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UNIFORM l1 BEHAVIOR OF A TIME DISCRETIZATION METHOD
FOR A VOLTERRA INTEGRODIFFERENTIAL EQUATION WITH

CONVEX KERNEL; STABILITY∗

CHARLES B. HARRIS† AND RICHARD D. NOREN†

Abstract. We study stability of a numerical method in which the backward Euler method is
combined with order one convolution quadrature for approximating the integral term of the linear
Volterra integrodifferential equation u′(t) +

∫ t
0 β(t − s)Au(s) ds = 0, t ≥ 0, u(0) = u0, which arises

in the theory of linear viscoelasticity. Here A is a positive self-adjoint densely defined linear operator
in a real Hilbert space, and β(t) is locally integrable, nonnegative, nonincreasing, convex, and −β′(t)
is convex. We establish stability of the method under these hypotheses on β(t). Thus, the method
is stable for a wider class of kernel functions β(t) than was previously known. We also extend the
class of operators A for which the method is stable.

Key words. Volterra integrodifferential equation, convolution quadrature, convex kernel, l1-
stability

AMS subject classifications. 45D05, 45K05, 65R20, 64D05

DOI. 10.1137/100804656

1. Introduction. Let A be a positive self-adjoint linear operator defined on a
dense subspace D(A) of a real Hilbert space H with spectral decomposition

(1) Ax =

∫ ∞

−∞
λdEλ x

for x ∈ D(A). We assume that the spectrum of A is contained in [λ0,∞), where
λ0 > 0. Xu established stability results in 2002 (see [21]) and convergence results in
2008 (see [22]) for a numerical method for approximating the initial value problem

(2) u′(t) +
∫ t

0

β(t− s)Au(s) ds = 0, t ≥ 0, u(0) = u0.

Here u = u(t) is a function in the Hilbert space H and ′ = d/dt. Xu assumes in both
papers that the kernel β(t) : (0,∞) → R satisfies

(3) β ∈ C(0,∞) ∩ L1(0, 1) and 0 ≤ β(∞) < β(0+) ≤ ∞,

and

(4) (−1)nβ(n)(t) ≥ 0, t > 0, n = 0, 1, 2, . . . .

In Theorems 1 and 2 we substantially enlarge the class of functions β(t) for which the
stability results are valid by weakening the completely monotone hypotheses (4) on
β(t) to the assumption

(5) β is nonnegative, nonincreasing, convex, and − β′ is convex.

∗Received by the editors August 6, 2010; accepted for publication (in revised form) May 25, 2011;
published electronically July 28, 2011.

http://www.siam.org/journals/sinum/49-4/80465.html
†Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529

(charr084@odu.edu, rnoren@odu.edu).

1553

D
ow

nl
oa

de
d 

09
/2

9/
17

 to
 1

28
.8

2.
25

2.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1554 CHARLES B. HARRIS AND RICHARD D. NOREN

We also note that our results hold for the wider class of operators A defined via a
spectral family {Eλ}, as in (1), whereas [21] employed the more restrictive condition
that A possess a countable complete eigensystem.

Xu utilized a discrete analogue of the Payley–Wiener theorem in [23] to obtain
results similar to those in the present paper for a class of quadratures and for certain
kernels displaying log convexity. Although the hypotheses in [23] overlap ours, our
results hold for kernels lacking log convexity, such as if β(t) = 0 for some t > 0. As
an example,

f(x) =

{
(x0 − t)2 for 0 ≤ x ≤ x0,
0 for x0 < x

for any fixed x0 > 0.
Denote the Laplace transform of a function f by f̂(t). Thus,

(6) β̂(t) =

∫ ∞

0

e−tsβ(s) ds, t > 0.

By Bernstein’s theorem [20, Chapter 8], a function a = a(t) is completely monotonic
iff there exists an associated nonnegative, increasing function α : [0,∞) → [0,∞) with

(7) a(t) =

∫ ∞

0

e−xt dα(x), t > 0.

From (7) we see that the Laplace transform of a(t) may be analytically extended to
the slit plane C

′ ≡ C \ (−∞, 0] via the formula

(8) â(t) =

∫ ∞

0

dα(s)

s+ t
t ∈ C

′.

Here a Stieltjes integral is used. Xu makes extensive use of this representation in his
analysis.

A convex function will only be guaranteed to have a second derivative almost ev-
erywhere [18, Chapter 7]. In particular, the representation (8) does not hold. Without
this representation we are still able to obtain the same conclusions as Xu by doing
detailed estimates on the function β̂(t) using the representation (6).

Let k denote the constant time step, tn = kn the nth time level, and Un the

approximation of u(tn). The backward Euler method is used with ∂̄Un = Un−Un−1

k
approximating the derivative u′ in (2) at the nth time level. For the integral we apply
the first-order convolution quadrature introduced by Lubich [7]:

(9) qn(ϕ) =

n∑
j=1

βn−j(k)ϕ
j ,

where ϕj = ϕ(tj) and the quadrature weights βn−j(k) are the coefficients of the power
series

(10) β̂

(
1− z

k

)
=

∞∑
j=0

βj(k)z
j.

This leads to the time discrete problem

(11) ∂̄Un + qn(AU) = 0, U0 = u0.

Our first theorem generalizes Theorem 1 of [21] by replacing the completely mono-
tonic assumption (4) with (5).
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UNIFORM l1 BEHAVIOR 1555

Theorem 1. If (3) and (5) hold, then

(12) k

∞∑
n=1

||Un|| ≤ C||Au0||.

In order to state our next theorem we must first define some auxiliary functions.
For σ + iτ /∈ (−∞, 0], set β(t) = c(t) + β(∞), and then let

φ(σ, τ) =

∫ ∞

0

cos(τt)e−σtβ(t) dt and θ(σ, τ) =
1

τ

∫ ∞

0

sin(τt)e−σtβ(t) dt,

φc(σ, τ) =

∫ ∞

0

cos(τt)e−σtc(t) dt and θc(σ, τ) =
1

τ

∫ ∞

0

sin(τt)e−σtc(t) dt,

and for 0 < τ < ∞, set

φc(τ) = lim
σ→0+

φc(σ, τ) =

∫ ∞

0

cos(τt)c(t) dt

and

θc(τ) = lim
σ→0+

θc(σ, τ) =
1

τ

∫ ∞

0

sin(τt)c(t) dt.

