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ABSTRACT 

IN VIVO MURINE MELANOMA TUMOR RESPONSES TO NANOSECOND 
PULSED ELECTRIC FIELD TREATMENT 

Xinhua Chen 
Old Dominion University, 2008 

Director: Dr. R. James Swanson 
Dr. Karl H. Schoenbach 

High intensity nanosecond pulsed electric fields (nsPEF) were applied to melanomaf 

tumors to observe functional and structural biological changes and to investigate the 

possible molecular mechanisms responsible. An animal model was set up by injecting 

B16F10 mouse melanoma cells into SKH-1 mice. A treatment (Tx) of 100 pulses: 300 

nanosecond duration; 40 kV/cm field strength; at 0.5 Hz rate were delivered to melanoma 

tumors in 120 mice. The nsPEF Tx caused tumor self-destruction with sharply decreased 

cell volumes and shrunken nuclei. The apoptotic biochemical tests confirmed nsPEF Tx 

induced apoptosis in a time-dependent manner. Examination of gross vessel and micro-

vessel density indicated direct vascular damage to pre-existing vessels and anti-

angiogenic consequence on neovascular development concomitant with tumor self-

destruction. A five-month survival study on 36 mice showed nsPEF Tx eliminated 

tumors with no recurrence to the primary site over the five months. In contradistinction 

to ionization, thermal or electroporation Tx, nsPEFs produced broad impacts on the 

melanomas in vivo, ranging from DNA fragmentation, caspase activation, nuclear 

damage, apoptosis induction, damage to pre-existing intra-tumoral vessels and 

neovascular inhibition. These tumor responses were expressed by histological and 

biochemical changes in both short and long term trials. The data indicate nsPEF Tx acts 

as non-chemical, non-thermal and non-ligand stimulus that can ablate melanomas in vivo. 
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CHAPTER I 

INTRODUCTION 

Melanomas now are the leading cause of death from diseases of the skin. Solid 

tumors develop from malignant transformation of melanocytes, which are specialized 

pigmented cells residing in the epidermal basement membrane of the skin.1 

Malignant melanoma is a very aggressive disease with a high metastatic rate and very 

poor overall prognosis. The median survival rate is 6 months and 5-year survival rate is 

below 5%. Annually diagnosed cases of melanoma are reported as 53,600 and 7,400 

patients died every year, which represents a 15-fold increase over the past four decades 

according to the epidemiologic data from American Cancer Society's website.2 

The present treatment (Tx) of primary melanoma is surgical excision.3 Complete 

surgical removal is the most successful and common treatment for melanoma. Excision 

removes the entire melanoma along with a border. In stages II and III melanoma cases 

the affected lymph nodes also need to be removed. Such extensive incisions through the 

dermis cause scarring on the skin.4 However nsPEF Tx kills the tumor without disrupting 

the dermis so that scarring is less likely. NsPEF Tx should also be effective on other 

tumor types located deeper in the body if a catheter electrode can be guided to the tumor. 

Besides surgical removal, other treatment options for metastatic lesions vary 

according to malignancy, nature and stage of the tumor. Melanoma has a high resistance 

to cytotoxic agents. Only two chemical medicines are approved by United States Food 

and Drug Administration (FDA) for use in patients with metastatic melanoma: 

dacarbazine and IL-2. Both agents have an overall response rate well below 20%, with 

long-term response uncertain.5 

Dacarbazine was approved by FDA 25 years ago and is now the only FDA-approved 

single-agent chemotherapy for metastatic melanoma. Dacarbazine is an alkylating agent 

with no benefit in terms of relapse or survival.6 Dacarbazine also has high toxicity to all 

rapidly dividing cells in addition to tumor cells. For example (1) Blood cells: These cells 

are vital because they fight infection, help the blood to clot, and carry oxygen. When 

chemotherapy affects blood cells, patients are more likely to get infections. (2) Cells in 

The journal model for this dissertation is International Journal of Cancer. 
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hair follicles: Chemotherapy can lead to hair loss. (3) Digestive tract: Chemotherapy can 

cause poor appetite, diarrhea nausea and vomiting. Patients need to take other drugs for 

these side effects. Even with these serious side effects, no substantially superior single 

agent has yet been found a replacement.7 

Among other therapeutic strategies studied in metastatic melanoma, immunological 

approaches have yielded the only new FDA-approved agent for metastatic disease, high-

dose (HD) bolus interleukin 2 (IL-2).8 IL-2 was the first immune cytokine to be 

molecularly characterized as a lymphocytic growth factor. EL-2 is a pleiotropic 

glycoprotein which is essential in the activation of a specific response to antigens by T 

cells, but also in triggering the innate immunity by stimulating several functions of NK 

cells and macrophages. However, like dacarbazine, IL-2 therapy causes high toxicity 

such as accumulation of fluid, flu-like symptoms, confusion, weight gain, low blood 

pressure and irregular heartbeat.9 

Why are melanoma tumors areso resistant to chemical therapy? Some researchers10 

believe that cell hierarchy resides inside melanoma tumors and only a few chemotherapy-

resistant cancer stem cells generate the new tumors. Most current therapies target the 

non-cancer stem cells which makes up the bulk of the melanoma but the resistant stem 

cells can always escape and survive allowing the tumor to recur after therapy seems 

effectively progressing. Only those therapies that specifically target the cancer stem cells 

can completely eradicate melanoma tumors. Studies of cancer stem cell are now focusing 

on gene-expression patterns which will differentiate them from normal melanoma cells. 

Melanoma has traditionally been approached either systemically with chemotherapy, 

or locally with surgery or radiotherapy. Researchers have recognized the lack of 

effective therapies and are looking for improve treatments. More physically oriented 

methods have emerged in cases when surgery is impossible or contraindicated due to 

high risk. The physical methods accepted in clinical practice as non-surgical methods 

are minimally-invasive therapies such as localized radiotherapy,11 Laser ablation 12 and 

radiofrequency ablation.13 

The localized radiotherapy-carbon ion beam, which is a high linear energy transfer 

(LET) beam, has unique physical and biological properties. The range is well-defined 

and has insignificant scattering which allows focused penetration that can go into tissues. 
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This energy deposition is localized and can cause oxygenation-independent cell damage. 

However LET has not yet been fully validated by long-term survival statistics for the 

adverse effect of the radiation itself.13 

Laser ablation has the advantage of being rapid and painless. Delivery of the beam 

however is so invasive that it should be contraindicated except in last ditch efforts. For 

accurate location, laser ablation often needs to be guided by magnetic resonance. To 

achieve successful tumor treatment, wide tissue margins around the tumor have to be 

coagulated which produce necrotic tissue, increasing the risk to vital organs around the 

tumor. 

Radiofrequency ablation (RFA) is a thermal therapy along the order of microwave, 

laser, high-intensity focused ultrasound, and cryotherapy which use temperature change 

to kill tumor cells. RFA can raise tumor temperature to lethal levels for tumor cells. 

Recent developments in radiofrequency ablation technology make large-volume tissue 

ablation possible for melanoma as an attractive option for patients unable or unwilling to 

accept surgery. RFA provides safe and effective local treatment of melanomas. The 

energy causes ionic agitation producing frictional heat, which cooks the tumor and leads 

to cell death and necrosis. The time for the body to gradually replace the necrosis by 

fibrosis can be quite lengthy. 

One treatment that combines both physical and chemical therapy that has caught 

people's attention is electrochemotherapy.14 Electrochemotherapy is a creative 

combination that uses chemotherapy followed by local application of electric pulses to 

the tumor. Electric fields have been proven to increase drug delivery into the cells, which 

combines the physical effect of cell membrane poration with die chemotherapy drug 

dose.15 

Electrochemotherapy is special because it uses a pulsed electric filed to alter the 

tumor cell membrane.16 Electrochemotherapy requires a generator and electrodes. The 

generator produces the electrical pulse while the electrodes deliver the pulse into the solid 

tumor.17 The general parameter requires hundreds of volts/cm at microseconds 

duration.18 These temporary pores originate from the pulsed electric field thus increasing 

cell membrane permeability which enhanced the chemotherapeutic drugs uptake which 
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would naturally have a poor permeability without electroporation. When the application 

of the electric field stops, the temporarily-formed pores immediately close.19 

In electrochemotherapy, the pulsed electric field is used as a local drug delivery 

approach. Bioelectric researchers are more interested in using the pulsed electric field 

alone. They want to develop a chemical free, non-ionizing, non-thermal physical therapy 

that could trigger apoptosis by a different mechanism or pathway.21 The recent 

development of nsPEF produces unique characteristics that may solve the problems 

caused by heat. NsPEF Tx initialize high electric fields (kV/cm) applied with ultra short 

durations (nanosecond). Quite different from classical plasma membrane electroporation, 

nsPEF can produce highly compressed power (billions of watts), ultra short pulse 

durations (nanosecond), rapid rise times (nanosecond), and high electric fields (kV/cm). 

The resulting nanosecond pulse is so short that it can penetrate into the cell before the 

plasma membrane is fully charged allowing nsPEF to have minimal affect the plasma 

membrane therefore not causing electroporation. 

nsPEF has had military applications,its application in biology creates a new academic 

subject: Bioelectrics, which means applications of ultra-short pulsed electric fields to 

biological living cells, tissues, and even organs. This new burgeoning branch of research 

analyzes how biological systems react to high electric fields applied with very short pulse 

nanosecond duration. NsPEF Tx has been applied in fighting against bacteria and has 

demonstrated decontamination potential. Only in recent years has it been applied to 

mammalian cells following careful modeling research and studies using non-mammalian 

cultured cells.21 The main characteristics of nanosecond pulsed electric fields are their 

high power and low energy leading to very little heat production and their special ability 

to penetrate into the cell to penetrate intracellular organelles. NsPEF Tx is unique 

because of its non-electroporation effect on the plasma membrane.24 

During the past years a number of studies have been done to determine biological 

effects of nsPEF Tx in cultured cells. The results proved that nanosecond pulse 

stimulation of a variety of cells produces a wide range of physiological responses. In 

vitro studies on cells treated by nsPEF include: (1) p53-wild type and p53-null HCT116 

(human colon carcinoma); (2) HL-60 (human promyelocyte leukemia); (3) Jurkat 

(human peripheral blood, leukemia);27 (4) B16F10 (murine melanoma);28 and from a 
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paper by Stacy, et al., (5) BS-LCL (human B-cell lymphoblastoid line from a patient 

with bloom syndrome); (6) AT-LCL (Human B-cell lymphoblastoid line from a patient 

with ataxia-telangiectasia); (7) SV-Normal (Human SV40 transformed normal 

fibroblasts); (8) SV-AT (human SV40 transformed fibroblasts from a patient with ataxia-

telangiectasia); (9) SV-FA (human SV40 transformed fibroblasts from a patient with 

Fanconi's anemia); (10) SV-XP (human SV40 transformed fibroblasts from a patient with 

xeroderma pigmentosum); (11) HS578T (BrCa-human ductal breast carcinoma); (12) 

HeLa (human adenocarcinoma of the cervix); and (13) 3T3(mouse pre-adipocytes). 

Effects of nsPEFs on cells in vitro include: (1) apparent direct electric field effects; (2) 

induced apoptosis leading to caspase activation and then cell death; (3) nuclear changes 

and modified cellular functions with delayed plasma membrane effects becoming smaller 

as the pulse duration is shortened; (4) release of calcium from internal calcium pools and 

activation of plasma membrane calcium influx channels or capacitative calcium entry 

(like ligand-mediated responses); (5) induction of DNA and cell cycle anomalies; and (6) 

diminished cell survival. The biological effect of nsPEF Tx on cells in vitro is directly 

related to the electric filed strength, the pulse number and the pulse duration. 

The effect of nsPEF Tx on multicellular tissue or human subjects has not been tested 

until very recently. An ex vivo study on mouse embryonic fibroblasts was the initial 

approach for testing nsPEF effects on tissues. Fibrosarcoma tumors (B10.2) were 

injected in the flanks of C57B1/6 mice and then excised and exposed to nsPEF Tx. 
or* 

Fibrosarcoma B10.2 cells ex vivo became reduced in size after nsPEF Tx. Because the 

tumors were removed from the animals before Tx then sliced and exposed to nsPEF Tx in 

cuvettes, the experiment was ex vivo rather than in vivo. Therefore the data cannot 

substituted for an in vivo experiment. 

Based on the previous in vivo and ex vivo work, nsPEF Tx is hypothesized as a highly 

localized, drug-free, non-thermal physical technique which would be a new therapy for 

tumor treatment. To apply nsPEF Tx to tumors in vivo is an important bridge to connect 

individual in vitro cellular response with future clinical application. This emerging field 

has unknowns surrounding the nsPEF mechanism of actions on the in vivo tumors. Our 

study provides prospective research data on nsPEF Tx on solid in vivo tumors. 
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Proof of apoptosis induction and anti-angiogenesis sheds light on the mechanism of how 

nsPEFs work on tumors. Since nsPEFs act as a non-chemical, non-thermal and non-

ligand pulse that did not exist in the natural environment, these studies reveal new 

understandings of apoptotic and angiogenic signaling pathways in tumor tissues. 

While a number of studies have been done to determine effects and mechanisms of 

nsPEFs in cultured cells, much remains to be done to determine nsPEFs effects on tumor 

tissues in vivo. 

A previous in vivo case study was reported for a single patient. A nsPEF Tx was 

applied (150 pulses of 20 ns duration, and 60kV/cm) to both normal and malignant cells 

such as WI-38, a cell line established from normal human fetal lung fibroblasts, and VA-

13, the matched WI-38 cells transformed with the SV40 virus (which inactivate sp53 and 

Rb). Cell viability after pulsation didn't show an immediate response which made them 

believe the final cell death or slowed cell proliferation were delayed results instead of the 

immediate response of cell membrane destruction. When nanoelectropulse therapy was 

applied to AsPC-1 tumors in athymic nude mice, a response was seen in 4, the effective 

rate was 66.7% and the biological effects included clinically complete remission in 3 of 6 

animals. A single male human had nanoelectropulse therapy with 200 pulses (10 pulse 

bursts every 5 sec, 6.5 kV, 20 ns duration, 20 Hz) applied to a basal cell carcinoma with 

complete elimination. These trials show interesting therapeutic effects but were limited 

by the sparse case numbers without repetition or controls and thus without statistics.28 

Our current project is designed to determine tumor response and molecular 

mechanisms for melanoma regression with nsPEF Tx in vivo. More specifically SKH-1 

female mice bearing B16-F10 murine melanomas have been treated with 100 pulses of 

nsPEF Tx at 300 nanosecond pulse duration, 40 kV/cm electrical density at 0.5 Hz rate. 

Tumor growth inhibition was observed, the number of survival days was tracked after the 

nsPEF Tx and the biological effects such as induction of apoptosis and anti-angiogenesis. 

The mechanism of nsPEF parameters to affect biological results was also studied. This 

research is a unique prospective animal trial for nsPEF application in vivo. Our data, 

drawn from a large experimental animal population (more than two hundred), tested the 

pulse effects over three different time frames: (1) short-term observations (minutes after 

nsPEF Tx); (2) intermediate observation (days after nsPEF); and (3) long-term 
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observation (5-month survival study). In vivo data were provided that is impossible to 

gather with in vitro cell cultures like vascular changes and tumor regression over a real­

time framework. Following nsPEF Tx, the kinetics of tumor regression was determined 

by using ultrasound analysis of tumor volumes and inhibition of tumor blood flow by 

Doppler ultrasound. This study not only recorded the tumor response but has also 

revealed possible mechanisms of actions. Molecular events were also determined to be 

triggered by nsPEF Tx. 

The 5 chapters in the dissertation will test the following specific aims: 

1. To analyze the tumor volume quantatively after the nsPEF Tx to study if nsPEFs can 

cause tumor growth inhibition and ultra structural changes. 

2. To determine if nsPEFs can (1) damage nuclei or DNA as measured by H2AX 

phosphorylation and TUNEL or (2) affect the related proteins such as caspase, 6, 7, bcl-2, 

BAD expression by immunohistology and western blot, thus allowing the kinetics of 

molecular events related to apoptosis post-nsPEF Tx to be determined. 

3. To compare the tumor blood vessel changes, micro-vessel density and the 

angiogenesis related proteins such as vascular endothelial growth factor (VEGF), and 

platelet-derived endothelial cell growth factor (PD-ECGF) expression in the tumors with 

and without nsPEF Tx. 

