
Old Dominion University
ODU Digital Commons
Mechanical & Aerospace Engineering Faculty
Publications Mechanical & Aerospace Engineering

2013

Non-Equilibrium Pressure Control of the Height of
a Large-Scale, Ground-Coupled, Rotating Fluid
Column
R. L. Ash
Old Dominion University, rash@odu.edu

I. R. Zardadhkan

Follow this and additional works at: https://digitalcommons.odu.edu/mae_fac_pubs

Part of the Aerodynamics and Fluid Mechanics Commons, Engineering Mechanics Commons,
and the Fluid Dynamics Commons

This Article is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU Digital Commons. It has been accepted for
inclusion in Mechanical & Aerospace Engineering Faculty Publications by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

Repository Citation
Ash, R. L. and Zardadhkan, I. R., "Non-Equilibrium Pressure Control of the Height of a Large-Scale, Ground-Coupled, Rotating Fluid
Column" (2013). Mechanical & Aerospace Engineering Faculty Publications. 17.
https://digitalcommons.odu.edu/mae_fac_pubs/17

Original Publication Citation
Ash, R. L., & Zardadkhan, I. R. (2013). Non-equilibrium pressure control of the height of a large-scale, ground-coupled, rotating fluid
column. Physics of Fluids, 25(5), 053101. doi:10.1063/1.4807068

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/280?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_fac_pubs/17?utm_source=digitalcommons.odu.edu%2Fmae_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


PHYSICS OF FLUIDS 25, 053101 (2013)

Non-equilibrium pressure control of the height of a
large-scale, ground-coupled, rotating fluid column

R. L. Ash1,a) and I. R. Zardadkhan2

1Mechanical & Aerospace Engineering Department, Old Dominion University,
Norfolk, Virginia 23529, USA
2Javelin Technologies, Oakville, Ontario L6L 0C4, Canada

(Received 27 November 2012; accepted 22 April 2013; published online 23 May 2013)

When a ground-coupled, rotating fluid column is modeled incorporating
non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution
results. The solution has been obtained in a similar manner to the classical equi-
librium solution. Unlike the infinite-height, classical solution, the non-equilibrium
pressure solution yields a ground-coupled rotating fluid column of finite height. A
viscous, non-equilibrium Rankine vortex velocity distribution, developed previously,
was used to demonstrate how the viscous and non-equilibrium pressure gradient
forces, arising in the vicinity of the velocity gradient discontinuity that is present
in the classical Rankine vortex model, effectively isolate the rotating central fluid
column from the outer potential vortex region. Thus, the non-equilibrium region acts
to confine and shield the central, rigid-body-like, rotating fluid core, justifying this
examination of how such a rotating fluid column can interact with the ground. The
resulting non-equilibrium ground-coupled, rotating fluid column solution was em-
ployed to estimate the central column heights of three well-documented dust devils,
and the central column height predictions were consistent with published dust devil
height statistics. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807068]

I. INTRODUCTION

An understanding of how an axial vortex interacts with a solid surface is of fundamental
importance in the study of viscous flows. A variety of important industrial and geophysical flows
can be modeled utilizing a steady-state axial vortex whose rotational axis is perpendicular to and
interacting with a fixed (ground) surface. One challenge in the study of these flows is how to
properly model the nearly inviscid outer axial vortex region while incorporating viscous central
and ground plane interactions. Fernandez-Feria et al.1, 2 have been studying the behavior of high-
Reynolds number boundary layers beneath nearly inviscid vortices for some time. Recently, Parras
and Fernandez-Feria2 incorporated a far-field Long’s vortex model3 with an axisymmetric Navier-
Stokes numerical solver to study the influence of Reynolds number on vortex flow behavior near
the ground plane. That work showed that vortex breakdown bubbles could form on the rotational
axis and elsewhere within the flow volume, depending on the Reynolds number. Vortex stability and
breakdown behavior have been studied extensively for decades,4 primarily for aircraft performance
and safety considerations. However, fundamental questions remain concerning the relevance of
vortex breakdown phenomena in understanding the behavior of large-scale cyclonic flows.

A variety of vortex chambers have been employed to study the interaction of axial vortices with
the ground.5–9 Unfortunately, those facilities can neither reproduce the unconfined outer geophysical
boundary region nor achieve the scales (and Reynolds numbers) associated with geophysical vortex
flows. Church et al.6 demonstrated experimentally that vortex breakdown bubbles could be created
on the axis of a simulated cyclonic flow, but they ascribed the vortex breakdown to transition from a
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laminar axisymmetric core to a turbulent core, and other processes may be important in producing
stagnation zones within geophysical vortices. The inviscid nature of the measured velocity profiles
in dust devils and other cyclonic geophysical flows away from the rotational axis and at moderate
distances above the ground10, 11 supports the assertion that a steady-state Rankine vortex model,12

though oversimplified, is a reasonable approximation for the large-scale velocity distribution away
from the ground. Interestingly, the shear discontinuity separating the rigidly rotating central fluid
column from the outer potential-flow vortex in the inviscid Rankine model implies that two distinct
flow regimes can be examined when this type of vortex structure interacts with the ground.

