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ABSTRACT

ESTIMATING FAMILIAL CORRELATIONS USING A 
KOTZ TYPE DENSITY

Amal Helu 

Old Dominion University, 2005 

Director: Dr. Dayanand N. Naik

Two useful fam ilial correlations often used to study the resemblance between the 

fam ily members are the sib-sib correlation (pss) and the mom-sib or parent-sib cor­

relation (pps). Since their introduction early in the last century by Galton, Fisher 

and others, many improved estimators of these correlations have been suggested in 

the literature. Several moment based estimators as well as the maximum likelihood 

estimators under the assumption of multivariate normality have been extensively 

studied and compared by various authors. However, the performance of these es­

timators when the data are not from multivariate normal d istribution is poor. In 

this dissertation, we provide alternative estimates of pss and pps by minimizing the 

objective function,

n

nlog |E| +  -  #*)]*,
i = 1

where E  is a positive definite m atrix w ith  an appropriate structure involving pss 

and pps. Using extensive simulations from different multivariate distributions and 

using the bias, the mean squared error, and Pitman probability of nearness we have 

established that the alternative estimators are better than the existing estimators in 

most situations. The problems of testing of hypothesis about pss and pps and those 

of testing the equality of two sib-sib correlations and two mom-sib correlations are 

also considered. Alternative tests using Srivastava’s well known estimators of sib-sib 

and mom-sib correlations and their asymptotic variances are proposed and compared 

using simulations. The proposed tests have better estimated sizes and powers than 

the likelihood based tests when data are from a multivariate normal distribution. 

Proposed methods are illustrated on Galton’s famous classical data set on statures 

of families. These data are important, in that, the original note book on which these 

data were recorded by Galton in 1886 has been recently discovered and digitalized.
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CHAPTER I 

INTRODUCTION

An interest in the study of fam ilial correlations has been around for a long time, 

since Galton (1888). Galton worked w ith  data on human stature of fam ily members. 

In  an attempt to study the relationships between various measurements on parents 

and their children, Galton and then Pearson (1896) considered different correlation 

measures, such as, sib-sib (or child to child ) and parent-sib (or mom-sib) correlations. 

Numerous attempts have been made since then to provide better estimates of these 

correlations. Even after more than one hundred years, the study of these correlations 

have not ceased to exist. The problems of studying the fam ilial correlations such as 

sibling-sibling (sib-sib) and parent-sibling (mom-sib) correlations are still important 

is clear from the vast amount of literature that as is being produced. The literature 

mainly deals w ith  estimation of sib-sib (or intraclass) correlation (pss) and mom- 

sib (or interclass) correlation (pms or pps) under equal and unequal fam ily sizes. 

Several articles also have considered the problems of testing of hypothesis about 

these parameters. There are also some articles discussing testing problems involving 

equality of these correlations from two or more populations.

Pearson (1896) proposed estimating sib-sib correlation by computing the sample 

product moment of every possible pair of observations from siblings. Fisher (1925) 

proposed a sib-sib correlation based on the analysis of variance (ANOVA) and this 

was appropriate for the balanced case where sib-ships are identical in size. Fisher’s 

ANOVA estimator was generalized by Fieller and Smith (1951) to accommodate 

unbalanced sibship sizes. Smith (1957) proposed a further improvement by asso­

ciating a weight w ith  each component of the between sum of squares, yielding the 

uniform ANOVA (pu) estimator in the case where weights are equal. Donner and 

Koval (1980) derived the maximum likelihood estimator of the sib-sib correlation 

for the unbalanced case. Using simulations from a multivariate normal distribution 

they showed their M LE outperforms the ANOVA intraclass correlation coefficient for 

extreme values of sib-sib correlation.

Although many measures of correlation among siblings have been proposed, each 

one has its own deficiency. For example, Pearson’s pairwise intraclass correlation 

The journal model for this thesis is Biom etrics
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coefficient weights a sibship of size 10 by 45 times as much as a sibship of size 2, al­

though it  does not provide 45 times as much information. The dependence on balance 

lim its the usefulness of Fisher’s estimator, since families vary in size. While Fieller 

and Smith’s estimator addresses both Pearson’s and Fisher’s problems, providing 

only 5 times as much weight in this instance, their estimator is inefficient for small 

sib-sib correlations. Although Smith’s estimator, pu, addresses several weaknesses of 

previous estimators, i t  also possesses Fieller and Smith’s inefficiency for small sib-sib 

correlations. While Donner and Koval’s M L estimator outperforms the ANOVA and 

Pearson’s correlation measures for the unbalanced case, there is no closed form for 

this measure. Keen (1993) showed tha t the product-moment estimators and ANOVA 

estimators have similar efficiencies, but again noted that efficiencies are cumbersome 

to calculate w ithout closed forms in  the unbalanced case, even w ith  the aid of nu­

merical methods.

Srivastava (1993) suggested an estimator which is an efficient combination of two 

non-iterative estimators proposed by Smith (1957) and showed that this combination 

estimator has better efficiency than either one of them.

Estimation of the mom-sib correlation has been of interest since early 1950’s. 

Kempthorne and Tandan (1953) used a linear model to estimate this interclass cor­

relation under the assumptions that a \=  o^, that is, the parent and sibling variances 

are the same and pss, the intraclass correlation, is given. Since these assumptions are 

unnecessarily restrictive, another measure called the pairwise estimator, was intro­

duced. The pairwise estimator of mom-sib correlation (rp) is computed by pairing 

values for each sibling in the fam ily w ith  the parent’s value. W hile the pairwise 

estimator has intuitive merit, i t  violates the required assumption that the data are 

independent.

Other estimators used in lieu of the pairwise estimator are the sib-mean estimator, 

where the mean value for all siblings is paired w ith  the parent’s value, and the random 

sib estimator, where a single sibling from the fam ily is chosen randomly and this 

sibling’s value is paired w ith  the parent’s value. Rosner, Donner and Hennekens 

(1977) proposed the ensemble estimator, based on the random sib estimator, and 

compared these three measures to the pairwise estimator. This ensemble estimator 

computes an expected mom-sib correlation over all possible random mom-sib pairings 

as described in the random sib estimator. Rosner, et al. (1977) determined that the 

ensemble and pairwise estimators were superior to both the sib-mean and random
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sib estimators based on smallest MSE criteria. And when pps is small (<=0.1), 

the pairwise estimator outperforms the ensemble estimator and when pps is large 

(>=0.5), the ensemble estimator outperforms the pairwise estimator.

The linear model approach was re-examined by Mak and Ng (1981) following 

Rosner’s (1979) development of MLEs for the balanced and unbalanced cases. Mak 

and Ng’s approach simplified derivation of the MLEs by using a linear model, such 

that given the mother’s value, the mom-sib correlation can be determined and tested. 

Their approach assumes, as in Kempthorne (1953), that only the mother’s score is 

random, whereas Rosner’s approach allows both mom and sib scores to be random. 

Srivastava (1984) gives an estimate of mom-sib correlation for the unbalanced case 

tha t has a similar bias, but smaller asymptotic variance compared to the ensemble 

estimator, as noted in Velu and Rao (1990). Srivastava and Katapa (1986) provided 

the asymptotic variance of the Srivastava estimator.

Since the introduction of Srivastava’s estimator, variants of the traditional in­

terclass correlations have been proposed, but in each case compared to Srivastava’s 

estimator and the ensemble estimator. Two comparisons by Srivastava and Keen 

(1988) and Eliasziw and Donner (1990) determine tha t Srivastava’s estimator is uni­

form ly more efficient than the ensemble estimator, but the magnitude is relatively 

small. Thus, both estimators perform sim ilarly and choice of approach lies in the 

small increase in efficiency by using the Srivastava estimator.

Although not directly applicable to fam ilial data, in the same spirit, Khattree 

and Naik (1994) considered the problem of estimating interclass correlation under a 

circular covariance m atrix and this work was later expanded by Hartley (1997) and 

Hartley and Naik (2001).

Testing theory for the intraclass and interclass correlations was discussed in the 

late 1970s and early 1980s. In  1984, around the same time when Srivastava proposed 

his estimator (but before Srivastava discussed testing), Donner and Bull (1984) com­

pared four methods for testing that the mom-sib correlation is zero. The four tests 

they considered were the likelihood ratio test (LRT), a test based on the large sample 

variance of the maximum likelihood estimator (M LE), an adjusted pairwise test, and 

a test (Zp) based on the large sample variance of the pairwise estimator. Zp uses the 

ratio of the pairwise estimator to its large sample standard error for testing. They 

found that under certain conditions, including that the data are from a normal dis­

tribu tion  and fam ily size is around 25, Zp has size and power comparable to the LRT,
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especially for the most common moderate-to-small values of the mom-sib correlation.

Once the ensemble and Srivastava’s estimators were introduced, comparison of 

testing procedures using these was done. For example, Konishi (1985) proposed two 

tests based on pairwise and ensemble estimators and via simulation from the normal 

distribution compared these estimators w ith  the LRT. His simulation results showed 

that the LRT was most efficient. Velu and Rao (1990) studied testing procedures 

using the mean-sib correlation, the ensemble estimator, and Srivastava’s estimator 

for small sample situations. They derived the exact null d istribution of Srivastava’s 

estimator.

The problem of testing the equality of sib-sib correlations for two populations was 

considered by Donner and Bull (1983) when fam ily sizes w ith in  a population and 

between populations were the same, and by Khatri, Pukkila, and Rao (1989) when 

fam ily sizes in the two populations were different. These authors derived and studied 

the performance of the likelihood ratio test. For the problem of testing equality of 

several correlations, Konishi and Gupta (1989) have suggested a modified likelihood 

ratio test and a test based on Fisher’s ^-transformation. Paul and Barnwal (1990) 

suggested a C (a ) test, and Haung and Sinha (1993) derived the optimum invariant 

test, assuming the fam ily sizes w ith in  populations are the same, but different for 

different populations.

Young and Bhandary (1998) and Bhandary and Alam (2000) respectively con­

sidered the problems of testing the equality of two and three correlation coefficients 

when the fam ily sizes are unequal. They used Srivastava (1984)’s estimator of in tr­

aclass correlation and proposed the approximate likelihood ratio test and compared 

its performance w ith  two other asymptotic tests based on normal distribution. They 

also made the assumption that the variances for different populations are the same.

I t  appears that there is not much work done for testing the equality of two parent- 

sib correlations.

So far in the literature, all the comparisons, whether i t  is of different estimators 

of intraclass or interclass correlations or of testing procedures for testing hypothesis 

about these correlations, is performed mostly via simulation experiments where the 

data are generated from multivariate normal distribution. The performance of these 

methods is unclear when the data may be from other symmetric but heavy tailed 

distributions. The main objective of this thesis is to investigate the performances of 

various procedures under non-normal distributions, such as a Kotz type distribution
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and multivariate T  distribution. The T  distribution has been used in the context of 

repeated measures study by Lange et al. (1989).

The Kotz type distribution, the probability density function (pdf) of which is 

provided below, has fatter ta il regions than that of multivariate normal distribution.

/ ( x , / * ,S )  =  c | E  |"5 exp { - [ ( x - / x y S _1( x - / x ) ] 2 },
r(£)

where u  6 X  is a positive definite m atrix and c =  —v2—  -27r5r(p)
See Plungpongpun (2003) and the references therein for properties and other 

details about this distribution. The contour plots of the pdf of this and normal 

distribution for the same set of parameters are provided in Figures I and 2 for com­

parison. Notice that the Kotz type density has a much narrower peak as compared 

to normal. Hence it  is clear that the area covered in the ta il regions of Kotz type 

density is larger than tha t under a normal density.

The Kotz distribution we have considered here was used in the context of m ulti­

variate analysis of variance and discriminant analysis by Plungpongpun (2003) and 

Naik and Plungpongpun (2004). The motivation behind using this d istribution was 

two fold. First, by extensive simulation study i t  was determined in Plungpongpun 

(2003) that the tests for multivariate normality against other symmetric heavy tailed 

alternatives are not powerful and hence one cannot easily guaranty, based on these 

tests, tha t the data in  hand are multivariate normal. Secondly, this particular Kotz 

type distribution has the property tha t the M LE of the location parameter is the 

generalized spatial median, which is a robust ( against outliers) estimate of location 

parameter. I t  is expected tha t the estimators of scale parameters are also robust.

Hence in this thesis, we have adopted this density for estimation of scale matrix, 

in particular the in tra and interclass correlations. Taking this Kotz type distribution 

as a model for fitting  the fam ilial data, we derive the maximum likelihood estimates 

and asymptotic tests based on the maximum likelihood theory. Our interest then 

points to a comparison of these estimators and tests w ith those derived using the 

maximum likelihood theory for multivariate normal distribution.

W hile it  is true that the normal d istribution based maximum likelihood estima­

tors may be asymptotically biased under the assumption tha t the true model is a 

K otz typ e distribution and vice versa, it is not uncom m on in sta tistics to  compare 

such estimators using the mean squared error and other criteria, such as, bias and 

Pitman nearness probability. In the statistical literature, in fact, there is a whole
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topic named “biased estimation” under which comparison of biased and unbiased 

estimators is routinely done. O f course one would not use the variance of the esti­

mators for comparison here. For example, in the standard linear regression theory, 

the least squares estimators (which are unbiased) are routinely compared w ith  the 

ridge regression estimators (which are by construction biased).

In  this thesis we investigate the problem of estimation of the sib-sib correlation 

in Chapter 2 and that of mom-sib correlation in Chapter 3. Using simulation exper­

iments and data from normal, Kotz type and T  distributions, we compare different 

estimates by comparing their bias, mean squared error, and Pitman nearness proba­

bility.

Chapter 4 deals w ith  four different testing of hypothesis problems. Testing of 

sib-sib correlation equal to zero is considered first. We use two sets (one under 

multivariate normal distribution and another under Kotz type distribution) of three 

well known asymptotic likelihood theory based tests, namely the likelihood ratio test 

(LRT), the W ald’s test, and Rao’s score test. These tests along w ith  a test based 

on Srivastava’s estimator are compared using extensive simulations. The data are 

simulated from different distributions. The simulation estimate of the sizes of the 

tests and powers are used for comparison. The problem of testing mom-sib correlation 

is zero is considered next and a similar type of comparison study is performed.

Next, the problems of testing the equality of two sib-sib correlations and testing 

the equality of two mom-sib correlations are considered. By adopting Srivastava’s 

estimate we have provided estimates of common correlations under each of the null 

hypothesis. Alternative tests based on Srivastava’s estimate and its asymptotic vari­

ance are proposed and compared w ith the likelihood based tests.

Recently, Hanley (2004) worked w ith fam ily data on human stature obtained 

directly from Galton’s note books (cf. Galton, 1886, 1889). The data consists of 

heights of 205 families w ith  the number of children ranging from 1 to 15. For more 

details on this data set and on how to obtain it, see Hanely (2004), or visit http  : 

/ / www.epi.m cgill.ca/hanely/ galton. A t the end of each chapter we illustrate our 

procedures on Galton’s data.

A ll the computations and simulations are performed using SAS software. To 

obtain the programs electronically, send a request by e-mail to dnaik@odu.edu.
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Contours of Bivariate Kotz Distribution
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CHAPTER II

ESTIMATION OF SIB-SIB CORRELATIONS

I I .  1 In tro d u c tio n

To measure the degree of resemblance between family members w ith  respect to a 

specified characteristic, sib-sib correlation and parent-sib correlation are used. Nu­

merous methods have been proposed in the literature to estimate the sib-sib or in­

traclass correlation (pss) since its introduction by Galton (1888). Pearson (1896) 

suggested estimating i t  by computing the product moment over every possible pair 

of observations from siblings. Fisher (1925) suggested using the analysis of variance 

(ANOVA) method for the balanced data where the sibship sizes are all equal. Fisher’s 

estimator was generalized by Fieller and Smith (1951) to accommodate unbalanced 

sibship sizes. Smith (1957) proposed a further improvement by associating a weight 

w ith  each component of the between sum of squares.

Suppose Xij, j  =  1, ...,7rip i  =  1, ...,n  is an observation on the j th  child of the 

i th  family. Let the vector of observations on the ith  fam ily be x ' =  ( x , i , ..., x imi). 

Then the sib-sib correlation coefficient pss is the correlation coefficient between any 

and Xiji for j  ^  j ' .

The variance covariance m atrix of x* then can be w ritten as

where a 2 =  var (x j j ) ,  and I m; is an identity m atrix of order to, and J TOi is the m l x m, 

m atrix of all ones.

