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SHORT REPORT

Paracrine-rescued lobulogenesis in chimeric outgrowths
comprising progesterone-receptor-null mammary epithelium and
redirected wild-type testicular cells

Robert D. Bruno1,2,*, Corinne A. Boulanger1,*, Sonia M. Rosenfield1, Lisa H. Anderson1, John P. Lydon3 and
Gilbert H. Smith1,*,{

ABSTRACT

We have previously shown that non-mammary and tumorigenic

cells can respond to the signals of the mammary niche and alter

their cell fate to that of mammary epithelial progenitor cells. Here we

tested the hypothesis that paracrine signals from mammary

epithelial cells expressing progesterone receptor (PR) are

dispensable for redirection of testicular cells, and that re-directed

wild-type testicular-derived mammary cells can rescue

lobulogenesis of PR-null mammary epithelium by paracrine

signaling during pregnancy. We injected PR-null epithelial cells

mixed with testicular cells from wild-type adult male mice into

cleared fat-pads of recipient mice. The testicular cells were

redirected in vivo to mammary epithelial cell fate during

regeneration of the mammary epithelium, and persisted in

second-generation outgrowths. In the process, the redirected

testicular cells rescued the developmentally deficient PR-null

cells, signaling them through the paracrine factor RANKL to

produce alveolar secretory structures during pregnancy. This is

the first demonstration that paracrine signaling required for alveolar

development is not required for cellular reprogramming in the

mammary gland, and that reprogrammed testicular cells can

provide paracrine signals to the surrounding mammary epithelium.

KEY WORDS: Progesterone receptor, RANKL, Mammary, Cellular

reprogramming

INTRODUCTION
Previous studies have demonstrated the remarkable ability of the

mouse mammary microenvironment to control cell fate

determination and stem/progenitor cell function and identity.

Exogenous cell types can compete to be incorporated into

mammary niches during gland regeneration in vivo, resulting in

the adoption of a mammary cell progenitor cell fate by the

exogenous cell types (Boulanger et al., 2007; Booth et al., 2008;

Bussard et al., 2010; Boulanger et al., 2012; Bruno and Smith,

2012; Boulanger et al., 2013). By co-inoculating non-mammary

or tumorigenic cell types with normal mammary epithelial cells

(MECs), we have demonstrated that testicular cells (Boulanger et

al., 2007), neuronal stem cells (Booth et al., 2008), Lin– bone

marrow cells (Boulanger et al., 2012), embryonic stem cells

(Boulanger et al., 2013), as well as human (Bussard et al., 2010)

and mouse (Booth et al., 2011) cancer cells can all be

reprogrammed in the developing mammary gland

microenvironment. In addition, a wild-type mammary

microenvironment can restore the function of mammary

epithelial lobule progenitors from Wap-Int3 transgenic glands,

which do not develop secretory alveoli during pregnancy (Bruno

et al., 2012). In all cases, reprogrammed and/or rescued cells were

capable of contributing to lobules during pregnancy and were

present in secondary outgrowths from chimeric mammary

fragments. Together, these studies demonstrate that mammary

epithelial cells in the context of the cleared mammary fat-pad are

capable of producing the signals necessary to rescue and/or

reprogram non-mammary and cancer cells that are otherwise

unable to carryout normal mammary development on their own.

Ductal side-branching and alveolar development during

pregnancy require activation of the progesterone receptor (PR)

by the hormone progesterone, although PR is not required for the

production of some milk proteins (Tsai and O’Malley, 1994;

Lydon et al., 1995; Lydon et al., 1999). Brisken and co-workers

demonstrated that when PR-knockout (PRKO) MECs are

transplanted into the cleared mammary fat-pads of wild-type

mice, the cells undergo normal ductal elongation and

development, but fail to undergo complete alveolar

development during pregnancy (Brisken et al., 1998). However,

alveologenesis was rescued in PRKO cells when they were

transplanted along with wild-type mammary epithelium into the

cleared fat-pads of wild-type hosts. Both PRKO and wild-type

cells contributed to lobular development during pregnancy,

demonstrating that paracrine signals from the wild-type

epithelium were sufficient to rescue alveologenesis in PR-null

epithelium (Brisken et al., 1998).

Induction of alveologenesis by progesterone activation of PR is

mediated by the ligand RANKL (receptor activator nuclear factor

k ligand) (Fata et al., 2000; Beleut et al., 2010). RANKL is a

paracrine factor that induces the expression of the transcription

factor Elf5 in nearby epithelium (Lee et al., 2013). This results in

a mutually exclusive expression pattern of Elf5 and PR, with the

former cells expanding and differentiating into mature secretory

epithelium.