We have examined how the inclusion of non-equilibrium pressure gradient forces in the Navier-
Stokes equations can influence vortex flow structure.13–15 That research resulted in an exact solution
for a steady, incompressible axial vortex that blended rigid-body rotation near the centerline with
a potential vortex velocity distribution.15 In other words, the exact solution incorporating non-
equilibrium pressure gradient forces, eliminated the velocity gradient discontinuity exhibited in
the inviscid Rankine vortex model, while replicating simultaneously the limiting centerline and far
field velocity distributions. The exact solution demonstrated how these non-equilibrium pressure
gradient forces act to balance the viscous forces that arise in the relatively thin region where the
rapidly rising azimuthal velocity, required by the outer potential vortex solution, transitions to a
rigidly rotating central fluid column. When the exact, non-equilibrium solution was compared with
measured and observational data for aircraft wake vortices, dust devils, and tornadoes, the azimuthal
velocity profile solution was found to agree with observation. Furthermore, that incompressible
exact solution predicted that the pressure deficit at the center of this type of axial vortex was twice
as large as the pressure deficit that occurred at the radius of maximum swirl velocity.

Non-equilibrium pressure gradient forces appear to be important only under special circum-
stances, and the inner region of incompressible, potential-vortex-like flow structures may be the most
important flow units exhibiting significant non-equilibrium effects. While the rotating central column
regions associated with wake vortices and dust devils are rather small, it is important to note that
very large-scale, rigid body-like rotating atmospheric phenomena have been modeled successfully
using an inviscid energy-enstrophy statistical approach,16 and it is apparent that the mathematics
describing inviscid, incompressible vortex-like flows can be utilized over very large length scales. At
the smaller scales associated with terrestrial vortices, where viscous forces in simple fluids like air
and water begin to assert control over the core region of an axial vortex, finite acoustic propagation
speed effects can become relevant. That is, if the fluid cannot maintain thermodynamic equilibrium
near the fluid rotational axis, a symptom of that non-equilibrium can be the production and radiation
of sound. Such a non-equilibrium acoustic source was identified in our earlier study.15

II. ISOLATION OF ROTATING FLUID COLUMN AWAY FROM THE GROUND

When non-equilibrium pressure gradient forces are incorporated in the viscous model for a
steady-state axial vortex with specified circulation,15 the improved “Rankine vortex” azimuthal
velocity distribution is given by the exact solution

vθ (r ) = 2vθ,M AX
(r/rcore)

(r/rcore)2 + 1
. (1)

The maximum rotational velocity is vθ,M AX = vθ (rcore), and the far-field circulation is given by

�∞ = 2�core = 2
(
2π rcorevθ,M AX

)
. (2)

The maximum rotational velocity is related to the pressure relaxation coefficient, ηp,13 and depends
on the ratio of the kinematic viscosity to the pressure relaxation coefficient for laminar vortices, or
on the ratio of the eddy viscosity to the pressure relaxation coefficient for turbulent vortices. The
maximum velocity and therefore the ratio of viscosity to pressure relaxation coefficient can also be
related directly to the maximum pressure deficit. Designating ambient pressure as P∞ and the axial
centerline pressure as PCL, the maximum velocity is thus related to the maximum pressure deficit
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(P∞ − PCL), as follows:

vθ,M AX =
√

2
ν

ηp
=

√
P∞ − PC L

2ρ
, (3)

where ρ is the (constant) fluid density, demonstrating that the measured maximum pressure deficit
can be utilized to estimate the ratio of the viscosity parameter to the pressure relaxation coefficient.

If the velocity distribution, Eq. (1), is utilized as an improved Rankine vortex model for the
steady-state aspects of large-scale geophysical vortices away from the ground, the axial component
of vorticity associated with that velocity distribution varies with radial distance from the center of
rotation according to

π r2
core

�∞
ωz (r ) = π r2

core

�∞

1

r

d

dr
(rvθ ) = 1[(

r

rcore

)2

+ 1

]2 . (4)

On that basis, it can be seen that the vorticity associated with the viscous core region for this type
of vortex decreases to 1% of its centerline value at a distance of three core radii from the centerline;
beyond that radius, viscous and non-equilibrium effects are nearly negligible compared with the
core region and the “outer” velocity profile can be approximated accurately as a potential vortex.
It is also important to note that the velocity profile within the inner 10% of the core region can be
represented as a rigidly rotating fluid column to within 1% accuracy, and the inner 30% of the core
region rotates like a rigid fluid column to within 10% accuracy.

Our earlier axial vortex solution demonstrated that a relatively small vorticity zone could be
identified, separating the outer potential vortex flow regime from the near-rigidly rotating central
fluid column. Since the central fluid column regions of geophysical vortex flows can be quite
large, the behavior of such a rotating fluid column element, when “shielded” from the outer flow,
warranted further study. The work that follows is an examination of the influence of viscous and
non-equilibrium pressure coupling on the steady-state aspects of a rotating fluid column interacting
with the ground.

More than 70 years ago, Bödewadt17 employed boundary layer-like approximations to model a
steady, rotating fluid column interacting with the ground. Schlichting18 demonstrated subsequently
that Bödewadt could have utilized his similarity velocity functions in the axial component of the
conservation of momentum equation to develop a height-dependent pressure correction and thus
remove the simplifying approximation restrictions, producing an exact three-dimensional solution
to the incompressible Navier-Stokes equations. The same approach employed by Bödewadt, as
modified by Schlichting, has been utilized here to develop an exact solution for a ground-coupled,
rotating fluid column, when the incompressible Navier-Stokes equations are modified to incorporate
non-equilibrium pressure forces. It is important to recognize that the solution that follows has
assumed that the angular rotation rate (ω) and the ambient properties of the fluid column, including
the pressure relaxation coefficient, ηP, are specified constants.

