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ABSTRACT 

 

ALICYCLIC AND AROMATIC CARBOXYLIC ACIDS IN SOIL ORGANIC MATTER: AN  

INVESTIGATION OF POTENTIAL ORIGIN AND ASSOCIATION WITH PLUTONIUM 

USING ADVANCED ANALYTICAL TECHNIQUES 

 

 

Nicole DiDonato 

Old Dominion University, 2017 

Director: Dr. Patrick G. Hatcher 

 

 

 Carboxylic acids are a defining component of soil organic matter, responsible for many 

of the physical and chemical properties, including metal-organic matter interactions, which 

govern its role as an important constituent of soils.  However, there is a shortage of detailed 

molecular level information regarding orientation and structural arrangement of carboxylic acids 

within soil organic matter.  This dissertation utilizes electrospray ionization Fourier transform 

ion cyclotron resonance mass spectrometry (ESI-FTICRMS) as well as solid-state and multi-

dimensional nuclear magnetic resonance (NMR) to investigate the molecular formula 

composition within several organic matter sources and the primary structures that feature 

carboxylic acids.  Soil organic matter is evaluated in two forms:  as the alkali-soluble, acid-

insoluble portion of organic matter (humic acids) from a collection of sources, as well as the 

alkali soluble soil organic material associated with high Fe and Pu metal concentrations at a 

contaminated munitions facility.  Two predominant carboxyl-containing molecular assemblages 

are found to be common in a wide variety of soil humic acids.  Along with lignin-like 

assemblages, these are carboxyl-containing aliphatic molecules (CCAM) and condensed 

aromatic molecules.  The proportion of these groups relative to lignin-like compounds within 

samples and the percent of total carboxylic acid molecular formulas among samples are found to 



increase with increasing humification of the soil.  Since CCAM and condensed aromatic 

molecules have previously been shown to be generated from oxidization of lignin, this represents 

renewed evidence for lignin as a major source of organic matter in soils. Lignin ring-opening and 

radical re-polymerization reactions have been proposed to form alicyclic CCAM and condensed 

aromatic molecules.  Detailed evaluation of the aliphatic molecules using multi-dimensional 

NMR confirms the presence of ring structures, replete with carboxylic acids, heteroatom 

substitutions in the form of alcohols and ethers, as well as a variety of methyl group substituents.  

Additionally, condensed aromatic carboxylic acid molecular formulas, primarily those 

containing nitrogen, were found composed in organic matter with elevated metal ions Pu and Fe.  

Carboxylic acid oxygens in combination with nitrogen in aromatic structures are suspected to be 

partially responsible for the high metal affinity.  Nitrogen-containing hydroxamate groups were 

also investigated for their potential to be incorporated into stable organic matter by testing the 

reaction between an amine-containing hydroxamate siderophore and the biopolymer cutin.  

While products of this reaction could not be confirmed, carboxylic acid functional groups are 

identified in this thesis as key molecular components contributing to Pu and Fe metal-binding 

attributes of organic matter, and potentially formed during the production of condensed aromatic 

and alicyclic compounds as a result of radical oxidation reactions of lignin. 
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This dissertation is formatted based on the journal Organic Geochemistry. 

CHAPTER I 

INTRODUCTION 

 

Soil organic matter (SOM) constitutes a critical pool of organic carbon, residing on the earth’s 

surface at the interface between air, water, rock and living organisms.  Understanding its role at 

the boundary between these entities is crucial not only for the success of agriculture in 

supporting the exponential growth of the world’s population, but also for understanding global 

warming and the micro and macro-cycles of nutrients and pollutants.  Soil organic matter 

properties such as structure and composition, along with ecosystem and environmental factors 

are key to understanding these processes.  However, of the 1600 Gtons of carbon that resides in 

soils, the largest pool of dynamic organic carbon on Earth, nearly two thirds of this has been 

estimated to be composed primarily of a molecularly uncharacterized fraction (Bianchi, 2011; 

Hedges et al., 1997).  The remainder is made up of known biomolecules such as cellulose (250 G 

ton), lignin (175 G ton), polysaccharides (150 G ton), and other minor components such as 

proteins, lipids, and cutin (5-10 G ton) which are presumed to be the primary sources leading to 

less-recognizable forms upon degradation (Bianchi, 2011).    Humic substances, commonly 

subdivided as humic acids, fulvic acids, dissolved organic matter, and insoluble humin 

collectively account for the bulk of this uncharacterized fraction.  Humic acids, fulvic acids and 

humin are operationally defined based on their solubility or insolubility in acid and alkali 

solutions.  Humic acids are soluble in base, but precipitate at low pH while fulvic acids are 

soluble in acid and under alkali conditions.  Humin is insoluble at all pH ranges.  These 

operational methods of sorting organic matter for analysis are an important alternative to 

traditional attempts which rely heavily on analytical techniques that provide average functional 
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group compositions or alter the organic matter by physical separations and chemical and/or 

thermal means to render the fractions more amenable to molecular-level analysis. An additional 

advantage of using alkali is that acid functional groups such as carboxylic acids that are 

characteristic of humic substances are ionized over a wide pH range (<2-11, in general for fulvic 

acids) and those that are otherwise insoluble but can ionize at high pH to facilitate solubility in 

base (i.e. humic acids) to be extracted.  Thus, alkali extracted organic matter that is subsequently 

acid precipitated to yield humic acids is the focal point for analysis in this thesis.  

 

The structural configurations of humic substances are integrally linked to how they are formed 

from parent molecules.  There is no shortage of proposed theories and mechanisms for the 

formation of the uncharacterized portion of organic matter.  While there is little consensus 

among the scientific community, some of the oldest theories still considered feasible, either in 

whole or in combination with other proposed mechanisms, include the lignin theory in which 

humic and fulvic acids are formed after microbial oxidation of lignin via depolymerization, 

demethylation and oxidation to form catechols as well as condensation with nitrogen compounds 

(Stevenson, 1994; Flaig, 1964).  Alternatively, the lignin decomposition or polyphenol theory, is 

also still considered to have some merit (Sparks, 2003; Haider and Martin, 1967).   According to 

this theory, microbial degradation may also include non-lignin carbon sources to form phenolic 

aldehydes and acids, which are further altered to polyphenols and quinones that have been 

proposed to incorporate nitrogen abiotically into humic materials via Michael adducts or Schiff 

bases (Stevenson, 1994).  The sugar-amine or melanoidin pathway in which amines add to sugar 

aldehydes to form humic materials is also still considered possible, but not a major process 

(Sparks, 2003).  Phenolic products have been suggested to condense and re-polymerize to form 
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large covalently linked molecules, or merely aggregate as a result of strong intramolecular forces 

(Sollins et al., 2007; Sutton and Sposito, 2005).  Theories based on lignin as a precursor hold up 

at least in lignin dominated environments but do not explain non-lignin origins or environments 

where lignin biomarkers are lacking.  Still other theories have been proposed for production of 

humic substances from tannins and terpenoids.  The number of precursor molecules and 

combinations of reactions suggests a diversity of products that likely form a multitude of 

compounds, few if any of which will be identical (Stevenson, 1994).  In fact there are many 

reports of highly varied structures in organic matter from different environments, however some 

remarkable similarities do exist when comparing average properties (Sparks, 2003). 

 

Lignin is one of the most abundant biopolymers on earth, second only to cellulose and accounts 

for approximately 20% of the annual carbon fixed by photosynthesis, so it is not surprising it has 

been proposed as a major source of organic matter, as is evident from the theories described 

above.  However these hypotheses have intermittently gained support and opposition over the 

course of study of humic substances.  The primary arguments in refute of this theory are the lack 

of hydroxylated phenol biomarkers characteristic of lignin-derived structures in some 

environments, as well as the presence of more aliphatic compounds.  However, recent work has 

suggested that both aliphatic and aromatic molecular assemblages may have origins from lignin, 

based on ESI-FTICRMS studies of lignin-derived DOM and radical oxidations of lignin (Chen et 

al., 2014; Waggoner et al., 2015).  Chapter II of this thesis further takes advantage of the high 

resolving power of ESI-FTICRMS and solid state NMR to investigate the prevalence of these 

two molecular assemblages among soil organic matter humic acids from a variety of sources to 

support this hypothesis.  Chapter III focuses on the structural conformation of carboxylic acid 
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containing alicyclic compounds in particular, in support of the findings of Chapter II using multi-

dimensional NMR in combination with ESI-FTICRMS.  Chapter IV is directed at investigating 

the condensed aromatic carboxylic acid molecular formulas which were found to be concentrated 

in a soil organic matter colloid containing high concentrations of the metals Pu and Fe. 

 

Oxidation is a fundamental process in the formation of humic substances, and carboxylic acids, 

which are formed during the oxidation of organic matter, are abundant within humic substances 

and are a good indicator of oxidative processes.  Carboxylic acids confer important properties to 

soil organic matter (SOM) such as cation exchange capacity, pH buffer capacity, metal chelation, 

sorptivity, solubility and reactivity that can control both nutrient and pollutant cycling in soils.  

The magnitude and extent of interactions, particularly for metal chelation and reactivity which 

are within the scope of this work, depend not only on the incidence of carboxylic functional 

groups in a given soil, but more so on the molecular framework and orientation in which they are 

incorporated into the constituent organic molecules of SOM.  Unfortunately, very few naturally 

existing ligands have yet to be isolated and studying their molecular environment based on bulk 

properties is limiting, even when analytical challenges can be overcome. 

 

Some of the most useful techniques that do not require extensive manipulations of samples (i.e. 

separations, extractions, derivatizations, etc.) that can alter the molecular structures and produce 

artifacts, are multi-dimensional NMR which provides direct structural evidence and soft 

ionization high resolution mass spectrometry (ESI-FTICRMS) which provides indirect structural 

information derived from exact molecular formulas.  Heteronuclear NMR correlations between 

carbon and protons of single bond distance can be observed using heteronuclear single quantoum 
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coherence (HSQC), and heteronuclear multiple bond coherence (HMBC) can be used to detect 

correlations for up to three bond distances between nuclei.  

 

Identification of naturally occurring ligand complexes within the complex matrix of 

environmental samples using ESI-FTICRMS has yet to be accomplished due to lack of apriori 

knowledge of ligand structure, composition, charge state, stoichiometry of bound metal 

complexes and binding strengths.  Distinguishing complexes representative of natural solution 

conditions from artifacts of adduct formation within the ESI source also presents a challenge 

(McDonald et al., 2014).  Known ligands such as desferoxamine are often detected as their 

sodium or chlorine salt adducts which are difficult to differentiate from incorrectly assigned 

artifacts, or “salts”(Waska et al., 2015).  Smaller ligands such as citric acid also tend to form 

multi-nuclear complexes consisting of many stoichiometric combinations of citrate molecules 

and metals (Gautier-Luneau et al., 2005). However the technique is useful for identifying 

potential un-bound ligands, particularly those containing functional groups of interest such as 

carboxylic acids which many natural organic matter ligands are thought to contain (Hertkorn et 

al., 2006; Repeta, 2015).  One way to do this is to successively ‘pool’ organic matter that is most 

closely bound or associated with metal species while simultaneously eliminating other organic 

matter structures that do not interact with metals.  Ultimately a high concentration of metals and 

natural organic matter ligands are obtained.  This was done for soil contaminated with plutonium 

and containing high amounts of iron (Xu et al., 2008), as will be discussed in Chapter IV.  

Hydroxamate groups from siderophores bound to cutin-like aliphatic chains were originally 

suggested to be present as ligands, based on the high nitrogen and hydroxamate content 

(measured using a spectrophotometric method), as well as multi-dimensional NMR analysis of 
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the purified colloid which suggested the presence of cutin-like aliphatic structures (Xu et al., 

2008).   

 

Siderophores, produced and excreted into soils by microbes and plants for the purpose of 

chelating metals, form some of the strongest complexes known with iron, and are proposed to be 

assimilated into organic matter.  Chapter IV also tests the hypothesis that a common siderophore 

produced by soil bacteria, desferoxamine (DFO), may react with a cutin biopolymer as a model 

SOM source. Very little is known about this process, however it could explain how nitrogen can 

be incorporated into organic matter since many of the suspected sources that persist in soils 

(lignin, cutin, etc.) are often devoid of it.  Multi-dimensional NMR and elemental analysis are 

employed to evaluate reaction results, which are presented along with other potential Pu metal-

binding compounds, aromatic carboxylic acids, as identified in an alkali extract of this high-Pu 

concentrated fraction using ESI-FTICRMS.  High mass accuracy measurements of molecular 

formulas are also compared for the original soil organic matter, the crude colloid and the pure 

iso-electrically isolated colloid with the highest Pu-affinity. 

 

The overarching goal of this thesis is to establish carboxyl containing aliphatic and aromatic 

compounds in soil organic matter as key components of humic acids, potentially originating from 

lignin and to demonstrate their significance in isolates of soil that have a strong affinity for 

binding plutonium and iron.  Alicyclic carboxylic acids, for the first time, can be traced to lignin 

as a precursor, and the evidence for their cyclic structures is confirmed using multi-dimensional 

NMR.  Further, carboxylic acids, particularly those attached to aromatic and condensed aromatic 

structures and containing a significant number of CHON compounds, are found in high 
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abundance in organic matter with high Pu-affinity.  Advanced analytical techniques such as ESI-

FTICRMS and multidimensional NMR are employed for this detailed molecular level analysis of 

natural organic matter with minimal manipulations prior to analysis that may alter its natural 

form. 
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CHAPTER II 

POTENTIAL ORIGIN AND FORMATION FOR MOLECULAR COMPONENTS 

OF HUMIC ACIDS IN SOILS 

Preface 

The content of this chapter was published in Geochimica et Cosmochimica Acta in 2016.  Below 

is the full citation. The formatting has been altered to incorporate the supporting information into 

the body of the manuscript. See Appendix B for the copyright permission. 

DiDonato, N., Chen, H., Waggoner, D., Hatcher, P.G., 2016. Potential origin and formation for 

molecular components of humic acids in soils. Geochimica et Cosmochimica Acta 178, 210-222. 

 

1. INTRODUCTION 

Humification of soil organic matter has traditionally been defined as the process by which plant 

and microbial debris are transformed in to humic substances (Sollins et al., 2007; Guggenberger, 

2005; Stevenson, 1994).  Humic substances themselves are only loosely defined as the 

significantly altered macromolecules remaining in soils that are not composed of easily 

recognizable known biomolecules (carbohydrates, lignin, proteins, amino-sugars, etc.).  These 

have further been defined operationally into three categories: base-soluble/acid-insoluble humic 

acid, acid/base soluble fulvic acid and insoluble humin.   

 

Proposed pathways for the formation of humic substances include the lignin and lignin 

decomposition theories, the lignin-polyphenol theory as well as the melanoidin pathway 

(Stevenson, 1994).  It is generally accepted that a combination of several of these pathways with 

some modifications may be responsible for producing humic substances.  Also, it is well known 
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that physical and chemical conditions such as climate (temperature and moisture), redox 

conditions, pH as well as the amount and chemical compositions of organic matter source inputs 

determine which and how far these humification processes progress.  In this paper, we refer to 

more ‘humified’ samples as those subject to these processes to a greater extent due to 

environmental conditions or for a longer period of time.  Most commonly, though not 

exclusively, the extent of humification can be illustrated through changes in organic matter 

contained within soil horizons at increasing depth of the soil column; more ‘humified’, maturely 

decomposed material tending to be found at depth and less humified, less decomposed material 

at the surface (Kögel-Knabner et al., 1991). It is generally agreed that more humified organic 

matter is present in highly aerobic soils than in soils that experience a lower degree of aerobic 

decomposition (Ikeya et al., 2013). 

 

For well over 100 years attempts have been made to structurally define the nature of humic 

substances and numerous models have been developed to apply a global definition of the 

structural entities that might constitute humic substances. Few of these models incorporate the 

recent views from ultrahigh resolution mass spectrometry that humic substances are generally 

low molecular weight (~500 Da) but extremely varied in structure (Kramer et al., 2001; Sutton 

and Sposito, 2005).  The general picture that emerges from all the previous work and this recent 

work is that humic substances comprise molecules containing varying proportions of aromatic 

structures, aliphatic structures, proteinaceous materials, sugars, and lipids. The aromatic and 

aliphatic structures appear to harbor functional groups that define their solubility or insolubility 

in alkali and dilute acids.  
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The recent vision of humic substances derived from ultrahigh resolution mass spectrometry 

seems to suggest that thousands of molecular components exist and these molecules have some 

common features that allow us to class them into several types of molecules defined by the van 

Krevelen diagram which plots molar H/C ratios vs molar O/C ratios (van Krevelen, 1950). This 

type of plot was first used by Kim et al. (2003) for ultrahigh resolution mass spectral data 

obtained by electrospray ionization coupled to Fourier transform ion cyclotron resonance mass 

spectrometry (ESI-FTICR-MS). Since this first paper, hundreds of studies have employed this 

approach to characterize humic substances (Nebbioso and Piccolo, 2013; Sleighter and Hatcher, 

2007).  What is particularly salient to our understanding of humic substances is that van 

Krevelen plots have defined clusters of molecules that differentiate various molecular entities 

that serve as a basis for the current focus.  The first of these represents molecules with a 

molecular similarity to fragments of lignin (200-800 Da), an important biopolymer component of 

terrestrial plants.  Similarly, other regions of the van Krevelen diagram represent molecules 

showing a similarity to proteinaceous materials, tannins, lipids, and carbohydrates, all of which 

have a derivation from well-known plant biopolymers. Two other regions of van Krevelen space 

have been noted. One of these is a region of condensed aromatic molecules commonly associated 

with pyrolytic destruction of organic compounds (Kramer et al., 2004; Hockaday et al., 2006; 

Ikeya et al., 2013). These appear to be sufficiently adorned with oxygenated functional groups 

(OH, COOH, CHO) as well as N or S-containing groups to become soluble and ionizable for 

ESI-FTICR-MS analysis.  The other region spans the van Krevelen diagram between H/C ratios 

of 2.0 and 0.85 and appear to be mostly aliphatic in nature (Ohno et al., 2010).  However, the 

number of double-bond equivalents (DBE) and oxygenated functional groups associated with 

these molecules suggests that they include a class of molecules named by Hertkorn et al. (2006) 
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as CRAM (carboxyl-rich alicyclic molecules).  The CRAM notation was originally used for 

marine-derived dissolved organic matter but it is clear that, in terrestrial dissolved and 

sedimentary organic matter, one observes aliphatic molecules that fit the CRAM definition in 

that they have multiple double-bond equivalents and contain carboxyl groups (Lam et al., 2007). 

In humic acids from terrestrial sources, since these molecules plot in a region beyond the CRAM 

region as defined by Hertkorn, we refer to them here simply as carboxyl containing aliphatic 

molecules (CCAM).  These molecules appear to be ubiquitous components of humic substances 

suggesting that they might be microbial biomolecules altered by environmental processes 

(Nebbioso et al., 2014).  

 

It has become clear from recent work by our group (Kramer et al., 2004; Ohno et al., 2010; Ikeya 

et al., 2013) and others (Grinhut et al., 2011) that humic substances in soils, humic acids in 

particular, show ultrahigh resolution MS data that display van Krevelen clusters of points in 

three principal regions: the lignin-like, the carboxyl containing aliphatic molecules (CCAM), and 

the condensed aromatic, or black carbon-like (BC-like) region. To demonstrate, Figure 1 shows a 

van Krevelen diagram for a soil humic acid whose partial mass spectral data were published by 

Ohno et al. (2010) , one that appears to be representative for humic acids from numerous soils 

distributed across the USA. The respective regions for the three classes of molecules are shown.   