Ismail and colleagues described the generation of the PR-LacZ

knock-in mouse, in which the LacZ reporter gene is targeted in-

frame into exon1 of the PR gene (Ismail et al., 2002). Mice

homozygous for the transgene (referred to here as PRKO-LacZ)
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do not express PR protein, but do express a nuclear-localized b-
galactosidase enzyme (b-Gal) in cells that have transactivated the
PR promoter. Here, we mixed PRKO-LacZ MECs with wild-type

testicular cells to determine if PR-null MECs were capable of
reprogramming non-mammary cells in the absence of PR
signaling. Furthermore, we hypothesized that reprogrammed
wild-type testicular cells would differentiate to produce PR-

positive epithelium and rescue lobulogenesis in the chimeric
gland. Our results demonstrate that PR expression is not required
to redirect wild-type testicular cells to mammary cell fates

including secretory development, and further that the
reprogrammed testis-derived cells are able to support lobular
development in the PR-null epithelium.

RESULTS AND DISCUSSION
Progesterone receptor is not expressed in the seminiferous tubules
To determine whether PR is expressed in any cells within the
seminiferous tubules, we examined both 5-bromo-4-chloro-3-
indolyl-b-D-galactopyranoside (X-gal)-stained PRKO-LacZ as
well as anti-PR-stained wild-type tissues (Fig. 1). PRKO-LacZ

mice express a nuclear localized b-Gal from the endogenous
PR promoter locus, so promoter activation results in positive
(blue) X-gal-stained nuclei (Ismail et al., 2002). As shown in

Fig. 1A, no PR activation was detected in the seminiferous
tubules of PRKO-LacZ mice. Conversely, we confirmed
previous findings (Ismail et al., 2002) that PRKO-LacZ

mammary glands contain several evenly distributed b-Gal-
positive luminal epithelial cells, demonstrating the
transactivation of the PR promoter in the PR-null cell types

(Fig. 1B). In addition, no reactivity with an anti-PR antibody
was seen in cross-sections of wild-type seminiferous tubules or
mammary outgrowths derived from PRKO-LacZ MECs (Fig.
1D,E). As expected, wild-type glands were negative for X-gal

stain and contained several PR-positive epithelial cells
identified by an anti-PR antibody (Fig. 1C,F). These results
confirmed there was no PR expression in seminiferous tubule

cells prior to reprogramming, and therefore any PR expression
in subsequent experiments would be the result of de novo

activation of the PR promoter.

Redirected testicular cells rescue lobulogenesis of PRKO MECs
We next asked whether testicular cells could be reprogrammed by

MECs that lacked PR signaling. To test this, wild-type testicular
cells were mixed with PRKO-LacZ MECs in a 1:1 ratio
(56104:56104) and inoculated into cleared mammary fat-pads
of athymic nude mice (Table 1; Fig. 2). After recovery from

surgery, the mice were mated and glands were recovered at
parturition. As expected, wild-type MECs underwent complete
alveolar development (Fig. 2A,B), testicular cells failed to grow

in the cleared fat-pad (Fig. 2C,D), and PRKO-LacZ MECs grew
but failed to undergo complete lobular development (Fig. 2E,F).
However, when 56104 testicular cells were mixed with 56104

Fig. 1. PR expression in PRKO-LacZ and wild-type mammary and seminiferous tubules. (A–C) X-gal-stained (blue) cross sections of seminiferous
tubules of PRKO-LacZ mouse (A), PRKO-LacZ mammary tissue (B) and wild-type mammary tissue (C). Sections are counterstained with Nuclear Fast Red.
Scale bars: 100 mM. (D–F) Anti-PR-stained (green) cross-sections of wild-type seminiferous tubules (D), PRKO-LacZ mammary tissue (E) and wild-type
mammary tissue (F). Sections are counterstained with DAPI. Scale bars: 200 mM.

Table 1. Summary of the transplantation results of inoculations of dispersed wild-type MECs, PRKO-LacZ MECs, wild-type
testicular cells and PRKO-LacZ plus wild-type testicular cells.