III. GROUND-COUPLED ROTATING FLUID COLUMN FORMULATION

The steady, incompressible conservation of mass and momentum equations incorporating pres-
sure relaxation15 can be represented in cylindrical coordinates (r, θ , z, with corresponding velocity
components vr , vθ , vz), assuming that gravity acts in the negative z-direction, as follows:
Conservation of mass (continuity):

1

r

∂

∂r
(rvr ) + ∂vz

∂z
= 0. (5)

Conservation of radial momentum:

vr
∂vr

∂r
+ vz

∂vr

∂z
− v2

θ

r
= − 1

ρ

∂ P

∂r
+ ν

[
∂2vr

∂r2
+ ∂

∂r

(vr

r

)
+ ∂2vr

∂z2

]
+ ηp

ρ

[
vr

∂2 P

∂r2
+ vz

∂2 P

∂z∂r

]
.

(6)
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Conservation of azimuthal momentum:

vr
∂vθ

∂r
+ vz

∂vθ

∂z
+ vrvθ

r
= ν

[
∂2vθ

∂r2
+ ∂

∂r

(vθ

r

)
+ ∂2vθ

∂z2

]
+ ηp

ρ

vθ

r

∂ P

∂r
. (7)

Conservation of axial momentum:

vr
∂vz

∂r
+ vz

∂vz

∂z
= −g − 1

ρ

∂ P

∂z
+ ν

[
1

r

∂

∂r

(
r
∂vz

∂r

)
+ ∂2vz

∂z2

]
+ ηp

ρ

[
vr

∂2 P

∂r∂z
+ vz

∂2 P

∂z2

]
. (8)

Note that the ηp

ρ
prefix precedes the non-equilibrium pressure terms in the three components of the

conservation of momentum equation.
Utilizing the Bödewadt transformations,17

ς = z

√
ω

ν
, with vr = r ω F (ς ) , vθ = r ω G (ς ) , and vz = √

νω H (ς ) , (9)

the transformed conservation equations are
Continuity:

2F + d H

dς
= 0. (10)

Conservation of radial momentum:

F2 + H
d F

dς
− G2 = − 1

rω2

[
1

ρ

∂ P

∂r

]
+ ηpω F + d2 F

dς2
. (11)

Conservation of azimuthal momentum:

2FG + H
dG

dς
= ηp

ω r
G (ς )

1

ρ

∂ P

∂r
+ d2G

dς2
. (12)

Conservation of axial momentum:

ω
√

νω

[
H

d H

dς
− d2 H

dς2

]
= −g − 1

ρ

∂ P

∂z
+ ηp

μ
ω

√
νω H (ς )

∂2 P

∂ς2
. (13)

Bödewadt neglected gravity and assumed that the pressure distribution above the ground plane
boundary layer satisfied the rigidly rotating fluid column relation

1

ρ

∂ P

∂r
= ω2r, (14)

invoking his boundary layer approximation to neglect axial variations in the pressure gradient. For
the present non-equilibrium pressure case, we have examined the characteristic magnitude of the
ω

√
ων prefix appearing in Eq. (13) for typical dust devil and tornado columnar rotation rates10, 15, 19

(using a nominal kinematic viscosity for air of 1.5 × 10−5 m2/s), and found that it ranged between
0.0005 m/s2 and slightly less than 0.1 m/s2. Consequently, a boundary layer approximation could
be justified, but Schlichting’s pressure correction procedure18 can be employed to obtain an exact
solution to the modified Navier-Stokes equations.

Since the geophysical problems of greatest interest include gravitational body forces, a modified
version of Bödewadt’s original pressure distribution function has been employed, incorporating the
gravitational body force and introducing the required pressure correction function

P (r, z) = ρ

[
ω2r2

2
− gz

]
+ p′ (ς ) , (15)

where p′(ς ) must be evaluated after Eqs. (10)–(12) have been integrated numerically to obtain F, G,
and H(ς ). The equation governing the pressure correction function can thus be written

dp′

dς
− ηpωH (ς )

d2 p′

dς2
= μω

[
d2 H

dς2
− H

d H

dς

]
. (16)
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While it is possible to use standard integration techniques to represent the pressure correction
function solution, i.e.,

p′ (ς ) = μ

ηp

ς∫
0

H 1/ηpω (τ )

τ∫
0

H−1/ηpω (ξ )

[
d H

dς
(ξ ) − 1

H

d2 H

dς2
(ξ )

]
dξdτ, (17)

the parametric values of ηpω characterizing realistic geophysical flow structures were so small that
integrating Eq. (17) may not be practical. Development of approximations to enable integration of
Eq. (16) for very small values of ηpω will be discussed for a dust devil example in Sec. IV A.

When the pressure distribution function, Eq. (15), is incorporated in the governing equations,
the resulting radial and azimuthal conservation of momentum equations simplify to

F2 + H
d F

dς
− G2 + 1 = ηpω F + d2 F

dς2
(18)

and

2FG + H
dG

dς
= ηpω G (ς ) + d2G

dς2
. (19)

It can be seen that when ηpω = 0, Eqs. (10), (18), and (19) revert to the system of equations
employed in Bödewadt’s original formulation.

