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UNIFORM ! BEHAVIOR OF A TIME DISCRETIZATION METHOD
FOR A VOLTERRA INTEGRODIFFERENTIAL EQUATION WITH
CONVEX KERNEL; STABILITY*

CHARLES B. HARRIST AND RICHARD D. NORENT

Abstract. We study stability of a numerical method in which the backward Euler method is
combined with order one convolution quadrature for approximating the integral term of the linear
Volterra integrodifferential equation u’(t) + fot B(t — s)Au(s)ds =0, t > 0, u(0) = up, which arises
in the theory of linear viscoelasticity. Here A is a positive self-adjoint densely defined linear operator
in a real Hilbert space, and 3(t) is locally integrable, nonnegative, nonincreasing, convex, and —g’(t)
is convex. We establish stability of the method under these hypotheses on B(t). Thus, the method
is stable for a wider class of kernel functions 8(t) than was previously known. We also extend the
class of operators A for which the method is stable.

Key words. Volterra integrodifferential equation, convolution quadrature, convex kernel, I!-
stability
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1. Introduction. Let A be a positive self-adjoint linear operator defined on a
dense subspace D(A) of a real Hilbert space H with spectral decomposition

(1) Ax = / AE) x

— 00

for x € D(A). We assume that the spectrum of A is contained in [Ag, o), where
Ao > 0. Xu established stability results in 2002 (see [21]) and convergence results in
2008 (see [22]) for a numerical method for approximating the initial value problem

(2) u'(t) + /0 Bt — s)Au(s)ds =0, t>0, u(0) = uy.

Here u = u(t) is a function in the Hilbert space H and ' = d/dt. Xu assumes in both
papers that the kernel 8(t) : (0,00) — R satisfies

(3) B € C(0,00) N LY0,1) and 0 < B(o0) < B(0+) < oo,
and
(4) (~D)"s™M () >0, t>0, n=0,1,2,....

In Theorems 1 and 2 we substantially enlarge the class of functions 3(t) for which the
stability results are valid by weakening the completely monotone hypotheses (4) on
B(t) to the assumption

(5) B is nonnegative, nonincreasing, convex, and — 3 is convex.

*Received by the editors August 6, 2010; accepted for publication (in revised form) May 25, 2011;
published electronically July 28, 2011.
http://www.siam.org/journals/sinum/49-4/80465.html
TDepartment of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529
(charr084@odu.edu, rnoren@odu.edu).
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1554 CHARLES B. HARRIS AND RICHARD D. NOREN

We also note that our results hold for the wider class of operators A defined via a
spectral family {E,}, as in (1), whereas [21] employed the more restrictive condition
that A possess a countable complete eigensystem.

Xu utilized a discrete analogue of the Payley—Wiener theorem in [23] to obtain
results similar to those in the present paper for a class of quadratures and for certain
kernels displaying log convexity. Although the hypotheses in [23] overlap ours, our
results hold for kernels lacking log convexity, such as if 5(¢t) = 0 for some ¢t > 0. As
an example,

- (v —t)? for 0 <2 < o,
f(z) = {0 for zp < x

for any fixed ¢ > 0. R
Denote the Laplace transform of a function f by f(¢). Thus,

oo
(6) B(t) = / e ' B(s)ds, t>0.
0
By Bernstein’s theorem [20, Chapter 8], a function a = a(t) is completely monotonic
iff there exists an associated nonnegative, increasing function « : [0, 00) — [0, 00) with

(7) aozzfeﬂwww, £ 0.

From (7) we see that the Laplace transform of a(t) may be analytically extended to
the slit plane C' = C\ (—o00, 0] via the formula

o0
(8) aoz/'d“@ teC.
o S+t
Here a Stieltjes integral is used. Xu makes extensive use of this representation in his
analysis.

A convex function will only be guaranteed to have a second derivative almost ev-
erywhere [18, Chapter 7]. In particular, the representation (8) does not hold. Without
this representation we are still able to obtain the same conclusions as Xu by doing
detailed estimates on the function 5(¢) using the representation (6).

Let k denote the constant time step, t, = kn the nth time level, and U™ the
approximation of u(t,). The backward Euler method is used with OU" = Un%Unﬂ
approximating the derivative u’ in (2) at the nth time level. For the integral we apply
the first-order convolution quadrature introduced by Lubich [7]:

©) 1) = > ey (R

where ¢ = (t;) and the quadrature weights (3,_;(k) are the coefficients of the power
series

(10) B(lgz) =§ﬁj(k)zj.

