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Abstract Optimization problems are often highly constrained and evolutionary algorithms (EAs)

are effective methods to tackle this kind of problems. To further improve search efficiency and con-

vergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm

(ADCQGA) for solving constrained optimization problems. ADCQGA makes use of double-

individuals to represent solutions that are classified as feasible and infeasible solutions. Fitness

(or evaluation) functions are defined for both types of solutions. Based on the fitness function, three

types of step evolution (SE) are defined and utilized for judging evolutionary individuals. An

adaptive rotation is proposed and used to facilitate updating individuals in different solutions.

To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive

evolution process (AEP), adaptive mutation and replacement techniques. ADCQGA was first tested

on a widely used benchmark function to illustrate the relationship between initial parameter values

and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to

solve other twelve benchmark functions and five well-known constrained engineering design

problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization

problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to

solving the target allocation problem.
ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

1. Introduction

Most search and optimization problems involve a number of
constraints and the constrained optimization technique is a

major research area. Generally, the optimal solutions must sat-

isfy two types of constraints including inequality and equality
constraints and both can be linear or nonlinear. In this paper,
the constrained optimization problem is represented as

follows:

min fðxÞ

s:t:

gjðxÞ 6 0; j ¼ 1; 2; . . . ; J

hkðxÞ ¼ 0; k ¼ 1; 2; . . . ; K

xl
i 6 xi 6 xu

i ; i ¼ 1; 2; . . . ; n

8>><
>>:

ð1Þ

* Corresponding author. Tel.: +86 10 82338484.

E-mail address: lini@buaa.edu.cn (N. Li).

Peer review under responsibility of Editorial Committee of CJA.

Production and hosting by Elsevier

Chinese Journal of Aeronautics, (2015),28(1): 214–228

Chinese Society of Aeronautics and Astronautics
& Beihang University

Chinese Journal of Aeronautics

cja@buaa.edu.cn
www.sciencedirect.com

http://dx.doi.org/10.1016/j.cja.2014.12.010
1000-9361 ª 2015 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cja.2014.12.010&domain=pdf
mailto:lini@buaa.edu.cn
http://dx.doi.org/10.1016/j.cja.2014.12.010
http://www.sciencedirect.com/science/journal/10009361
http://dx.doi.org/10.1016/j.cja.2014.12.010


where x is the solution vector with size n, and fðxÞ the objective
function. There are J lesser-than-equal-to inequality con-
straints and K equality constraints: gjðxÞ and hkðxÞ are the
jth inequality and the kth equality constraints, respectively;

xl
i and xu

i are the lower and upper bounds of xi respectively.
Additionally, we use U to denote the solution space and the
feasible solution space is denoted by X .

Many approaches have been proposed to address complex

constrained optimization problems. Michalewicz and Scho-
enauer,1 Eiben,2 Coello Coello3 and Salcedo-Sanz4 discussed
various constraint handling methods utilized in evolutionary

algorithms (EAs) and categorized the majority of them into
five types––penalty functions, repair algorithms, special repre-
sentations and operators, separate objective and constraints, as

well as hybrid methods.
The most common method utilized by EAs is penalty func-

tions, originally proposed by Courant.5 Its key idea is to incor-
porate a penalized term into the objective function so that a

constrained optimization problem can be transformed into
an unconstrained one. Deb6 pointed that an improper penalty
value may cause the algorithm to converge to an infeasible

region or some local optimal solutions. Selecting a suitable
penalty factor is a difficult issue. Several adaptive penalty tech-
niques have been proposed, such as Coello Coello,7 Nanakorn

and Meesomklin,8 Barbosa and Lemonge,9 Farmani and
Wright,10 as well as Wu and Lin.11 Even though these adaptive
penalty methods perform well for some problems, they have

additional coefficients that need careful tuning. More recently,
an effective co-evolutionary differential evolution for con-
strained optimization was proposed by Huang et al.12 Puzzi
and Carpinteri13 presented a double-multiplicative penalty

strategy for constrained optimization without the need for
penalty factor tuning. However, it is computationally complex
and expensive to compute the penalty value.

Coello Coello and Mezura Montes14 stated that repairing
an infeasible individual is to make the infeasible individual fea-
sible. To date, repaired methods have also been widely used to

handle constraints. Orvosh and Davis15,16 reported a so-called
5% rule repair method. In Ref.15, original individuals are
replaced by their ‘‘repaired’’ counterparts. Chootinan and
Chen17 combined a gradient-based repair method with genetic

algorithms. Salcedo-Sanz4 reported several popular repair
techniques such as crossover operators in permutation encod-
ing and algorithms for fixing the number of 1 s in binary

encoded genetic algorithms. In some cases, when an infeasible
can be repaired easily, this method is useful. However, in some
practical problems, repair operators may introduce a strong

bias in the search.18

Special representations and operators is another method to
tackle constraint problems. The main idea is to preserve the

feasible solutions using some special representation schemes.
In this method, special operators need to be used due to the
change of representation. Bean19 introduced ‘‘random keys
encoding’’. Kowalczyk20 presented the use of constraint con-

sistency. Takahama and Sakai21 combined constrained
method with a differential evolution. Based on the feasible
solution number, an adaptive constraint handling technique

was put forward by Wang et al.22 by applying different con-
straint handling mechanisms to the solutions. Wang and Li23

utilized the level comparison approach to convert the con-

strained optimization problem into an unconstrained one.
Then the differential evolution algorithm was used to find

the optimal solution. Since these methods depend on special
design of representation schemes or operators, prior
knowledge of the problem is required. However, for some

problems, it is difficult or impossible to acquire the prior
knowledge.

Dealing with the objective and constraints separately is

another type of constraints handling method. A co-evolution-
ary model was introduced by Paredis,24 where populations
were divided into two groups. These two groups of popula-

tion evolve at the same time. Powell and Skolnick25 incorpo-
rated a heuristic rule for processing infeasible solutions. In
recent years, multi-objective optimization techniques were
also utilized. This technique redefined the single-objective

optimization problem as a multi-objective one. Venter and
Haftka26 proposed a specialized bi-objective particle swarm
optimization algorithm to solve the constrained, single objec-

tive optimization problem which is transformed into an
unconstrained, bi-objective one.

Combining EAs with other numerical optimization tech-

niques such as Lagrangian multipliers, fuzzy logic or simulated
annealing to tackle constraint problems is the main idea of
hybrid methods. Adeli and Cheng27 proposed the augmented

Lagrangian genetic algorithm for structural optimization.
Fung et al.28 reported the extension of hybrid genetic
algorithm for nonlinear programming problems. Chen and
Shahandashti29 introduced the hybrid of genetic algorithm

and simulated annealing for multiple project scheduling with
multiple resource constraints. Zhao et al.30 proposed an
effective hybrid genetic algorithm with flexible allowance tech-

nique. To make these algorithms work properly, several
parameters must be tuned.

