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ABSTRACT   

 

SYNTHESIS AND CHARACTERIZATION OF 3-ESTER AND 3-CARBAMATE 

DERIVATIVES OF N-ACETYL D-GLUCOSAMINE AND THEIR USE IN CONTROLLED 

DRUG DELIVERY   

 

Consuelo Garcia  

Old Dominion University, 2017  

Director: Dr. Guijun Wang  

 

 Low molecular weight gelators (LMWGs) are a class of compounds which reversibly form 

a network that traps solvents to form gels. Gelation by LMWGs is driven solely by non-covalent 

interactions such as hydrogen bonding, - stacking, and hydrophobic interactions. LMWGs can 

be designed such that the gel-sol and sol-gel transitions happen as a response to a specific stimulus. 

These stimulus responsive gels or “smart” gels can be used in a wide variety of applications 

including tissue regeneration, biosensing, and controlled drug delivery.  

 

Among the different types of compounds that are LMWGs, carbohydrate based systems 

are especially interesting. Carbohydrates are abundant, renewable, biocompatible, and have 

numerous hydroxyl groups which can be readily functionalized. Our group has previously found 

that organogelators and hydrogelators can be obtained from D-glucose and D-glucosamine by 

selectively functionalization of the hydroxyl groups. Various C-2 acyl derivatives including esters 

and carbamates are found to be effective LMWGs for both water and organic solvents. In this 

study, the functionalization at the C-3 position of glucosamine derivative was carried out. Two 

types of C-3 derivatives including esters and carbamates were synthesized and characterized by 

1H and 13C NMR spectroscopy and LCMS. These compounds were then analyzed for gelation 

properties in a series of selected solvents. Several compounds were found to be effective 

organogelators, the resulting gels were characterized using IR, rheology, optical microscopy, etc. 



The use of these gelators for controlled drug delivery was tested and it was found that the gels 

loaded with naproxen sodium or chloramphenicol released the drug in an acidic environment.   
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NOMENCLATURE  

Armoc  aryl-methoxycarbonyl   

ATP   adenosine triphosphate  

C12DMAO dodecyldimethylamine oxide 

CAB  3-β-cholesteryl-4-(2-anthryloxy) butanoate  

DI  deionized 

DMSO  dimethyl sulfoxide  

DNA  deoxyribonucleic acid   

EG  ethylene glycol 

EtOH  ethanol 

FT-IR  Fourier transform infrared  

GalNac N-acetylgalactosamine 

H2O  water  

H2SO4  sulfuric acid 

HCl  hydrochloric acid   

IR  infrared  

LCA  lithocholic acid  

LCMS   liquid chromatography mass spectrometry 

MGC  minimum gelation concentration   

Pa  Pascals 

NaOH  sodium hydroxide 

TEA  trimethylamine  

TTF  tetrathiafulvalene  

UV-Vis  ultraviolet visible  
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1. INTRODUCTION TO GELS 

Gels are semi-solid substances formed when the gelator molecules form a 3-D network 

which immobilizes solvent molecules.1 When the network is formed from new chemical bonds 

between gelator molecules, the gel is called a chemical gel or a macromolecular gel. These bonds 

are formed irreversibly. Therefore, the gel cannot return to the solution phase after being formed. 

The compounds used to form chemical gels are typically large polymers. Chemical gels have been 

studied for centuries and are used in a diverse array of applications including cosmetics, food, and 

medicine.1-2  

 

Compared to macromolecular gels, supramolecular gels are a relatively new field of study. 

Supramolecular gels typically have a much lower molecular weight than macromolecular gels, and 

thus are often called low molecular weight gelators (LMWGs). Gel formation is driven by non-

covalent interactions between gelator molecules and solvent; therefore, gelation is thermally 

reversible. The most common interactions seen in the formation of reversible gels are hydrogen 

bonding, Van der Waals forces, dipole-dipole interactions, π-π stacking, and hydrophobic 

interactions.3-4 Supramolecular gels are often weaker than their macromolecular counterparts. 

However, their smaller size makes the easier to synthesize and purify; and the reversibility of the 

gel-sol transitions can be taken advantage of for a variety of uses.1, 3  

 

Supramolecular gels were first reported in the 1930s. These gels were discovered by 

serendipity.1-2, 5 These first LMWGs were used in lubricants, inks, and napalm. After the initial 

discovery, almost no further research was done on supramolecular gels due to a lack of 

understanding on how LMWGs could be intelligently designed. Then, in the mid-90s, there was a 
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rapid resurgence in LMWG-related research because of the many potential applications of 

LMWGs and a desire to better understand the mechanism of molecular self-assembly.5  

 

Usually, when gelation is discovered by serendipity, similar molecules are synthesized to 

determine which parts of the molecule were essential for gel formation. One such example is 3-β-

cholesteryl-4-(2-anthryloxy)butanoate (CAB) depicted in Fig. 1. Weis and Lin discovered by 

chance that CAB can form stable organogels.6 They tested different modifications of CAB to 

determine which interactions were essential for gelation. They found that replacing the anthryl 

moiety with a naphthyl or phenyl group resulted in non-gelation, most likely due to the decrease 

in π-π stacking. Esters, amides, ureas, ethers, and carbamates were the best linker groups, most 

likely due to hydrogen bonding interactions. The secondary structure of the molecule was also 

important. Molecules with a more rod like secondary structure formed more stable gels than 

molecules with a bent structure.7 

 

  

Fig. 1: Structure of CAB    

 

 

Although it is still impossible to say from simply looking at a compound’s structure 

whether or not it would be able to form a supramolecular gel, the discovery of LMWGs is no 
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longer left to serendipity. Research done by multiple groups during the resurgence of interest in 

LMWGs led to the following rules for the design of supramolecular gelators: (i) the presence of 

intermolecular interactions needed for self-assembly, (ii) control of interactions with the solvent 

to prevent crystallization (i.e., heating) and (iii) a factor to induce fiber cross-linking (i.e. 

sonication).4-5 

 

In recent years, several new approaches for finding LMWGs have emerged. Many of these 

approaches are similar to the library based approaches seen in drug discovery. As is often the case 

with drug delivery, most of these studies are based on modified structures of known gelator 

compounds. A known gelator or a portion of a known gelator serves as a scaffold which is modified 

to improve solvent compatibility or to introduce additional functional groups. The resulting 

compounds are tested for their ability to form gels.1, 5 More recently, some groups have reported a 

combinatorial approach to finding new gelators.8-9 These rational approaches to the design of 

supramolecular gelators will allow researchers to design and discover LMWGs for a wide variety 

of applications. 

 

 

1.1 Stimulus responsive gels  

The use of stimulus responsive LMWGs for a wide variety of biological and medical 

applications is an area of increasing interest. This would require the rational design of a molecule 

which not only forms a stable gel but which also contains a functional group which undergoes a 

gel-sol transition as a response to an external stimulus. Most LMWGs are thermally responsive, 

meaning they typically go into the solution phase when heated and return to the gel phase when 
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cooled. In addition to temperature, many gels can respond to other stimuli such as pH, redox, and 

light.10-21 

 

Responsive to changes in pH is one of the most common methods for controlling gel-sol 

transition. These types of gelators contain moieties which are sensitive to acids or bases. For 

example, many carbohydrate derived gelators contain acetal protecting groups which can be 

cleaved under acidic conditions14, 21 (Fig. 2a). When supramolecular hydrogelators containing 

carboxylic acid moeities (Fig. 2b) are placed under basic conditions, the carboxylic acids are 

deprotonated and the resulting electrostatic interactions destabilize the gel.11, 22 

 

  

 

Fig 2: a) Acid responsive LMWGs containing acetal protecting groups, and b) Base responsive 

LMWGs containing carboxylic acid moieties. 
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Redox responsiveness is another common method for controlling gel-sol transitions. Redo 

responsive LMWGs contain moieties which respond to oxidizing or reducing agents. For example, 

the dipeptide based hydrogelators in Fig. 3 contain redox responsive aryl-methoxycarbonyl 

(Armoc) groups at the N terminus. The groups are cleaved under oxidative (Fig. 3a) or reductive 

(Fig. 3b) conditions. Cleavage of the Armoc group induces the gel-sol transition.   