The ground plane boundary conditions (no slip and no penetration) are straightforward,
given by

F (0) = G (0) = H (0) = 0. (20)

The far field boundary conditions at the top of the column were another matter when non-equilibrium
pressure forces were included.19 Classically, the boundary conditions at the top of the domain were
assumed to apply in the infinite height limit.17, 18 The behavior of the azimuthal velocity component
for the present “shielded,” rotating fluid column far from the ground is still expected to revert to the
rigid-body rotational behavior assumed by Bödewadt, i.e.,

lim
ς → ∞ G (ς ) = 1. (21)

However, in the older formulation the radial velocity function, F, converged to zero and the axial
velocity function, H, converged to a constant value of 1.3494, in the infinite limit.18 That is not the
case when non-equilibrium effects are included. From Eq. (19), it can be seen that if the rigidly
rotating limit is achieved, and the derivatives of G go to zero, conservation of azimuthal momentum
for large values of ς still requires that

lim
ς → ∞ 2FG (ς ) = ηpω

[
lim

ς → ∞ G (ς )

]
= ηpω ⇒ F (ς ) → ηpω

2
, (22)

indicating that radial flow persists for arbitrarily large values of ζ . That limit requirement also
satisfies the conservation of radial momentum, Eq. (18), for large values of ς . In addition, the
continuity equation, Eq. (10), must be satisfied and if

F (ς ) → ηpω

2
, for large values of ς,

then continuity requires that

d H

dς
(ς ) → −ηpω, for large values of ς. (23)

In other words, the axial velocity component continues to decrease for arbitrarily large values of
height, while the radial velocity component begins to vary linearly with radius. Both of these limiting
requirements differ substantially from Bödewadt’s original equilibrium solution. Not only does the
radial velocity function cease to approach zero in the limit, but the limiting, negative slope of
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the axial velocity function prevents the axial velocity from approaching a constant limiting value.
Numerical integration of the radial and axial velocity functions for a range of ηpω, without imposing
these upper limit conditions a priori, demonstrated that Eqs. (22) and (23) were correct. In addition,
our parametric studies exhibited axial velocity functional behavior similar to Bödewadt’s original
equilibrium solution near the no-slip boundary, and the axial velocity function was always positive,
prior to converging toward its theoretically predicted constant-negative-slope, and finally crossing
zero.

It was possible to utilize the constant slope behavior at dimensionless heights well beyond
Bödewadt’s so-called boundary layer region17 in order to determine the location where the axial
velocity function passed through zero.19 Since the axial velocity function always decreased linearly
with height at large distances from the ground, our numerical studies19 have shown that by incorpo-
rating non-equilibrium pressure gradient forces in the Navier-Stokes equations, the resulting ground-
coupled solution was always bounded by a stagnation plane at a finite height (where H(ςmax ) = 0).

Numerical results modeling dust devil behavior will be discussed as a particular case. In
addition to dust devil profiles, we have examined characteristic angular rotation rates for tornadoes
and cyclones, and utilized temperature and relative humidity data to estimate associated pressure
relaxation coefficients. For all of the geophysical cases that have been examined, the magnitude
of ηpω was never larger than 0.00001, making it very difficult to capture solution details near
the no-slip boundary. Those very small ηpω-values prevented direct integration of the pressure
correction function using Eq. (17), and dimensionless column heights for those cases were so
large that it was necessary to represent the functions using semi-log plots. Therefore, in order to
observe the characteristic behavior of this type of rotating fluid column solution without requiring
semi-logarithmic plots or utilizing additional approximations for the pressure correction function, a
non-geophysical value of ηpω = 0.1, has been employed for discussion purposes. That parametric
value could be relevant in modeling turbulent streak structures,20, 21 but it is an unrealistic geophysical
scaling value.

The governing equations were integrated numerically out to arbitrarily large values of ς , in
order to make sure that the finite lower domain (of unknown height) was traversed. A MathWorks,
Inc. MATLAB bvp4c two-point boundary value solver was employed for the numerical integration of
Eqs. (10), (18), and (19). That solver utilized Simpsons’s method with residual control, implemented
within an implicit fourth order Runge-Kutta formulation.22 The extent of the required computational
domain depended on the specified value of ηpω, and the upper stagnation-plane boundary had to be
determined by trial and error. After the upper boundary was established, the final mesh for each ηpω

case was generated automatically utilizing a reverse interpolation strategy.
Variation of F, G, and H(ς ), for Bödewadt’s17 original solution has been tabulated in

Schlichting.18 All three of the tabulated functions converged nominally to their limiting values
for ς ≈ 12.5. A comparison between the Bödewadt functions (dashed lines) and the non-equilibrium
functions (solid lines) for F, G, and H(ς ), when ηpω = 0.1, is shown in Figures 1–3. Generally,
the functional behavior near the ground for the “Bödewadt” and the non-equilibrium radial and
azimuthal velocity functions have similar shapes, except the non-equilibrium radial velocity func-
tion (Figure 1) can be observed to converge toward a limiting value of 0.05 rather than zero, while
the azimuthal velocity function (Figure 2) appears to exhibit more damping when non-equilibrium
pressure forces are included, converging more rapidly toward unity. Away from the ground, the
axial velocity function (Figure 3) appears to have been “bent” from its original constant-height
limit [where H(ς ) → 1.3494], into a limiting straight line with a slope of −0.1, crossing zero
at ς =14.17. As was the case for the azimuthal velocity function, the oscillatory behavior of the
axial velocity function near the ground appears to be damped by the non-equilibrium pressure
forces.