Although many effective methods including the ones dis-

cussed above have been proposed for various constrained opti-
mization problems, the limitations can be concluded as
follows: (A) for penalty functions, it is difficult to tune the pen-

alty factors; (B) the purpose of repair method is to ensure the
feasibility of solutions, but it may cause a strong bias toward
the repaired local solution space; (C) for some problems, it is
difficult if it is impossible to acquire prior knowledge to design

the special representations or operators; (D) separation of con-
straints and objectives is a novel method and its effectiveness
needs to be further demonstrated; (E) for hybrid methods, sev-

eral additional parameters also need to be tuned properly and
extra computation is usually needed due to the combination
with other optimization techniques.

Quantum computing is a new inter-discipline that combines
information science with quantum mechanics. Since the first
quantum algorithm31 was proposed for factoring large prime
numbers and another quantum algorithm32 for searching ran-

dom databases, quantum algorithms have attracted wide
attention. The quantum genetic algorithm (QGA) is a proba-
bility optimization algorithm based on quantum computing.33

Quantum bits (Q-bits) replace general genes, and each individ-
ual is constructed with a string of Q-bits. There is no crossover
operator in QGA. The quantum gate (Q-gate) is used to

update individuals. The search capability of QGA is very effi-
cient as well.34,35 QGA has rapidly become an international
research focus36–42 because of its unique computing perfor-

mance. Specifically, Li and Li43 described the double probabil-
ity amplitude as the optimal solution chains and the double
chain quantum genetic algorithm (DCQGA) was proposed
for dealing with continuous optimization problems.
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The capability of DCQGA for solving continuous optimi-
zation problems has been demonstrated by Li and Li.43,44

And it was proposed for dealing with continuous optimization

problems. Constrained optimization problems are much differ-
ent from general continuous optimization problems. Con-
strained optimization problems have two types of

constraints, including inequality and equality constraints.
And the constraints could be linear or nonlinear. However,
DCQGA is not suitable for tackling this type of problem. It

lacks constraints handling techniques to obtain optimal solu-
tions. That is why no investigation of constrained optimization
problems using DCQGA has been reported. And this is also
the motivation of this paper. In this paper, we not only com-

bine DCQGA with our constraints handling technique to
tackle constrained optimization problems, but also use special
improved techniques to obtain better performance. We named

our new algorithm ADCQGA. In ADCQGA, solutions are
divided into feasible and infeasible solutions. Step evolution
(SE) is proposed to judge evolutionary individuals, based on

which an adaptive evolution process (AEP) is devised to
improve the search efficiency. Furthermore, in order to
improve the search capability and convergence rate of

DCQGA, adaptive mutation and replacement technique are
developed and utilized.

To assess the effectiveness and efficiency of the ADCQGA,
thirteen benchmark functions and five well-known engineering

design problems are solved by ADCQGA and its performance
is compared against some typical algorithms. ADCQGA is fur-
ther applied in a typical constrained optimization practice

which is Multi-aircraft cooperative target allocation problem.
With the increase of detection range of airborne sensor equip-
ment, beyond visual range air combat plays an important role

in modern air combat. Multi-aircraft cooperative target alloca-
tion, which aims at allocating targets more reasonably under
different battlefield situation, is a primary problem in air com-

bat decision-making process. Many scholars have made
research into the model of this problem and lots of methods
have been proposed.45–49 Based on the robustness, distributed
computation of genetic algorithm and ant colony algorithm,

these two algorithms were integrated in Ref.48 to solve the tar-
get assignment problem. Guo et al.50 utilized crossing and
mutating techniques to update particles, and an improved par-

ticle swarm algorithm was proposed for air combat decision-
making. Niu LW et al. introduced a maximum team perfor-
mance optimization method to allocate targets.51 Based on

greedy algorithm and ant colony algorithm, Zhang BC et al.
put forward an improved algorithm to obtain desired target
assignment result.52 Considering the attack superiority effect
on target hit probability, Chen and Wei53 established a maxi-

mum damage model and achieved the target allocation using a
particle swarm optimization algorithm. In Ref.47 cultural algo-
rithm and genetic algorithm were integrated, and the cultural-

genetic algorithm was proposed to solve the target allocation
problem. In contrast with the aforementioned methods, spe-
cific heuristic knowledge was utilized to improve the search

capability of optimization algorithms in Refs.45,49; meanwhile
a heuristic adaptive genetic algorithm (HAGA) and a heuristic
ant colony algorithm (HACA) were proposed respectively to

solve the target allocation problem. Using heuristic knowledge
made HAGA and HACA perform better at the convergence
rate than other algorithms mentioned in this literature.

However, with the increase of targets and friendly fighters,
the searching efficiency of HAGA and HACA would reduce
because of the obtaining of heuristic knowledge. For

ADCQGA, it is not required to obtain heuristic knowledge,
and special techniques can improve its searching capability
as well. Therefore, here we apply ADCQGA to tackle the con-

strained multi-aircraft cooperative target allocation problem
and simulation results demonstrate the effectiveness of the pro-
posed algorithm.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces DCQGA. Section 3 presents the
ADCQGA with improved techniques and parameter settings
are discussed in Section 4. In Section 5, the proposed algorithm

is applied to solving five well-known constrained engineering
design problems. Then in Section 6, the proposed algorithm
is applied to solving a constrained multi-aircraft cooperative

target allocation problem. Finally, conclusions are drawn in
Section 7.

2. Double chain quantum genetic algorithm

In quantum computation, the basic information unit is a Q-bit.
Dasgupta et al.54 proposed that the state of a Q-bit can be

0j i; 1j i or an arbitrary superposition between 0j i and 1j i. It
is described as

jui ¼ aj0i þ bj1i ð2Þ

where a and b are state probability amplitudes. jaj2 is the prob-
ability that a Q-bit is observed as 0j i, and similarly jbj2 is the
probability that a Q-bit is observed as 1j i. Additionally, they
have to satisfy the normalization constraint:54

jaj2 þ jbj2 ¼ 1: ð3Þ

As described in Eqs. (2) and (3), a Q-bit can be represented

by ½a; b�T,43 where each Q-bit is regarded as a pair of
coordinates.

The DCQGA encodes individuals using the probability
amplitudes.43 Taking Eq. (3) into account, the encoding

scheme is described as

Pt ¼
cos rt1

sin rt1
j
cos rt2

sin rt2
j
. . .