 

  

Fig. 3: Redox responsive dipeptide hydrogelators 

 

 

Tetrathiafulvalene (TTF) can be transformed into its cationic or dicationic forms through 

redox chemistry (Fig. 4). A TTF derivative was first reported as an organic conductor in 1973.23 

Since then, numerous groups have found that TTF derived gelators formed gels which reversibly 

respond to redox reactions. Oxidation of the TTF group results in a gel-sol transition. It is believed 

that the positive charge disrupts the intermolecular interactions needed to form the gel.16, 24-25  
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Fig. 4: Oxidized and reduced species of tetrathiafulvalene (TTF) 

 

Enzyme responsive supramolecular gels are very useful for biomedical applications. They 

can be designed to respond to enzymes associated with particular tissues, organs, or medical 

conditions. Kinases and phosphatases are complementary classes of enzymes which can be used 

to reversibly control the formation of hydrogels (Fig. 5). Phosphatases cleave phosphate moieties 

from proteins, leaving a free hydroxyl group. Kinases transfer phosphate groups from adenosine 

triphosphate (ATP) to substrates containing free OH groups. When peptide based gelators are 

dephosphorylated by phosphatases, a sol-gel transition is observed.18, 26-27 It is believed that the 

hydroxyls provides hydrogen bonding interactions needed for supramolecular self-assembly. The 

gelation can be reversed when the gel is incubated with protein kinases in the presence of ATP.18  

 

   

Fig. 5: Complementary kinase/phosphatase reactions 
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Photosensitive supramolecular gels contain chromophores which absorb light of a certain 

wavelength. Absorption of the light triggers reactions which change the physical structure of the 

gelator. This induces or disrupts the interactions needed for the supramolecular network. 

Photoresponsive gels can be used for sensors, drug delivery, and electronics.28 Since conjugated 

systems are best for absorbing light, most chromophores contain multiple double bonds. 

Absorption of light can trigger cis-trans isomerization. Typically, trans isomers can form gels and 

cis isomers cannot.28-29  

 

Some ring opening and closing reactions can be induced by light. The gelator in Fig. 6 can 

undergo ring opening and closing upon exposure to different wavelengths of light. When the ring 

is closed, the molecule is unable to form gels due to its non-planar conformation. When irradiated 

with UV light, the ring opens and the resulting isomer is able to form stable hydrogels through π-

π stacking.  

 

 

 

Fig. 6: Photoresponsive hydrogelator undergoing photo-induced ring opening and closing 

reactions 
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Knowledge of how reversible gel-sol transitions can be controlled has helped researchers 

find diverse uses for LMWGs. This, along with recently developed rational approaches to LMWG 

discovery, allows for a much more purposeful approach in the design of LMWGs as “smart” 

materials. It is now easier to predict whether a compound can form a gel and if that gel will respond 

to environmental stimuli. However, it is still impossible to say with complete certainty whether 

the desired gelation properties will be observed until the testing is done.  

 

1.2 Sugar based gelators    

Carbohydrate based LMWGs are an expanding area of research. Carbohydrates are 

naturally abundant, cheap, renewable, and biocompatible. The chiral hydroxy groups can be 

selectively functionalized with groups which facilitate gelation and respond to external stimuli.3  

The sugar alcohol D-sorbitol (Fig. 7) is one of the simplest examples. A solution of D-sorbitol in 

ethanol can be cooled and sonicated to form a supramolecular gel.30 Many groups have modified 

D-sorbitol and reported the gelation properties of D-sorbitol derivatives in a large variety of 

solvents. The ampiphilic D-sorbitol derivative 1,3:2,4-di-O-benzylidene sorbitol can dissolve in 

numerous solvents because it contains both hydrophobic and hydrophilic groups.31 Because of this, 

they are able to form robust gels in organic solvents and polar solvents such as polyethylene glycol 

and polypropylene glycol.31-32         

 

        

Fig. 7: Structure of D-sorbitol    
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Cyclodextrins are cyclic oligosaccharides consisting of six to eight glucose units joined by 

1,4 α-linkages (Fig. 8).3  They are able to form gels in many organic solvents and in mixtures of 

water and organic solvents. Early studies of β-cyclodextrin organgoels show that solvent molecules 

are located both inside and outside of the cavity when the supramolecular network is formed.33 

Host-guest interactions between cyclodextrins and guest molecules can be manipulated to affect 

gelation properties.34-35  

 

 

 

Fig. 8: Examples of clyclodextrins 

 

 

Gluconamide type ampiphiles are carbohydrate based gelators attached to a long 

hydrocarbon chain through an amide bond. Fig. 9 shows some of the first gluconamide type 

hydrogelators reported in 1985. Hydrogels formed at lower temperatures with decreasing lengths 

of alkyl chains. Gelators containing 10 or 12 carbon alkyl chains crystalized out of solution at 

room temperature. Gelators containing more amide bonds tended to form gels at lower 
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temperatures. It is believed that hydrogelation with gluconamides is favored by strong hydrogen 

bonds. Therefore, gelators containing more hydrogen bonding groups can be expected to be more 

efficient.36 

 

 

 

Fig. 9: Structures of early gluconamide type gelators   

 

 

Monosaccharides common building block for low molecular weight gelators.  Our group 

recently synthesized a series of peracetylated N-acetyl glucosamine based triazole derivatives.37  

Peracetylated glucosamine azide was reacted with a series of alkynes to make a library of triazole 

compounds with the structure shown in Fig. 10. Almost all the compounds were able to form at 

least one gel in the solvents tested. Four analogues formed toluene gels at 20 mg/mL and one long 

alkyl chain derivative was able to form a gel in ethanol. Increasing the number of methylene groups 

was shown to improve the efficiency of a gelator.   

 

 

 

Fig. 10: Structure of glucosamine based triazole derivatives     
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Methyl 4,6,O-benzylidene derivatives of monosaccharides, such as the glucose derivative 

in Fig. 11, are a useful building block for synthesizing LMWGs. These compounds are 

characterized by unprotected OH groups at the 2 and 3 positions; protection of the anomeric OH 

with a methyl group; and protection of the 4-OH and 6-OH with benzylidene acetal.3  

 

  

Fig. 11: Structure of methyl 4,6,O- benzylidene glucose   

 

Investigation of the gelation properties of methyl 4,6,O-benzylidene derivatives of 

monosaccharides showed that gelation is primarily driven by intermolecular hydrogen bonding 

between the OH groups.38 Gelation ability was highest when the spatial arrangement of gelator 

molecules allowed both 2-OH and 3-OH groups to participate in intramolecular interactions. Many 

groups have synthesized LMWGs based on these benzylidene protected monosaccharide building 

blocks.  