4. To study long-term animal survival rate after nsPEF Tx in mouse-survival days and 

tumor growth and recurrence in the primary site. 

5. To determine the relationship between the in vivo biological effect as related to the 

nsPEF Tx dose. 

Our results produce evidence that nsPEF Tx is an emerging modality that may have a 

role as a local cancer therapy. Therefore the data will form the basis for future human 

clinical applications in tumor therapy. 
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CHAPTER II 

NSPEF INHIBIT MELANOMA GROWTH AND PRODUCE 
ABNORMAL TUMOR MORPHOLOGY 

According to epidemic data from American Cancer Society, there are 53,600 newly 

diagnosed melanoma cases and 7,400 deaths per year, a 15-fold increase over the past 

four decades in the United States.31 Treatment options for advanced metastatic 

melanoma are limited and the clinical prognosis is poor.32 The only single agent therapy 

approved by the FDA is a chemotherapeutic medicine, decarbonizes (DTIC). It has 

severe side effects and brings no apparent survival benefit.33 The challenges of therapy 

require new methods. Pulsed power technology has attracted attention for its unique 

biological effects on tumor growth. The application of high power and low energy makes 

nanosecond pulses pass the cells exterior plasma membrane but shocks the vital 

intracellular structures.34 More recently, it has been shown in silico that unique nanopores 

are formed in all cell membranes including the plasma membrane. 

nanosecond pulsed electric field (nsPEF) is a high electric field applied with ultra 

short pulse duration35 (20kV/cm at 300 nanosecond in our research). Compressed power 

is extremely high (billions of watts) while the duration of nanosecond pulses are 

extremely short thus producing very low energy density with no thermal consequence in 

living cells.36 

Prior in vitro research in our center has proven that pulses with high-intensity electric 

fields can affect intracellular structures producing a wide range of physiological 

responses (e.g., apoptosis, stimulation of calcium (Ca2+) fluxes, changes in membrane 

potential) in different cell lines such as HL-60 (Human promyelocytic leukemia cells),37 

Jurkat (human T cell leukemia cells)38 and HCT116 (colon carcinoma cells)39. But the in 

vivo proof is still absent. 

In the present work, an animal model was set up and investigated the direct tumor 

response of nsPEF on tumor growth, and examined the morphological characteristics of 

nsPEF in the treatment of subcutaneous murine melanoma B16F10. 
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Material and Methods 

B16F10 cells 

Murine melanoma B16-F10 cells were obtained from ATCC (Manassas, VA) and 

cultured in DMEM (Dulbecco's modified Eagle's medium) supplemented with 10% fetal 

bovine serum (FBS, Atlanta Biologicals), 4 mM 1-Glutamine (Cellgro), and 2% 

Penicillin-Streptomycin solution (Cellgro) at 37°C in 5% C02. 

Animals 

In vivo experiments were set up in conformity with IACUC guidelines under 

applicable international laws and policies (Animal Care and Use Committee of Eastern 

Virginia Medical School IACUC #04-011, #04-013). B16 F10 cells were implanted 

subcutaneously in the right and left flank of the SKH-1 female mice using 0.1 ml of cell 

suspension with lx l0 6 B16F10 cells prepared from in vitro cell cultures. Three tumors 

per mouse were induced; the treated tumor had electrode placement and nsPEF Tx. The 

sham tumor had electrode placement only without nsPEF Tx. The control tumor had no 

electrode placement or nsPEF Tx. 

In vivo imaging 

Before and after the treatment, melanomas were imaged daily by both 

transillumination and surface photography at 1.2x magnification. Tumor volume was 

calculated. Tumors were measured daily after the treatment using the formula 40 for 

prolate spheroid (square of the width x length x 0.52): V = 0.52 x Dl2 x D2, where Dl 

and D2 are short and long tumor diameters, respectively in vivo using tranillumination 

and surface photography. 

NsPEF Tx 

Pulses were generated using 40 KV/cm, 300 nanosecond pulses with a rise time of 

about 30 nanoseconds by a Blumlein pulse generator designed and assembled at the 

Frank Reidy Research Center for Bioelctrics. Three tumors induced on the same mouse 

were randomly selected as control, sham or treated tumor. An area of skin was pulsed in 

the same way as the treated tumor for safety evaluation and a second area of normal skin 

was collected without pulse or electrode placement as a skin control. One hundred pulses 

were applied to the treated tumor and treated skin at a frequency of 0.5 Hz with a needle 

electrode. 
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Histology study 

Upon euthanasia, tumors were removed and fixed in 10% neutral buffered formalin 

prior to paraffin processing. Sections were stained with H&E and assessed 

microscopically for abnormal cell morphology. One hundred nuclei were randomly 

selected and outlined in ten non-overlapping fields of each section at 600x magnification. 

The nuclear area was calculated by MATLAB software and summed as the mean ± SD 

for statistical analysis. Fontana-Masson stain and Iron stain (hemosiderin) followed a 

routine protocol described.41'42 

Transmission electron microscopy 

After pulsing, the treated and the control tumors, along with the normal skin samples 

were excised and immediately put into primary fixation (3% glutaraldehyde) for two 

hours at room temperature and then secondary fixation (1% osmium tetroxide) was 

carried out in the dark at room temperature for one hour followed by repeated washing 

(3x) with phosphate buffer. Dehydration was accomplished with a series of 30%, 50%, 

90% and 100% ethanol (v/v) for 15 min each. The dehydrated samples were suspended 

in propylene oxide followed by 1:1 treatment with propylene oxide: resin and finally with 

pure resin until infiltrated by resin polymerized. The resin blocks were carefully trimmed 

and various thicknesses (200nm, 300nm, and 500nm) were cut using an ultra microtome. 

Tissue ribbons were transferred to 300 mesh copper grids stained with uranyl acetate and 

lead citrate and then analyzed with a Jeol electron microscope at 160 kV. 

Result 

Tumor growth was inhibited by nsPEF Tx: Histological analysis. 

A self-comparison model was set up to avoid the heterogeneity derived from 

differences mice. Three melanomas were induced on every SKH-1 mouse and decided 

randomly to be used as control, sham or treated tumor. The pulsed skin around the tumor 

was also collected to compare with the normal skin for further nsPEF safety evaluation. 

Altogether 12 mice were included in the 7-day-long tumor growth observation. 

Histological data showed that 100% of the treated tumors (12/12) responded to the nsPEF 

Tx compared to the sham and control tumors. The major pathological diagnosis was 

summarized as Table 1. 
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TABLE I - OVERVIEW OF H&E AND TEM MORPHOLOGICAL CHANGES 
SUMMARIZED FROM 120 MICE BEARING MELANOMAS WITH OR WITHOUT 

NSPEF Tx 

Control tumor Treated tumor 
Tumor structure 
Tumor Center 
Blood supply 
Tumor nest 
Nuclear chromatin 

Cytoplasm 
Nuclei 

Nucleoli 

Melanin 

Regular nest and cancer cell cord 
Lobular 
Rich 
Complete 
Clearly and evenly spread throughout 
nucleus 
Structured with organelles 
less pleomorphic with relatively regular 
contour, 
regular and well formed 

most located inside the cell 

disordered 
dead 
poor 
destroyed 
aggregated 

cytoplasmic details lost 
more heterochromatin, 
condensed, elongated and dark 
more pleomorphic, compact, 
prominent, and irregular in shape 
Some within cytoplasm but much 
scattered extra cellular space 

Tumor growth was inhibited with nsPEF compared to the control tumors from the same 

mouse. 

To avoid the individual tumor growth difference due to the immune system, tumors 

injected on the same mouse were randomly selected as the treated tumors (n=12) 

compared with controls (n=12) and shams (n=12). One week after nsPEF Tx the volume 

of tumor size showed significant difference (p<0.00l). Control tumors on 12 mice grow 

faster and larger than the treated tumors on the other side. The skin in the tumor area was 

also pulsed. Edema and bleeding appear after nsPEF Tx and lasted 3 days. The skin 

damage underwent a week long recovery and eventually healed. 
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FIGURE 1 - Tumor growth was inhibited 7 days post-nsPEF Tx compared with control tumors from the same 
mouse. H&E comparison of the melanomas with or without nsPEF from the same mouse. For every mouse 
two tumors were injected on the same mouse but selected randomly one for nsPEF Tx and the other without 
any treatment used as a self-control. A and E, B and F, C and G, D and H are the tumors grown up on the 
same mouse (40x). Four different control tumors are shown in the top row; four treated tumors are shown 
in the middle and the skin in the nsPEF treated tumor areas were shown in the bottom row. I: pre-pulse 
skin (200x). J-K: post-pulse skin. J: First day post nsPEF Tx (200x). K: Third day post nsPEF Tx (200x). L: 
Seventh day post nsPEF Tx (40x). 

Typical growth change after nsPEF Tx recorded by transillumination and surface 

photography 

Pulsed skin undergoes an acute edema, with local bleeding 10 minutes and 2 days 

post treatment. On day 2 a shallow scar was observable on the surface, which recovered 

by day 7. Control tumors size increased continuously on days 2 and 7 maintaining a rich 

blood supply. Treated tumor growth was inhibited and a surface scar developed and 

tumor blood vessels disappeared as the tumors shrunk. 
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FIGURE 2 - Typical growth change after nsPEF Tx recorded by transillumination and surface photography. 
The images (1.2 x magnifications) show pulsed skin (top row) untreated control tumors (middle row) and 
tumors treated with nsPEFs with 100 pulses at 300ns and 40kV/cm (bottom row). Images were taken 10 
minutes, 2 days and 7 days post nsPEF Tx as indicated. Images were taken of the surface and with 
transillumination as illustrated. 

Tumor volume changes during 7-day post-nsPEFs treatment 

Tumor volume changes during the first week post nsPEF Tx were plotted (Fig.3). 

Local treatment with nsPEF decreased the tumor volume significantly compared to the 

self control tumors. The sham was made by putting the electrode on the tumor without 

delivering the electric field. The sham tumor volume and growth curve had no significant 

difference from the control tumor, which indication that electrode insertion didn't 

account for the tumor reduction. 

Tumor growth curve 

Time after nsPEFs treatment (day) 

FIGURE 3 - Tumor volume changes during 7-day post nsPEFs treatment. Tumor volume was determined 
using calipers on days 1, 3 and 7 after treatment with 100 pulses at 300ns and 40kV/cm. Tumor volume for 
treated (n=12) was compared with controls (n=12) and sham (n=12), calculated and shown as cm3 as 
described in Materials and Methods. (* p <0.001) 
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Inferior view of tumors collected pos- euthanasia. 

When the mice were euthanize, all tumors (n=36) were removed and photographed from the 

epidermal and subcutaneous surfaces. Figure.4 showed the inferior view of tumors. Twelve 

tumors from control group were large in size and rich in blood supply. The sham was similar to 

the control group. Twelve tumors from nsPEF treated group showed that tumor size decreased 

dramatically without an obvious blood supply around the tumors. 

FIGURE 4 - Inferior view of tumors collected post euthanasia. Tumors were removed from the mice after 
euthanasia. All tumors (n=36, 12 per group) were removed and photographed from the epidermal and 
subcutaneous surfaces. Tumors were dissected then weighted for statistical analysis. The first frame shows 
12 tumors from control group as indicated. The second frame shows 12 tumors from sham group and the 
third frame shows 12 tumors from nsPEF treated group. 
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Tumor weights was decreased 14 days post nsPEF treatment compared to the control 

and sham from the same mouse 

Figure 5 showed nsPEF treated tumor volume was inhibited 14.8% of control tumors 

(p<0. 001). No differences were observed between control and sham tumors 

Tumor weight comparison 

i 

* 

rh 
control sham treated 

FIGURE 5 - Tumor weights was decreased by nsPEF treatment compared to the control and sham from the 
same mouse. Tumors were removed from control, sham and treated mice and weighed 14 days post nsPEF 
treatment (100 pulses, 300ns at 40kV/cm) 

Melanoma tumor cell structure and nucleus were changed by nsPEF treatment. 

Ultra structure and nuclear change were revealed by H&E. Control tumors showed 

the aggressive growth, regular nest shape with rich blood supply. The solid tumor was 

bounded by a thin fibrous capsule and contained internal fibrous bands, demarcating 

multinodular characteristics. Nests of tumor cells were delineated by well-formed basal 

lamina, composed of cellular lobules separated by hypocellular, fibrous bands. Nested 

patterns of growth were identified within these lobules. Tumor cells featured clear and 

regular nuclei with prominent nucleoli. The cytoplasm is characteristically pink and 

clear. Pigment suggestive of melanin was identified in an organized shape. Treated 

tumor nuclei dramatically shrink. Nests break down, losing the cord-like supporting 

structure on which tumor cells extend. Individual cells elongated and condensed, nuclear 

to plasma ratio decreased. Dense cytoplasmic bodies make the field dark, unclear and 

disordered. The arrows point to the tumor nest in the low magnification and the typical 

tumor cells and melanin in high magnification. 
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FIGURE 6 - Melanoma tumor cell structure and nucleus were changed by nsPEF treatment. Melanoma cell 
structure and nuclear changes were analyzed by H&E. Control tumors are stained by H&E and then 
photographed under 40x and 600x magnification. The arrows point to the tumor nest in low magnification 
and the typical tumor cells and melanin in high magnification. Bar scale: 2cm on the top line and 50 micro 
meters on the bottom line. 

Melanoma tumors nuclear area was decreased by post nsPEF Tx. 

Nuclear area changes of melanoma tumors post nsPEF treatment was shown in 

Figure.6. Control tumors (n=12) and nsPEF treated tumors (n=12) were compared by 

their nuclear area. A significantly decreased nuclear area was seen in tumors as indicated 

7 days after nsPEF treatment, (p < 0.05) 
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FIGURE 7 - Melanoma tumors nuclear area was decreased by post nsPEF Tx. Specimens were collected 
when mice were euthanized on the 7* day post nsPEF treatment. Control tumors (n=12) and nsPEF treated 
tumors (n=12) were routinely stained with H&E and analyzed by a computer-assisted image analysis with 
MATLAB as previously described. The nuclear area decreased significantly after nsPEF treatment (* p < 
0.05) 

Melanoma tumor cell sub-cellular structures was changed by nsPEF Tx 

Sub-cellular structures were analyzed by transmission electron microscopy (TEM). 

Full-thickness biopsy was made from normal skin, control and nsPEF treated tumor. 

TEM showed the untreated skin has the typical sub-cellular organelle. The control tumor 

revealed typical malignant melanoma morphology: regular shaped nucleus with high 

proliferation and prominent nucleoli in the center, extensive rough endoplasmic 

reticulum, Golgi stacks, and a large quantity of ribosomes. In contrast, the nsPEF treated 

melanoma showed: (1) decreased nuclear size but increased nuclear /cytoplasmic ratio, 

(2) formation of dense cytoplasmic bodies, (3) degenerative tumor cells with 

fragmentation of nuclei and irregular nuclear outline. 
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Normal skin Control tumor nsPEF treated tumor 

FIGURE 8 - Melanoma tumor cell sub-cellular structures was changed by nsPEF Tx. Melanoma tumor sub 
cell structure was analyzed by Transmission Electron Microscopy (TEM). Full-thickness biopsy of normal 
skin, control and nsPEF treated tumor from the same mouse 7 days post nsPEF Tx were dissected as shown 
in the upper row. The corresponding TEM was shown in the lower row. The first TEM picture on the left 
shows the mouse skin has the typical epidemic sub-cellular organelle. The arrow points to the nucleolus 
inside the normal epithelial cell. The TEM picture in the middle shows a control tumor. The arrow points to 
the nucleolus inside B16F10 cancer cell. The TEM picture on the right shows a treated tumor (100 pulses 
at 300ns and 40kV/cm). The arrow points to the fragmentation along the cell membrane inside a 
condensed, shrunken and wrinkled B16F10 tumor cell 

Fontana stains for melanin in the melanoma tumors 7 days post nsPEF Tx. 

Fontana stain for melanin was shown in Fig.9. Dark spots reveal the melanin layers 

which were clearly represented with Fontana Stain, a positive, marker for melanin. 