. . .
j
cos rti

sin rti
j
. . .

. . .
j
cos rtn

sin rtn

� �
ð4Þ

where t ¼ 1; 2; . . . ;m; i ¼ 1; 2; . . . ; n; m is the population size,

and n the size of Q-bits (that is the number of unknowns), Pt

the tth double-individual, and rti the ith quantum angle of
Pt, with rti ¼ 2prandð�Þ; rand 2 ½0; 1�. Every double-individual

is composed of two parallel gene chains which are sine solution
and cosine solution.43

Pt ¼
ptc

pts

� �
ð5Þ

where

ptc ¼ ½cosðrt1Þj cosðrt2Þj � � � j cosðrtnÞ�
pts ¼ ½sinðrt1Þj sinðrt2Þj � � � j sinðrtnÞ�

�
ð6Þ

where ptc and pts are the sine solution and cosine solution of
the tth double-individual, respectively. Thus, the two chains

update simultaneously with the quantum angle.
Fig. 1 illustrates the flowchart of DCQGA. It can be seen

that there are three main steps (solution space mapping, Q-
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gate rotation and mutation) in DCQGA to obtain the optimal
solution.

(1) Solution space mapping. Because all gene values are

trigonometric function values in DCQGA and all
unknowns of optimization problems described in Eq.
(1) are constrained between lower and upper bounds,

linear transformation is used to transform trigonometric
function values into the solution space. The linear trans-
formation formula is as follows:43

xic ¼ xl
i þ

cos ri þ 1

2
ðxu

i � xl
iÞ

xis ¼ xl
i þ

sin ri þ 1

2
ðxu

i � xl
iÞ

8><
>: ð7Þ

Because a double-individual has two genes, xic and xis are
used to represent the cosine and sine values (multiplied by
the magnitude) of the ith unknown. ri is the ith quantum angle

of an double-individual and the boundary of trigonometric
function is [�1,1].

(2) Q-gate rotation. The DCQGA updates the probability
amplitudes by rotating the quantum angles with a
Q-gate. Denote the rotation angle as h and the Q-gate43

is described as

Q� gate ¼
cos h � sin h

sin h cos h

� �
ð8Þ

The rotation process is43

cos h � sin h

sin h cos h

� �
cos ri

sin ri

� �
¼

cosðri þ hÞ
sinðri þ hÞ

� �
ð9Þ

(3) Q-gate mutation. The individuals mutate Q-bits using a
quantum NOT-gate. NOT-gate43 is a special Q-gate
with a rotation angle of p=2. Setting h to p=2 in Eq.

(8), the probability amplitudes of the mutation Q-bits
will be swapped.

3. Adaptive double chain quantum genetic algorithm

3.1. Evaluation functions

Both feasible and infeasible solutions have their own evalua-
tion functions. The fitness function for the feasible solution

is the objective function. For the infeasible solution, it is mean-
ingless to calculate its objective function value due to its con-
straint violation. However, the constraint violation is still a

‘‘good or bad’’ reflection of infeasible solutions. At least, we
can make use of the constraint violation to guide these infeasi-
ble solutions to the feasible region. Wang and Yin55 calculated
the sum of violated constraints as follows:

GðxÞ ¼
XJ
j¼1

maxf0; gjðxÞg þ
XK
k¼1
jhkðxÞj ð10Þ

Thus, the fitness of feasible or infeasible solutions can be deter-
mined as follows:

fitness ¼
fðxÞ; x 2 X

GðxÞ; x R X

�
ð11Þ

3.2. Step evolution

As its name suggests, an evolutionary algorithm is essentially a
gradual evolution process. Considering the constraint prob-
lem, we define three types of step evolutions.

(1) G-SE: for an individual of generation v that is an infea-
sible solution with fitness GvðxÞ, if the individual after
updating is still an infeasible solution but with better fit-

ness G0vðxÞ (i.e., G0vðxÞ < GvðxÞ), we call the updating
process G-SE.

(2) GF-SE: for an individual of generation v that is an infea-

sible solution, if the individual after updating becomes a
feasible solution, we call the updating process GF-SE.

(3) F-SE: for an individual of generation v that is a feasible
solution with fitness f vðxÞ, if the individual after updat-
ing is also a feasible solution but with better fitness f 0vðxÞ
(i.e., f 0vðxÞ < f vðxÞ), we call the updating process F-SE.

Note that this paper only considers positive evolutions (G-
SE, GF-SE, F-SE) that produce better solutions in terms of fit-
ness values. This paper will develop the rotation angle formula

and adjustable mutation formula to converge the individuals
to the optimal value.

3.3. Rotation angle

Similar to DCQGA,44 ADCQGA updates the probability
amplitudes by rotating the quantum angles with Q-gates.
The rotation angle is computed as follows:44

hti ¼ �sgnAh0 exp � jrfðxtiÞj � rfimin

rfimax �rfimin

� �

s:t: A ¼
abi ati

bbi bti

����
����

ð12Þ

where

Fig. 1 Flowchart of DCQGA.
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rfðxtiÞ ¼
@fðxb

t Þ
@xti

rfimax ¼ max
@fðxb

1Þ
@x1i

����
���� ;

@fðxb
2Þ

@x2i

����
����; � � � ;

@fðxb
mÞ

@xmi

����
����

� �

rfimin ¼ min
@fðxb

1Þ
@x1i

����
���� ;

@fðxb
2Þ

@x2i

����
����; � � � ;

@fðxb
mÞ

@xmi

����
����

� �

8>>>>>>><
>>>>>>>:

ð13Þ

where t ¼ 1; 2; . . . ;m; i ¼ 1; 2; . . . ; n; t represents the number of
double-individuals; hti denotes the rotation angle of the ith
Q-bit, h0 the initial rotation angle; ½ati; bti�

T
and ½abi; bbi�

T
are

the probability amplitudes of Q-bit i of double-individual t
and the current global best double-individual respectively;
sgnA is the sign of determinant A. Additionally, xti denotes

the ith gene of the better gene chain. The better gene chain
of double-individual t, denoted by xb

t , means the better one
(with smaller fitness) between cosine solution and sine solu-

tion. rfðxtiÞ is the partial derivative of fitness function fðxÞ
with respect to xti. rfimax and rfimin are the maximum and
minimum partial derivatives of fitness function fðxÞ among

all double-individuals of current generation with respect to
xti. For discrete optimization problems, because of the inexis-
tence of derivatives, first order differences are used to replace
the partial derivatives. rfðxtiÞ;rfimax and rfimin are computed

as follows:44

rfðxtiÞ ¼ fðxp
tiÞ � fðxc

tiÞ
rfimax ¼ maxfjfðxp

1iÞ � fðxc
1iÞj; � � � ; jfðx

p
miÞ � fðxc

miÞjg
rfimin ¼ minfjfðxp

1iÞ � fðxc
1iÞj; � � � ; jfðx

p
miÞ � fðxc

miÞjg

8><
>: ð14Þ

where t ¼ 1; 2; . . . ; m; i ¼ 1; 2; . . . ; n; xp
ti and xc

ti denote the
ith parent and child gene of the better gene chain of double-

individual t.
For constrained optimization problems, the angle rotation

defined in Eq. (12) cannot be directly applied because of the
diversity of fitness functions. In this case, we compute it as

follows:

hti ¼
�sgnAh0 expð�

jrfðxtiÞj � rfimin

rfimax �rfimin

Þ; xb
t 2 X

�sgnAh0 expð�
jrGðxtiÞj � rGimin

rGimax �rGimin

Þ; xb
t R X

8>><
>>: ð15Þ

If the better gene chain of double-individual t is a feasible

solution, the rotation angle is computed in the same way as
DCQGA. Otherwise, the constraint violation function replaces
the objective function in computing the rotation angle. It

should be noted that the definitions of maximum and mini-
mum partial derivatives of fitness are different in terms of
the fitness functions. rfi max and rfi min are the maximum

and minimum partial derivatives of fitness function fðxÞ with
respect to xti among all feasible double-individuals of current
generation. Similarly, rGi max and rGi min are the maximum
and minimum partial derivatives of constraint violation func-

tion GðxÞ with respect to xti among all the infeasible double-
individuals.

3.4. Adaptive evolution process

In order to improve the efficiency of the proposed algorithm,
we refine the individual updating process. Section 3.2 classified

the step evolution into three types: G-SE, GF-SE and F-SE. If

the fitness of any individual in the population after updating is

better than the previous global optimal solution, the updating
process is SE, and these individuals are called step evolution
individuals (SEIS).

With the definition of SEIS, we propose an adaptive evolu-
tion process as shown in Fig. 2. Although Q-gate rotations are
used by both DCQGA and ADCQGA to update individuals,

the specific updating process in ADCQGA is different. In
ADCQGA, the first step is to perform Q-gate rotation. Then
fitness values are calculated. Before proceeding to the next

step, individuals are evaluated first. If the individuals are SEIS,
they exit the AEP. Otherwise, they need to update continually.
To prevent an infinite updating loop, AEP utilizes a maximum
number of rotations that is allowed for each individual,

denoted by Qmax, and when Qmax ¼ 1, there will be no differ-
ence between DCQGA and ADCQGA. In order to make
AEP play a role in ADCQGA, we should set Qmax > 1. Usu-

ally, individuals of one generation undergo Q-gate rotation a
few times before they proceed to the next step, and the total
number of iterations is called Q-gate rotation degree, denoted

by Qd.
In DCQGA, individuals rotate only once in every updating

process. For ADCQGA, if individuals are SEIS after one rota-

tion, then the updating process is the same as DCQGA. For
some optimization problems, flat solution regions are com-
mon. Because of the small rotation angle, DCQGA would
need several evolution generations to step through the flat

region. ADCQGA is more efficient in handling such cases
because ADCQGA will perform Q-gate rotation several times
in one generation, resulting in an overall larger rotation angle

in one generation and thus fewer evolution generations in the
same flat region.

3.5. Mutation

The mutation probability of DCQGA is a constant initialized
at the beginning of the whole evolutionary process. It is diffi-
cult to select a universal mutation probability applicable to dif-

ferent optimization problems. To address this problem, we
propose the following adaptive mutation approach.

The Q-gate rotation degree denotes the number of itera-

tions that the individuals undergo in AEP and it can be used
to compute the mutation probability as follows:

Fig. 2 Adaptive evolution process.
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ptm ¼

Qd

Qmax

pm0 exp � jfmax � fðxb
t Þj

jfmax � fminj

� �
; xb

t 2 X

Qd

Qmax

pm0 exp � jGmax � Gðxb
t Þj

jGmax � Gminj

� �
; xb

t R X

8>>><
>>>:

ð16Þ

where t ¼ 1; 2; � � � ;m; ptm denotes the mutation probability
of double-individual t; pm0 the initial mutation probability,
xb
t the better gene chain between cosine solution and sine

solution of double-individual t; fðxb
t Þ and Gðxb

t Þ denote the
objective function value and constraint violation function
value of xb

t , respectively; fmax and fmin are the current global

maximum and minimum objective function values, respec-
tively. Similarly Gmax and Gmin are the current global maxi-
mum and minimum constraint violation function values.
Each pair of double-individuals in the same generation share

the same Qd. From Eq. (16), we can find out that the
mutation probability changes in accordance with Qd and
fitness values.

From Eq. (16) we can see that the worse the fitness of cur-
rent individuals, the bigger ptm would be. On the other hand, in
a flat region, if Qd ¼ Qmax; ptm would not be influenced by

Qd=Qmax. Otherwise, if Qd < Qmax, it means the individuals
of current generation is SEIS. Therefore ptm would be rather
smaller because the current individuals are getting better.

Moreover, the bigger Qd is, the bigger ptm would be.
The mutation is implemented as follows:

(1) First generate a random number between 0 and 1 for

every double-individual.
(2) For each double-individual, if the generated number is

smaller than ptm, then go to (3), otherwise exit the muta-

tion process.
(3) Choose a Q-bit randomly from the double-individual

and swap the probability amplitudes of this Q-bit.

3.6. Replacement

Many researchers have used repaired methods to improve the
convergence rates and solution quality of optimization algo-
rithms as discussed in Section 1. Repaired methods intend to
change an infeasible individual to a feasible one. But in order

to repair infeasible individuals, special functions or a priori
knowledge is needed. Moreover, the repaired solutions may
not be better than the current solutions already found. In this

paper, we use ‘‘replacement methods’’ to improve our optimi-
zation algorithm.

First, if both the individuals of a double-individual are

infeasible solutions, we name the double-individual as an
infeasible double-individual. For all infeasible double-individ-
uals in a generation, they all have a probability to be replaced
by the current global best solution. If the current best global

solution is a feasible one, it does not need to repair infeasible
solutions through special functions or priori knowledge,
because a simple replacement of the infeasible solution with

the global best solution repairs it.
Not all infeasible solutions would be replaced and the

replacement probability is computed as follows:

ptr ¼ pr0
mG

m
exp � jGmax � Gðxb

t Þj
Gmax � Gmin

� �
ð17Þ

where t ¼ 1; 2; � � � ;m; ptr denotes the replacement probability
of a double-individual t; pr0 the initial replacement probability,

m the population size, and mG the number of infeasible double-
individual (if xb

t is an infeasible solution, then double-individ-
ual t is an infeasible double-individual).