 

The current study examines humic acids from additional soil samples to further investigate the 

ubiquitous presence of molecular formulas plotting in the three defined regions. In addition we 

provide an explanation for the formation of these molecules that introduces a new perspective of 

the humification process. Two of the soils were collected from a single site, however, they vary 
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in degree of humification because one is developed on a poorly drained substrate and the other is 

well drained such that the organic matter accumulates under continuously oxidizing conditions. 

The former poorly drained soil is inundated during the wet season and is also adjacent to a small 

stream. Accordingly, this soil is not as humified. Other factors (pH, organic matter input, 

occlusion and stabilization by soil minerals/clays, etc.) are also thought to influence the extent of 

humification, however, in the case of the these two samples it is expected that variations in water 

content, aeration and sunlight play the most dominant role in this process.  Our work utilizes 

advanced analytical techniques such as ESI-FTICR-MS and solid state NMR to more completely 

characterize these humic acids at the molecular level. The ESI-FTICR-MS mass spectra of a 

variety of other soil humic acids are also evaluated for comparison.  While it is rather 

straightforward to explain the source of the lignin-like molecules, we propose a new process for 

the formation of the other two classes of molecules that compose humic acids.  Because these 

appear to be ubiquitous across soils representing a diversity of soil environments, the process we 

suggest may be a global one.   
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Figure 1.  Van Krevelen diagram for humic acids extracted from a grassland soil in Valentine, 

NE. Data were obtained from Ohno et al. (2010).  Only formulas containing the atoms C, H, and 

O are plotted.  Blue, yellow, and gray regions define CCAM, lignin-like, and black carbon-like 

(BC) regions, respectively.  

 

 

2. MATERIALS AND METHODS 

2.1 Humic acid samples 

Georgia humic acids were extracted from soils using 0.5 M NaOH followed by treatment with a 

Dowex™ ion-exchange resin to remove sodium ions.  The resin was repeatedly cleaned with 

MilliQ water to neutrality.  Humic acids were precipitated by 6 M HCl at pH 2 and freeze dried.  

The humic acids from Ohno et al. (2010) were treated by a process described by Olk et al. (2002) 

which separates two types of humic acids, those extracted without soil treatment and those 

extracted after acidification of the soil to release Ca-bound humic acids. We examined only the 

latter as they appear to be the most highly humified. The Tsubame humic acid from a buried 

humic layer of a highly humified forest soil in Japan was prepared as described by Ikeya et al. 

(2013).  The Georgia soil humic acids (GA-1 and GA-2) were taken from the surface layer (top 
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10 cm) of a swampy hardwood forest soil and a nearby grassy, open field, respectively, in 

Kingsland, GA.  Armadale humic acids were obtained from the surface Ao horizon of a spodosol 

soil from a deciduous forest in the Armadale region of Prince Edward Island, Canada.  These 

samples were provided to us by Dr. Morris Schnitzer and prior NMR studies have been 

published (Kramer et al., 2001; Hatcher and Clifford, 1994; Schulten and Schnitzer, 1992; Chen 

and Schnitzer, 1978).  Available soil properties and characteristics are tabulated in Table 1 and 

Table 2. 

2.2  ESI-FTICRMS 

Georgia and Armadale humic acids were dried to remove water, weighed and re-dissolved in 

0.01 M NaOH overnight (~12 hours) under argon headspace.  They were then batch treated with 

a Dowex™ 50WX8-100 ion-exchange resin at a 3:1 v/v ratio and shaken for 1 hour to remove 

Na and other cations to reduce the formation of salts upon ionization.  Analysis was conducted in  
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Table 1 

 

Properties of humic acid parent soils. 

Sample Name  Location   Land use  Texture Class   Drainage 

Valentinea  Cherry County, NE  Rangeland  Sand    Good 

GA-1b   Kingsland, GA  Forest Swamp  Loam/sand   Poor 

GA-2b   Kingsland, GA  Open Field  Sand    Good 

Catlind   Ogle, IL   Agriculture  Silt/clay/loam   Moderate 

Armadalec  Prince Edward Island,  Forest    Sandy loam/clay loam  Poor 

   Canada 

Tsubame4  Niigata Prefecture,   Sub Alpine Forest N/A    Good 

   Japan 
aUSDA Official Soil Series Descriptions (OSD) website 
bUSDA Natural Resources Conservation Service Web Soil Survey 
cWhiteside (1950) 
dKumada (1987),Watanabe et al. (1996) 
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Table 2 

 

Properties of Soils and Humic Acids 

    Soil Data   Cation Exchange Capacity Humic Acid  

  % Organic     (CEC)    Elemental Analysis 

Matter  %C C/N pH  (cmol/kg or meq/100g) % C % N % H 

Valentine  -  0.497a 10.6a 6.0a  3.5a    - - - 

Catlin   -  3.512a 13.9a 7.2a  31a    - - - 

GA-1  1.0-2.0b - - 3.6-6.5b 2.5-7.0b   52.1c 2.9c 4.7c 

GA-2  0.5-1.0 b - - 4.5-6.5b 1.0-2.0b   49.9c 2.2c 3.8c 

Armadale 3.8d  - - 3.6 d  -    56.9d 2.3d 5.2d 

Tsubame -  8.8e 23.9e 4.2e  -    55.1e 2.9e 4.3e 

 
aOhno et al. 2010          
bEstimated from USDA Natural Resources Conservation Service Web Soil Survey Data        
cThis study         
dChen and Schnitzer 1978          
eWatanabe et al. 1996 
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the negative ion mode on a Bruker Daltonics 12 Tesla Apex Qe FTICR-MS instrument equipped 

with an Apollo II ESI source and housed in the College of Sciences Major Instrumentation 

Cluster at Old Dominion University.   To improve ionization efficiency, samples were mixed 1:1 

with methanol just prior to injection for a final concentration of approximately 50 ppm.  A 

dichloromethane rinse was performed to remove organics sorbed to the Dowex resin and these 

samples were run separately from the aqueous samples after mixing 1:1 with methanol prior to 

injection. Ions were accumulated in the hexapole for 2 seconds before transfer to the ICR cell 

where a 4 megaword time domain was used to obtain 300 scans co-added in broadband mode 

using an m/z range of 200-1200.  Spectra were externally calibrated to polyethylene glycol and 

internally calibrated to a fatty acid series common to natural organic matter (Sleighter et al., 

2008).  Empirical molecular formulas were assigned in the mass range from 200-800 m/z using 

an in-house Matlab code (The MathWorks, Inc., Natick, MA) according to the following criteria: 

12C2–50,
1H5–100, 

14N0–6, 
16O1–30, 

32S0–2, and 31P0–2 within an error of 1 ppm, and using the rules 

outlined by Stubbins et al. (2010).  For this study, only CHO formulas were investigated, and 

they represent a majority (45-73%) of the total number of assigned formulas (760-1206).  CHO 

formulas from the aqueous samples were combined with those assigned for their respective 

DCM extract to make a combined data set for each humic acid.  Valentine and Catlin humic 

acids were analyzed according to Ohno et al. (2010) and Tsubame humic acids were analyzed 

according to Ikeya et al. (2013). 

 

Molecular formulas were investigated using the van Krevelen diagram and categorized into three 

regions based on where the formulas plotted: lignin-like (0.2 ≤ O/C ≤ 0.6, 0.6 ≤ H/C≤ 1.2), 
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carboxyl containing aliphatic molecules (CCAM) (0.85≤ H/C ≤ 2, O/C ≤ 0.4) and condensed 

aromatic (modified aromaticity index, Aimod >0.67) (Koch and Dittmar, 2006), where:  

Aimod = 1+ C - 0.5*O - S - 0.5*H        (1) 

     C - 0.5*O - S - N - P 

It is important to note that there is some overlap between the CCAM-like and lignin-like regions, 

such that a small portion of molecular formulas plotting in both of these regions with 

0.2<O/C<0.4, 0.8>H/C>1.2 could represent either or both of the CCAM or lignin-like categories 

of molecular types based purely on their elemental ratios. For this reason, the fraction of 

formulas plotting in each region does not sum to unity.   

The formulas were also examined according to their Kendrick mass defect (KMD) for the 

carboxyl group (COO), which is calculated as follows (Ikeya et al., 2013; Kramer et al., 2004):   

KMD = Kendrick mass (COO) – Nominal Mass      (2) 

Kendrick mass (COO) = Exact Mass * (Nominal mass COO/Mass COO)   (3)  

2.3  NMR 

Solid State 13C NMR spectra were obtained on a Bruker 400 MHz Avance II spectrometer 

equipped with a 4 mm solid state MAS probe.  Samples were packed into an 80 μL zirconia rotor 

and sealed with a Kel-F cap.  Samples were spun at 11K Hz to avoid operating at the threshold of 

stability for the rotor throughout the long acquisition time of the DPMAS experiment. A small 

error may be associated with spinning sidebands at this frequency, however we do not expect this 

to be much above the noise or exceed 1% of the signal intensity.  6400 scans were acquired 

during cross-polarization magic angle spinning (CPMAS) and 2000 scans were acquired during 

direct polarization magic angle spinning (DPMAS).  A 1 second recycle delay and contact time 

of 1 ms was used for CPMAS.  Contact times were varied from 1 ms to 10 ms to find the most 
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appropriate contact time for magnification transfer.  For DPMAS, the recycle delay was set to 50 

sec to obtain relaxation of all carbons.  Glycine was used as an external standard calibrated to C-

2 at 42.56 ppm.  Integrations were performed using the Bruker Topspin software.  

2.4  Elemental analysis 

The elemental composition of the Georgia humic acids was evaluated using a FlashEA 1112 

elemental analyzer containing a CHN column.  Samples were prepared in triplicate and 

calibrated to an acetanilide standard curve. 

3. RESULTS 

3.1 Composition of Georgia Humic Acids 

3.1.1 ESI-FTICR-MS  

Van Krevelen diagrams for mass spectral data from the two soil humic acids from the same 

region in Kingsland, GA (GA-1 and GA-2), but representing two different stages of humification 

are shown in Figure 2.  Figure 2a shows the ESI-FTICR-MS-generated elemental data for humic 

acid GA-1, obtained from a poorly drained soil sampled from a deciduous forest swamp.  The 

standing water and low oxygen content limits humification of organic matter inputs such as plant 

debris.  In contrast, humic acids were also sampled from a nearby open field (GA-2) with grass 

cover.  Humic acids here are exposed to more oxygen and sunlight.  Regular drying of the soil 

allows organic matter inputs, mostly grasses, to decompose rapidly in the aerobic environment.   

Humic acid contents in soils can vary, and although we did not measure recoveries in this study, 

they can account for up to 40-50% of the organic carbon in soils. 

What is immediately apparent from the data in the van Krevelen diagrams is that points appear to 

be concentrated in the three regions defined previously to be ubiquitously present in soils from 
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various other locations (Ohno et al., 2010).  Points in the lignin-like region represent molecules 

derived from the macromolecular lignin polymer that has undergone microbial degradation to  

 

 

 

Figure 2.  Van Krevelen diagrams for humic acids from a) a deciduous forest/swamp (GA-1) and 

b) a grassy/open field (GA-2) in Kingsland, GA.  CHO only compounds are plotted. 

 

 

small molecules and has most likely been oxidized such that it becomes soluble in base to be 

included as humic acids. It should be noted that other aromatic biopolymers such as condensed 

tannins may also plot in this region however we do not suggest that these molecular types make a 

significant contribution to these samples.  They constitute a much lower percentage of total fixed 

carbon in land ecosystems than lignin, which is considered second only to cellulose as the most 

abundant constituent of plant biomass and makes up about 30% of the organic carbon in the 

biosphere (Ruiz‐Dueñas and Martínez, 2009; Boerjan et al., 2003).  Hydrolysable tannins, which 

plot in a region with O/C as high as 1, are either absent or poorly represented in the humic acid 
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ESI-FTICR-MS data, however the data does not preclude their presence within these samples.  

Points in the condensed aromatic region have been suggested to originate from pyrolytic 

processes and to be mainly substituted by carboxyl groups (Ikeya et al., 2013; Ohno et al., 2010; 

Kramer et al., 2004). Points in the aliphatic CRAM-like region have been suggested to derive 

from microbial lipids or plant terpenoids (Simpson et al., 2011; Singer et al., 2012).  

 

Fewer molecular formulas in the lignin region of GA-1 (36% vs 42% of total peaks in GA-2, 

Table 3) may be due to decreased input of these molecules to soil humic acid as a result of 

decreased humification of the intact plant biopolymers (Kurbatov, 1968).  Microbiological 

activity needed for chemical breakdown of these organic materials may be inhibited by the 

hydro-topography of this area.  However, once exposed by enzymatic attack and increased 

humification, more molecular formulas, and a greater variety that are similar to lignin-like 

degradation products can be detected in humic acids as we observe in Figure 2b. With increased 

humification and the ensuing increased enzymatic attack by microorganisms, molecular formulas 

become more pronounced in the condensed aromatic region as well.  This is observable in Figure 

2 and Table 3 by comparing the relative number of peaks plotting in the condensed aromatic 

region (BC-like region; 25% vs 9% of total peaks for GA-2 and GA-1, respectively).  A similar 

trend has been noted for humic acids from Japanese soils (Ikeya et al., 2013).  

 

ESI-FTICR-MS mass spectra have been shown to be reproducible (Sleighter et al., 2012) and 

peak magnitudes may be considered semi-quantitative where response factors can be established 

for a majority of the molecules contained within a sample (Kamga et al., 2014). The technique 

has been used extensively for characterizing samples and comparing compositions based on 
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Table 3 

 

Assigned CHO formulas and summed peak magnitudes for Van Krevelen Regions 

Sample  Total No.  No. CHO  % CHO Formulas (% CHO Peak Magnitude) % Formulas 

Name  Formulas  Formulas      Condensed  in COO series 

  Assigned   Assigned  CCAM  Lignin-like Aromatic  of 2 or more 

Valentine 881   573   41 (78.3) 14 (3.2) 47 (16.9)  75 

GA-1  925   419   67 (64.8) 36 (32.5)   9 (10.3)  55 

GA-2  1206   633   50 (42.6) 42 (39.7) 25 (32)   70 

Catlin  1064   775   71 (90.2)   3 (0.3) 27 (9.5)  81 

Armadale 760   384   74 (76.4) 12 (8.6) 16 (14.6)  53 
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formula presence/absence, relative peak magnitude and the use of van Krevelen diagrams 

(Antony et al., 2014; Hur et al., 2010; Mesfioui et al., 2012; Reemtsma, 2009; Sleighter et al., 

2009; Stubbins et al., 2010; Kim et al., 2003; Koch et al., 2008; Sleighter and Hatcher, 2008). 

Future work may seek to quantify absolute concentrations for individual components, but ESI-

FTICR-MS is useful for our purposes to evaluate the relative abundance of compounds within a  

given sample and among several samples based on relative percentages of peak numbers and 

summed peak intensities for the van Krevelen regions of interest as shown in Table 3.  NMR 

results also provide for a more quantitative evaluation of these samples. 

3.1.2  NMR 

Lignin-like compounds are also apparent from the solid state NMR spectra of GA-1 and GA-2 

humic acids shown in Figure 3.  Peaks characteristic of both syringyl (153 ppm) and guaiacyl 

(147 ppm) lignin are present, which is expected for soils from hardwood forests containing both 

G and S lignin such as GA-1, as well as grasslands (GA-2) which contain all three H, G and S 

lignin units (Koenig et al., 2010).  While the peak at 147 ppm is conspicuous in both spectra, its 

intensity is elevated with respect to the syringyl peak in the grassland soil humic acid (GA-2).  

This could represent the relative contribution of lignin monomers to the soil based on the 

composition in the individual species present at the site, however this peak is also assigned to 

non-etherified guaiacyl and syringyl units of lignin and may also indicate relatively more 

depolymerized lignin in the GA-2 sample (Koenig et al., 2010; Chefetz et al., 2000). 

 



24 
 

 

2
2
 

Lignin ring methoxy (56 ppm) and aryl-O carbons (150 ppm) are also prevalent in these spectra 

(Hatcher, 1988).  The ratio of the area of these peaks (0.58) in the DPMAS spectra for the 

forested area matches well with the expected lignin monomer compositions for this ecosystem, 

assuming angiosperms are composed of an equal mixture of guaiacyl and syringyl monomers to 

obtain an average aryl-methoxy to aryl-O ratio of 0.58. 

 

  

 

Figure 3.  CPMAS and DPMAS spectra of humic acids GA-1 a) CPMAS and c) DPMAS; GA-2 

humic acids b) CPMAS and d) DPMAS. Spinning side bands are denoted with a black dot. 

 

 

The DPMAS spectra also reveal the high degree of aromaticity of these samples.  Comparing the 

aryl-O carbon peak area to the aromatic carbon peak area for these samples we notice a decrease 

in this ratio for GA-2 in comparison to GA-1 (Table 4).  This is in line with relatively less O-

substituted rings and potentially more humified material in GA-2.  
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The relative amounts of non-protonated aromatic carbons in each of the samples is also striking 

when comparing the DPMAS spectra with the corresponding CPMAS spectra for each sample.  

Because direct polarization of the carbon nuclei magnetizes all carbons equally, the spectra 

obtained are quantitative.  In contrast, CPMAS preferentially transfers magnetization to 

protonated carbons, and so we can take the difference between these two spectra to estimate the 

amount of non-protonated aromatic, or condensed aromatic carbon in the samples.  Sp3 

hybridized carbons are least affected by the difference between these two pulse programs, and so 

we can compare the two spectra by normalizing the integrals of each spectral region to the 

aliphatic region (0-45 ppm). This reveals a 16% enhancement in the area of the aromatic region 

(120-140 ppm) for GA-2 with direct polarization through the carbon nuclei (Table 5).  In 

contrast, the aromatic region in the less humified sample (GA-1) that has been preserved in a 

poorly drained forest area contained about 12% non-protonated carbon when normalized to the 

aliphatic region of the CP spectra (Table 5).  This is also in agreement with the ESI-FTICR-MS  

data, which showed a lower fraction of condensed aromatic formula for this sample than GA-2 as 

discussed previously in section 3.1.1.  Although grasslands are prone to fire events which can 

contribute condensed aromatics to the soils, GA-2 samples were taken in a swampy region of 

southern Georgia where fires are less common.  A search of the USGS Federal Fire Occurrence 

database, which includes data from the 1980s, showed no records of fire events in this region.  

 

Signals from carbohydrates or alkyl-O carbons (72 ppm) are relatively weak in comparison and 

may also indicate the degree of humification of these samples.  There is relatively less signal 

from carbohydrate carbons in GA-2.  Likewise, the increased intensity of peaks at 168-172 

(carboxyl) relative to the aliphatic region and reduced intensity of the peak at 196 (carbonyl) is in  
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Table 4 

DPMAS Integral Areas (% distribution of carbon signal) and ratio of Aryl-O to Aromatic Carbon Signal 

       Chemical Shift (ppm) 

Aliphatic Methoxy Alkyl-O Aromatic Aryl-O  Carboxyl Carbonyl     Ratio 

Sample (0-45)  (45-62) (62-120) (120-140)  (140-160) (160-185)   (185-210)   Aryl-O: Aromatic 

GA-1   21.1  7.8  27.0  13.4  12.3  14.2  4.3  0.91 

GA-2  15.0  6.9  31.2  20.0  11.8  13.1  2.0  0.59 

 

 

 

Table 5 

CPMAS Integral Areas (% distribution of carbon signal) and Fraction of Non-Protonated Carbon in GA-1 and GA-2 Humic Acids 

  Chemical Shift (ppm)  Aliphatic Normalized  % Increase in 

    Region  Area of  Area of Aromatic 

Aliphatic Aromatic   Normalization CPMAS   Region from 

Sample (0-45)  (120-140)  Factora  Aromatic Region CPMAS 

GA-1   35.2  10.8  1.67  22.4   11.7 

GA-2  25.3  17.8  1.69  33.7   15.9 
aRatio of aliphatic region peak areas integrated in CPMAS to that integrated in DPMAS (Table 4). 
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line with the sample from GA-2 containing more oxidized lignin and a higher humification 

potential.  This is also supported by the higher percentage of molecular formulas observed by 

ESI-FTICR-MS in GA-2 (69% vs. 55%) to be contained within a COO Kendrick mass defect 

series as explained in the next section. 