The uniform ANOVA estimator {pSStU) of Smith (1957) in the case where weights 

are equal is given by

cow(xj) X j cr [(1 pss)I mi +  pssJm<]

1  P ss  • • • Pss  

  2 Pss  ̂ ‘=  a =  ° 2Vi(pss),

y  P ss P ss  • • • 1 J

n

i= 1 3=1
( I I I )P u n

T ,(x i -  x ■■

i=1 i= l j= l
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n n n
where xu =  n -1 )T) £j, a* =  1 — m j1, a =  n~1 ]P ai and N  =  X) mi-

i= l i=1 i=1
Smith additionally proposed a generalized weighted ANOVA estimator, pw, which 

can be rewritten w ith  weights Pi =  — 1) as
n n rrii

E  Pi(®i -  xp)2 -  ^ E E  { x a - X i f

P W =  ----------------------------- f -------------------. ( n . 2 )

E  ?-.(*< -  % )2 -  E  E (= % -*< )2i= l iz=ij=i
n n n n

wherexp =  Y x iP i / p ,Pc =  Y , {P i-P i/p ) / m i,Po =  (P - Y ,P 2/P )/P c  and P  =  Y P i-
i= l i= l i= l i= l

Donner and Koval (1980) derived the maximum likelihood estimator (M L E jv) of 

pss and showed, when data are simulated from a multivariate normal distribution, 

tha t the M L E n  outperformed the ANOVA intraclass correlation coefficient for ex­

treme values of sib-sib correlation. Additionally, for the unbalanced case, the M L E jy 

outperformed Pearson’s correlation for all but the zero correlation scenario. Srivas­

tava (1993) proposed an improved estimator of pss based on an efficient combination 

of pu and pw as

fe  =  i +  l w-  ■„ ■ <n -3)
P w  P u

This estimator shows a great increase in asymptotic relative efficiency over either 

pu or pw. W hile i t  is clear why M L E Nl being asymptotically the most efficient 

estimator, performs better than the other estimators under the multivariate normal 

data, its performance when data are not normal is not clear.

In this chapter we provide an alternative estimator for estimating pss and assess 

the performance of the new estimator against the others via a simulation experiment. 

For our simulation we generate data from multivariate normal and other symmetrical 

multivariate distributions, namely multivariate T  and Kotz type.

I I . 2 A n  A lte rn a t iv e  A pp roach : B alanced Case

First let us consider the case when all families have the same number of children. 

Suppose x,, i  =  1, ...,n  is a vector of observations on m children in the ith  family 

such that E (x i)  -  p  = p l ,  uar(x i) =  S  = a 2[( l -  pss)I m +  pssJ m] =  a2V (p ss).

Note that the determinant and inverse of E  respectively are

|E| =  (a2n ( l  -  p j ^ i l  +  (m -  l ) p J ]  and

1 t t _______ Ps_m
° 2{l  ~  Pss) (1 + (m -  l ) p j
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In the new approach we propose to estimate pss by minimizing the objective function

n

F{p,cr2,pss) =  lo g |S |2  + ] ^ >/ ( x j -/L4)/E - 1(x i - / i ) ,  (II.4)
i= 1

simultaneously w ith  respect to pss, p and a2.

Let v =  1 +  (m  — l)p 2s and w =  1 +  (m  -  \)p ss.

This process leads to solving the following three equations

d F  ^  1 ' V - ^ - p l )

a / ( x i  -  -  pi)
d F  —mn  1 n----------- — . : , .------------------ r
qq 2 — 2a2 2(ct2)3/2 ^  (y(Pss)) (xj — / r l)  =  0,

_o|F_ =  m n(m  -  l)p ss_______ 1 ^  (x j -  / / i y ( I m -  ^  Jm)(x, -  p i)  _  n

dpss 2(1 - p ss)w  2cr2( l  — pss)2 y /(x i - p i y Z - ' i x i  - p i )  ~  ’

(II.5)

simultaneously w ith  respect to p, a2 and pss. Note the second equation can be written 

more compactly as

°  =  i  S  V ( x i -  M l) '(V (p sJ ) - 1(x i -  p i) .
T r i l l l —l

There is no closed form solutions to these equations and hence one needs to solve 

these iteratively and numerically. Alternatively, using software one can directly nu­

merically minimize the objective function (II.4) w.r.t. p, a2, and pss. We have used 

SAS/IM L procedure’s dual Quasi Newton Method (NLPQN) routine for obtaining 

the estimates. The optim ization gives unique estimates in the feasible regions under 

the above covariance structure. We observe that these estimators are also the maxi­

mum likelihood estimators of p, a 2, and pss when X;, i =  1,..., n is a random sample 

from a Kotz type distribution where the probability density function of an m  x 1 

random vector x  is given by

/ ( x ,  p, E ) =  c |£ |- 5 exp { —[(x -  j* ) 'E -1 (x -  p)]*}, p G 3ftm, E  p. d., (II.6)

r/m\
where c =  , p =  p i ,  and E  =  a2V (p ss). The asymptotic d istribution of these2,7T 2 i (771/
estimators under Kotz type distribution can be studied by computing the Fisher 

information matrix.
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The following theorem is useful for computing the elements of the Fisher infor­

mation matrix. See M itchell (1989) and Lange, L ittle , and Taylor (1989) for details 

and proofs.

T heo rem  1 Suppose the pdf o f x  is given by

cm| S | “ 55r((x -  5 y s - 1 (x  -  5 ))

fo r  an appropriate constant cm and nonnegative function g(.), x  G Rm, 8  G Rm, 

positive definite (p.d.) m atrix  S . Then y  =  £ ~ 5 (x  — 8) (i.e. x  =  <5 +  E ^ y j has 

the pdf cm g(y y ) and fu rther t  =  r 2 =  y y  has the probability density function

t^ ~ l g ( t \ t >  0.mr(f)

Suppose u =  g (=  ~^j)>  then we have the following results:

(a) E ( r2u) =  - f  { =  E (T u )-T  =  r 2}

(b) E  (y’A y uk) =  M r (A )E  ( r2 uk)

(c) E  (y’A  y y’B  y uk) =  ,.2) {2 t r (A B ) +  t r (A ) t r (B ) }  E  ( r4 uk)

For a given function g(t), cm, u, and pdf o f r 2 are completely specified and hence

(b) and (c) can be completely evaluated.

For the Kotz type distribution,

g(t) =  e~Vi, t  =  (x  -  /x ) 'E _1( x -  n),

9 (t) ,, A d
" = w r 9 i ) =  s 9 (t)-

Let y  =  (x j — n). Then f ( p ,a 2,psJ y )  =  cm |£ |_5 g(t) and

log /  =  log cm +  i  log |S _11 +  log g (t)

m  2 (m ~  1) , /, n logw . .=  log cm “  log e x    log (l -  pss) ------—  +  log g(t).

d lo g /  m g it) dt 
We have - J L -  =  +  2 U _ ,  but

«  y ' ( i - ^ J ) y =  ( „ ence
da2 ct4(1 -  p ss)

d lo g f  =  _  g (t)t
da2 2<t2 a2g(t)

and

.<9lo g /  o rr? u2t2 m ut m 2 +  t  m tu(---- 2jL y  — -------1--------- 1---------_ ------------- 1------
da2 4 a4 a4 a4 4 a4 a4
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Using the expected values formula in Theorem 1 we get

a io g /  2 _  m  
( da 2 '  4a4'

Next,

d lo g f  =  (m -  1 )

dPss 2

1 g'(t) dt 
9(t) d p j

d p s s  v 2 ( l ~ P s s )

d lo g /  m { m - l ) p ss | uy ’A y  a t  P

2 (1 ~ a J ™  ct2 (1  — /=»ss) 2 ’ an
S lo g / 2 =  m 2(m -  1 )2p2ss m (m  -  l)p sgu y 'A y  (n y 'A y ) 2

dpss 4(1 -  pss)2w2 a2w( 1 -  p j 3 a4( l  -  pss)4'

Then we can show that

Also,

d lo g /  2 _  m (m  -  l) ( (m  +  2 )u +  to) 
<9p55 4(m +  2)(1 — pss)2w2

d log /  9 log /  _  (m +  2ut) m (m  -  l)p ss u y 'A y
da2 dpss 2 a 2 1 2 ( 1  -  pss)w +  a2( l  -  p j ^ '  en

d lo g /d lo g /  =  (m +  2 u f ) m ( m -  l)p S5 _  (m +  2 u t)u y 'A y  
d(r2 dpss 2a2 2 ( 1  -  pss)w  2 a4( l  -  p55) 2

[m.E(wy 'A y )  +  2Eu2ty 'A y }

2<̂4(1 -  Pss),2
but

t-. / 2 /a x f 2 f r ( £ 2 A S 2 +  m tr (S 2 A S ^ ) 1 2 2

B (“V A y ) = { — — — 1 j E << v >
=  m (m  +  l ) t  =  m ( m + i y  _  ,  T tas

4m 4 w
d lo g fd lo g f  =  m (m  -  1 )pss 

da2 dpss 4(1 -  pss)wa2 '

Finally,

S lo g /  gXt) d t g \t) . , .
6  7 vv ) =  _ 2 ih d ( T 5 ] “ 1y ) and

dp p(f) dp g(t)

=  4 u2(y 'E ~ 2  JX T§y). Then we get E ' ( ^ p ^ ) 2 =  
op dp wo2

a ^ g / a t o g /  =  ^  E { 9J^ i e k g f  =  o
dp da2 dp dpss
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Thus the information m atrix for the Kotz type distribution can be w ritten as

/ 1

CX2W
0 0  \

0
m m (m  -  1 )pss

4a4 4<72(1 -  Pss)w

0
m (m  -  l ) Psa m (m  — l) [(m  +  2)v +  m]

\ 4ct2{ 1 -  pss)w 4{m +  2)w2( l -  pss)2 J

T heo re m  2  Suppose x  has probability density function as in  ( I I .6) and X i , x „  is 

a random sample from this distribution. Suppose the maximum likelihood estimator 

of p ,a 2 and pss obtained by solving the equations in  ( I I .5) are p ,a 2 and pss. Then 

y/n(ff -  8) A, Ns(0, I jA ), where 9 =  (p ,a 2,pss)' and 9 =  (p ,a 2,pss)' is the M LE  of 

9.

A similar result for multivariate normal d istribution is given below.

T h eo re m  3 (Donner and Koval, 1980) Suppose X j, i =  1, is a random sample 

from multivariate normal distribution with mean p i ,  and variance covariance matrix 

£  =  cr2y {p ss) and 9 =  (p ,a 2,pss)' is the M LE  of 9. Then y/n(8 — 9) d A ^ O , !^ 1),

/

where T n =

m
a2w

\

0

0

0

m
2 a4 

m (m  — 1 )ps

0

m (m  -  1 )pss

2ff2( !  -  Pss)w
m (m  — l)v

\

2<T (1 -  Pss)w 2w2( l  — pssy

The Kotz type distribution has fatter ta il regions than that of multivariate nor­

mal d istribution and hence can be an alternative model to the multivariate normal 

distribution. In the following we w ill simulate data from multivariate normal dis­

tribution, multivariate T  distribution w ith  degrees of freedom=5, and Kotz type 

distribution, and in each case we compute the bias, the relative efficiency (RE), and 

the Pitman nearness (PN) probabilities for p and p.

I I . 3 S im u la tio n  S tu d y

In  the following we provide algorithms for simulating random samples from each of 

the three multivariate distributions mentioned above.
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11.3.1 S im u la tin g  fro m  m u ltiv a r ia te  n o rm a l d is tr ib u t io n

(a) Generate m  independent standard normal random variables z i,.. .,z m and let

z =  (z i , ...,zmy.

(b ) Suppose /j, and £  =  T 'T  are given. Then x  =  T 'z + / i.  Then x  has a multivariate

normal d istribution w ith  mean vector p. and variance covariance m atrix £ .  See 

Khattree and Naik (1999).

(c) Repeat the above steps n times to obtain a sample of size n.

11.3.2 S im u la tin g  fro m  m u lt iv a r ia te  T  d is tr ib u t io n

(a) Generate m  independent standard normal random variables and let

z =  (z1,. . . ,zmy.

(b ) Suppose £  =  T T is given. Then x  =  T 'z has a multivariate normal distribution

w ith  mean vector 0 and variance covariance m atrix £ .

(c) Generate a gamma random variate V  w ith  a shape parameter v / 2  and scale

parameter 1, (in our case v =  5).

(d ) Let x 2 =  2V. Then y 2 is distributed as a chi-square random variable w ith  v

degrees of freedom.

(e) Let t  =  y ^ x  +  R Then t  has a multivariate T  distribution w ith  parameters

H, £ ,  and v. See Lange et al. (1989).

( f )  Repeat the above steps n times to obtain a sample of size n.

11.3.3 S im u la tin g  fro m  K o tz  ty p e  d is tr ib u t io n

The following algorithm to generate a random sample from an m-variate Kotz type 

d istribution (II.6 ) is given in Naik and Plungpongpun (2004). Here we provide only 

an outline.

(a) Simulate y ' =  (y \ , ...,ym) having the density

/ ( y ) =  c e x p f - y ^ } ,
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r ( —)
where —oo <  Vi <  oo, and c =  - 2 . Note that f (y )  is the standard-

’  2 7 r T r ( m )  ^  7

ized version of Kotz type distribution given in (II.6 ) and also E (y ) =  0  and 

V ar( y ) =  (m +  1)1.

(b ) Obtain x ' =  ( x i , x rn) having the distribution as in ( II.6 ) by making the trans­

formation x  =  T 'y  +  n , where /u' =  { f i l , ..., /xm) and E  =  T T .

The simulation of y  is achieved by using the polar coordinate transformation,

y i =  R cos 9\ 

r/2 — R  sin 9i cos 02

ym - 1  =  R  sin 9X sin 0 2 • • • sin 0 m _ 2 cos 0 m_i 

ym =  R  sin 0 x sin 02 • • • sin 0m _ 2 sin 0 ,^-!,

where R  =  \ fy 'y ,  9j £ [ 0 ,7r) for 1 <  j  <  m  — 2 and 0m_i £ [ 0, 27t). The Jacobian 

of the transformation is Rm~l sinm_J_1(0J).

To simulate 0 ~  0(0), we use the bisection method which is one of the popular 

numerical inversion algorithms and is described below. See Devroye (1986) for de­

tails.

A lg o r ith m : Find an in itia l interval [a, b] to which the solution belongs.

REPEAT
a   (a+ft)
U 2

IF  G(9) <  U  THEN a <- 0 

ELSE 6 <— 0

U N TIL  b — a < 2 8  

RETURN 0 

Here 8 >  0 is a small number.

Our simulation study includes generating data from each one of these three d istri­

butions and comparing the M LE ’s based on Kotz type and normal distribution. For 

all three simulation experiments, the parameters used include the tota l number of 

families n =  10,20,30,50,100 to cover small, medium, and large sample sizes, the 

fam ily sizes, m  =  3 ,4 ,5 ,6 , sib-sib correlations pss — 0.1,0.3,0.5,0.7,0.9, a2 =  1, 

and p  =  0. For each set of these parameters, 10,000 data sets were simulated. The 

three criteria used for comparison are simulation estimates of (i) Bias (ii) Relative 

efficiency and (iii) Pitman Nearness (PN) probability.
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B ias is computed as pss — pss, where p is the average of the 10,000 estimates of pss, 

one for each simulation, and pss is the value that is used in the simulation.

R e la tive  e ffic iency is computed as R E(p ,pSS2) =  where
M o E (p SSl J

10000
M S E (p ssj) =  Jg-ggg X) (Pssji -  Pss) 7 Paaji beinS the estimate of pss for the ith  sim- 

’  2=1
ulated data set and j  =  1,2. We say that pSSi is better estimator of pss than pSS2, if  

R E  >  1.

'ssi Pss IP itm a n  Nearness (P N ) P ro b a b ility  is computed as P N  =  P {\p

|pss2-p ss|} =  10̂ 00 # {  Paoii -  Pss < Pss2i -  Pss }> where Pssu and Pss2i are the 
estimates of pss for the ith  simulated data set. We say that pSSl is a better estimator 

than pSS2 for pss if  P N  >0 .5 .

I I .4  R esu lts  and R em arks

Various results are provided in Figures 3 - 1 7  given at the end of the chapter and a 

summary of the results are provided below.

•  In  general we observe that the M LE ’s underestimate the sib-sib correlation pss.

•  The fam ily size (m) seems not to affect the bias.

•  When data are simulated from a multivariate normal distribution, the M L E k  

are slightly different from the M L E jv and for extreme values of pss (0 .1  and 

0.9) or when (n ) increases, they both have the same bias. On the other hand 

M L E n  has noticeably higher bias than the M L E k  when the simulation is from 

a Kotz type distribution (Figures 3-11).

•  When data are simulated from a multivariate normal distribution, the relative 

efficiency (R E) of M L E K as relative to M L E N is almost 1 for large m  (=  5 ,6 ) 

and small n (=  10) and R E  is close to 1.1 when n is large and m  is small (=  3,4). 

These values indicate that the M L E K is at least as efficient as M L E N when 

sampling is from multivariate normal distribution. However, when the sampling 

is from Kotz type distribution, the M L E N is not as efficient as M L E k , this is 

more so for large sample sizes and small m values (Figures 12-14).
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•  We note from Figures 15-17 that M L E k  is better than M L E k  for all m, n and 

for different values of pss w ith  high PN values. However, M L E k  is slightly 

better than M L E k  for small n and also for large n, when m =  3 and pss =  0.3.