Control tumors without nsPEF treatment showed a layer of positive Fontana stain which 

outlines of malignant melanoma. Tumors post nsPEF treatment showed decreased 

volume with sparse melanin remaining. The staining results suggest nsPEF treatment can 

reduce or eliminate the melanin in the tumor. Based on the control tumor as a 

comparison, this staining change is an indirect sign of tumor damage. In tumors where 

the melanin persist post-nsPEF treatment, the melanin will be aggregated in extra cellular 

spaces and not within cells which indicates the cell death. 
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Fontana Melanoma Melanoma Normal skin 
Positive control without nsPEF with nsPEF 

FIGURE 9 - Fontana stain for melanin in the melanoma tumors 7 days post nsPEF T,. The first column (A, 
E, I, Fonata positive control) shows the human melanomas without treatment. The second column (B, F, J, 
melanoma without nsPEF) shows the mouse control tumors without nsPEF treatment. The third column 
(C, J, K, melanomas with nsPEF) shows tumors post nsPEF treatment. The fourth column (D, H, L, normal 
SKH-1 normal mouse skin) show negative Fontana stain because the SKH-1 mice are albino and thus 
almost no melanin in the skin. The arrows point to the melanin layer. 

Iron stain for the old bleeding in the melanoma tumors with and without nsPEF Tx. 

Iron stain of the mouse melanomas was shown in Fig. 10. This extracellular 

hemoglobin/iron combines the iron stain. Control tumors showed melanin, but no iron. 

Treated tumor had positive iron staining. The micrographs indicate nsPEF causes some 

capillaries damage with hemoglobin of red blood cells accumulation within the treated 

area. 
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Iron stain Melanoma Melanoma Normal skin 
positive control without nsPEF with nsPEF 

FIGURE 10 - Iron stain for the old bleeding in the melanoma tumors with and without nsPEF Tx. A, E and I 
(Iron stain positive control) show iron in granules in human melanoma. B, F and J (melanoma without 
nsPEF) show tumors with melanin, but no iron. C, G and K (melanoma with nsPEF) show layers of 
positive iron staining. D, H and L are normal mouse skin as the iron stain negative control. The arrows 
point to the cells which indicate iron stain positive 

Discussion 

Electric fields applied to living cells cause a number of significant biological 

effects.43 The most common application of pulsed electric fields is classical plasma 

membrane electroporation by which foreign drugs can be introduced into cells through 

temporary formation of pores in the plasma membrane.44 Electroporation pulses charge 

the plasma membrane with millisecond to microsecond durations and low electric fields 

(V/cm to KV/cm), without significant effects on intracellular membranes. Quite different 

from classical plasma membrane electroporation, nsPEF is special for its ultra short 

nanosecond pulse duration, rapid nanosecond rise time, and high electric field (kV/cm). 

As a result, nsPEF can generate ultra short pulses, which are short enough to penetrate 

the cell interior before the plasma membrane is fully charged.45 nsPEF Tx can bypass the 

plasma membrane because the cell membrane has a relaxation time longer than the pulse 

duration. Pulses of nanosecond duration in our previous trials showed 100 pulses 
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increase the temperature of the treated region by only 3 degrees C, ten degrees lower than 

the minimum temperature for hyperthermia effects.46 NsPEF Tx shows high power and 

low energy leading to very little heat production. The consequence of applying intense 

300 ns pulses was examined on melanoma bearing mice. This study analyzes melanoma 

growth and ultra structure post nsPEF treatment. The hypothesis that nsPEF is a highly 

localized and drug-free physical technique was confirmed. NsPEF could serve as a 

promising new therapy for tumor. 

After nsPEF treatment, the tumor showed delayed development and sharply 

decreased volume on the first, second and third day compared to control tumors (p<0.05). 

The nsPEF-treated tumor weight was reduced by 85.3%, significantly smaller than the 

control group (p<0.00l). 

Transillumination and surface photography showed a consistent change after nsPEF 

treatment while the untreated melanomas were grossly recognizable under the skin 

surface with round black enlarged appearance on the back. The treated tumors were 

small and dry with structural shape change and reduction of blood vessel. 

H&E and TEM images both showed that without nsPEF treatment, the melanomas 

kept a regular outline of tumor cells with a pale nucleus and prominent round nucleolus. 

Cell cytoplasm was finely dusted with melanin and the cells often formed a tumor nest 

with an active growing center marked by a good blood supply and a well-organized 

cancer cell cord marked by invading vessels, dermis or muscle fibers. Lymphatic and 

vascular invasion was present in some control samples, but not as prominent as in the 

treated group. In nsPEF treated melanomas, solid tumor nest construction was detached, 

tumor cords were broken and the space in between tumor cells enlarged with shrinking 

spindle shaped nuclei inside. Regression in size of tumors occurred within 24 hours with 

surrounding tissue swelling and bleeding. Subcutaneous tissue and skin recovered within 

7 days. Skin pulsed with nsPEF showed evidence of typical inflammation in the treated 

area during the first three days but resolved in one week. Summarizations of pathological 

comparisons are formed in Table 1. 

Fontana-Masson stain was used to assess depigmentation of melanomas after nsPEF 

treatment. Because melanomas develop from the malignant transformation of 

melanocytes, specialized melanin producing cells which reside in the epidermal basement 
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membrane of the skin, melanogenesis is regarded as a functional marker associated with 

differentiated melanocytes. The data shows the effects of nsPEF on organized 

melanogenesis and retention of intracellular melanins. 

Iron staining can show hemosiderin which is the storage molecule for iron granules 

so that iron staining can mark recent bleeding by staining the hemoglobin iron released 

by lysed red blood cells. The data showed iron stain in the treated melanomas, a sign of 

hemorrhage indicating that nsPEF caused acute blood vessel rupture and bleeding inside 

the tumor 

Melanoma morphological changes revealed that nsPEF can inhibit melanoma growth 

in vivo. NsPEF can significantly delay subcutaneous murine melanoma development by 

directly damaging the tumor structure and nuclear morphology without significantly 

affecting the peripheral healthy skin tissue of the treated mice. 
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CHAPTER III 

NSPEF TRIGGER APOPTOSIS IN MELANOMA IN VIVO 

Previous studies from this laboratory demonstrated that nsPEF could eliminate 

B16f 10 tumors in mice. Our former studies47 on the first 120 mice with nsPEF Tx show 

that nsPEF can penetrate into the interior of melanoma cells and cause tumor cell nuclei 

to rapidly shrink and reduce tumor growth with gradual remission in weeks.48 Different 

mechanisms and pathways have been found in the initial apoptosis detection in tumor 

cells in vitro.49'50 The hypothesis is that nsPEF Tx triggers apoptosis in tumor in vivo. 

Apoptosis differs from necrosis because it is an active process of cellular self-destruction, 

involves a precisely controlled series of events that become activated in a cell signally its 

time to die. The current work is designed to find out sequence of molecular events 

caused by nsPEF in the short term (1-24 hours) post-nsPEF Tx. 

Twenty four SKH-1 mice bearing B16-F10 murine melanomas were euthanized at 

1, 3, 6 to 24 hours post-nsPEF Tx. The objectives were: to (1) survey the melanoma 

nuclear morphological changes (2) examine the presence of DNA damage, caspase 

activation and apoptosis; (3) determine time sequence of the molecular biological events. 

(4) compare the different biological effects of long pulses versus short pulses. 

Material and Methods 

Tumor Model 

In vivo experiments were set up in conformity with IACUC guidelines under 

applicable international laws and policies and approved by Animal Care and Use 

Committee of Eastern Virginia Medical School. In accordance with principles for the 

ethical use of animals, 24 immunocompetent hairless female SKH-1 mice were injected 

subcutaneously with 100 ul PBS containing lxl06B16-F10 murine melanoma cells. 

nsPEF Tx 

A pulser with a Blumlein line configuration was designed and assembled at the 

Frank Reidy Research Center for Bioelectrics. It can generate 300 nanosecond long 

pulses with a 30-nanosecond rise time. One hundred pulses were applied to the treated 
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tumor at 40 Kv/cm and 0.5 Hz. The electrodes for electric field application, pulse 

generator, voltage and pulsing pattern of nsPEF were described previously.48 

Sample collection 

Specimens were collected for 4 different time points post-nsPEFs Tx (1, 3, 6 and 24 

hours). At each time point, 2 groups (nsPEF-treated tumors and the control tumors on the 

same mouse) consist 6 replicates per group, were studied. 

Histology Study 

Two tumors induced simultaneously on the back of each mouse were randomly 

selected as either control or treated tumor. After the nsPEF Tx both control and treated 

tumor were removed and fixed in 10% neutral buffered formalin prior to paraffin 

processing. Sections were stained with H&E and assessed microscopically for abnormal 

nuclear formation. One hundred nuclei were randomly selected and outlined in ten non-

overlapping fields of each section.51 The area of nuclei was measured by the software 

MATLAB and summed as the mean+SD for statistic analysis. 

DNA fragmentation 

DNA was extracted by standard proteinase K and phenol/chloroform. 

Electrophoresis was performed in 1.8% agarose gel in TBE buffer (Tris-borate 89 mM, 

pH 8.3, EDTA 2 mM) at 30 V for lh. The DNA was visualized by ethidium bromide 

staining. B16-F10 cells incubated with Etoposide (Calbiochem, Cat. 341205) used as 

apoptosis positive control.52 

Immunofluorescent Staining 

Mouse tumor sections were de-paraffinized and then immerged into and boiled in 

citrate buffer (pH 6.0) for 5 minutes to retrieve antigenic sites masked by formalin 

fixation. The tissue sections were then placed in 3% hydrogen peroxide for 10 minutes to 

inactivate endogenous peroxidase. Tissues were blocked with goat serum, and then 

incubated in a humidity tray with antibodies against phospho-histone H2AX (SI39) (RD; 

1:500 dilution); caspase 3 (Cell Signaling, 1:500), caspase 6 (Cell Signaling, 1:800), 

caspase 7 (Biovision, 1:400) in combination for 2h at room temperature. This was 

followed by incubation of a secondary antibody, Alexa Fluor-488-labeled goat anti-rabbit 

IgG (Invitrogen, 1:250) for 30 min at room temperature in darkness. Cover slips were 

mounted with mounting media (Vector Laboratories, H-1200), which contained DAPI to 
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identify the nuclei. The number of positive cells was scored by manual counting of three 

sets of at least 100 cells under the microscope. Each experiment was performed twice. 

TUNEL Assay 

TUNEL (terminal transferase mediated ddUTP nick end labeling) assay was done 

according to the protocol with Apot Tag Red in Situ, an apoptosis detection kit, 

(Chemicon, Cat No. S7165). Cells with TUNEL-positive nuclei with a cytoplasmic halo 

were recognized as positive apoptotic cells. For the negative control, no terminal 

transferase enzyme was added. 

Western Blot Analysis 

Proteins were resolved over a 15% SDS-polyacrylamide gel and transferred to a 

nitrocellulose membrane. Gels were transferred electrophoretically to a polyvinylidene 

difluoride (PVDF) membrane. The blot was preincubated in blocking buffer (5% nonfat 

dry milk, 1% Tween 20, in 20 mM TBS pH 8.0) for 1 h at room temperature, then 

incubated with appropriate primary antibodies in blocking buffer for 1 h at room 

temperature, overnight at 4°C followed by incubation with anti-rabbit or anti-mouse 

secondary antibodies conjugated with horseradish peroxidase and detected by 

chemiluminescence and autoradiography using x-ray film. The antibodies against Bcl-2, 

Bad, beta-actin and caspase-9 demonstrated several bands with the most intense staining 

at the predicted molecular weight in each case. The antibodies were abtained as following 

: Bcl-2: (Santa Cruz Biotechnology Inc. Catalog #: sc-23960, dilution: 1:200, molecular 

weight: 26 kDa,); Bad: (Santa Cruz Biotechnology Inc. Catalog #: sc-8044, dilution: 

1:200, molecular weight: 25 kDa); pan-actin (Cell Signaling Technology, Catalog #: 

4968, dilution: 1:500, molecular weight: 45 kDa); Caspase 9 (BD, Catalog #: 556585, 

dilution: 1:200, molecular weight: 46 kDa). 

Statistical analysis 

Quantitative analysis was based on the nuclear area, immunostaining results of 

activated H2AX, caspase and TUNEL (positively stained cells in situ) as compared 

between melanoma with and without nsPEFs Tx. The entire samples along 1, 3,6 and 24 

hours post-nsPEF Tx were counted by MATLAB software using fluorescent staining. The 

number of positive cells was scored by counting three sets of at least 100 cells under a 

microscope. The differences between treated and control groups tested with two-tailed 
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Student's t-test and analysis of variance (ANOVA) (SPSS Statistical Programl5.0, SPSS 

Inc., Chicago, IL, USA). 

Results 

H2AX immunohistochemical staining was used as the early test for early DNA 

damage. Immunostaining results showed activated H2AX in melanoma with and without 

nsPEF Tx at the time 1,3,6 and 24 hours post-nsPEF. It showed a fine programmed time 

course of H2AX-positive cells inside melanomas post-nsPEF Tx. Percentages of H2AX-

positive cells started to increase 1 hour post-nsPEF Tx, peaked at 3 hours, and then 

decreased by 24 hours. The in situ stain is shown in Figure 11 and the quantitative 

analysis of H2AX phosphorylation is shown in Figure 12. Six different mice were used at 

each time point in each group. The significant increases of H2AX were at 1 hour and 

maximum at 3 hours. (p < 0.001 vs. control). 

Caspase immunohistochemical staining was tested in melanomas post-nsPEF Tx to 

test the pan caspase activation which play essential roles in apoptosis. Time course shows 

that percentages of caspase positive cells started to increase 3 hour post-nsPEF Tx, 

peaked at 6 hours, and then decreased by 24 hours. Quantitative analysis confirmed that 

immunostaining results of activated caspase 3, 6 and 7 positively stained cells in situ and 

had a significant increase at 3 and 6 hours post-nsPEF Tx. (p < 0.001 vs. control) 

TUNEL immunohistochemical staining was used in melanomas post nsPEF to 

detect DNA fragmentation by labeling the terminal end of nucleic acids. Because tumor 

cells undergoing apoptosis are characterized by a fragmentation of the genomic DNA, 

many breakpoints can be visualized with the TUNEL reaction. The enzyme terminal 

desoxynucleotidyl transferase (TdT) adds biotinylated nucleotides to the broken DNA 

ends. The biotinnylated DNA can then be visualized by fluorescence label. It showed 

that percentages of apoptotic-positive cells started to increase 3 hour post nsPEF Tx, 

peaked at 6 hours, and then decreased by 24 hours (Fig. 15). Quantitative analysis 

(Fig. 16) confirmed that TUNEL-positive cells showed significant increase at 3 hour and 

6 hours (p < 0.001 vs. control) 

DNA extracted from treated tumor was analyzed by electrophoresis followed by 

ethidium bromide staining for proof of DNA fragmentation. But the typical DNA 
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fragmentations, which look like a ladder, were not seen. Only large pieces of DNA were 

found. 

Mean nuclear area measurement was applied as morphology study as well as a 

quantitative analysis to identify nuclear changes. H&E stain showed tumor construction 

and nuclear shape changes 1-24 hours post-nsPEF Tx. Control tumor cells exhibited 

lightly staining pleomorphic nuclei and abundant cytoplasm containing finely dispersed 

melanin granules. Treated tumors had cell with dense staining, shrunken, darken and 

elongated nuclei. Cells within the treated melanomas were scattered from the tumor 

cord. Intracellular melanin granules as well as aggregated extracellular melanin granules 

were scattered throughout the widened interstitial spaces. Quantitative comparison was 

made by calculating mean nuclear area (um2) between control melanomas and treated 

tumors during 1-24 hours post-nsPEF Tx. A significant difference exists between the 

control as compared to lh, 3h, 6h and 24 h post-nsPEF Tx (p < 0.001) as well as between 

1 and 3 h times (p < 0.001). The data indicate that immediate changes in the tumor 

following the application of the electric field pulses may be responsible for the tumor 

regression. 