This leads to the time discrete problem

(11) dU" + ¢, (AU) = 0, U°% = u,.

Our first theorem generalizes Theorem 1 of [21] by replacing the completely mono-
tonic assumption (4) with (5).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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THEOREM 1. If (3) and (5) hold, then

(12) kY 1IUM] < CllAugll.

n=1

In order to state our next theorem we must first define some auxiliary functions.
For o + i1 ¢ (—00,0], set B(t) = c(t) + 8(c0), and then let

oo, 7) = /000 cos(tt)e 7' B(t)dt and O(o,T) = %/000 sin(7t)e 7' B(t) dt,

oc(0,7) = /000 cos(tt)e %tc(t)dt and  O.(0,7T) = %/000 sin(rt)e" % c(t) dt,

and for 0 < 7 < 00, set

o—0+

¢e(T) = lm ¢e(o,7) = /OOO cos(Tt)c(t) dt
and

0u(r) = lim fu(o,7) = = /O " sin(rt)e(t) dt.

o—0+ T

So, for o + it ¢ (—00,0], we have

B of(0) _ B(0)
BoT) = ulorr) + T and 0o T) = Ol T) +
and then, for 0 < 7 < 0o, we may set
B(0)

6(r) = lim $o.r) =¢e(r)  and  6(r) = lim 0(,7) = 6u(r) + 25

We see then that the Fourier transform of 5(t),

(13) B = [ e
0
obeys the relation
(14) B(r) = ¢(r) —ir0(r),
and further, the Laplace transform obeys
(15) B(cr +i7) = ¢(o,7) —it0(0, 7).

As a consequence of Theorem 2.2 and Corollary 2.1 of Carr and Hannsgen [1], (3) and
(5) imply

(16) lim sup be(r) < 00

T—>00 ¢C(T)
By (4.3) of [1], we see that 772 = 0(0.(7)) (T — 00), so it follows that (3) and (5)
imply that

o(r)

(17) ligsip% < 0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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If instead our kernel §(¢) is such that

(18) lim sup 70(r) < 00

T—00 QZ)(T)

holds, then we can obtain the following theorem which generalizes Theorem 2 of [21].
THEOREM 2. If (3), (5), and (18) hold, then

(19) kY110 < Clluoll.

n=1

We note that (18) is a significantly weaker frequency condition upon S8(t) than is
employed in Theorem 2 of [21], namely, that

. 710(7)
(20) lqu_Il_Fip 00)
For example, if B(t) satisfies (5) and behaves like (—log(t))? (p > 0) near the origin,
then an easy calculation utilizing the relations (37) and (39) shows that (18) is satis-
fied, but not (20). We see that in Theorem 1 we are allowed a wider class of kernel
functions 5(t), but we have the more restrictive requirement that ug € D(A), whereas
Theorem 2 places greater restrictions upon 3(t), yet allows ug to be any element of H.

The resolvent kernel of (2) is defined by the formula

< o0.

(21) U(t) = /oo ult, \) dEy,

— 0o

where wu(t, A) is the solution of the scalar Volterra integrodifferential equation

(22) u'(t) + /\/0 Bt —s)u(s)ds =0, u(0)=1;

the parameter A satisfies A\g < A and 0 < t.
It is clear from (21) that

(23) sup |u(t,\)| =0, t— oo
Ao<A
and
(24) / sup |u(t, \)| dt < oo
0 Ao<A

imply, respectively,

(25) U@®)] — 0, t— o0
and
(26) /0 U®@)]] dt < oo.

Then the resolvent formula

(27) y(t) =U@{)yo + /0 Ut — s)f(s)ds

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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can be used to obtain precise asymptotic information (¢ — oo) about the solution
y(t) of the initial value problem

(28) w(t) + /O B(t—s)Au(s)ds = £(t), >0,  u(0) = .

In [1] several sufficient conditions are given on 5(t) such that (23) and (24) hold.
One easily stated consequence of [1] which is relevant here is that (23) and (24) both
hold, and, as a consequence, (25) and (26) when () satisfies (5).