In  Summary, these estimators perform as expected in relation to one another 

w ith  regard to bias, relative efficiency, and PN probability. M L E K outperforms 

M L E k  when data come from Kotz type distribution and vice versa. However, the 

magnitudes of the differences in these criteria are much greater when using M L E k - 

When data are simulated from the multivariate T  distribution, the estimators under 

Kotz type distribution are superior for all values of m ,n  and pss. The results are 

provided in the Figures 9 - 1 1 ,  14, and 17. Clearly we can see that the alternative 

estimator proposed here is more efficient.

I I . 5 A lte rn a t iv e  A pp ro a ch : U nba lanced Case

The proposed estimators under unbalanced case can be sim ilarly obtained by m ini­

mizing the objective function

simultaneously w.r.t. p ,a 2, and pss, where Wi =  1 +  (m* — l)p ss, i — 1,2, ...,n  and

9 . N  9 (N  — n) , . ,
F{p,cr ,pss) =  — lo g c t +    l o g ( l - p M)+

n
N  =  m i. The solutions p,, cr2, and pss are the maximum likelihood estimators when

the distribution is Kotz type.

The Fisher’s Information m atrix for a given Xj(m.x l) is given by

(II.8 )

n
For large n, £ ^  I k , w ill converge to I K ,

/  j* a n  0  0

\  0  T ? f c ) a23 /
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n n

T O j(T O ,: — l ) [ ( m i + 2 ) t ) , + m i ]

(mi+2)w?

I f  8 =  ((x,a2 ,pss)' is the M LE of 9 =  (p,,a2,pss)' then y/n(9 — 9) A ^ O , !^ 1).

variance of 0  is calculated.

I I.5 .1  S im u la tin g  d a ta  w ith  unequa l fa m ily  sizes

In  the unbalanced case we follow the same procedure as tha t for the balanced case in 

for generating data from the three types of distribution, namely, multivariate normal, 

multivariate T, and Kotz type. Along w ith  M L E k  and M L E k , we consider a non­

iterative estimator given in (II.3) due to Srivastava (1993). Only this non-iterative 

estimator is considered because it  has been shown in Srivastava (1993) that i t  is more 

efficient compared to the other commonly used non iterative estimators.

In  the unbalanced case, one extra problem we face is the determination of rrii, the 

fam ily sizes. For this we used a procedure due to Brass (1958) who suggested that 

the negative binomial d istribution truncated below 1 fits the observed distribution 

of sibship sizes very well in a variety of human populations for appropriate choice of 

param eters n  and P . T he distribution has the probability m ass function given by

Similarly, for normal distribution we have yjn(9  — 9) d A^O, V). where 8 is

the M LE of 9 under normal distribution and
f  M i  0  0  \

where w* =  1 +  (m* -  1 )pss, =  1 +  (m* -  l)p ^ ,

In  practice we can calculate the asymptotic variance of 8 as:

var(8 ) ~  X) Lk i , where 1'k % is given in ( II.8 ). Similarly the asymptotic

Pr (m =  r )  =
(n +  r -  1 )!Q " ( g ) r

Q =  l  +  P, r  =  1,2,
(n — l ) ! r ! ( l  — Q~n)
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Since recent census data notes that fam ily sizes are small, (for example, see 

http://www.census.gov/population/socdemo/hh-fam/cps2002/tabAVGl.pdf), for our 

simulations we used the negative binomial distribution truncated above by 6 , that is 

1 ^  m  ^  6 .

We include the to ta l number of families n — 50, and 100 and sib-sib correla­

tion coefficient, p ss =  0 ,0 .1 ,0.3,0.5,0.7, and 0.8. Also to avoid certain convergence 

problems we encountered during simulations, we simulated data from multivariate T  

distribution w ith  df=3 instead of 5. As before we w ill compare the bias, RE and PN 

probabilities for M L E k , M L E k , and Srivastava’s estimator.

I I . 6 Results and Rem arks

•  Increasing the sample size didn’t  affect the bias for the three estimators. When 

the sampling is from multivariate normal distribution, M L E K has slightly 

higher bias compared to M L E k  and Srivastava’s estimator, especially for mod­

erate to high values of p ss. When data are simulated from Kotz type d istri­

bution, there is a major difference between M L E k  and the other estimators, 

compared to the differences that existed when data were from normal distribu­

tion. When the simulation is from multivariate T  distribution, the M L E k  has 

the highest bias, but the magnitude of the bias is smaller than 0.05 (Figures 

18 - 2 0 ).

•  When data are simulated from multivariate normal distribution, the relative 

efficiency (RE) of M L E k  relative to M L E k  is close to 1 as p ss increases and 

when n =  5 (Figure 21). When data are simulated from Kotz type distribution, 

the RE value of M L E k  relative to M L E k  is at least 1.5 for n =  50 and for 

moderate to large values of pss (>  0.5). Also we can see that the relative 

efficiency of Srivastava’s estimator relative to M L E k  is at least 2.5 for all 

values of p ss and all values of n (Figure 22).

•  When the simulation is from multivariate T, the efficiency of M L E k  is consid­

erably higher than the efficiency of M L E N and Srivastava’s estimator (Figure 

23).

•  By the PN probability, when the simulation is from Kotz type distribution, 

the M L E k  is almost as good as M L E k  when p ss =  0 , 0 .1 . But for the other
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values, M L E k  is better in all the cases and the PN value is more than 0.7 for 

large p ss. M L E k  is more efficient than Srivastava’s estimator for all n and all 

values of p ss (Figure 24). Figure 25 shows that when data are simulated from 

multivariate normal distribution, then M L E k  is better, but the PN values do 

not exceed 0.7.

•  When the simulation is from multivariate T  distribution, clearly M L E K  is 

better than both M L E k  and Srivastava’s estimator for all values of p S3 and all 

n, (Figure 26).

In  summary, here we have considered two multivariate heavy-tailed distributions 

which have fatter ta il regions than tha t of multivariate normal d istribution and stud­

ied the estimation of sib-sib correlation. We find the estimators of p ss by maximizing 

the log-likelihood function of Kotz type distribution and normal distribution and 

using other non-iterative methods. We have provided a simulation algorithm for 

generating samples from Kotz type distribution w ith  unequal fam ily sizes. Next, 

we performed a simulation experiment to compare the M L estimators of the sib-sib 

correlation by using three measures, Bias, RE and Pitman Nearness probability un­

der multivariate normal, multivariate T  and Kotz type samples. Based on all three 

criteria and using the results provided in previous subsections we conclude that these 

estimators perform as expected in relation to one another w ith  regard to Bias, RE 

and PN probability. M L E k  and Srivastava’s estimator outperform the M L E k  when 

data come from a normal distribution, and M L E k  outperforms all other estimators 

when data come from the Kotz-type distribution. However, the magnitudes of the 

differences in these criteria are much greater i f  M L E k  is used, when the parent d istri­

bution is heavy tailed. This implies that the greatest loss occurs i f  normal estimates 

are used for non-normal cases.

I I . 7 Analysis of G alton ’s D a ta

Recently, Hanley (2004) worked w ith  fam ily data on human stature obtained directly 

from Galton’s note books (cf. Galton, 1886, 1889). The data consists of heights of 

205 families w ith  the number of children ranging from 1 to 15. Over all, there 

were 962 children, 486 of them were sons and the remaining 476 were daughters. 

However, only 934 children had numerical values. The remaining children scores 

were described as “ta ll” , “ tallish” , “short” , etc.. Some other children’s hights were
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described as “deformed” and “ id iotic” . For more details on this data set see Hanely 

(2004).

We w ill use these data to illustrate our procedures discussed earlier for estimat­

ing the sib-sib correlations. The correlations we have considered include the son-son, 

daughter-daughter, and child child correlations. For the son-son correlation, we w ill 

consider data on only sons, and for the daughter-daughter correlation, we w ill con­

sider data on only daughters and for the child-child correlation we w ill consider all 

the children. For each case we w ill use the normal and Kotz likelihood based meth­

ods to compute the maximum likelihood estimates. We w ill also use Srivastava’s 

estimator as an example of non-iterative moments based method. In  each case, we 

assume that the expected value of sib score is the same and the variance of the sib 

score is the same for all the sibs and families. The standard errors of these estimates 

w ill also be provided.

•  Out of the 205 families, only 168 families have girls and for these families, the 

pairs: (the number of daughters, the number of families having those many 

daughters) are (1, 56), (2, 39), (3, 33), (4, 20), (5, 9), (6 , 5), (7, 3), (8 , 2), and 

(9, 1). That is, there are 56 families w ith  one daughter, 39 families w ith  two 

daughters and so on. Our interest is to estimate pdd the correlation between 

the daughters. The maximum likelihood estimates of pss w ith  their standard 

errors are provided in the Table below.

•  Out of 205 families, only 173 families have boys and for these families, the 

pairs: (the number of sons, the number of families having those many sons) are 

(1, 40), (2, 49), (3, 40), (4, 7), (5, 8 ), (6 , 6 ), (7, 2), and (10, 1). That is, there 

are 40 families w ith  one son, 49 families w ith  two sons and so on.

I f  pss is the correlation between the sons then the estimators and the standard 

errors of these estimators are provided in the Table below.

•  Out of 205 families there are 197 families w ith  at least one child. The pairs 

(the number of children, the number of families having those many children) 

are (1, 32), (2, 20), (3, 22), (4, 29), (5, 27), (6 , 20), (7, 16), (8 , 16), (9, 7), (10, 

4), (11, 3), and (15, 1).

The results are summarized in the Table below.
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Method Pdd Pss Pcc
M L E _N 0.420 (0.0545) 0.366 (0.0532) 0.175 (0.0341)

M L E .K 0.533 (0.0554) 0.476 (0.0575) 0.207 (0.0382)

Srivastava 0.439 (0.0552) 0.374 (0.0546) 0.17 (0.0356)

Rem arks and conclusions:

•  We notice that the strongest correlation exists between daughters and daugh­

ters.

•  The child-child correlation estimates are smaller than the son-son or daughter- 

daughter correlations. This may be because of the assumption tha t the daugh­

ters and the sons have common mean and common variances and also the 

assumptions that the correlation is common.

•  We notice that all the methods have provided almost identical standard errors 

for each category of sib-sib correlation estimates. However, the estimators are 

some what different for different methods.
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F ig u re  3. Bias comparison of MLE/v w ith  M L E ^ when simulation is from normal 
for n = 1 0 .
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F ig u re  4. Bias comparison of MLEjv w ith  M LE # when simulation is from Normal 
for n=30.
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Figure 5. Bias comparison of MLEjy w ith  M LE # when simulation is from normal 
for n = 1 0 0 .
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Figure 6. Bias comparison of MLEjv w ith  M L E ^ when simulation is from Kotz 
type distribution for n = 1 0 .
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Figure 9. Bias comparison of MLE^v w ith  M LE^ when simulation is from T  d istri­
bution for n = 1 0 .
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Figure 13. RE comparison of M LE # w ith  M LE jV when simulation is from Kotz 
type distribution.
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Figure 14. RE comparison of M LE# w ith  MLE/v when simulation is from T  d istri­
bution, w ith  df=5.
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Figure 15. PN comparison of MLE^r w ith  M L E ^ when simulation is from normal 
distribution.
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type distribution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34
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Figure 17. PN comparison of MLE^- w ith  MLE/y when simulation is from T  distri­
bution, w ith  df=5.
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Figure 22. RE comparison of M LE # w ith  MLE/v in the unbalanced case when 
simulation is from Kotz type distribution.

Figure 23. RE comparisons in the unbalanced case when simulation is from T  
distribution, w ith  df=3.
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CHAPTER III 

ESTIMATION OF MOM-SIB CORRELATIONS

I I I . l  In troduction

From the early 1950’s parent-sibling (mom-sib) or interclass correlation has been 

of interest. Sibling-sibling (sib-sib) correlation or intraclass correlation (pss) was 

already in use by this time, and methods for estimating mom-sib correlation were 

being developed. Kempthorne and Tandan (1953) used a linear model to estimate 

this interclass correlation (pps), though made the assumptions tha t the variance of the 

parent (cr^) and that of children (a f) populations were equal (that is, a2s=  a'fy and pss 

is given. Since these assumptions are unnecessarily restrictive, the pairwise estimator, 

was computed in the spirit of pearson’s correlation coefficient. The pairwise estimator 

of mom-sib correlation (r p) is computed by pairing values for each sibling in the 

fam ily w ith  the parent’s value. W hile the pairwise estimator has an intuitive merit, 

it  violates the required assumption that the data are independent. To over come 

these problems various estimators are introduced in the literature.

Other estimators used in lieu of the pairwise estimator are the sib-mean estimator, 

where the mean value of all siblings is paired w ith  the parent’s value, and the random 

sib estimator, where a single sibling from the fam ily is chosen randomly and this 

sibling’s value is paired w ith the parent’s value. Rosner, Donner and Hennekens 

(1977) proposed the ensemble estimator (ppS)B), based on the random sib estimator. 

This estimator computes an expected mom-sib correlation over all possible random 

mom-sib pairings as described in the random sib estimator. Rosner, et al. (1977) 

compared these three estimators to the pairwise estimator and determined that the 

ensemble and pairwise estimators are superior to both the sib-mean and random sib 

estimators based on smallest MSE criteria. And when pss is small, that is, <  0.1, the 

pairwise estimator outperforms the ensemble estimator and when pss is large, that 

is, >  0.5, the ensemble estimator outperforms the pairwise estimator.

The linear model approach was re-examined by Mak and Ng (1981) following 

Rosner’s (1979) development of MLEs for the balanced and unbalanced cases. Ros­

ner assumed the scores followed a multivariate normal distribution and derived the 

MLEs. However, the algorithm used by Rosner is complicated. Mak and Ng’s ap­

proach simplified derivation of the MLEs by using a linear model, such that given
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the mother’s score, the mom-sib correlation can be determined and tested. Their 

approach assumes, as Kempthorne and Tandon (1953), that only the mother’s score 

is random, whereas Rosner’s approach allows both mom and sib scores to be random.

Srivastava (1984) gives an estimator of pps tha t has a similar bias, but smaller 

asymptotic variance compared to the ensemble estimator, as noted in Velu and Rao 

(1990). Srivastava and Katapa (1986) provided the asymptotic variance of the Sri­

vastava estimator.

Since the introduction of Srivastava’s estimator, variants of the traditional inter­

class correlations have been proposed, and are compared to Srivastava’s estimator 

and the ensemble estimator. Two comparisons by Srivastava and Keen (1988) and 

Eliasziw and Donner (1990) determine that Srivastava’s estimator is uniform ly more 

efficient than the ensemble estimator, but the magnitude of the difference is relatively 

small.

In this chapter we provide an alternative method of estimating parent-sib corre­

lation, by minimization the negative log of of Kotz type probability density based 

likelihood function, as in the previous case where sib-sib correlation was estimated.

Assume tha t we have a sample of measurements from n families and let 

0%i, Vn,yi2 , ■■■, Vimt) =  (%i, Y*)>* =  1 , 2 ,..., n, be the measurements from the ith  family, 

where Xi is the measurement of the mom (in general, the parent’s measurement) 

and y ii, j/ i2 , are the measurements on her siblings. I t  is assumed that

the families are independently distributed w ith (m* +  1 ) x 1 mean vector p., =  

(pp, ps,...,ps)' and (rrii +  1 ) x (m,: +  1 ) variance covariance m atrix £* given by

( p pSl j , where a pSt =  ppsapasl m.. Also, ap is variance of mom’s score, a \ is
GpSi SSi J

variance of sib’s score, and £ SSi =  o2s {(1  -  pss) I mj +  pssl mil 'mi]  . Recall that pps is 

the mom-sib correlation and pss is the sib-sib correlation.

Necessary and sufficient conditions for £ j  to be positive definite for all rrii are, 

PpS <  Pss and 0 <  pss <  1 (Rosner, et al., 1977). Note that

/  1 +  (mi -  1 )pss \
s r 1- I  =  al (j iH —/9

— — — 1  
\  &p&s9i

and

y . l  _  2 2mj /1   n  \ m i - 11̂ p s \ Pss) 9i
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where g{ =  1 +  (rrii -  l)p 8S -  m ip2ps.