3.2  Comparison of Humic Acids 

3.2.1 Formula Types  

Soil humic acids from several other soils were also investigated in this study.  The van Krevelen 

diagram for mass spectral data of humic acids from the Catlin soil of Ohno et al. (2010) and the 

Japanese soil of Ikeya et al. (2013) are depicted in Figure 4a and c. The formulas fall clearly into  

two predominant regions consisting of condensed aromatic molecules as well as high H/C, low 

O/C aliphatic CCAM molecules. Few points are observed in the lignin-like region. In contrast, 

the spectral data for humic acids from a spodosol soil (Armadale soil) in Figure. 4b show a less 

dramatic separation of these regions, with relatively more molecular formula plotting in the 

lignin-like region and relatively fewer condensed aromatic molecules.  
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Figure 4.  Van Krevelen diagrams for humic acids from various soil ecosystems and soil types. a) 

agricultural/native grassland in Catlin, IL, b) deciduous forest spodosol in the Armadale region 

of Prince Edward Island, Canada, c) the buried humic layer of a highly humified forest soil in 

Japan (reproduced from Ikeya et al. (2013) with permission). Only CHO compounds are plotted. 

 

 

From the mass spectral observations made for the humic acids, we can readily discern a 

relationship based on degree of humification. The less humified samples contain relatively more 

components having a relationship to lignin (Kögel-Knabner et al., 1991; Ikeya et al., 2015). The 

more humified samples appear to mainly comprise molecules that are either condensed aromatic 

or are CCAM.   

The range of this phenomenon is also apparent when we graph the distribution of molecular 

formulas in eight additional humic acid samples from the Ohno et al. (2010) study (Figure 5).  

These samples represent humic acids from an assortment of soil types and climate regions and 

should represent the diversity of soil environments across the United States.   They are also 

considered to contain more humified organic material as a result of the isolation procedure in 
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which more mobile humic acids were removed.  These humic acids were distinguished from 

their corresponding soil and plant biomass aqueous extracts by a decrease in lignin-like 

components and increase in both “lipid-like” and condensed aromatic components (Ohno et al., 

2010).   The trend is towards a collection of formulas and ion intensities primarily in the CCAM 

and condensed aromatic regions, with the remaining formulas plotting in the lignin-like region of 

the van Krevelen diagram, as can be seen in Figure 5.  The average percentage of formulas and 

ion intensities, respectively, in the three regions were found to be: 43% ± 12% (76% intensity ± 

15%) for CCAM, 48%± 13% (22% intensity ± 14%) for condensed aromatic and 9% ± 6% (2%± 

2% intensity) for lignin-like regions. 

 

 

Figure 5.  Relative distribution of molecular formulas and formula intensities of calcium humic 

acids in three identified regions of the van Krevelen diagram (carboxyl containing aliphatic 

molecules (CCAM), lignin-like, and condensed aromatic).  Humic acids are from a variety of 

soil types and ecosystems at USDA sites across the US (data from Ohno et al. (2010)). 
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3.2.2 Carboxyl groups 

While it is generally well recognized that carboxyl groups are the fundamental constituent 

functionalities that define humic acids, and the NMR data bear this out, we can query the 

elemental formula makeup of the mass spectral dataset for an indication that carboxyl groups  

may be components of the molecular formulas. This is accomplished by a Kendrick mass defect 

plot that manipulates the formula composition to align elemental formulas that differ by an exact 

mass of the COO group (Ikeya et al., 2013; Kramer et al., 2004).  If we consider the five humic 

acids representing varying levels of humification (GA-1, Armadale, GA-2, Valentine and 

Catlin), approximately 53-81% of the molecular formulas assigned for these samples were found 

to be present as part of a COO KMD series of 2 or more (Figure 6), where these series extend up 

to six molecular formulas.  

 

 

 

Figure 6.  Percentage of formulas in humic acid samples that are part of COO Kendrick mass 

defect series of 2 or more. 
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For example, Figure 7a shows the formulas in the van Krevelen diagram for humic acids from 

soils at the USDA site in Catlin, IL (blue, also Figure 4a) which are contained within a COO 

KMD series (green, Figure 7a).  These series include up to five molecular formula as shown in 

Figure 7b and include 81% of the CHO formulas assigned for this sample. 

 

 

 

Figure 7.  a) Van Krevelen diagram for calcium humic acids from a USDA site in Catlin, IL. b) 

COO Kendrick mass defect per carbon number for Catlin, IL humic acid molecular formulas. 

 

 

When comparing the percentage of all formulas contained within a COO series among samples, 

those samples considered to have a higher degree of humification (Valentine, Catlin, GA-2) in 

general contained more formulas within a COO KMD series (75%, 81% and 70% respectively) 

in comparison to less humified samples (53 and 55% for the Armadale and GA-1, respectively) 

(Figure 6).  This extends the relationship established above.  The more humified samples are 

composed of relatively more molecular formulas in the CCAM and condensed aromatic regions 
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and also contain relatively more carboxylated molecular formulas than the less humified 

samples. 

 

In addition, by comparing COO containing formulas for individual regions (lignin-like, 

condensed aromatic and CCAM) of these samples we find that molecular formulas in the regions 

representing more humified material (condensed aromatic and CCAM molecular formulas) in 

general contain relatively more COO containing formulas than the lignin-like region for each 

sample (Figure 8).  The Valentine, NE and GA-2 humic acids are the exception, with 7 and 9% 

less COO KMD series formulas in the respective CCAM regions relative to the lignin regions.   

However, a greater percentage of COO KMD series formulas are present in the condensed 

aromatic regions for both samples as compared to the lignin regions (95% and 85%, 

respectively).  Of the humic acids studied here, these two also have the lowest percentages of all 

formulas that fall in the CCAM region (41% and 50% respectively).  

 

Overall, molecular formulas from the CCAM regions for these samples contained 54-82% of 

formulas that are part of a COO Kendrick mass defect series (Figure 8).  Formulas included in a 

COO KMD series also accounted for 40-95% of the formulas in the condensed aromatic regions  
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Figure 8.  Percentage of formula that are part of a COO Kendrick mass defect series in each van 

Krevelen region of humic acid samples. 

 

 

of these samples.  In comparison, the lignin-like region contained relatively less, 14-65%, of 

formulas that were included in COO KMD series.  Considering that carboxylic acids are known 

to be produced during lignin oxidation (Chen et al., 1983; Leonowicz et al., 2001), such a high 

proportion of COO KMD series formulas within the CCAM and condensed aromatic regions in 

comparison to the lignin region is further evidence that these regions may represent secondary, 

or more ‘humified’ molecules.   

4. DISCUSSION 

Soil humic acids from varying locations, soil types and degrees of humification are characterized 

by a common set of molecular formulas and structural entities whose presence has been debated 

to either derive from lignin and modified lignin, sugars and proteins, fungal or microbial 

phenols, or a combination of all these (Stevenson, 1994). Some recent studies in our group (Chen 

et al., 2014) indicate that radical polymerization reactions could play an important role in altering 

natural organic matter that is dominated by terrestrial lignin-derived organic matter. Chen et al.  
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have shown that photo-irradiation of dissolved organic matter (DOM) from the Great Dismal 

Swamp, Virginia, produces new particulate, base-soluble molecules of two distinct structural 

classes: high H/C, low O/C aliphatic (CCAM formulas) and low H/C aromatic and condensed 

aromatic molecular formulas with hydroxy and carboxyl substituents.  The aromatic formulas, 

similar to black carbon from combustion sources, represent a previously unrecognized source of 

condensed aromatics and match formulas found in peat humic acids from the Dismal Swamp.  

The DOM from the Dismal Swamp is dominated by molecules derived predominantly from 

lignin (Hartman et al., 2015).  Although primarily light-induced in the Chen et al. study, 

hydroxyl radicals responsible for catalyzing this oxidation are also present in soil systems.  Here, 

fungal enzymes are one source of hydroxyl radicals (Carlile et al., 2001), others include humic 

substances themselves (Page et al., 2013; Page et al., 2012), and we hypothesize that reactions 

similar to those discovered by Chen et al. likely take place. 

 

The details of lignin biodegradation pathways in soils can vary by organism and wood type and 

are not well understood, except for a few microbes and enzymes.  White rot fungi are known to 

utilize lignin and manganese peroxidases to degrade lignin to CO2 via several reactions, all 

relying on hydrogen peroxide to incorporate oxygen.  Further, ring hydroxylation and opening by 

enzymatic hydroxyl radicals is known to produce unsaturated aliphatic carboxylic acids and 

hydroxylated muconic acids (Higuchi, 2004).  Another recent study by our group has 

demonstrated similar results using Fenton reaction chemistry to produce hydroxyl radicals for the 

degradation of a lignin-rich wood extract (Waggoner et al., 2015). As with the study by Chen et 

al. the ESI-FTICR-MS results showed not only the generation of new aliphatic molecules 
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containing carboxylic acids, which fall in the CCAM region of the van Krevelen, but new 

condensed aromatic molecules as well. 

 

Accordingly, we propose that photo-, abiotically- or microbially-generated hydroxyl radicals in 

soils are responsible for transforming the materials supplied to soil as fresh organic matter, 

mainly lignin, to the molecules observed in ESI-FTICR-MS data. When plotted on the van 

Krevelen diagram, the H/C and O/C ratios of molecular formulas from humic acids predictably 

plot in the same regions as the newly produced formulas discovered by Chen, et al.  In fact, a 

portion of these molecular formulas were found to have the same exact composition as those 

identified by Chen et al.  Figure 9 illustrates the photo-produced molecular formulas (red) in 

common with the humic acid formulas from the Valentine, NE site (blue) from Figure 1.  These 

formulas represent approximately 16% of the humic acid CHO molecular formulas assigned for 

this sample.     

 

Based on these observations, we have defined the three regions of interest for the humification 

process in soils as follows.  (1) The region for lignin-like compounds (0.2 ≤ O/C ≤ 0.6, 0.6 ≤ 

H/C≤ 1.2) we propose to be the primary substrate for subsequent reactions with hydroxyl 

radicals in which ring opening, condensation and transformation into two distinct types of 

molecules occurs.  These are (2) condensed aromatics (Aimod>0.67) and (3) carboxyl containing 

aliphatic molecules (CCAM) (0.85≤ H/C ≤ 2, O/C ≤ 0.4) reminiscent of carboxyl-rich alicyclic 

molecules (CRAM) described by Hertkorn et al. (2006).   
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Figure 9.  Van Krevelen diagram for humic acids extracted from a grassland soil in Valentine, 

NE (blue) with molecular formula in common with photochemically-generated formulas shown 

by Chen et al. (2014) overlaid in red. Only the CHO compounds are plotted. 

 

Based on KMD COO series, carboxylic acids may functionalize the molecules that plot in these 

regions and we suggest this could be the result of two processes.  First, the initial oxidation of 

lignin is known to produce carboxylic acids (Higuchi, 2004) (see also Figure 2 of Waggoner et 

al. 2015).  These molecules would plot with higher O/C in the lignin-like or CCAM-like region 

of the VK diagram, as was shown in the Waggoner et al. study.  Secondly, decarboxylation may 

occur though the loss of CO2 during radical propagation of muconic acid-like molecules (Figure 

3 Scheme, Waggoner et al. 2015) and these molecules would plot in the lower O/C and higher 

H/C CCAM-like region.  Decarboxylation may also occur during intermolecular cyclization and 

radical condensation reactions (Figures 4 and 7, Waggoner et al. 2015), with these molecules 

plotting in the condensed aromatic or possibly the CCAM-like regions.  Depending on the extent 

of the reactions and intermediates formed, the presence of COO KMD series within CCAM like 

molecules could be evidence for the first process of carboxylic acid formation as well as the 
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second process of decarboxylation, or both.  The presence of molecules differing only by the 

number of carboxyl groups implies these molecules have the same core molecular formula and 

could be reactants or products of these processes.  However, the direction of the process 

(carboxylation or decarboxylation) cannot be discerned from this information alone. 

 

The modified aromaticity index (Aimod) is used here as a conservative approach to delineate the 

condensed aromatic region since it assumes half of the double bonds formed between C and O do 

not contribute to aromaticity, ring formation or condensation (Koch and Dittmar, 2006).  While 

the actual aromaticity in a molecule can be higher, an Aimod ≥ 0.67 provides a minimum 

threshold for the presence of condensed aromatic structures. 

 

The average DBE for molecular formulas of the humic acids in this study categorized as CCAM 

ranges from 3.6 to 9.4, and the average Aimod ranges from 0.10-0.27, within the range for 

unsaturated and/or alicyclic molecules.  There is evidence for the biological origin of some of 

these molecules based on the even over odd carbon number predominance of molecular formulas 

with low DBE, which suggests contributions from plant waxes (Gupta, 2014).  The intensity-

weighted bubble plot of DBE vs. carbon number shown in Figure 10 illustrates this most clearly 

for molecular formulas from C14 to C36 with DBE 1-3.  These formulas most likely represent 

compound classes with terminal functional groups such as fatty acids, primary alcohols and 

aldehydes or esters (Riederer and Muller, 2008).  However, the even numbered carbon 

prevalence diminishes with increasing DBE for all humic acid samples until there is very little 

preference or none at all.   
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Figure 10.  Intensity-weighted DBE vs. carbon number plot for the Armadale humic acid.  

Bubble size represents the relative individual peak intensities. 

 

Formulas with H/C ratios approaching 2 and minimal DBEs have been shown to be created after 

oxidation of lignin extracts with hydroxyl radical by our group.  They are also found here to be 

part of COO Kendrick mass defect series.  Therefore, this region has been expanded from the 

traditional CRAM region to include formulas with H/C higher than 1.5 and slightly lower than  

0.25 O/C  proposed for CRAM (Hertkorn et al., 2006).  Together with the condensed aromatic 

and lignin-like molecules, these are of interest when considering humification. 

5.  CONCLUSIONS 

Recent application of ultrahigh resolution ESI-FTICR-MS to the study of humic substances has 

revealed a commonality among humic acids from varied sources and environmental conditions.   

In general, we can group the components of humic acids into three predominant types that, based 

on recent findings of organic matter-hydroxyl radical chemistry, may be inter-related chemically.  
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These molecular types refine the current understanding of humic acids, and may denote a 

pathway for the process of humification of organic matter. 

 

Lignin-like molecules that plot in the moderate H/C and O/C region of the van Krevelen diagram 

may represent the first stage of humification by microbial and fungal enzymatic attack.  Further 

reactions of these molecules with free radicals in soils, either concerted with efforts by 

microorganisms to access more readily available energy sources such as carbohydrates, or 

fortuitously due to the presence of hydroxyl radicals, can account for the remaining two types of 

molecules.  Condensed aromatics, often containing oxygenated functional groups such as 

hydroxyl and carboxylic acid and previously assumed only to be present as a result of thermal 

processes are now recognized as a potential product of lignin humification.  Similarly, CCAM 

and CRAM-like molecules, though not physically isolated have mostly been identified in 

samples from marine environments and hypothesized to be present as a result of degraded 

microbial biomass, are also a possible byproduct of condensation and decarboxylation reactions 

of lignin-like molecules in soils.  The prevalence of these two groups of molecules relative to 

lignin-like molecules in humic acids, and the fact that many are included in COO Kendrick mass 

defect series also correlates well with the degree of humification.   

 

The abundance of the biopolymer lignin and the presence of these molecular groups in far-

reaching environments including the open ocean has potentially significant implications for the 

cycling of terrestrial organic matter.  This work represents renewed evidence for lignin as a 

potential source of much of the organic matter in humic acids from a variety of environments.  
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CHAPTER III 

ALICYCLIC CARBOXYLIC ACIDS IN SOIL HUMIC ACID AS DETECTED WITH 

ULTRAHIGH RESOLUTION MASS SPECTROMETRY AND MULTI-DIMENSIONAL 

NMR 

Preface 

The content of this chapter was submitted to Organic Geochemistry in December, 2016 and is 

currently under review.  The formatting has been altered to incorporate the supporting 

information into the body of the manuscript.  

 

1.  INTRODUCTION 

Several recent studies based on ESI-FTICRMS have provided evidence from elemental formulas 

for three predominant components of soil humic acids (Ohno et al., 2010; Ikeya et al., 2015; 

DiDonato et al., 2016).  Molecules that resemble lignin-like formulas in their ratios of carbon, 

hydrogen and oxygen have been observed to be a key group of compounds, particularly in humic 

acid samples that are considered to be poorly humified.  Two other major groups, condensed 

aromatic molecules as well as aliphatic molecules, the latter expected to be primarily of alicyclic 

nature, tend to be more abundant in more humified samples, and are thought to contain a notable 

proportion of carboxylic groups.  Condensed aromatic structures are commonly thought to 

originate from thermogenic oxidation of organic matter (pyrogenic black carbon), while 

carboxylic-rich alicyclic structures in natural organic matter (NOM) have been proposed to have 

biological sources, such as microbial decomposition products in marine and coastal 

environments (Hertkorn et al., 2006; Hertkorn et al., 2013; Lechtenfeld et al., 2015), plant and 

microbial terpenoids in terrestrial environments (Lam et al., 2007), and sterols and hopanoids in 
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both environments (Hertkorn et al., 2006), (Woods et al., 2012).  This has been primarily 

construed from the detection of alicyclic structures containing abundant hydroxyl groups, 

carboxylic acids and methyl groups, along with quaternary carbons in fractions of dissolved 

organic matter (DOM, Woods et al., 2012).   

 

Recent work using ESI-FTICRMS has shown that photoxidation of lignin-derived DOM (Chen 

et al., 2014) and the hydroxyl radical oxidation of lignin (Waggoner et al., 2015) also produce 

carboxyl containing aliphatic and alicyclic molecules in addition to condensed aromatic 

molecules.  Considering the fact that aliphatic carboxylic acids are known to be formed by ring-

opening reactions during transformation of lignin fragments by fungal enzymes and hydroxyl 

radicals (Higuchi, 2004; Waggoner et al., 2015) it is logical to expect lignin to be the source of 

these molecular types in humic acids (DiDonato et al., 2016).  While it is not uncommon that 

aromatic compounds in soils have been proposed as evidence for lignin as a precursor (Flaig, 

1964), it is less apparent how aliphatic or alicyclic compounds could originate from lignin as 

opposed to some other source (e.g., terpenoids, microbial products, etc.). The structures of 

aliphatic molecules identified in humic acids and recently suggested to be derived from lignin 

have been primarily deduced based on indirect measures such as molecular formula 

stoichiometry, calculated numbers of rings and double bonds and related mathematical 

manipulations of ESI-FTICRMS data but more detailed and direct structural characteristics of 

these molecules have yet to be investigated.  Accordingly, the focus of this paper is to employ 

advanced multi-dimensional NMR techniques to establish the main structural motifs for soil 

humic acids. We choose a humic acid sample that is typical of those found in soils. It is 
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important to note that previous studies by our group have demonstrated by multidimensional 

NMR that alkaline extracts of soils resemble the whole soil organic matter (Zhong et al., 2011). 