Inoculation Outgrowths/inoculationsa Lobular development/observedb

56104 wild-type MECs 4/4 2/2
56104 PRKO-LacZ 7/10 0/6
56104 wild-type testicular cells 0/4 N/A
56104 PRKO-LacZ + 56104 wild-type testicular cells 12/16 4/8

aResults are given as the number of mammary outgrowths observed in whole mounts over the number of total glands inoculated.
bNumbers given are the number of glands observed to have extensive lobular development in whole mounts and sections of glands taken at parturition over the
total number of glands observed at parturition.
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PRKO-LacZ MECs, 50% of the resulting outgrowths
demonstrated increased alveolar formation (Fig. 2G,H; Table
1). The rescue of alveologenesis in the chimeric glands was
incomplete compared with that in wild-type controls, but was

markedly increased above that seen with PRKO-LacZ cells alone,
which failed to develop any mature lobules. The presence of male

cells in the chimeric gland was confirmed by PCR detection of
the Y chromosome (Fig. 2I).

Cells derived from the testes produce PR-positive mammary
epithelial cells
Next, we determined whether testicular-derived cells had
differentiated into PR-positive epithelium. As expected,

outgrowths derived from the inoculation of 56104 PRKO-LacZ
cells alone contained no PR-positive epithelium in virgin
(Fig. 3A,B) or full-term pregnant glands (Fig. 3C). However,

chimeric outgrowths derived from a mixture of 56104 PRKO-
LacZ MECs and 56104 wild-type testicular cells contained PR-
positive epithelium in both virgin (Fig. 3D,E) and lactating tissue

(Fig. 3F). As the testicular-derived cells are the only cells with
the capacity to express PR, these PR-positive cells must be
derived from the redirected testicular cells.

Interestingly, the testicular-derived PR-positive cells in virgin

chimeric glands often appeared in a clumped pattern (Fig. 3D,E,
white arrows) not typically seen in outgrowths from wild-type
tissues (Fig. 3G,H), which display more evenly distributed PR-

positive epithelium. We interpret this result to mean that
testicular cells compete with cells within the PRKO-LacZ MEC
population for the occupation of niches during gland

regeneration, and that PR-positive cells only occur in regions
where a testicular cell occupied a mammary progenitor niche.
The abundant expression of nearly all the cells within that niche

might be a compensation for the lack of PR signaling in the
adjacent microenvironments, which are generated by PRKO-
LacZ-derived cell(s).

To determine if reprogrammed testicular-derived cells would

self-renew and contribute progeny to secondary outgrowths, we
transplanted tissue fragments from chimeric outgrowths into
cleared mammary fat-pads of 3-week-old nu/nu mice. PR-

positive MECs were detected in secondary outgrowths in both
nulliparous and pregnant hosts (Fig. 3J,K). We determined that
40–50% of luminal MECs in both primary and secondary

outgrowths were PR-positive, suggesting that reprogrammed
testicular-derived cells were capable of self-renewing and
maintaining the same population numbers in secondary
chimeric outgrowths.

Paracrine signaling through RANKL in PR-positive testicular-derived
epithelium activates Elf5 expression in adjacent epithelium
To determine whether testicular-derived PR-positive cells
induced secretory differentiation in adjacent cell types, we
stained sections from secondary outgrowths taken from hosts

that had been pregnant for 7 days for PR, RANKL and Elf5
expression (Fig. 3J–L). Consistent with previous reports in
normal mammary tissues (Fata et al., 2000; Beleut et al., 2010),

we found that essentially all PR-positive MECs expressed
RANKL during pregnancy (Fig. 3J). Furthermore, Elf5 was
expressed in adjacent epithelium that was mutually exclusive to
PR-positive epithelium (Fig. 3K) at day 7 of pregnancy. Elf5 was

barely detected in nulliparous mammary glands (Fig. 3L).
Therefore, the PR-positive cells, which could only be derived
from the wild-type testicular cells, expressed PR, resulting in the

expression of the downstream effector RANKL. On the basis of
previous reported findings in normal mouse mammary tissue (Lee
et al., 2013) and the observed staining pattern, we infer that

RANKL mediated the rescue of alveolar development through

Fig. 2. Wild-type testicular cells rescue alveologenesis when mixed
with PRKO MECs. (A,B) Whole-mount (A) and cross-section (B) of a
transplant of 56104 wild-type MECs taken at parturition showing full normal
lobule development. (C,D) Whole mount (C) and cross section (D) of a
transplant of 56104 testicular cells taken at parturition showing that testicular
cells do not grow when transplanted into a cleared fat-pad on their own.
(E,F) Whole mount (E) and cross section (F) of a transplant of 56104