In [21] the stability of a numerical scheme for approximating the solution of (2) is a
discrete analogue of (26). Let {U™ ()}, be a real sequence satisfying the difference
equation

Ut —unt)
k

(29) FAWUN) =0, n>1, U\ =L

It follows from the functional calculus for spectral decompositions (see [17]) that
the solution to (11) may be representated as

(30) U = / " U () dE u.

—00

We note that Lemma 1 from [6] implies that e~ 7*3(t) and (e~ !5(t))" are convex
for o > 0. Also, from Theorem 2 and the comments following it in [13] we find that

~

B(t) is positive-definite, implying that Re(8(s)) > 0 whenever s = ¢ + i1 with ¢ > 0.
Then, by an argument similar to that in Lemma 3.1 of [8], we find that the quadrature
(9) is positive-definite in the sense that for each function ¢ : (0,00) — H and each
positive integer N, we have

N
(31) Qn(P) =k Y (an(p), ") > 0.

n=1
To see this, set
N N 00 ) N n
P)=> ¢, B)= Bk} and Qu.(p)=kD D Buj(k)r" (¢, 0")
j=1 §=0 n=1j=1
for 0 < r < 1. Then, it is straightforward to show that

k

27 ) )
Qurle) = 5= [ Blre)a(e )| do.

As H is a real Hilbert space, it follows from (10) that Qn(¢) > 0. Then, by (9) we
find that Qn.(¢) = Qn(e) (r 1 1), from which (31) follows.

By an argument very similar to that given in Lemma 3.1 of [10], it can be shown
that (31) implies that

(32) U™} < [luol|-

Then (32) implies that

(33) kYU < tol ol |

n=1

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Thus, by (30) and (33), we see that it is sufficient to show that

34 k sup [U(MATH < C
(34) n;ﬂ sup [0 (AT <

and

35 k sup [U"(\)| < C

(33) n;ﬂ sup |0 ()

to prove Theorems 1 and 2, respectively.

Equations (2) and (28) arise in the theory of linear viscoelasticity. A nice survey
may be found in [16]. For a comprehensive treatment of Volterra equations see [5] or
[15]. Another interesting work on the numerical approximation of the solution of (2)
which assumes (3) and (5) is given by Xu in [24, Remark 2.3] in which a Galerkin
method is studied. For a numerical solution utilizing quadrature applied to the inverse
Laplace transform form of the solution, see [11]. For a second-order accurate finite
difference solution, see [9]. A solution utilizing finite difference convolution quadrature
is given in [3]. For a time-stepping discontinuous Galerkin solution, see [12].

In the next section we establish some preliminary results and in section 3 we
present the proofs of our theorems. In all that follows we assume that ¢ > 0 is a
sufficiently small fixed constant independent of & whose value will be specified later.
We also note that C is a generic constant whose value may change at each appearance
and which depends only upon € and Ag.

2. Preliminary estimates. We begin with a lemma from [21, p. 139], which
derives from a lemma in [1, p. 967].
LEMMA 2.1. If B(t) satisfies (3) and (5), then

1 ¥ ~ +
(36) Ve / B(t)dt < |B(r)| < 4 / Btydt, >0,

(37) é/(; 1B(8) dt < 0(r) < 12/0? B, >0,
(38) 16/(7)] < 40/? tB(t)dt, T >0.
0

Here, recall that 3(7) is the Fourier transform of B(¢). We note that these re-
sults hold without the convexity of —f3’(t) assumed. As we know that e~ *§(t) and
(e79tB(t))" are convex for o > 0, then with only slight modifications to the proof we
obtain results similar to those in Noren (see [14, eq. (4.14)]):

1 /7 I
39 L7 sy o7~ at. 0.
(39) | woa<an<c[Tamwa >
and
(40) c/ He="tB(L)) dt < é(o, 7) <c/ (e~ BW)) dt, o, > 0.

One consequence of (39) and (40) in the case where 0 < o < e7 is that

(41) (o,7) > C/ t(e='B(t)) dt > Ce 7 /: —tp'(t) dt > Co(T).
0

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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As et 3(t) satisfies the hypotheses of Lemma 2.1, we obtain the following variants
of (36) and (38):

-

1 % —ot —ot ~ —ot
(42) 2—\/5/0 e 7 B(t) dt < |(e” 7t B(t)) (1) §4/ e 7B(t)dt, o,7>0,

0

and

-

d

(43) (e B0 (1)

< 40/T te otB(t)dt, o, 7> 0.
0

Defining the functions A(z) = [, A(t)dt and Ay(z) = [; tB(t)dt, we also recall a
result from Shea and Wainger [19, eq. (1.21)]):

A

44 ——=d .
(44) a2 T < 00
Define the notations

1-— k in(k 1 — e tkv
oc=o(k,v)= 1= cos(kv) U), T=71(k,v) = sin V), s=s(k,v) =c+ir = e ,

k k k

and

D(s,\) = Dlo +i7) = 3+ B(s) = K” + Blo +i7).