So, for σ + iτ /∈ (−∞, 0], we have

φ(σ, τ) = φc(σ, τ) +
σβ(∞)

σ2 + τ2
and θ(σ, τ) = θc(σ, τ) +

β(∞)

σ2 + τ2
,

and then, for 0 < τ < ∞, we may set

φ(τ) = lim
σ→0+

φ(σ, τ) = φc(τ) and θ(τ) = lim
σ→0+

θ(σ, τ) = θc(τ) +
β(∞)

τ2
.

We see then that the Fourier transform of β(t),

(13) β̃(τ) =

∫ ∞

0

e−iτtβ(t) dt,

obeys the relation

(14) β̃(τ) = φ(τ) − iτθ(τ),

and further, the Laplace transform obeys

(15) β̂(σ + iτ) = φ(σ, τ) − iτθ(σ, τ).

As a consequence of Theorem 2.2 and Corollary 2.1 of Carr and Hannsgen [1], (3) and
(5) imply

(16) lim sup
τ→∞

θc(τ)

φc(τ)
< ∞.

By (4.3) of [1], we see that τ−2 = o(θc(τ)) (τ → ∞), so it follows that (3) and (5)
imply that

(17) lim sup
τ→∞

θ(τ)

φ(τ)
< ∞.
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1556 CHARLES B. HARRIS AND RICHARD D. NOREN

If instead our kernel β(t) is such that

(18) lim sup
τ→∞

τ
1
3 θ(τ)

φ(τ)
< ∞

holds, then we can obtain the following theorem which generalizes Theorem 2 of [21].
Theorem 2. If (3), (5), and (18) hold, then

(19) k

∞∑
n=1

||Un|| ≤ C||u0||.

We note that (18) is a significantly weaker frequency condition upon β(t) than is
employed in Theorem 2 of [21], namely, that

(20) lim sup
τ→∞

τθ(τ)

φ(τ)
< ∞.

For example, if β(t) satisfies (5) and behaves like (− log(t))p (p > 0) near the origin,
then an easy calculation utilizing the relations (37) and (39) shows that (18) is satis-
fied, but not (20). We see that in Theorem 1 we are allowed a wider class of kernel
functions β(t), but we have the more restrictive requirement that u0 ∈ D(A), whereas
Theorem 2 places greater restrictions upon β(t), yet allows u0 to be any element of H.

The resolvent kernel of (2) is defined by the formula

(21) U(t) =

∫ ∞

−∞
u(t, λ) dEλ,

where u(t, λ) is the solution of the scalar Volterra integrodifferential equation

(22) u′(t) + λ

∫ t

0

β(t− s)u(s) ds = 0, u(0) = 1;

the parameter λ satisfies λ0 ≤ λ and 0 ≤ t.
It is clear from (21) that

(23) sup
λ0≤λ

|u(t, λ)| → 0, t → ∞

and

(24)

∫ ∞

0

sup
λ0≤λ

|u(t, λ)| dt < ∞

imply, respectively,

(25) ‖U(t)‖ → 0, t → ∞
and

(26)

∫ ∞

0

‖U(t)‖ dt < ∞.

Then the resolvent formula

(27) y(t) = U(t)y0 +

∫ t

0

U(t− s)f(s) ds
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UNIFORM l1 BEHAVIOR 1557

can be used to obtain precise asymptotic information (t → ∞) about the solution
y(t) of the initial value problem

(28) u′(t) +
∫ t

0

β(t− s)Au(s) ds = f(t), t ≥ 0, u(0) = u0.

In [1] several sufficient conditions are given on β(t) such that (23) and (24) hold.
One easily stated consequence of [1] which is relevant here is that (23) and (24) both
hold, and, as a consequence, (25) and (26) when β(t) satisfies (5).

In [21] the stability of a numerical scheme for approximating the solution of (2) is a
discrete analogue of (26). Let {Un(λ)}∞n=0 be a real sequence satisfying the difference
equation

(29)
Un(λ)− Un−1(λ)

k
+ λqn(U(λ)) = 0, n ≥ 1, U0(λ) = 1.

It follows from the functional calculus for spectral decompositions (see [17]) that
the solution to (11) may be representated as

(30) Un =

∫ ∞

−∞
Un(λ) dEλ u0.

We note that Lemma 1 from [6] implies that e−σtβ(t) and (e−σtβ(t))′ are convex
for σ > 0. Also, from Theorem 2 and the comments following it in [13] we find that

β(t) is positive-definite, implying that Re(β̂(s)) > 0 whenever s = σ + iτ with σ > 0.
Then, by an argument similar to that in Lemma 3.1 of [8], we find that the quadrature
(9) is positive-definite in the sense that for each function ϕ : (0,∞) → H and each
positive integer N , we have

(31) QN (ϕ) ≡ k

N∑
n=1

(qn(ϕ), ϕ
n) ≥ 0.

To see this, set

ϕ̃(t) =

N∑
j=1

ϕjtj , β̃(t) =

∞∑
j=0

βj(k)t
j and QN,r(ϕ) = k

N∑
n=1

n∑
j=1

βn−j(k)r
n−j(ϕj , ϕn)

for 0 < r < 1. Then, it is straightforward to show that

QN,r(ϕ) =
k

2π

∫ 2π

0

β̃(reiθ)||ϕ̃(eiθ)||2 dθ.

As H is a real Hilbert space, it follows from (10) that QN,r(ϕ) ≥ 0. Then, by (9) we
find that QN,r(ϕ) → QN (ϕ) (r ↑ 1), from which (31) follows.

By an argument very similar to that given in Lemma 3.1 of [10], it can be shown
that (31) implies that

(32) ||Un|| ≤ ||u0||.
Then (32) implies that

(33) k

m∑
n=1

||Un|| ≤ tm||u0||.
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1558 CHARLES B. HARRIS AND RICHARD D. NOREN

Thus, by (30) and (33), we see that it is sufficient to show that

(34) k

∞∑
n=m+1

sup
λ≥λ0

|Un(λ)λ−1| ≤ C

and

(35) k

∞∑
n=m+1

sup
λ≥λ0

|Un(λ)| ≤ C

to prove Theorems 1 and 2, respectively.
Equations (2) and (28) arise in the theory of linear viscoelasticity. A nice survey

may be found in [16]. For a comprehensive treatment of Volterra equations see [5] or
[15]. Another interesting work on the numerical approximation of the solution of (2)
which assumes (3) and (5) is given by Xu in [24, Remark 2.3] in which a Galerkin
method is studied. For a numerical solution utilizing quadrature applied to the inverse
Laplace transform form of the solution, see [11]. For a second-order accurate finite
difference solution, see [9]. A solution utilizing finite difference convolution quadrature
is given in [3]. For a time-stepping discontinuous Galerkin solution, see [12].