 

Our group synthesized a series of 4,6,O-benzylidene-methyl-α-D-glucopyranose 

derivatives with modifications at the 2 position (Fig. 12).39 Many of these compounds formed 

robust organogelators and hydrogelators. Esters with the general structure 12a form stable gels in 

polar solvents when the R group is a short alkyl chain. Carbamates with the structures 12b and 12c 

formed gels with lower minimum gelation concentrations due to the additional hydrogen bonding 

from the carbamate NH. Amides and ureas with structures 12d and 12e also showed enhanced 

gelation compared to esters 12a. Amides and ureas containing alkyl chains formed robust gels in 
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mixtures of water with DMSO or ethanol and the aryl derivatives were also able to form some gels 

in polar solvents.   

 

  

Fig. 12: Structures of 4,6-O-benzylidene-α-methyl-D-glucopyranose derivatives modified 

at the 2 position    

 

A later paper examined the gelation properties of the 1-deoxyglucose analogues (Fig. 13). 

These analogues did not contain the o-methoxy group in the anomeric position. The hydroxyl 

groups in the 2 and 3 positions were derivatized to create a series of monoesters and diesters. Most 

of the diesters were able to form gels in ethanol and in mixtures of water and DMSO. The most 

effective gelators were diesters containing aromatic groups or diacetylenes. The 2- and 3- 

monoesters did not perform as well in the gel test.40 

 

Fig. 13: Structure of 4,6,O-benzylidene-1-deoxy-glucose 
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1.3 The use of supramolecular gels in environmental applications  

Knowledge of how the gelation properties of LMWGs can be altered allows researchers to 

design them with a specific purpose in mind. When designing a low molecular weight gelator for 

a particular application, the compound must (i) be able to efficiently form a gel in an appropriate 

solvent system and (ii) if appropriate, should be able to undergo a gel-sol or sol-gel transition in 

response to some external stimulus. In some cases, some LMWGs need to be able to only form 

gels with certain liquids when added to a mixture. 

 

One situation in which LMWGs need to exhibit very specific gelation properties is when 

they are used in oil spill cleanup. Supramolecular gels are materials of interest for oil spill cleanup 

because they do not harm the environment and can immobilize large volumes of liquid. The 

reversibility of the formation of gels means that the gelator can be recovered and reused. A low 

molecular weight gelator used in oil spill cleanup should preferentially form gels with 

hydrocarbons in the presence of water. The resulting gel should be stable and easily separable from 

water.41  

 

The first report of a phase selective LMWG was published in 2001. The gelator was a 

simple amino acid derivative called N-lauroyl L-alanine (Fig. 14). The compound was added to a 

1:1 mixture of commercial oil and water. The mixture was heated to dissolve the solid. As soon as 

the liquids returned to room temperature, the oil phase was completely immobilized while the 

aqueous phase was left undisturbed. The selective gelation was made possible by N-lauroyl L-

alanine’s unique structure. The long alkyl chain excluded water while the polar COOH and CONH 

groups formed the supramolecular network through intermolecular hydrogen bonding.  
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Fig. 14: Structure of N-lauroyl L-alanine 

 

Since that report, many other phase selective organogelators have been designed. Like N-

lauroyl L-alanine, most of these compounds had a long hydrocarbon chain and hydrogen bonding 

groups such as esters and amides. However, their practical application was limited by the fact that 

almost all of them had to undergo a heating and cooling cycle before forming a gel with oil.42-43 

The first reported LMWG which quickly (< 90 s) and selectively formed gels with oils at room 

temperature was a simple phenylglycine derivative (Fig. 15). A few years later, a glucosamine 

derived LMWG which could instantly (< 45s) gelate oil from an oil/water mixture was reported.44 

 

  

Fig. 15: Structure of phenylglycine derivative which selectively gelates oil at room 

temperature   

 

The discovery of LMWGs which exhibited phase selective gelation without a heating-

cooling cycle was important development. However, all of these gelators had to be introduced into 

oil/water mixtures in water miscible carrier solvents such as ethanol. Most of these carrier solvents 

are toxic and remain in the water after the oil gels are separated from the aqueous phase. This 
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concern was addressed by developing a phase selective organogelator which could be delivered to 

the oil/water mixture in a non-polar carrier solvent which co-congealed with the oil (Fig. 16).  

  

 

Fig. 16: Structure of phase selective organogelator which can be delivered to an oil/water mixture 

in a non-polar carrier solvent  

 

 

 

Removal of dyes and other pollutants from water is another practical environmental 

application of LMWGs. This is conventionally done with activated charcoal or clay. There has 

been recent interest in the development of other materials for this purpose including polymeric 

organogels and organic-inorganic hybrid LMWGs. An ideal gelator for this purpose should have 

both hydrophobic and hydrophilic domains to efficiently bind with many different types of dye. It 

should also form a network with porous structure.45  

 

Lithocholic acid (LCA) possesses many of the characteristics of a gelator which can be 

used for dye adsorption. It is a biocompatible cholesterol derivative which has been found to 

participate in many different supramolecular systems.46 When combined with an organic amine 
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such as dodecylmethylamine oxide (C12DMAO), the resulting ion pairs (Fig. 17) form hydrogen 

bonding networks which drives hydrogelation.47. 

 

  

Fig. 17: Ion-pairing between LCA and C12DMAO  

 

The xerogel formed from LCA and C12DMAO was tested for its ability to adsorb dye 

molecules out of water. The dyes tested were amido black 10B, methyl orange, rhodamine 6G, and 

chrome azurol S (Fig. 18). Adsoption efficiency was much higher for amido black 10B than it was 

for the other three dyes. Since FT-IR studies showed no obvious changes in the stretching and 

bending vibrations of hydrogen bonding groups, it is believed that dye adsorption is primarily 

driven by hydrophobic interactions. It can be concluded that amido black 10B is able to participate 

in more hydrophobic interactions with the gelators.47  
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Fig. 18: Structures of dyes used in adsorption studies with LCA/C12DMAO xerogels  

 

 

Some gelators can be designed to adsorb different dyes in different environments. This 

creates a highly versatile material which can be used to adsorb and separate a wide variety of dyes. 

The first reported molecule which can be used in this way is dibenzylidene sorbitol hydrazide (Fig. 

19).48 Unlike many other LMWGs used for dye adsorption, the gels formed from this compound 

remain stable over a wide pH range.  
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Fig. 19: Structure of dibenzylidene sorbitol hydrazide    

 

Dye adsorption studies with hydrogels formed by dibenzylidene sorbitol hydrazide found 

that adsorption efficiency for methylene blue, acid blue 25, and naphthol blue black (Fig. 20) 

changed as a function of environmental pH. In basic media, methylene blue was selectively 

adsorbed from a mixture of all three dyes. In acidic media, only acid blue 25 and naphthol blue 

black were adsorbed. This phenomenon can be explained by examining the structures of the dyes. 

Since the dye adsorption is primarily dependent on hydrophobic interactions, maximum adsorption 

is achieved when the dye molecule’s charge is lowest. For methylene blue, this occurs at high pH’s 

when the amines are not protonated. For the other two dyes, this occurs at lower pH’s because 

protonating the amine groups counteracts the negative charge from the sulfonate groups.48 

  

  

 

Fig. 20: Structures of dyes used in adsorption studies with dibenzylidene sorbitol hydrazide 

hydrogels 
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Charged LMWGs can adsorb select dyes through an ion exchange mechanism. The 

compound in Fig. 21 is a ligand for divalent metal cations. It is a precursor to low molecular weight 

metallogelators which have negatively charged carboxylate groups balanced by free sodium ions. 