From Eq. (17) we can see that ptr is related with Gðxb
t Þ and

mG. The worse constraint violation function value of the dou-
ble-individual is, the bigger ptr would be. Meanwhile, the more
the number of infeasible double-individuals is, the greater ptr
would be as well.

The replacement is implemented as follows:

(1) First generate a random number between 0 and 1 for
every infeasible double-individual.

(2) For each infeasible double-individual, if the generated

number is smaller than its replacement probability, then
go to (3), otherwise exit the replacement process.

(3) Replace the infeasible double-individual with the current

global best solution.

To summarize ADCQGA, Fig. 3 illustrates the entire flow-
chart of ADCQGA.

Step 1. Population initialization. Generate m double-indi-
viduals to form the initial population according to Eq. (4).

Step 2. Transform all genes from unit space In ¼ ½�1; 1�n to
the solution space U. Then calculate fitness values of all
individuals and save the best and worst feasible and

infeasible solutions.
Step 3. AEP.
Step 4. Mutation.
Step 5. Replacement.

Step 6. Calculate fitness values again then obtain the global
best and worst feasible and infeasible solutions as Step 2.
Step 7. If the best feasible solution satisfies the termination

condition, ADCQGA ends. Otherwise, it goes back to
Step 3.

Fig. 3 Flowchart of ADCQGA.
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4. Setting of experimental parameters

The applicability and effectiveness of most algorithms for con-
strained optimization problems are demonstrated by bench-

mark functions.12,14,22,23,30,42,56 In the same way, to evaluate
the performance of the ADCQGA, we use the thirteen bench-
mark functions described in Ref.56.

For ADCQGA, the parameters include hti; ptm and ptr.
These parameters are all adaptively updated in the evolution
process, but their initial values need to be set manually, which
are h0; pm0;Qmax and pr0. h0 is also a parameter of DCQGA that

has been discussed in Refs.43,44. In this paper, we still set
h0 ¼ 0:001p as DCQGA did.

g9 is one of the thirteen well-known benchmark functions

in Ref.56. Additionally, g9 is a typical benchmark function
with nonlinear objective function and 4 nonlinear inequalities.
In order to analyze the relationship between the other param-

eters (Qmax; pm0 and pr0) and the convergence rate/search capa-
bility, first we applied ADCQGA to g9. Then other benchmark
functions are solved with the discussed parameter values.

Eq. (18) shows the definition and constraints of g9.

fðxÞ ¼ ðx1 � 10Þ2 þ 5ðx2 � 12Þ2 þ x4
3 þ 3ðx4 � 11Þ2 þ 10x6

5

þ 7x2
6 þ x4

7 � 4x6x7 � 10x6 � 8x7

s.t.

g1ðxÞ ¼ �127þ 2x2
1 þ 3x4

2 þ x3 þ 4x2
4 þ 5x5 6 0

g2ðxÞ ¼ �282þ 7x1 þ 3x2 þ 10x2
3 þ x4 � x5 6 0

g3ðxÞ ¼ �196þ 23x1 þ x2
2 þ 6x2

6 � 8x7 6 0

g4ðxÞ ¼ 4x2
1 þ x2

2 � 3x1x2 þ 2x2
3 þ 5x6 � 11x7 6 0

8>>><
>>>:

ð18Þ

where �10 6 xi 6 10ði ¼ 1; 2; � � � ; 7Þ. The optimal solution is x
= [2.330499, 1.951372, �0.4775414, 4.365726, �0.624487,
1.038131, 1.594227], where fðxÞ=680.6300573.

(1) Firstly, the range of pm0 is investigated. The population
size is 30 and pr0 ¼ 0. Here, we only investigate the influ-

ence of pm0 and set Qmax ¼ 1 to avoid the influence of
AEP. When pm0 ¼ f0; 0:05; 0:1; 0:15; 0:2; 0:5; 0:7; 0:9g,
30 independent runs were performed for each experi-
ment. The optimization results are presented in

Fig. 4(a), it shows the mean, best, and worst objective
function values of the 30 independent runs for different
pm0 values. It can be seen when 0:05 6 pm0 6 0:7, the
optimal solution can be obtained, and among all these
successful experiments, the minimum generation

numbers that have successfully obtained the optimum

solution are shown in Fig. 4(b), showing that when
pm0 ¼ 0:15, the algorithm can find the optimal solution
less than 1000 generations, which is the smallest among

all the experiments.
(2) Secondly, the range of Qmax is investigated. The popula-

tion size is also 30 and the replacement probability is 0.
Because of the relationship between pm0 and Qmax shown

in Eq. (16), different experiments are tested respectively
for pm0 ¼ f0:05; 0:1; 0:15; 0:2; 0:5; 0:7; 0:9g. For Qmax ¼
f2; 4; 6; 8; 10; 20g, 30 independent runs were performed

for each experiment as well, and the best optimization
results under every pm0 are shown in Fig. 5(a), we can
see that all the experiments can obtain the optimal solu-

tion when Qmax ¼ 2 except when pm0 ¼ 0:9. But for
Qmax > 2, ADCQGA can find the optimal solution even
when pm0 ¼ 0:9. It means AEP improves the search
capability of ADCQGA with a wide range of mutation

probability. Furthermore, the minimum generation
numbers that have successfully obtained the optimum
solution are also shown in Fig. 5(b), it can be seen that

the minimum generation numbers are reduced because
of the use of AEP. In particular, when 0:05 < pm0 <
0:9 and 4 6 Qmax 6 6, AEP can accelerate the optimiza-

tion process better than other conditions. The results
shown in Figs. 4 and 5 demonstrate that ADCQGA with
parameters 0:1 < pm0 < 0:7 and 4 6 Qmax 6 6 produces

optimal results. For the remaining tests, we set
pm0 ¼ 0:2;Qmax ¼ 5.

(3) Finally, the replacement probability pr0 is investigated.
The population size is also 30. For pr0 ¼
f0:05; 0:1; 0:15; 0:2; 0:5; 0:7; 0:9g, 30 independent runs
are performed for each experiment, and the optimization
results are shown in Fig. 6(a), it can be seen that

the optimal solution can be found when pr0 ¼
f0:05; 0:1; 0:15; 0:2; 0:5; 0:7; 0:9g. Furthermore, the
mean function value and the worst function value are

all better than the results without using pr0 shown in
Fig. 4(a). The minimum generation numbers that have
successfully obtained the optimum solution are shown
in Fig. 6(b). It can been seen that when

0:1 < pr0 < 0:7, the replacement technique can acceler-
ate the optimization process and the minimum genera-
tion numbers are all less than 400, especially when

pr0 ¼ 0:2.