In the next section we establish some preliminary results and in section 3 we
present the proofs of our theorems. In all that follows we assume that ε > 0 is a
sufficiently small fixed constant independent of k whose value will be specified later.
We also note that C is a generic constant whose value may change at each appearance
and which depends only upon ε and λ0.

2. Preliminary estimates. We begin with a lemma from [21, p. 139], which
derives from a lemma in [1, p. 967].

Lemma 2.1. If β(t) satisfies (3) and (5), then

1

2
√
2

∫ 1
τ

0

β(t) dt ≤ |β̃(τ)| ≤ 4

∫ 1
τ

0

β(t) dt, τ > 0,(36)

1

5

∫ 1
τ

0

tβ(t) dt ≤ θ(τ) ≤ 12

∫ 1
τ

0

tβ(t) dt, τ > 0,(37)

|β̃′(τ)| ≤ 40

∫ 1
τ

0

tβ(t) dt, τ > 0.(38)

Here, recall that β̃(τ) is the Fourier transform of β(t). We note that these re-
sults hold without the convexity of −β′(t) assumed. As we know that e−σtβ(t) and
(e−σtβ(t))′ are convex for σ > 0, then with only slight modifications to the proof we
obtain results similar to those in Noren (see [14, eq. (4.14)]):

(39)
1

C

∫ 1
τ

0

−tβ′(t) dt ≤ φ(τ) ≤ C

∫ 1
τ

0

−tβ′(t) dt, τ > 0,

and

(40)
1

C

∫ 1
τ

0

−t(e−σtβ(t))′ dt ≤ φ(σ, τ) ≤ C

∫ 1
τ

0

−t(e−σtβ(t))′ dt, σ, τ > 0.

One consequence of (39) and (40) in the case where 0 < σ ≤ ετ is that

(41) φ(σ, τ) ≥ C

∫ 1
τ

0

−t(e−σtβ(t))′ dt ≥ Ce−
σ
τ

∫ 1
τ

0

−tβ′(t) dt ≥ Cφ(τ).
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As e−σtβ(t) satisfies the hypotheses of Lemma 2.1, we obtain the following variants
of (36) and (38):

(42)
1

2
√
2

∫ 1
τ

0

e−σtβ(t) dt ≤ |(e−σtβ(t))̃ (τ)| ≤ 4

∫ 1
τ

0

e−σtβ(t) dt, σ, τ > 0,

and

(43)

∣∣∣∣ d

dτ
(e−σtβ(t))̃ (τ)

∣∣∣∣ ≤ 40

∫ 1
τ

0

te−σtβ(t) dt, σ, τ > 0.

Defining the functions A(x) =
∫ x

0
β(t) dt and A1(x) =

∫ x

0
tβ(t) dt, we also recall a

result from Shea and Wainger [19, eq. (1.21)]):

(44)

∫ ε

0

A1(τ
−1)

A2(τ−1)
dτ < ∞.

Define the notations

σ = σ(k, ν) =
1− cos(kν)

k
, τ = τ(k, ν) =

sin(kν)

k
, s = s(k, ν) = σ+iτ =

1− e−ikν

k
,

and

D(s, λ) = D(σ + iτ) =
s

λ
+ β̂(s) =

σ + iτ

λ
+ β̂(σ + iτ).

Following [1] and [21], we wish to define a strictly increasing function ω : [λ0,∞) →
[ε,∞) with ω(λ) → ∞ (λ → ∞) and such that θ(ω(λ)) = 1

λ for λ ≥ λ1 ≥ λ0 and, if
necessary, ω(λ) = ε for λ1 > λ ≥ λ0. We note that ω was continuous in [1], owing to
the choice of ρ = 6

t1
in that paper, and in [21] by the analytic nature of a completely

monotonic function. We do not require that ω be continuous. In this case, slight
modification to the proof given in [1, Lemma 5.2] and [2, Lemma 8.1] gives us the
following lemma.

Lemma 2.2. If β(t) satisfies (3) and (5), then

(45) |D(iτ, λ)| ≥
{
C1

|τ−ω|
λ (τ ≥ ω

2 ),

C1(τ
∫ 1

τ

0
tβ(t) dt +

∫ 1
τ

0
β(t) dt) (τ ∈ [ ε2 ,

ω
2 ]).

This result also holds if −β′(t) convex is dropped. We also note that [1] gives us

(46) ω(λ) ≤ Cλ,

and it follows from (6.8) of [1] that, for τ ≥ ω
2 , we have

(47) θ(τ) ≤ Cλ−1.

We now wish to establish a generalization of (2.9) from [21].
Lemma 2.3. If β(t) satisfies (3) and (5) and 0 < σ ≤ ετ < τ , then

(48) |θ(σ, τ) − θ(τ)| ≤ 29εθ(τ).

Proof. Beginning with the formulas

θ(σ, τ) = θc(σ, τ) +
β(∞)

σ2 + τ2
and θ(τ) = θc(τ) +

β(∞)

τ2
,

D
ow

nl
oa

de
d 

09
/2

9/
17

 to
 1

28
.8

2.
25

2.
15

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1560 CHARLES B. HARRIS AND RICHARD D. NOREN

we see that

|θ(σ, τ) − θ(τ)| ≤ |θc(σ, τ) − θc(τ)|+ β(∞)

∣∣∣∣ 1τ2 − 1

σ2 + τ2

∣∣∣∣
≤ |θc(σ, τ) − θc(τ)|+ β(∞)

ε

τ2
,

so it suffices for us to show that |θc(σ, τ) − θc(τ)| ≤ 29εθc(τ). Integrating by parts
twice, we get

θc(σ, τ) =
1

σ2 + τ2

∫ ∞

0

{
(1− e−σt cos(τt)) − σ

τ
e−σt sin(τt)

}
(−c′(t)) dt

=
1

(σ2 + τ2)2

∫ ∞

0

{(
(σ2 + τ2)t+ (σ2 − τ2)e−σt sin(τt)

τ

)
− 2σ(1− e−σt cos(τt))

}
c′′(t) dt

and

θc(τ) =
1

τ2

∫ ∞

0

(1− cos(τt))(−c′(t)) dt

=
1

τ2

∫ ∞

0

(
t− sin(τt)

τ

)
c′′(t) dt.