When the gelator comes into contact with positively charged dyes, the free sodium ions are 

replaced by dye molecules. When the gelator is added to a mixture of differently charged dyes, 

only the positively charged dyes are adsorbed.49 

  

Fig. 21: Structure of the precursor to negatively charged metallogelator  

 

1.4 The use of pH responsive LMWGS for Controlled Drug Delivery   

pH responsive supramolecular gels are ideal for controlled drug delivery. The drug is 

encapsulated in the gel as long as the gel is stable. When the gel becomes unstable in response to 

a change in pH, the drug is released. Different tissues and organ systems usually have different 

environments. A pH responsive delivery system would ensure that the drug is only released at the 

intended site. This would increase the potency of the drug at the intended target while minimizing 

any side effects. 

 

Usually, pH sensitivity is introduced by incorporating ionizable groups.11, 50 These groups 

are ionized after protonation or deprotonation. The resulting electrostatic interactions destabilize 

the gel. In some situations, it is preferable to use a neutral delivery system.  The first neutral 

delivery system was reported in 2002. A bisacrylamide acetal cross-linker with a p-methoxy 
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substituent (Fig. 22) was synthesized and used to prepare an acid sensitive copolymerizing 

acrylamide gel. The para-substituted acetal ensures that the cross-linker is hydrolysed under acidic 

conditions (pH 5). All hydrolysis byproducts are neutral, making this the first uncharged pH 

sensitive gelator.51  

 

 

Fig. 22: Structure of acid labile bisacrylamide acetal cross-linker 

 

Many pH responsive hydrogels used for drug released are peptide based. However, peptide 

gelators are not the only ones which can be used for controlled release. There is increasing interest 

in the synthesis and applications of stimulus responsive DNA based hydrogels.52-53 The anticancer 

drug doxorubin can be loaded onto a DNA hydrogel microcapsule. pH dependent drug release 

studies show no doxorubin release at pH 7.2 or pH 9.0. At pH 5.0, doxorubin is steadily released 

in forty minutes. Circular dichroism experiments show that i-motif structures are formed at acidic 

pH’s. Therefore, it is concluded that destabilization of the gel is driven by the pH induced change 

in secondary structure.54 

 

Sugar based LMWGs can also be used for controlled drug delivery. In 2005, a novel pH 

responsive two-component hydrogel was reported. The two components of the hydrogel were an 

N-acetylgalctosamine (GalNac) appended glutamate ester (Fig. 23a) and an amphiphilic 

carboxylic acid derivative (Fig. 23b). On their own, neither compound could form pH responsive 
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hydrogels. The hydrogels of 23a were not pH sensitive and 23b could not form hydrogels. 

Hydrogels composed of a near equimolar mixture of 23a and 23b showed acid triggered gel-

shrinkage. The shrinkage was reversed by neutralization. FT-IR studies before and after hydrogel 

shrinkage elucidated the mechanism of swelling and shrinking. After shrinkage, a peak 

corresponding to COOH stretching appeared whereas a peak corresponding to COO- disappeared. 

It was proposed that the presence of the negative charge in a neutral environment led to 

electrostatic repulsion between gel fibers, which caused hydrogel swelling. By contrast, acid 

induced neutralization of the carboxylate groups removed the electrostatic repulsion and triggered 

hydrogel shrinkage. Vitamin B12 was successfully encapsulated in this two component hydrogel 

and quantitatively released in an acidic environment.55 

 

  

Fig. 23: Structures of components of mixed hydrogel system, a) GalNac appended glutamatate 

ester and b) ampiphilic carboxylic acid derivative  
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Our group synthesized a series of 2-amides and 2-ureas derived from 4,6,-O-p-methoxy-

benzylidene-α-methyl-D-glucosamine (Fig. 24).21 Nearly all of the compounds were able to form 

stable gels in 1:2 DMSO:H2O. Many of the urea derivatives formed gels in ethanol and in 1:2 

EtOH:H2O; and many of the amide derivatives formed stable hydrogels. Comparison of the gel 

test data to previous work shows that the addition of the p-methoxy group enhances gelation. 

Addition of diluted H2SO4 to these gels and their non-substituted analogues showed that the p-

methoxy substituent made the compounds more acid labile. This is because the p-methoxy 

benzylidene acetal can be more easily cleaved by acid. Our group than tested the gels’ capacity for 

pH-responsive controlled drug release.  

 

  

Fig. 24: Structures of amide and urea derivatives of 4,6,O-p-methoxy-α-methyl-N-acetyl-D-

glucosamine   

 

 

Naproxen sodium was incorporated into the gels. The release of naproxen sodium at 

different pH’s was measured by UV/Vis spectrometry. The naproxen was released very slowly 

under neutral conditions and about half of the total naproxen was released after 9 hours. When 0.1 

M HCl was added to the gel, the naproxen was released much more rapidly. About half of the 

naproxen was released after 1 hour and it was almost all of it was released after 6 hours.    
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Much of the previous work by our group focuses on 2-derivatives of the benzylidene acetal 

protected monosaccharides. In this work, we synthesized and characterized 3-ester and 3-

carbamate derivatives of 4,6,O-α-methyl-N-acetyl-D-glucosamine. Since these compounds 

possess groups which have been shown to participate in interactions crucial to the formation of 

supramolecular networks, we hypothesized that these compounds would be efficient gelators. 

After synthesizing the library of compounds, we tested their ability to form gels. We analyzed the 

gels with rheology, optical microscopy, temperature dependent 1H NMR and FT-IR to further 

understand the composition of the supramolecular networks and the driving forces behind their 

formation.  

 

We also hypothesized that these gels would exhibit pH responsive behavior. The ester and 

carbamate moieities at the 3 position can be hydrolyzed under basic conditions. Drug release 

studies with naproxen sodium and chloramphenicol showed that the gels became unstable under 

basic conditions; therefore, drugs were released much faster in a basic environment.   
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2. RESULTS AND DISCUSSION 

A series of 3-carbamate and 3-ester derivatives of 4,6,-O-benzylidene-α-methyl-N-acetyl-

D-glucosamine were synthesized. The benzylidene protected glucosamine building block C was 

made via a two-step process starting with N-acetyl-D-glucosamine. The o-methoxy group was 

attached to the anomeric position by Fischer esterification. The product of this reaction was 

immediately protected with dimethyl benzaldehyde. After compound C was purified, the 3 

position was derivatized with acid chlorides and isocyanates to yield compounds 1-14 (Scheme 

1).39     

 

 

  

Scheme 1: Synthesis of 3-ester and 3-carbamate derivatives      
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The abilities of the compounds to form gels were tested with the inverted vial method. 2 

mg of pure, dry compound was dissolved in 0.2 mL of solvent. The solid gelator was dissolved in 

the solvent with heating and sonication and allowed to cool on the benchtop for up to 30 minutes. 

A stable gel formed a semi solid on the bottom of the vial which did not run down the sides of the 

vial when inverted (Fig. 23). If a stable gel was observed more solvent was added until the 

minimum gelation concentration was reached.   