Then the Srivastava’s estimator is given by

Pps,s

XjO*'* 3'rn)(jjis Us) 
i=1

n 1/2

V !  (*£t % n i)2
i=1

n  rrii n

N *Y ,  E  (yij ~  Vis)2 +  YKvzs -  Vs)2
—1 j= 1 i= 1

1/2  ’

where

Zm =  £ E  Vis =  ^ : E  y*i. ys =  £ E  2/;*, JV* =  (1 -  2)(n  - 1 ) /  X )(m i -  1), and
2 = 1 2 = 1

- 1
2 = 1 2=1

™h =  \ ( l / n ) ^ Z ( l / m i )
L «=i

The asymptotic variance of ppss is

1

^(P ps ,s ) — “ bps +  P p s !^  ~  2^ ~  ^

where c2 =  1 -  2 ( 1  -  p j ( l  - m / )  +  ( 1 -  p j 2

n
A =  1 -  (1  -  pss) ( l  -  m h 1), and m =  (1 /n) £  "h-

i a - 3 " 1)2
(in—X)

2 = 1

I I I . 2  A n  A lternative  Approach: Balanced Case

As in the case of sib-sib correlation, we provide an alternative method for estimating 

pps, the parent-sib correlation. Given the objective function, when mi =  m  for all 

i  =  1 , as

71
F (p p,p s,a p,(Ts,pps,pss) =  nlogUp +  iV log<js -)- — (m — 1) log (l — pss)

2 = 1

where g =  l  +  (rn —l)p ss — mp2s, our procedure involves minimizing F  simultaneously 

w ith  respect to pp, ps, ap, as, pps, and pss. Let v t =  (1,0, ...,0)' and v2 =  (0,1,..., 1)'. 

This process leads to solving the following six equations simultaneously
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dPs 2  -  /*)

«z? 1 ”  Cx.- -  -  11.)

dPps w 2 “ f  \ / ( x * “  ^ ) 's_ 1 (x i “  A4)
P I ?  I ' l  T m  ( n — n2 \  1 1 " f x . -  —  I I . V t t ^ - 5 ] - 1  f x . -  —  I/d

=  0

None of the above partials have an explicit solution. However an iterative ap­

proach can be adopted using SAS/IM L procedure. We used a dual Quasi Newton 

Method (NLPQN) routine for optim izing the objective function to get the estima­

tors. The optim ization gives unique estimates in the feasible regions under the above 

covariance structures. The only d ifficulty w ith  the suggested algorithm (NLPQN) is 

that it  fails to converge when pps is close to pss. We w ill report the results from only 

those iterations where the convergence was achieved.

We observe that these estimators are also the maximum likelihood estimators of 

p,p, ps, ap, as, pps, and pss when maximizing the log-likelihood function of Kotz type 

distribution w ith  respect to p,p, ps, ap, crs, pps, and pss.

For finding the asymptotic d istribution of the maximum likelihood estimators 

under the assumed Kotz type distribution, we determine the Fisher information 

matrix. We w ill apply T heo re m  1 to compute the various elements of this matrix.

Suppose l pSiK

(m+l)crlg (m+l)upaag
~2mp m and the symmetric m atrix
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h2,K ~
(  g (m + l)+ (m + 2 )w

(m +3)a2g

\

- m  r w + 2pI ,  -j 
(Tpo-j I (m+3)g J 

m[(m+4)fl+(m+2)/9p
(m+3)t7-25

- m (m + l)Pp,
(m+3)o-pS
- 2rrePp.,

(m+3)crsg

7 l

symm

where ui =  ( 1  +  (m — l)p ss),

- m ( m - l ) ( p g ,- p „ )  
2 (m + 3 )g (l-p ss)crp 

t(m -l)(m + 4 )(p 23- p 3, 
2(m+3)ga-s ( l —pss)

72

73

m (m +2)w +m 2(m +l)ppS 
07  (m +3)g2 >

_  ” » (m -l)ppa[ m(pg3- p 83) -2 (m + 2 ) ( l -p 33) ]
7 2  2(m+3)g2( l —p3s) ’

_  —m (m —l)(p2a—p33)[ (m + 4 )g + m (l-p g 3)+2(TO+2)(p23- l ) ( l - p sJ  ]
7 3  4(m +3)g2( l - p ss)2

I f  the distribution of (a;*, y*) is assumed to be Kotz type distribution as in equation 

(II.6 ) then as in T heo rem  2, the asymptotic distribution of the M LE ’s 06xi =  

(AP, As,<5p,^,Pps,Pss) / is y/n(B -  0)_d

Similarly, i f  the distribution of (oq,yj) is assumed to be multivariate normal then 

as in T heo re m  3, the asymptotic d istribution of M LE ’s 9 =  (Jlp, JLS, ap, as, pps, 'pss)'

is y/n{9 -  0 )d  N 6(Q,T_1  1 'ps,N )  ’ where Tpŝ
v

^21 ,AT

12,2V
w ith  7 1 2 ,j v  =  I'2hN =  0,

f l l J V  =

-f22,iV =

<̂p9
-mpp,
& p (7

-mppa

&p&s9
(  w+a  

9

V

- m P p s

GpGsQ
Zmg+mpls

symm

and

- ra P p s

apg
~ ™ P p s

crsg
m(w+mpl3)

0

m (m —l)(p2a—p33) 
£?crs ( l —pss) 

- m ( m - l ) p p,
92

(m - l) [  ( m - l ) ( l - p „ ) 2+ g2 ]
2g2(i-p»d2

In the following we w ill simulate data from multivariate normal distribution, 

multivariate T  distribution, w ith  degrees of freedom =  3 and Kotz type distribution, 

and in each case we w ill compare the bias, Mean squared error (MSE) and the Pitman 

Nearness (PN) probability, for balanced and unbalanced cases. Our simulation study 

includes generating data from each of these three distributions and comparing the 

M LE ’s based on Kotz type and normal d istribution as well as Srivastava’s non­

iterative estimator provided in (3.1). For all simulations, the parameters used are 

the tota l number of families n =  10 and 50 to cover small and large sample sizes,
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fam ily sizes, m  =  2,3,4, and 5 and different combinations of mom-sib (pps) and sib- 

sib (pss) correlations. For these, we used the values 0.1, 0.3, 0.5, and 0.7 w ith  the 

restrictions p2s <  pss and 0 <  pss <  1. Also we used <r^ =  2 , a2 — 1, ps =  0, and 

pp =  0. For each set of these parameters, 10,000 data sets were simulated. The three 

criteria used for comparison are simulation estimates of bias, MSE, and PN values.

I I I . 3 Results and Rem arks

Various results based on the simulation are provided in Tables I I I .  1 - I I I .48 at the 

end of the chapter. However, a summary of the conclusion is given below.

•  Tables II I.  1 - I I I .8  show that when data are simulated from multivariate normal 

distribution, the three estimators ppsj ( , [>v,%n  and Pps,s ^ave relatively large bias 

when pps and pss are both >  0.3 and n — 10. However, the bias decreases as n 

increases to 50. Srivastava’s estimator has higher bias for smaller values of pss 

tha t is, when pss =  0.1. We also notice that the bias of ppsK is either smaller 

than the bias of pp s or very close to it  in magnitude when n =  50 and m >  4.

•  As for the MSE, we notice that pps>N has the smallest mean squared error as 

expected, except when n =  1 0  and for extreme values of (pps, pss), i.e. (0 .1 , 

0.1) and (0.7, 0.7). A t these values, the Srivastava’s estimator had the smallest 

MSE. Furthermore, for large n (=  50) the Srivastava’s estimator and the pps N 

have almost the same MSE. However the MSE value for pps K is comparable 

to the MSE value for ppS)N and ppŝ - I f  we consider the magnitude of the 

differences between the MSE’s of pps N and ppsK, we find the differences to be 

negligible when n =  50. More specifically, the differences are shown below:

— For n — 10 and for

m  =  2 the differences run from 0.0023 to 0.0058; 

m — 3 the differences run from 0.0016 to 0.0051; 

m =  4 the differences run from 0.0011 to 0.0043; 

m =  5 the differences run from 0.0009 to 0.0035.

— For n =  50 and for

m — 2 the differences run from 0.0003 to 0.0018; 

m =  3 the differences run from 0.0003 to 0.0018;
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m — 4 the differences run from 0.0003 to 0.001;

m  =  5 the differences run from 0.0001 to 0.0009.

As can be seen easily the differences decrease as m  increases, and the highest 

difference occurs when pps =  0.1 and pss =  0.7, whereas the smallest difference 

occurs when pps =  0.5 and pss — 0.3.

•  When data are simulated from Kotz type distribution, it  can be seen from 

Tables I I I . 9 - I I I .  16 that ppStK and ppŝN have a relatively smaller bias when 

Pss =  0.1 as compared to that of the Srivastava’s estimator and this is more 

so when n is small (=  10). Furthermore, ppsK has the lowest MSE in almost 

all the cases except when n  is small and m =  2,3, andA. The Srivastava’s 

estimator has the lowest MSE when (pps,pss) =  (0.1,0.1). We notice also that 

the performance of pps S and ppŝN is the same especially for large n (=  50). 

The differences between the pps K and pps N in their MSE values are provided 

below:

— For n =  10 and for

m =  2 the differences run from 0.0032 to 0.0067;

m =  3 the differences run from 0.0014 to 0.0053;

m =  4 the differences run from 0.0014 to 0.0036;

m  =  5 the differences run from 0.001 to 0.0042.

— For n =  50 and for

m  =  2 the differences run from 0.0009 to 0.0034;

m  =  3 the differences run from 0.0006 to 0.0024;

m =  4 the differences run from 0.0005 to 0.0021;

m =  5 the differences run from 0.0005 to 0.0016.

•  When the data are simulated from multivariate T distribution w ith  degrees of 

freedom =  3, ppStK has the least bias for all m  and n except for the case when 

n and m are small (n =  10, m  =  3), and for lower value of pss (=  0.1). When 

n =  50 we find that ppS)N and pps S have almost the same bias and most of the 

tim e these are at least tw ice as much as the bias of pps K - Refer to Tables I I I . 17 

- I I I .24.
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•  Next we note that ppSjK always has the smallest MSE value, and for large n 

this value is almost half the value of the MSE for either the p p s S or p ps i \ j - Also, 

the MSE values for p  s and p ps>N are almost equal. Having n to be large 

didn’t  reduce the differences between the MSE’s of the estimators, but for sure 

i t  reduces the MSE value of each estimator.

•  Tables I I I .25 - I I I .32 show tha t when data are simulated from normal d istri­

bution, the PN probability of pps<N relative to pps<K is greater than 0.5, while 

the PN probability of pps K relative to ppsS is less than 0.5, but this last value 

increases to 0.5 as pps and pss increase. Also, we notice that pps K is better 

than ppsS for small n (=  10), small m  (=  2,3), and (pps, pss) =  (0.5,0.3), 

and for m — 4,5 and pps =  0.3 and 0.5. When samples are from Kotz type 

distribution, we see from Tables I I I .33 - I I I .40 that the PN probability of ppsN 

relative to ppSiK is less than 0.5, while the PN probability of ppsK relative to 

Pps,s is greater than 0.5. Also, the PN probability of ppsN relative to ppsS is 

>  0.5. We also notice that even when data are from multivariate T  distribution, 

the results were similar to what we found earlier, in that the estimates of the 

Kotz type distribution are more efficient than their competitors. Tables 111.41 

- 111.48 show this clearly.

I I I . 4 A lternative  Approach: Unbalanced Case

The proposed estimators under the unbalanced case can be sim ilarly obtained by 

minimizing

n 1

F { P p , P s i ° p , P s , P Vs , Ps s )  =  n l o g G p  +  ^ ( m j lo g a s +  -(m , -  l)lo g (l -  p ss) )
i = 1

n i n

+  J 2  O l ° g9i +  (IIL 4 )
i= 1 i = l

w ith  respect to pp, ps,a p,a s, pps, and pss, where rp =  1 +  (rUj -  1 )pss -  mi,p2ps,

i  =  1,2,..., n. The solutions pp, p,s,a p,crs,pps, and pss are the maximum likelihood

estimators when the underlying distribution is Kotz type. The Fisher information 

m atrix for a given (x,, y ,) is given by
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-£ps,Ki

^ jc 22i 0  0  0  0

1 r  — 1 ~ P p s  „  ~ ( p p s ~ P s s )  „

vp 3 3 i U p ffs  3 4 ‘  CTp 3 5 i  2 (1  - p ss )o >  3 6 ‘

1 Z 2 f£ ± n  ( P p s ~ P s s )  „a2sCUt as c45i 2(1_/3ss)<Ts c46i

sym m  C55i 2( i _ ps )^^6i
\  _ ( P p a  P s s )  I
\  4(1—p33)2 66j /

where ui; =  1 +  (m i -  l)p ss, gt =  1 +  1 +  (m* -  l)p M -

y-,   rf/j y-t —  I'l'i ~   iTi'i
41* — (mi+l)gi' 12i — (mi + l)gi > 22* — (mi+l)gi >

C33i
_  gi (m i +  l )+ ( m i + 2 )w i „  _  ( ™ i+ 2 p p3) r o i  m ^ m j  +  l )
—  -------------- =----------- ^ -------------------- , C 3 4  —  — ■-----------^ ^   r - L(mi+3)gi (mi+3)gi ’ Cs5» (mj+3)gi ’

_  m i (mi —1) _  m i ((mi + 4)gi+(TOi +2)p2s]
C36i (mi+3)gi > 44i -  (m i+ 3 )gi >

_  rm  _ m i( m , i- l ) ( m i+ 4 )
45i (mi+3)gi > 46j (mi+3)gi >

C55i
m i(m i+2)u)i+ m f(m i+ l)p 2

c56i

(mi+3)g? >

_  m »(m i~ 1 ) h ( p g 3- p 33) -2 (m j+ 2 ) ( l-p 33)]
(m i+3)gt- ’

_  m j(m i—1)[ (m i+ 4 )g i+m i(l—PpS)+2(mi+2)(ppS—1)(1—ps3) ]
Ce6‘ -    '

n
For large n, £ Yh^ps,Ki w ill converges to 1pStK, where

i = 1

(  : W  ^

-£ps,K —

C12 0

^ c 22 0

0

0

0

0

^ rc33
UP

- 1  
o -pcr 3 C34

„ 2  c44
symm

0’S
5̂5

V

0

’ /-* \ r - p a ~ P a a /  „
' C35 2(1—p33)op 3®

„  { P p s ~ P s s )  ^

2(1—Pssl̂ s

2(1-P„)C56
(PpS Pss )

'4 ( l - p 33)2C66 /  

n n n
where cn  =  lim  ± £  cn4, c12 =  lim  £ £  c j2i, c22 =  lim  ± £  c22i,

n — ► © ©  .•__ -« r> — ►on r j — ►cm . -2=1 2 = 1 2=1

c33 =  lim  i  5 3  c33i, c34 =  lim  £ ]T  c34i, c35 =  lim  4 £  c35i,
n -> 00 i= 1  n - » o o  7i ^= 1  71—>00 n
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c36 =  lim  i  X  c36i, c44 =  lim  £ X  c44i, c45 =  lim  ± X  ci5 i,i= 1 n ^ o o  i= i  ™—°° n i=1

c46 =  lim  i  X  C46i, C55 =  lim  i  X  c s5i , C56 =  lim  ± X  c56t ,
n ^ o o  "  i= 1  n—>oo 71 i= 1  n ^ o o  n  i= 1

C66 =  lim  ~ X  C66, ■
i= l

I f  9 =  (fip,p,s,a p,a s,pps,pssy  is the M LE of 0 =  (pp, ps, a2p, a2s, pps, psJ  then

V™{8 - o )  £  n 6(o,x ~]k ).

Similarly, for normal d istribution we have y/n(9 — 9) _d ^ ( 0 , 2 ^ ^ ) ,  where 9 is 

the M LE of 9 under normal distribution

( °p

■̂ ps,N

- ~ ^ - d X 2 0 0 0 0
(TpCTg

% d 2 2 0 0 0 0

i d 3 3 -  —  d 34CTpCTs

Pps J
— —  U35u p

0

^ d 44 (Spa Pas') J

<7.(1 ~ P s s )d 4 6

s y m m d 55 ~P psd  56

Here dn  =  lim  ± X  f ,  dn  =  lim  ± X  fS  d 22 =  lim  \  X
71—»nr> n  ■ - ih  n —»r*-s n  .— i  9 t ™ T—1

2(1 - P , , ) 2

1 V ' mi

d66 )

i= 1 n~*°° i=1 i= 1

r f33 =  A m  £ E  c?34 =  _lim £ Xn-H-oo ,=1 n->oo n  i=1 ^

d35 =  lim  4 X  rf44 =  lim  i  Xn—*oo 71 i==1 n— > 0 0  71 “ J
! ^  2nfiigi+rmpl

9 i

d45 =  lim  I  X  ^ ,d s 5 =  lim  ^ X  ,
71—»-00 '*  ^= 1  71—>00 U 9 l *

di6 =  lim  ! X - M )d56= Jim i f
n i '- '  Sit=l n g:

t= l

mi(mi-l)
3 >

d66 =  lim  4 X
1= 1

In  practice we can calculate the asymptotic variance of 9 as:

var(9) ^VS,Ki
1 = 1

- 1

where Tps,Ki is given in I I I .5. Similarly the asymptotic variance of 9 is calculated.
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I I I .4 .1  Simulating data w ith  unequal fam ily sizes

In the unbalanced case we follow the same procedure as tha t for the balanced case 

for generating the data from the three types of distributions, namely, multivariate 

normal, multivariate T  w ith  3 degrees of freedom and Kotz type distribution. Here 

we also have to simulate the fam ily sizes {rrii). As in the previous chapter, we used the 

procedure due to Brass (1958), that is, the negative binomial d istribution truncated 

below by 1 and truncated above by 5, tha t is, 1 ^  rrii <  5. As before we w ill compare 

the bias, the MSE, and the PN probability values for M LEW, M LE#, and Srivastava’s 

estimator.