 

Multidimensional NMR techniques provide a direct measure of molecular connectivity and can 

offer a wealth of complementary information to establish whether the postulated molecular 

motifs for aliphatic constituents of humic substances are alicyclic.  These techniques commonly 

include homonuclear correlations among neighboring protons (correlation spectroscopy, COSY) 

and protons within the same spin systems unobstructed by heteroatoms (total correlation 

spectroscopy, TOCSY) as well as heteronuclear techniques that identify immediately bonded C-

H resonances (HSQC, HMQC).  Numerous multidimensional NMR studies of humic substances 

are available in the literature, mostly for DOM (Hertkorn et al., 2013; Lam et al., 2007; 

Lechtenfeld et al., 2015; Woods et al., 2011; Woods et al., 2012)  humified plant residues 

(Kelleher et al., 2006; Zhong et al., 2011; Koenig et al., 2010), fulvic acids (Cook et al., 2003; 

Simpson et al., 2003; Simpson et al., 2001) and some humic acids (Deshmukh et al., 2007; 

Hertkorn et al., 2002; Kelleher and Simpson, 2006; Hsu and Hatcher, 2005; Mao et al., 2011).  

The presence of a variety of compounds including carbohydrates, proteins, lipids, long chain 

polyesters and olefins as well as phenolic and methoxy functional groups has been suggested as 

components of humic substances and originating from microbial and plant biopolymers such as 

waxes, cutin, suberin, lignin, tannins and terpenoids.  A notable amount of signal from the 

available spectra of humic substances, humic acids in particular, can be assigned to these 

recognizable molecules anticipated to be present (carbohydrates, lipids, amino acids, etc.), and 

yet the variety of signals and chemical shift deviations from known compounds could indicate 

extensive alterations of parent molecules.  Functional group and heteroatom substitutions appear 
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to be ubiquitous, and alicyclic molecules are also commonly proposed, as mentioned above, 

particularly for samples of marine and terrestrial DOM. 

 

Unfortunately, there are relatively limited available multidimensional NMR spectra of humic 

acids in which the molecular connectivity of carboxylic acid functional groups in particular have 

been examined.  Largely invisible to the techniques mentioned above, and limited by the low 

abundance of 13C and lack of directly-bonded protons to transfer magnetization, more specific 

techniques are required to observe these functional groups.  For example, the heteronuclear 

multiple bond coherence (HMBC) experiment is used to identify long-range interactions between 

13C and 1H, generally up to 3 bonds.  This experiment is primarily of interest for investigating the 

chemical environment for non-protonated carbons, specifically carbonyl carbons of carboxylic 

acids, which are key components of humic acids.  By focusing our attention on the molecular 

environment in which carboxylic acids persist in humic acids, we can begin to piece together the 

structural characteristics that may lend insight to their source or potential transformation 

mechanisms.  Due to the low sensitivity of this technique, however, only a handful of HMBC 

spectra for NOM exist (Zhong et al., 2011; Cook et al., 2003; Hertkorn et al., 2013; Lam et al., 

2007; Simpson et al., 2001; Woods et al., 2012) and even fewer for humic acids (Deshmukh et 

al., 2007) are available in the literature. In studies where carboxylic functional groups have been 

specifically investigated, these have been suggested to be bound to alicyclic molecules in both 

marine and terrestrial DOM (Hertkorn et al., 2013; Lam et al., 2007; Woods et al., 2012) as well 

as soil and riverine humic acids (Deshmukh et al., 2007).  In humic acids, cyclohexane 

carboxylic acids in plant waxes and modified cuticles have been offered as potential sources 

(Deshmukh et al., 2007).   
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In this work, we focus in more detail on the aliphatic structural entities that comprise humic 

acids, building on our previous work using one-dimensional NMR and ESI-FTICRMS 

(DiDonato et al., 2016) to assess a highly aliphatic Georgia soil humic acid in particular. This 

sample was found to have a predominant aliphatic component (67% of the CHO molecular 

formulas) yet considerable double bond equivalence (DBE) (8 on average) to suggest alicyclic 

rings as the framework that bears carboxylic acids. These were estimated to compose 54% of the 

aliphatic formulas by Kendrick mass defect analysis.  Here we apply a suite of multidimensional 

NMR techniques (HMBC, HSQC, COSY, TOCSY) to directly assess the structural configuration 

of the aliphatic and carboxylic acid components, in particular, in order to offer partial validation 

of our previous findings.  We present our results in context with available information for humic 

substances from the literature, in which structural entities of peat (Kelleher and Simpson, 2006; 

Hertkorn et al., 2002) and soil (Deshmukh et al., 2007; Kingery et al., 2000; Schmitt-Kopplin et 

al., 1998) humic acids have been described.  The specific molecular environment of carboxylic 

acids as reported for fulvic acids (Cook et al., 2003), and DOM (Hertkorn et al., 2013; Lam et 

al., 2007; Woods et al., 2012) is also discussed for comparison.  

2. MATERIALS AND METHODS 

2.1 Sample preparation 

Humic acids were obtained from the surface layers of a swampy hardwood forest in Kingsland, 

GA. Humic acids were extracted from soils as described by DiDonato et al. (2016) where the 

ultrahigh resolution mass spectrum and solid-state CPMAS 13C NMR has been reported 

previously.  Briefly, the soil was extracted first with organic solvents to remove lipids and then 

by 0.5M NaOH followed by treatment with Dowex ion-exchange resin, which was repeatedly 
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cleaned with milliQ water to neutrality.  A small amount of 6M HCl was used to precipitate the 

humic acids at pH 2, which were then freeze dried.   

2.2 ESI-FTICRMS 

Humic acids were previously analyzed by negative ESI-FTICRMS and the data was processed 

and reported by DiDonato et al. (2016) for CHO only compounds.  For detailed information 

regarding ESI-FTICRMS analysis and data processing we refer readers to DiDonato et al. 

(2016).  For this study we utilize the previously published dataset but additionally include all 

assigned formulas for heteroatom-containing (N,S,P) formulas assigned from both aqueous and 

solvent-extracted data sets.  Molecular formulas were categorized into three regions based on 

where the formulas plotted on a van Krevelen diagram: lignin-like (0.2 ≤ O/C ≤ 0.6, 0.6 ≤ H/C≤ 

1.2), carboxyl containing aliphatic molecules (CCAM) (0.85≤ H/C ≤ 2, O/C ≤ 0.4) and 

condensed aromatic (modified aromaticity index, Aimod >0.67) (Koch and Dittmar, 2006), where:  

Aimod = 1+ C - 0.5*O - S - 0.5*H        (1) 

        C - 0.5*O - S - N - P 

Kendrick mass defect (KMD) analysis was conducted for the following molecular groupings (X): 

CH2, H2, COO, CH3 

Where 

KMD(X) = Kendrick mass (X) – Nominal Mass (X)      (2) 

Kendrick mass (X) = Exact m/z value of peak * (Nominal mass(X) /Exact Mass(X)) (3) 

2.3 Multidimensional liquid state NMR   

All experiments were performed using a broadband inverse gradient probe fitted in a 400 MHz 

Bruker Biospin AVANCE III spectrometer.  The Georgia soil humic acid, called GA-1 humic 

acid, was dissolved in 0.2 M NaOD/D2O at approximately 133 mg/mL and 500 uL in a 5mm 
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NMR tube. A one-dimensional proton spectrum was acquired with a shaped pulse for water 

suppression (zggpw5shapepr, NS = 2000, delay = 1 ms).  One and two-dimensional spectra were 

calibrated to tetramethylsilane for 1H and externally referenced to methanol (49.0 ppm) for 13C. 

 

Heteronuclear multiple quantum coherence (HMBC) data were acquired in magnitude mode via 

zero and double quantum coherence using the hmbcndprqf pulse program with water suppression 

(presaturation) at 320 scans per increment, a recycle delay of 1.5 s, and without decoupling 

during acquisition.  A 50 ms delay time was used to allow for evolution of the 2-3 bond 

correlations, which is appropriate for coupling constants of approximately 10 Hz.  The datasets 

were acquired with 2048 and 256 data points for the F2 (1H) and F1 (13C) dimensions, with 

spectral widths of 4006 and 27930 Hz, respectively.  The data were zero filled in the F1 

dimension by a factor of 2 and by a factor of 4 in the F2 dimension and processed with a sine-

squared window function multiplier without line broadening. The processed spectrum was 

corrected for T1 noise by calculating projections from a row in the negative 13C chemical shift 

region where only signals from noise are expected and subtracting the projections from each row 

in the remaining spectrum. 

 

Heteronuclear single quantum coherence (HSQC) spectra were acquired using the hsqcetgpprisi2 

pulse program in phase sensitive mode using echo/anti-echo TPPI (time proportional phase 

incrementation) for gradient selection with 512 scans per increment, 1024 and 128 data points in 

the F2 and F1 dimensions, respectively and a delay of 1 s for T1 relaxation.  The FIDs were 

weighted with a sine-squared window function and zero-filled to make a 4K by 1K matrix and 

phase corrected without line-broadening. 
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The cosygpprqf pulse sequence was utilized to obtain a homonuclear 1H-1H correlation 

spectroscopy (COSY) spectrum in the magnitude mode using 2048 data points along the F2 

dimension and 128 data points in the F1 dimension, with 256 transients per increment and a 1 s 

delay.  The FIDs were weighted using a sine function in both dimensions and zero filled to 1024 

and 2048 data points in the F1 and F2 dimension prior to FT and a line-broadening of 0.3 in the 

F1dimension. 

Total correlation spectroscopy (TOCSY) was acquired using the mlevgpphw5 experiment which 

operates in the phase sensitive mode using watergate W5 with gradients for water suppression. A 

total of 2048 and 128 data points were acquired in the F2 and F1 dimensions, respectively with 

256 scans per slice, 100 ms of mixing time and a recycle delay of 1second.  The data were zero 

filled to form a 4K by 1K matrix, processed using a sine-squared window function and line 

broadening of 1.0 (F2) and 0.3 (F1).  

Chemical shift predictions were estimated using Advanced Chemistry Developments 

(ACD/Labs) ACD/SpecManager 2D NMR Predictor Version 9.15.  Two-dimensional NMR 

spectral simulations for H,H COSY and C,H COSY (HSQC, and HMBC) were obtained for 

proposed structures after they were entered into the ACD/ChemSketch structure drawing 

interface which uses algorithms based on the ACD/Labs database of known chemical structures 

with assigned 1H and 13C chemical shifts to predict spectra.  Spectra, associated 1H and 13C 

chemical shifts, coupling constants and related errors for each structure were also estimated 

using this software. 
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3. RESULTS  

3.1  HMBC 

A variety of carbonyl groups can be observed from the HMBC spectra of the GA-1 humic acid 

(Figure 11).  The spectrum itself is interpreted by examining the long-range 13C correlations for 

each proton that are represented along the column of its chemical shift, as depicted by the 

vertical lines in Figure 11 for several proton resonances.  Correlating primarily with aliphatic 

protons (1- 4 ppm), nearly a dozen different peaks ranging from chemical shifts of 172 to 185 

ppm 13C represent carbonyl carbons from different molecular environments (Figure 11 inset).  

Carboxylic acids cannot explicitly be distinguished from carbonyl carbons of esters and amides, 

which also resonate in this region and may be present to some degree in this sample.  However 

carboxylic acids are known to be more abundant in humic acids, and previous NMR and ESI-

FTICRMS analysis of this humic acid (DiDonato et al., 2016), support this.  Amides are not 

expected to be responsible for much of the signal due to the low nitrogen content of this sample.  

The lack of signal for the O-alkyl portion of esters in the HSQC spectrum, as will be discussed in 

more detail in section 3.2, also provides more confidence for the assignment of carboxylic acids.   

The most intense correlation in this spectrum is from protons at 1.79 ppm correlated to carbonyl 

carbons at 180.3 ppm 13C.  Protons in this range (1.6-2.4 ppm) have been assigned to branched 

aliphatic structures or protons on carbons  to -substituted alicyclic acids (Deshmukh et al., 

2007). These protons also correlate with carbons in the 60-90 ppm 13C region, traditionally  
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Figure 11: a) HMBC of GA-1 humic acid. Regions are defined as: I (methyl), II (methylene), III 

(carbohydrate/heteroatom substituted), IV(aromatic/olefin) and IV (carbonyl/carboxylic acid) b) 

expansion of the carbonyl carbon region.  Long range 13C correlations for aliphatic protons are  

illustrated by the vertical lines for protons at 1.2, 2.3 and 3.77 ppm which are denoted by arrows 

from their proposed structures (C, A and B respectively, see also Table 6).  One bond  
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Figure 11 Continued: correlations are indicated by arrows and labeled according to the 

coordinates of their proposed structures in Table 6. 

 

assigned to alcohols, carbohydrates, heteroatom substituted carbons and alicyclic molecules 

(region III of Figure 11).  The second most intense signals are from protons at 2.3 ppm and 3.77 

ppm 1H correlated to carbonyls at 180.6 and 179.7 ppm 13C, respectively.  Protons on the carbon 

 to carbonyls generally resonate at 2.3 ppm, with minor variations due to substitutions or 

branching, and those at 3.7 ppm are often assigned to protons of heteroatom substituted carbons 

or functionalized carbons (OH, COOH, CHO, phenyl).      

 

 

Table 6 

Chemical Shift Assignments for Selected Potential Structures in GA-1 Humic Acid  

Structure   Proton Symbol 1H Shift  13C Shift 

A           

          

          

          

B     

      

          

          

  

C          
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Table 6 Continued 

Structure   Proton Symbol 1H Shift  13C Shift 

          

          

     

D       (w)   (w)

          

          

     



E           

           

          

          

          

      

F        

          

          

    

     m  7.3   128.7 

     p  7.2*   126* 
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Table 6 Continued 

Structure   Proton Symbol 1H Shift  13C Shift 

G     α  2.34   34 

     ß  1.6   25 

     γ  1.7   29 

     δ  1.7   30.5 

     ε  2.55   36 

     o  7   129 

     m  6.7   115 

  

H     o  8   130 

     m  7.45   129 

     p  7.6*   133* 

 shifted or not observed in spectra 

(w) weak signal 

 

 

Aside from the variety of protons correlated with carbonyls, one of the most salient features of 

this spectrum is the number of correlations of protons with carbons in the heteroatom substituted 

region (region III of Figure 11) commonly assigned to alcohols.  In addition to the correlations 

mentioned above (those at 1.79, 2.3 and 3.77 ppm 1H) protons at ~1.2, 1.3, 1.9, 2.2, 2.5, 3.3, 3.6 

and 4.3 ppm are also observed to be correlated with carboxyl carbons and carbons in region III.  

For example, methylene protons (~1.3 ppm) are two to three bonds from carboxyl carbons at 

175.8 ppm and oxygen substituted carbons, likely alcohols at 50.3 and 68 ppm 13C.  These could 

be attached to either straight chain or alicyclic methylene units containing oxygen substituents.  
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Protons at 1.3 ppm are also shown in the TOCSY spectrum to be part of the same spin system as 

a variety of other protons ranging from 1.4-4 ppm, as will be discussed in more detail in section 

3.3. 

 

Another important feature of the spectrum in Figure 11 is the breakthrough of several single-

bond correlations.  Suppression of these correlations is often achieved by including a low-pass 

filter or gradients within the HMBC pulse program, however many still “bleed” through in most 

spectra, occurring as doublets and multiplets straddling the proton chemical shift in the carbon 

dimension. Our attempts using pulse programs designed to suppress them were not successful, 

however the single-bond correlations here serve as a useful reference point for analysis, as well 

as a cross-reference for the HSQC spectrum in which the equivalent correlations can be 

observed.  Notably, the one-bond correlation for α protons to carbonyls at 2.3 ppm 1H is 

prevalent in Figure 11 at 32 ppm 13C.  This peak is also present in the HSQC spectra (discussed 

in the next section) and its presence here as a triplet suggests symmetrical aliphatic or alicyclic 

diacids.  A doublet associated with the one-bond correlation for protons at 1.2 ppm 1H is also 

visible at 16.9 ppm 13C, which matches the chemical shifts for methyl substituents on alpha 

carbonyl carbons.  Another doublet at 60.9 ppm 13C spanning the proton chemical shift of 3.77 

ppm is in agreement with β methylenes of carbonyl carbons on hydroxymethyl substituents of 

the  carbon (Table 6). 

 

Returning to the most prevalent correlation for protons β to carboxyls (1.79 ppm), which 

represents a significant portion of the signal intensity, we can decipher their direct connection to 

carbons with chemical shifts of 22 ppm 13C based on the doublet at this coordinate.  Such low 
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carbon chemical shift is likely also due to highly shielded methyl groups, but is unusual for the 

relatively higher proton chemical shift than is typical for these types of methylenes.   

 

It is interesting to note that there is little or no signal from protons  to unsubstituted straight 

chain and mono-alicyclic carboxylic acids (1.4-1.7 ppm).  More evident are protons correlated to 

carboxyls between 2-2.5 ppm 1H, which is in agreement with protons on substituted and cyclized 

carbons whose chemical shifts are more downfield than those of straight chain aliphatic carbons.  

This is true for the HSQC spectra as well, in which protons with chemical shifts ≥ 1.8 ppm and ≤ 

1.3 ppm were most strongly observed, as will be discussed in section 3.2. 

 

Signals at approximately ~140 ppm 13C, correlating to several protons (i.e. 1.79 and 3.3 ppm) are 

also evident in the spectrum and could be from double bonds representing correlations between 

aliphatic protons and aromatic carbons, or de-shielded olefins neighboring heteroatoms or other 

strong electron-withdrawing groups.  Peaks in this region (IV of Figure 11) are also evident in 

this spectrum within two to three bonds of protons at 2.3, and 3.77 ppm which also correlate to 

carboxyls at 180.6 and 179.7 ppm 13C, respectively.   

 

The sensitivity of aromatic carbons using multidimensional NMR techniques is notoriously low, 

in part due to the scarcity of protons necessary for transfer of magnetization.  Very short T2 

relaxation times of longer range two and three bond couplings of rigid structures decay before 

they can be detected during long pulse sequences, making them more difficult to observe 

(Simpson et al., 2001; Cook et al., 2003).  Although it is clear from the mass spectral data and 

one-dimensional spectra previously obtained for this sample (DiDonato et al., 2016) that these 
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molecular types are present, we cannot evaluate the details of their connectivity using HMBC.  

This technique is much less sensitive than other multidimensional NMR experiments (HSQC, 

HMQC, etc.). Two-bond correlations in aromatic rings in particular are very weak and often are 

not seen.  However, the lack of signal in the aromatic region of the HMBC for carboxyls does 

not preclude carboxyl groups immediately bonded to aromatic carbons, due to the low sensitivity 

of this experiment.   

While the HMBC spectrum provides some key information for understanding the molecular 

environment of carboxylic acids, the breakthrough of strong one bond 1H-13C couplings centered 

around the proton chemical shifts can also be a limitation  requiring extra care to be taken when 

making assignments (Hayes and Wilson, 1997).  As mentioned above, these are useful in this 

spectrum for several one bond correlations and do not significantly interfere with interpretation 

of the data, however the high intensity of these peaks may have prevented detection of more 

cross-peaks for long-range bonds. The peaks of this spectrum are also relatively sharp in 

comparison to what is expected for heterogeneous mixtures of molecules with a range of 

molecular size, and so resonances from smaller molecules may have been preferentially detected. 

3.2  HSQC 

From the HSQC spectrum we can observe a variety of structures spanning several regions of the 

1H-13C space, including: aliphatic, functionalized and heteroatom substituted/carbohydrate, 

anomeric and aromatic as depicted in regions A, B and C, respectively of Figure 12. The 

aliphatic region (A) is dominated by C-H couplings nearby to branched or functionalized  
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Figure 12: HSQC of GA-1 HA with designated regions A (aliphatic methyl, methylene and CH 

units beta to heteroatom and other functional groups), B (carbohydrate, heteroatom substituted 

CH groups), C (aromatic CH groups). 
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Figure 13: HSQC of GA-1 Humic Acid with aliphatic region expanded (Region A of Figure 12).  

Structural assignments for proposed structures are provided in Table 6.  