 

                                      

Fig. 25: Gel pictures of compound 6 in glycerol (left) and compound 10 in EtOH:H2O (1:2) (right) 

 

 

Results of the gel test for the 3-ester series are shown in Table 1. Almost all of the gels 

were able to form stable gels in mixtures of water with either DMSO or ethanol. The p-bromo ester 

7 formed gels toluene and ethanol. Overall, this series formed gels with relatively high MGCs. The 

majority of gels had a MGC of 10 or 20 mg/mL. The lowest MGC seen in this series was 6.7 

mg/mL for the phenyl ester 6 in 1:2 DMSO:H2O.   
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Table 1: Gel test results of ester derivatives     

  

  1 2 3 4 5 6 7 8 

R         
        

Pump oil G20 S G10 G10 G10 G6.7 I S 

Engine oil I S S S S I P P 

Mineral oil I I P I I I I P 

Toluene S S S S S UG G 20 S 

IPA S S S S S S P P 

EtOH S S S S S S G 20 S 

H2O I I P P I I I I 

EtOH:H2O 

(1:1) 
S S P G 10 P P I P 

EtOH:H2O 

(1:2) 
S G 10 G 10 UG P P I I 

DMSO:H2O 

(1:1) 
S G 20 G 10 UG G 10 G20 P UG 

DMSO:H2O 

(1:2) 
P P G 10 P G 10 G 6.7 I G 20 

EG S  S S P S P UG P 

Glycerol P P P P P G 20 P P 

 

S= soluble; P= precipitate; I = insoluble; UG = unstable gel; G = gel followed by MGC in 

mg/mL, EG= ethylene glycol  
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The gel test results for the 3-carbamate series are shown in Table 2. Like the 3-ester 

derivatives, almost all of these compounds formed gels in water mixed with either ethanol or 

DMSO. The phenyl carbamate 13 and benzyl carbamate 14 were formed gels in toluene. The hexyl 

carbamate 11 formed a gel in ethylene glycol. The pentyl carbamate 10 and phenyl carbamate 13 

formed gels in glycerol. Overall, the carbamate compounds proved to be more efficient gelators 

than the ester derivatives. They were able to form gels in a larger variety of solvents and the gels 

formed by the carbamate compounds had lower MGCs.   
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Table 2: Gel test results of carbamate derivatives 

 

 Compound  9 10 11 12 13 14 

R       
      

Pump oil  I G20 UG I UG I 

Engine oil I I I I P S 

Mineral oil I I I I I I 

Toluene UG S S S G 10 G 20 

IPA S S S S UG P 

EtOH S S S S S UG 

H2O I I I I I I 

EtOH:H2O (1:1) P P G 10 G 5 G 20 G 2.5 

EtOH:H2O (1:2) G 20 G 10 G 5 G 3.3 I P 

DMSO:H2O(1:1) P G 20 G 10 G 6.7 P S 

DMSO:H2O(1:2) I G 20 S I G 10 G 10 

Ethylene glycol UG P G 10 I I S 

Glycerol I G 20 I S G 20 P 

 

S= soluble; P= precipitate; I = insoluble; UG = unstable gel; G = gel followed by MGC   
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The melting point ranges of some of the gels formed by hexyl carbamate 10, heptyl 

carbamate 11, and cyclohexyl carbamate 12  in 1:1 DMSO:H2O were measured (Table 3). The 

three temperatures recorded were the temperature at which liquid was first seen, the temperature 

at which the gel was halfway melted, and the temperature at which the gel was completely at the 

liquid phase. The gels started melting at 41.5-50.8 °C and completely melted at 77.2- 122.2 °C. 

The melting point range for the gels increased as gel concentration decreased. All of the gels 

measured in this experiment showed a large melting point range, which suggests that the gels are 

relatively stable to heat.  

 

Table 3: The melting point range for some of the gels in 1:1 DMSO:H2O  

Compound Gel conc. in 1:1 

DMSO:H2O 

(mM; mg/mL) 

T1 (°C) T2 (°C) T3 (°C) 

10 44.4; 20 48.0 71.3 77.2 

11 21.5; 10 50.8 85.1 95.6 

12 14.9; 6.7 41.5 91.3 122.2 
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The hexyl ester 3, cyclohexyl ester 5, phenyl ester 6, hexyl carbamate 10, heptyl carbamate 

11, and cyclohexyl carbamate 12 were all tested for their water tolerability. Gels formed with water 

as the solvent are often best for biological or medical applications because water is non-toxic. If a 

compound is not able to gelate pure water, a compound which can form a stable gel with a high 

ratio of water to another solvent is best for this type of application. 

  

 None of the compounds in this series were able to form gels in pure water. They were not 

polar enough to dissolve in water, even when heated. However, many of them were able to form 

gels in mixtures of water and DMSO. The limits of these compounds’ abilities to form gels in 

aqueous DMSO was tested by dissolving the compounds in DMSO. Water was added 

incrementally. After each addition of water, the solution was heated with a heat gun and sonicated 

to bring the gelator into solution and the vial was left on the benchtop to cool to room temperature. 

The observations after each incremental addition of water were recorded until the compound could 

no longer form a stable gel (Table 4). 
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Table 4: Water Tolerability Study   

Compound +0.1 mL 

DMSO 

+ 0.2 mL 

H2O 

+0.1 mL 

H2O 

+0.1 mL 

H2O 

+0.1 mL 

H2O 

DMSO:H2O 

ratio 

3 S G UG N/A N/A 1:2 

5 S G G* G* UG 1:4 

6 S G P N/A N/A 1:2 

10 S G P N/A N/A 1:2 

11 S G P N/A N/A 1:2 

12 S G P N/A N/A 1:2 

 

S= soluble; I = insoluble; G= spontaneous gelation; UG= unstable gel; G*= gel formed after 

heating and sonicating 
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The morphology of the gels was studied by optical microscopy. All of the supramolecular 

networks observed this way showed a uniform assembly of fibers. The benzyl carbamate 14 in 1:2 

DMSO:H2O formed a network of long, thin fibers layered on top of each other (Fig. 24a). The 

cyclohexyl ester 5 in 1:2 DMSO:H2O formed long, slightly thicker fibers (Fig. 24b). The p-bromo 

ester 7 in toluene formed a network of very slender fibers (Fig. 24c). The hexyl ester 3 in 1:1 

DMSO:H2O formed a dense network of thick fibers.     

 

a)  

 b)   

Fig. 26: Optical micrographs of a) compound 14 in 1:2 DMSO:H2O (21.9 mM; 10 mg/mL) and b) 

compound 5 in 1:2 DMSO:H2O (23.1 mM; 10 mg/mL) 
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c)          

 d)    

Fig. 26: Optical micrographs of c) compound 7 in toluene (39.6 mM; 20 mg/mL) and d) compound 

3 in 1:1 DMSO:H2O (23.0 mM; 10 mg/mL)  

 

 

The heptyl carbamate 11 in 1:1 DMSO:H2O formed a network of short, branched fibers 

(Fig. 27a) The phenyl carbamate 13 in 1:1 EtOH:H2O formed a dense fibrous network (Fig. 27b). 

The p-methoxy ester 8 in 1:1 DMSO:H2O formed a network of short, flat fibers (Fig. 27c). The 

pentyl carbamate 9 in 1:1 DMSO:H2O formed long, thin fibers (Fig. 27d). 
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a)     

b)    

Fig. 27: a) compound 11 in 1:1 DMSO:H2O (21.5 mM; 10 mg/mL) and b) compound 13 in 1:1 

EtOH:H2O (45.2 mM; 20 mg/mL) 
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c)   h        

d)    

Fig. 27: c) compound 8 in 1:2 DMSO:H2O (43.7 mM; 20 mg/mL) and d)compound 9 in 1:2 

EtOH:H2O (45.8 mM; 20 mg/mL) 

 

 

The IR spectra of the gels were measured to further elucidate the types of interactions 

which drive the gelation process. Fig. 28 shows the IR spectra of the p-bromo ester compound 7, 

the 39.6 mM gel formed by compound 7 in ethanol, and ethanol by itself. Comparison of the 

spectra of the solid gelator 7 and the gel formed with EtOH show a change in intensity in the peaks 

at 1589 cm-1 and 843 cm-1. These correspond to the aromatic C=C stretch and aromatic C-H bend, 
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respectively. This observation suggests that π-π stacking is one of the driving forces behind the 

supramolecular self-assembly.  