We include the tota l number of families, n =  50, and 100, and different combi­

nations of mom-sib (pps) and sib-sib (pss) correlations taking the values 0.1,0.3,0.5, 

and 0.7, but w ith  the restrictions, pp3 <  pss and 0 <  pss <  1 (these are necessary and 

sufficient condition for to be positive definite for all to,).

I I I . 5 Results and Remarks

Results are summarized in Tables 111.49 - I I I .60 provided at the end of the chapter. 

A  summary of the results is provided below.

•  Tables 111.49 - I I I .50 show that when the simulation is from multivariate normal, 

ppsN has the smallest bias for small pss (=0.1, 0.3). However, interestingly 

pps K has the the smallest bias when n=50 and for moderate to large values of 

pss{=  0.5,0.7) and also when n=100, pps small (=  0.1) and pss =  0.5 and 0.7. 

In general, pps<N and pps S have relatively smaller bias, especially for n=100.

•  In general, pps N has the smallest mean squared error. For moderate to large 

values of pss {pss =  0.5, 0.7), the MSE of the pps S is close to that of ppsN. 

However, it  is notable that the MSE of ppSfK is comparable w ith  that for pps N 

and ppStS, especially for large values of pps (=  0.7) when n=100.

•  Tables I I I .51 - 111.52 show that when simulation is from Kotz type distribution, 

pps K has the smallest bias, except for the case when n= 1 0 0  and pps — 0 .1  in 

which case p s has the smallest bias. Moreover, the bias for the Srivastava’s 

estimator (ppSts) is comparable w ith  the bias of ppStK, when pps is small (=  0 .1 ) 

and n=100. The MSE of pps K is the smallest in general. However, for pss =  0.7 

the MSE of pps N and pps S, are roughly the same.
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•  When simulation is from multivariate T  distribution w ith  degrees of freedom=3, 

ppsN and ppsS have the same bias and it  is smaller than the bias of pps<K for 

pss =0.1, n  =  50, and for pss =  0.1 and 0.3 when n =  100. For the remaining 

cases the magnitude of the bias of the pps>K is not only the smallest but it  is 

negligible compared to the other estimators for pss =  0.5 and 0.7 and when 

n — 50 and 100. The same conclusion holds when pss =  0.7, (Tables I I I .53 - 

I I I .54). The MSE values for both ppsN and ppSis is not only larger than that 

for the pps>K but i t  is at least twice as large as the MSE for pps K.

•  For data from multivariate normal we see from Tables I I I .55 - I I I .56 that the 

PN probability of ppSiN relative to ppsj< is greater than 0.5, while the PN 

probability of ppStK relative to pps S is less than 0.5. When we simulate from 

Kotz type distribution Tables 111.57 - I I I .58 show tha t the PN probability of 

Pps,K relative to pps N or relative to pps S is greater than .5. Also, notice that 

the ppSiK improves significantly as pps and pss increase. And when simulation 

is from multivariate T  w ith  3 degrees of freedom, we find from Tables I I I .59 - 

I I I .60 that the PN of pps K relative to pps N or relative to p s is at least .6 , 

when n =  50 and increases up to 0.7 when n=100.

In  summary, we considered two multivariate heavy-tailed distributions which have 

fatter ta il regions than tha t of multivariate normal d istribution and studied the per­

formance of estimators of mom-sib correlation. We find the estimator pps by max­

imizing the log-likelihood function of Kotz type distribution and compared i t  w ith 

the estimator based on normal d istribution and an estimator based non-iterative 

method. We have provided a simulation algorithm for generating samples from Kotz 

type distribution w ith  unequal fam ily sizes. Next, we performed a simulation ex­

periment to compare the M L estimators of the mom-sib correlation by using three 

measures, namely, bias, MSE and Pitman Nearness probability under multivariate 

normal, multivariate T  and Kotz type samples. Based on all the three criteria and 

using the results provided in previous subsections we conclude that these estimators 

perform as expected in relation to one another w ith  regard to bias, MSE and PN 

probability. The estimator ppa>N and ppsS outperform ppsK when data come from 

a normal distribution, and ppSiK outperforms all other estimators when data come 

from the Kotz type distribution. However, the magnitudes of the differences in these 

criteria values are much greater when ppsN is used when the distribution is heavy
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tailed. This implies that the greatest loss occurs if  normal estimates are used for non 

normal cases.

I I I . 6  Analysis o f G alton ’s D a ta

We use Galton’s data for illustration of the methods that we have used in this chapter. 

We w ill consider the problem of computing the mom-daughter (pmd), mom-son (pms), 

father-daughter (p ^ ), and father-son (p js) correlations using all the three methods 

described. The estimates and their asymptotic standard errors are provided below 

We notice that all the estimators have very similar standard errors for each cat­

egory of parent-sib correlation estimates. The strongest correlation exists between 

father-children (daughters or sons) compared to mother-children correlation.

Method Pmd Pms Pfd Pfs

M L E n .321 (.0574) .316 (.0539) .461 (.0490) .417 (.0490)

M L E k .385 (.0616) .326 (.0608) .475 (.0548) .448 (0.0539)

Srivastava .337 (.0583) .309 (.0565) .466 (.0510) .428 (.0500)
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Table III.l
Bias and M SE (x lO A)  o f interclass correlation estimators fo r  different values o f pss

and pms (n=10, m =2), based on 10,000 simulations from  norm al d istribution

Pvs/Pss_______________0^_________ 0^_________ 0-5 0-7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 PpSyN -16 691 -52 716 -32 795 -37 904
Pps,K -24 743 -61 772 -32 850 -23 962
Pps,S -62 602 -58 694 -26 805 -30 918

0.3 Pps:N 25 530 -139 613 -160 680 -152 758
Pps,K 21 568 -139 660 -159 732 -162 810
Pps,S -133 494 -159 607 -137 690 -130 769

0.5 Pps,N -176 376 -268 467 -251 557
Pps,K -176 405 -284 503 -269 601
Pps,S -2 2 2 404 -233 477 -213 562

0.7 Pps,N -308 214 -303 282
Pps,K -314 230 -312 305
Pps,S -261 230 -248 281

T ab le  II I .2

Bias and MSE  f x l 0 4j  of interclass correlation estimators fo r  different values of pss 
and pms (n—10, m=3), based on 10,000 simulations from normal distribution

Pps/ Pss 0 ..1 0 ..3 0 ..5 0 ..7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 PpstN -33 474 -67 548 -98 684 -94 834
Pps,K -27 506 -67 588 -108 731 -90 882
Pps,S -6 6 425 -57 556 -8 6 705 -85 852

0.3 Pps,N -8 346 -167 453 -214 583 -238 728
Pps,K -6 368 -156 489 -214 619 -249 779
Pps,S -128 349 -136 467 -168 598 -207 742

0.5 Pps,N -251 274 -311 395 -300 523
Pps,K -244 293 -303 421 -298 555
Pps,S -206 299 -235 403 -247 529

0.7 Pps, IV -332 180 -332 256
Pps,K -324 188 -335 272
Pps,S -223 180 -256 252
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Table III.3
Bias and M SE (x 104J o f interclass correlation estimators fo r  different values o f pss

and pms (n=10, m = f) ,  based on 10,000 simulations from  norm al d istribution

p J P s s _______________0^_________ ^3_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 1 Pps,TV -55 368 -94 484 -77 631 -64 789

Pps,K -42 388 -86 512 -78 664 -61 832

Pps,S -71 343 -74 501 -59 656 -52 809

0 3 Pps,N -26 253 -206 400 -232 537 -186 674

Pps,K -14 272 -194 422 -229 563 -178 711

Pps,S -98 272 -148 416 -177 554 -151 689

0 5 Pps,N -279 233 -342 368 -325 494

Pps,K -255 244 -328 386 -312 517

Pps,S -185 249 -250 373 -266 500

0 7 Pps,TV -370 166 -343 239

Pps,K -344 170 -335 251

Pps,S -238 160 -257 234

T ab le  I I I .4

Bias and MSE ( x 104j  of interclass correlation estimators fo r  different values of pss 
and pms (n = l 0, m—5), based on 10,000 simulations from normal distribution

p j p ss_______________OT_________ 03_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,TV -64 306 -76 442 -94 608 -75 768

Pps,K -58 322 -69 468 -96 639 -70 801

Pps,S -74 295 -53 464 -74 633 -63 789

0.3 Pps,N -83 202 -219 359 -222 517 -232 690

Pps,K -69 215 -205 379 -214 540 -234 725

Pps,S -123 227 -149 375 -164 535 -195 706

0.5 Pps,TV -323 219 -332 345 -282 478

Pps,K -300 228 -319 359 -279 499

Pps,S -203 228 -233 350 -219 484

0.7 Pps,N -387 151 -361 230

Pps,K -363 154 -351 240

Pps,S -242 142 -269 225
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Table III.5
Bias and M SE (x 104j  o f interclass correlation estimators fo r  different values o f pss

and pms (n=50, m =2), based on 10,000 simulations from  norm al d is tribution

Pvs/Pss_______________ OJL_________ 03_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 1 Pps,N -7 115 3 130 -13 146 -26 169
Pps,K 1 127 -1 142 -15 161 -26 187
Pps,S -2 1 11 2 6 130 -1 0 147 -24 170

03 Pps,N 16 8 6 -47 106 -43 123 -32 145
Pps,K 26 94 -43 116 -48 136 -37 159
Pps,S -28 89 -39 106 -36 123 -28 146

05 Pps,N -47 67 -65 81 -34 95
Pps,K -49 74 -69 89 -38 104
Pps,S -33 6 8 -52 81 -26 95

07 Pps,N -53 36 -56 41
Pps,K -57 40 -62 46
Pps,S -35 36 -46 41

T ab le  II I .6

Bias and MSE ( x 1()4) of interclass correlation estimators fo r different values of pss 
and pms (n=50, m=3), based on 10,000 simulations from normal distribution

Pps/  Pss 0 .1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N -1 2 80 -2 2 1 0 2 -13 131 -3 157
Pps,K -1 0 87 -2 2 111 -15 142 -5 170
Pps,S -16 80 -18 103 -1 0 132 -1 158

0.3 Pps,N -1 0 59 -43 8 6 -39 107 -51 133
Pps,K -3 64 -44 93 -36 116 -55 145
Pps,S -2 2 62 -29 8 6 -29 107 -45 134

0.5 Pps,N -64 52 -53 70 -54 8 8

Pps,K -64 56 -53 75 -58 95
Pps,S -41 52 -36 70 -44 8 8

0.7 P p s , N -72 28 -52 37
Pps,K -73 30 -55 40
P p S 'S -48 27 -38 37
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Table III.7
Bias and M SE (x 104,) o f interclass correlation estimators fo r  different values o f pss

and pms (n=50, m = f) ,  based on 10,000 simulations from  norm al d is tribution

Pvs/Pss_______________OT_________ (U_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 1 Pps,N -7 63 -3 94 -7 1 2 0 -14 151
Pps,K -4 6 8 -2 1 0 0 -5 130 -1 2 161
Pps,S -5 64 3 95 -3 1 21 -1 2 152

03 Pps,N -28 48 -34 74 -52 1 0 0 -33 126
Pps,K -23 51 -35 79 -51 106 -33 136
Pps,S -2 2 50 -18 75 -41 1 0 0 -26 127

05 Pps,N -61 44 -42 62 -60 85
Pps,K -57 47 -40 67 -59 91
Pps,S -35 44 -24 62 -49 85

07 Pps,N -72 25 -6 6 35
Pps,K -70 27 -6 6 38
Pps,S -45 25 -49 35

T a b le  II I .8
Bias and MSE (x  104J of interclass correlation estimators fo r  different values of pss 

and pms (n=50, m=5), based on 10,000 simulations from normal distribution

Pps/ Pss 0 .1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N -4 54 -2 0 8 8 -8 116 -1 1 154
Pps,K -2 57 -15 94 -13 123 -16 163
Pps,S 1 54 -14 89 -4 117 -9 154

0.3 Pps,N -41 41 -34 67 -45 95 -46 125
Pps,K -40 43 -31 71 -44 102 -47 132
Pps,S -26 42 -17 67 -33 96 -38 125

0.5 Pps,N -61 40 -80 61 -55 82
Pps,K -59 43 -78 64 -60 88

Pps,S -33 40 -60 60 -43 83

0.7 Pps,N -6 8 22 -6 8 34
Pps,K -65 23 -65 35
Pps,S -40 22 -51 33
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Table III.9
Bias and M SE (x lO 4)o f  interclass correlation estimators fo r  different values o f pss

and pms (n=10, m =2), based on 10,000 simulations from  Kotz type d istribution

p j p s s _______________ 01_________ 03_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N 2 0 872 -65 904 -84 1006 -37 1 1 1 0

Pps,K 33 818 -69 844 -71 940 -43 1043
Pps,S -44 747 -78 863 -83 1009 -30 1126

0.3 Pps,N 1 692 -181 774 -208 872 -145 977
Pps,K -4 641 -162 719 -198 824 -129 913
Pps,S -2 0 1 631 -225 759 -196 880 -126 989

0.5 Pps,N -177 482 -281 600 -346 725
Pps,K -154 447 -262 563 -321 683
Pps,S -265 514 -266 614 -313 733

0.7 Pps,N -314 275 -345 375
Pps,K -291 258 -308 341
PpS'S -291 299 -296 376

T ab le  III . 10
Bias and MSE (x IQ4)o f interclass correlation estimators fo r  different values of pss 

and pms (n—10, m =3), based on 10,000 simulations from Kotz type distribution

Pps/  Pss 0 ..1 0 ,.3 0 ..5 0 ..7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N 13 595 -61 681 -143 852 -6 8 994
Pps,K 2 0 555 -55 646 -129 814 -6 6 941
Pps,S -38 530 -55 683 -130 876 -58 1017

0.3 Pps,N 23 436 -2 0 0 569 -203 700 -253 864
Pps,K 2 0 408 -170 535 -184 665 -229 820
Pps,S -119 431 -184 583 -163 720 -223 881

0.5 Pps,N -258 343 -344 471 -339 628
Pps,K -223 328 -297 446 -292 589
Pps,S -240 375 -275 483 -286 636

0.7 Pps,N -406 223 -423 334
Pps,K -350 206 -378 311
Pps,S -307 228 -347 330

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

Table III. 11
Bias and M SE (x lO 4)  o f interclass correlation estimators fo r  different values o f pss
and pms (n —10, rn = f), based on 10,000 simulations from  Kotz type d istribution

Pvs/Pss___________________ 0^1___________ ^ 3 ___________ 0 5 ___________ 0-7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N -5 443 -75 572 -131 734 -60 924
Pps,K 3 419 -72 544 -119 702 -58 8 8 8

Pps}S -36 409 -57 591 -114 761 -48 948

0.3 Pps,N -31 313 -232 481 -270 638 -272 814
Pps,K -15 297 -2 0 0 455 -237 614 -254 773
Pps,S -131 331 -184 499 -218 659 -238 832

0.5 Pps,N -360 295 -378 445 -375 585
Pps,K -318 281 -332 419 -342 553
Pps,S -283 315 -290 453 -317 592

0.7 Pps,N -419 2 0 0 -390 293
Pps,K -359 184 -345 274
Pps.S -290 194 -304 287

T ab le  111.12
Bias and MSE ( x 104j  of interclass correlation estimators fo r  different values o f pss 
and pms (n=10, m=5), based on 10,000 simulations from Kotz type distribution

Pps/ Pss___________________ OJ;____________0:3___________ 0 5 ___________ 0 7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N -25 362 -71 509 -84 697 -81 907
Pps,K -14 344 -58 488 -6 6 678 -69 869
Pps,S -43 348 -50 532 -6 6 726 -69 932

0.3 PpsyN -80 240 -231 412 -263 596 -250 774
Pps,K -58 230 -204 396 -231 571 -227 732
Pps,S -130 265 -166 430 -206 617 -213 792

0.5 Pps,N -366 258 -374 399 -313 567
Pps,K -326 249 -333 380 -271 535
Pps,S -260 272 -275 404 -250 575

0.7 P p a , N -422 172 -375 265
Pps,K -368 161 -332 246
PpsS -279 162 -282 259
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Table III.13
Bias and M SE (x lQ 4) o f interclass correlation estimators fo r  different values o f pss
and pms (n=50, m =2), based on 10,000 simulations from  Kotz type d istribution

p j p ss_______________01_________ 03_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 1 Pps,N 15 160 -39 186 -1 0 213 6 240
Pps,K 8 138 -26 159 -6 184 5 206
Pps,S -9 154 -38 186 -8 214 8 241