Bcl-2 family protein expression was tested in situ at 3 hours post nsPEF Tx because 

Bcl-2 family proteins play a vital role in regulating apoptosis. Expression in situ at 3 

hours after nsPEF Tx was determined by immunohistochemistry (IHC). Western-blot 

analysis of BAD and Bcl-2 protein expression during 1-24 hours post nsPEF Tx after 100 

pulses were applied. The time course showed the amount of BAD increased along the 

hours post-nsPEF Tx while bcl-2 decreased. IHC on 3 hours samples showed that the 

tumor cells without nsPEF Tx kept the round and regular nuclear shape and size while 

melanomas with the nsPEF Tx showed condensed and reduced nuclei. Data showed that 

nsPEF increase BAD expression more man control. Bcl-2 was decreased dramatically 

after nsPEF Tx. Quantitative analysis of immunohistological staining of BAD and Bcl-2 

protein expression showed that BAD was increased while bcl-2 decreased significantly 

after nsPEF Tx vs. control (p < 0.001). Caspase 9 expression was tested by western-blot 

because it is an important enzyme in extrinsic apoptosis pathway. The time course 

showed caspase-9 was activated post-nsPEF Tx. 
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H2AX was activated from 1 to 3 hours post nsPEF Tx 
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FIGURE 11 - H2AX phosphorylation detected by immuno-fluorescent staining in melanomas post nsPEF 
Tx. Immunostaining results of phosphorylated H2AX (positively stained cells) in melanoma with and 
without nsPEF Tx were determined 1, 3,6 and 24 hours post nsPEF Tx as indicated. A representative 
experiment is shown. Phospho-H2AX-positive signals were indicated by fluorescence in contrast to nuclei. 
Phospho-H2AX positive cells are indicated in merged images. Also shown are the corresponding bright 
field images. Magnification for lh, 6h and 24h is 200x and the control is 600x. 
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FIGURE 12 - Quantitative analysis of H2AX phosphorylation of melanoma tumors during 1-24 hours post-
nsPEF Tx. Immunostaining results of activated H2AX positively stained cells in situ in melanoma without 
and with nsPEF Tx were determined 1, 3, 6 and 24 hours post nsPEF Tx.as indicated in Materials and 
Methods. Values are mean±SD. Six different mice were used at each time point in each group * * p < 0.001 
p < 0.001 treated (T) vs. control (C). 
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Caspase3, 6 and 7 activation post-nsPEF Tx 
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FIGURE 13 - Caspase immunofluorescent staining in melanomas post-nsPEF Tx. Results of 
immunofluorescent staining for active executioner caspase-3,6 and/or 7 in melanoma with and without 
nsPEF Tx 1, 3,6 and 24 hours post nsPEF Tx are shown as indicated. A representative experiment is shown. 
Caspase positive signals were indicated by green fluorescence in contrast to red fluorescence-stained 
nuclei. Caspase positive cells are indicated in merged images as yellow-orange. Also shown are the 
corresponding bright field images. Magnification is 200x 
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FIGURE 14 - Quantitative analysis of caspase activation of melanoma tumors during 1-24 hours post-nsPEF 
Tx. Immunofluorescent staining results of activated caspase 3,6 and 7 positively stained cells in situ in 
melanoma without and with nsPEF Tx 1, 3,6 and 24 hours post nsPEF Tx. Values are mean ± SD. Six 
different mice were used at each time point in each group * *. p < 0.001 treated (T) vs. control (C). 
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TUNEL result for apoptosis detection 
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FIGURE 15 - TUNEL immunofluorescent staining in melanomas post-nsPEF Tx. Immunostaining results of 
TUNEL in melanoma with and without nsPEF Tx are shown 1, 3,6 and 24 hours post-nsPEF Tx as 
indicated. A representative experiment is shown. Apoptotic tumor cells are characterized by 3' and 
5'broken ends of genomic DNA. The many breakpoints can be visualized with the TUNEL reaction (TdT-
dependent dUTP-biotin nick end labeling). The enzyme terminal desoxynucleotidyl transferase (TdT) adds 
biotinylated nucleotides to the broken DNA ends. The biotinnylated DNA can then be visualized by 
fluorescence label. Positive signals are indicated by green fluorescence in contrast to red fluorescence-
stained nuclei. TUNEL positive cells are indicated by the yellow cells in the merged images. Also shown 
are corresponding bright field images. Magnification is 200x 
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FIGURE 16 - Quantitative analysis of TUNEL in melanoma with and without nsPEF Tx during 1-24 hours 
post nsPEF Tx. TUNEL positive cells were determined as described in Material and Methods. Values are 
mean±SD. Six different mice were used at each time point in each group. * * p < 0.001 treated (T) vs. 
control (C). 

DNA fragmentations fanned post-nsPEF Tx 
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FIGURE 17 - Large DNA fragmentation induced by nsPEF Treatment in melanoma in vivo. B16-F10 cells 
incubated with Etoposide used as apoptosis positive control. DNA was analysed by 1.8% agarose gel 
electrophoresis followed by ethidium bromide staining. Data are representative of two independent 
experiments. B16-F10 cells incubated with Etoposide (Calbiochem, Cat. 341205) used as DNA damage 
positive control. 
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Mean nuclear area of treated tumor decreased 
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FIGURE 18 - Tumor construction and nuclear shape changes 1-24 hours post-nsPEF Tx. Tumors were 
treated in vivo with 100 pulses at 300ns and 40kV/cm. Tumors were removed 1, 3,6 and 24 hours post 
pulses and prepared for H&E staining Samples at each time point are shown with 40x and lOOOx 
magnification. Histological analysis and determination of nuclear areas are described in the legend to 
Figure 19 and in Materials and Methods. 
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Melanoma Nuclear Area Comparison 
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FIGURE 19 - Mean nuclear area (um2) comparison between control melanomas and treated tumors during 1-
24 hours post nsPEF Tx after 100 pulses at 300ns and 40kV/cm were applied. The number of cell nuclei 
were measured from 6 mice for each time point and bars represent SEM. Mean nucleus area measurements 
was applied as in the morphology study as well as a quantitative analysis to identify nuclear changes. 
Specimens were routinely stained with hematoxylin and eosin and analyzed using a computer-assisted 
interactive image analysis system MATLAB. Nuclear areas were estimated after manual editing of binary 
images. * p < 0.001 treated (T) vs. control (C). 

nsPEF Tx up-regulates BAD and down-regulates Bcl-2 expression. 

FIGURE 20 - Western-blot analysis of BAD and Bcl-2 protein expression were determined 1, 3,6 and 24 
hours post-nsPEF Tx with 100 pulses at 300ns and 40kV/cm. A representative figure of Western-blot 
analysis of BAD, Bcl-2 and actin proteins. After nsPEF Tx or non-treated melanoma tumors were collected 
and lysed for Western-blot analysis as described in Materials and Methods. Immunoreactivity to b-actin 
was used as protein loading control. 
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BAD B e l - 2 

FIGURE 21 - Bad and Bcl-2 protein expression and distribution in situ at 3 hours post nsPEF Tx. Bad and 
Bcl-2 protein expression in situ at 3 hours after nsPEF Tx was determined by immunohistochemistry (IHC) 
using respective antibodies. IHC positive staining is indicated by brown spots overlap the tumor nuclei. 
Yellow arrows indicate typical positive cells in IHC stain. The specific procedures are described in 
Materials and methods 
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FIGURE 22 - Quantitative analysis of immunohistological staining of BAD and Bcl-2 protein expression in 
melanoma with and without nsPEF Tx at 3 hours post nsPEF Tx. The positive stained brown cells from IHC 
staining were counted and calculated as mean±SD. six different mice with melanomas were tested in every 
IHC trial. Statistical significances are indicated. * *p < 0.001 treated (T) vs. control (C). 
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NsPEF Tx activated caspase 9 
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FIGURE 23 - Western-blot analysis of caspase 9 expression. Western-blot analysis of active caspase 9 was 
determined after nsPEF Tx The melanoma tumors were collected and lysed for Western-blot analysis as 
described in Material and Methods. Immunoreactivity to beta-actin was used as internal loading control. 

Discussion 

When the cells become deregulated, such as during tumor formation, the body can 

induce apoptosis to get rid of them by programmed cell death.53 '54 '55 In the previous 

research in tumor cell lines in vitro, it was shown that nsPEFs induce caspase associated 

apoptosis in HL60, Jurkat and HCT116 colon carcinoma by mitochondrial-dependent 

(Jurkat and HL-60) and mitochondrial-independent (HCT-116) mechanisms.56 The ex 

vivo trial on mouse fibrosarcoma tumors also proved nsPEF Tx resulted in apoptosis as 

indicated by caspase activation and TUNEL positive tumor cells. It was further shown 

that nsPEF treatment could reduce fibrosarcoma tumor size when treated in vivo51 The 

current work was carried out to determine if and how nsPEF induced apoptosis in 

melanoma tumors in vivo. 

Under certain conditions DNA damage can lead to apoptosis inductions. However, 

for stimuli that induced DNA damage, these markers may appear before caspase 

activation as a more direct effect on DNA or can occur after caspase activation as 

apoptosis markers. Figure 11 clearly indicated that nsPEF induced DNA damage as 

indicated by Histone 2AX phosphorylation as a marker for double strand breaks in DNA. 

Further evidence for DNA damage was shown by the presence TUNEL positive nuclei 

(Figure 15), large DNA fragments by agarose gel electrophoresis (Figure 17) and 

shrinkage of nuclei as indicated by H&E histological examination. All of these DNA 

damage markers indicated time dependent effects. Histone 2AX phosphorylation and the 
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presence of TUNEL positive cells peaked at 3 hours, while the presence of significant 

pyknotic nuclei were evident 3-24 hour post pulse. Caspase activation was shown to peak 

at 6 hours after nsPEF treatment. These time courses indicate that evidence for DNA 

damage occurred before caspase activity was at a maximum. This suggests that some 

damage to DNA was in part due to events that were not related to caspase-dependent 

apoptosis. This non-apoptotic DNA damage is consistent with the results of Stacy et al.29, 

who showed nsPEF-induced DNA damage by comet assay. Further evidence for DNA 

damage unrelated to apoptosis was indicated by large fragments of DNA after agarose gel 

electrophoresis. Nevertheless, significant evidence for apoptosis is apparently when using 

several different apoptosis markers. 

Since apoptosis has been demonstrated to occur in response to nsPEFs both in vitro 

and in vivo, additional studies were carried out using several different apoptosis markers. 

One of the best markers for apoptosis is caspase activation. Here activation of 

executioner caspases-3, -6, and -7 was shown using a cocktail of antibodies with 

immunofluorescent microscopy. Evidence for caspase activation was obvious 3 hours 

post pulse, was maximal at 6 hours, but was not observable by 24 hours after treatment. 

Another apoptosis marker is the presence of TUNEL positive cells. However, while some 

of the TUNEL positive cells could be related to caspase-dependent activities, at least 

some of this occurred prior to the peak of caspase activation. However, caspase-positive 

and TUNEL-positive cells were not determined together. Therefore, based on the studies 

presented here, it is not possible to correlate caspase activation with apoptosis-dependent 

TUNEL evidence. This provides evidence that care should be exercised when using 

TUNEL as an apoptosis marker. However, it should be possible to correlate these 

apoptosis markers using a more tightly defined time course with assays for caspase-

activated DNase (CAD) activity in cells that are caspase-and TUNEL-positive. 

Other evidence for apoptosis in treated tumors was provided by histological analysis 

of pyknotic nuclei, which is a good in vivo apoptosis marker. The greatest number of 

pyknotic nuclear changes possible occurred between 3 and 24 hours post-pulse. Thus, 

some of these nuclei could have occurred due to apoptosis-related activity. The presence 

of CAD activity in pyknotic nuclei would help address this issue. 
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However, additional apoptosis markers indicated that apoptosis was present in some 

of the tumors after nsPEF treatment. Furthermore, since evidence for apoptosis in tumor 

cells was present, it was of interest to determine how these processes could be regulated. 

Increases in BAD, a pro-apoptotic protein and decreases in Bcl-2, an anti-apoptotic 

protein were observed (Figures 20-22). This finding is consistent with a potential shift in 

Bcl-2 family proteins toward pro-apoptotic activity. Furthermore, this suggested that the 

mitochondria could be involved in nsPEF-induced apoptosis. If this were true, we would 

expect to see caspase-9 activation. In Figure 23 evidence for caspase-9 activity was 

presented. Thus, the evidences from Figures 20-23 suggest that at least in some tumor 

cells mitochondria-dependent apoptosis occurred. This could be due to activities through 

the intrinsic apoptosis pathway, which originates from intracellular stresses such as DNA 

damage that was observed, or through activities in the type II extrinsic pathway, which 

originates from the plasma membrane. At the present time, it is not possible to 

differentiate these two processes. In the future, it will be possible to determine the 

presence or absence of t-Bid, which connects the extrinsic pathway with the intrinsic 

pathway through the mitochondria. This is important regarding nsPEF mechanisms, 

which could occur due to intracellular stress or unique effects on the plasma membrane. 

If t-Bid were not present it would suggest effects in intracellular structures and functions. 

On the other hand, if t-Bid were present, it would suggest effects through the plasma 

membrane. 

Although DNA fragmentation into DNA ladders is characteristic of apoptosis,58 

recent evidence indicates that not all cells undergo such extensive DNA fragmentation.59 

NsPEF caused large piece DNA fragmentation instead of DNA ladder. This is because 

nsPEF Tx does not affect cells in the same way as a long pulse does. Some sensitive tests 

other than the DNA fragmentation was expected to reveal the early stage changes thought 

to occur post-nsPEF Tx. TUNEL was used which employs an enzyme TdT (terminal 

deoxynucleotide tranferase) to tag the cuts in the DNA made by the endonuclease. 

TUNEL was tested on the control tumors and treated tumors. The data showed TUNEL 

positive results came at 3 hours, reached its peak at 6 hours, and faded away around 24 

hours post nsPEF Tx, This time course is the same as it is for nsPEF-induced caspase 

activation. 
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It is reported that H2AX phosphorylation occurs where DNA double-strand breaks 

by physical attack such as UV or ionizing radiation.60 H2AX phosphorylation is 

associated with immediate response to DNA damage and repair. H2AX could be a 

marker to indicate an early event in apoptosis, even before the caspase activation and the 

DNA fragments form. Therefore, our experiment was grouped into 4 different time 

points, 1, 3, 6 and 24 hours post nsPEF Tx with controls to test H2AX activity. These 

data confirm the hypothesis that nsPEF Tx triggers H2AX activation as an early response 

and it occurs in a tight time sequence. The immune fluorescent stain in situ showed that 

H2AX can be demonstrated at the first hour after exposure to nsPEF, reaching a peak at 3 

hours and regressing over the next to reach a minimum at 3 hours then fell to a low at 24 

h after nsPEF Tx. 

Histology changes were recorded the same time course. The previous studies on 

long-term biological effects post-nsPEF Tx had found obvious nuclear morphology 

changes as well as tumor volume shrinkage. 60 In the current study, histological changes 

were confirmed even in the short term. Histology data showed that the nuclear area 

began to change slightly from 1 hour post nsPEF Tx, and the cell shrinkage became very 

obvious at 3-6 hours. This nuclear change may be the progenitor of the longerterm tumor 

remission. 

One reason melanoma is resistant to traditional chemotherapy is because melanoma 

cells have low levels of apoptosis in vivo compared with other tumors, and are also 

resistant to chemical medicine -induced apoptosis in vitro.61'62 Little is known about the 

intracellular mechanism involved in nsPEF Tx induced apoptosis in vivo. Because 

nsPEF is a new physical therapy made by pulse power technique that does not exist in the 

natural environment, nsPEF Tx would work a different way from traditional thermal anti­

tumor therapies. 