Following [1] and [21], we wish to define a strictly increasing function w : [Ag, 00) —
e, 00) with w(A) = co (A — 00) and such that §(w(\)) = § for A > Ay > Ag and, if
necessary, w(A) = € for Ay > A > Ag. We note that w was continuous in [1], owing to
the choice of p = % in that paper, and in [21] by the analytic nature of a completely
monotonic function. We do not require that w be continuous. In this case, slight
modification to the proof given in [1, Lemma 5.2] and [2, Lemma 8.1] gives us the
following lemma.
LEMMA 2.2. If B(t) satisfies (3) and (5), then

oy 5 (r>%),
T E

Culr J§ 180) e+ J§ Boya) (7 €15 5D

This result also holds if —3’(t) convex is dropped. We also note that [1] gives us

(45) [D(ir, A)| = {

(46) w(A) < OA,
and it follows from (6.8) of [1] that, for 7 > %, we have
(47) O(t) < CA L.

We now wish to establish a generalization of (2.9) from [21].
LEMMA 2.3. If 5(t) satisfies (3) and (5) and 0 < o <eT < T, then

(48) |6(o,7) — 0(T)| < 2920(T).
Proof. Beginning with the formulas

B(o0)

o2+ 712 T2

0(o,7) =0.(0,T) +

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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we see that
1 1
2 2412

< 16c(0.7) = 0c(r)| + B(00) .

|00, 7) = 0(7)] <0c(0,7) = 0e(7)| + Blo0)

so it suffices for us to show that |0.(c,7) — 0.(7)| < 29¢0.(7). Integrating by parts
twice, we get

ﬁ /O h {(1 — et cos(rt)) — ge*ﬁ sin(ﬂ‘)} (= (1)) dt

- G jTZ)Z /OOO { ((02 -+ (0% — Tz)e—dtW)

—20(1 —e cos(n‘))}c”(t) dt

O.(o,7) =

and
O.(1) = T_lz 000(1 — cos(7t)) (= (t)) dt
_ 1= sin(ri) .
- (t — ) (t) dt.

The boundary terms vanish due to the relations tc(t) = t2¢/(t) = o(1) (t — 0+) and
tc'(t) = o(1) (t — o) from [1]. Then, setting

(1) = ﬁ { ((02 424 (0? — TQ)eUtW) —20(1— e COS(Tt))}
and
o)~ % (t ) sin7(-7't)> |

we see that we need only show that
(49) (1—20)g(t) < £(1) < (1+292)g(¢)

to have our result. Since f/(0) = f(0) = ¢’(0) = ¢g(0) = 0 and (1 —¢)g"(t) <
f"(t) < g"(t) for t € [0, 1], we may integrate twice over [0,¢] for ¢ € [0, 2] to obtain
(1—e)g(t) < f(t) < g(t) for t € [0, 1]. First we show that

(50) (1—295)g(t) < F(t) (t > 1) .

T

Note first that as 0 < o < erT < 7 and t > %, we have

—20 —20 —4e _ —26¢ sin(7t)
7 (1—e > _Z7 (1 —e 0t > > — .
0T 72)2( e~ 7" cos(tt)) > - (1—e 7" cos(tt)) > 5 2 (t = )

So, we must show that

ﬁ ((02 + )t (o2 — TZ)eUtM) > (1-3¢) (i (t - Sm(ﬁ))) .

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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As (14+¢)(1—-3¢) <(1—2¢) and

_ ¢ SIn(71)

1 5 <(02 + 7))t + (0% — 1%)e

(02 +72) T

1 (t 2 —o? oot sin(ﬁ)) 7

> _
“(14¢e)r2 T2 + 02 T

it suffices to show that (after some rearrangement)

72— o? sin(7t) sin(7t)
1-— o) T L >0 ([T ).
( 2to2" > T = < T )

This clearly holds if sin(7¢) > 0, so assume otherwise. Then, as

(1 2 o) sin(rt) (1 BT m)> sin(rt)

_7'2—|—a'2 T 1+¢ T

2 1-¢ sin(rt)
==+ et )| ——,
1+e¢ 1+e T

(50) follows since 2e < 2¢(1+¢) and (%%) sin(7t) > —1. We now show that

(51) F(t) < (1+292)g(t) (t > 1) .