0.3 Pps,N 38 126 -28 153 -40 177 -41 205
Pps,K 33 108 -36 133 -32 152 -30 179
Pps,S -30 129 -24 155 -33 178 -36 205

0.5 Pps,N -6 8 96 -54 117 -81 136
Pps,K -57 83 -45 101 -65 117
Pps,S -61 99 -42 117 -73 137

0.7 Pps,N -94 52 -67 61
Pps,K -78 45 -59 52
Pps,S -77 52 -56 60

T a b le  I I I .14
Bias and MSE ( x  104 j  of interclass correlation estimators fo r different values of pss 
and pms (n=50, m=3), based on 10,000 simulations from Kotz type distribution

Pps! Pss 0 ..1 0 ..3 0 .,5 0 ,.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N -2 1 106 -23 144 -2 2 177 -17 2 1 0

Pps,K -2 1 94 -15 128 -14 155 -2 0 186
Pps,S -31 105 -19 145 -19 178 -15 2 1 1

0.3 Pps,N 15 80 -32 114 -54 143 -50 175
Pps,K 13 71 -25 1 0 0 -45 125 -46 156
Pps,S -14 85 -19 115 -44 143 -44 175

0.5 Pps,N -81 71 -49 94 -49 117
Pps,K -6 8 62 -37 82 -45 104
Pps,S -59 71 -32 94 -39 117

0.7 Pps,N -73 38 -70 51
Pps,K -63 33 -58 45
Pps.S -49 37 -55 50
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Table 111.15
Bias and M SE ( x 104)  o f interclass correlation estimators fo r  different values o f pss

and pms (n=50, m =4), based on 10,000 simulations from  Kotz type distribution

Pvs/Pss_________________ OT___________0 3 __________ 0 5 __________ 0 7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 1 Pps,N -3 85 -24 122 -17 162 -46 199
Pps,K -2 76 -13 109 -12 144 -43 178
Pps,S -4 85 -19 124 -14 163 -44 200

0 3 Pps,N -27 59 -60 97 -51 133 -40 163
Pps,K -25 53 -49 87 -41 119 -30 146
Pps,S -30 62 -45 98 -40 134 -33 164

0 5 Pps,N -81 59 -68 80 -66 108
Pps,K -65 52 -63 72 -52 96
Pps,S -55 59 -49 80 -54 108

0 7 Pps,N -85 33 -79 46
Pps,K -73 29 -64 41
Pps,S -59 32 -63 46

T ab le  111.16

Bias and MSE (x  104) of interclass correlation estimators fo r  different values of pss 
and pms (n=50, m~5), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 0..1 0..3 0..5 0..7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -31 69 -8 105 -36 144 -31 188
Pps,K -25 63 -6 95 -32 131 -25 172
Pps,S -27 70 -3 106 32 145 -28 189

0.3 Pps,N -30 50 -42 85 -24 122 -43 154
Pps,K -24 45 -33 77 -19 111 -38 140
Pps,S -20 52 -25 86 -12 123 -36 155

0.5 Pps,N -63 50 -71 75 -77 100
Pps,K -55 45 -61 67 -71 91
Pps,S -36 50 -50 75 -65 100

0.7 Pps,N -76 28 -82 44
Pps,K -64 26 -73 39
Pps,S -47 28 -65 43
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Table 111.17
Bias and M SE  fx lO 4,) o f interclass correlation estimators fo r  different values o f pss

and pms (n=10, m =2), based on 10,000 simulations from  T  d istribution, when d f=3

Pvs/Pss___________________ OT___________ 0 3 ___________ 0 5 ___________ 0 7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 1 Pps,N 35 1194 -16 1258 -162 1374 -126 1479
Pps,K 46 933 -25 1 0 1 0 -137 1109 -115 1197
Pps,S -47 1006 -44 1183 -163 1361 -1 2 1 1490

03 Pps,N -17 968 -105 1043 -301 1194 -207 1309
Pps,K -46 741 -84 822 -261 964 -166 1051
Pps,S -207 865 -182 1 0 0 2 -314 1188 -193 1318

05 Pps,N -214 706 -339 831 -387 992
Pps,K -178 539 -270 649 -310 778
Pps,S -353 735 -359 846 -366 1003

07 Pps,N -380 397 -472 564
Pps,K -315 297 -371 418
Pps,S -409 440 -445 575

T ab le  II I . 18
Bias and MSE f x l 0 4j  of interclass correlation estimators fo r different values of pss 

and pms (n=10, m=3), based on 10,000 simulations from T  distribution, when df=3

Pvs/Pss___________________OT____________0 3 ___________ 0 5 ___________ 0 7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N -14 850 -115 983 -1 1 1 1141 -69 1340
Pps,K 19 649 -99 772 -78 905 -47 1071
Pps,S -84 734 -118 964 -105 1160 -59 1366

0.3 Pps,N -1 1 647 -277 822 -317 1 0 0 2 -314 1231
Pps,K -29 482 -215 634 -249 784 -215 974
Pps,S -190 618 -292 824 -289 1018 -284 1251

0.5 Pps,N -310 510 -443 717 -402 8 8 8

Pps,K -225 384 -337 548 -302 690
Pps,S -341 552 -397 735 -355 899

0.7 Pps,N -467 326 -519 489
Pps,K -356 243 -381 355
Pps,S -408 352 -451 490
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Table III.19
Bias and M SE ( x 104)  o f interclass correlation estimators fo r  different values o f pss

and pms (n=10, rn = f), based on 10,000 simulations from  T  distribution, when d f=3

p jp s s _______________o r_________ (U _________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 1 PpstN 14 663 -1 2 0 842 -94 1041 -1 0 2 1296
Pps,K 10 499 -99 639 -74 825 -72 1028
Pps,S -35 597 -117 850 -80 1072 -92 1327

03 PpstN -36 494 -322 701 -302 905 -356 1163
Pps,K -13 358 -254 534 -2 2 0 697 -265 910
Pps,S -191 497 -297 715 -256 929 -324 1188

05 PpSyN -366 430 -517 661 -453 892
PpSyK -272 322 -390 498 -339 671
PPS,S -330 465 -448 678 -398 906

0.7 Pps,N -544 472
PpSyK -389 331
Pps,S -461 4680

T ab le  111.20

Bias and MSE ( x 104j  of interclass correlation estimators fo r different values of pss
>ms (n=10, m=5), based on 10,000 simulations from T  distribution, when

Pps! Pss 0 .1 0 ..3 0.5 0 .7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 PpSyN -44 571 -92 760 -119 1024 -73 1274
Pps}K -2 1 413 -81 578 -99 796 -60 1 0 0 2

Pps,S -79 529 -76 781 -1 0 2 1060 -61 1308

0.3 Pps,N -90 389 -280 615 -368 889 -318 1137
Pps,K -60 287 -2 2 0 469 -268 6 8 8 -233 877
Pps,S -205 411 -238 637 -317 918 -282 1165

0.5 Pps,N -391 372 -508 636 -486 839
Pps,K -288 277 -378 473 -359 624
Pps,S -326 402 -419 649 -425 851

0.7 Pps,N -551 461
Pps,K -385 311
PPŜ -461 455
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Table III.21
Bias and M SE (x lO4)  o f interclass correlation estimators fo r  different values o f pss

and pms (n=50, m =2), based on 10,000 simulations from  T  distribution, when d f=3

p J P s s _______________o r_________ 03_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N 52 426 2 0 460 -2 1 495 -26 563
Pps,K 38 183 8 206 -7 229 -17 260
Pps,S 9 392 13 447 -2 2 492 -25 564

0.3 Pps,N 44 323 -62 382 -119 455 -107 484
Pps,K 39 136 -37 172 -53 20 1 -56 231
Pps,S -92 315 -8 6 377 -1 2 0 454 -105 485

0.5 Pps,N -75 242 -130 314 -156 350
Pps,K -72 108 -63 136 -78 152
Pps,S -119 255 -130 317 -150 349

0.7 Pps,N -153 133 -171 176
Pps,K -81 57 -85 70
Pps,S -152 139 -164 178

T ab le  I I I .22
Bias and MSE (x lO 4) o f interclass correlation estimators fo r different values of pss

>ms (n=50, m=3), based on 10,000 simulations from T  distribution, when

Pps/ Pss 0 .1 0 ..3 0.5 0 .7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N 19 303 -36 367 -38 444 -17 529
Pps,K 3 129 -5 163 -23 2 0 2 -1 1 241
Pps,S -19 288 -38 365 -36 446 -15 531

0.3 Pps,N -37 232 -67 295 -105 395 -95 453
Pps,K 11 97 -45 131 -45 170 -50 204
Pps,S -67 237 -6 8 298 -96 396 -89 454

0.5 Pps,N -117 181 -172 262 -159 309
Pps,K -69 81 -78 111 -75 131
Pps,S -118 188 -160 263 -150 310

0.7 Pps,N -165 108 -188 158
Pps,K -80 45 -8 8 60
Pps.S -148 1 11 -174 158
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Table 111.23
Bias and M SE ( x I t f )  o f interclass correlation estimators fo r  different values o f pss

and pms (n=50, m =4), based on 10,000 simulations from  T  distribution, when d f=3

Pvs/Pss____________________011____________ 0 3 ____________ 0 5 ____________ 0 7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N 7 235 -22 324 -55 422 -50 516
Pps,K -4 96 -9 142 -32 188 -22 234
Pps,S -16 226 -19 324 -52 424 -48 518

0.3 Pps,N -1 174 -122 273 -131 353 -142 471
Pps,K -7 73 -58 115 -52 154 -66 202
Pps,S -66 183 -113 274 -121 355 -135 473

0.5 Pps,N -135 157 -172 242 -192 302
Pps,K -60 67 -74 98 -91 130
Pps,S -120 161 -155 242 -181 304

0.7 Pps,N -184 96 -170 148
Pps,K -74 38 -72 56
Pps,S -160 96 -154 147

Table I I I . 24
Bias and MSE ( x IQ4)  of interclass correlation estimators fo r  different values of pss 

and pms (n=50, m=5), based on 10,000 simulations from T distribution, when df=3

Pvs/ Pss 0. 1 0..3 0..5 0,.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -16 207 -54 300 -39 415 -44 510
Pps,K -9 83 -18 130 -12 180 -29 223
PpstS -32 202 -49 302 -34 418 -42 513

0.3 Pps,N -26 144 -105 249 -106 329 -106 432
Pps,K -21 61 -34 104 -43 145 -55 188
Pps,S -66 153 -92 252 -93 332 -99 434

0.5 Pps,N -142 150 -174 227 -171 307
Pps,K -67 61 -70 93 -71 129
Pps,S -121 152 -154 228 -158 307

0.7 Pps,N -188 88 -193 139
Pps,K -75 34 -84 53
Pps.S -161 87 -176 138
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Table 111.25
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n=10, m =2), based on 10,000 simulations from  norm al d istribution

P v s /P s s_______________ 0-1 0-3 0-5 0.7
Estimate PN PN PN PN

0 .1 P p s ,N ^ ^ P p s ,K

P p s ,N v SPps,S

P p s ,K ^ P p s ,S

0.5504
0.5766
0.3878

0.545
0.7206
0.4405

0.5492
0.8284
0.4599

0.5511
0.8733
0.4626

0.3 P p s ,N v s P p s ,K

P p s ,N v ^P ps,S

P p s ,K v ^P ps,S

0.5481
0.5922
0.4483

0.5477
0.6315
0.4664

0.5568
0.6598
0.4677

0.5454
0.6723
0.4695

0.5 P p s ,N ^ s P p s ,K

P p s ,N v ^P ps,S

P p s ,K v ^P ps,S

0.54
0.6372
0.5272

0.5433
0.58

0.4887

0.5484
0.5654
0.469

0.7 P p s , N  ™ P p s , K  

P p s ,N v s P ps,S  

P p s ,K v s P ps,S

0.5329
0.563
0.5082

0.5496
0.5246
0.4702

T ab le  I I I .26
PN comparison o f interclass correlation estimators fo r different values of pss, pms 

and (n—10, m=3), based on 10,000 simulations from normal distribution

P v s /P s s_______________ 0-1 0-3 0-5 0.7
Estimate PN PN PN PN

0 .1 P p s ,N  P p s ,K  

P p s ,N ^ P p s ,S  

P ps, K v ^P p s , S

0.5521
0.5951
0.4006

0.5521
0.772
0.4559

0.5509
0.8518
0.4723

0.5474
0.8736
0.4711

0.3 P p s ,N v s P p s ,K  

P p s ,N v ^P ps,S  

P ps, K ^ ^ P p s , S

0.5492
0.6226
0.4877

0.5479
0.6357
0.4924

0.5415
0.6368
0.4892

0.5483
0.6621
0.476

0.5 P p s , P p s , K  

P p s ,N v ^P ps,S  

P p s ,N ^ P p s ,K

0.5466
0.5929
0.5262

0.5485
0.5345
0.4828

0.5386
0.5555
0.4857

0.7 P p s ,N ^ P p s ,K

P p s ,N v ^P ps,S  

P p s ,N v ® P ps,k

0.5466
0.4975
0.47

0.5335
0.5083
0.489
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Table 111.27
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n—10, m =4), based on 10,000 simulations from  norm al d istribution

P v s /P s s ______________ 0-1 0-3 0.5 0.7
Estimate PN PN PN PN

0 .1 P p s ,N Y ^ P p s ,K  

P p s ,N ™ P p  s , S  

P p s ,K Y ^P ps,S

0.5422
0.6329
0.436

0.5405
0.7944
0.492

0.5409
0.8508
0.4954

0.5437
0.8717
0.4827

0.3 P p s ,N Y ^ P p s ,K  

P ps , N  v ff> p s , S 

P p s ,K V S p pStS

0.5554
0.6563
0.5305

0.5442
0.6069
0.5049

0.5407
0.6331
0.4956

0.5415
0.6596
0.4852

0.5 P p s ,N YSP p s ,K  

P p s ,N Y ^P ps,S  

P p s , N  P p s , K

0.5438
0.5424
0.5123

0.5357
0.5113
0.4937

0.5374
0.5433
0.4913

0.7 P p s ,N YSP p s ,K  

P p s , N  v s P p s , S  

P p s ,N Y ^ P p s ,K

0.53
0.4631
0.4673

0.5444
0.5005
0.4848

T ab le  111.28

PN  comparison o f interclass correlation estimators fo r different values of pss, pms 
and (n—10, m=5), based on 10,000 simulations from normal distribution

p jp s s ______________ 0-1 0-3 0-5 0.7
Estimate PN PN PN PN

0 .1 P p s ,N Y ^ P p s ,K  

P p s, N  Y ^P ps,S  

P p s , K  V f f p s , S

0.5407
0.6468
0.4528

0.5559
0.8106
0.4995

0.5362
0.85
0.506

0.534
0.8703
0.4938

0.3 P p s ,N Y ^ P p s ,K  

P p s ,N Y ^P ps,S  

Pps, K v ^P ps,S

0.5587
0.6694
0.563

0.542
0.5944
0.5171

0.5471
0.6204
0.5003

0.5481
0.6585
0.4846

0.5 P p s ,N YSP p s ,K

P p s ,N Y ^P ps,S

P p s ,N v f f p s , K

0.531
0.5078
0.5101

0.536
0.5131
0.4981

0.5332
0.5518
0.4934

0.7 Pps. ,Y vs/;(„  ̂

P p s ,N YSP ps,S

P p s ,N YSP p s ,K

0.5312
0.4521
0.4736

0.538
0.4922
0.4842
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Table III.29
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n —50, m =2), based on 10,000 simulations from  norm al d istribution

P v s / P s s _______________ 0-1 0-3 0-5 0-7
Estimate PN PN PN PN

0 .1 P p s ,N v ^ P p s ,K

P p s ,N ^S P p s ,S

P p s ,K ^ P p s ,S

0.5582
0.6077
0.4305

0.5515
0 .6 8 6

0.4533

0.5521
0.7142
0.4516

0.5502
0.7281
0.4512

0.3 P p s ,N v ^ P p s ,K

P p s ,N v ^P ps,S

P p s ,K ^ ^ P p s ,S

0.5512
0.5914
0.4706

0.5497
0.5132
0.4563

0.5545
0.5128
0.4484

0.5456
0.5158
0.4553

0.5 P p s ,N ^ s P p s ,K

P p s ,N ^ s Pps,S

P p s ,K ^ P p s ,S

0.5432
0.5115
0.4636

0.5371
0.4966
0.4643

0.5562
0.5136
0.4458

0.7 P p s , N  VS Pps  j K  

P p s ,N ^ S p p s ,S  

P p s ,K ^ P p s ,S

0.5485
0.5079
0.4555

0.5512
0.5025

0.45

T ab le  I I I .30
PN  comparison o f interclass correlation estimators fo r different values of pss, pms 

and (n=50, m=3), based on 10,000 simulations from normal distribution

P p s /P s s  0-1 0-3 0-5 0.7
Estimate PN PN PN PN

0 .1 P p s ,N VS P p s ,K

P p s ,N VS P ps,S

P p s ,K vs P ps,S

0.3 P p s ,N VS P p s ,K

P p s ,N VS P ps,S

P p s ,K VS Pps,S

0.5 P p s ,N VS P p s ,K

P p s ,N VS P ps,S

P p s ,K VS P ps,S

0.7 P p s ,N VS P p s ,K

P p s ,N VS P ps,S

P p s .K VS P ps.S

0.5446 0.5455 0.5528 0.55
0.6149 0.6613 0.6975 0.7159
0.4539 0.4601 0.4518 0.4519