PRKO-LacZ MECs taken at parturition demonstrating a lack of alveolar
development in the absence of PR. (G,H) Whole mount (G) and cross section
(H) of a transplant of 56104 PRKO-LacZ MECs and 56104 wild-type
testicular cells taken at parturition demonstrating partial rescue of
alveologenesis in the chimeric gland. Whole mounts are stained with
Carmine Alum; cross sections with Nuclear Fast Red. Scale bars: 2 mm
(A,C,E,G); 400 mM (B,D,F,H). (I) PCR for the presence of Y chromosome
(Sry) in DNA isolated from testicular cells (lane 1), wild-type MEC outgrowth
(lane 2), PRKO MEC outgrowth (lane3) and chimeric outgrowth of 56104

testicular cells and 56104 PRKO MECs (lane 4), demonstrating the presence
of male cells in the rescued chimeric outgrowth.

SHORT REPORT Journal of Cell Science (2014) 127, 27–32 doi:10.1242/jcs.140749
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induction of Elf5 in adjacent epithelium. This provides direct

evidence that testicular-derived mammary epithelium can express
PR, and signal through the receptor in the normal paracrine
signaling network to induce secretory differentiation and alveolar

development.
The results outlined here shed light on how reprogramming

within the mammary gland occurs, and demonstrate for the first

time that reprogrammed cells can be used to rescue an inhibited
developmental function in mammary epithelium. We have
previously shown that a functional mouse mammary

microenvironment (niche) can rescue the function of Wap-Int3
alveolar progenitors (Bruno et al., 2012), as well as mammary
progenitor function of MMTV-Erb2 tumor cells (Booth et al.,
2011). However, here we show that redirected non-mammary

cells can express PR despite its absence in the reprogramming
mammary epithelial population. Paracrine signaling through

RANKL by the reprogrammed testicular cells results in the

development of secretory alveoli by the null epithelium. It is clear
from these results that PR signaling and lobulogenesis are not
required for testicular cell reprogramming.

Our results suggest that the occupation of mammary niches by
testicular cells during end bud formation and ductal elongation
(which does not require PR signaling) results in the cellular

reprogramming of the testicular cells. Once in the niche, these
cells are redirected to a mammary epithelial cell fate and can
generate functional PR-positive epithelial cells, which, in turn,

provide the signals necessary for lobulogenesis (e.g. RANKL)
when progesterone is released during pregnancy. We hypothesize
that the random occupation of niches by the testicular cells results
in the uneven distribution of PR-positive epithelium in primary

chimeric outgrowths (Fig. 3). This uneven distribution might
account for the lack of complete alveologenesis seen in some

Fig. 3. Reprogrammed testicular cells express PR in first- and second-generation chimeric outgrowths. Cross sections stained with anti-PR antibody
(green) of mammary outgrowths from inoculation of 56104 PRKO-LacZ cells (A–C), 56104 testicular cells and 50,000 PRKO-LacZ MECs (D–F), and 56104 wild-
type MECs (G–I). (A,B,D,E,G,H) non-pregnant glands; (C,F,I) glands taken at parturition. (B,E,H) Higher-magnification images of the same glands in A,D and G,
respectively. Note the clumped expression pattern (white arrows) seen in the chimeric outgrowths (D,E) compared with the even distribution of PR cells seen in
wild-type controls (G,H). (J) Second-generation outgrowths generated by transplantation of tissue fragments from chimeric sample shown in D and E excised at
day 7 of pregnancy and stained for PR (green) and RANKL (red) demonstrating PR-expressing testicular-derived cells also express RANKL (white arrows).
(K) The same second-generation outgrowth shown in J stained for PR (green) and Elf5 (red) demonstrating Elf5 expression in epithelial cells (yellow arrow)
surrounding the PR-positive epithelium but not in the PR-positive epithelium themselves (white arrow). (L) PR (green) and Elf5 (red) staining in a nulliparous
gland. All sections are counterstained with DAPI. Scale bars: 400 mM (A,D,G); 100 mM (B,C,E,F,H–J); 40 mM (K,L).
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chimeric glands (Fig. 2G,H). The presence of PR-positive cells
throughout the chimeric glands suggests that some testicular cells

are as efficient as wild-type epithelium at occupying reforming
mammary niches. Previous studies showed that reprogrammed
non-mammary cells contributed to lobulogenesis and milk protein
production during pregnancy (Boulanger et al., 2007; Booth et al.,

2008; Bussard et al., 2010). Milk protein production was not
analyzed here because previous studies have shown expression of
milk proteins in PRKO tissues during pregnancy (Lydon et al.,

1999). The present results demonstrate that cellular
reprogramming of testicular cells occurs during ductal
elongation in the mammary gland and is sufficient to endow

the reprogrammed cells with the capacity to support alveolar
development.