 

 

     

 

Fig. 28: IR spectrum of compound 7 (blue), gel of compound 7 (39.6 mM mg/mL; 20 mg/mL) in 

EtOH (red), and EtOH (green). The y axis are arbitrary relative values.      
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A similar observation is found when comparing the spectra of the cyclohexyl carbamate 

12 and the 7.36 mM gel formed by compound 12 in 1:2 EtOH:H2O (Fig. 29). There were notable 

changes in peak intensity at 1540 cm-1 and 700 cm-1. These peaks respectively correspond to the 

aromatic C=C stretch and the aromatic C-H bend. Like the previous IR study, this confirms that 

intermolecular π-π stacking is important in the formation of gels.   
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Fig. 29: IR spectrum of compound 12 solid (blue), gel of compound 12 (7.36 mM; 3.3 mg/mL)  in 

1:2 EtOH:H2O (red), and control 1:2 EtOH:H2O solvent.     

 

3D modeling with compound 14 confirmed the importance of intermolecular π-π stacking 

interactions for self-assembly. Optimized structures of two-molecule models showed the phenyl 

rings from the benzylidene protecting group arranged parallel to each other, which would allow π-

π stacking interactions to occur. The model also showed oxygen and nitrogen atoms from each 

molecule in close proximity to each other, which suggests the presence of dipole-dipole 

interactions (Fig. 30).  

   

Fig. 30: Optimized structure of two-molecule model of Compound 14, in which the green dashed 

lines show intermolecular dipole-dipole interactions between oxygen and nitrogen atoms 

 

1H NMR spectroscopy studies at different temperatures for compounds 7 and 14 showed 

shifts in some of the signals as the temperature was increased. These results suggest that these 

protons participate in hydrogen bonding interactions which contribute to the molecular packing 
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necessary for gelation. Fig. 31 shows the structures and 1H NMR spectra of compounds 7 and 14. 

The acetyl NH signal of compound 7 shifts from 5.84 to 5.80 ppm and the anomeric signal shifts 

from 4.77 to 4.78 ppm. There are also small shifts observed in the acetal (5.57 to 5.55 ppm) and 

acetyl CH3 (3.44 to 3.45 ppm) signals (Fig. 32). The acetyl NH signal from compound 14 shows 

a shift from 6.01 to 5.98 ppm and its anomeric signal shifts from 4.74 to 4.76 ppm. No change is 

observed in the acetal signal and a small shift from 3.40 to 3.41 ppm was observed in the acetyl 

CH3 signal (Fig. 33).   

 

 

a)  

  

Fig. 31a:  1H NMR spectrum of compound 7.  
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 b)   

 

Fig. 31b:  1H NMR spectra of compound  14.  
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Fig. 32 a) Variable temperature 1H NMR (CDCl3, 400 MHz) study of compound 7 expansion 

from 0 to 8 ppm. 

 

 

 

b) 

5.84 

5.57 
4.77 

5.83 
5.56 

4.77 

5.82 
5.55 4.77 

5.81 

5.55 4.78 

30 °C 

35 °C 

40 °C 



42 
 

 

 

 

Fig. 32 b) Variable temperature 1H NMR (CDCl3, 400 MHz) study of compound 7 expansion from 

4.0 to 6.5 ppm 

 

 c) 
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Fig. 32c) Variable temperature 1H NMR (CDCl3, 400 MHz) study of compound 7 expansion from 

2.8 to 4.5 ppm 

30 °C 

 

 

 

35 °C 

40 °C 



44 
 

 

 

Fig. 33a Variable temperature 1H NMR (CDCl3, 400 MHz) study of compound 14 from 0-8 ppm 

b) 

6.01 

5.52 
4.74 

6.00 

5.52 
4.74 

6.00 

5.52 4.75 

5.99 
5.52 4.75 

5.99 

5.52 4.75 

30 °C 

35 °C 

40 °C 

45 °C 

50 °C 

45 °C 

55 °C 

50 °C 

40 °C 



45 
 

 

 

 

Fig. 33b Variable temperature 1H NMR (CDCl3, 400 MHz) study of compound 14 expansion from 

4.0 to 6.5 ppm.  

 

 

 

 

 

 

 

 

 

 

c) 
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Fig. 33c Variable temperature 1H NMR (CDCl3, 400 MHz) study of compound 14 expansion from 

2.8 to 4.5 ppm. 
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We studied the rheological properties of the gels formed by the 3-ester and 3-carbamate 

derivatives. The gel formed by the p-methoxy ester compound 8 in 1:2 DMSO:H2O had a higher 

storage modulus (G’) than loss modulus (G’’) at all frequencies tested (Fig. 34). This confirms the 

viscoelasticity of the gel. However, there was not a large difference between the loss modulus and 

the storage modulus. The storage modulus had a maximum of about 200 Pa. This shows that this 

gel possessed relatively weak mechanical strength. 

 

      

Fig. 34: Rheological properties of gel formed by compound 8 in DMSO:H2O 1:2 (43.7 mM; 20 

mg/mL)    
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The rheological studies of the gel formed by the phenyl ester compound 6 in 1:2 

DMSO:H2O showed that this gel posessed greater mechanical strength than the one formed by 

compound 8. There is a greater difference between the loss and storage moduli (Fig. 35). The 

storage modulus is close to 1000 Pa throughout all the frequencies tested. 

 

 

   

Fig. 35: Rheological properties of gel formed by compound 6 in 1:2 DMSO:H2O (46.8 mM; 20 

mg/mL)  

 

The rheological studies gel formed by the cyclohexyl ester 12 in 1:1 DMSO:H2O (Fig. 

36) showed that this gel had very little mechanical strength. Although the storage modulus was 
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consistently greater than the loss modulus, both values were very low. The storage modulus 

remained around 100 Pa and the loss modulus was about 20 Pa.    

 

 

 

Fig. 36: Rheological properites of gel formed by compound 12 in 1:1 DMSO:H2O (44.6 mM; 20 

mg/mL) 

    

The rheological properties of the gel formed by compound 12 in 1:1 DMSO:H2O at a 

lower concentration was also tested (Fig. 37). The difference between the storage and loss 

moduli decreased even further, particularly at the higher frequencies. This shows that the 

mechanical strenght of the gels decreases as the concentration decreases.  
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Fig. 37: Rheological properties of gel formed by compound 12 in 1:1 DMSO:H2O (22.3 mM; 10 

mg/mL)   

 

 

We tested the gel formed by compound 14 in 1:2 DMSO:H2O for its potential use in 

controlled drug release. The NSAID naproxen sodium was incorporated into the gel matrix. 

Aqueous solutions of the appropriate pH were made by adjusting the pH of DI water with aqueous 

NaOH. The DI water was pipetted on top of the gels containing naproxen sodium. The diffusion 

of naproxen into the aqueous phase was measured by UV/Vis. About one-third of the naproxen 

was released in the first thirty minutes. After that the rate of naproxen release slowed down 
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dramatically, with a very small amount diffusing out of the gel between 1 hour and 2 hours. After 

24 hours only two-thirds of the naproxen had been released from the gel (Fig. 38).  

 

 

 

  

Fig. 38: Release of naproxen sodium from gel formed by compound 14 in the presence of pH 7 

solution. 2 mg compound 14 (4.38 μmol) and 1 mg naproxen sodium (3.97 μmol) were dissolved 

in 0.2 mL 1:2 DMSO:H2O with heating and sonication.  Solution was cooled on the benchtop for 

~20 min until a stable gel (21.9 mM of compound 14 and 19.9 mM of naproxen) formed. Naproxen 

standard is made by dissolving 1 mg naproxen (3.97 μmol) in 3 mL pH 7 solution to make a 1.32 

μM solution. 