The boundary terms vanish due to the relations tc(t) = t2c′(t) = o(1) (t → 0+) and
tc′(t) = o(1) (t → ∞) from [1]. Then, setting

f(t) =
1

(σ2 + τ2)2

{(
(σ2 + τ2)t+ (σ2 − τ2)e−σt sin(τt)

τ

)
− 2σ(1− e−σt cos(τt))

}
and

g(t) =
1

τ2

(
t− sin(τt)

τ

)
,

we see that we need only show that

(49) (1 − 29ε)g(t) ≤ f(t) ≤ (1 + 29ε)g(t)

to have our result. Since f ′(0) = f(0) = g′(0) = g(0) = 0 and (1 − ε)g′′(t) ≤
f ′′(t) ≤ g′′(t) for t ∈ [0, 1

τ ], we may integrate twice over [0, t] for t ∈ [0, 1
τ ] to obtain

(1− ε)g(t) ≤ f(t) ≤ g(t) for t ∈ [0, 1
τ ]. First we show that

(50) (1− 29ε)g(t) ≤ f(t)

(
t >

1

τ

)
.

Note first that as 0 < σ ≤ ετ < τ and t > 1
τ , we have

−2σ

(σ2 + τ2)2
(1−e−σt cos(τt)) ≥ −2σ

τ4
(1−e−σt cos(τt)) ≥ −4ε

τ3
≥ −26ε

τ2

(
t− sin(τt)

τ

)
.

So, we must show that

1

(σ2 + τ2)2

(
(σ2 + τ2)t+ (σ2 − τ2)e−σt sin(τt)

τ

)
≥ (1− 3ε)

(
1

τ2

(
t− sin(τt)

τ

))
.
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UNIFORM l1 BEHAVIOR 1561

As (1 + ε)(1− 3ε) ≤ (1 − 2ε) and

1

(σ2 + τ2)2

(
(σ2 + τ2)t+ (σ2 − τ2)e−σt sin(τt)

τ

)
≥ 1

(1 + ε)τ2

(
t− τ2 − σ2

τ2 + σ2
e−σt sin(τt)

τ

)
,

it suffices to show that (after some rearrangement)(
1− τ2 − σ2

τ2 + σ2
e−σt

)
sin(τt)

τ
≥ 2ε

(
sin(τt)

τ
− t

)
.

This clearly holds if sin(τt) ≥ 0, so assume otherwise. Then, as(
1− τ2 − σ2

τ2 + σ2
e−σt

)
sin(τt)

τ
≥

(
1− 1− ε

1 + ε
(1− ετt)

)
sin(τt)

τ

=

(
2ε

1 + ε
+

(
1− ε

1 + ε

)
ετt

)
sin(τt)

τ
,

(50) follows since 2ε ≤ 2ε(1 + ε) and (1−ε
1+ε ) sin(τt) ≥ −1. We now show that

(51) f(t) ≤ (1 + 29ε)g(t)

(
t >

1

τ

)
.

Note that as 0 < σ ≤ ετ < τ and t > 1
τ , we have

f(t) ≤ 1

σ2 + τ2

(
t− τ2 − σ2

τ2 + σ2
e−σt sin(τt)

τ

)
≤ 1

τ2

(
t− τ2 − σ2

τ2 + σ2
e−σt sin(τt)

τ

)
.

So, we need only show that (after some rearrangement)(
1− τ2 − σ2

τ2 + σ2
e−σt

)
sin(τt)

τ
≤ 29ε

(
t− sin(τt)

τ

)
.

This clearly holds if sin(τt) ≤ 0, so assume otherwise. Then, we see that(
1− τ2 − σ2

τ2 + σ2
e−σt

)
sin(τt)

τ
≤

(
1− 1− ε

1 + ε
(1− ετt)

)
sin(τt)

τ

≤ ε(2 + τt)
sin(τt)

τ
≤ 3εt,

from which (51) follows, as sin(τt) ≤ 26
29τt for t >

1
τ . Then, combining (50) and (51),

we obtain (49), which proves the lemma.
We next wish to prove the following estimate.
Lemma 2.4. If β(t) satisfies (3) and (5), k ≤ 1, π−ε

k ≤ ν ≤ π
k and ε ≤ 1

5 , then

(52) φ(σ, τ) ≥ 1

2
β̂(σ).

Proof. Beginning with the formulas

φ(σ, τ) =

∫ ∞

0

cos(τt)e−σtc(t) dt+
σβ(∞)

σ2 + τ2
and β̂(σ) =

∫ ∞

0

e−σtc(t) dt+
β(∞)

σ
,
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1562 CHARLES B. HARRIS AND RICHARD D. NOREN

we note that as π−ε
k ≤ ν ≤ π

k gives us 2−ε
k ≤ σ ≤ 2

k and 0 ≤ τ ≤ ε
k , we find that

σ
σ2+τ2 ≥ (2−ε)k

4+ε2 ≥ 45k
101 > k

4−2ε ≥ 1
2σ , so we need only show that φc(σ, τ) ≥ 1

2 ĉ(σ).
Integrating by parts, we obtain

φc(σ, τ) =
1

σ2 + τ2

∫ ∞

0

[σ(1 − e−σt cos(τt)) + τe−σt sin(τt)](−c′(t)) dt

and

ĉ(σ) =
1

σ

∫ ∞

0

(1− e−σt)(−c′(t)) dt.

The boundary terms vanish as in the proof of Lemma 2.3. Then, setting

f(t) =
1

σ2 + τ2
[σ(1 − e−σt cos(τt)) + τe−σt sin(τt)] and g(t) =

1

σ
(1− e−σt),

we see that for t ≤ 1
τ , we have f ′(t) = e−σt cos(τt) ≥ 1

2e
−σt = 1

2g
′(t), so as f(0) =

g(0) = 0, we may integrate over [0, t], for t ≤ 1
τ , to obtain f(t) ≥ 1

2g(t) for t ≤ 1
τ .