T

Note that as0 < o <er < T and t > %,we have

1) < 1 (t 72— 02 oot sin(Tt)) < 1 <t 72— 02 oot sin(7t)> .

o2+ 712 72 4 o2 T T2 72 4 02 T

So, we need only show that (after some rearrangement)

2 2 . .
<1 T —0 e"t> sin(7t) <29 (t B sm(n‘)) .
T T

72 4 o2

This clearly holds if sin(7¢) < 0, so assume otherwise. Then, we see that

(1 2 — o2 Ut) sin(rt) _ (1 Cloe m)> sin(rt)

T2 2t T 1+¢ T

sin(rt)

<e(24Tt)
< 3et,

T

from which (51) follows, as sin(7t) < 237¢ for ¢ > L. Then, combining (50) and (51),
we obtain (49), which proves the lemma. O

We next wish to prove the following estimate.

LeEMMA 2.4. If B(t) satisfies (3) and (5), k<1, 7= < v <

and ¢ < %, then

=3

(52) oo, 1) >
Proof. Beginning with the formulas

ap(o0)

o2+ 72

and B\(U) = /000 e 7te(t) dt + @,

¢(o,7) = /OOO cos(Tt)e 7 e(t) dt +

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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s = < v < glvesus—<cr< kand0<r<% we find that
= > (ijr?zk > % > 47’“? > 210, so we need only show that ¢.(o,7) > %/C\(U).

Integrating by parts, we obtain

¢c(o,7) = ﬁ /000[0(1 — e 7 cos(tt)) + e 7 sin(rt)](—C () dt
and
3 _ l >~ _ ot C/
@) =5 | Ao

The boundary terms vanish as in the proof of Lemma 2.3. Then, setting

1 1
ft) = m[o(l — e ' cos(t)) + e 7'sin(rt)] and  g(t) = E(l —e ),
we see that for ¢ < 1, we have f/(t) = e ' cos(rt) > e 7" = 1¢/(t), so as f(0)
g(0) = 0, we may integrate over [0, ], for t < 1 to obtain f(t) > 3g(t) for t <
Thus, it is only a matter of showmg that f(t ) > 19(t) for t > L to establish (52

and 0<r<s , it follows that for ¢ <z we have Z > 27 > 9; so
clearly we have e < (1-— _‘”) for t > 1. Thus, for ¢ > 1 we see that

ft) > K (2—25(1 — et — %e‘%)

4+¢2

o (@-a0 - —e - )

—k (24;28) (1-e )

8k
> 1 —ot
> 20—
1
> —qg(t
> 59(8),

| \/

which proves the lemma. a
We next wish to extend Lemma 3.1 in [21].
LEMMA 2.5. If B(t) satisfies (3) and (5), A > Ao, and k < 1, then

(53) kz [U™(\)] < O
Proof. Following [21], we define the generating function of {U™(A)}5$2, to be

A=Y U"(Nz
n=1

which may be shown to obey the relations

U(z,\) =

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Then, an application of Hardy’s inequality [4, p. 48] gives us

- n nUn T v
S (x |<2Z |n+1 _/ T (e, N dv
n=1

—T

(54) <2k/ e~ \) |dz/_2k{/ / / }|U —kv )| dy,

where

- (1) A ()

Thus, our extension reduces to establishing the three estimates

(55) k? / T (=, ) dv < CAL,
0

(56) K / |0 (e, ) dv < O,

(57) k2 / S0 (e, \)| dv < CkA.