52 
 

 

 

The same experiment was repeated using a pH 10 solution. Carbamates can be hydrolyzed 

into amines by base. Therefore, it was expected that the gel would degrade at pH 10 and the 

naproxen would be released more quickly. Two-thirds of naproxen was already released in one 

hour. After three hours about 85% of the naproxen had been released (Fig. 39).  

 

 

  

Fig. 39: Release of naproxen sodium from gel formed by compound 14 in the presence of pH 10 

solution. 2 mg compound 14 (4.38 μmol) and 1 mg naproxen sodium (3.97 μmol) were dissolved 

in 0.2 mL 1:2 DMSO:H2O with heating and sonication. Solution was cooled on the benchtop for 

~20 min until a stable gel (21.9 mM compound 14 and 19.9 mM naproxen) formed. Naproxen 

standard is made by dissolving 1 mg naproxen (3.97 mmol) in 3 mL pH 10 solution to make a 1.32 

μM solution.   
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A controlled release experiment was also done with the antibiotic chloramphenicol (Fig. 

40a). Chloramphenicol was incorporated into the gel matrix and the release of chloramphenicol in 

the presence of a pH 7 solution was measured. About half of the chloramphenicol was released in 

1.5 hours. After that, the rate of release decreased. There was little difference between the amount 

of chloramphenicol released at 2.5 hours and 3 hours. At 24 hours about 85% of the 

chloramphenicol was released from the gel. Visual inspection of the gel showed that the gel 

remained intact during the entire duration of the chloramphenicol release study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



54 
 

 

 

a)  

 

Fig. 40: a) Release of chloramphenicol from gel formed by compound 14 in the presence of pH 7 

solution. 4 mg compound 14 (8.76 μM) was dissolved in 0.2 mL of a 3.1 mM (1 mg/mL) stock 

solution of chloramphenicol dissolved in 1:2 DMSO:H2O. Solution was cooled on the benchtop 

until a stable gel (43.8 mM compound 14 and 3.11 mM chloramphenicol) formed. 

Chloramphenicol standard was made by dissolving 0.2 mL of the stock solution in 2.8 mL of pH 

7 solution to make a .021 mM solution. 
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Fig. 40: b) Gel pictures from study of release of chloramphenicol from gel formed by compound 

14 in the presence of pH 7 solution. 3 mL of deionized water was adjusted to pH 7 using NaOH 

with a pH meter.  

 

 

When the study was repeated in the presence of a pH 10 solution, the chloramphenicol was 

completely released much more rapidly. (Fig. 41a).  About half of the chloramphenicol was 

released in one hour. At 1.5 hours about two-thirds of the chloramphenicol was released and at 2 

hours almost 90% of the drug was released. The chloramphenicol was 100% released in 2.5 hours. 

The gel appeared slightly unstable after the 2.5 hours.  
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Fig. 41: a) Release of chloramphenicol from gel formed by compound 14 in the presence of pH 7 

solution. 4 mg compound 14 (8.76 μM) was dissolved in 0.2 mL of a 3.1 mM (1 mg/mL) stock 

solution of chloramphenicol dissolved in 1:2 DMSO:H2O. Solution was cooled on the benchtop 

until a stable gel (43.8 mM compound 14 and 3.11 mM chloramphenicol) formed. 

Chloramphenicol standard was made by dissolving 0.2 mL of the stock solution in 2.8 mL of pH 

10 solution to make a 0.021 mM solution.  The pH 10 buffer was prepared using NaOH with a pH 

meter.  
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Fig. 41: b) Gel pictures from study of release of chloramphenicol from gel formed by compound 

14 in the presence of pH 10 solution. Supernatant is DI water adjusted to pH 10. The pH 10 buffer 

was prepared using NaOH with a pH meter.  

 

 

The release of chloramphenicol from the cyclohexyl ester 5 in the presence of a pH 7 

solution was also measured (Fig. 42a). The release of chloramphenicol from compound 5 at pH 7 

happened much faster than the release of chloramphenicol from compound 14 at the same pH. 

One-third of the chloramphenicol was released in 2 hours, and about half of it was released in 3 

hours. Two-thirds of the drug was released in 4.5 hours and almost all of it was released in 7.5 

hours. The gel remained stable during the duration of the study (Fig. 42b).  
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Fig. 42: a) Release of chloramphenicol from gel formed by compound 5 in the presence of pH 7 

solution.  4 mg compound 5 (9.23 μmol) was dissolved in a 3.1 mM (1 mg/mL) stock solution of 

chloramphenicol dissolved in 1:2 DMSO:H2O. Solution was cooled on the benchtop until a stable 

gel (46.2 mM compound 5 and 3.11 mM chloramphenicol) formed. Chloramphenicol standard was 

made by dissolving 0.2 mL of the stock solution in 2.8 mL of pH 7 solution to make a 0.021 mM 

solution.  
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  2 hours2 h o  
Fig. 42: b) Gel pictures of release of chloramphenicol from gel formed by compound 5 in the 

presence of pH 7 solution. Supernatant is DI water adjusted to pH 7.  

 

 

 

 

The controlled release studies show that these compounds can form stable gels with 

naproxen sodium or chloramphenicol. When the gel containing the drug is kept at a neutral pH, 

the gel remains stable and therefore the drug is released very slowly. When the pH is raised to 10, 

the gel becomes unstable and therefore the drug is released much more quickly. Under these 

conditions, the drug is fully released in less than 24 hours. This shows that the gels formed from 

these ester and carbamate derivatives have potential use for controlled delivery in which the drug 

needs to be released under basic conditions.    
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3. CONCLUSIONS  

A series of 3-ester and 3-carbamate derivatives of 4,6,-O-benzylidene acetal α-methyl-D-

glucose were synthesized and characterized. Many of these compounds formed robust organogels, 

with the 3-carbamates forming more stable gels than the 3-esters. Optical microscopy showed that 

the gelators self-assembled into networks composed of uniform fibers. Rheological studies showed 

that the storage moduli G’ of the gels was higher than the loss moduli G”, which confirms the 

viscoelasticity of the gels. A comparison of gels formed by the same gelator in the same solvent 

system at different concentrations confirmed that gels with higher gelation concertation had greater 

mechanical strength. Measurement of the melting points of selected gels in 1:1 DMSO:H2O 

showed that the gels melted at high temperatures and over a large range of temperatures. Gels with 

lower gelator concentrations showed a larger melting point range than those with higher 

concentrations. Comparison of the FTIR spectra of the solid gelators and their corresponding gels 

showed a change in intensity in peaks corresponding to aromatic C=C stretching and aromatic C-

H bending. This suggests that intermolecular π-π stacking plays an important role in gel formation. 

The importance of intermolecular π-π stacking is supported by the 3D modeling, which shows the 

phenyl rings from the acetal protecting groups aligned parallel to each other. The 3D models also 

show the oxygen and nitrogen atoms oriented towards each other, which suggests intermolecular 

dipole-dipole interactions. 1H NMR spectra taken at different temperatures changes in the NH, 

anomeric, acetal, and acetyl CH3 signals. This suggests that these protons play a role in 

intermolecular hydrogen bonding interactions which contribute to gelation.  