Regardless of the specified value of ηpω, the numerical integration limits could be extended
well beyond the height where the vertical velocity component was equal to zero. Hence, the fluid
region above the stagnation plane boundary could also be examined.19 Streamlines in the unbounded
upper region represented a type of downward-flowing stagnation flow, and the upper flow domain
had many of the characteristics of a boundary layer flow produced by a rotating disk beneath
a quiescent fluid.18 The upper solution domain provides a link between upper atmospheric flow
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FIG. 1. Comparison of the radial velocity distribution function representing a pressure relaxation parameter, ωηp, equal to
0.1 (solid line), with Bödewadt’s solution17, 18 (dashed line).

behavior and the lower, rotating-column flow unit, but for present purposes, the upper domain has
been ignored.

A. Pressure correction function

The pressure correction function, given by Eq. (17), was integrated numerically for the
ηpω = 0.1 case24 and is displayed in Figure 4. The pressure correction function is quite small
compared with the predicted pressure deficit. Maximum pressure correction adjustments near the
ground plane boundary were less than 2% of the maximum far-field pressure deficit. The pressure

FIG. 2. Comparison of the azimuthal velocity distribution function representing a pressure relaxation parameter, ωηp, equal
to 0.1 (solid line), with Bödewadt’s solution17, 18 (dashed line).
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FIG. 3. Comparison of the axial velocity distribution function representing a pressure relaxation parameter, ωηp, equal to
0.1 (solid line), with Bödewadt’s solution17, 18 (dashed line).

correction was −0.13% of the maximum pressure deficit at the location where the axial velocity was
equal to zero.

After numerical integration established the ς -location where the axial velocity went to zero
[designated as ςmax (ηpω), since it was a function of ηpω], the height of the ground-coupled flow
domain was

hmax =
√

ν

ω
ςmax

(
ηpω

)
, (24)

and the associated boundary conditions on that boundary were

vz (r, hmax) = 0, (25)

FIG. 4. Variation of the pressure correction function with dimensionless height: ωηp = 0.1.
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vr (r, hmax) = ηp

2
ω2r, (26)

vθ (r, hmax) = ω r, (27)

and

P (r, hmax) = ρ

[
ω2r2

2
− g hmax

]
+ p′ (ςmax) . (28)

The three normal stress components along the top boundary are given by

σr (r, hmax) = μηpω
2 = σθ (r, hmax) = −1

2
σz (r, hmax) , (29)

and the three shear stresses were equal to zero at the boundary, i.e.,

τrθ (r, hmax) = τr z (r, hmax) = τθ zz (r, hmax) = 0. (30)

Hence, there are no shear stresses acting at the top of the finite-height, rotating fluid column, but the
surface traction force exerted on the stagnation plane is

FNormal

A
(r, hmax) = −P (r, hmax) + σz (r, hmax) = −P (r, hmax) − 2μηpω

2, (31)

where surface traction forces are considered to be positive in tension.
The surface traction force along the top boundary has been employed to control the constant

of integration in the pressure correction function. That is, if the finite column height represents
the extent of the domain in which non-equilibrium pressure forces are operative, then it is logical
to require that the surface traction force reverts to the equilibrium pressure distribution along the
stagnation plane, i.e.,

FNormal

A
(r, hmax) = −ρ

[
ω2r2

2
− g hmax

]
= −ρ

[
ω2r2

2
− g hmax

]
− p′ (ςmax) − 2μηpω

2.

On that basis, we require that

p′ (ςmax) = −2μηpω
2. (32)

In the numerical example (ηpω = 0.1), the integrated value of the pressure correction function at the
top of the domain was −0.0013 Pa, which represented �p′ = p′(ςmax ) − p′(0). By employing an
initial value, p′(0) = 0.0037 Pa, Eq. (32) was satisfied and the pressure at the top of the domain then
coincided with the equilibrium pressure for a rotating fluid column.

B. Estimation of fluid column height

The range of expected values of ηpω for geophysical cyclonic flows required specification of
both the pressure relaxation coefficient and the angular rotation rate of actual cyclones. Currently,
pressure relaxation coefficients for air can only be inferred utilizing acoustic reference data.14 Those
acoustically based estimates demonstrate that the pressure relaxation coefficient can vary by more
than two orders of magnitude at a given ambient temperature, depending on relative humidity.
Tornadoes and hurricanes are much more complicated than are dust devils because of multi-phase
water transport processes along with cloud and frontal weather dynamics, to say nothing of their
overall size. In addition, the high levels of humidity associated with those types of cyclonic flows
result in substantially smaller values of ηp, and therefore smaller values of ηpω. Consequently, the
largest value of ηpω, estimated for a low-humidity dust devil,19 was approximately 0.00001, and the
heights of all of these rotating fluid columns can be expected to be associated with ηpω ≤ 0.00001.
For the high-moisture-content columnar rotation that would characterize tornadoes and cyclones,
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ηpω is expected to be much smaller. Numerical experiments over a wide range of ηpω demonstrated
that it was possible to predict the maximum column height quite accurately using the empirical
curve-fit relation,

hmax = 1.394

ηpω

√
ν

ω
. (33)