 

 

aliphatic and alicyclic carbons (1.79-2.7 ppm 1H, 22-40 ppm 13C) as well as various methyl 

groups (0.7-1.4 ppm 1H, 10-22 ppm 13C).  Detailed assignments are labeled in Figure 13 with 

associated structures and chemical shifts assignments provided in Table 6.  The most intense 

correlation in this region resonates at 2.3 and 32.5 ppm (1H, 13C) which is characteristic of 

methylenes α to carbonyl carbons of acids and esters and is in agreement with the HMBC 

spectrum.  Signals at 2 and 29 ppm (1H, 13C) are also strong and have been assigned to β 

methylenes of carboxylic acids on alicyclic rings. There are some signals where mid-chain 

methylenes could resonate (1.2, 28 ppm 1H, 13C) as have been observed in other fulvic and 

humic acids (Hertkorn et al., 2002).  These are expected to originate from long chain fatty acids 

and esters indicative of cuticular material and plant waxes but are relatively weak in this 
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spectrum.  They could also represent mid chain methylenes of diacids (Simpson et al., 2001).  

Evidence for methylenes and methines of cyclized rings is also apparent based on several peaks 

between 1.5-2.1 ppm 1H and 35-40 ppm 13C.  Other relatively intense correlations occur near 2.6 

and 39 ppm (1H, 13C), which may be attributed to alkyl substituents of aromatic rings.   

 

As mentioned previously, it is difficult to distinguish between esters and acids using both HMBC 

and HSQC techniques.  The  carbon of the O-alkyl portion of unsubstituted straight chain esters 

usually resonates around 4, 66 ppm (1H, 13C) and is not conspicuous in this spectrum, though 

could be present at 3.8, 60 ppm or 4, 54.8 ppm (1H, 13C) (See Figure 14).  However, primary 

alcohols also resonate in this region and the absence of an O-alkyl peak could indicate a 

relatively low abundance of esters compared with acids in this sample.  

 

Signals at 1.4, 24.5 ppm (1H, 13C) may represent carbons  to the carbonyl carbon; these have 

been reported at 1.5, 22 ppm (1H, 13C) for esters and closer to 24-26 ppm 13C for acids 

(Deshmukh et al., 2003). This is not a strong signal in the HSQC, and it is not observed above 

the noise in the HMBC.  Branching, substitutions or cyclization could shift this resonance 

downfield.  Carbons  to the alkyl oxygen of straight chain esters are relatively weaker at 

approximately 1.58 and 30.5 ppm (1H, 13C), as are the  carbons for this side of an ester.  These 

are also not apparent in the HMBC spectra, which despite its lower sensitivity is able to trace 

multiple bond correlations across heteroatoms. 
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Overall it appears there are few midchain methylenes as well as fewer that would be present in 

esters rather than acids.  Methylenes attached to carbonyl carbons have been identified as well as 

methyl groups, most of which appear to be directly attached to O or C-H units.   

 

The most intense peaks in the HSQC spectrum resonate in region B between 3.2-4.2 ppm 1H and 

40-80 ppm 13C, traditionally assigned to carbohydrates (see Figure 14, and region B of Figure  

 

 

Figure 14: HSQC of GA-1 HA with heteroatom region (Region B of Figure 12) expanded.  

Structural assignments for proposed structures are provided in Table 6. 

 

 

12).  However, we do not expect carbohydrates to constitute a significant fraction of this sample, 

as they often range between 5-25% in soil organic matter, most of which remains in the more 



60 
 

 

2
6
 

soluble or fulvic fraction, with values of < 0.04% to < 6.5% reported for IHSS humic acid 

standards.  The solid-state 13C NMR spectrum does not show a strong contribution of 

carbohydrates (DiDonato et al., 2016). Here the HSQC spectrum is dominated by signals at 

approximately 60 ppm 13C (3.5-3.8 ppm 1H), similar to exocyclic hydroxymethyl groups, and 

alcohols and ethers at 70-76 ppm (3.1-3.8 ppm 1H).  Methoxy groups (56 ppm) are also present 

but not predominant.  Ring carbons of carbohydrates are often detected with these chemical 

shifts, for example xylopyranoses and phenylglycosides that are known to be associated with 

lignin (Yuan et al., 2011).  Though not expected due to the low nitrogen content of this sample, α 

and β CH groups in amino acids can also resonate in this region, for example the peaks at 3.6, 43 

ppm (1H,13C) and 4.15, 71 (1H,13C) are similar to that of glycine and threonine, respectively.  

However these resonances are not major contributors and those of other amino acids do not 

match well with peaks in this region, nor what would be expected for their corresponding 

resonances in other regions.  Alternatively, we suggest that the most dominant peaks here 

represent carbons on alicyclic rings adorned with hydroxyl and carboxyl functionality, consistent 

with the ultrahigh resolution mass spectral data (DiDonato et al., 2016).  Peaks at 63.6, 69.2, 73.7 

and 68.1 ppm 13C correlate with protons nearby to carboxyls (3.77 and 3.3, 2.3, and 1.2 ppm 1H) 

in the HMBC.  The one bond correlation at 60.9 ppm 13C and 3.77 ppm 1H that shows up as a 

doublet in the HMBC as mentioned above is also apparent here. 

 

Anomeric carbons of oligo/polysaccharides appear at 5.1 and 92 ppm (1H, 13C), 5 and 94, 4.5 and 

96 and 4.9, 99 ppm (1H, 13C); the signal at 5.1 and 92 ppm (1H, 13C) being the most intense, 

albeit less intense than the heteroatom substituted region described above, yet comparable in 

relative intensity to that of the functionalized aliphatic region (2-2.7 ppm 1H, 30-40 13C).  Peaks 
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in these regions are also in general agreement (with some deviation from published values due to 

modifications that may occur in humics) with that of fucose, glucose, ribopyranose, galactose 

assigned by Hertkorn et al. (2002) or those Yuan et al. (2011) assigned to xylopyranose, 

monosaccharides and phenlyglycosides and suggest at least some carbohydrates remain intact in 

this humic acid even though the solids NMR spectra suggest they are minor components 

(DiDonato et al., 2016). 

 

Signals in the aromatic region are slightly less intense than other regions of the spectrum with 

two primary clusters of cross peaks (Figure 15).  At approximately 128-129 ppm 13C and 

between 7.3-8 ppm 1H these could indicate the presence of COR groups in the form of ester or  

ethers directly attached to aromatic carbons (Perdue et al., 2007) as well as alkyl substituted 

rings.  Ring carbons of ortho substituted carboxylic acids could also be included in this region, 

often at chemical shifts >7.5 ppm 13C due to their strong proton deshielding effect (Hertkorn et 

al., 2002).  This is likely considering several carboxyl KMD series for low H/C compounds were 

detected in the ultrahigh resolution mass spectral data (DiDonato et al., 2016).  Resonance 

signals for ortho and para oxygen substituted groups are also observed at 115-116 ppm 13C, and 

6.8-7.3 ppm 1H.  These have also been assigned to guaiacyl units of lignin and both chemical 

shift regions match those of ring carbons for p-coumaryl alcohol.  As mentioned above, 

sensitivity in this region may be hindered due to fewer protonated carbons and shorter relaxation 

time due to rigid structures.  Aside from the mass spectral data, both HMBC, TOCSY and COSY 
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Figure 15: HSQC of GA-1 HA Aromatic region (Region C of Figure 12).  Assignments are 

labeled according to the coordinates for their proposed structures listed in Table 6.  

 

 

techniques did not provide any further diagnostic information regarding this region and so it is 

difficult to conclude which structures are most represented in this sample.   

3.3  TOCSY 

Total correlation spectroscopy (TOCSY) does provide more information concerning the aliphatic 

region of this sample.  TOCSY is a technique that reveals which proton resonances are within the 

same spin systems.  Terminal methyls (0.89 ppm) show coupling with branched, functionalized 

or cyclic methylene protons (1.14, 1.34, 1.5, 2.0 ppm) and protons of heteroatom substituted 

methylenes at 4.0 ppm (Figure 16).  This coupling shows that an ample number of methyl groups 

are not attached to quaternary carbons, as has been found for some fractions of DOM (Woods et 

al., 2012), since spin-spin couplings detected by this technique cannot transmit across quaternary  
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Figure 16: Total correlation spectroscopy (TOCSY) spectra of GA-1 

 

 

carbons or heteroatoms.  However, coupling to protons with chemical shifts of 4.0 can be 

accounted for by cyclic and highly branched structures with ester or alcohol functionality.  

Methylene protons at 1.3 ppm also couple with those at 1.4, 1.9 and 2.0 as well as protons at 3.5, 

4.0 and 4.15 ppm.  These protons (1.3 ppm) were also shown to correlate with carboxyl groups 

as well in the HMBC.   

 

Overall the combined evidence for at least two spin systems uniting a range of protons in 

TOCSY, strong signals from substituted or cyclic CHs at the sacrifice of signals from mid chain 

methylenes in the HSQC and a variety of carbons within 2-3 bonds of most of the carboxyls 

detected in the HMBC, makes sense for highly branched, substituted or cyclic acid structures.  
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Additional information concerning the molecular makeup of individual compounds that 

contribute to these spectra can also be obtained from the ESI-FTICRMS data presented by 

DiDonato et al. (2016) and further investigated in this study. 

3.4  ESI-FTICRMS 

From the ESI-FTICRMS data alone, we can only indirectly predict structural assignments based 

on H/C ratios, calculated DBEs and aromaticity indices.  However, in combination with the 

information from multidimensional NMR studies, we may begin to sketch out a more complete 

picture of the molecular environment of this humic acid.  

 

Molecular formula identifications and carboxyl KMD analysis have been previously reported 

and carboxyl KMD series were found to constitute 55% of the assigned CHO-only formulas for 

GA-1 (DiDonato et al., 2016).  Approximately 44% of the lignin-like, 55% of the condensed 

aromatic, or black carbon (BC)-like, and 54% of the carboxyl-containing alicyclic molecule 

(CCAM) formulas were part of a COO series of two or more.  These regions represented 36, 9 

and 67% of the CHO compounds, respectively (note these regions do not sum to unity due to 

overlap).  For this study we incorporate the remaining formulas into our analysis, which include 

the following molecular formula types and percentage of formula makeup: CHO (50%), CHOS 

(19%), CHONS (12%), CHON (6%), CHOPN (6%), CHOPS (3%), CHOP (4%).  

Approximately 38, 26 and 41% of the total formulas are contained within the lignin-like, 

condensed aromatic and CCAM regions, respectively (Figure 17).  The largest percentage of 

heteroatom containing formulas not including CHO compounds were observed in the condensed 

aromatic region, constituting 83% of the formulas in this region. 
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Figure 17: van Krevelen diagram of all assigned formulas in GA-1 humic acid. Dark blue = CHO 

(50%), green = CHOS (19%), light-blue = CHON (6%), orange = CHONS (12%), gray = 

CHOPN (6%), red = CHOP (4%), purple CHOPS (3%). 

 

 

About 37% of total formulas were contained within a COO series in comparison to 55% of CHO 

only compounds contained within COO series found previously.  This is largely due to dilution 

of the CHO formulas with the remaining heteroatom containing formulas which primarily were 

not part of COO KMD series.  Lignin-like, condensed aromatic and CCAM molecules each were 

composed of 36, 18 and 45% of formulas in COO series, respectively.  Since most of the HMBC 

carboxyl signal appeared to be tied to aliphatic carbons, we further investigated the molecular 

formula makeup of peaks contained within a COO series in the CCAM region to inform our 

structural predictions.  We found an average number of 27 (± 3) carbons, 41 (± 6) hydrogens, 6 

(±2) oxygens, and 8 (±2) DBE per molecule for CCAM molecular formulas within a COO series 

of 2 or more (Table 7).  These were all found to be CHO compounds except one group of CHOS 
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compounds.  Also evaluated were the number of formulas that were contained within CH3 series, 

since the signal from these groups in the HSQC appeared to be relatively intense.  We found 

49% of the total formulas were included in CH3 series of 2 or more, with series up to 7 molecular 

formulas.  In addition, examining only the CH3 series that also were part of a COO series, we 

found these formulas accounted for a quarter of all formulas.  Of just the COO series formulas, 

about 67% also were part of a CH3 series.  These CH3 series that also are part of a COO series 

additionally accounted for 37% of all CCAM molecules, and these formulas that fall in the 

CCAM region also make up 61.7% of all the formulas that are contained within both series 

types.  Formula compositions for each of these groupings are listed in Table 7. 

 

 

Table 7:  Statistical CCAM formula compositions by grouping 

  CCAM CCAM COO CCAM COO CH3  

  C  H O DBE C  H O DBE C  H O DBE 

Avg 26 ± 5 37 ± 12 6 ± 2 8 ± 3 27± 3 41± 6 6 ± 2 8 ± 2 27 ± 4 39 ± 9 7 ± 1 9 ± 2 

Min  13 13 1 1 17 16 2 1 16 14 4 4 

Max 39 71 9 19 32 52 9 14 32 52 9 14 

Median 27 38 6 8 28 42 6 8 28 40 7 9 

Mode 29 40 7 9 29 44 6 8 30 44 7 8 

 

 

Based on the molecular formula information for molecules plotting in the CCAM region (0.85 ≤ 

H/C ≤ 2.0, O/C ≤ 0.4) and the structural motifs identified from the NMR data (Table 7),  

hypothetical structures that may be formed during the radical oxidation of lignin were developed 

using mechanisms adapted from Higuchi (2004) and Waggoner et al (2015).  Lignin dimers and 

tetramers linked through common bonds, -1 and 5-5, were used as starting material (Figure 18).   
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Figure 18: Hypothetical pathway for the formation of alicyclic molecules from lignin (adapted 

from Waggoner et al.(2015), Higuchi (2004), R=COOH).  This includes 1) oxidation, 

depolymerization, demethylation and ring opening of a ß-1, 5-5 lignin polymer as well as alkyl 

phenyl cleavage of a phenolic ß-1 lignin substructure and 2) decarboxylation, oxidation of open-

ring structures, electrocyclization with maleic acids, aldehyde oxidation, radical alkylation and 

oxidation or radical addition to double bonds.   

 

 

These represent 18-25% and 7-10% of linkages in soft wood, respectively (Argyropoulos et al., 

2002; Adler, 1977; Heitner et al., 2016) and were utilized in this study due to the similarity of the 

chemical shifts for these bonds with the observed spectra.  Signals from the more common -O-4 

ether bonds are not as evident.  Ring opening initiated by proton abstraction via hydroxyl radical, 

a process which has also been shown to form cis-cis muconic acids, followed by re-cyclization 

with maleic acid (a major decomposition product of muconic acid (Devlin and Harris, 1984; 

Shende and Levec, 2000) and strong dienophile) could lead to the central alicyclic ring structures 

A

B
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illustrated in Figures 19a-c.  Peripheral aliphatic appendages could be remnants of the precursor 

lignin side-chain, opened ring, or maleic acid linkage.  If radicals are formed either via reactive 

oxygen species or during loss of CO2 , alkyl chain addition to the ring or double bonds may also 

be possible. 

 

 

 

Figure 19: ACD labs HMBC Spectral Prediction for model alicyclic molecules derived from 

lignin a) C27H40O8 (FW 492.6017, DBE=8) b) C29H44O8 (FW 520.6549, DBE=7) c) C25H40O8 

(FW 468.5803, DBE=6) 
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Spectral predictions were conducted for alicyclic molecules ranging in rings from 1-6, from 1-3 

carboxyl groups and from 1-5 alcohols.  Predictions for straight chained fatty acid and ester type 

molecules containing hydroxyl substituents were also conducted for comparison.  Both HSQC 

and HMBC spectra were predicted to maintain consistency.  Figure 19a-c presents three of the 

proposed structures and their predicted HMBC spectra.  

 

The range of correlations for carboxyl cross peaks matches fairly well with the data observed in 

the spectrum for GA-1, however there is noticeably less signal in the region between 55-70 13C 

and above 3 ppm 1H in the predicted spectra of Figure 19a and Figure 19b than in the observed 

humic acid spectrum which is more similar to Figure 19c in this region.  This may be due to 

additional molecules with hydroxylated rings or carbohydrates that may be present in the sample.  

A greater variety of signals less than 2 ppm 1H and between 40 and 50 ppm 13C in the predicted  

spectra in comparison to the observed spectrum for GA-1 may be due to weaker correlations 

associated with poorly resolved, complex proton multiplets in the sample (Claridge, 2009).  

Signals from methylenes in rings or chains that would plot in this region will be attenuated below 

the signal to noise threshold by complex coupling patterns.  The stronger single bond 

correlations that have not been filtered out may also obscure the signal.  Despite these 

inconsistencies, the model predictions in Figure 19a and b for carboxyl 1H-13C correlations at 

1.2, 2.3, 3.7 ppm 1H in particular are in strong agreement with our results.  Carboxylic acid β 

protons with methyl (1.2 ppm 1H) and hydroxyl methylene (3.7 ppm 1H) substitutions on  

carbons, as well as carboxylic acid  carbons (2.3 ppm 1H) with alcohol substitutions on the γ 

carbon in which the corresponding single-bond 13C chemical shifts are known, match both the 

HMBC and HSQC data.   
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Considering the stoichiometric constraints set by the mass spectral data (Table 7), which limits 

the number of oxygens in particular, and thus alcohols, carboxylic acids, ethers, and other 

oxygenated groups per molecule, it is more likely that a large variety of molecular configurations 

are present in the sample to account for the range of chemical shifts observed in the HMBC 

spectra such that these cannot be wholly represented by one or two model compounds.  

Nevertheless, the above structures depict some of the most significant features that can be 

ascertained from both the mass spectra and NMR data, namely the configurations to match the 

detected molecular size, stoichiometry and double-bond/ring equivalents as well as the observed 

chemical shifts.  

4.  DISCUSSION 

4.1  Comparison of structural findings 

Our investigation thus far of this highly aliphatic humic acid supports the occurrence of alicyclic 

carboxylic acid structures as components.  The most notable features that can be discerned from 

this study are the strong resonances in the carbohydrate region, various methyl resonances and 

assortment of aliphatic proton correlations to carboxylic acids that are also linked to methyl, 

hydroxyl and olefinic carbons.  Methoxy and aromatic resonances suggestive of lignin are 

present, but relatively minor, as are straight chain methylene carbon units expected for paraffinic 

material and commonly identified in humic materials (Schnitzer and Khan, 1972). 

 

The aliphatic portion of humic acids have been well-studied and suggested to originate from 

biomolecules such as proteins, carbohydrates, lipids, fatty acids and waxes. Of the humic acids 

that have been studied using non-destructive multi-dimensional NMR techniques, paraffinic 

materials appear to be common especially in peat humic acids (Hertkorn et al. (2002); (Kelleher 
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et al., 2006), which are expected to be less humified than soils.  The main difference between the 

Georgia soil humic acid spectrum and other soil humic material is the less prominent signal from 

methylene carbons in long chains, as well as for esters. This is perhaps due to the fact that the 

soil sample was extracted with methylene chloride prior to alkali extraction. In contrast, the 

Georgia soil humic acid rather contains more signal from a variety of methyl groups observed in 

the HSQC spectrum between 10-25 ppm 13C and 0.5-1 ppm 1H as well as chemical shifts for 

single and double heteroatom substituted carbons which suggest highly branched and cyclic 

molecules more similar to carbohydrates or proteins.  Methyl resonances are not unique to this 

sample, however, and have been identified in peat and soil humic acids as well.  In general, these 

similarities are evident in spectra of soil humic acids published by Schmitt-Kopplin et al. (1998), 

Kingery et al. (2000) and Deshmukh et al. (2007) as well as alkali soil extracts and peat HA 

studied by Kelleher and Simpson (2006) and Hertkorn et al (2002).  In the Hertkorn et al. (2002) 

study, these were found to be more evident in the peat HA in comparison to its FA, and resemble 

the same chemical shifts for methyl groups of amino acids I, V, L, A and T.   