To summarize, several pieces of evidence indicates nsPEF-induced DNA damage 

including H2AX phosphorylation, TUNEL positive cells, nuclear pyknosis as indicated 

by H&E staining and large DNA fragments upon agarose gel electrophoresis. Some of 

this damage appeared to occur before caspases were activated suggesting that nsPEFs 

may induce DNA damage itself. However, it is possible that some of the DNA damage 

occurred after caspase activation as part of the apoptosis processes. However, the absence 
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of a clear DNA ladder suggests that apoptotic-induced DNA damage did not go to 

completion. As indicated in the following chapter, it is possible that an interruption in the 

blood supply to die tumor caused tumor infarction, thus interrupting the apoptosis 

process. Nevertheless, apoptosis was a cause of some tumor cell death as indicated by the 

action of execution caspases as well as the initiator caspase-9. The activation of caspase-

9, the increase in Bad and the decrease in Bcl-2 suggests that the extrinsic type II 

pathway and/or the intrinsic, mitochondria-dependent pathways were activated, at least in 

part. The possibilities of nsPEF-induced DNA damage and a possible involvement of the 

intrinsic pathway are consistent with nsPEFs affecting intracellular structures and 

functions, which has been indicated by modeling and experimental data. ' ' 

In future work, it will be important to determine if caspase-8 is active and if t-Bid is 

present. This will suggest involvement of the extrinsic pathway with caspase-8 and 

differentiate between the extrinsic type II and the intrinsic pathway with the presence of 

t-Bid. 
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CHAPTER IV 

NSPEF INHIBIT MELANOMA ANGIOGENESIS IN VIVO 

It has been reported that in solid tumor angiogenesis plays an important role in the 

growth and metastasis.63 New blood vessels "feed" the tumor cells with oxygen and 

nutrients, allowing malignant cells to grow, invade nearby tissue, spread to other parts of 

the body, and form new colonies of tumor cells.64 In our initial studies,65 nsPEF Tx 

stopped melanoma growth and induced apoptosis. Because melanoma self destruction 

was always accompanied with interruption of blood flow, it was important in the present 

study to investigate the intra-tumoral vascular response after nsPEF Tx. 

In the initial study,65 the major change found in melanomas treated by nsPEF Tx was 

immediately and obvious reduction in blood flow to the tumor. Both transillumination 

and power Doppler ultrasound reconstructions indicate that the blood flow was stopped 

within about 15 min after pulsing. Histology confirmed that red blood cells were found 

scattered within and around the melanoma tumor. After weeks the treated melanoma 

shrunk to self destruction. The result implies that the intra-tumoral vasculature response 

is an indispensable part of mechanisms to make tumor finally self destruct.66 The 

hypothesis is tested that nsPEF Tx can cause changes at the molecular level that define 

direct pre-existing vessel damage and also inhibit new micro-blood vessel formation. 

Material and methods 

Animal model 

In vivo experiments were set up in conformity with Animal Care and Use Committee 

of Eastern Virginia Medical School. Murine melanoma B16-F10 cells were injected 

under the skin to induce 2 or 4 tumors in the flanks of 66 female immunocompetent 

hairless SKH-1 mice. When the tumors were 5 mm wide and exhibited angiogenesis, 

nsPEF was applied on one tumor and the other tumor on the same mouse was kept as 

control. Freshly isolated specimens were divided into two series, one was fixed in 10% 

neutral buffered formalin overnight and embedded in paraffin for histological analysis, 

the other was snap frozen in liquid nitrogen for protein expression tests. 

Tissue Micro-arrays Construction 
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Tissue Microarrays (TMAs) were adopted for homogeneity and high-throughput analysis 

of all samples.67 TMAs were constructed with 0.6-mm diameter cores spaced 0.8 mm 

apart. The tissue array consisted of the treated melanomas, control melanomas and 

normal skins around the control tumor. 

MVD Measurement by CD31, CD34 and CD105 with lmmunohistochemistry (IHC) 

One section was stained with H&E for histopathological diagnosis prior to IHC. IHC 

was performed as previously described.68 The 5 [im-thick sections were deparaffinized 

in xylene and then rehydrated. Slides were treated with 3% hydrogen peroxide for 

20 min to block endogenous peroxidase activity. The primary antibodies were used at 

the following dilutions: monoclonal rat-anti-mouse CD31 antibody (or PECAM-1, BD 

PharMingen), 1:50; rabbit polyclonal anti- CD34 (Biovision), 1:250; rat anti-CD105 

(BD PharMingen); 1:200. Then, sections were covered with HRP-conjugated antibodies 

directed against rat or rabbit immunoglobulin.69 Nonspecific staining was controlled by 

incubation with mouse or rabbit immunoglobulin instead of the specific primary 

antibody. 3-amino, 9 ethyl-carbazole (AEC) was used as a chromogen, which provides 

the red depositions in situ. The expression of positive cells was assessed independently 

by two pathologists, who were blinded to histopathological diagnosis. 70 

Western Blot Analysis 

Protein was resolved over a 15% polyacrylamide gel and transferred to a 

nitrocellulose membrane. The blots were preincubated in blocking buffer (5% nonfat dry 

milk, 1% Tween 20, in 20 mM TBS pH 8.0) for 1 h at room temperature, then incubated 

with appropriate primary antibodies in blocking buffer from 1 h at room temperature to 

overnight at 4°C followed by incubation with anti-rabbit or anti-mouse secondary 

antibodies conjugated with horseradish peroxidase and detected by chemiluminescence 

and autoradiography using x-ray film.71 

Result 

Both Tumor blood supply and volume were inhibited by nsPEF Tx 

Blood vessels were analyzed first on the pre-existing vasculature . Intra-tumoral pre­

existing vasculature was recorded by transillumination photography. Melanoma tumors 

began with the similar volume and rich blood supply after injection. NsPEF-treated 
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tumors had the capillary vessels damage on the day nsPEF applied. Tumors stopped 

growing when nsPEF Tx was applied and the vasculature disappeared along with me 

tumor shrinkage. Control tumors continued growing with branched blood vessel 

network. Transillumination photography recorded the typical procedure. Before the Tx, 

melanomas grew to 5-10mm diameters with rich blood supply after injection of 106 

B16F10 melanoma cells. One day after the nsPEF Tx, control tumors had blood vessel 

networks nourishing active growing tumor cells with a large round nucleus. The same 

day in the treated melanoma, the tumor cells became condensed and volume decreased 

significantly. The tumor construction was detached, the vessels were broken, and red 

blood cells scattered or aggregated into the connective tissue. Seven days after nsPEF Tx, 

the control tumors grew to large volumes with rich capillaries and small venules formed 

in tumor while the treated tumor dryed out with volume shrinkage and poor vasculature. 

Tumor blood vessels post nsPEF Tx were tracked. On the day of nsPEF Tx, the tumor 

network didn't change very much, however 3 days later the blood vessel network was 

blocked completely. One week later the tumor volume was obviously decreased 

significantly. The data altogether indicate that nsPEF Tx damaged the pre-existing blood 

vessels. 
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FIGURE 24 - Tumor blood supply and volume were inhibited by nsPEF Tx. Four tumors were induced by 
injecting B16F10 cells (1x10 ). When the tumors grew to diameters around 5mm, nsPEF Tx was delivered 
to three tumors (300 ns, 100 pulses, 40kV/cm, 0.5Hz). One tumor without nsPEF Tx was kept as control. 
These four tumors were recorded by transillumination microscopy daily (1.2 x magnifications). The 
scaling bar is 2.0mm. 

NsPEF Tx cut off the pre-existing vasculature 

The treated and control tumors came into the study with the similar tumor size and 

rich vessel network. When tumors developed, the accompanying blood supply grew with 

it shown as the blood vessels pushed their branches into the tumor. But 7 days post-

nsPEF Tx the control tumor achieved a considerable volume with good blood perfusion 

from arterioles. The treated tumors condensed and the blood vessel dried up. The results 

are shown from inner side dissection and the corresponding histology under light 

microscopy. 
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FIGURE 25 - NsPEF Tx cut off the pre-existing vasculature On the 7 day post nsPEF Tx the mice were 
euthanized and the tumors were dissected. The tumor and the blood vessels were photographed from the 
inner side. The capillaries were analyzed by histology under light microscopy (H&E, 40x). Arrows point to 
the pre-existing arteriola and capillaries. Scaling bar is 1.0mm. 

Tumor weight decreased in 7 days post nsPEF Tx. 

Tumor weight change 7 days post nsPEF Tx was also analyzed. Melanomas grew to 

similar weight (control group 1.45±0.15 vs. treated group 1.59±0.12) because the same 

amount of B16-F10 cells (lxlO6 cells per tumor) were injected on the same mouse. One 

day after the nsPEF Tx, treated tumors became slightly smaller (1.41 ±0.18) than control 

(1.61 ±0.25) due to the direct damage of nsPEF Tx. One week later, the control tumor 

without nsPEF Tx increased twice in weight (2.71 ±0.17). The treated tumor stopped 

growing and ended up with decreased tumor weight (0.58±0.21)(the tumor weight is 

Mean ±SD in gram). The treated tumors had roughly five times more weight than the 

untreated tumors. 
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FIGURE 26 - Tumor weight decreased in 7 days post nsPEF Tx(n=66). The tumor weight is expressed as the 
mean +SD in gram. Tumors were induced by injecting the same amount of B16F10 cells (lxlO6). When 
the tumors grew to diameters of around 5mm, nsPEF Tx was delivered to three tumors (300 ns, 100 pulses, 
40kV/cm, 0.5Hz). On die 7* day post nsPEF Tx, mice were enthanized and the tumors were dissected 
along the membrane. The tumors were weighted and the mean value of control tumors and treated tumors 
were plotted along the time. 

Intratumoral vessel number changes in 7 days post nsPEF Tx 

The numbers of intratumoral vessels were counted following staining with H&E 

stain. Control melanoma indicated that tumor growth was accompanied by increased 

vascularity; the vessel number before the Tx, one day and seven days after nsPEF Tx is 

23±3, 32±1,49±2, respectively (Mean±SD). For the treated melanomas, the number of 

pre-existing vessels dramatically deceased as 25±2,14±3, 3.0±2, respectively. 

(Mean±SD). 
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FIGURE 27 - Intratumoral pre-existing vasculature was counted following staining with H& E stain(n=66). 
NsPEF Tx was delivered to three tumors (300 ns, 100 pulses, 40kV/cm, 0.5Hz). On the 7th day post-nsPEF 
Tx, mice were enthanized and the number of vessels on H&E slides were counted under the microscope. 
The mean value of tumor blood vessel number was compared along the time. 
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NsPEF inhibit micro-vessel density 

In order to clarify angiogenesis after nsPEF Tx, the micro-vascular density was 

evaluated through the expression of CD31, CD34 and CD 105, the most common 

analyzed 3 markers for angiogenesis. CD31 is known as platelet-endothelial cell adhesion 

molecule, which is used as a pan-endothelial cell marker. CD34 is endothelial cell 

marker. CD105 is a proliferation-related endothelial cell marker. Figures 28,29 and 30 

exhibit typical expression pattern of CD31, CD34 and CD 105 on tissue micro-arrays. 

Staining for CD31, CD34 and CD 105 allowed specific detection of micro-vessels in 

tissue. Therfore they were used in the current study to estimate the level of functional 

blood flow in tumors. In all three stains, control tumors showed red staining spots 

(intensive endomelium) which means neovascular hot areas. These spots were further 

analyzed under higher power. The red stained areas are endothelial cells or endothelial 

cell clusters clearly separate from adjacent non-stained tumor cells, while the treated 

tumors showed significant weak intensive endothelium. 

NsPEF inhibit micro-vessel density marked by CD31 

100X 400X 

FIGURE 28 - NsPEF inhibit micro-vessel density marked by CD31. The images include magnifications of 
lOOx on the left and 400x on the right, with a control tumor on the top line and a treated tumor on the 
bottom line. The darker staining spots are endothelia. A and C are the neovascular hot area under lOOx 
magnification. They were further analyzed under 400x magnification in C and D. 
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NsPEF inhibit micro-vessel density marked by CD34 
100X 400X 

FIGURE 29 - NsPEF inhibit micro-vessel density marked by CD34. The images include a lOOx 
magnification on the left and 400x on the right, with a control tumor on the top line and a treated tumor on 
the bottom line. The darker staining spots are endothelia. A and C are the neovascular hot area under lOOx 
magnification, they are further analyzed under 400x magnification in C and D. 

NsPEF inhibit micro-vessel density marked by CD105 

100X *00X 

FIGURE 30 - NsPEF inhibit micro-vessel density marked by CD 105. The images include a lOOx 
magnification on the left and a 400x on the right, with a control tumor on the top line and a treated tumor 
on the bottom line. The darker staining spots are endothelia. A and C are the neovascular hot area under 
lOOx magnification, they are further analyzed under 400x magnification in C and D. 
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The quantitative analysis ofMVD marked by CD31, CD34 and CD105 7 days post 

nsPEF Tx vs. control tumor. 

Quantitative analysis of immunohistology positive were determined. Decreased 

MVD by no matter CD31 (** p<.0001), CD34 (** pK.OOOl) or CD105 (* p<.005), were 

noted in nsPEF treated melanomas. The results suggest reduction in the number of 

intratumoral micro-vessels in the big, medium or small sized vessels. Because CD31 and 

CD34 are pan endothelial markers, all positive stain of micro-vessels, heterogeneous 

distribution of large and small micro vessels as well as single immunostained cells 

throughout tissue sections were included in the micro-vessel count. As a result, the 

difference between the control and treated groups are more significant. CD 105 antigen is 

a specific marker of activated endothelial cells. MVD marked by CD105 is for detecting 

newly formed blood vessels. IHC staining indicated CD105 positive cells composed of 

delicate and ramified vessels. Therefore the CD 105 positive marker is not as significant 

as CD31 or CD34 verses control tumor. 
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FIGURE 31 -The quantitative analysis of MVD marked by CD31, CD34 and CD 105 7 days post nsPEF Tx 

vs. control tumor. Immunohistology positive cells were counted in five different fields, and the mean 
number per field was calculated. (**/><.0001), CD34 (**/K.0001) and CD105 (* p<0.05) 
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VEGF and PD-ECGF protein expression were decreased by nsPEF Tx 

Expression of VEGF and PD-ECGF was analyzed by western-blot. Both VEGF and 

PD-ECGF protein expression decreased after the nsPEF Tx compared to the control tumor 

from the same mouse (Fig.32). 

control treated 

VEGF 

beta-actine 

control treated 

PD-ECGF 

beta-actine 

FIGURE 32 - VEGF and PD-ECGF protein expression were decreased by nsPEF Tx. VEGF and PD-
ECGF protein expression was analyzed by Western-blot. Three mice bearing control tumor and treated 
tumor were euthanized 7 days post nsPEF Tx. Altogether 7 tumors were dissected. Control tumors (n=3) 
and treated tumors (n=4) were included. Beta-actin was used as loading control. 

Discussion 

The use of pulsed electric fields to reduce tumor angiogenesis has been reported 

previously. Previous research of the anti-tumor effect of nsPEF Tx was confirmed on 

murine melanoma in vivo and nsPEF Tx was shown to cause apoptosis which led the 

melanoma tumors to self destruct. But nsPEF Tx also caused immediate blood flow 

reduction and tumor blood supply decrease. Thus the intra-tumor vascular response to 

nsPEF Tx was studied. The hypothesis is that nsPEF Tx can reduce tumor angiogenesis 

and might have value as an alternative therapeutic modality for solid tumors with a rich 

blood supply. 

The vascular response of pre-existing vessels were assessed by histology.73 In this 

technique, after the selection of a tumor target area, capillaries were visualized by H&E 

stain and the number of vessels per high-power microscopic field were counted. Before 

the nsPEF Tx, melanomas were nourished with rich blood supply. One day post nsPEF Tx 
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the most obvious effect were blood vessel breakage and red blood cells scattered among 

condensed tumor cells with nuclear pyiknosis. Seven days after nsPEF Tx, the control 

tumor grew to a large volume with rich capillaries and small venules formed in the tumor 

while the treated tumors shrank and exhibited poor vasculature. These results suggest 

nsPEF Tx can cause direct damage to the blood vessel. Because of the precise location of 

the electrodes and richer vascular network inside the melanoma, the tumor is subject to 

greater effects of nsPEF Tx than the normal skin in the area of the tumor. Edema and red 

blood cells were evident outside the tumor but they recovered within a week. The treated 

tumor shrank with fewer blood vessels and continued to shrink even beyond the acute 

damage phase. Therefore beside the direct damage of blood vessel, nsPEF Tx can also 

inhibit tumor micro-vessel formation. 

Angiogenesis has been proposed as essential for the growth of solid tumors.72 

Angiogenesis and the vascular state in tissues are mainly assessed by examining the 

micro-vessel density, which can be measured using various specific endothelial markers74. 

CD31 has been largely used for immunohistochemical analysis to assess tumour 

angiogenesis micro vessel density (MVD). As a panendothelial cell marker it represents 

mature vessels.75 CD34 marked medium vessels76 and CD 105 marked newly formed 

tiny vessels or neoangiogenesis.77 In our study, no matter what size vessel it marks, 

MVD in nsPEF treated tumor always decreased significantly versus control tumor on the 

same mouse. 