0.5443 0.5433 0.5558 0.5538
0.5862 0.4969 0.5082 0.508
0.4888 0.4629 0.4503 0.4474

0.5528 0.5515 0.5529
0.4889 0.5024 0.5083
0.4552 0.4546 0.4509

0.5445 0.5414
0.4807 0.506
0.4574 0.4631
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Table 111.31
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n —50, m =4), based on 10,000 simulations from  norm al d istribution

= Pvs/Pss 0-1 0-3 0-5 0.7 =
Estimator PN PN PN PN

0.5517 0.5378 0.5543 0.5424
0.61 0.6599 0.6906 0.7073

0.4562 0.4701 0.4509 0.4611

0 .1 Pps,N VS Pps,K
Pps,N VS Pps,S
Pps,K VS Pps,S

0.3 Pps,N VS Pps,K
Pps,N VS Pps,S
Pps,K VS Pps,S

0.5 Pps,N vs Pps,K
Pps,N vs Pps,S
Pps,K vs Pps,S

0.7 PpSyN vs Pps,K
PpSyN vs Pps,S
Pps,K vs Pps,S

0.5449 0.542 0.5386 0.5506
0.5561 0.4994 0.5029 0.5172
0.4859 0.462 0.4634 0.4525

0.5443 0.543 0.5436
0.4917 0.5103 0.508
0.4624 0.4665 0.4627

0.5434 0.5483 
0.4865 0.495
0.458 0.4554

T ab le  111.32

PN  comparison o f interclass correlation estimators fo r different values o f pss, pms 
and (n=50, m—5), based on 10,000 simulations from normal distribution

Pps/  Pss 0 .1 0.3 0.5 0.7
Estimator PN PN PN PN

0 .1 Pps,N VS PpSyK 
Pps,N VS PpŜS 
Pps,K VS PpS:S

0.5425
0.5952
0.4667

0.5447
0.6436
0.464

0.5382
0.6825
0.4655

0.5432
0.7094
0.4616

0.3 Pps,N VS PpS,K 
Pps,N VS PpŜs 
Pps,K VS Ppĝ s

0.5352
0.5279
0.4853

0.5431
0.5005
0.4667

0.5427
0.4985
0.4611

0.5387
0.5064
0.4655

0.5 Pps,N VS PpSfK 
Pps,N VS PpS>s 
Pps,K VS PpS'S

0.5397
0.4858
0.4643

0.5357
0.4869
0.4676

0.5397
0.5092
0.4637

0.7 PpstN VS Ppĝ K 
Pps,N VS PpStS 
Pps.K VS PpStS

0.5473
0.4819
0.4576

0.5402
0.4947
0.4644
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Table 111.33
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n=10, m =2), based on 10,000 simulations from  K otz type d istribution

Pvs/Pss 0-1 0-3 0-5 0-7
K Estimate PN PN PN PN
0.1 p„a K vs p„„ N 0.544 0.543 0.535 0.542

0.5593 0.7053 0.8279 0.8832
0.4519 0.5087 0.5354 0.5518

0.3 pm. , fV s L w  0.548 0.542 0.535 0.538
0.5841 0.6353 0.6878 0.7157
0.5087 0.5434 0.548 0.552

PpsfK VS PpSyN
PpSyN VS PpSyS
Pps,K VS PpSyS

PpSyK VS Pps,N
Pps,N VS PpSyS
PpSyK vs Pps,S

Pps,K vs Pps,N
Pps,N vs PpSyS
PpSyK vs PpSyS

PpSyK vs PpSyN
PpSyN vs Pps,S
Pps,K vs Pps,S

0.5 fins.k vs finc. yv 0.5341 0.5272 0.5324
0.6471 0.6083 0.5968
0.584 0.5649 0.5482

0.7 fins k  vs fi„s n 0.5179 0.5308
0.5872 0.5451 
0.5674 0.5559

Table 111.34
PN  comparison of interclass correlation estimators fo r different values of pss, prns 

and (n=10, m =3), based on 10,000 simulations from Kotz type distribution

=  Pvs/Pss 0-1 0-3 0-5 0-7
Estimate PN PN PN PN

Pps,K PpSyN 0.5482 0.538 0.5231 0.5347
PpSyN VS PpsyS 0.5949 0.7705 0.859 0.8881
P p S y K  PpSyS 0.4737 0.536 0.5443 0.5515

P p S yK  VS P p S yN 0.5353 0.529 0.5377 0.528
P p S yN  VS PpSyS 0.6219 0.6466 0 .6 6 6 6 0.6867
P p S y K  PpSyS 0.5465 0.5598 0.5652 0.5467

P p S yK  P p S yN 0.5189 0.5286 0.5311
P p S yN  VS PpSyS 0.622 0.5546 0.5034
P p S y K  PpSyS 0.5946 0.5595 0.5513

PpSyK PpSyN 0.5362 0.5242
PpSyN VS PpSyS 0.5004 0.5113
Pps,K VS Pvs,S 0.5524 0.5469
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Table I I I . 35
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n=10, m = f ), based on 10,000 simulations from  K otz type distribution

Pps/ Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K VS Pps,N 0.5418 0.5307 0.5244 0.5207
Pps,N VS Pps,S 0.6231 0.793 0.8598 0.8871
Pps,K VS PpS>s 0.4829 0.5494 0.555 0.544

0.3 Pps,K VS Pps,N 0.5338 0.5309 0.5197 0.5279
Pps,N VS Pps,5' 0.6576 0.6351 0.6497 0.6856
Pps,K VS PpS)S 0.5904 0.577 0.549 0.5518

0.5 Pps,K VS PpspV 0.5223 0.5325 0.5319
Pps,N VS PpS<s 0.5547 0.528 0.5521
Pps,K VS PpS,S 0.5831 0.5655 0.5568

0.7 Pps,K VS Pps,iV 0.5426 0.5289
Pps,N VS PpS'S 0.4708 0.5032
Pps,K VS Pps,S 0.541 0.5488

T ab le  I I I .36

PN comparison of interclass correlation estimators fo r different values of pss, pms
and (n=10, m=5), based on 10,000 simulations from Kotz type distribution

Pps! Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K VS PpSjJv 0.5408 0.5313 0.5176 0.5253
Pps,N VS Ppsi$ 0.6531 0.8126 0.8583 0.8787
PpstK  VS Pp.5,.S' 0.5088 0.561 0.5516 0.5467

0.3 Pps,K VS PpSjJV 0.5224 0.5224 0.5233 0.5364
Pps,N VS PpS,S 0.6721 0.611 0.6492 0.6811
Pps,K VS PpStS 0.6132 0.5676 0.56 0.5602

0.5 Pps,K VS Pp$,N 0.5153 0.5216 0.5309
Pps,N VS PpSi,S' 0.5158 0.5114 0.5609
Pps,K VS ppS,S 0.5606 0.5479 0.5601

0.7 Pps,a  vs Pps,N 0.5299 0.5274
Pps,N VS PpS S 0.4493 0.5044
Pps.K VS Pvs,S 0.5294 0.5548
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Table 111.37
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n=50, m =2), based on 10,000 simulations from  K otz type d istribution

Pps/  Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K Pps,N 0.5627 0.5697 0.5634 0.5649
Pps,N VS Pps,S 0.6103 0.7218 0.7551 0.7704
Pps,K VS PpS,S 0.5434 0.5693 0.5657 0.5658

0.3 Pps,K VS Pps,N 0.5607 0.5607 0.5662 0.5619
Pps,N VS Pps:S 0.6026 0.5406 0.5274 0.5359
Pps,K VS PpS S 0.5686 0.5675 0.5695 0.5633

0.5 Pps,K VS PpS,N 0.5538 0.5624 0.5619
Pps,N VS PpS,S 0.5399 0.5107 0.5023
Pps,K  VS Pps.S 0.565 0.5669 0.5636

0.7 Pps,K VS PpS,N 0.5596 0.5553
Pps,N VS PpS)S 0.4869 0.5042
Pps,K VS PpS'S 0.5645 0.5581

T ab le  I I I .38
PN comparison o f interclass correlation estimators fo r different values of pss, pms

and (n=50, m=3), based on 10,000 simulations from Kotz type distribution

Pvs/ Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K VS ppStpf 0.5531 0.5453 0.5594 0.5554
Pps,N VS Pp3,S 0.6292 0.7009 0.7338 0.7489
Pps,K VS Pps^s 0.5428 0.55 0.5631 0.5571

0.3 Pps,K VS Pps,N 0.5477 0.5611 0.556 0.5495
Pps,N VS PpS,S 0.6038 0.5158 0.5153 0.5228
Pps,K VS Pps_S 0.5812 0.5646 0.5592 0.5523

0.5 Pps,K  VS fipS,N 0.5564 0.5507 0.5557
Pps,N VS Pps,s 0.4857 0.5107 0.5149
Pps,K VS PpstS 0.5587 0.557 0.5601

0.7 Pps,K VS Pp3)jv 0.5587 0.5553
Pps,N VS Pps,.S' 0.4919 0.5047
Pvs.K VS Pps.S 0.5612 0.5543
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Table I I I .39
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n=50, m —4), based on 10,000 simulations from  K otz type d istribution

Pvs/Pss 0-1 0-3 0-5 0-7 ~
Estimate PN PN PN PN

0.5495 0.5537 0.5585 0.5578 
0.6416 0.6917 0.7206 0.7482

0 .1 Pps,K VS Pps,N
Pps,N VS PpsyS
Pps,K VS Pps,S

0.3 Pps,K VS Pps,N
Pps,N VS Pps,S
Pps,K VS Pps,S

0.5 Pps,K vs Pps,N

Pps,N vs Pps,S
Pps,K vs Co Oj

o.r Pps,K vs Pps,N

Pps,N vs Pps,S
Pps,K vs Pps,S

0.5516 0.5594 0.5623 0.5598

0.5339 0.556 0.551 0.5511
0.5798 0.4907 0.5119 0.5227
0.5703 0.5618 0.5534 0.5555

0.5547 0.549 0.5539
0.487 0.5009 0.5085
0.5594 0.5556 0.5584

0.5591 0.5605
0.4874 0.4959 
0.5571 0.5635

Table 111.40
PN  comparison o f interclass correlation estimators fo r different values of pss, pms 

and (n=50, m=5), based on 10,000 simulations from Kotz type distribution

p j p s s  0-1 0-3 0-5 0.7
Estimate PN PN PN PN

0.5402 0.5523 0.5478 0.5451
0.6207 0.6708 0.7083 0.7411
0.5481 0.5587 0.5525 0.5477

0 .1 Pps,K vs Pps,N
Pps,N vs Pps,S
Pps,K vs Pps,S

0.3 PpSyK vs Pps,N
Pps,N vs PpsyS
Pps,K vs Pps}S

0.5 Pps,K vs Pps,N
Pps,N vs Pps,S
Pps,K vs Pps,S

0.7 Pps,K vs Pps, N
Pps,N vs Pps,S
Pps,K vs Pps,S

0.543 0.5429 0.5499 0.5503
0.5417 0.4994 0.517 0.5236
0.5681 0.5481 0.5529 0.5521

0.5495 0.5495 0.5464
0.4893 0.4929 0.5057
0.5553 0.5521 0.5498

0.5489 0.5551
0.481 0.49

0.5486 0.5571
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Table 111.41
P N  comparison o f interclass correlation estimators fo r  different values o f pss, prns
and (n=10, m =2), based on 10,000 simulations from  T  distribution, w ith d f=3

pJPss 0-1 0-3 0-5 0.7 ~ ~
Estimate PN PN PN PN

0 .1 Pps,K VS Pps,N

PpsyN VS Pps,S

Pps,K VS Pps,S

0.3 Pps,K VS Pps,N

Pps,N VS Pps,S
Pps,K VS Pps,S

0.5 Pps,K vs Pps,N
Pps,N VS Pps,S
Pps,K VS Pps,S

0.7 Pps^K vs Pps^N

Pps,N vs PpsyS
Pps,K vs PpsyS

0.6427 0.6294 0.623 0.6201
0.5532 0.7068 0.8136 0.8831
0.5204 0.5768 0.6063 0.6251

0.628 0.6188 0.6078 0.6195
0.5842 0.6575 0.7001 0.7434
0.5714 0.5993 0.6174 0.6227

0.5783 0.5959 0.6041
0.6663 0.6463 0.6312
0.6431 0.6373 0.6238

0.6127 0.6128 
0.6206 0.5699 
0.6471 0.6251

T ab le  111.42

PN comparison o f interclass correlation estimators fo r different values o f pss, pms 
and (n=10, m =3), based on 10,000 simulations from T  distribution, with df—3

pJpss  0 -1  0-3 0-5 0.7
Estimate PN PN PN PN

Pps,K VS PpstN 0.6421 0.6407 0.6124 0.6231
Pps,N VS Pps,S 0.5781 0.7494 0.8491 0.8946
PpSyK PpSyS 0.5343 0.606 0.6286 0.6314

Pps,K VS Pps,N 0.6347 0.6174 0.6212 0.6256
PpSyN VS Pps,S 0.6309 0.6669 0.6987 0.7269
Pps,K VS Pps,S 0.6119 0.6352 0.6336 0.6393

Pps,K vs PpSyN 0.5898 0.6083 0.6288
P p S yN  ^  PpSyS 0.6591 0.6023 0.6097
P p S y K  VS PpSyS 0.6629 0.6339 0.6283

PpSyK PpSyN 0.3873 0.6354
PpSyN Vs PpsyS 0.5369 0.5253
PpSyK VS PpSyS 0.6424 0.6283
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Table 111.43
P N  comparison o f interclass correlation estimators fo r  different values o f pss, p.
and (n—10, m —4), based on 10,000 simulations from  T  distribution, w ith d f=3

ms

P p s /P s s_________________ 0-1 0-3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K VS Pps,N

Pps,N VS Pps,S

Pps,K VS Pps,S

0.3 Pps,K VS Pps}N

Pps,N VS Pps,S

Pps,K VS PpsyS

0.5 Pps,K VS Pps,N

Pps,N VS Pps,S
Pps,K vs Pps,S

0.7 Pps,K vs Pps,N
Pps,N vs Pps,S
Pps,K vs Pps,S

0.6421 0.6407 0.6124 0.6231
0.5986 0.7882 0.8649 0.8944
0.5566 0.6315 0.6302 0.6375

0.6347 0.6174 0.6212 0.6256
0.6575 0.6625 0.6873 0.7271
0.6548 0.6429 0.6464 0.6403

0.5898 0.6083 0.6288
0.6028 0.5654 0.6077
0.6601 0.6389 0.6474

0.6354
0.5097
0.6526

Table 111.44
PN comparison o f interclass correlation estimators fo r different values o f pss, pms 
and (n=10, m=5), based on 10,000 simulations from T  distribution, with df=3

P n s /P s s  0-1 0-3 0-5 0.7
Estimate PN PN PN PN

0.1 0.6575 0.6318 0.6241 0.6253
0.6249 0.8105 0.87 0.9008
0.5883 0.636 0.6497 0.6448

0-3 pnx K vs pnx_N 0.6182 0.6081 0.6109 0.621
0.6795 0.6464 0.6865 0.7248
0.673 0.643 0.6368 0.6381

Pp$,K VS PpSyN

Pps,N VS Pps,S
Pps,K vs Pps,S

Pps,K vs Pps,N

Pps,N vs Pps,S
Pps,K vs Pps,S

Pps,K vs Pps,N
Pps,N vs Pps,S

Pps,K vs Pps,S

Pps, K vs Pps,N
Pps,N vs Pps,S
Pps,K vs Pps,S

0.5 P„s.k vs /o„s.jv 0.6045 0.6164 0.62
0.5626 0.5481 0.5927 
0.6626 0.6424 0.6424

0.7 p „ „ .K  vs p„.,jv 0.6294
0.5028 
0.643
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Table 111.45
P N  comparison o f interclass correlation estimators fo r  different values o f pss, pms

and (n=50, m =2), based on 10,000 simulations from  T  distribution, w ith d f=3

Pps  /  Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 P p s ,K  V S  P p s ,N  