Thus, it is only a matter of showing that f(t) ≥ 1
2g(t) for t > 1

τ to establish (52).
As 2−ε

k ≤ σ ≤ 2
k and 0 ≤ τ ≤ ε

k , it follows that for ε ≤ 1
5 we have σ

τ ≥ 2−ε
ε ≥ 9; so

clearly we have e
−σ
τ ≤ (1− e−σt) for t > 1

τ . Thus, for t >
1
τ , we see that

f(t) ≥ k2

4 + ε2

(
2− ε

k
(1− e−σt)− ε

k
e

−σ
τ

)
≥ k

4 + ε

(
(2− ε)(1− e−σt)− ε(1− e−σt)

)
= k

(
2− 2ε

4 + ε

)
(1− e−σt)

≥ 8k

21
(1 − e−σt)

≥ 1

2
g(t),

which proves the lemma.
We next wish to extend Lemma 3.1 in [21].
Lemma 2.5. If β(t) satisfies (3) and (5), λ ≥ λ0, and k < 1, then

(53) k

∞∑
n=1

|Un(λ)| ≤ Cλ.

Proof. Following [21], we define the generating function of {Un(λ)}∞n=0 to be

Ũ(z, λ) =

∞∑
n=1

Un(λ)zn,

which may be shown to obey the relations

Ũ(z, λ) =
z

k

1(
1−z
k

)
+ λβ̂

(
1−z
k

) =
z

k
û

(
1− z

k
, λ

)
.
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Then, an application of Hardy’s inequality [4, p. 48] gives us

∞∑
n=1

|Un(λ)| ≤ 2
∞∑
n=1

n|Un(λ)|
n+ 1

≤
∫ π

−π

|Ũ ′(eiν , λ)| dν

≤ 2k

∫ π
k

0

|Ũ ′(e−ikν , λ)| dν = 2k

{∫ ε

0

+

∫ ε
k

ε

+

∫ π
k

ε
k

}
|Ũ ′(e−ikν , λ)| dν,(54)

where

Ũ ′(z, λ) =
1

k

1[(
1−z
k

)
+ λβ̂

(
1−z
k

)]2 [
1

k
+ λβ̂

(
1− z

k

)
+

λz

k
β̂′

(
1− z

k

)]
.

Thus, our extension reduces to establishing the three estimates

k2
∫ ε

0

|Ũ ′(e−ikν , λ)| dν ≤ Cλ−1,(55)

k2
∫ ε

k

ε

|Ũ ′(e−ikν , λ)| dν ≤ Cλ,(56)

k2
∫ π

k

ε
k

|Ũ ′(e−ikν , λ)| dν ≤ Ckλ.(57)

We prove (55) first. For ε, k < 1, we see that when 0 ≤ ν ≤ ε, we get

(58)
ν

2
≤ τ(k, ν) ≤ ν, σ(k, ν) ≤ ετ ≤ τ, cos(kν) ≥ 1

2
,

sin(kν)

k
≤ ε.

By (40) and (58), we see that

(59) Reβ̂(σ + iτ) ≥ C

∫ 1
τ

0

−te−σtβ′(t) dt ≥ C

∫ 1
ε

0

−tβ′(t) dt ≥
√
2C

τ

λ
.

We may obviously assume C < 1 in (59), giving

|D(σ + iτ, λ)|2 =
∣∣∣φ(σ, τ) + σ

λ

∣∣∣2 + ∣∣∣τθ(σ, τ) − τ

λ

∣∣∣2
≥ φ2(σ, τ) + C2

∣∣∣τθ(σ, τ) − τ

λ

∣∣∣2
≥ φ2(σ, τ)

2
+ C2 τ

2

λ2
+ C2

∣∣∣τθ(σ, τ) − τ

λ

∣∣∣2
=

φ2(σ, τ)

2
+ C2 τ

2

2

(
θ(σ, τ) − 2

λ

)2

+ C2 τ
2

2
θ2(σ, τ)

≥ C2

(
φ2(σ, τ) + τ2θ2(σ, τ)

2
+

τ2

2

(
θ(σ, τ) − 2

λ

)2
)

≥ C2

(
φ2(σ, τ) + τ2θ2(σ, τ)

2

)
,

so we obtain

(60) |D(σ + iτ, λ)| ≥ C|β̂(σ + iτ)|.
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1564 CHARLES B. HARRIS AND RICHARD D. NOREN

Then, (36), (42), and (58) give us

|β̂(σ + iτ)| ≥ C

∫ 1
τ

0

e−σtβ(t) dt ≥ C|β̃(τ)| ≥ C

∫ 1
ε

0

β(t) dt ≥ C|β̃(ε)|,

so (60) implies that

(61) |D(σ + iτ, λ)| ≥ C|β̃(τ)| ≥ C|β̃(ε)|.
Note that (36) and (42) give us

(62) |β̂(σ + iτ)| = |(e−σtβ(t))̃ (τ)| ≤ C|β̃(τ)|, τ > 0.

We also see that (37) and (43) imply

(63) |β̂′(σ + iτ)| =
∣∣∣∣ d

dτ
(e−σtβ(t))̃ (τ)

∣∣∣∣ ≤ Cθ(τ), σ, τ > 0.

Then it follows from (36), (37), (44), (61), (62), and (63) that

k2
∫ ε

0

|Ũ ′(e−ikν , λ)| dν ≤
∫ ε

0

1

λ2|D2(σ + iτ, λ)|
[
1 + λk|β̂(σ + iτ)|+ λ|β̂′(σ + iτ)|

]
dν

≤ C

λ

∫ ε

0

1

|β̃(ε)|2
+

k|β̃(τ)|
|β̃(τ)||β̃(ε)|

+
θ(τ)

|β̃(τ)|2
dτ

≤ Cλ−1,

so estimate (55) holds. We now show (56). Here ε ≤ ν ≤ ε
k and for ε, k ≤ 1 we have

(64)
ν

2
≤ τ(k, ν) ≤ ν, σ(k, ν) ≤ ετ(k, ν) ≤ τ(k, ν), cos(kν) ≥ 1

2
.