Our results show that nsPEF Tx caused a decrease in VEGF and PD-ECGF 

expression, which led to the lower MVD as assessed by CD31, CD34, and CD 105. 

However the degree is different. Interestingly CD 105, which is regarded to be a 

significant marker of neoangiogenesis, indicate a mild decease which was not as 

significant as CD31 or CD34. This difference was caused by the antigen type. CD105, 
• 70 

which is a proliferation-related endothelial cell marker, reflects active angiogenesis. It 

is a specific marker of activated endothelial cells. In IHC, it recognized tiny newly 

forming blood vessels. Because CD34 and CD31 are expressed on most endothelial 

capillaries, they are termed pan-endothelial markers.69 In IHC, they stained most 

endothelial cells and also positive for some other mesenchymal cells. 
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In vitro data suggest that VEGF over expression is a common phenomenon of 

melanoma cells. 80 Up-regulation of VEGF and hence increased angiogenesis—has been 

recently shown in melanoma cells undergoing malignant transformation induced by over 

expression of the survival signaling protein Akt in v/vo.81 

Angiogenic cytokines, released by tumor cells have an effect on vessel formation, 

tumor growth and metastasis; The balance of pro-angiogenic and anti-angiogenic 

cytokines determines whether endothelial cells remain in angiogenic homeostasis, 

retrogression, or proceed to the state of neovascularisation to promote tumour growth, 

migration and metastasis.83 Since nsPEF Tx can not only affect pre-existing vessels, but 

also micro-vessels, the hypothesis is that nsPEFs act on the angiogenic cytokines and 

changed the balance between pro- and anti-angiogenic factors. 

Although many important promoters of angiogenesis have been reported, the most 

heavily studied one is VEGF,84 apparently the most important angiogenic factors. It is a 

specific mitogen for endothelial cells and induces capillary tube formation, and increases 

vascular permeability. It regulates both physiological and pathological angiogenesis in 

melanoma. In the present study decreased VEGF expression is noted in nsPEF treated 

melanomas, VEGF was inhibited and expressed less after nsPEFs Tx. It contributes to 

the corresponding low angiogenic activity. The decreased VEGF expression led to 

recessive capillary proliferation and therefore neovascularization in melanoma was 

accordingly down regulated. 

Platelet-derived endothelial cell growth factor (PD-ECGF) is a potent angiogenic 

factor that has been shown to be a thymidine phosphorylase. This enzymatic activity is 

crucial to its angiogenic activity.85 PD-ECGF also showed decreased expression in the 

nsPEF treated melanomas. 

One limitations of this study is the length of the follow up period. To set up a strict 

control, two melanomas were injected on the same mouse to avoid tumor growth 

difference originating from immune discrepancy between individual animals. However 

it's necessary to enthanize the animal before the control tumor exceed the maximum 

tumor burden in the animal protocol (2cm or appearance of ulceration). Nevertheless, 

despite the relatively short follow up period (7 days post nsPEF Tx), the results 
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demonstrate a significant impact of nsPEF Tx on the intra-tumoral vessel histology, MVD 

and the expression of VEGF and PD-ECGF. 

It is specifically interesting that nsPEF Tx affected both immediate and delayed blood 

vessel effects, most likely as a result of several different mechanisms. One of these could 

be due to direct electric field effects on small blood vessels. Immediate effects on 

smaller vessels were greater than effects on larger vessels. This would be likely in the 

event of very high electric fields. Another possibility could be due to apoptosis, which 

has been shown to occur as early as 3 hours in fibrosarcoma tumors ex vivo (Beebe et al., 

2002, IEEE). Likewise, nsPEF induced apoptosis in B16fl0 tumors in vivo in the same 

time domain. Thus it is possible the nsPEF Tx induced apoptosis in endothelial cells to 

account for delayed effects on tumors vessels. In fact, the presence of apoptosis in 

endothelial cells from adipose tissue has been observed (S Beebe, unpublished, personal 

communication). Another possibility is effects on vasovasorium, the small blood vessels 

that provide blood to large vessels. Effects on PDGF and PD-ECGF are most likely do 

the effects on tumor cells that re-direct their energy supplies to apoptosis as opposed to 

growth factor production. 

Tumors need nutrients and oxygen supplied by blood vessels in order to grow. 

They also use blood vessels to spread to other parts of the body. This process, known as 

metastasis, is the most lethal stage of cancer and the leading cause of cancer-related death. 

Fighting cancer by starving tumors of life-giving blood vessels has generated great 

interest in recent years. "Anti-angiogenic" cancer therapies that focus on the tumor's 

blood supply are not new. However, other such treatments starve tumors of their blood 

supply indirectly, by reducing blood vessel growth signals. 

To summarize, nsPEF Tx directly damaged the melanoma cells and pre-existing 

blood vessels. As a result, tumor-derived blood vessel growth factors such as VEGF and 

PD-ECGF were decreased and the balance between pro-angiogenic and anti-angiogenic 

cytokines was broken. These changes resulted in the inhibition of the new vessel 

formation. The shortage of blood nourishment induced (1) the tumor infarction and 

consequently (2) less phagolysis, which interacts with apoptosis and contribute to the 

melanoma self destruction. 
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CHAPTER V 

TEATMENT WITH NSPEF PROVES LONG-TERM EFFECTIVENESS FOR 
MELANOMAS IN MICE 

Previous research with nsPEFs included 120 mice treated with 100 pulses of 300 ns 

duration with 40 kV/cm field strength. Observations lasted from 2-4 weeks. These 

short-term studies showed that nsPEF with a 30 nanosecond rise time caused melanoma 

tumor cell nuclei to rapidly shrink and also to decrease blood flow to tumors. Melanomas 

shrank by 90% within two weeks. The treatment caused minor surface skin eschars with 

edema in the treated area that recovered in 7-10 days. NsPEF Tx deposited energy of 0.2 

J/pulse and 100 pulses increased the temperature of the treated region by 3 °C, 10 degrees 

below hyperthermia threshold damage. However, the mice were routinely euthanized 

within a month of treatment for histological analysis. For this study, post-nsPEF treated 

mice were being observed for 3-5 months as a long-term survival study following 

complete tumor regression. 

Materials and Methods 

Tumor Model 

In vivo experiments were set up in conformity with IACUC guidelines under 

applicable international laws and policies (Animal Care and Use Committee of Eastern 

Virginia Medical School IACUC #06-011). In accordance with principles for the ethical 

use of animals, the smallest number were used to obtain statistically meaningful data. 

Thirty-six immunocompetent hairless female SKH-1 mice (albino strain, Charles River, 

Wilmington, MA, 4-week old) were injected subcutaneously with 10 ul PBS containing 

lxl06B16-F10 murine melanoma cells. Before treatment, the mice were randomly 

assigned to 2 groups88 (17 in the treated group and 19 in the control group). 
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FIGURE 33 - Melanoma-FlO cells in culture and tumor cell injection on SKH-1 mouse. Left murine 
melanoma B16-F10 cells in culture during log phase (400x). Right B16-F10 melanoma cells being injected 
under skin of female SKH-1 mouse. 

Nanosecond Pulse Generation 

The nanosecond pulse generation has an impedance of 75 Q. and consists of 30 

pairs of high-voltage capacitors and 30 inductors arranged in a Blumlein configuration. 

This construction generates a square wave, 300 nanosecond, high-voltage pulse. The 

voltage across the tumor was monitored using a high voltage probe (P6015A, Tektronix, 

Beaverton, CA), and the current was measured by means of a Pearson coil (model 2877, 

Pearson Electronics Inc., Palo Alto, CA). Current and voltage were recorded 

simultaneously using a digitizing oscilloscope (TDS3052, Tektronix, Beaverton, OR). A 

single pulse had a duration of 300 ns, field strength of 40 kV/cm at a rate of 0.5 Hz. 

Pulse Treatment 

Seventeen mice were treated 1-4 times with 300 pulses at 40kV/cm. Each 

individual treatment of 300 pulses was separated by 2 weeks during which time the tumor 

was evaluated for nsPEF effects. If the tumor was alive either on the surface by 

transillumination or by ultrasound imaging at the end of the 2-week interval, another 300-

pulse treatment was ordered. For tumor remission, one mouse needed one treatment (7% 

of the total), two mice needed two treatments (14%), nine mice needed three treatments 

(65%) and two mice needed four treatments (14%). Euthanasia and tissue collection 

start-time was calculated from the last treatment day. 
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In vivo Imaging 

Melanomas were imaged daily by external skin surface, transillumination and 

ultrasound (Visualsonics Vevo 770, Visualsonics Inc., Toronto, Canada) with model 708 

scan head at 55 MHz. The power Doppler mode provided blood flow images for each 

tumor. Pictures were taken every 1-2 days and tumor volume was estimated as O'Reilly 

experienced equation [V = (tumor width)2 x (tumor length) x 0.52] .90 Vessels supplying 

the tumor were counted under transillumination microscopy. 

Survival Analysis 

An animal survival curve (Kaplan-Meier plot) was analyzed using a log-rank test. 

Differences between treated and control groups were considered as statistically 

significant at/? < 0.05. Statistical analyses were done using SPSS 15.0 software. 

H&E Staining 

Mice were euthanized by CO2 asphyxiation under anesthesia and dissection was 

performed under aseptic conditions to collect tumor with overlying skin, liver, lungs and 

spleen. A red tattooing ink was used to mark tumor location at tumor cell injection 

sights. Melanoma samples were processed for histology and immunohistochemistry.91 

Data Collection 

After five days post-injection of tumor cells, data were collected every day and 

summarize according to 5 different time periods (Tl - T5): Tl- corresponds to the time 

of injection to time to treatment; T2- corresponds to the time of final treatment; T3-

corresponds to one week post-final nsPEFs treatment; T4-corresponds to 2 weeks post-

final nsPEFs treatment; T5-corresponds to the final week prior to animal euthanasia (end 

of study). The control group data analysis followed the same time course. In summary, 

Tl = injection, T2 = end of treatment, T3 & T4 = 1st and 2nd week after last treatment 

respectively and T5 = euthanasia. 

Tissue Micro-array Construction 

Representative areas of the different lesions were carefully selected on H&E-stained 

sections and marked on individual paraffin blocks. Two tissue cores (1 mm diameter) 

were obtained from each specimen. In addition, non-neoplastic melanoma control tumor 

samples were included as controls. Tissue cores were precisely arrayed into a new 

paraffin block using a TMA workstation (Beecher Instruments, Silver Spring, MD). An 
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H&E-stained section was reviewed to confirm the presence of morphologically 

representative areas of the original lesions. 

Histology and Immunohistochemistry for Micro Vessel Density 

Six um-thick, paraformaldehyde-fixed, paraffin-embedded tumor, liver, spleen or 

lung sections were analyzed. Specimens were deparaffinized, rehydrated and processed 

for either histology or immunohistochemistry. The antibodies used for blood vessel 

immunohistochemistry were an anti-mouse PECAM/CD31 polyclonal antibody (M-20; 

Santa Cruz Biotechnology, Santa Cruz, CA) used at a concentration of 2 ug/ml for 2 

hours at 37°C, for 1 hour at room temperature. In negative controls the primary antibody 

was omitted. The signal was revealed by AEC staining (3-amino-9-ethylcarbozole, red) 

instead of DAB (3, 3'-Diaminobenzidine, dark brown) to avoid confusion of melanin. 

Micro-vessel counts were performed on CD31 positive-stained blood vessels. 

Western Blotting Analysis for CD31 Expression in Melanomas 

The melanoma samples were digested in hypotonic buffer (10 mmol/L Tris-HCl, 1 

mmol/L ethylenediaminetetraacetic acid, pH 7.4, with protease inhibitor cocktail tablets; 

Complete, Roche Diagnostics, Basel, Switzerland). An aliquot of extract was saved for 

determination of protein concentration and the remainder was boiled in the sodium 

dodecyl sulfate loading buffer. Eighty ug of protein per sample were separated by 6% 

gel electrophoresis and transferred to a nitrocellulose filter (Amersham Life Science, 

Buckinghamshire, UK). Protein detection used (1) a rabbit polyclonal antibody against 

CD31 (Beijing Boisynthesis Biotechnology CO., LTD) that recognizes both murine and 

human forms of the receptor and (2) a monoclonal antibody against P-actin diluted 

1:1000 (AC-40, Sigma-Aldrich). Detection was performed through a chemiluminescence 

assay (ECL; Amersham Life Science). 

Results 

Long term survival analysis 

To establish the role of nsPEFs in inhibiting tumor growth in vivo, B16-F10 

melanoma cells were injected intradermally into the flank of SKH-1 mice (n = 36). 

Tumor size was measured daily beginning 5 days post-injection of tumor cells when the 

tumor mass began to be detectable. Control mouse tumors (n = 19) grew exponentially 
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throughout survival time with dramatic acceleration as compared to nsPEF-treated 

animals (n =17). A significant difference was already readily detectable in the 1st and 

2nd week after nsPEF Tx. At the experiment's conclusion, melanomas were eliminated 

in all 17 experimental mice treated by nsPEF and they survived 3-5 months following 

visible remission. In contrast 13 of the total 19 controls were euthanized within several 

weeks of B16 cell injection because growth exceeded prescribed size or tumor became 

ulcerated.94 In some of these studies, mice were used that were more mature than other 

mice. These mice were more likely to survive tumor initiation and progression than mice 

that were younger due to a more mature immune system. It is likely that these mice were 

responsible for control animal survival greater than 180 days. It should be noted that the 

tumors in control animals did not decrease in size, but remained at a level that was not 

deleterious to the animals health as defined by the IACUC protocol. 

FIGURE 34 - Melanoma Growth Inhibition and Survival Time Post nsPEF Tx. Bars with mouse ID froml-17 
indicate animals that were treated. Survival days ranged from 117 to 169. Bars with mouse ID from mouse 
#19-36 indicate animals that were non-treated controls. 
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Mouse weighs change during the 5-month survival study 

1 2 3 4 5 1 2 3 4 5 

FIGURE 35 - Mouse weight follow up during the 5-month survival study. Group 1, treated animal and group 
2, control animal. Five boxes in each group represent time period 1-5. Time 1 is injection, time 2 is 
treatment, time 3 and 4 are the 1st and 2nd week after the last treatment and time 5 is euthanasia. The 
hinges at the top and bottom of the box generally match the upper and lower quartile of weight 
measurement of each group. The median is indicated by a thick black line inside the box. The horizontal 
lines above and below the boxes mark the adjacent values. These are the most extreme values in the sample 
that lie between the hinges and the inner fences. Data points outside this range should be considered as 
outliers. Any outliers are marked with a circle and extreme cases with an asterisk. 

Tumor volume change after the treatment 

When the data was analyzed, the mean value was gotten from 5 time periods which 

are defined in the legend to Figure 35: Mouse weight change after the nsPEF Tx was 

measured daily in 5-month survival study. The treated group showed a significant smaller 

mean weight. A typical tumor morphological change was reflected by surface photograp. 
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FIGURE 36 - A Typical tumor morphological change reflected by surface photograph. Melanomas were 
imaged daily and tumor size and appearance were recorded. Time 1 is injection, time 2 is treatment, time 3 
and 4 are the 1st and 2nd week after the last treatment and time 5 is at euthanasia. The scale bar is 2mm. 

Statistical analysis for tumor volume changes in long term survival study after the nsPEF 

treatment 

Melanomas were imaged daily and tumor volume was calculated by the formulation 

V = (tumor width)2 x (tumor length) x 0.52. After the injection both groups showed die 

tumor growth with increased tumor volume. NsPEF Tx changed the growing and tumor 

volume decreased significantly (p=0.0004). 
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FIGURE 37 - Statistical analysis for tumor volume changes in long term survival study after the nsPEF 
treatment. Melanomas were imaged daily and tumor volume was calculated by the formulation: V = 
(tumor width)2 x (tumor length) x 0.52. Group 1, treated and group 2, control. Time 1 is injection, time 2 is 
treatment, time 3 and 4 are the 1 st and 2nd week after the last treatment and time 5 is at euthanasia. 
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Histological analysis of tumor structure in long-term in survival study 

Histological analysis demonstrated that melanomas in the control group were large, 

round and stuck out of the skin surface. In most cases, the tumors were separated from 

the overlying epidermis by a thin zone of dermis that appeared highly vascularized. The 

skin above the big control melanoma mass was often ulcerated, but ulceration did not 

correlate with a shorter life span. Tumor cells were large with eosinophilic cytoplasm 

often containing an accumulation of melanin pigment and atypical vesicular nuclei with 

prominent nucleoli. In comparison, melanomas were hard to find in all 17 treated 

animals unless a small amount of melanin pigment was left in the tattooed skin area. 