 

The low nitrogen content of the Georgia soil sample and ambiguous assignments for remaining 

amino acid correlations suggest these compounds, if present, would not exist in this sample in 

their free form.  In addition, mass spectral data show that CHON compounds constitute only 6% 

of the observed molecular formulas and plot predominantly in the condensed aromatic region, as 

opposed to the region just above the lignin-like region where proteinaceous material is typical 

(Figure 17).  Other nitrogen containing compounds, CHONS constituting the largest grouping 

(12% of the formulas), span a large O/C range, from condensed aromatic and lignin-like to 

tannin-like, which suggests these structures, if present, could be randomly incorporated in the 
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macromolecular structure of organic matter.  Formulas within CH3 KMD series primarily consist 

of CHO (81%) or CHOS (16%) compounds and are also not limited to one region of the van 

Krevelen diagram, but distributed somewhat uniformly within the CCAM, lignin-like and 

aromatic regions.  The methyl groups observed in the HSQC spectrum could therefore occur 

within varied chemical environments of alicyclic molecules or in side chains of degraded lignin 

molecules which, depending on the length of the side chain, heteroatom stoichiometry and 

number of attached rings could fall in either of these regions.   

 

Corresponding resonances for carboxylic acid groups in both the HMBC and HSQC confirm 

correlations between carboxyls and methyl, methylene and heteroatom substituted aliphatic 

carbons and demonstrate the plausibility of cyclic structures.  A strong correlation for alpha 

protons (2.3 ppm) of carboxylic acids where the intensity is less relative to more upfield 

chemical shifts (1.79 ppm) may also suggest branched aliphatic and alicyclic structures to be 

more prevalent in this sample. Deshmukh et al. (2007) used the same rationale in their study of 

Suwannee River and Elliott Soil humic acids, with respect to protons at 1.9 ppm as compared to 

the respective fulvic acid samples where the 2.3 ppm protons dominated, instead suggesting 

more straight chain carboxylic acids.  The high DBE for aliphatic molecular formulas (average 8, 

mode of 9) also serves as evidence for alicyclic structures, specifically for molecular formulas 

that fall in both COO and CH3 KMD series for which the minimum DBE was found to be 4 (max 

14) with an average of 9 DBE (mode of 8 DBE). 

 

We compared these findings with other HMBC spectra for humic substances in the literature, 

although data is limited for humic acids as mentioned in section 1, more studies are available for 
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fulvic acids (Simpson et al., 2001; Cook et al., 2003) and for DOM from lacustrine (Lam et al., 

2007), riverine (Woods et al., 2012) and marine (Hertkorn et al., 2013) environments.  Most 

studies of carboxylic acids in terrestrial soil (Laurentian fulvic acid (LFA), Elliott soil humic 

acid), riverine (Suwannee River humic acids and DOM), and even marine UDOM (Hertkorn et 

al., 2013) organic matter share many of the same features.  One exception is for Lake Ontario 

DOM (LODOM) which did not indicate the same correlations of carboxyl groups with 

methylene chains nor were carboxyl groups in the CRAM region of LODOM found to correlate 

with other functionalities (methyl, hydroxyl carbons, double bond) (Lam et al., 2007). The 140-

150 ppm 13C region where double bonds would resonate is also not as apparent in the Suwannee 

River and Elliot soil spectra (Deshmukh et al., 2007), but are more evident in the LFA analyzed 

by Cook et al. (2003), the DOM of Hertkorn et al. (2013) and Woods et al. (2012).  In contrast 

there is relatively less signal in the 80-90 ppm range of GA-1 where Lam et al. (2007) identified 

oxygenated functional groups in the MDTL (material derived from linear terpenoids) region of 

LODOM, which they propose to result from hydration of conjugated double bonds in these 

structures.  The carboxylic groups in the GA-1 HA sample resonate at a slightly lower field 

(175.6-179 ppm 13C) than the Suwannee River and Elliot HA of the Deshmukh et al. (2007) 

study (168-177 ppm 13C) as well as the LFA of Cook et al. (2003).  These chemical shifts are 

more similar to the Elliott FA and to the region identified as material derived from linear 

terpenoids (MDLT) by Lam et al. (2007) that resonate as high as 180 ppm 13C.   

4.2 Conclusions 

Most recent studies suggest a primarily biological source for alicyclic molecules (microbial 

DOM, terpenoids, etc.) in humic substances, although other explanations are also possible.  

Hertkorn et al. (2002) attributed some of the peaks in the aliphatic region of peat HA (20-40 ppm 
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13C, 1-2.5 ppm 1H) to terpenoid-type structures, as well as lipids, fatty acid derivatives and 

aliphatic residues of deoxy sugars.  Cook et al. (2003) found mostly aliphatic carboxylic acids 

and proposed aliphatic hydroxy carboxylic acids of alkanoic and benzoic nature, both cyclic and 

straight chain, as well as glucosides derived from terpenoids and flavonoids as model structures 

for Laurentian fulvic acid from the Bh horizon of a boreal podzol.  Woods et al. (2012) also 

proposed cyclic structures when interpreting the HSQC and HMBC spectra of a fraction of 

Suwannee River DOM (SRDOM), based on the absence of mid-chain methylenes and a wide 

distribution of carboxyl groups within 3 bonds of protons ranging primarily from 2-2.7 ppm 1H 

and between 30 and 40 ppm 13C, similar to what has been found here for the Georgia humic acid. 

 

In contrast to all suggestions for the source of alicyclic molecules, we conclude that alicyclic 

molecules containing significant carboxyl group functionality originate from hydroxyl radical 

oxidation reactions of lignin and lignin-rich NOM (Chen et al., 2014; Waggoner et al., 2015).  

The large variety of carboxyl cross peaks in this study conforms with a random assortment of 

structural arrangements resulting from radical-promoted polymerization reactions.  Proposed 

pathways for the oxidation of lignin to alicyclic molecules includes side chain oxidation and 

demethylation followed by ring opening resulting in unsaturated aliphatic and hydroxylated 

carboxylic acid containing structures (Waggoner et al., 2015), a series of reactions that have been 

shown to occur via fungal degradation of lignin (Higuchi, 2006).  Further electrocyclic 

polymerization with muconic acid-like structures may also lead to re-cyclization and 

decarboxylation through the loss of CO2.  Methyl groups, that appear to be a notable contribution 

to this sample, have been commonly mentioned as indicators of terpenoid sources, but we do not 

agree that these are exclusive indicators of terpenoids.  Although these were not originally 
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identified per se in the structures and mechanisms proposed to be formed from lignin by 

Waggoner et al. (2015), these could be incorporated during polymerization reactions after 

demethylation or intensified relative to other groups by modifications if originally present as part 

of the lignin structure.   

 

Although Waggoner et al. (2015) were unable to obtain multidimensional spectra for the 

hydroxyl-radical oxidized lignin sample, a study was published by Schmitt-Kopplin et al. (1998) 

in which a dissolved soil HA with lignin components was photoxidized and compared with the 

parent material using 2D NMR. These authors concluded that lignin and lipid like constituents 

were the most susceptible to alterations by photooxidation.  Their results also support the 

formation of a greater variety of aliphatic proton resonances, many of which could reflect 

alicyclic molecules. Moreover, they observed a significant increase in methyl resonances after 

photo-oxidation, a hydroxyl-radical producing process. 

 

The findings in this study are very consistent with the presence of alicyclic aliphatic compounds 

in humic acid. Recent work by our group (Chen et al., 2014; Waggoner et al., 2015) indicates 

that these alicyclic molecules can be produced abiotically from lignin via ring opening followed 

by electrocyclic polymerization.   
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CHAPTER IV 

SUB-STRUCTURAL COMPONENTS OF ORGANIC COLLOIDS FROM A PU-

POLLUTED SOILWITH IMPLICATIONS FOR PU MOBILIZATION 

Preface 

The content of this chapter was published in Environmental Science and Technology in 2017.  

Below is the full citation. The formatting has been altered to incorporate the supporting 

information into the body of the manuscript. See Appendix B for the copyright permission. 

Reprinted (adapted) with permission from (DiDonato, N., Xu, C., Santschi, P.H., Hatcher, P.G., 

2017. Substructural Components of Organic Colloids from a Pu-Polluted Soil with Implications 

for Pu Mobilization. Environmental Science & Technology. DOI: 10.1021/acs.est.6b04955). 

Copyright (2017) American Chemical Society. 

 

1.  INTRODUCTION 

Colloidal organic matter has been shown to mobilize reduced plutonium in contaminated soils, 

sediments and surface water columns(Nelson et al., 1985; Santschi et al., 2002; Kalmykov et al., 

2010; Xu et al., 2014).  Historically, primarily oxidized forms of Pu(V,VI) which are more 

soluble and less easily sorbed to solid particles were of most concern for its transport (Nelson et 

al., 1985).  More recent studies have demonstrated the mobility of reduced forms (III, IV) due to 

their high affinity for surfaces of both inorganic (Kersting et al., 1999; Novikov et al., 2006) and 

organic colloids (Kalmykov et al., 2010; Santschi et al., 2002; Xu et al., 2014; Kersting, 2013).  

Thus, Pu oxidation state (found primarily as IV and V) combined with environmental conditions 

(Eh, pH, presence of either mobile or immobile minerals and organic matter available for 
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complexation or sorption/desorption reactions, etc.) largely determines the mobility of Pu in 

terrestrial and aquatic environments. 

 

For example, organic rich and organic poor wetland soil from the Savanna River Site (SRS) 

contaminated weapons manufacturing facility was found to contain similar total Pu(IV) and 

Pu(V) activity, however Pu was more mobile in the organic rich soil due to formation of 

colloidal organic matter (1kDa-0.45 um) (Xu et al., 2014).  The majority of the mobile colloidal 

Pu was contained in a sub-fraction that was separated via an isoelectric focusing (IEF) 

electrophoresis experiment and found to concentrate around the IEF range of 4.1-5.6 (defined as 

“SRS IEF colloid”) (Xu et al., 2015).  Elevated pH values, as a result of the basin closure and 

remediation strategies, led to Pu remobilization by complexation with colloidal organic matter 

and subsequent desorption from soil particles in the downstream wetland sediment. Moreover, 

wetland sediment Pu concentrations from this site were shown to increase with increasing 

nitrogen and hydroxamate content, which were proposed to originate partly from siderophores 

responsible for complexing Pu.  Likewise, at the Rocky Flats Environmental Technology Site 

(RFETS), another Pu-contaminated weapons manufacturing facility, the greatest Pu-239, 240 

activity was found to be associated with particulate (>0.45 um) and colloidal (≥3 kDa) organic 

matter fractions, rather than inorganic mineral phases(Xu et al., 2008).  A Pu enriched fraction, 

the “RFETS IEF colloid”, was sequentially isolated first by water extraction of the soil to obtain 

a crude colloid, and then purified using IEF electrophoresis.  Elemental analysis, hydroxamate 

content and Pu activity of the RFETS soil, crude colloid and IEF colloid was obtained and the 

RFETS IEF colloid was further analyzed using a variety of techniques including mutli-

dimensional NMR.  The RFETS IEF colloid was found to be enriched in hydroxamate-type 
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compounds but additionally displayed a strong resemblance to plant cuticles based on 

multidimensional NMR studies (Xu et al., 2008).  Hydroxamate groups linked to a cutin-like, 

carbohydrate containing Pu-rich organic colloid were suggested to be a source of the Pu 

chelation (Xu et al., 2008).  

 

Cutin, a polyester present in the cuticle surface of many plants, is expected to accumulate in soils 

over time due to its hydrophobic long chain polymethylene structure resistant to microbes.  It is  

interlinked by ester bonds, and commonly contains both primary and secondary alcohol groups 

(Deshmukh et al., 2003; Fang et al., 2001; Hitchcock, 1971). The biopolymer alone would not 

likely sequester Pu since it does not contain strong metal binding ligands and its low solubility in 

solution limits interaction with metal ions.  There is reason to believe that strong metal binding 

chelates such as hydroxamate siderophores can be cross-linked to cutin polymers within soil 

fractions and thus, attach chelating groups to the cutin scaffold that would be excellent 

candidates for metal mobilizations in soil.  Several studies have provided evidence for 

incorporation of nitrogen functional groups into organic matter (Hsu and Hatcher, 2005; McKee 

and Hatcher, 2010; Rillig et al., 2007), including amidation of ester groups in cutin, which can be 

considered a model for stable organic matter (Turner, 2007).  Hydroxamate siderophores are  

known to interact with esters similarly (Medeiros et al., 2012).  These ligands form some of the 

strongest complexes known (log KML = ~ 30 for Fe(III)) (Boukhalfa et al., 2007) and also chelate 

metals other than Fe, particularly those of similar charge to ionic radius and preference for 

oxygen ligands, such as the radionuclide Pu (Raymond et al., 1984). The Pu-hydroxamate 

stability constant is up to 5 orders of magnitude higher than for Fe (Boukhalfa et al., 2007). If a 

cutin biopolymer with similar structure is present in the Pu-carrying colloid extracted from soils 
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at the Rocky Flat’s site, the possibility exists that it may have reacted with nucleophilic nitrogen 

species within siderophores to impart strong metal-binding characteristics.  

 

Pu activity at both SRS and RFETS was found to be correlated with organic carbon, and even 

more strongly correlated with nitrogen and hydroxamate content.  Nitrogen incorporated by 

siderpohores into cutin at the RFETS was suggested to explain some of the nitrogen correlation 

with Pu.  However, only a small portion (~2%) of the total N content of the soil could be 

attributed to hydroxamate-nitrogen, so other N-containing molecules of unknown molecular 

composition are also likely responsible for sequestering Pu.   Some of these may contain 

carboxyl and hydroxyl groups, phenols, salicylates, amino acids, phthalates, carbohydrates and 

quinone type molecules that are known to form complexes with multivalent cations (Stumm and 

Morgan, 2012),(Tipping, 2002).  ESI-FTICRMS is a useful tool for characterizing the molecular 

components of organic matter due to its ultra-high resolution from which molecular formulas can 

be accurately assigned.  This analysis was completed for the SRS IEF colloid (Xu et al., 2015), 

in which hydroxamate siderophore decomposition products were suggested to be present based 

on comparison with a hydroxamate siderophore standard.  Other (CRAM-like) N-containing 

molecules were also identified for their potential role.  However ESI-FTICRMS analysis of the 

RFETS IEF colloid (Xu et al., 2008) has not previously been conducted. 

 

Thus, the goal of the current study is two-fold.  First, we seek to identify additional molecular 

components of the RFETS IEF colloid using ESI-FTICRMS that could be responsible for Pu-

chelation.  For the current study we use alkali, which often provides greater (up to 80%) 

solvation efficiency (Stevenson, 1994), to dissolve the organic matter in the RFETS soil, water 
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extracted crude colloid and purified IEF colloid.  While observation of the bound ligands is not 

possible at these low Pu concentrations, we relate the organic matter composition of each 

fraction to the previously reported Pu activity and chemical analysis to identify potential ligands 

(Xu et al., 2008). Second, we test if an amine-containing hydroxamate siderophore, 

desferrioxamine (DFO), may be abiotically and covalently incorporated into the biopolymer 

cutin via a nucleophilic addition reaction.  This could explain one way hydroxamates, measured 

previously using spectrophotometric techniques, could persist in organic matter to chelate Pu. 

Our studies involve isolation of cutin from Western wheatgrass, which is the main source of 

organic matter to the soils at the Rocky Flats site and potentially the source of the cutin-like 

structures previously identified in the RFETS IEF colloid(Nelson, 2010).  We attempted to bind 

DFO to cutin to impart metal ligation properties, attempting first to do this with well 

characterized tomato cutin isolates.  DFO amide products have previously been synthesized 

under Schotten-Baumann conditions(Ihnat et al., 2000), however to our knowledge this is the 

first time a DFO amidation reaction has been attempted without the use of reactive acyl chlorides 

not expected to exist in nature. 

2.  MATERIALS AND METHODS 

2.1  Sample preparation  

Soil was collected in the summer of 2004 from the 903 ‘lip area’ of the RFETS according to Xu 

et al 2008.  It was dried, sieved through at 2 mm sieve and preserved under cool, dry conditions.  

For the original study, a crude colloid and purified IEF colloid were extracted from the soil and 

samples were previously analyzed using a suite of analytical tests including elemental analysis, 

carbohydrate, protein, metals (Fe, Al, Mn), sulfate, phosphate as well as solid state and high 

resolution NMR(Xu et al., 2008) and findings were published by Xu et al.(Ketterer et al., 2004; 
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Santschi et al., 2002; Xu et al., 2008)  Briefly, the soil which contained 351±7 pCi/g of Pu-239, 

240 was submerged in water to simulate runoff conditions, filtered and diafiltered to obtain a 

“crude colloid” (3 kDa- 0.45 µm) found to have a concentrated activity of 660±47 pCi/g of Pu, 

as determined by alpha spectroscopy (Ketterer et al., 2004; Santschi et al., 2002; Xu et al., 2008).  

The crude colloid was further purified by isoelectric focusing electrophoresis to obtain a 

subfraction, the “IEF colloid”, with an activity of 3222±278 pCi/g Pu.  For the current study, 

colloid samples were freshly prepared from the original preserved soil following the same 

procedure to obtain a newly extracted “crude colloid” and newly purified “IEF colloid” 

containing organic matter associated with the highest Pu activity. The colloids were freeze-dried 

and alkali extracts of the original soil, newly extracted crude colloid and newly purified IEF 

colloid were analyzed by ESI-FTICRMS. 

2.2  Cutin isolation 

Western wheatgrass (Agropyron smithii) was obtained from the re-vegetation area of RFETS and 

its cutin biopolymer was isolated according to a modified Deshmukh, et al (2003) procedure. In 

brief, plants were cleaned and de-waxed with chloroform and then treated with ammonium 

oxalate/oxalic acid solution (1.6% w/v / 0.4 % w/v), washed, freeze-dried and ground.  Ground 

grass was successively extracted with chloroform, 1:1 methanol/chloroform and methanol for 12 

hrs to remove soluble lipids.  The material was then washed, freeze dried and treated with 4.5% 

sodium paraperiodate solution (adjusted to pH 4.1 with acetic acid) for 12 h to remove 

carbohydrates.  The remaining material (largely lipid and saccharide-free) was then filtered, 

suspended in water, refluxed for 3 hr, washed and freeze dried.  Following the above method 

(Deshmukh et al., 2003) established for tomato cutin isolation, it was apparent  that significant 

amounts of lignin and cellulosic compounds remained, which are absent or not as prevalent in 
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tomato.  Wheatgrass has been reported to contain approximately 8-15% lignin, 60-77% 

holocellulose and 3-10% protein depending on the season and less than 1% cutin(Kamstra et al., 

1968; Soest, 1994).  In order to effectively isolate cutin from wheatgrass, two steps were added 

to the Deshmukh et al. (2003) procedure to remove these components.  First, the remaining 

material was further bleached with sodium hypochlorite in acetic acid to remove lignin and 

second, an acid hydrolysis step with 6N HCl was also performed to remove residual cellulose 

and proteins(Chefetz et al., 2002).  Tomato cutin was isolated from organically grown tomatoes 

according to the original Deshmukh, et al (2003) procedure(Deshmukh et al., 2003).   