We shall establish the following estimates on |D(σ+ iτ, λ)| when ε ≤ min
{

C1

1392 ,
5

348

}
:

(65) |D(σ + iτ, λ)| ≥ C

(
τθ(τ) +

∫ 1
τ

0

β(t) dt

)
, τ ∈

[ε
2
,
ω

2

]⋂[ ε
2
,
ε

k

]
,

and

(66) |D(σ + iτ, λ)| ≥ C
τ − ω

λ
, τ ≥ 2ω.

We show (65) first. To establish

(67) |D(σ + iτ, λ)| ≥ Cτθ(τ), τ ∈
[ ε
2
,
ω

2

]⋂[ ε
2
,
ε

k

]
,

note that in the case where

τ

∣∣∣∣θ(τ) − 1

λ

∣∣∣∣ < C1τ

2

∫ 1
τ

0

tβ(t) dt

we can use (37), (41), (45), and (64) to show that

|D(σ + iτ, λ)| ≥ Cφ(τ) ≥ C

(
C1τ

∫ 1
τ

0

tβ(t) dt − τ

∣∣∣∣θ(τ) − 1

λ

∣∣∣∣
)

≥ C

(
C1τ

2

∫ 1
τ

0

tβ(t) dt

)
≥ Cτθ(τ).
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Similarly, when

τ

∣∣∣∣θ(τ) − 1

λ

∣∣∣∣ ≥ C1τ

2

∫ 1
τ

0

tβ(t) dt,

we find that (37) and (48) give us

τ

∣∣∣∣θ(τ) − 1

λ

∣∣∣∣ ≥ C1τ

2

∫ 1
τ

0

tβ(t) dt ≥ C1τ

24
θ(τ) ≥ 2τ |θ(σ, τ) − θ(τ)|.

Thus, it follows by (37) that

|D(σ + iτ, λ)| ≥ τ

∣∣∣∣θ(σ, τ) − 1

λ

∣∣∣∣ = τ

∣∣∣∣(θ(τ) − 1

λ

)
+ (θ(σ, τ) − θ(τ))

∣∣∣∣ ≥ τ

2

∣∣∣∣θ(τ) − 1

λ

∣∣∣∣
≥ C1τ

2

∫ 1
τ

0

tβ(t) dt ≥ Cτθ(τ).

This establishes (67). The estimate

(68) |D(σ + iτ, λ)| ≥ C

∫ 1
τ

0

β(t) dt, τ ∈
[ε
2
,
ω

2

]⋂[ ε
2
,
ε

k

]
,

follows from the same argument with τ
∫ 1

τ

0 tβ(t) dt replaced by
∫ 1

τ

0 β(t) dt. Then,
combining (67) and (68), we have (65). To prove (66), we note that (41) gives us

|D(σ + iτ, λ)| ≥ Cφ(τ),

which establishes the estimate when φ(τ) ≥ C1

2
τ−ω
λ . Thus, assume φ(τ) < C1

2
τ−ω
λ .

Then, (45) gives us

C1
τ − ω

λ
≤ |D(iτ, λ)| ≤ φ(τ) + τ

∣∣∣∣θ(τ) − 1

λ

∣∣∣∣ ≤ C1

2

τ − ω

λ
+ τ

∣∣∣∣θ(τ) − 1

λ

∣∣∣∣ ,
so

(69)

∣∣∣∣ 1λ − θ(τ)

∣∣∣∣ ≥ C1(τ − ω)

2τλ
, τ ≥ 2ω.

As θ(τ) = θc(τ) +
β(∞)
τ2 , we see by (4.4) of [1] that θ(τ) is decreasing. It follows by

our construction of ω(λ) that in the case where λ ≥ λ1, or by (69), in the case where

λ0 ≥ λ > λ1 with 1
λ − θ(τ) ≥ C1(τ−ω)

2τλ , that as ε ≤ min
{

C1

1392 ,
5

348

}
, we have

θ(σ, τ) ≤ (1 + 29ε)θ(τ) = (1 + 29ε)
1

λ
− (1 + 29ε)

(
1

λ
− θ(τ)

)
≤ 1

λ
− C1(τ − ω)

4τλ

(
2 + 58ε− 116ετ

C1(τ − ω)

)
≤ 1

λ
− C1(τ − ω)

4τλ

(
2− 232ε

C1

)
≤ 1

λ
− C1(τ − ω)

4τλ
,
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1566 CHARLES B. HARRIS AND RICHARD D. NOREN

so we find that

(70) |D(σ + iτ, λ)| ≥ τ

(
1

λ
− θ(σ, τ)

)
≥ C

τ − ω

λ
.

Similarly, by (69), in the case where λ0 ≥ λ > λ1 with 1
λ − θ(τ) < −C1(τ−ω)

2τλ , we

see that as ε ≤ min
{

C1

1392 ,
5

348

}
and as τ

τ−ω ≤ 2 for τ ≥ 2ω, we have

θ(σ, τ) ≥ (1 − 29ε)θ(τ) = (1− 29ε)
1

λ
+ (1− 29ε)

(
θ(τ) − 1

λ

)
≥ 1

λ
+

C1(τ − ω)

4τλ

(
2− 58ε− 116ετ

C1(τ − ω)

)
≥ 1

λ
+

C1(τ − ω)

4τλ

(
2− 58ε− 232ε

C1

)
≥ 1

λ
+

C1(τ − ω)

4τλ
,

so we obtain

(71) |D(σ + iτ, λ)| ≥ τ

(
θ(σ, τ) − 1

λ

)
≥ C

τ − ω

λ
.

Combining (70) and (71) completes the proof of (66).
Next, let E1 = [ ε2 ,

ω
2 ] ∩ [ ε2 ,

ε
k ], E2 = [ω2 , 2ω] ∩ [ ε2 ,

ε
k ], and E3 = [2ω,∞) ∩ [ ε2 ,

ε
k ].