®
We prove (55) first. For e,k < 1, we see that when 0 < v < e, we get

sin(kv)

(5) -

T(k,v) <v, o(k,v) <er <7, cos(kv)>

<e

l\D|‘—‘

Y <
2~
nd

By (40) and (58), we see that

(59)  Refi(o+ir) > C / T et (1) dt > C / S8 () dt > vacT.
0 0

We may obviously assume C' < 1 in (59), giving
o2 2
|D(o +it,\)|* = ‘(b(cr, T) + —‘ + ’7’0(0, T) — X‘

2(;52( —I—C ‘7907 X

> & (;”T) C2T +C? |rb(o,7) - 7\2
B @2 (cr,T) 27’ 2\ 2 272
= +C <9(0, T) — X) +C ?0 (o,7)
(0, 7) +7'26‘2(U ) T2 2\?
( +5 (o -3)
((;52 o,7) —|—T292(0' 7'))
so we obtain
(60) |D(o + i1, \)| > C|B(0 +iT)|.
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Then, (36), (42), and (58) give us

Blo+inizc [T eawizcliml = c [ sed = Clie)
0 0
so (60) implies that
(61) |D(0 +i7,\)| > C|B(r)| > C|B(e))-
Note that (36) and (42) give us

(62) |Blo +im)| = (e BE) (1) < CIB(T), >0
We also see that (37) and (43) imply

I < CO(r), o, 7> 0.

Then it follows from (36), (37), (44), (61), (62), and (63) that
: il —ikv : 1 > . > .
k2/0 (e ,A)|dug/0 /\2|D2(0+”’/\)|~[1+)\k|ﬂ(a+w)|+)\|B (o +im)[] dv
O L, ML, o0
Ao |Be)2  1BMIIB()  1B(T)I?
<o,

(63) B0 +ir)| = 'iwtﬁ(wrm

dr

so estimate (55) holds. We now show (56). Here ¢ < v < £ and for &,k < 1 we have
1
(64) S T(ka V) S v, U(kvl/) S ET(ka V) S T(kvl/)a COS(kV) Z 5

We shall establish the following estimates on |D(o + i7, A)| when £ < min {%, =}

65)  |D(o+ir,\)|>C <79(7) + /0% B(t) dt) : re [% %‘J} N [% %} ,

and
(66) ID(0 +iT, \)| 207;“’, > 2w.
We show (65) first. To establish
€ w € €
. S £ w €€
(67) \D(o +i7, \)| > Cro(r), e [2, z}ﬂ[z,k},

note that in the case where

Cir 7
9(7)—§‘<%/0 tB(t) dt

we can use (37), (41), (45), and (64) to show that

|D(o +im,A)| = Cé(r) = C <01T/; ta(t)dt —
0

o) - §D
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Similarly, when

we find that (37) and (48) give us

0(1) - %} = % 0; tp(t) dt > %0(7’) > 2710(o, 1) — ()

Thus, it follows by (37) that

Do +im,\)| > 7 |0(0,7) — ~| = 7| (6(r) = 2 ) + (600, 7) — 0(7)| = = |o(r) — =
) ) 3 A
> % /? tB(t) dt > CTo(7).
0
This establishes (67). The estimate
. % g W g €
(68) ID(o +im, )| > c/o swya, e [SSN[5 5],

follows from the same argument with 7 fj tB(t) dt replaced by fo% B(t)dt. Then,
combining (67) and (68), we have (65). To prove (66), we note that (41) gives us

|D(o + i1, )| > Co(r),

which establishes the estimate when ¢(7) > %T;w. Thus, assume ¢(1) < LLI52.
Then, (45) gives us

T—Ww . 1 Ci7—w 1
< < - < —= I
Ci < |D@ir, N)| < o(7) + 716(7) /\‘ <5 + ‘9(7) NE
S0
1 Ci(T —w)
- > Y > 2.
(69) ‘)\ 9(7)‘ > PSR T> 2w

As O(1) = 0.(7) + ﬁ(ff), we see by (4.4) of [1] that 0(7) is decreasing. It follows by
our construction of w(\) that in the case where A > A1, or by (69), in the case where

Ao >\ > )\ with % —0(r) > Clé:;w), that as ¢ < min { 1%2, ?,?Ts}v we have

8(o,7) < (1+299)0(r) = (1 + 29@% —(1429) G - 0(7))

1 Ci(r—w) 116e7

< i <2+588—m)
1 Ci(r—w) <2 B 2328)

) 47 Cy
1 Cl(T—w)

X 4ra
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so we find that

(70)

w

Do +im, \)| > 7 G ~ 9(0’7)> o

Similarly, by (69), in the case where Ag > A > A; with + — 6(r) < — ) we

2T 7

see that as ¢ < min { 1503 348} and as —— < 2 for 7 > 2w, we have

O(o,7) > (1 —29)0(1) = (1 — 298)% + (1 —29) <9(T) — l)

so we obtain

(71)

A

1 Ci(t—w) 116eT
>4 AT T (g mge o T
*)\—’— 4T\ b8 Ci(r —w)
1 Ci(r—w) 232¢
xT T PTg
1 Ci(r—w)
>
_)\+ T

|D(o 4+ i1, \)| > 7 <0(U,7’) — %) >C 3

Combining (70) and (71) completes the proof of (66).