Tumor net construction and tumor blood supply were totally destroyed with no evidence 

of the tumors remaining. Only a few masses of atypical melanoma cells were located in 

the area. 

20Dx 400x 2Q0x AODx 
FIGURE 38 - Histology analysis of tumor structure in long term in survival study. The left panel represents a 
typical treated tumor and the right panel represents a typical control tumor. An area was magnified to 400x 
to show the tumor cell details in both panels. 
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NsPEF decreases peritumoral vascularization in long- term survival study 

Macrographs revealed that the melanoma mass in control animals was surrounded 

by an extended area of prominent vascularization while the opposite was found in the 

treated group, which exhibited a very poor blood supply without surrounding visible 

vessels at the end of the study. 

FIGURE 39 - NsPEF decreases peri-tumoral vascularization in long-term survival study. Treated tumors are 
shown in the top row and control tumors in the bottom. Treatments 1-5 are: Time 1 is injection, time 2 is 
treatment, time 3 and 4 are the 1st and 2nd week after the last treatment and time 5 is at euthanasia. The 
scale bar is 2mm. 

Quantitative analysis of peritumoral vascularization change in long term survival study 

after the nsPEF treatment 

Vessel number around tumor showed no difference in control vs. treatment groups 

before nsPEFs treatment (time 1 and time 2) while there were statistical difference after 

the nsPEF Tx (time 3, time 4 and time 5). Treated tumors analyzed beyond 1 week post-

treatment were greater than 6-times smaller than control tumors. 
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FIGURE 40 - Quantitative analysis of peritumoral vascularization change in long-term survival study after 
the nsPEF treatment. Vessels around tumor were counted with transillumination microscope and then a 
mean value was summarized according to the time segment as mentioned above. If there were many blood 
branches, only those going directly into the tumor were counted. Time 1 is injection, time 2 is treatment, 
time 3 and 4 are the 1st and 2nd week after the last treatment and time 5 is at euthanasia. A t-test analysis 
showed vessel number around tumor exhibited no difference before nsPEFs treatment (time 1 and time 2), 
while there was statistical difference after the nsPEFs treatment (time 3, time 4 and time 5). 

Metastatic analysis of melanoma tumors in long-term survival study post-nsPEF Tx 

H&E staining of lung, liver and spleen showed metastatic nodules in control mouse 

ID 196, while in nsPEF treated mouse ID 189, only the liver exhibited metastasis, 

however, lung and spleen did not exhibited metastasis. For the statistical analysis, the 

metastatic rate between treated (1/17 and positive rate 5.8%) and control groups (1/19, 

5.3%) showed no difference. 



64 

liver lung spleen 

FIGURE 41 - Statistic analysis of melanoma tumors in long-term survival study post-nsPEF treatment. 
Treated tumor ID 189 is shown in the top panel and control tumor ID 196 is shown in the bottom. H&E 
staining of lung, liver and spleen are shown as indicated. Original magnifications, x400. 

Angiogenetic analysis of melanoma tumors in long-term survival study post-nsPEF Tx 

Tumors from thirty six mice and the lungs, liver, kidney and spleen were put on one 

tissue-micro array slide for H&E analysis. H&E staining showed the treated tumor had 

no cancer cells left in the tumor area, only some melanin. The immunohistochemistry 

(IHC) can show quantitative and qualitative differences in the vasculature of the control 

and treated tumors by CD31, the pan marker for micro-vessel density. Control tumors 

had significantly more vessel lumens and capillary endothelial cells than the treated 

tumor per microscopic field (p<0.001). This result was also confirmed by CD31 protein 

expression by Western-blot which showed high CD31 expression in control tumors (n=3) 

and low expressed in treated tumors (n=2). 
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FIGURE 42 - Angiogenesis analysis of melanoma tumors in long term survival study post nsPEF treatment. 
Angiogenesis was analysis by tissue micro-array and H&E staining. All the tissues collected were 
constructed on a tissue micro-array so that the same tests were applied to all the samples in the following 
IHC analysis. 

treated 

HE 
501 

•/&&' 

FIGURE 43 - Micro vessel density marked by CD31 with immunohistochemistry of melanoma tumors in 
long-term survival study post nsPEF treatment. Vasculature within melanoma in SKH-1 female mice. 
B16F10 mouse melanoma cells were injected subcutaneously into mice, and tumor vasculature was 
examined by using immunohistochemical staining with anti-CD31. H&E staining showed the tumor 
volume decreased after nsPEF treatment. Frozen sections of tumors were stained with mouse monoclonal 
anti-CD31 antibody for total vessel count. The IHC can show quantitative and qualitative differences in the 
vasculature of the tumors. Micro-vessel counts were performed at x200 magnification in five microscopic 
fields. AEC positive staining showing new micro vessels formed inside the tumor. The melanin is a sign of 
malignant melanoma tumor cells. Positively stained blood vessels by CD31 with lumen as well as cell 
clusters without a lumen and single cells were considered as individual vessels. 
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FIGURE 44 - CD31 protein expression by Western-blot of melanoma tumors in long term survival study 
post-nsPEF treatment. Western blot showed high CD31 expression in control tumor (n=3) and low in 
treated tumors (n=2). 

Discussion 

Nanosecond pulsed electric fields can induce various kinds of biological effects that 

are essentially different from conventional plasma membrane electroporation with lower 

electric fields and longer pulses, 95especially the interactions of nanosecond pulsed 

electric fields with living cells.96 Based on these effects, some applications of pulsed 

electric fields in cancer therapy, gene therapy, and delivery of drugs were reviewed in 

details.97 

However most investigations of the effects of nsPEFs on mammalian cells were in 

vitro studies. The previous in vivo study, which involved nsPEF treatment of murine 

fibrosarcoma tumors indicated the short term biological effects of nsPEFs on tumor 

including apoptosis markers for caspase activation and TUNEL. However, longer term 

effects were not considered. In the studies reported here, the data suggest that nsPEFs 

eliminate tumor by apoptosis and decreased peritumoral vascularization. 

Survival curves reflect an obvious difference between the treated and control 

groups. The accumulative survival rate in treated group was 100%, with all 17 mice 

living 3-5 months after melanoma tumors vanished. In contrast, 12 control animals died 

in 17 days for the large tumors including those that were ulcerated. The therapeutic effect 

of nsPEFs comes from its unique character of high power and low energy density (non­

thermal). The nanosecond pulses are too short to cause plasma membrane 

electroporation. Instead they modulate intracellular structures and functions and work as 

a form of non-ionizing radiation and are special for cancer treatment because of faster 

rise time (30 nanosecond) and shorter pulse duration (300 nanosecond).The charging time 



67 

on the cell membrane is so short that it can penetrate into the cell interior. The 

hypothesis is that the internal field will generate a current that can kill the tumor cells and 

blood vessels by the large field strengths (40KV/cm). 

The data here also showed statistic change of tumor volume and blood supply. 

Tumor growth and metastatic spreading depends on the formation of new blood vessels 
i no 

that provide oxygen and nutrients. To promote new vessel development, tumor cells 

secrete angiogenic growth factors that act on the neighboring endothelial cells, inducing 

proliferation and migration.101 According to the histology, nsPEF destroyed the tumor 

and blood vessel at the same time. Our transillumination pictures showed that adult 

vessels around the tumor decreased dramatically after nsPEFs treatment. The vessel 

structure was damaged and bleeding could be seen. After multiple nsPEF Tx, no visible 

tumor and blood vessel could be found. B16F10 melanomas are highly invasive in part 

because formation of micro vessels is very efficient. It is clear that micro vessels play a 

very important role in metastasis. It has been reported that intratumoural microvessel 

density (MVD) marked by CD31 has prognostic significance in melanoma. To evaluate 

MVD in nsPEFs treated and control melanomas, the immunohistochemical expression of 

CD31 was assessed using the tissue micro-array technique so that all samples could be 

tested under the same condition. CD31 expression was significantly, higher (p< 0.001) in 

control group compared to nsPEFs-treated group. Also CD31 protein expression was 

tested by immunoblot analysis confirming and the result agreed with the IHC findings. 

Tumor angiogenesis is a complex phenomenon that depends on the action of pro-

and anti-angiogenic factors, proteinases and their inhibitors, and adhesion molecules. 

Endothelial cells are able to secrete their own growth factors, but also other cell types, 

including tumor cells, cells of the tumor stroma and infiltrating inflammatory cells could 

produce factors that stimulate angiogenesis.102 NsPEF treatment is non selective on cell 

type and it targets all cells in the plate electrode area. NsPEF damaged both endothelial 

cells and tumor cells and as a result, the angiogenetic function is hindered. It is highly 

likely that the direct damage to blood vessels and tumors is a major mechanism to stop 

tumor growth. However, the effects of nsPEF are non-thermal and does not cause a heat 

response from tumor and the normal tissue around the treated areas are not affected by 
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thermal changes. In a previous study, the mild bleeding and edema around the plate 

electrode was found, but recover in one week. 

Application of nsPEFs makes a significant difference on tumor volume and blood 

supply. However, effects on metastasis showed no difference in control and treated 

group. The reason for absence of metastasis in this study is likely due to the injection of 

B10F10 cells subcutaneously instead of via tail vein.103 B16F10 is very metastatic when 

injected into the circulatory system,104 but not so invasive when implanted as a solid 

tumor. This may be why so few metastatic sites were found (in 36 mice only 2 cases of 

metastasis found). An isolated sub-line, BL6 is very aggressive in metastasizing from a 

solid tumor but less so from direct injection into veins.105 B16F10 line used here may 

lack mutations in genes that facilitate tissue breakdown, which they must have to escape 

the primary tumor. If they are injected instead in the tail vein, they will bypass the need 

for tissue breakdown and proceed rapidly to metastasis.106 

Because of the low metastasis rate in control tumor group, the study can not provide 

strong proof for anti-metastasis effects of nsPEFs. The weight difference between control 

and treated mice is not very meaningful even though the data showed that the weight of 

the nsPEF treated group had decreased statistically. Because the treated group lived 3-5 

months, the SKH-1 mice began the experiment when they were 4-week old and had 

plenty of time to gain weight. While most of the control group just died in 2-3 weeks 

after the B16F10 injection, their time to gain weight was negligible. The present survival 

study for metastasis issue is therefore incomclusive. But the metastasis issue can be 

further studied in future trials with the more aggressive melanoma cell lines. 

Nevertheless, the metastasis issue does not detract from the fundamental conclusion that 

nonthermal nsPEF Tx can cause electrical, biochemical, functional and histopathological 

changes in melanomas in vivo and in long-term studies, tumors did not reoccur at the 

primary site. 

In summary, melanoma is a malignant skin cancer, which causes the most skin 

cancer-related deaths in humans. In its advanced stages melanoma is resistant to existing 

therapies. The effect of a unique non-thermal nsPEF Tx on murine B16F10 melanoma 

cells in vivo in a long-term survival study provides evidence for long term survival. The 

data showed that nsPEF Tx can decrease tumor volume and blood vessel number and 
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finally total tumor elimination, not returning to the primary site after 3-5 months. The 

survival days for the treated group are significantly different from control group. This 

suggests that nsPEF Tx could be used as a therapeutic treatment for melanoma and 

furthermore its long-term effectiveness is proved. 
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CHAPTER VI 

PARAMETER STUDY OF NSPEF 

In the former experiments, the primary objective was to see if nsPEF Tx had any 

effects on in vivo melanomas. Thus the same treatment condition was used from 

preliminary experiments: pulse duration was 300 ns, pulse number was 100, the electric 

field was 40 kV/cm and the frequency was 0.5 Hz. The data confirmed that this 

condition caused apoptosis, inhibited angiogenesis and eliminated the tumor. Only the 

treatment conditions mentioned above were used. Different treatment conditions for 

pulse number, energy density and pulse duration may result in different values of 

biological responses. Therefore the parameters were changed to study the corresponding 

biological effects. First, for all conditions tested the energy density was kept at the same 

level, but the pulse duration was varied to compare how longer pulses (1ms) and shorter 

pulses (300 ns) affected tumor growth. Second, the pulse duration was kept as 300 ns 

while the voltage and pulse number was changed to see if there was a dose-effect 

relationship. 

Material and Methods 

Electrical conditions for nanosecond pulse and millisecond pulse 

Eight mice bearing tumors derived from B10F10 GFP (green fluorescence protein) 

cells were studied to compare long pulses (pulse duration 1ms) with short pulses (pulse 

duration 300 ns). Five days after the subcutaneous injection of 1 x 106 B16F10 GFP cells 

were injected and tumors having a mean diameter of 5 mm were treated. The same 

electric energy was delivered to 2 tumors injected on the left and right flanks of the same 

mouse but one treated with a long pulse (1ms, 150V, 48 pulses) and the other with a short 

pulse (300ns, 6kV lOOpulse). The animals were euthanized and dissected tumors were 

visualized by florescence microscopy. 

Quantification ofcaspase-3 enzymatic activity 

Melanomas were placed on dry ice (5-10 min) and lysed in Tris buffer with 0.5% 

Triton, pH 7.5, containing general protease inhibitors. An aliquot was diluted with a 

solution containing interleukin IB converting enzyme (ICE) buffer and the fluorogenic 



71 

caspase-3 enzymatic activity was determined by Ac-DEVD-AFC (N-acetyl-aspartate-

glutamate-valine-aspartate-AFC, 7-amino-4-trifluoromethyl coumarin) ,107 Fluorescent 

emission (excitation 400 nm and emission 505 nm) was measured after incubation for 45 

min at 37°C. Blanks were evaluated to determine background fluorescence. Standards 

containing 0-500 pmol/1 AFC were used to determine the amount of fluorochrome 

released. Fluorescence was measured at Amax = 505 nm using a SpectraMax Gemini XS 

(Molecular Devices, Sunnyvale, CA, USA). Caspase activity was expressed as 

pmol/min/mg protein. Murine melanoma B16F10 treated with 1 mmol/1 cycloheximide 

were used as positive controls. 

Fluorescent tumor model 

To compare the long and short pulse differences clearly, B16F10 cells were replaced 

by a B16F10 GFP cell line, which continually expresses the GFP protein.108 Because 

melanomas derived from this cell line were clearly detected under the animal's skin upon 

fluorescent microscopy, tumor margin and tumor volume were easily defined. This 

enabled in vivo imaging of the tumor volume and fluorescence intensity over time after 

treatment.109 These tumor cells have an expression of GFP gene less than 100%, but the 

majority do have green fluorescence which makes this animal model able to provide the 

green fluorescence quenching as a biological effect. 

Results 

Comparison of long pulse and short pulse. 

Before pulses were delivered, the tumors had bright green fluorescence. When the 1-

ms PEF (150v, 48 pulses) was applied to the tumor, GFP quenching happened 

immediately. In contrast, when the 300-ns PEF (6 kV, 100 pulses) was applied to the 

tumor, the GFP began to fade gradually. After 3-6 hours most of the green fluorescence 

disappeared. After 24 hour post-nsPEF Tx the fluorescence vanished. This time 

sequence matches caspase activation, TUNEL detection and histological changes, which 

were discussed in Chapter III. Thus, both pulse conditions had quenching effects on 

tumor, but the long pulse effect was immediate, suggesting a direct effect on GFP 

fluorescence. In contrast, the short pulse effect on quenching was delayed and coincident 

with apoptosis, suggesting that the GFP was degraded with other proteins in response to 
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apoptosis. Furthermore, the short pulse conditions inhibited the tumors more effectively 

then the longer pulse conditions. 

ARM" tl^MrtHMHlt 
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FIGURE 45 - Long pulse effects on fluorescent melanoma tumor cells in vivo. Digital imaging was used to 
quantify the relative fluorescence of B16F10 GFP tumors at the different time points. The images show 
GFP fluorescence with times between 1-180 minutes. The surface view and the dissected view are also 
shown in the same time course. Scale bar is 2mm. 
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FIGURE 46 - Short pulse effects on fluorescent melanoma tumor cells in vivo. Digital imaging was used to 
quantify the relative fluorescence of B16F10 GFP tumors at the different time points. The images show 
GFP fluorescence with times between 1-72 hours. Surface views, dissected views, and transillumination 
views are also shown in the same time course. Scale bar is 2mm. 
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FIGURE 47 - Tumor volume and GFP fluorescence changes before and after PEF treatment. The figure 
shows effects of the long and the short pulses on tumor volume and GFP fluorescence as a function of time 
after pulse treatment as indicated in the color code (n=4, p<0.05). The long and short pulses were adjusted 
to the same energy density. 