Based on the earlier axial vortex study,15 turbulence could be taken into account by utilizing a
turbulent eddy viscosity, ν turb, in place of the fluid transport property. Thus, the maximum height
of these rotating fluid columns varied directly with the square root of kinematic (or eddy) viscosity
and inversely with the pressure relaxation coefficient and with the 3/2 power of the angular rotation
rate. The more turbulent the central core, the taller the column; the drier the air (the larger the value
of the pressure relaxation coefficient) or the faster the rotation rate, the shorter the column.

IV. ESTIMATION OF CENTRAL COLUMN HEIGHTS OF DUST DEVILS

Dust devil data were used to test the applicability of Eq. (33). Hess and Spillane23 compiled
statistical data for 26 dust devils observed by general aviation pilots in Australia between November
1, 1987 and January 31, 1988; they also noted that visible dust devil column heights as tall as
2400 m had been reported by others. Out of 26 dust devil observations, 18 multiple dust devil
observation sets were compiled, along with eight single dust devil height observations. The mean
observed dust devil heights were 661 m for the 18 multiple dust devil events and 402 m for the
eight single-event dust devils, with standard deviations of 179 m and 142 m, respectively. Since the
pilot observations were made remotely with respect to the dust devil positions, the local ambient
temperature, pressure, and relative humidity characterizing each dust devil was unknown, precluding
direct use of those observations in the present theory. On the other hand, Sinclair10 reported detailed
structural measurements of three dust devils that were encountered near Tucson, Arizona between
August 7 and 14, 1962; unfortunately, they did not measure the local relative humidity or the actual
heights of the encountered dust devils. However, the relative humidity could be estimated for the
Sinclair dust devils using nominal hour-by-hour dew point data measured at the nearby Tucson,
AZ weather station.15 The three dust devils were turbulent and in our previous study, we discussed
how it was possible to employ the measured dust devil core diameters and maximum rotational
velocities to estimate appropriate turbulent eddy viscosities.15 Using the measured local ambient
temperature, pressure, and core rotational velocity, along with the estimated dew point temperature,
the dry-air pressure relaxation coefficients could be predicted theoretically.14 Then, employing the
turbulent eddy viscosities estimated from our earlier study, it was possible to utilize the structural
characteristics of Sinclair’s three dust devils, as summarized in Table I, in Eq. (33) to estimate the
height of each rotating dust devil column. If dust devil DD #3 (observed on August 14, 1962) was
part of a multiple dust devil event, its substantially different structural characteristics and estimated
column height are consistent with the multiple-event statistics of Hess and Spillane.23 The first
two dust devils had estimated column heights that were within one standard deviation of Hess and
Spillane’s average single-event height estimates.

TABLE I. Structural properties of the Sinclair10, 15 dust devils, along with estimated column heights.19

Estimated stagnation
Dust devil ηp (μs) rcore (m) vmax (m/s) ωcore (s−1) νeff (m2/s) height (m), Eq. (33)

DD #1 1.049 2.3 11 9.6 7.1 × 10−5 378
DD #2 1.125 2.6 12 9.24 7.1 × 10−5 357
DD #3 1.092 3.35 8.8 5.25 6.2 × 10−5 833
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A. Velocity and pressure distributions in the central column of Dust Devil #110

From Table I, Sinclair’s Dust Devil #1 represented the largest nominal value for ωηp (equal
to 0.00001). The predicted maximum dimensionless height for a rotating central fluid column rep-
resentative of Sinclair’s Dust Devil #1, was 139 000, corresponding to a physical column height
of 378 m. Due to the extremely large extent of the dimensionless flow domain, the overall di-
mensionless functional behavior of the radial, azimuthal, and axial velocity functions masked the
local variations near the solid boundary. Hence, the dimensionless plots of the radial, azimuthal,
and axial velocity functions for that rotating fluid column are shown as semi-log overall plots
(panels (a)) and linear, near-the-ground plots (panels (b)) in Figures 5–7. In that way, the overall
and near-surface behavior can be observed. From these figures, it can be seen that the dimen-
sionless variations of the velocity functions near the ground boundary for that dust devil column

FIG. 5. Variation of the radial velocity function with ζ , for ωηp = 0.00001 (a) ζmax = 139 000 and (b) near the ground plane.
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FIG. 6. Variation of the azimuthal velocity function with ζ , for ωηp = 0.00001 (a) ζmax = 139 000 and (b) near the ground
plane.
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FIG. 7. Variation of the axial velocity function with ζ , for ωηp = 0.00001 (a) ζmax = 139 000 and (b) near the ground plane.

are nearly identical with the velocity functions for the non-physical ωηp = 0.1 case. The pri-
mary difference is the extremely slow decrease in the dimensionless axial velocity function, when
ωηp = 0.00001.