Fig. 4 Optimization results of the ADCQGA under different pm0.
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Based on all the experiments discussed above, we can see
that when 0:1 < pm0 < 0:7; 4 6 Qmax 6 6 and 0:1 < pr0 < 0:7,
both the search capability and convergence rate of ADCQGA
are good. Because the mutation probability and the replace-
ment probability are adaptively updated in the evolution pro-

cess, so the good performance of ADCQGA can be obtained
with a wide range of initial parameter values.

Then based on the results discussed above, we set
h0 ¼ 0:001p; pm0 ¼ 0:2; pr0 ¼ 0:2;Qmax ¼ 5, with 50 indepen-

dent runs; we apply ADCQGA to solve other 12 benchmark
functions in Ref.56. To further verify the performance of

ADCQGA, comparisons are carried out with four typical algo-
rithms from the literatures, including ISR,57 SMES,58 HEAA22

and GAFAT.30 Table 1 shows the best values obtained by

these comparative algorithms. From Table 1 we can find out
that for g1, g3, g4, g6, g7, g8, g9 g11 and g12, ADCQGA per-
forms better or as well as other algorithms. For the other 4

functions, the best results obtained by ADCQGA are a little

Fig. 5 Objective function values and minimum generation numbers under different Qmax and pm0.

Fig. 6 Optimization results of the ADCQGA under different pr0.

Table 1 Comparisons of these comparative algorithms.

Benchmark function ADCQGA ISR SMES HEAA GAFAT

g1 �15.000000 �15.000000 �15.000000 �15.000000 �15.000000
g2 0.8035200 0.8036190 0.8036010 0.8035820 0.8031730

g3 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

g4 �30665.539 �30665.539 �30665.539 �30665.539 �30665.539
g5 5126.4982 5126.4970 5126.5990 5126.4980 5126.4980

g6 �6961.8140 �6961.8140 �6961.8140 �6961.8140 �6961.8140
g7 24.306000 24.306000 24.327000 24.306000 24.306000

g8 0.0958250 0.0958250 0.0958250 0.0958250 0.0958250

g9 680.63000 680.63000 680.63000 680.63000 680.63000

g10 7049.3400 7049.2480 7051.9030 7049.2480 7049.2480

g11 0.7500000 0.7500000 0.7500000 0.7500000 0.7500000

g12 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

g13 0.0539793 0.0539420 0.0539860 0.0539498 0.0539498
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worse than the results obtained by others. In conclusion,
ADCQGA is a competitive algorithm for constrained optimi-
zation problems.

5. Experiments on constrained engineering design problems

To assess the effectiveness and efficiency of the ADCQGA, five

well-known engineering design problems were solved by
ADCQGA and its performance was compared against that
of other algorithms, including DCQGA,44 genetic algorithm

(GA)59 and others. Table 2 illustrates the parameter values
of these algorithms.

5.1. Case 1: spring design

The spring design problem is to solve for the minimum weight
of a spring subject to constraints on minimum deflection, surge

frequency, shear stress, and limits on outside diameter. This
problem involves three continuous variables and four nonlin-
ear inequality constraints. It has been studied by Coello Coello
and Becerra,60 Huang et al.,12 Zhang et al.42 and Wang and

Li.23 The best results of different algorithms are shown in
Table 3 from which it can be seen that ADCQGA achieved
the best objective function value. In particular, the best func-

tion value obtained by DCQGA is 0.012740377, worse than
that of ADCQGA.

To compare GA, DCQGA and ADCQGA in detail, Fig. 7

shows the best convergence processes of these three algorithms
in 50 independent runs. It takes about 270 generations for
ADCQGA to converge to the minimum fitness function value
of 0.012665233, compared to 900 generations needed by

DCQGA to obtain a fitness value of 0.012740377. GA had
to undergo more generations for a larger fitness value.

5.2. Case 2: welded beam design 1

Welded beam design is a well-known optimization problem.

The goal is to minimize the cost of the beam subject to con-
straints on shear stress, bending stress, buckling load and the
end deflection. Some algorithms have been applied to this

problem such as Ragsdell and Phillips,61 Deb,62 Ray and
Liew,63 Wang and Yin,55 and Wang and Li.23 The best results
are shown in Table 4 from which it can be seen that the best
fitness function value was obtained by ADCQGA and Wang

and Li’s method.
Furthermore, Fig. 8 illustrates the best convergence pro-

cesses of GA, DCQGA and ADCQGA in 50 independent

runs. The value 2.3809565803 was obtained by ADCQGA in
less than 450 generations, compared to 900 generations needed
by DCQGA for a fitness value of 2.5610110253. A fitness value

of 3.0964676765 was obtained by GA in about 580
generations.

5.3. Case 3: welded beam design 2

This kind of welded beam design is another well-studied opti-
mization problem. To satisfy the constraints of shear stress,
bending stress, buckling load, end deflection, and side con-

straint, the design is to find the minimum fabricating cost of
the welded beam. Some algorithms have been proposed to
solve this problem such as Coello Coello and Mezura Mon-

tes,14 Coello Coello and Becerra,60 Huang et al.,12 Mezura-
Montes and Coello,64 and Wang and Li.23 Table 5 lists the best
results.

From Table 5 it can be seen that the best solution obtained
by ADCQGA is much better than other algorithms. The best

Table 2 Setting of parameters.

Parameter GA DCQGA ADCQGA

Initial rotation angle (�) 0:001p 0:001p
Initial mutation probability 0.2

Initial replacement probability 0.2

Qmax 5

Mutation probability 0.15 0.05

Crossover probability 0.8

Population size 1000 500 100

Maximum generation number 1000 1000 1000

Table 3 Comparison of the best results of Case 1.

Algorithm x1 x2 x3 fðxÞ
Ref.60 0.3173950000 0.0500000000 14.0317950000 0.012721000

Ref.12 0.3547140000 0.0516090000 11.4108310000 0.012670200

Ref.42 0.3567177469 0.0516890614 11.2889653382 0.012665233

Ref.23 0.3567177413 0.0516890611 11.2889656626 0.012665233

GA 0.5758980167 0.0595948170 5.4421330798 0.015221589

DCQGA 0.3998746612 0.0534364839 9.1579045190 0.012740377

ADCQGA 0.3567177390 0.0516890609 11.2889658089 0.012665233

Fig. 7 Best convergence processes for Case 1.
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objective function value obtained by DCQGA is 1.730715,
which is also better than that of Huang’s and Monte’s.