Note that our construction of ω and the decreasing nature of θ(τ) give us λθ(τ) ≥ C

for τ ∈ E1. Also, by (36), we see that |β̃(τ)| ≤ C for τ ∈ E3. Then by (17), (36),
(41), (48), (62), (63), (65), and (66), we see that

k2
∫ ε

k

ε

|Ũ ′(e−ikν , λ)| dν

≤ C

{∫
E1

+

∫
E2

+

∫
E3

}
1

λ2|D2(σ + iτ, λ)|
[
1 + λk|β̂(σ + iτ)|+ λ|β̂′(σ + iτ)|

]
dτ

≤ C

(∫ ω
2

ε
2

dτ

τ2
+ k

∫
E1

A(τ−1)

λτθ(τ)A(τ−1)
dτ

)

+
C

λ

(∫
E2

dτ

λφ2(τ)
+ k

φ(τ) + τθ(τ)

φ2(τ)
+

θ(τ)

φ2(τ)
dτ

)
+ C

(∫
E3

1 + λ(1 + θ(τ))

(τ − ω)2
dτ

)
,

so by (46) and (47) we find that

k2
∫ ε

k

ε

|Ũ ′(e−ikν , λ)| dν ≤ C(1 + λ+ kλ) ≤ Cλ,

which establishes (56). We now establish (57). Here ε
k ≤ ν ≤ π

k , and we have

(72) σ(k, ν) ≥ 1− cos(ε)

k
≡ C(ε)

k
, |D(σ + iτ)| ≥ σ

λ
≥ C(ε)

kλ
.
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Then, as k ≤ 1, we have

(73) |β̂(σ + iτ)| =
∣∣∣∣∫ ∞

0

e−(σ+iτ)tβ(t) dt

∣∣∣∣ ≤ ∫ ∞

0

e−C(ε)tβ(t) dt = β̂(C(ε))

and

(74) |β̂′(σ + iτ)| =
∣∣∣∣∫ ∞

0

−te−(σ+iτ)tβ(t) dt

∣∣∣∣ ≤ ∫ ∞

0

te−C(ε)tβ(t) dt = |β̂′(C(ε))|.

So, (72), (73), and (74) give us

k2
∫ π

k

ε
k

|Ũ ′(e−ikν , λ)| dν ≤
∫ π

k

ε
k

1

λ2|D2(σ + iτ, λ)|
[
1 + λk|β̂(σ + iτ)|+ λ|β̂′(σ + iτ)|

]
dν

≤
∫ π

k

ε
k

k2

(C(ε))2

(
1 + λkβ̂(C(ε)) + λ|β̂′(C(ε))|

)
≤ Ckλ,

so estimate (57) holds. This proves the lemma.

3. Proof of Theorems 1 and 2. Here we adopt the overall strategy of Xu
in proving our theorems, and we refer the reader to [21] for the preliminaries of the
proof. We remark that Xu establishes the formula

(75) Un(λ) = Re

{
1

πtn−1λ

∫ π
k

0

eiνtn−2
Ds(s(k, ν), λ)

D2(s(k, ν), λ)
dν

}
.

Then, following [1], this integral is decomposed into the five parts:

(76) Un(λ) = Re{λ−1Un
1 + λ−2Un

2 + λ−3Un
3 + Un

4 (λ) + Un
5 (λ)},

where

Un
1 =

1

πtn−1

∫ ε

0

eiνtn−2
β̂′(s)

[β̂(s)]2
dν,(77)

Un
2 =

1

πtn−1

∫ ε

0

eiνtn−2
1

[β̂(s)]2

(
1− 2sβ̂′(s)

β̂(s)

)
dν,(78)

Un
3 =

−1

πtn−1

∫ ε

0

eiνtn−2
2s

[β̂(s)]3
dν,(79)

Un
4 (λ) =

1

πtn−1λ3

∫ ε

0

eiνtn−2
s2Ds(s, λ)

[β̂(s)]2D(s, λ)

(
2

β̂(s)
+

1

D(s, λ)

)
dν,(80)

Un
5 (λ) =

1

πtn−1λ

∫ π
k

ε

eiνtn−2
Ds(s, λ)

[D(s, λ)]2
dν.(81)

For m > 2, we will establish the estimates

(82) |Un
4 (λ)| ≤ Ct−2

n−2, n ≥ m, λ ≥ λ0

and either

(83) |Un
5 (λ)| ≤ Ct−2

n−2 λ, n ≥ m, λ ≥ λ0
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or

(84) |Un
5 (λ)| ≤ Ct−2

n−2, n ≥ m, λ ≥ λ0

to prove Theorem 1 or 2, respectively. This follows, as then we could insert three
different values of λ into (76) and, by utilizing (53), solve for the Un

j (j = 1, 2, 3) to
show

k

∞∑
n=m+1

(|Re{Un
1 }|+ |Re{Un

2 }|+ |Re{Un
3 }|) < ∞.

Then, (34) or (35) follow, giving us Theorem 1 and 2, respectively.
We show (82) first. Integrating (80) and (81) by parts, we obtain

Un
4 (λ) =

1

iπtn−2tn−1λ3
eiνtn−2

s2Ds(s, λ)

[β̂(s)]2D(s, λ)

(
2

β̂(s)
+

1

D(s, λ)

)∣∣∣∣∣
ε

ν=0

− 1

πtn−2tn−1λ3

∫ ε

0

eiνtn−3

[
2sDs(s, λ) + s2β̂′′(s)

[β̂(s)]2D(s, λ)

(
2

β̂(s)
+

1

D(s, λ)

)

− s2Ds(s, λ)

[β̂(s)]2D(s, λ)(
6β̂′(s)

[β̂(s)]2
+

4β̂′(s) + 2λ−1

β̂(s)D(s, λ)
+

2Ds(s, λ)

D2(s, λ)

)]
dν(85)

and

Un
5 (λ) =

1

iπtn−2tn−1λ
eiνtn−2

Ds(s, λ)

D2(s, λ)

∣∣∣∣ π
k

ν=ε

− 1

iπtn−2tn−1λ

∫ π
k

ε

eiνtn−3

[
β̂′′(s)

D2(s, λ)
− 2D2

s(s, λ)

D3(s, λ)

]
dν.(86)

We see by (41) and (48) that for 0 < ν ≤ ε with ε appropriately small,

(87) |β̂(s)| =
√
φ2(σ, τ) + τ2θ2(σ, τ) ≥ C

√
φ2(τ) + τ2θ2(τ) = C|β̂(iτ)|.