Next, let By = [5,%] N[5, £], B2 = [£,20] N[5, £], and B3 = [2w,00) N [§, £].
Note that our construction of w and the decreablng nature of 6(7) give us Ad(r) > C
for r € By. Also, by (36), we see that |3(7)| < C for 7 € E5. Then by (17), (36),
(41), (48), (62), (63), (65), and (66), we see that

€

k,2/ |U/

C

—

IN

J,
), =

IN

C

/N

Q >~|Q

+

7
(

/ES 1+/\ 1+)02( ))d7>’

ol

NS

e \)| dv

+/E /E })\2|D2 CT—|— )| {1+/\k|3(0+7;7')|+/\|B\/(U+i7')|} dr

dT A(r7Y)
2 e A 1)d7>

o(r) +76(r) | 6(7)
L5 et e dT)

so by (46) and (47) we find that

(72)

k2/k |U" (=™ \)|dv < C(1+ X+ kX) < CA,

€

which establishes (56). We now establish (57). Here £ <v < T, and we have
1—-cos(e) _ C(e) ) o _ Cle)
> = D > - 2> .
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Then, as k£ < 1, we have
(73)  |Blo +im)| = \ / ~Hn g ‘ < [T e =)
0

and

(74)  |B'(o+im)| =

/Oo —te~(TTiMB(4) dt‘ < /OO te= €Y dt = |5 (C(e))]-
0 0

So, (72), (73), and (74) give us

T o~ ) * 1 ~ ~
2 1, —ikv < 1 . ! .
S ,/\)|du_/% e Ty [ I+ i)+ B (o 4 )

k

¥ k2 —~ ~
< [ iy (1 MBCE) + AT (CE))

k

< CEkA,

so estimate (57) holds. This proves the lemma. O

3. Proof of Theorems 1 and 2. Here we adopt the overall strategy of Xu
in proving our theorems, and we refer the reader to [21] for the preliminaries of the
proof. We remark that Xu establishes the formula

n — 1 % ivtn_2DS(S(k7V)v/\)
(75) U (/\)—Re{mnl)\/o e du}.

Then, following [1], this integral is decomposed into the five parts:

(76) U™(A) = Re{A U + X202 + A\2UR + U (N) + U (M)},
where

v [l

) e [ [B<i>]2 (1 } 283[?/5)) w

(79) Uy = W;L /0 ) ei"tn—z[giﬁ dv,

n — 1 Eeivtn_2 S2DS(S, /\) 2 1 y
(80) U4 (/\) N 7Ttn_1A3 [3 [B\(S)]ZD(S,/\) <B(S) + D(S,/\)) d )

1 ko Dy(s,\)
1 n A — Wiy _—2 ) d .
@) X msn_u/ U DENEY

For m > 2, we will establish the estimates

(82) UF (V)] < Ct,2,, n>m, A= Ao
and either
(83) U2\ < Ct 250 n>m, A > Ao
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or
(84) U\ < Ct2, n>m, A= X

to prove Theorem 1 or 2, respectively. This follows, as then we could insert three
different values of A into (76) and, by utilizing (53), solve for the U} (j = 1,2,3) to
show

kY (Re{UP} + [Re{UZ'}| + [Re{U3}]) < o0

n=m-+1

Then, (34) or (35) follow, giving us Theorem 1 and 2, respectively.
We show (82) first. Integrating (80) and (81) by parts, we obtain

€

1 . s°Ds(s,A) 2 1
Un /\ — Wip_—2 _ _
i) it atn 1N [B(s)]2D(s, \) (ﬁ(s) " D(S,A)> o
3 1 /5 pivtn_s 2sDy(s,\) + s28"(s) [ 2 N 1
Ttn—atn_1A3 Jo [B(s)]2D(s, A) B(s) D(s,A)
B 2D4(s, M)
[B(s)]2D(s, )
68'(s)  4B'(s)+2A"1  2D,(s, )
85 ~ — d
= (W@P+ﬁ®D®M_%W@”>1U
and
n _ 1 wity 2D5(87)\) %
BN = i D2(s,N)|,_.
1 Pt | B'(s)  2D%(s,\)
(86) TR / ¢ lDQ(s,/\) - D3(s,)\)] dv.
We see by (41) and (48) that for 0 < v < e with ¢ appropriately small,

(4
(87)  |B(s)l = V2 (0,7) +726%(0,7) = C\/$2(7) + 7262(r) = C|B(i7)].