MATERIALS AND METHODS
Mice
Female Nu/Nu/NCR mice were used as hosts for the transplantation

studies. PRKO-lacZ mice have been described previously (Ismail et al.,

2002; Ismail et al., 2003). All mice were housed in Association for

Assessment and Accreditation of Laboratory Animal Care-accredited

facilities in accordance with the National Institutes of Health Guide for

the Care and Use of Laboratory Animals. The National Cancer Institute

Animal Care and Use Committee approved all experimental procedures.

Mammary epithelial and testicular cell dissociation
Mammary glands were dissociated with 0.1% collagenase overnight at

37 C̊. The resulting organoids were cultured on plastic culture flasks in

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10%

fetal bovine serum, insulin (1.0 mg/ml), and epidermal growth factor

(10 ng/ml). MECs were collected after 4–7 days; fibroblasts were

reduced before collection of the epithelial cells by differential

trypsinization. Testicular cells were isolated as described previously

(Boulanger et al., 2007).

Mammary fat-pad clearing and cellular inoculation
The surgical techniques used to clear the mammary epithelium from the

fat-pads of 3-week-old host mice and the subsequent transplantation of

cell suspensions have been described in detail previously (Boulanger et

al., 2007). In brief, the mice were anesthetized, and the clearing

procedure was performed immediately before the insertion of

transplanted tissue fragments or cell suspensions. Cell suspensions

were implanted in 10 ml volumes of non-supplemented DMEM with a

Hamilton syringe equipped with a 30 gauge needle.

X-gal staining of mammary and testicular tissues
Glands and testes were fixed in paraformaldehyde (4.0%) for 2 hours,

permeabilized in 0.02% Nonidet P-40, 0.01% sodium deoxycholate and

0.002 M MgCl2 in phosphate-buffered saline overnight at 4 C̊, and then

processed for X-gal as described previously (Wagner et al., 1997).

Mammary whole mounts and immunofluorescence
For immunohistochemical examinations, glands were fixed for 24 hours

in 4% paraformaldehyde, embedded in paraffin and sectioned at 6.0 mm.

Primary antibodies used were rabbit anti-PR (1:150; Dako, Carpinteria,

CA) goat anti-RANKL antibody (1 mg/ml; R&D Systems, Minneapolis,

MN), and goat anti-Elf5 (N-20) (1:75; Santa Cruz Biotechnology, Dallas,

TX). PR was imaged with an Alexa-Fluor-488-conjugated goat-anti

rabbit IgG Ab (cat. no. A11008, Invitrogen, Carlsbad, CA). RANKL was

imaged using the Vectastain ABC (rabbit anti-goat) kit (Vector

Laboratories, Burlingame, CA) followed by incubation with an Alexa

Fluor 568 tyramide substrate (Invitrogen). Elf5 was imaged using horse

biotinylated anti-goat antibody (Vector Laboratories, Burlingame, CA)

followed by incubation with Streptavidin–Alexa-Fluor-594 conjugate.

For co-staining, the rabbit anti-goat secondary antibody used to detect

RANKL was added prior to the addition of the goat-anti rabbit antibody

used to detect PR to avoid cross-reaction. Antigen retrieval was

performed by heating sections in boiling water bath for 20 minutes in

pH 6.0 citrate buffer with 0.05% Tween 20 or pH 9.0 Tris-EDTA buffer

with 0.05% Tween 20. All sections were counter-stained with DAPI. For

whole mounts, glands were post-fixed in Carnoy’s Fixative (60%

methanol, 30% chloroform, 10% glacial acetic acid) for 6 hours,

stained with carmine alum and dehydrated with 100% ethanol and

xylenes. Sections from whole mounts were generated as above and

counterstained with nuclear fast red.

DNA isolation and PCR detection of Y chromosomes
DNA was isolated from whole mounts using Qiagen DNeasy kit (cat. no.

69506; Valencia, CA). PCR analysis for detection of the Y-chromosome was

performed as described by Boulanger and colleagues (Boulanger et al., 2007).
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