 

The release profile of naproxen and chloramphenicol from the gels formed by carbamate 

compound 14 and ester compound 5 in 1:2 DMSO:H2O were studied at pH 7 and pH 10. At 24 
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hours, neither drug was completely released from compound 14 at pH 7. In both cases, the drugs 

were initially released quickly and then the rate of release slowed down to the point that the 

difference in the amount of drug released between one hour intervals was very small. When the 

pH was raised to 10, the gel formed by compound 14 and the drugs used in the study became less 

stable. This is likely due to basic hydrolysis of carbamates into amines. Naproxen was fully 

released in 4.5 hours and chloramphenicol was fully released in 2.5 hours. The rate of drug release 

remained constant for both drugs under basic conditions. 

 

The gel formed by compound 5 with chloramphenicol was less stable than the one formed 

by compound 14 and therefore released the drug more quickly. Chloramphenicol was completely 

released from the gel formed by compound 5 in 7.5 hours. The rate of chloramphenicol remained 

constant throughout that time. Compound 5 was unable to form a stable gel with naproxen. The 

higher stability of gels formed from the carbamate compound and the drugs is likely due to the 

additional H-bonding groups in the carbamate compounds. These results suggest that compound 

14 and the other carbamates may be useful for controlled drug release under basic conditions. 
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4. EXPERIMENTAL SECTION 

4.1 Gelation Tests  

2 mg of the solid compound was placed in a 1 dram vial. 200 µL of the solvent being tested 

was added to the vial to make 20 mg/mL solution. The mixture was heated and sonicated to 

dissolve the compound, then allowed to cool on the bench for up to 20 minutes. The vial was 

inverted to see if the gel would remain on the bottom of the vial. If a stable gel was formed the 

solvent was added in 100 µL increments. With each dilution the process of heating, sonicating, 

and cooling was repeated. This process continued until the compound could no longer form a stable 

gel.   

 

4.2 Naproxen release study  

NaOH was added to DI water to make aqueous solutions with pH 7 and 10. The gels were 

formed by weighing out 2 mg compound 14 and 1 mg naproxen sodium. 200 µL 1:2 DMSO:H2O 

was added and the mixture was heated, sonicated, and cooled to form a stable gel. 3 mL of the 

aqueous solution of appropriate pH was pipetted on top of the gel. The aqueous phased was 

periodically transferred to a quartz cuvette and the UV-Vis spectrum was measured. The naproxen 

standard was made by dissolving 1 mg naproxen sodium in 3 mL of the same pH solution used in 

each study. The gelator standard was made by dissolving 2 mg compound 14 in 3 mL of the 

solution of the pH being studied. All measurements were done on a Varian Cary 5000 UV-Vis-

NIR spectrophotometer (version 1.12).  
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4.3 Chloramphenicol release study   

A stock solution of 1 mg/mL chloramphenicol in 1:2 DMSO:H2O was made by dissolving 

10 mg chloramphenicol in 10 mL of the DMSO/H2O mixture. 4 mg compound 14 or compound 5 

was placed in a 1 dram vial. 200 µL of the chloramphenicol stock solution was added to the vial. 

The mixture was heated, sonicated, and cooled to form a gel. 3 mL of the appropriate aqueous pH 

solution was pipetted on top of the gel. Diffusion of chloramphenicol into the aqueous phase was 

monitored by UV/Vis. The chloramphenicol standard was made by dissolving 200 μL of the 

chloramphenicol stock solution in 2.8 mL of the same pH solution used in each study. Gelator 

standards were made by dissolving 2 mg compound 14 or compound 5 in the solution of the 

appropriate pH. All measurements were done on a Varian Cary 5000 UV-Vis-NIR 

spectrophotometer (version 1.12).     

 

4.4 Synthesis of 4,6,O-α-methyl-N-acetyl-D-glucosamine  

N-acetyl D-glucosamine was refluxed with Amberlite IR and methanol for 24 hours. 

Reaction mixture was filtered to remove resin and neutralized with NaHCO3. The mixture was 

filtered again to remove NaHCO3 and MeOH was removed under the rotovap. The resulting 

product was dissolved in DCM. 0.1 equiv. PTSA and 1.3 equiv. bezylidene dimethyl acetal was 

added to the reaction mixture. Reaction was stirred at 80 °C for 7 hours. Reaction was neutralized 

with NaHCO3, filtered, and worked up with DCM and H2O. Organic layer was combined and dried 

under the rotovap. Compound was recrystallized with hexane and ethanol. The mother liquor was 

concentrated and purified by column chromatography using a MeOH/DCM gradient.  
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4.5 General procedure for the synthesis of esters  

The compounds 1-8 were synthesized and provided by Dr. Lalith Samankumara. The 

general method:    

75 mg of 4,6,O-α-methyl-N-acetyl-D-glucosamine was added to a 50 mL round bottom 

flask and dissolved in 2 mL DCM. 2 equiv. pyridine was added and mixture was cooled to 0 °C. 1 

equiv. acid chloride was added dropwise with stirring. Reaction was stirred for 4-10 hours from 0 

°C to r.t. The crude mixture was concentrated on a rotary evaporator and purified by column 

chromatography using a hexane/ethyl acetate gradient.   

 

4.6 General procedure for the synthesis of carbamates   

The compounds 9-14 were synthesized and provided by Dr. Lalith Samankumara and Anji 

Chen. The general method:    

75 mg of 4,6,O-α-methyl-N-acetyl-D-glucosamine and 0.3 equiv. DMAP were dissolved 

in anhydrous acetonitrile in a 50 mL round bottom flask. The mixture was stirred at r.t. for 15 min, 

then 1 equiv. isocyanate was added to the mixture. Reaction was stirred for 2-4 hours at r.t. Crude 

mixture was concentrated on the rotary evaporator and purified by column chromatography using 

a hexane/ethyl acetate mixture.    

 

4.7 Measurement of melting point ranges of gels  

The gelator was dissolved in a small vial at the minimum gelation concentration and heated 

to form the solution. The hot solution was transferred to the NMR tube, where it was allowed to 

cool down to form the gel. A metal ball was placed on top of the gel. The ball fell towards the 

bottom of the tube as the gel melted. The NMR tube was immersed in an oil bath which was heated 
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gradually. T1 is the temperature of the initial melting, T2 is the temperature at which the gel is 

estimated to be half melted, and T3 is the temperature at which the entire gel turned into a colorless 

liquid.   

 

4.8 Water Tolerability Study  

2 mg of solid gelator was weighed into a 4-dram vial and dissolved in 0.1 mL DMSO. 0.2 

mL H2O was added, causing spontaneous gelation. The bottom of the vial was heated with a heat 

gun to bring the gel back to the solution phase. 0.1 mL water was added and the vial was heated 

and sonicated to bring the gel back into the solution phase. The solution was allowed to cool for 

20-30 min on the benchtop. This was repeated until a stable gel could no longer be formed. 

 

4.9 Rheology  

Rheological measurements were all done on a Discovery HR-2 hybrid plate rheometer. 

Gels were formed by dissolving the gelator in the appropriate solvent and allowing them to cool 

to form the gel. The gels were allowed to age for about 24 hours before measurements were taken.  

 

4.10 Infrared Spectroscopy  

All IR spectra were taken on a Bruker Alpha Platinum-ATR FTIR spectrometer. Solid 

samples were placed on the instrument arm down. Gel samples were measured once with arm 

down and once with arm up. Liquid samples were pipetted onto the instrument and the 

measurement was taken without placing the arm down.  
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4.11 3-D Modeling  

3D modeling was done using Chem3D 16.0.  

 

4.12 Variable Temperature 1H NMR Studies  

All samples were prepared at a concentration of 10 mg/mL in CDCl3. Measurements were 

taken at 30 °C, 35 °C, 40 °C, 45 °C, 50 °C, and 55 °C on a Bruker Ascend 400 MHz NMR.   
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