The ωηp = 0.00001 case represents a type of upper limit for estimating the non-equilibrium
pressure correction effects in a geophysical vortex (other cases will be even smaller). Examina-
tion of the closed integral solution for the pressure correction function given by Eq. (17), and
utilized for the demonstration case shows that it would require raising numerically integrated
functions to powers of ±100 000, in this case and any realistic numerical resolution and accu-
racy specification cannot support such calculations, requiring an alternate numerical integration
approach.
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The dynamic viscosity for air using the ambient conditions for DD #1 was 0.000019 Pa s.
Employing the data from Table I, the pressure correction function equation, Eq. (16), could be
written

dp′

dς
= μω

[
d2 H

dς2
− H

d H

dς

]
+ ωηp H (ς )

d2 p′

dς2

= 0.000184

[
d2 H

dς2
− H

d H

dς

]
+ 0.00001H (ς )

d2 p′

dς2
(34)

for this case. From the conservation of axial momentum equation, the initial slope of the pressure
correction function is given by

dp′

dς
(0) = −ωμ

d2 H

dς2
(0) = 2ωμ

d F

dς
(0) = 0.000368

d F

dς
(0) . (35)

Near the ground plane, Eq. (34) was integrated iteratively by first neglecting the second derivative
pressure correction term, and subsequently utilizing the numerically predicted pressure correction
function from the previous iteration to calculate the second derivative of the pressure correction,
repeating the process until acceptable accuracy was achieved.

Iteration effects were only detectable in the vicinity of the ground boundary. Since
d H

dς
= −2F(ς ), from Eq. (10), Figure 5(b) shows that the numerically integrated values of F(ς )

have converged to the limiting constant value,
ωηP

2
, well before ς = 100. Therefore, the axial

velocity function varied linearly with ς thereafter, and
d H

dς
= −ωηp = constant, for ς ≥ ς crit, to

acceptable accuracy. When the axial velocity function could be approximated as a linear function of
height, the second derivative of H could be neglected, and the term in braces in Eq. (34) could be
approximated:

μω

[
H

d H

dς
− d2 H

dς2

]
≈ μω

2

d

dς

(
H 2

)
. (36)

Also,

dp′

dς
− ηpωH (ς )

d2 p′

dς2
= d

dς

[
p′ − ηpωH (ς )

dp′

dς

]
+ ηpω

d H

dς

dp′

dς

≈ d

dς

[
p′ − ηpωH (ς )

dp′

dς

]
− (

ηpω
)2 dp′

dς
= ηpω

d

dς

[(
1

ηpω
− ηpω

)
p′ − H (ς )

dp′

dς

]
.

Hence,

μ

2ηp

d

dς

(
H 2

) = d

dς

[(
H

dp′

dς

)
+

(
ωηp − 1

ωηp

)
p′

]
, for ς ≥ ςcri t . (37)

Then, integrating between the minimum linear slope approximation height, ς crit, and ς ,

μ

2ηp

[
H 2 (ς ) − H 2 (ςcri t )

] = H (ς )
dp′

dς
(ς ) − H (ς cri t )

dp′

dς
(ςcri t )

−
(

1

ωηp
− ωηp

) [
p′ (ς ) − p′ (ςcri t )

]
or

H (ς )
dp′

dς
(ς ) −

(
1

ωηp
− ωηp

)
p′ (ς ) = d

dς

[
H p′] −

(
1

ωηp
− 2ωηp

)
p′ (ς )

= μ

2ηp
H 2 (ς ) + H (ς cri t )

dp′

dς
(ςcri t ) − μ

2ηp
H 2 (ςcri t ) −

(
1

ωηp
− ωηp

)
p′ (ςcri t ) .
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Finally, since ωηp 
 1, this differential equation could be simplified further as

ωηp
d

dς

[
H p′] − p′ (ς ) = μω

2
H 2 (ς ) + ωηp H (ς cri t )

dp′

dς
(ςcri t ) − μω

2
H 2 (ςcri t ) − p′ (ςcri t )

⇒ p′ (ς ) ≈ p′ (ςcri t ) − μω

2

[
H 2 (ς ) − H 2 (ςcri t )

]
, for ς ≥ ςcri t . (38)

Also, since H(ςmax ) = 0, the pressure correction at the top of the domain is given by

p′ (ςmax) = p′ (ςcri t ) + ωμ

2
H 2 (ςcri t ) . (39)

The overall pressure correction function, employing iteration and these additional approximations,
is shown in Figure 8(a), while its variation in the vicinity of the ground plane boundary is shown in

FIG. 8. Variation of the pressure correction function with ζ : ωηp = 0.00001 (a) ζmax = 139 000 and (b) near the ground.
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FIG. 9. Comparison between two-dimensional streamline patterns representing pressure relaxation parameter solution,
ωηp = 0.1 (solid line), and Bödewadt’s solution17, 18 (dashed line).

Figure 8(b). The behavior near the ground plane is very similar to the directly integrated behavior
for the case when ωηp = 0.1, while the pressure correction away from the ground appears to have
simply been “stretched” over a very large dimensionless distance.