Fig. 9 shows the best convergence processes of GA, DCQGA
and ADCQGA in 50 independent runs. The ADCQGA
achieved the best solution in the less than 300 generations,

about half of the 600 generations needed by DCQGA for an
objective function value of 1.730715. Even though GA con-
verged in less than 300 generations, its objective function value

(2.161399) is the largest among all the algorithms shown in
Table 5.

5.4. Case 4: speed reducer design

To satisfy the constraints of bending stress of gear teeth, sur-
face stress, transverse deflections of a shaft and stress in the
shaft, the weight of a speed reducer needs to be minimized.

Some algorithms have been proposed to solve this problem
(Ray and Liew,63 Mezura-Montes et al.,65 Zhang et al.,42

Wang and Li23).

Table 6 lists the best results of these algorithms. Fig. 10
illustrates the best convergence process of GA, DCQGA and

ADCQGA in 50 independent runs. It can be seen that the best
objective function value obtained by ADCQGA in 420 gener-
ations is 2992.184537, which is better than others, while for

DCQGA, for about 200 generations the value 3003.109474
can be obtained, which is only better than 3040.994404
obtained by GA.

5.5. Case 5: three-bar truss design

Stress constraints are concerned to deal with the design of a
three-bar truss structure in which the volume is to be mini-

mized. Several algorithms have been proposed to solve this
problem, including Ray and Liew,63 Zhang et al.,42 Wang
et al.,22 Wang and Li,23 and Zhao et al.30

Table 7 lists the best results from which it can be seen that
ADCQGA can obtain the best objective function value. It is
worth noting that several other methods also achieved the best

Table 4 Comparison of the best results of Case 2.

Algorithm x1 x2 x3 x4 fðxÞ
Ref.61 0.2455000000 6.1960000000 8.2730000000 0.2455000000 2.3859370000

Ref.62 0.2489000000 6.1730000000 8.1789000000 0.2533000000 2.4331160000

Ref.63 0.2444382760 6.2379672340 8.2885761430 0.2445661820 2.3854347000

Ref.55 0.2443689800 6.2175197100 8.2914714000 0.2443689800 2.3809565817

Ref.23 0.2443689758 6.2175197152 8.2914813905 0.2443689758 2.3809565800

GA 0.2603451923 9.3147686010 8.0151245351 0.2668424048 3.0964676765

DCQGA 0.1968240405 8.0464042896 8.5912098139 0.2432600836 2.5610110253

ADCQGA 0.2443689758 6.2175197152 8.2914813905 0.2443689758 2.3809565803

Fig. 8 Best convergence processes for Case 2.

Table 5 Comparison of the best results of Case 3.

Algorithm x1 x2 x3 x4 fðxÞ
Ref.14 0.20598600 3.47132800 9.02022400 0.20648000 1.728226

Ref.60 0.20570000 3.47050000 9.03660000 0.20570000 1.724852

Ref.12 0.20313700 3.54299800 9.03349800 0.20617900 1.733461

Ref.64 0.19974200 3.61206000 9.03750000 0.20608200 1.737300

Ref.23 0.20572964 3.47048867 9.03662391 0.20572964 1.724852

GA 0.23067867 9.56455705 3.46682033 0.40687727 2.161399

DCQGA 0.14834335 7.52063257 6.77838363 0.22055816 1.730715

ADCQGA 0.23867056 6.20184382 4.33897317 0.24928755 1.441541

Fig. 9 Best convergence processes for Case 3.
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objective function value (Zhang, Wang, Wang and Li, and

Zhao). However, the best objective function value obtained
by DCQGA is 264.4663393, larger than that of ADCQGA.
Fig. 11 shows the best convergence processes of GA, DCQGA

and ADCQGA in 50 independent runs.
From the results of the five well-known constrained

engineering design problems discussed above, it can be seen
that ADCQGA achieved the best objective function value

compared with the existing algorithms included in this paper.
Not only the search capability of ADCQGA is better than
DCQGA, but also it performs well in terms of convergence

rate.

6. Application of ADCQGA to constrained multi-aircraft

cooperative target allocation problem

6.1. Problems description

The air combat and optimization problems have attracted the
interest of several people from different disciplines.66–68 In this

paper, we use the model proposed in Ref.45 Assume N red
fighters are approaching, and M blue fighters are assigned to

intercept. Each blue fighter carries L missiles and the total mis-
sile number is Z ¼ML. And all missiles should be assigned
with a target. The aim is to minimize the evaluation function45,
which is defined in:

EðpÞ ¼
XN
n¼1

XM
m¼1

thnm

YZ
k¼1
ð1� thknÞXkn

 !" #

s:t:

XN
n¼1

Xkn ¼ 1; k ¼ 1; 2; � � � ;Z

XZ
k¼1

Xkn P 1; n ¼ 1; 2; � � � ;N

XZ
k¼1

Xkn 6 2; n ¼ 1; 2; � � � ;N

8>>>>>>>>>>><
>>>>>>>>>>>:

ð19Þ

Table 6 Comparison of the best results of Case 4.

Algorithm x1 x2 x3 x4 x5 x6 x7 fðxÞ
Ref.63 3.500068100 0.700000010 17.00000000 7.327602050 7.715321750 3.350267020 5.286654500 2994.744241

Ref.65 3.500010000 0.700000000 17.00000000 7.300156000 7.800027000 3.350221000 5.286685000 2996.356689

Ref.42 3.500000000 0.700000000 17.00000000 0.730000000 7.7153199115 3.3502146610 5.286654465 2994.471066

Ref.23 3.500000000 0.700000000 17.00000000 7.300000000 7.7153199115 3.3502146661 5.286654465 2994.471066

GA 3.518113390 0.702207490 17.00114714 7.590601700 7.888346340 3.376082080 5.311879240 3040.994404

DCQGA 3.511620780 0.700059040 17.00679272 7.302784120 7.770320230 3.354754370 5.287030010 3003.109474

ADCQGA 3.500014180 0.700000840 17.00000118 7.300093690 7.714366510 3.343933090 5.285586630 2992.184537

Fig. 10 Best convergence processes for Case 4. Fig. 11 Best convergence processes for Case 5.

Table 7 Comparison of the best results of Case 5.