Then, (36), (37), (58), (63), and (87) imply that the boundary term in (85)
vanishes at ν = 0. Note that [1, eq. (5.3)] and (37) give us, for σ, τ > 0,

|β̂′′(s)| =
∣∣∣∣ d2

dτ2
(e−σtβ(t))̃ (τ)

∣∣∣∣ ≤ C

∫ 1
τ

0

t2e−σtβ(t) dt

≤ C

τ

∫ 1
τ

0

te−σtβ(t) dt ≤ C

τ
θ(τ).(88)

Then, (36), (37), (58), (63), (87), and (88) allow us to establish the estimate (82) in
a manner similar to (5.6) of [21].

To establish (83) and (84), we first note that as
∫ 2

σ

0 te−σt dt ≥ ∫ ∞
2
σ

te−σt dt for all
σ > 0, it follows from the decreasing nature of β(t) and (36) that

|β̂′(σ)| =
(∫ 2

σ

0

+

∫ ∞

2
σ

)
te−σtβ(t) dt ≤ 2

∫ 2
σ

0

te−σtβ(t) dt

≤ 4

σ

∫ 2
σ

0

e−σtβ(t) dt ≤ C

σ
β̂(σ).(89)
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Also, as
∫ 1

τ

0
e−τt dt ≥ ∫∞

1
τ

e−τt dt for all τ > 0, we see by the decreasing nature of

β(t), (36), (42), (58), and (60) that, for 0 < σ ≤ ετ < τ ,

|D(s, λ)| ≥ C|β̂(σ + iτ)| ≥ C

∫ 1
τ

0

e−σtβ(t) dt ≥ C

∫ 1
τ

0

e−τtβ(t) dt

≥ C0

(∫ 1
τ

0

+

∫ ∞

1
τ

)
e−τtβ(t) dt = Cβ̂(τ).(90)

Then, by (89) and (90), we are able to estimate the boundary terms in (86) as on
pp. 148–149 of [21]. From this we obtain

|Un
5 (λ)| ≤ Ct−2

n−2

[
k2 + λ−1 + λ−1

(∫ π
k

ε

|β̂′′(s)|
|D2(s, λ)| +

|D2
s(s, λ)|

|D3(s, λ)| dν
)]

.(91)

We decompose the interval of integration into the three intervals E1 =
[
ε, ε

k

)
, E2 =[

ε
k ,

π−ε
k

)
, and E3 =

[
π−ε
k , π

k

)
. To estimate the integral on E1, we note that when

ν ∈ E1, we have 0 < σ ≤ ετ < τ . So by (17), (37), (41), (47), (63), (65), (66), and
(88), it follows that

λ−1

∫ ε
k

ε

(
|β̂′′(s)|

|D(s, λ)|2 +
|Ds(s, λ)|2
|D(s, λ)|3

)
dν

≤ Cλ−1

(∫ ω
2

ε
2

λ−2 + θ2(τ)

τ3θ3(τ)
dτ +

∫ 2ω

ω
2

λ−1

τφ2(τ)
dτ +

∫ 2ω

ω
2

λ−2

φ3(τ)
dτ

+

∫ ∞

2ω

λdτ

τ |τ − ω|2 +

∫ ∞

2ω

λdτ

|τ − ω|3
)
.(92)

Then, by (37), (46), (47), and either (17) or (18), we obtain

(93) λ−1

∫ ε
k

ε

(
|β̂′′(s)|

|D(s, λ)|2 +
|Ds(s, λ)|2
|D(s, λ)|3

)
dν ≤ C(λ + 1)

or

(94) λ−1

∫ ε
k

ε

(
|β̂′′(s)|

|D(s, λ)|2 +
|Ds(s, λ)|2
|D(s, λ)|3

)
dν ≤ C,

respectively.

To estimate the integrals on E2 and E3, we first note that as
∫ 3

σ

0 t2e−σt dt ≥∫∞
3
σ

t2e−σt dt for all σ > 0, the decreasing nature of β(t) gives us, for σ > 0,

|β̂′′(s)| =
∣∣∣∣∫ ∞

0

t2e−iτt(e−σtβ(t)) dt

∣∣∣∣ ≤ ∫ ∞

0

t2e−σtβ(t) dt = β̂′′(σ)

=

(∫ 3
σ

0

+

∫ ∞

3
σ

)
t2e−σtβ(t) dt ≤ 2

∫ 3
σ

0

t2e−σtβ(t) dt

≤ 18

σ2

∫ 3
σ

0

e−σtβ(t) dt ≤ C

σ2
β̂(σ).(95)
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Then, in the case where ν ∈ E2, we see that σ ≤ 2
k and τ ≥ sin(ε)

k . Then (39) and
(40) give, for ν ∈ E2,

φ(σ, τ) ≥ −C

∫ 1
τ

0

te−σtβ′(t) dt ≥ −Ce
−σ
τ

∫ 1
τ

0

tβ′(t) dt

≥ −Ce
−2

sin(ε)

∫ 1
τ

0

tβ′(t) dt ≥ Cφ(τ).(96)

So, we see that (17), (63), (88), and (96) give us

λ−1

∫ π−ε
k

ε
k

|β̂′′(s)|
|D2(s, λ)| +

|D2
s(s, λ)|

|D3(s, λ)| dν

≤ Cλ−1

∫ π−ε
k

ε
k

kλθ(τ)

τφ(τ)
+ k3λ+

k2λθ(τ)

φ(τ)
+

kλθ2(τ)

φ2(τ)
dν

≤ C.(97)

For the integral on E3, note that since we have 2−ε
k ≤ σ ≤ 2

k and 0 ≤ τ ≤ ε
k for

ν ∈ E3, we see by (52), (89), and (95) that

λ−1

∫ π
k

π−ε
k

|β̂′′(s)|
|D2(s, λ)| +

|D2
s(s, λ)|

|D3(s, λ)| dν

≤ Cλ−1

∫ π
k

π−ε
k

λβ̂(σ)

σ3β̂(σ)
+

λ

σ3
+

λβ̂(σ)

σ3β̂(σ)
+

λ[β̂(σ)]2

σ3[β̂(σ)]2
dν

≤ C.(98)

Then, by (97), (98), and either (93) or (94), we have established (83) or (84), respec-
tively, and thus we have proven Theorems 1 or 2, respectively.
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