to control an HCMV promoter was demonstrated when efficient repression of 

the operator-containing US9 promoter was observed in the presence of RV/ac, and 

repression was reversed after the addition of IPTG. Moreover, the operator insertions in 

the endogenous US9 locus did not affect US9 basal promoter expression significantly. 

Interestingly, the operator insertions affected the kinetics of US9 gene expression in the 

context of the virus: an increase in the levels of US9 mRNA at late times post infection
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was observed. These observations provide the basis for future investigation of the US9 

promoter sequences affected by the operator insertions that resulted in changes in US9 

promoter expression. Overall it was concluded that the lac repressor-based system can be 

applied to study HCMV gene expression. Future studies may address the conditional 

expression of other HCMV promoters, adapting this system so that putative essential 

HCMV genes can be targeted.
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