2.3  Cutin + siderophore incubation 

Cutin, isolated from tomato was incubated under abiotic conditions in 2 mL sterilized vials (acid 

washed and combusted) with 10 mg/ml of the trihydroxamate siderophore, desferrioxamine 

mesylate (DFOM, Sigma), which was dissolved in D2O (Acros) and adjusted to pH=11.5 with 

NaOD (Cambridge), above the pKa for the terminal amine.  All ingredients were sterile, 

including cutin, left sterile by the isolation procedure.  The headspace was purged with argon to 

maintain anoxic conditions and vials were sealed and stored in the dark for separate 2 week and 

1 month durations.  After incubation, cutin was washed, shaken for 10 minutes, centrifuged and 

the liquid was decanted to remove any residual water soluble DFO. This process was repeated 

three times and the residues were freeze dried prior to analysis.  The rinsate was also analyzed by 

multidimensional NMR for any potential soluble reaction products. 

2.4  Elemental analysis 

Carbon, hydrogen and nitrogen content of wheatgrass and cutin samples (wheatgrass and tomato) 

as well as tomato cutin after incubation with DFO were determined using a Flash 1112 Series 
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Elemental Analyzer.  Signal response areas were calibrated to standard curves using 

nicotinamide for carbon and hydrogen and aspartic acid or acetanilide for nitrogen. 

2.5  Solid state NMR 

Cross-polarization magic angle spinning (CPMAS 13C NMR) was used to assess the success of 

the wheatgrass cutin isolation procedure.  Isolated cutin was ground and added to an 80 μl rotor, 

spun at 10 kHz for 6400 scans using the cp.av pulse program with a recycle delay of 1 second 

and a contact time of 1 ms.  Spectra were externally calibrated to glycine.  Direct polarization 

magic angle spinning was also employed to quantify carbon signals.  The hpdec.av pulse 

program was used with an 18 degree pulse angle (P1=0.8 seconds) and a recycle delay of 2 

seconds for 6400 scans while spinning at 10 kHz. 

2.6  Multidimensional NMR 

High resolution magic angle spinning (HRMAS) was also performed to obtain detailed 

information concerning the connectivity of the carbon and protons within the wheatgrass and 

tomato cuticle biopolymers.  Approximately 20 mg of cutin was inserted into a 50 μl rotor with 

approximately 30 μl DMSO.  We acquired a heteronuclear single quantum coherence (13C-1H 

HSQC) spectrum using the hsqcetgpsi2 pulse program with 90 degree pulse lengths of 3.92 μs 

and 7.75 μs in the F2 (1H) and F1 (13C) dimensions, respectively.  All spectra were obtained 

using a 7 kHz spinning speed for 640 scans and a 1 ms recovery delay.  The time domain for the 

FID was 1024 (F2) and 200 slices were obtained in the F1 dimension.  Spectra were internally 

calibrated to DMSO.  1H-1H Total correlation spectroscopy (TOCSY) was obtained using the 

mlevetgp pulse program with a mixing time of 100 ms for 128 scans and 128 slices in the F1 

dimension.  1H-1H Correlation spectroscopy (COSY) was completed using the cosygpqf pulse 

program with a 1 second delay, 128 scans and 256 slices in the F1 dimension. 
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2.7  ESI-FTICRMS 

Soil, crude colloid and purified IEF colloid prepared for this study were stored in a freezer until 

use.  Alkali extracts of each were prepared by dissolution in 0.01 M NaOH overnight (~12 hours) 

under an argon headspace.  Extracts were then batch treated with a Dowex™ 50WX8-100 ion-

exchange resin at a 3:1 v/v ratio and shaken for 1 hour to remove ions and prevent formation of 

salts during electrospray ionization.  A dichloromethane rinse was performed to remove organics 

sorbed to the Dowex resin and these samples were analyzed separately from the resin-treated 

alkali extracts.  Analysis was conducted in the negative ion mode on a Bruker Daltonics 12 Tesla 

Apex Qe FTICR-MS instrument equipped with an Apollo II ESI source and housed in the 

College of Sciences Major Instrumentation Cluster at Old Dominion University.   Samples were 

mixed 1:1 with methanol just prior to injection for a final concentration of approximately 50 ppm 

carbon.  Spectra of 4 megawords were obtained with 300 scans, 1 millisecond source 

accumulation and 2 or 3 second ion accumulation, depending on the sample.  Spectra were 

externally calibrated to polyethylene glycol and internally calibrated to a fatty acid series 

common to natural organic matter.  Molecular formulas were assigned using an in-house Matlab 

code according to previously described rules and criteria (Sleighter and Hatcher, 2007; Sleighter 

and Hatcher, 2011).  Formulas assigned from the resin-treated alkali extracts were combined 

with those assigned for their respective dichloromethane extract to make a combined data set for 

each sample.  Double bond equivalents were calculated according to DBE = 1+ 0.5(2*C-

H+N+P) and aromaticity indices were calculated using Aimod = (1+C-0.5*O-S-0.5*H)/(C-0.5*O-

S-N-P) for which values ≥ 0.5 and ≥ 0.67 were categorized as aromatic and condensed aromatic, 

respectively (Koch and Dittmar, 2006).  Kendrick mass defect (for COO) was calculated 

according to: 
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KMD = Kendrick mass (COO) – Nominal Kendrick mass (COO)           (1) 

Kendrick mass (COO) = Exact m/z value of peak * (Nominal mass COO/Exact mass COO)    (2) 

3.  RESULTS  

3.1  Cutin isolation 

Cutin was isolated from wheatgrass at the RFETS site to compare its structure with that of the 

RFETS colloid which was previously suggested to contain cutin-like material.  We used solid 

state 13C CPMAS NMR and multi-dimensional NMR to confirm successful isolation of the 

wheatgrass cutin polymer. The solid state spectrum (Figure 20b) closely resembles the spectra 

obtained for the more commonly studied tomato cutin (Figure 20a) (Fang et al., 2001; Deshmukh 

et al., 2003).  The spectrum is dominated by signals from main chain aliphatic polymethylene 

carbons, both crystalline and amorphous at approximately 33 and 30 ppm 13C respectively, as 

well as signals from esters and alcohols between 60 and 70 ppm 13C.  This is consistent with 

removal of lignin and cellulose as well as proteins, as supported by a 4.9% reduction in nitrogen 

detected by elemental analysis (Table 8).  Resonances associated with lignin (56 ppm 13C, 

methoxy; 128 and 130 ppm 13C, aryl-C; and 148, 150 ppm 13C, aryl-O) were successfully 

removed after bleaching.  Cellulose (105 ppm 13C, anomeric carbohydrate and 72 ppm 13C, also 

lignin side chain) and amino acid (56 ppm 13C) and were also diminished with acid hydrolysis.  

The primary difference between the spectra of cutin isolated from wheatgrass and that from 

tomato cutin is the relatively less intense signal from crystalline polymethylene units in the 

wheatgrass cutin. 
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a)  

b)  

Figure 20: Solid State 13C CPMAS of a) tomato cutin isolated according to Deshmukh et al. 

(2003), and b) wheatgrass cutin isolated according to a modified Deshmukh et al. (2003) 

Deshmukh et al. (2003) procedure. 

 

 

Table 8:  Wheatgrass Elemental Analysis 

 Wheatgrass Prior to Cutin Isolation Wheatgrass Cutin Post Isolation 

 Replicate Masses (mg ) Replicate Masses (mg) 

 0.617 0.802 

 1.167 0.652 

 1.06 0.578 

 Elemental Analysis Elemental Analysis 

%C 45.8 +/- 0.5 41.0 +/- 1.5 

%N 5.9 +/- 0.2 1.0 +/- 0.03 

%H 5.7 +/- 0.1 5.6 +/- 0.5 
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Two-dimensional heteronuclear single quantum coherence (HSQC) NMR analysis of the 

wheatgrass cutin polymer which depicts resonances for only carbons that are directly bonded to 

protons (Figure 21) further reveals mid-chain and terminal alcohols, fatty acids, branched and 

straight chain esters similar to that of tomato cutin.  CH2 resonances for O-alkyl (3.9 ppm 1H and 

63 ppm 13C) and α carbonyl-carbons (2.1 ppm 1H and 34 ppm 13C) of esters are shown.  Methine 

carbons attached to α carbonyl-carbons of branched esters are also detected at 2.3 ppm 1H and 42 

ppm 13C.  Primary and secondary alcohols resonate at 3.3 ppm 1H and 61 ppm 13C, and 3.5 ppm 

1H and 72 ppm 13C, respectively. 

 

Total correlation spectroscopy (TOCSY), which detects only protons within the same spin 

system, also confirms that esters and alcohols are connected to long chain polymethylene units, 

as expected for cutin (Figure 22).  Cross peaks appear for esters (4.0 ppm and 2.1 ppm 1H) as 

well as alcohols (3.3 ppm 1H) in the same spin system with polymethylenes (1.2 and 1.5 ppm and 

1.2 and 1.3 ppm 1H, respectively).Thus successful isolation of cutin from wheatgrass at the 

Rocky Flats Facility is confirmed by the above single and multi-dimensional NMR data. 
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Figure 21: Wheatgrass Cutin heteronuclear single quantum coherence spectroscopy (HSQC).  

 

 

 

Figure 22: Wheatgrass cutin total correlation spectroscopy (TOCSY).  
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3.2  Wheatgrass cutin comparison with RFETS colloid structure  

Figure 23 shows the HSQC spectrum for wheatgrass cutin overlaid with the spectrum from the 

IEF colloid.  The spectra were both calibrated to DMSO and the scaling was adjusted relative to 

baseline to allow for detailed comparison.  It is apparent from these spectra that both samples 

contain polymethylene CH2 units attached to primary and secondary alcohols and fatty acids (29-

30 ppm 13C, 1.2-1.5 ppm 1H).  However the signal for O-alkyl ester resonances in the IEF colloid 

(blue, 66 ppm 13C and 4 ppm 1H) is much less intense and shifted slightly upfield from the 

analogously assigned peak in the spectrum for the isolated cutin (red, 63 ppm 13C and 3.9 ppm 

1H).  This could indicate some modifications to the structure in soils.  This region is also shared 

by resonances from alcohols and ethers, generally at more upfield proton resonances (~3.3-3.6 

ppm).  A corresponding peak in the region where the ester α carbonyl carbon resonates is not as 

apparent in the spectra of the colloid, as in the grass cutin (34 ppm 13C, 2.1 ppm 1H).   

If a nucleophilic substitution reaction occurred at the ester, the amide carbon would resonate in 

the region depicted by the red circle, but this is also not conspicuously observed.  Further data 

from the TOCSY spectra of the colloid did not show similarities in the range of protons within 

the same spins system (mid-chain methylenes with esters, etc.) but COSY data does show 

similarities with the structure of the cutin isolate, particularly carbohydrates and groups α and ß 

to acids, esters and alcohols.  Overall there is some overlap between resonances for isolated 

wheatgrass cutin and the colloid, and both appear to contain polymethylene units with terminal 

and mid-chain alcohols as well as ether, ester and potentially branched ester functionality.  

However, if the colloidal material originated from wheatgrass cutin at the 
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Figure 23:  Overlay of heteronuclear single quantum coherence (HSQC) spectra for wheatgrass 

cutin (red) and RFETS soil IEF colloid (blue).  Peak A is assigned to o-alkyl methylene units of 

the ester and peak B is assigned to methylenes attached to the carbonyl carbon of the ester.  The 

red circle represents the location where an amide carbon would resonate upon nucleophilic 

substitution of the ester. 

 

 

site, it is clear that some modifications, not necessarily those predicted by the proposed 

amidation reactions, have taken place to account for minor incongruities between the two 

spectra.   

3.3  Cutin + siderophore incubation results 

We aimed to react cutin with the hydroxamate siderophore, DFO, attempting first to do this with 

the well-studied and more abundant cutin biopolymer isolated from tomato.  The HSQC NMR 
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spectrum of tomato cutin after incubation with DFO did not show any changes from that of the 

cutin biopolymer prior to incubation as shown in Figure 24. As mentioned above, there is no 

 

 

  

Figure 24: HSQC spectra overlay of unreacted tomato cutin (blue) and tomato cutin post 

incubation with DFO (red). The red circle represents the location where an amide carbon would 

resonate upon nucleophilic substitution of the ester. 

 

 

signal in the region where the amide carbon would resonate if the amidation reaction proceeded.  

Elemental analysis (Table 9) likewise, did not indicate any significant changes to suggest 

incorporation of the siderophore.  Therefore we cannot provide any further evidence for covalent 

bonding between hydroxamates and organic matter based on this test.  However,  
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Table 9:  Elemental Analysis for Cutin-DFO Incubation 

 Tomato Cutin Prior to Incubation Tomato Cutin Post Incubation 

with DFO 

 Replicate Masses (mg ) Replicate Masses (mg) 

 1.075 1.159 

 1.263 1.125 

 1.293 1.096 

 Elemental Analysis Elemental Analysis 

%C 67.9+/- 0.1 65.7 +/- 2.5 

%N 1.4 +/- 0.1 1.5 +/- 0.1 

%H 8.8 +/- 0.5 10.2 +/- 1.8 

 

 

other pathways could form the proposed compounds and explain such modifications. The 

method we attempted is just one, and may be hindered by other factors (i.e. physical occlusion of 

active sites in the polymer, pH, etc.).  Biological activity may also play an important role 

inmodification of the soil aggregate and colloids, which were previously found in the dissolved 

phase as small molecules.   

3.4  ESI-FTICRMS 

Our search for other pathways led us to employ ESI-FTICR-MS to observe molecular formulas 

that might indicate other organic components of significance to the high Pu-affinity of the 

colloid. Molecular formulas assigned for the base soluble organic matter in the original soil, 

crude colloid and IEF colloid have been plotted in van Krevelen space in Figure 25 along with 

formula type distributions.  Molecular formulas for the base soluble organic matter in the  soil 

plot in several regions of the van Krevelen diagram, including lignin-like, carboxyl containing 

aliphatic molecules, tannin-like, carbohydrate-like, aromatic and condensed aromatic.   
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Figure 25: van Krevelen diagrams and ESI-FTICRMS assigned formula type percent weighted 

distributions for RFETS base extracts of a) original soil (351 ± 7 pCi Pu /g), b) crude colloid 

(660 pCi ± 47 Pu /g) and c) IEF colloid (3222 ± 278 pCi Pu /g).  Pu activities were previously 

reported by Xu et al. 2008.  Molecular formula percentages and weighted intensities were 

measured in this study.  
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The base soluble organic matter in the crude colloid contains molecular formulas with lower O/C 

ratios and relatively less molecular formulas plotting in the carbohydrate and lipid-like regions as 

compared to the base soluble organic matter in the  soil.  These compounds and high H/C 

aliphatic compounds are also found to a much less extent in the spectrum of the IEF colloid base 

soluble organic matter.  It is uncertain if an aliphatic cutin or cutin-siderophore molecule could 

be detected using ESI-FTICRMS due to the hydrophobic nature of cutin.  A portion of the 

polymer would need to break off, dissolve into solution and form a stable ion in the ESI source.  

Cutin was originally detected in a water extract, but may or may not result in an ionizable 

compound. Some aliphatic nitrogen containing formulas (12% of the total, mostly as CHOPN 

and CHONS) are detected in the alkali extract of the RFETS IEF colloid, but it is difficult to 

distinguish if these could represent cutin or siderophores as opposed to fatty acids typically 

found in organic matter. These formulas are few compared to many lower H/C nitrogen 

containing compounds which upon further scrutiny, show greater potential for affiliation with 

metals as discussed below. While there are fewer total assigned peaks for the IEF colloid extract 

in comparison to the whole soil and crude colloid extracts, which could be due to its lower 

solubility, or to lower ionization efficiency, we attribute this partly to the more homogeneous 

nature of this sample, being purified by the isoelectric focusing treatment (Xu et al., 2015).  

Although selective ionization of different classes of compounds is a consideration when using 

electrospray, the technique here allows us to conduct a relative comparison of heteroatom 

compound abundances based on relative percentages of peak numbers and intensities among the 

samples analyzed.   

 



95 
 

 

2
6
 

The organic matter in the crude colloid and IEF colloid originate from the soil, but were 

extracted from the soil with water through filtration and ultrafiltration, and the IEF colloid is a 

subfraction of the crude colloid after isoelectric focusing electrophoresis separation. Base 

extraction was not used in the original isolation, but was applied to these three samples 

subsequently and in parallel for their analysis. As mentioned above, the base-extracts of each 

subsample may represent up to 80% of the parent material from each step.  47% of the formulas 

in the IEF base extract were also found in the soil and crude colloid base extracts.  Thus, we 

compare the results of the analysis to investigate trends in organic matter composition among the 

base extracts. 

 

Overall, the molecular formula types for the original soil base extract were found to be 

predominantly CHO and CHON, with a signal intensity ratio of approximately 4:1.  Together 

these formulas account for more than 92% of the signal intensity.  This majority decreases 

slightly in the crude colloid and IEF colloid base extracts as the percent intensity and number of 

formulas (Figure 25) for other nitrogen containing formulas (CHONS, CHOPN) as well as sulfur 

containing formulas increase.  The percent weighted intensity of all nitrogen containing formulas 

(CHON/NS/PN) measured in this study using ESI-FTICRMS for each organic matter extract is 

21%, 34% and 47% for the whole soil, crude colloid and IEF colloid, respectively (Figure 25).  

This is in agreement with elevated nitrogen/C atom ratio previously measured in the IEF colloid 

in comparison to the soil (N/C atom ratio of 0.050 in the soil increasing to 0.203 in the IEF 

colloid) (Xu et al., 2008).   

 



96 
 

 

2
6
 

The relative percentages and relative weighted intensities of condensed aromatic formulas 

increase with increasing nitrogen and Pu concentration of the sample (soil<crude colloid<IEF 

colloid).  Formulas with Aimod ≥ 0.67 account for 9.3% of the formulas in the soil base extract 

(13.1% of the weighted intensity), and 19.5% (20.6% intensity) and 22% (31.2% intensity) of the 

molecular formulas in the crude colloid and IEF colloid base extracts, respectively.  Of these, the 

CHO and CHON predominance still holds in all samples, with a slight increase in CHONS (<1% 

to 5% signal intensity, and <1% to 2% of the formulas) and CHOPN compounds (0 to 3% signal 

intensity and 2% of the formulas) at the expense of pure CHON composition in the IEF base 

extract. 

 

A significant number of aromatic and condensed aromatic molecular formulas also contain the 

same Kendrick mass defect for COO.  The Kendrick mass defect analysis adjusts the calculated 

exact mass based on the mass defect for a COO group and reveals molecular formulas for which 

their mass differs only by a COO.  Although this technique cannot provide direct structural 

information, it is expected that families of these compounds with the same mass defect contain 

similar structures with varying numbers of carboxyl groups.  Carboxyl groups were previously 

identified in the RFETS IEF colloid using 13C CPMAS solid state NMR, but were primarily 

attributed to aliphatic esters and hydroxamate groups (Xu et al., 2008). This is the first time their 

association with aromatic and condensed aromatic molecules in the RFETS IEF colloid has been 

identified.  Molecular formulas not included in a KMD series may still contain carboxyl groups, 

however these would be difficult to identify using ESI-FTICRMS data alone without the KMD 

series analysis.  Likewise, we caution that the abundance of formulas that have the same 
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Kendrick mass defect does not quantitatively provide the abundance of this functional group, but 

only provides a relative indication of such.   

 

Kendrick mass defect analysis reveals COO series of 2 or more (up to 4 in this case) that 

constitute 49% of all of the formulas (33% of the signal intensity) in the IEF colloid base extract.  

