Clostridioides difficile Spore Production in Response to Antibiotic and Immune Stress

Adenrele Oludiran
Old Dominion University

Erin B. Purcell
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/gradposters2022_sciences

Part of the Chemistry Commons

Recommended Citation
https://digitalcommons.odu.edu/gradposters2022_sciences/1

This Book is brought to you for free and open access by the 2022 Graduate Research Achievement Day at ODU Digital Commons. It has been accepted for inclusion in College of Sciences Posters by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Abstract

Clostridioides (Clostridium) difficile, an anaerobic, spore-forming Gram-positive pathogenic bacterium, is a major cause of hospital-acquired infections and can persist as surface-attached biofilms for protection from antibiotic and immune stress. *C. difficile* can form biofilms as a single species or with other anaerobic intestinal bacteria. The environmental signals that cause individual cells to secrete toxins, form biofilms, or develop into spores that can spread the infection to new patients are unknown. In these studies, we investigate bacterial responses to different stress. Antimicrobial host-defense peptides (HDPs) produced by animal immune systems are promising candidates to develop novel therapies for bacterial infection because they cause oxidative stress that damages multiple targets in bacterial cells, so it is difficult for bacteria to evolve resistance to these attacks. We investigate antibiotic treatments, metal ions and sugars, and antimicrobial peptide treatments to determine how *C. difficile* reacts to multiple environmental stresses like those from antibiotic treatment or the human immune system. In our investigation of *C. difficile* and HDPs in an anaerobic environment, we found that the interaction of piscidin and copper is different in different oxygen environments. Antibiotics and oxidative stresses from other sources cause the cells to form spores and/or biofilms to protect themselves, but piscidin kill vegetative *C. difficile* cells without triggering these protective responses. Piscidins are highly active against *C. difficile* and could be a good candidate for drug development.

Introduction

C. difficile are Gram-positive, anaerobic, spore, and biofilm-producing bacteria (1)

- Highly resilient to multiple classes of common antibiotics (2)
- Several outbreaks caused by *C. difficile* infection (CDI) have been reported worldwide over the last decade
- Infection spread through spores (3)
- Hospital death rate and cost are more than 25,000 death and $6 billion annually in the US alone (1)
- Antibiotic treatment is the major risk factor for *C. difficile* infection (CDI) (2)
- Recurring episodes affect 15–35% of patients and present a particular risk for the elderly (1,2)

HDPs killing roles in the innate immune system

- Heat shock protein

References

Contact Email(s): aoludira@odu.edu, epurcell@odu.edu