The in vivo tumor didn 't hold the scaling law 

When cells in culture were exposed to pulse conditions that differed in pulse duration, 

electric field and/or pulse number, it was found that a linear relationship was observed 

when the data were plotted for nsPEF effect on calcium mobilization and platelet 

activation versus the product of the pulse duration, electric field, and the square root of 

the pulse number. This provided a scaling law that described effects of nsPEFs in vitro. 

In the experiments here, the scaling law was tested by varying pulse number and electric 

field under 9 different treatment conditions (Table II -Table VI). The biological effects 

were evaluated by caspase 3, a marker for apoptosis and CD31, a marker of micro-vessel 

density for angiogenesis. Tumor volumes were also plotted. A linear relationship was not 

observed when plotted against this formula for caspase activation, CD31 expression, or 

tumor volume. 
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TABLE II - DIFFERENT LEVELS OF ELECTRIC FIELD, ENERGY DENSITY AND 
PULSE NUMBER 

E 
lOkV/cm 
20kV/cm 
40kV/cm 

Pulse duration 
300 
300 
300 

Pulse number 
10 
100 
300 

TABLE III - THE RANDOM COMBINATION OF DIFFERENT NSPEF 
TREATMENT CONDITIONS 

Condition 

1 

2 

3 

4 
5 
6 
7 
8 
9 

Sample number 

2 

2 

2 

2 
4 
2 
2 
8 
8 

E (kV/cm) 

10 
10 

10 

20 
20 
20 
40 
40 
40 

T(ns) 

300 
300 

300 

300 
300 
300 
300 
300 
300 

n 

10 

100 

300 

10 
100 
300 
10 
100 
300 

EtVn 

9480 

30000 

51962 

18960 
60000 
103800 
37920 
120000 
207600 

TABLE IV-CASPASE ACTIVITY MEASURED BY AC-DEVD-AFC UNDER 
DIFFERENT NSPEF TREATMENT CONDITIONS 

Caspase-3 
Condition E(kV/cm) x(ns) n ExVn pmol/minute/mg 

protein 

1 

4 

2 

7 

3 

5 

6 

8 

10 

20 

10 

40 

10 

20 

20 

40 

300 

300 

300 

300 

300 

300 

300 

300 

10 

10 

100 

10 

300 

100 

300 

100 

9480 

18960 

30000 

37920 

51962 

60000 

103800 

120000 

51 

91 

49 

32 

83 

171 

64 

129 

9 40 300 300 207600 98 
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FIGURE 48 - The plot of caspase activity under 9 different nsPEF Tx conditions against the indicated X-axis 
formula. 

TABLE V - CD31 PERCENTAGE OF POSITIVE CELLS IN EVERY FIELD UNDER 
DIFFERENT nsPEF TREATMENT CONDITIONS 

Condition 
1 
4 
2 
7 
3 
5 
6 
8 

E (kV/cm) 
10 
20 
10 
40 
10 
20 
20 
40 

T(ns) 
300 
300 
300 
300 
300 
300 
300 
300 

n 
10 
10 
100 
10 
300 
100 
300 
100 

ExVn 
9480 
18960 
30000 
37920 
51962 
60000 
103800 
120000 

CD31 
13 
12 
10 
11 
17 
25 
15 
24 

9 40 300 300 207600 13 
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FIGURE 49 - The plot of CD31 under 9 different nsPEF Tx conditions against the indicated X-axis formula. 

TABLE VI -TUMOR VOLUME CHANGES UNDER DIFFERENT NSPEF 

TREATMENT CONDITIONS 

Condition 

1 
4 
2 
7 
3 
5 
6 
8 

E (kV/cm) 

10 
20 
10 
40 
10 
20 
20 
40 

T(ns) 

300 
300 
300 
300 
300 
300 
300 
300 

n 

10 
10 
100 
10 
300 
100 
300 
100 

EtVn 

9480 
18960 
30000 
37920 
51962 
60000 
103800 
120000 

Tumor 
volume 
(mm3) 
132 
143 
110 
101 
97 
55 
45 
34 

9 40 300 300 207600 45 
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FIGURE 50 - The plot of tumor volume (the mean volume in the first 1-3 days post-treatment) under 9 
different nsPEF Tx conditions against the indicated X-axis formula.. 

Discussion 

In these studies the same energy was delivered to two tumors on the same mouse. 

One treatment will be called a long pulse (150v, 1 ms, 48 pulses) and the other will be 

called the short pulse (6 kV, 300 ns, 100 pulses). 

The energy is written as 

V2 

\Y = T— pf where W is the energy (joule), x is the pulse duration, V is the voltage 
R 

across the electrodes (volt), R is the tissue resistance (Q), and N is the pulse number. 

Though there is not an absolute value of energy, but for long pulse (1 ms) at a lower 

voltage (150 V), 48 pulses was calculated to deliver the same energy to the tissue as short 

pulse. This was based on differences between electrodes. 

Several interesting effects were observed in the study of conventional plasma 

membrane electroporation pulses defined as long pulses and nsPEF pulses as described as 

short pulses. The first observation indicates that decreases in tumor volumes are observed 

in both long and short pulses. However effects of short pulses resulted in greater tumor 

size decreases than those observed for long pulses. Furthermore, in studies not shown 

here, the long pulse treated tumors rebounded more rapidly than the short pulse treated 
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tumors. This indicates that nsPEF treatment of tumors is different than conventional 

electroporation pulse treatment and is more effective. Long pulses are known to have 

predominant effects on the plasma membrane with little or no effects on intracellular 

membrane. In contrast, for shorter pulses, as the pulse duration decreases, greater effects 

occur on intracellular membranes. Nevertheless, short pulses have effects on the plasma 

membrane to create nanopore formation in a process termed supra-electroportation. 

These nanopores are much smaller (~lnm) and more numerous that larger pores formed 

by classical plasma membrane electroporation pulses or longer pulses. For 300ns pulses it 

is not clear where this condition fits into the paradigms of plasma membrane or 

intracellular membrane effects. Based on in vitro effects of long and short pulses on 

propidium iodide uptake in Jurkat cells, 60ns pulses had significantly delayed effect on PI 

uptake compare to 300ns pulses, suggesting the absence of direct effects on plasma 

membranes with shorter pulses and more likely due to biological effects, which could be 

related to apoptosis. In addition, PI may be too large to enter nanopores caused by supra-

electropoation. For 300ns pulses in this same paper, there were immediate effects as well 

as delayed effects on PI uptake, suggesting a mixture of classical plasma membrane 

electroporation and supra-electroporation. In contrast, 10 and 100 us pulses caused 

immediate PI uptake, suggesting conventional electroporation effects. It should be noted 

that effects of these pulses in vitro and vivo may be different and that pulses in the 

referenced study were not corrected for energy density. Nevertheless, this provides an 

initial understanding of differences between conventional plasma membrane 

electroporation and nsPEF yielding supr-electroporation. 

A second interesting observation occurred for effects of long and short pulses on GFP 

fluorescence.. The long pulses had immediate effects on GFP causing a rapid quenching 

effect in minutes. This suggests a direct effect of the long pulses on GFP fluorescence 

(quenching). In contrast, the short pulses had significantly delayed effects on quenching 

that were coincident with caspase activation, suggesting the GFP protein was turned-over 

like other proteins during apoptosis progression. 

Finally, the relationships for tumor volume, caspase activation, and micro-vessel 

formation were not linear with the formula found for in vivo effects, which scaled with 

the produce of the pulse duration, electric field, and square root on the pulse number. 
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This is not surprising since the square root of pulse number is related to the random walk 

hypothesis. Random walk would be operative in vivo as cells rotate in solution, thus 

experience pulses from several angles. Such rotation would not be present in vivo tissues. 

Therefore the randum walk hypothesis would not apply in vivo. 

In summary, long and short pulses differ in effects on tumor growth and GFP 

fluorescence (quenching). Short nsPEF pulses have lesser or delayed effects on GFP 

quenching and great effects on decreases in tumor size. It is likely that long pulses have 

direct effects on GFP quenching, while short pulses have quenching effects that are 

coincident with protein turn-over during apoptosis progression. In addition, the scaling 

law defined for in vitro effects on calcium mobilization and platelet activation does not 

hold for caspase activation, micro-vessel formation and tumor size decreases in tumor 

tissues in vivo. This is expected based on the absence of a random walk effect in vivo. 

However, for some of these studies, the small replicate number indicates a need for more 

trials to substantiate the dose-effect scaling law or some other coefficients relating nsPEF 

conditions and biological effects in vivo. 
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CHAPTER VII 

CONCLUSIONS 

NsPE have been previously used for military and industrial decontamination 

purposes. NsPEF application in biology gave birth to bio-electrics, which applies ultra­

short nsPEF to biological living cells, tissues, organs, and living systems. According to 

the previous modeling research and in vitro studies, the main characteristics of 

nanosecond pulsed electric fields are their high power and low energy density leading to 

very little heat production and their special ability to permeabilize intracellular 

membranes and organelles. The effects of nsPEF Tx on tissues or humans had not been 

tested until very recently. Initial studies were done ex vivo on mouse embryonic 

fibroblasts. Fibrosarcoma tumors were injected in the flanks of C57B16 mice, treated ex 

vivo. Treatment of the fibrosarcoma B10.2 cells indicated a reduced size after nsPEF 

treatment. Results from ex vivo studies indicated caspase activation and induction of 

DNA fragmentation define by TUNEL. The present studies are based on these initial 

studies and confirm that nsPEF Tx has the potential to effectively eliminate tumors. In 

addition the mechanisms of nsPEF effects on B16fl0 tumors in vivo are revealed. 

Transillumination and surface photography showed a consistently decreasing tumor 

size and eventual self destruction in the treated tumor compared with the untreated 

melanoma, which kept growing throughout the experiment protocol period. After nsPEF 

Tx, tumor development was inhibited with sharply decreased volumes on the first 7 days 

post-nsPEF Tx as compared to control tumors (/?<0.05). The nsPEF treated tumor weight 

was reduced to 14.8% of the control group (p<0,01). H&E and TEM images both 

showed that without nsPEF Tx, the melanomas kept a regular outline of tumor cells with a 

pale nucleus and prominent round nucleolus. Cell cytoplasm was finely dusted with 

melanin and the cells often formed tumor nests with an active growing center marked by 

a good blood vessel network and well-organized cancer cell cords marked by invading 

vessels, dermis and or muscle fibers. In nsPEF treated melanomas, solid tumor nest 

construction was detached, tumor cords were broken and the space between tumor cells 

enlarged with shrinking spindle shaped nuclei inside. Regression in size of tumors 

occurred within 24 hours with surrounding tissue swelling and bleeding. Subcutaneous 
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tissue and skin were recovered within 7 days. Skin pulsed with nsPEFs produces typical 

inflammation in the treated area during the first three days but can be resolved in one 

week. Fontana-Masson stain indicates nsPEF can externalize the melanin. Iron stain 

suggests nsPEF caused slight to mild hemorrhage in the treated tissue. Histology 

confirmed that repeated applications of nsPEF did not damage the peripheral healthy skin 

tissue of treated mice. 

NsPEF Tx can significantly reduce subcutaneous murine melanoma development 

producing tumor contraction and nuclear shrinkage while concurrently but not 

permanently damaging peripheral healthy skin tissue in the treated area. Furthermore, 

these studies revealed the mechanisms of nsPEF-induced tumor demise, which included 

DNA damage as defined by Histone 2AX phosphorylation, apoptosis induction as 

defined by caspase activation and DNA fragmentation as well as tumor infarction as 

defined by loss of blood supply to the tumor and the discovory of changes in blood vessel 

density as defined by CDs 31, 34, and 105, which are markers for large, medium, a 

micro-vessel formation. Therefore, nsPEF Tx can be used as a highly localized and drug-

free, non-thermal physical technique for tumor therapy with known mechanisms of 

action. Thus these studies pave the way for a fully comprehensive understanding of 

applications for nsPEF. 

NsPEF treated melanomas showed double stranded DNA breaks; H2AX activation 

appeared 1 h after the nsPEF treatment. At 3 hours post-nsPEF Tx, H2AX climbed to a 

peak and caspases were activated. Caspase enzymes reached their climax at 6 hours post-

nsPEF Tx. TUNEL detected apoptosis from 3 hours post-nsPEF Tx and the maximum 

appeared at 6 hours post-nsPEF Tx. Histological examination of nuclear morphological 

confirmed the same time sequence of changes seen in caspase and TUNEL assays. 

Western blot showed BAD expression increased while Bcl-2 expression decreased 

throughout the post-nsPEF Tx hours. NsPEF treatment activated caspase 9. These data 

suggest that nsPEF can affect melanoma by inducting apoptosis. A likely conclusion 

indicates that nsPEF treatment triggered a chain reaction: breaking double stranded 

DNA, initiating H2AX phosphorylation for repair, thereby activating caspases and 

initiating increased Bad and decreased bcl-2 expression resulting in apoptosis with 

mitochondria involvement. The treated melanomas self destruct as evidenced by 
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histological changes and the long term study. These results demonstrated that nsPEF Tx 

induces apoptosis in a time-dependent manner in melanomas in vivo. 

Both histology and intratumoral MVD assessed by CD31, CD34 and CD 105 showed 

a significant lower vessel number and density in the nsPEF Tx group when compared to 

the control group. The inhibition rates were 76.9%, 66.7% and 39.9% by CD31, CD34 

and CD 105, respectively. Western blot indicated protein expression of VEGF and PD-

ECGF was lower in the treated melanoma than that in control tumors. The data suggest 

that nsPEF Tx directly damaged the melanoma cells and pre-existing blood vessels. As a 

result, tumor-derived blood vessel growth-stimulating factors such as VEGF and PD-

ECGF decreased. The balance between pro-angiogenic and anti-angiogenic cytokines 

was broken and new vessel formation was inhibited which contributed to the tumor self 

destruction. It is concluded that direct vascular damage on the pre-existing vessels and 

anti-angiogenic effects on neovasculature are another possible mechanism for tumor self-

destruction after nsPEF Tx. 

A five-month in vivo survival study of tumors exposed to nsPEF tested the long-term 

effect. All 17 mice in the treated group survived 3-5 months with the melanomas in 

complete remission while 14 of the 19 control mice died within 3 weeks due to fast tumor 

growth and big tumor volumes. Tumor volume, survival times and tumor vessel numbers 

were statistically different (p<0.00\) between control and treatment groups. Both groups 

had one case of tumor metastasis but no significant difference existed in tumor metastasis 

between the groups. In vivo images and H&E staining revealed nsPEFs initially disrupt 

and finally destroy tumor construction and blood supply. IHC and tissue micro-array 

showed that CD31, a marker for micro vessel density, decreased significantly after nsPEF 

Tx and western blot analysis confirmed this reduced CD31 protein expression. After the 

5-month long survival observation no tumor recurred at the primary site. Therefore 

nsPEF Tx is safe over a 5-month period. 

Initial studies on cells in vitro showed that there was a relationship between nsPEF 

conditions and biological effects that followed the formula: biological response = ET Vn, 

where E=energy density, x= pulse duration, and n= pulse number. Our data in vivo 

showed that this scaling law relationship did not hold for tumor tissue response in vivo. 
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The possible reason is tumor tissues are fixed and the random motion effects which exist 

in cells in media are not present in vivo. 

This study is the most thorough and systematic animal trial for the nsPEF application 

in solid tumor in vivo. NsPEF Tx induced effects were different from ionization or 

heating, it can produce broad impacts on the melanomas in vivo, ranging from DNA 

fragmentation, caspase activation, nuclear damage, apoptosis induction, pre-existing local 

vessel damage, intra-tumoral neovascular inhabitation to systematic histological changes 

both in short- and long-term experiments. The data reveals nsPEFs act as non-chemical, 

non-thermal, and non-ligand stimuli that can treat melanomas in vivo. 
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