Although the base soluble organic matter in the soil and crude colloid samples contain more 

molecular formulas in a COO Kendrick mass defect series overall (up to 90% of the signal 

intensity and 86% of the molecular formulas) the fraction of these that are aromatic and 

condensed aromatic molecules increases with increasing Pu concentration of the soil, crude 

colloid and IEF colloid base extracts analyzed (Figure 26).  75% of the COO series formula’s 

signal intensity in the IEF colloid base extract (73% of the COO series formulas) are aromatic  

 

 

a)  b)  

Figure 26: Percent weighted intensities (blue), and percent number of formulas (orange) for 

carboxyl containing aromatic (a) and carboxyl containing condensed aromatic (b) formulas of the 

RFETS whole soil, crude colloid and IEF colloid.  Pu activities were previously reported by Xu 

et al. 2008.  Molecular formula percentages and weighted intensities were measured in this 

study. 
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(Aimod ≥ 0.5) and 44% of the COO series formula’s intensity are condensed aromatic (Aimod ≥ 

0.67) (43% of the COO series formulas) within this sample. 

 

Aromatic compounds that are part of a Kendrick mass defect COO series are also elevated in 

CHON compounds as compared to non-aromatic molecular formulas for all three samples. 19-

42% and 24-50% of the signal intensity for aromatic and condensed aromatic formulas 

respectively are from CHON formulas (these constitute 24-55 and 31-61% of the formulas, 

respectively), as opposed to 0-11% of the intensity from non-aromatic formulas (0-29% of the 

non-aromatic formulas).  All of the CHON formulas included in a KMD COO series in the IEF 

colloid are either aromatic or condensed aromatic (Figure 27).  These formulas are mostly 

condensed aromatic and make up almost half of all CHON formulas (48% of CHON formulas,  

 

 

 

Figure 27: Percent number and weighted intensity of non-aromatic, aromatic and condensed 

aromatic CHON formula types that are part of a COO KMD series in the IEF colloid. 

0

5

10

15

20

25

30

35

Non-aromatic Aromatic (>=0.5) Condensed

Aromatic (>=0.67)%
 N

o
. 
F

o
rm

u
la

s 
o
r 

W
ei

g
h

te
d

 

In
te

n
si

ty

% No. of CHON COO Formulas

% Wt CHON COO Formula Intensity



99 
 

 

2
6
 

25% of CHON weighted intensity).  They generally contain 1 nitrogen, 16-27 carbons, 3-10 

oxygen and 10-21 double bond equivalents, with the formula C23H17O6N1 exemplifying one of 

the most statistically representative formulas (Table 10, Figure 28). 

 

 

Table 10 

Statistical Composition of IEF Colloid CHON Formulas within a COO KMD Series and 

representative assigned formulas 

 

Formula Exact Mass m/z Peak 

Height 

DBE Aimod COO KMD 

Series 

C23H17O6N1 402.098310 402.098337 1399948 16 0.66 2 

C22H15O6N1 388.082663 388.082660 1262750 16 0.69 3 

C22H15O7N1 404.077657 404.077575 1470616 16 0.69 3 

 

 

 Range Mean Std. Dev. Median Mode 

#C 16-27 21.8 2.5 22 23 

#H 9-23 13.9 2.9 14 15 

#O 3-10 7.2 1.8 7 6 

#N 1-2 1.1 0.3 1 1 

O/C 0.1-0.5 0.3 0.1 0.3 0.4 

DBE 10-21 16.4 2.3 16 16 

Aimod 0.5-0.9 0.7 0.1 0.7 0.7 
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Figure 28: Hypothetical structure for a representative formula, C23H17O6N1 (DBE=16) detected 

in the IEF colloid. 

 

 

4.  DISCUSSION 

4.1 Potential ligands 

The significant percentage of CHON formulas found with COO Kendrick mass defect series led 

us to investigate if other carbonyl containing groups (i.e. amide, hydroxamate, etc.) may be 

present as well.  However, KMD analysis specific for the hydroxamate group (molecules that 

differ in exact mass by only a CONO group) did not reveal any series and amide KMD series 

amounted to a total of three which plot as condensed aromatic molecules.  Many of the known 

hydroxamate siderophores (desferrioxamine, ferrichrome, rhodotorulic acid, etc.) often contain a 

sufficient number of aliphatic components such that their H/C and O/C ratios plot outside of the 

aromatic region of the van Krevelen diagram.  The region where amides and aminosugars 

typically plot (1.5 ≤ H/C ≤ 2.0, 0.2 ≤ O/C ≤ 0.7) is notably absent of peaks compared to the 

remaining diagram (Sleighter and Hatcher, 2007).  Although many other siderophores exist, a 

comparison of the ESI-FTICRMS spectra with that of a DFO standard did not provide evidence 
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for hydroxamates.  Most of the carboxyl and nitrogen containing formulas were composed of one 

nitrogen, and a maximum of two, which suggests that if present, they could contain only one or 

two hydroxamate groups per molecule. Lack of identification may also be due either to the low 

solubility of these molecules in alkali, low concentration or competitive ionization.  A number of 

other microbial and plant based siderophores that employ carboxyl amine, hydroxyl, amine or 

catecholate groups to chelate iron were also considered in this study.  These contain a significant 

proportion of nitrogen and some contain an adequate number of ring structures to obtain 

Aimod>0.5 (i.e. enterobactin).  However, very few, if any are expected to have condensed 

aromatic CHON structures identified in this study.   

 

Hydroxamate groups were previously detected in this sample using a modified Csaky test, and 

while the additional information afforded in this study does not preclude the presence of 

hydroxamate groups and/or siderophores, including any potentially crosslinked with a cutin-

polymer, it does suggest that the high Pu affinity of the colloid could be attributed to other 

sources as well.  The relationship identified here between elevated Pu concentration and an 

increased proportion of condensed aromatic CHO and CHON compounds within COO 

homologous series, a functionality known to interact with metals, is evidence that this could be 

the case.  Even where molecules suggestive of hydroxamate siderophores have been identified as 

potential Pu carriers in samples with elevated nitrogen, they represent only a small fraction of the 

total N content which would allow other N-containing compounds to contribute to the strong 

correlation between organic N and Pu concentrations (Xu et al., 2015).  However, since Pu is at 

concentrations less than 10-14 M, and potential ligands are many orders of magnitude more 

abundant, it is very challenging to isolate the actual bound ligand(s). Unknown metal:ligand 
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stoichiometry, charge state and kinetics of ligand exchange vs. droplet formation in ESI-

FTICRMS also limit identification of true natural bound ligands in the gas phase that would be 

active in solution phase (McDonald et al., 2014). 

 

A pronounced ESI-FTICRMS signal intensity from condensed aromatic formulas was not 

expected for the IEF colloid, considering the solid state NMR spectra previously obtained 

showed relatively low (approximately 7.6%) signal attributed to aromatic carbons(Xu et al., 

2008).  Some of this discrepancy may be explained by the alkali extraction method.  Alkali is 

often used in order to solubilize weakly acidic groups, and could preferentially extract more 

aromatic compounds if those are the primary structures in which acidic functional groups are 

present, as appears to be the case here.  Long chain hydrophobic aliphatic polymers without acid 

functionality would are soluble, and more difficult to ionize in the ESI source.  Additionally, 

NMR signal quenching due to interaction of acidic aromatic molecules with iron may have also 

contributed to their reduced signal in the solid state NMR.  Paramagnetic species such as iron 

have been shown to selectively diminish signal amplitude of carbon resonances in close 

proximity to iron species (Pfeffer et al., 1984),(Keeler and Maciel, 2003).   Medium range effects 

(within a few spin systems) are usually due to shortened T1ρ  relaxation which affects only 

CPMAS 13C NMR spectra, however short range effects (within a few bonds) have been 

implicated in loss of observability for DPMAS spectra as well (Smernik and Oades, 2000).  Both 

effects can occur within the same sample and have been noted for samples with as low as 0.02% 

Fe (0.00008 Fe/C mole ratio for 50% C) (Pfeffer et al., 1984).  High levels of iron (2.9%) in the 

original whole soil from Rocky Flats initially precluded the acquisition of NMR spectra for this 

sample and at an order of magnitude lower concentrations in the IEF (0.1% Fe, 0.0005 Fe/C 
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mole ratio) iron may still selectively affect the signal of those carbons in direct contact.  The 

short delay time used in the DPMAS spectra may have also contributed to reduced detection of 

aromatic carbons with longer relaxation times.   

4.2  Implications for plutonium mobilization 

Increasing percentages of N-containing and condensed aromatic formulas with increasing 

purification of the organic matter (soil<crude colloid<IEF colloid) found in this study 

corresponds with increasing Pu activity (351±7 pCi Pu/g soil,  660 ±47 pCi Pu/g crude colloid, 

and 3222±278  pCi Pu/g IEF colloid) of the organic matter as measured previously and reported 

by Xu et al (2008).  Percentages of carboxyl KMD aromatic and condensed aromatic formulas 

were also found to increase with purification of the organic matter. Since carboxylic acids are 

known for their interaction with hard metal ions, these are one of the prime candidates for 

plutonium binding in this study.  Carboxyl group acidity, and thus cation exchange capacity, 

increases upon attachment to condensed aromatic molecules, which also impart high surface 

area.  Oxidized aromatic carbon in a variety of  soils, humic substances and carbon sources has 

also been demonstrated to enhance sorption of metals, complexation of Fe and Pu and increase 

cation exchange capacity, particularly where the density of surficial carboxylate and oxygenated 

functional groups are high (Liang et al., 2006),(Wang et al., 2011) (Fujii et al., 2014) (Parsons-

Moss et al., 2014).  Polycarboxylate and polyaminocarboxylic acids can form highly stable 

complexes with plutonium on account of their multiple anionic oxygen donor atoms that act as 

chelates.(Clark et al., 2006a) Though Pu stability constants (log KML) with polycarboxylates such 

as citric acid are approximately 15 orders of magnitude lower than those for the less abundant 

hydroxamates (Boukhalfa et al., 2007; Hummel et al., 2005) these and aromatic 

hydroxycarboxylates such as salicylic acid are considered effective chelates (Kudo, 2001). Pu4+ 
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stability constants with N-containing nitrilotriacetate (NTA), ethylenediaminetetraacetate 

(EDTA), diethylenetriamine pentaacetate (DTPA) and the bidentate EDTA complex are 12.9, 

26.4, 29.5 and 35.39, respectively (Clark et al., 2006a). The large coordination sphere and high 

charge of Pu4+ also allow for environmentally relevant mixed-ligand complexes such as Pu-

EDTA-citrate and Pu-EDTA-carbonate, with respective stabilities of 33.95 and 35.51, 

comparable to Pu-hydroxamate 1:1 complexes, which are as high as 35.48 (Boukhalfa et al., 

2004; Boukhalfa et al., 2007).  Sorption coefficients for Pu on other N-containing compounds 

such as functionalized carbon nanotubes have also been found to be strong (>103) (Gupta et al., 

2016; Marsh et al., 1997). Thus it is likely that carboxylate and N-functionalized polycarboxylate 

aromatic and condensed aromatic formulas found in this study may form strong interactions with 

plutonium. 

The source of black-carbon like structures in soils is commonly attributed to thermally-altered 

(fire induced) oxidation of biomacromolecules (Hockaday et al., 2006, 2007).  Lignin and cutin 

biopolymers from grassland vegetation are expected to be the major source of organic matter to 

these soils.  Fires are common in grasslands and several have been documented throughout the 

RFETS history  (Clark et al., 2006b).  Oxidation of lignin by reactive oxygen species has also 

been suggested as a source of black carbon (Chen et al., 2014; Waggoner et al., 2015), which 

appears to be ubiquitous in humic acids from a variety of soils (Ikeya et al., 2015; Ohno et al., 

2010; DiDonato et al., 2016).  The condensed aromatic molecules we observe in this study are 

possibly sourced from lignin and transformed  by thermogenic or radical oxidation reactions.  

These processes have been shown to produce condensed molecules with sufficient oxygenated 

functional groups such as hydroxyl and carboxyl to exhibit polarity and solubility and several 

structures have been proposed (Hockaday et al., 2007; Ikeya et al., 2015; Waggoner et al., 2015).  
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Fewer studies have identified structures for N-containing condensed aromatic compounds in 

soils (Wagner et al., 2015; Knicker, 2010).  Pyrrole-type forms of condensed aromatics have 

been proposed in fire-affected soils (Wagner et al., 2015) and these structures, such as 

porphyrins, also form quite stable complexes with iron. The number of nitrogens observed per 

ion here does not support the presence of porphyrins as complete units in this sample, and the 

acidity of pyrrole structures alone, comparable only to water or ethanol, makes them weak 

ligands for metals.  However, their acidity can increase when they exist as part of larger 

condensed structures with electron withdrawing groups such as COO groups identified here, 

enhancing the ability of these molecules to sequester metals.  The presence of nitrogen groups 

overall allows for strong binding of biologically significant metals such as iron, and by way of 

similarity, Pu as well (Santschi et al., 1999).   

 

Nucleophilic nitrogen species are known to be present in soils and have been shown to be 

incorporated into organic matter (Hsu and Hatcher, 2005; Turner, 2007).  It is possible that the 

molecules detected in this study (see Figure 28 for a hypothetical structure) could be formed 

from oxidation products of lignin that undergo Diels-Alder type reactions with cis, cis-muconic 

acids to form alicyclic and condensed structures, as described by Waggoner et al. (2015).  A 

Michael donor may further be incorporated via nucleophilic nitrogen species or subsequent 

intramolecular condensation and cyclization reactions of the incorporated nitrogen species could 

also occur.  Alternatively, primary amines or ammonia could be incorporated by way of Paal-

Knorr type reactions with 1,4 dicarbonyls under weakly acidic conditions known to form pyrrolic 

structures,depending on the organic matter structural precursors.  Further studies to provide 

structural evidence and reactivity are necessary to demonstrate this. 
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Previous analysis of the IEF colloid using elemental analysis, spectrophotometric hydroxamate 

analysis and NMR, among other techniques, identified elevated nitrogen and hydroxamate 

content in the RFETS IEF colloid where Pu activity was found to be highest.  An aliphatic cutin-

siderorophore molecule was proposed to be the primary Pu chelating entity, however other 

molecules of unknown structure were also suggested to supplement the extreme chelating ability 

of siderophores and account for the stronger correlation between nitrogen and Pu concentration 

than could be explained solely by hydroxamates.  The current study tested an abiotic reaction 

between cutin and the siderophore DFO, but could not provide further evidence to support a 

process to form this type of hydroxamate.  However, our findings have revealed an additional 

novel sub fraction characteristic of aromatic and condensed aromatic molecules containing 

nitrogen moieties and carboxyl functionality using ESI-FTICRMS that had not been previously 

identified for this colloid.  Such structures might be important in binding Pu and Fe. (Boukhalfa 

et al., 2007; Hummel et al., 2005). This potential Pu carrier was isolated using the same 

procedures as the Pu colloidal carrier identified from the SRS and is similar in size (1kDa-

0.45um vs 3kDa-0.45um), isoelectric point (pH of 3.5-4.3 vs 3), and high nitrogen content.  

Although both colloids were found to have significant aliphatic components, the higher pH at 

which the Rocky Flats colloid was re-dissolved for ESI-FTICRMS analysis here may have 

selectively improved the solubility of more aromatic components with acid functionality.  In 

addition, the different organic matter inputs, source vegetation and biogeochemical environments 

from which these colloids came may account for some of the different molecular structures 

observed.  The intense solar radiation and large daily and seasonal temperature fluctuation of the 

grassland at RFETS (which was not simulated, however, in our experiments) could stimulate 
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natural oxidation processes that form black carbon-like structures with nitrogen incorporated, in 

comparison to the relatively more shaded woodland swamp of the SRS.  Overall the presence of 

carboxyl and nitrogen species in both Pu sequestering organic matter colloids from disparate 

regions demonstrates the potential importance of these groups for binding metals and warrants 

further investigation. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Multi-dimensional NMR and ESI-FTICRMS have provided new insight into the structures and 

composition of the alkali extractable portion of soil organic matter. Evidence has surmounted 

that humic acids can be more distinctly defined, not merely based on procedural methods of 

extraction, but in terms of the predominant constituents from which they are composed.  It is 

apparent that samples from an array of soil types and ecosystems contain three major molecular 

types, the relative proportion of which may indicate oxidative processes controlling their 

formation.  Lignin-like molecules may serve as the substrate for oxidative reactions to form both 

condensed aromatic (black carbon-like) and alicyclic (CRAM-like) molecules.  Carboxylic acid 

functional groups, evident from Kendrick mass defect analysis as well as multi-dimensional 

NMR studies, also denote oxidative transformations in the creation of alicyclic and condensed 

aromatic molecules. 

 

Detailed structural configurations for alicyclic carboxylic acids have been observed for a highly 

aliphatic humic acid using multi-dimensional NMR studies, particularly the HSQC and HMBC 

experiments that can illustrate carbon-proton connectivity from one bond distance up to three, 

respectively.  Protons of methyl groups, olefins and alcohols or other oxygenated functional 

groups have been detected within three bonds of carboxylic acid carbons. Further, C-H 

resonances match with alicyclic methylenes, while methylene’s of long chains do not represent 

significant components, presumable due to the initial removal of lipids from this sample.   This 

structural information together with molecular formula information obtained from ESI-
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FTICRMS has allowed me to generate specific molecular structures representative of the 

alicyclic carboxylic acid- containing molecules detected in humic acid.   

Condensed aromatic structures containing carboxylic acids and nitrogen, similarly were 

identified in alkali extracts of soil organic matter associated with  plutonium and iron and thus 

proposed as potential ligands.  Their origin from lignin is also possible in light of recent studies 

(Chen et al., 2014; Waggoner et al., 2015).   

 

Hypothetical pathways for the formation of carboxylic acids in soils from lignin, consistent with 

previous studies of the photo and chemical oxidation of dissolved lignin molecules (Chen et al., 

2014; Waggoner et al., 2015), have also been proposed in this dissertation.  Lignin is present at 

an estimated 175 Gtons of carbon stored above ground (Hedges et al., 1997) and produced at 

approximately 12 Gtons per year (20% of terrestrial photosynthesis) (Field et al., 1998; Ruiz‐

Dueñas and Martínez, 2009).  It is the principal carbon source which can begin to account for the 

vast amount of uncharacterized carbon (~915 Gtons) estimated to be stored in soils (Bianchi, 

2011).  Although a lack of biomarkers for lignin in sediments and soil carbon pools indicate it 

may not be as intractable to degradation as originally thought (Thevenot et al., 2010), evidence 

and a pathway for its conversion to the molecules identified and further characterized in this 

thesis suggest it may still contribute a considerable amount of carbon to soils in a newly 

identified form. Overall, a major finding of this thesis suggests that soil organic matter likely has 

a major source from altered lignin as a result of oxidation and the molecules produced have an 

affinity for Pu and Fe metals, as displayed by carboxylic acids.  
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APPENDIX A 

ABBREVIATIONS AND ACRONYMS 

Aimod, modified aromaticity index; 

BC, blackcarbon;  

CCAM, carboxyl containing aliphatic molecules;  

CRAM, carboxyl-rich alicyclic molecules; 

CPMAS, cross-polarization magic angle spinning;  

COSY, correlation spectroscopy;  

DBE, double bond equivalents;  

DFO, desferrioxamine 

DPMAS, direct polarization magic angle spinning;  

DOM, dissolved organic matter;  

ESI, electrospray ionization; 

ESI-FTICR-MS, electrospray ionization coupled to Fourier transform ion cyclotron resonance 

mass spectrometry; 

HA, humic acid;  

HMBC, heteronuclear multiple bond coherence;  

HSQC, heteronuclear single quantum coherence:  

IEF, iso-electric focusing;  

KMD, Kendrick mass defect;  

LODOM, Lake Ontario dissolved organic matter; 

NOM, natural organic matter;  

NMR, nuclear magnetic resonance spectroscopy;  

N/C, nitrogen to carbon ratio; 

Pu, Plutonium; 

RFETS, Rocky Flats Environmental Technology Site; 

SOM, soil organic matter; 

TOCSY, total correlation spectroscopy;  
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UDOM, ultrafiltered dissolved organic matter 
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