Then, (36), (37), (58), (63), and (87) imply that the boundary term in (85)
vanishes at v = 0. Note that [1, eq. (5.3)] and (37) give us, for 0,7 > 0,

2
d <C/ t2e= 7' B(t)

drz(
(88) ¢ / ety de < S o).
T Jo T

Then, (36), (37), (58), (63), (87), and (88) allow us to establish the estimate (82) in
a manner similar to (5.6) of [21].

To establish (83) and (84), we first note that as ff te=otdt > [5 tetdt for all
o >0, it follows from the decreasing nature of 5(¢) and (36) that

|E’(cr)|=</ /)te‘”tﬁ dt<2/ te=7'B(t) dt

L[ i< S

18" (s)| = e 7' B(t)

—~
o
N=]

~

\ /\

ag
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Also, as fj e~"tdt > [{ e Ttdt for all T > 0, we see by the decreasing nature of
B(t), (36), (42), (58), and (60) that, for 0 < o0 < eT < T,

ID(s,\)| > C|B(o + ir)| > 0/7 e~ B(t) dt > c/? TRt dt
0

(90) ( / / ) et B(t) dt = CB(r).

Then, by (89) and (90), we are able to estimate the boundary terms in (86) as on
pp. 148-149 of [21]. From this we obtain

1 - FOB(s)| | |DA(s, M)
k2+)\1+/\1/ | + == dr || .
e |D(s,A)] 0 [D3(s, M)
We decompose the interval of integration into the three intervals Ey = [e,£), FEy =

[£,75), and E5 = [%=, 7). To estimate the integral on Ej, we note that when

v € Ey, we have 0 < 0 < eT < 7. So by (17), (37), (41), (47), (63), (65), (66), and
(88), it follows that

B |Du(s NP
o f QDSAP+LM&MP>w

2 A2 40%(7) 20\l 2\ 2
< —1 _ _
< CX </§ S0 dr +/§ p—T dr + . B0 dr

(91) |Ur(N)| <02,

o Adr o Adr

2 —_— — .
&2 *LwTv—m2+Lwh—wP>
Then, by (37), (46), (47), and either (17) or (18), we obtain

L [E 1B Dy(s,\)[?
A 1 |ﬁ (S)| | S\ dv < by 1
0% / <W@AW+_WGAW v=chEy
or
18" (s [ Ds (5, M)

4 <
&4 o QDsA 2 Diap ) M=
respectively.

3
To estimate the integrals on F, and F3, we first note that as fo" t2e=%tdt >
f§° t2e~9t dt for all o > 0, the decreasing nature of 5(¢) gives us, for o > 0,

18" (s)| =

| eemie sy '</wﬁ“m> = 5"(0)

(/ />t2 ~7tB(t) dt<2/ t2e7tB(t) dt
’ T eTTB(t) dt gag

B(o).

0'2 0
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Then, in the case where v € E3, we see that o < £ and 7 > Si"k(‘g). Then (39) and

(40)

(96)

give, for v € Fs,

¢(o,7)

Y

—C/: te=tB!(t) dt > —Ce ™= /: tB'(t) dt
0

0

> _Cemits / 18 (1) dt > C(r).
0

So, we see that (17), (63), (88), and (96) give us

(97)

L B D)
A SRl revE

L [TTORN(T) o KEN(T) . kAG2(7) ,
<A / o T m T em ¢

o

<C.

For the integral on E3, note that since we have 2%5 <o< % and 0 <7< % for
v € E3, we see by (52), (89), and (95) that

(98)

/\,1 dv
« e ID2(s,N] T |D3(s, 0]
cont [F M0 A o) NP,
== 036(0)  ° o3B(o)  oP[B(0)]?
<cC.

Then, by (97), (98), and either (93) or (94), we have established (83) or (84), respec-
tively, and thus we have proven Theorems 1 or 2, respectively.

[9]
[10]

[11]
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