Algorithm x1 x2 fðxÞ
Ref.63 0.7886210370 0.4084013340 263.8958466

Ref.42 0.7886751359 0.4082482868 263.8958434

Ref.22 0.3567292035 0.0516895376 263.8958434

Ref.23 0.7886751287 0.4082483070 263.8958434

Ref.30 0.7886751338 0.4082482928 263.8958434

GA 0.3840133272 0.8058071829 266.3180221

DCQGA 0.7958603229 0.3936304683 264.4663393

ADCQGA 0.7886751360 0.4082482872 263.8958434
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where n ¼ 1; 2; � � � ;N; m ¼ 1; 2; � � � ;M; k ¼ 1; 2; � � � ;Z; thnm is

the threat of the nth red fighter to the mth blue fighter, thkn

the threat of the blue fighter that carried missile k to the red
fighter. The value of Xkn is 1 or 0; Xkn ¼ 1 indicates that missile

k is assigned to the nth red fighter. Additionally, the con-
straints are described in Eq. (19).

In this paper, Bmðm ¼ 1; 2; � � � ;MÞ denotes the mth blue
fighter and Rnðn ¼ 1; 2; � � � ;NÞ denotes the nth red fighter. As

in Ref.45, the threat of Rn to Bm can be described as45

thnm ¼ x1th
Dnm

nm thenm
nm þ x2th

VRn
nm ð20Þ

where

thDnm

nm ¼

1; Dnm 6 DMissile

1� Dnm �DMissile

DRadar �DMissile

; DMissile < Dnm 6 DRadar

0; Dnm > DRadar

8>><
>>:

ð21Þ

thenm
nm ¼ e�k1ðpenm=180Þk2 ð22Þ

thVRn
nm ¼

1; VBm
< 0:5VRn

1:5� VBm

VRn

; 0:5VRn
6 VBm

6 1:4VRn

0:1; VBm
> 1:4VRn

8>><
>>: ð23Þ

x1 þ x2 ¼ 1 ð24Þ

where x1;x2; k1 and k2 are positive constants; thDnm

nm is the dis-
tance threat factor, thenm

nm the bore of sight (BOS) angle threat

factor, and thVRn
nm the velocity threat factor; Dnm denotes the dis-

tance between Rn and Bm; DMissile and DRadar are the missile
effective range of red fighter and red radar maximum track
range respectively; VRn

and VBm
represent the velocity of Rn

and Bm; enm is the BOS angle of Bm to Rn.
The threat thkn of the blue fighter carrying missile k to the

red fighter is defined in the similar way.
After obtaining thkn and thnm, we can calculate the evalua-

tion function value through Eq. (19). The ultimate goal is to

minimize the evaluation function value.
Before applying ADCQGA to solve the constrained multi-

aircraft cooperative target allocation problem, the solution

space mapping needs improving. In this paper, we replace
Eq. (7) with Eq. (25).

xic ¼ ceilðxl
i þ

cos ri þ 1

2
ðxu

i � xl
iÞÞ

xis ¼ ceilðxl
i þ

sin ri þ 1

2
ðxu

i � xl
iÞÞ

8><
>: ð25Þ

where xiði ¼ 1; 2; � � � ;NÞ is the ith independent variable.

xl
i ¼ 0; xu

i ¼ N and the sign ceilðxÞ rounds the elements to
the nearest integers greater than or equal to x. Therefore, all
independent variables would be an integer in ½1;N�, which

indicates the number of the assigned red fighter.

6.2. Experimental results

In a scenario, M ¼ 5;N ¼ 16;L ¼ 4 and Z ¼ 20. The velocity
of all the red fighters is 300 m/s and 350 m/s for all blue fight-
ers. The missile effective range of all blue fighters is 70 km, and

the radar maximum track range of blue fighters is 120 km. The

missile effective range and radar maximum track range of red
fighters are 47 km and 80 km respectively. All parameters for
obtaining thnm and thkn are listed in Table 8. After obtaining

thnm and thkn, we can calculate the evaluation value according
to Eq. (19).

As mentioned in Ref.45, at a certain time instant, all targets

are in the attackable regions of the blue fighters. Fig. 12 illus-
trates the situation in detail. Blue fighters fly head-on with the
red fighters at the same altitude, and blue fighters decide to

make a cooperative attack on the red fighters.
To assess the effectiveness and efficiency of the ADCQGA,

its performance was compared against DCQGA and GA.
Table 9 lists the best results and from Table 9 it can be seen

that the best objective function value obtained by ADCQGA
is 0.576354. However, the best objective function value
obtained by DCQGA and GA are 0.599230 and 0.611542,

both worse than that of ADCQGA. The best assignments of
the three algorithms are shown in Tables 10–12.

Fig. 13 shows the best convergence processes of GA,

DCQGA and ADCQGA in 50 independent runs. ADCQGA
achieves 0.576354 in less than 40 generations. DCQGA
achieves 0.599230 about in 50 generations, but the result does

not change in 200 generations. For GA, it can only obtain
0.611542 in 200 generations. In conclusion, ADCQGA

Fig. 12 Air combat situation.

Table 8 Parameters for calculating thnm and thkn.

Parameter Value

Velocity of blue fighter (m/s) 350

Velocity of red fighter (m/s) 300

Missile effective range of blue fighter (km) 70

Radar maximum track range of blue fighter (km) 120

Missile effective range of red fighter (km) 47

Radar maximum track range of red fighter (km) 80

Constant k1 3

Constant k2 2

Constant x1 0.8

Constant x2 0.2

Table 9 Comparison of the best results using different

algorithms.

Algorithm Best objective function value

GA 0.611542

DCQGA 0.599230

ADCQGA 0.576354
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performs better than DAQGA and GA for constrained multi-
aircraft cooperative target allocation.

6.3. Discussions of ADCQGA for constrained optimization

problems

In summary, there are several explanations for the good per-
formance of ADCQGA: (A) all solutions including feasible
and infeasible solutions were used as indicators to obtain the

best solution; (B) double-individuals were implemented in
ADCQGA, and the two chains of each double-individual
underwent Q-gate rotation and mutation simultaneously, on

the one hand, it makes ADCQGA more efficient; on the other

hand, the search region is expanded since each double-
individual consists of a pair of individuals; (C) the AEP and
replacement technique improve the efficiency of ADCQGA;

(D) adaptive mutation was implemented to enrich the popula-
tion diversity. Using these improved techniques, the
ADCQGA achieves better performance in terms of effective-

ness and efficiency compared with the existing algorithms men-
tioned in this literature.

7. Conclusions

(1) This paper presents ADCQGA for solving constrained
optimization problems.

(2) ADCQGA utilizes adaptive rotation, adaptive evolution

process, mutation and replacement technique to
improve the search efficiency and convergence rate.

(3) The effectiveness and efficiency of ADCQGA are dem-

onstrated by its results on thirteen benchmark functions
and five well-known constrained engineering design
problems.

(4) ADCQGA is successfully applied to solving a con-
strained multi-aircraft cooperative target allocation
problem.
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