V. RESULTS AND DISCUSSION

The importance of incorporating non-equilibrium pressure forces in this rotating fluid col-
umn model can be demonstrated most easily by comparing streamline behavior for the classical
solution with the streamline patterns for the two non-equilibrium pressure examples, as shown in
Figures 9–11. Figure 9 shows that in the immediate vicinity of the ground plane, fluid particles

FIG. 10. Three-dimensional streamline patterns. (a) Bödewadt’s solution.17, 18 (b) Present solution, ωηp = 0.1.
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FIG. 11. Three-dimensional streamline patterns for ωηp = 0.00001 (dimensions in meters).

are drawn toward the rotational axis in the same manner as the classical solution and the influence
of non-equilibrium pressure effects is virtually undetectable. However, at dimensionless heights
greater than 2, the gradual retardation of the vertical component of velocity by the non-equilibrium
pressure forces causes the particle trajectories (solid lines) to begin to diverge from the rotational
axis. The streamlines become parallel to the ground plane at a dimensionless height of 14.17.
The three-dimensional representations of four “corkscrew” streamlines representing the original
Bödewadt solution,17, 18 shown in Figure 10(a), demonstrate that those streamlines have constant
nominal pitches of one rotation per 5 m, extending to infinity. Conversely, Figure 10(b) shows how
the non-equilibrium pressure forces acting on four streamlines, initiated at the same nominal ground
plane locations as the streamlines in Figure 10(a), become “trapped” below a dimensionless height
of 14.17. Those streamlines generate a funnel shape.

For the ωηp = 0.00001 case, which is representative of a dust devil column, the extremely slow
retardation of the vertical velocity component, results in a very slow corresponding increase in the
radial component of the velocity. Figure 11 is a plot of a single streamline for that case, started
near the ground plane at an initial radius of 0.3 m. The vertical scale (in meters) is broken because
the change in corkscrew pitch, and the corresponding gradual dilation of the streamline is barely
detectable over substantial vertical distances, until the particle path is near the top of the column.
As can be seen in the figure, at a height of 330 m, the helical pitch is approximately three rotations
per meter, compared to an initial pitch, near the ground plane, of approximately 0.2 revolutions per
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meter. At the vertical upper limit, the pitch will be infinite, since the vertical velocity goes to zero,
but it is not possible to show that part of the streamline (out to 378 m), since that depiction takes on
the appearance of a picture from a coloring book.

The pressure correction function also yields an estimate of the surface pressure gradient beneath
the rotating fluid column. That is,

∂ P

∂z
(r, 0) = −ρg + 2μ

ω3/2

ν

d F

dς
(0) , (40)

beneath the rotating column, where the turbulent eddy viscosity from Table I, is employed for the
present Dust Devil #1 case. For that dust devil, the rotating column contribution to the estimated
surface pressure gradient [with d F

dς
(0) = −0.942] is −0.128 Pa/m, corresponding to slightly more

than a 1% increase in the surface pressure gradient.

VI. CONCLUSIONS

This work has shown that non-equilibrium pressure gradient forces, when incorporated in a
model of a ground-coupled, rotating fluid column, provide a mechanism for controlling the height
of the column. Employing data from an earlier analysis of dust devils,15 the present model has
shown that the estimated central column heights utilizing the present theory for three dust devils
whose near-surface environmental and structural characteristics had been measured previously by
Sinclair,10 were consistent with the statistically based dust devil heights cataloged by Hess and
Spillane.23 This research therefore supports de-constructing geophysical axial vortex structures
into distinguishable zones, like the layers of a chive, separating the inner “rigidly rotating” fluid
column layer from the intermediate non-equilibrium transitional flow layer and finally from the
outer potential vortex “layer,” for modeling purposes. If the rotating fluid column region is shielded
from the outer flow, ground coupling tends to preserve the rotating column flow unit by drawing
in additional fluid near the ground. When non-equilibrium pressure gradient forces are included,
the ground-coupled, rotating central fluid column is constrained to a finite height because the non-
equilibrium pressure forces retard the vertical upward flow. Conservation of mass demands that the
radial component of velocity increase with height in order to accommodate the fluid that would
otherwise accumulate because of the decelerating vertical flow. The simultaneous variation of the
vertical and radial velocity components with height results in funnel-shaped streamlines. In contrast
with the bottom boundary, the expanding streamlines near the top dilate the column and impose
constraints on the outer potential vortex region of the flow.

At the top of the rotating column, the pressure correction function can be utilized to impose
the equilibrium pressure distribution produced by a rigidly rotating fluid column under the influence
of gravity. Since the shear stresses produced at the top of this finite fluid column are equal to zero,
the exact solution to the modified Navier-Stokes equations for the finite fluid column which results
can exist beneath the complimentary upper stagnation layer flow.19 Unlike the in-flow conditions
near the ground plane boundary, the expanding top of the rotating column must alter the outer flow
regime, placing limits on the extent of the multiple layer representation.

The dimensionless pressure relaxation parameter, ωηp, characterizing observed dust devil and
tornado flows was found to be very small. However, when pressure relaxation parameters were
estimated for the three dust devils that had been documented in some detail by Sinclair,10 the
estimated heights were found to be consistent with dust devil height statistical data. A numer-
ical investigation of the velocity, pressure, and streamline patterns representing Sinclair’s Dust
Devil #1 showed that ground coupling resulted in a central, rotating fluid column streamline
pattern that was nearly identical with the corkscrew pattern predicted by Bödewadt,17 over ap-
proximately 80% of the bottom region. However, above that height the funnel shaped streamlines
became pronounced. In addition, the exact pressure distribution solution predicts that a small, non-
equilibrium-derived pressure gradient is produced along the ground plane that enhances particle
levitation.
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