P p s ,N  v s  P ps,S  

P p s ,K  v s  P p stS

0.7083
0.6194
0.6736

0.6956
0.7361
0.6902

0.6976
0.8046
0.6975

0.7041
0.8241
0.7054

0.3 P p s ,K  V S  P p s ,N  

P p s ,N  V S  P p s:S  

P p s ,K  V S  p pStS

0.6996
0.6034
0.6884

0.6901
0.5868
0.6925

0.6927
0.5842
0.6934

0.6914
0.6035
0.6919

0.5 P p s ,K  V S  P p s ,N  

P p s ,N  V S  P pSjS  

P p s ,K  V S  f>pS!S

0.6812
0.5865
0.702

0.6874
0.5376
0.6928

0.6895
0.5294
0.6918

0.7 P p s ,K  V S  PpS]! \ ' 

P p s ,N  V S  P pSjS  

P p s .K  V S  Pps S

0.6951
0.5172
0.7011

0.6965
0.5154
0.6992

Table 111.46
P N  comparison o f interclass correlation estimators fo r different values o f pss, prns 

and (n=50, m=3), based on 10,000 simulations from T  distribution, with df=3

P p s /  Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 P p s ,K  V S  P pS jjV 0.7026 0.6987 0.6981 0.7011
P p s ,N  V S  PpSiS 0.645 0.7589 0.8023 0.8212
P p s ,K  V S  Pp s ,S 0.6817 0.6967 0.6981 0.7018

0.3 P p s ,K  V S  P pS,N 0.6906 0.696 0.6979 0.7044
P p s ,N  V S  p p StS 0.6325 0.5683 0.5695 0.5933
P p s ,K  V S  PpS)S 0.7059 0.7029 0.7005 0.7058

0.5 P p s ,K  V S  P pS,N 0.6843 0.6945 0.6959
P p s ,N  V S  p p S s 0.5233 0.5099 0.523
P p s ,K  V S  p p g tS 0.6965 0.6977 0.6979

0.7 Pps,K  v s  Pps,N 0.7027 0.7057
P p s ,N  V S  P pS>s 0.4838 0.4956
P p s ,K  V S  Pps.S 0.7023 0.704
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Table 111.47
PN  comparison o f interclass correlation estimators fo r different values of pss, pms 
and (n=50, m=4), based on 10,000 simulations from T  distribution, with df=3

Pps/ Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps.K vs Pps.N 0.7101 0.6995 0.7003 0.7004
Pps.N VS Pps.S 0.6552 0.7609 0.7978 0.8245
Pps.K VS Pps.S 0.6961 0.7002 0.703 0.7018

0.3 Pps.K VS Pps.N 0.6759 0.6975 0.6974 0.7034
Pps.N VS Pps.S 0.6366 0.5347 0.5563 0.5839
Pps.K VS Pps.S 0.7109 0.7035 0.7 0.7037

0.5 Pps.K VS PpS.]\J 0.699 0.7069 0.6976
Pps,N vs Pps,S 0.4974 0.4992 0.5151
Pps,K vs Pps.S 0.7047 0.7101 0.7

0.7 Pps,K VS PpS,N 0.71 0.7124
Pps,N VS PpSfS 0.4596 0.5009
Pps,K VS Pps,S 0.7069 0.7113

Table 111.48
PN  comparison o f interclass correlation estimators fo r different values of pss, pms
and (n=50, m—5), based on 10,000 simulations from T distribution, with df=3

Pvs! Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K VS PpS,N 0.7089 0.6999 0.7016 0.7108
Pps,N VS PpStS 0.6627 0.7605 0.7959 0.8147
Pps,K VS Pps,S 0.7011 0.7021 0.7047 0.7118

0.3 Pps,K VS Pps.N 0.6768 0.6998 0.6971 0.7105
Pps,N VS Pps.S 0.6115 0.5353 0.5485 0.5829
Pps,K VS Pps.S 0.7191 0.7031 0.7012 0.7127

0.5 Pps.K VS Pps.N 0.7107 0.7126 0.7007
Pps.N VS Pps.S 0.4803 0.494 0.5121
Pps.K VS Pps.S 0.7137 0.7137 0.7023

0.7 P p s . N  VS P p s . N 0.719 0.6982
Pps.N VS Pps.S 0.4448 0.4889
Pps.K VS Pps.S 0.7174 0.7019
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Table 111.49
Bias and M SE (x  104 j  o f pps fo r  the unbalanced case when n=50, based on 10,000

simulations from  norm al d istribution

Pvs/Pss__________ 0^______ 03______ 05______ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N 8 107 -4 130 -2 2 152 -2 2 172
Pps,K 54 130 33 157 9 179 -1 2 2 0 0

Pps,S -14 12 2 -1 0 139 -30 154 -34 170

0.3 Pps,N -43 105 -50 127 -27 145
Pps,K 74 126 43 148 29 167
Pps,S -63 114 -79 130 -62 144

0.5 Pps,N -53 84 -65 97
Pps,K 97 97 23 1 1 2

Pps,S -95 90 -1 2 1 98

Table III .50
Bias and MSE ( x 1{)A)  of pps fo r  the unbalanced case when n=100, based on 10,000 

simulations from normal distribution

Pps/ Pss 0 .1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N 5 47 -7 60 -2 2 72 3 84
Pps,K 43 57 27 71 3 83 14 96
Pps,S -1 55 -8 64 -26 73 -1 84

0.3 Pps,N 0 35 -15 48 -25 59 -34 70
Pps,K 105 42 83 57 52 6 8 11 81
Pps,S -17 45 -2 2 53 -32 61 -46 71

0.5 Pps,N -23 29 -29 39 -23 46
Pps,K 126 34 93 45 54 53
Pps,S -26 33 -42 41 -42 47

0.7 Pps,N -30 15 -19 2 0

Pps,K 112 17 83 2 2

Pps,S -44 17 -44 21
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Table 111.51
Bias and M SE ( x 104)  o f pps fo r  the unbalanced case when n=50, based on 10,000

simulations from  K otz type distribution

Pps/Pss_______________ OJ_________ 03_________ 05_________ 07
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

O l Pps.N -57 140 -104 169 -67 206 -2 1 234
Pps,K 3 134 -41 158 -25 189 -3 2 1 2

Pps.S -24 154 -60 180 -33 2 1 2 -9 234

03 Pps.N -203 141 -168 173 -1 2 1 204
Pps.K -32 127 -34 155 -26 179
Pps.S -6 8 146 -70 174 -78 2 0 2

05 Pps,N -289 124 -190 143
Pps.K -56 101 -36 1 2 0

Pps.S -125 116 -119 137

07 Pps.N -265 71
Pps,K -61 52
Pps.S -173 63

Table III.52
Bias and MSE (y.l{)4) of pps fo r the unbalanced case when n=100, based on 10,000 

simulations from  Kotz type distribution

Pps/  Pss 0. 1 0..3 0.5 0 ..7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps.N -37 61 -58 81 -50 99 -18 117
Pps.K 13 57 -13 73 -19 88 5 10 2

Pps.S 5 6 8 -15 86 -2 0 102 0 119

0.3 Pps,N -141 48 -148 67 -129 84 -119 101

Pps.K 1 43 16 58 -26 73 -41 85
Pps.S -18 55 -28 69 -33 84 -63 10 0

0.5 Pps,N -2 2 1 46 -194 56 -143 6 8

Pps.K -18 36 -2 2 45 -23 55
Pps.S -30 43 -43 53 -52 6 6

0.7 Pps,N -239 29 -196 34
Pps,K -38 19 -35 24
Pps.S -69 23 -78 29
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Table 111.53
Bias and M SE ( x 10A)  o f pps fo r  the unbalanced case when n=50, based on 10,000

simulations from  T  distribution, w ith d f=3

p J p s s ____________________(71____________ 0 3 ____________ 0 5 ____________ 0 7V S i  r  S S

Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0 .1 Pps,N 2 0 410 -25 456 -19 522 -97 583

Pps,K 74 199 13 225 13 263 -44 292
Pps,S -19 434 -35 470 -2 0 523 -105 576

0.3 Pps,N -79 379 -159 448 -128 508
Pps,K 74 188 10 214 1 242
Pps,S -116 399 -178 452 -150 500

0.5 Pps,N -158 312 -176 362
Pps,K 75 138 12 159
Pps.S -188 320 -214 357

Table I I I . 54
Bias and MSE ( x l()A) o f pps fo r  the unbalanced case when n=100, based on It 

simulations from T  distribution, df=3

Pvs/ Pss 0 .1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0 .1 Pps,N -14 252 -18 295 -36 342 -30 397
PPs,K  38 8 6 23 106 10 124 7 144
Pps,s -45 271 -19 306 -40 343 -33 396

0.3 Pps,N -62 243 -1 1 1 297 -109 346
Pps,K 73 85 29 104 21 12 0

Pps,S -72 257 -115 301 -115 344

0.5 Pps,N -98 146 -114 199 -92 229
Pps,K 102 50 83 65 47 79
Pps,S -115 166 -124 204 -1 0 2 229

0.7 Pps,N -106 90 -308 41
Pps,JK 105 26 -214 31
Pps,S -127 99 -239 36
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Table 111.55
P N  comparison o f pps fo r  the unbalanced case when n=50, based on 10,000

simulations from  norm al distribution

P v s /  Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN

0.1 P ps.N  P p s .K  

P ps.N  Pps.S 

P p s .K  VS Pps.S

0.5885
0.5565
0.4752

0.5950
0.5318
0.4386

0.5831
0.5106
0.4177

0.5692
0.4914
0.4191

0.3 P ps.N  P ps .K  

P ps.N  VS Pps.S  

P p s .K  vs Pps.S

0.5983
0.5418
0.4463

0.5831
0.5284
0.4300

0.5791
0.4995
0.4194

0.5 P ps.N  ^  P ps.K  

P ps.N  VS Pps.S  

P p s .K  vs Pps.S

0.5851
0.5284
0.4326

0.5871
0.5081
0.4168

Table I I I . 56
PN  comparison o f pps fo r  the unbalanced case when n=100, based 

simulations from  normal distribution

Pps/ Piis 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps.N Pps.K 

Pps.N Pps.S 

Pps.K Pps.S

0.5960
0.5648
0.4893

0.5914
0.5456
0.4442

0.5793
0.5229
0.4313

0.5646
0.5057
0.4305

0.3 Pps.N Pps.K 
Pps.N Pps.S 
Pps.K Pps.S

0.5264
0.5804
0.5133

0.5845
0.5492
0.4578

0.5825
0.5252
0.4327

0.5730
0.5114
0.4255

0.5 Pps.N Pps.K 

Pps,N Pps.S 
Pps.K Pps.S

0.5928
0.5559
0.4553

0.5843
0.5239
0.4353

0.5802
0.5086
0.4211

0.7 Pps.N Pps.K 
Pps.N Pps.S 
Pps.K Pps.S

0.5832
0.5480
0.4544

0.5836
0.5271
0.4302
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Table 111.57
P N  comparison o f pps fo r  the unbalanced case when n=50, based on 10,000

simulations from  Kotz type d istribution

Pps/Pss 0.1 0.3____0 .5_____0.7
Estimate PN PN PN PN

0 .1 P p s .K  V S  P p s .N  

P p s .N  V S  Pps.S  

P p s .K  V S  P ps.S

0.5140
0.5436
0.5531

0.5166
0.5440
0.5517

0.5280
0.5295
0.5426

0.5400
0.4996
0.5401

0.3 P p s .K  v s  P p s .N  

P p s .N  V S  P ps.S  

P p s .K  V S  P ps.S

0.5248
0.5225
0.5506

0.5353
0.5171
0.5462

0.5050
0.4894
0.5406

0.5 P p s .K  V S  P p s ,N  

P p s .N  v s  P ps.S  

P p s .K  VS Pps,S'

0.5499
0.4884
0.5468

0.5516
0.4800
0.5461

0.7 P p s ,K  V S  P p s,N  

P p s ,N  V S  ppS 'S  

P p syK  V S  P p s ,S'

0.5646
0.4611
0.5475

Table I I I . 58
oarison of pps fo r the unbalanced case when n = l 00, based o 

simulations from  Kotz type distribution

P v s /  Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 P p s ,K  V S  P p S)j y  

P p s ,N  V S  p pSfS  

P p s ,K  V S  Pps,S

0.5260
0.5450
0.5660

0.5379
0.5451
0.5710

0.5450
0.539
0.5680

0.5530
0.54150
0.5670

0.3 P p s ,K  V S  PpS,N  

P p s ,N  V S  Pps,S’ 

P p s ,K  V S  P pSlS

0.5407
0.5433
0.5800

0.5394
0.5276
0.5678

0.5411
0.5143
0.5578

0.5567
0.5112
0.5730

0.5 P p s ,K  V S  p pS'N  

P p s ,N  V S  Pps,S' 

P p s ,K  V S  P p s .S'

0.5625
0.4914
0.5653

0.5505
0.4843
0.5510

0.5564
0.4840
0.5637

0.7 PpSyK VS PpSyM
P p s ,N  V S  p pS:S  

P p s .K  V S  p p s  S

0.6057
0.4424
0.5651

0.5707
0.4527
0.5596
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Table 111.59
P N  comparison o f pps fo r  the unbalanced case when n=50, based on 10,000

simulations from  T  distribution, w ith d f=3

P vs/ Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K VS Pps,N 

Pps,N VS Pps,S 

Pps,K vs Pps,S

0.6719
0.5384
0.6756

0.6742
.5191
.6812

0.6741
0.4997
0.6720

0.6685
0.4699
0.6675

0.3 Pps,K VS PpSi]\[ 

Pps,N VS Pps,S 

Pps,K VS PpS,S

0.6550
0.5376
0.6789

0.6703
0.4996
0.6706

0.6773
0.4739
0.6739

0.5 Pps,K VS PpS,N 
Pps,N VS pps!s  

Pps,K VS ppg'S

0.6548
0.5237
0.6630

0.6714
0.4830
0.6656

Table 111.60
PN  comparison of pps fo r  the unbalanced case when n=100, based on 10,000 

simulations from  T  distribution, with df=3

Pps! Pss 0 .1 0.3 0.5 0.7
Estimate PN PN PN PN

0 .1 Pps,K VS Pps,N  
Pps,N VS Pps:S 

Pps,K VS Pps

0.7114
0.5396
0.7161

0.7016
0.5288
0.7136

0.7033
.5026

0.7065

0.7164
0.4886
0.7187

0.3 Pps,K VS PpStN  

Pps,N VS Pps,s') 
Pps,K VS PpS,s

0.6830
0.5929
0.7222

0.7039
0.5371
0.7222

0.6901
0.5532
0.7106

0.7118
0.4779
0.7125

0.5 Pps,K VS Pps,N 

Pps,N VS Pps,S 

Pps,K VS PpS,S

0.6901
0.5532
0.7106

0.7012
0.5160
0.7066

0.7012
0.4943
0.7014

0.7 Pps,K VS PpS,N  
Pps,N  VS PpS,S 

Pps,K VS Pps.S

0 .6 8 8 6

0.5182
0.6900

0.5889
0.4337
0.5593
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CHAPTER IV  

TESTING SIB-SIB AND MOM-SIB CORRELATIONS

IV .  1 In troduction

Hypothesis testing is an important part of statistical inference. In this chapter we 

consider problems of hypothesis testing for pss, the sib-sib or intraclass correlation 

coefficient and pps, the mom-sib or interclass correlation coefficient, when familial 

data w ith  unequal (unbalanced) number of children per fam ily are available. I f  a 

known form of the distribution, like normal, can be assumed for the data then the 

likelihood based tests and the asymptotic distribution of the test statistic under 

the null hypothesis, can be adopted for testing. The three famous tests, under this 

approach are the likelihood ratio test, Wald test, and Rao’s score test. The test 

statistics under all approaches have the same asymptotic distribution, but none is 

found to be uniform ly better than the other. Hence all three tests are generally 

considered and efforts are made to determine the best test for the particular testing 

problem in hand.

In this chapter, the sections that follow we discuss various testing problems for 

the sib-sib and mom-sib correlations. For example, in the next section we consider 

hypothesis testing problems for sib-sib correlations, in Section 4.3 we consider testing 

of hypothesis for mom-sib correlation. In the sections 4.4 and 4.5 we consider testing 

the equality of two sib-sib and two mom-sib correlations respectively.

The testing procedures are developed under three different scenarios: (i) using 

normal likelihood function, (ii) using Kotz likelihood function and (iii) using Sri- 

vastava’s non-iterative estimators. The first two cases above w ill provide us three 

tests each, namely, the LRT, Wald and Score tests. Further, at least one test can be 

constructed using Srivastava’s estimator. Thus for each testing problem we have at 

least seven tests. In  this chapter, we undertake an extensive simulation study hoping 

to identify the best test for each testing problem considered.

IV .  2 Testing for pss, the Sib-Sib Correlation

Suppose Xj =  (X ji, ..., xirn.)' is the vector of observations on the fth  family, where 

Xij, j  =  1,..., nip i  =  1,..., n is an observation on the j t h  child of the fth  family. Let
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E (x ij) =  p, va r{x ij)  =  a , and c o r r (x i j,x ^ )  =  pss for j  ^  j !.

In this section, we consider the problem of testing Ho : pss =  0 vs. H i : pss ^  0. 

Estimation of pss has been already considered in Chapter 2. Let 9 =  (p, a2, pss)' be 

the vector of the parameters and L(9) be the likelihood function of 9. Suppose 9 — 

(p ,a 2,pss)' is the vector of maximum likelihood estimators obtained by maximizing 

L(9) w.r.t. p, <t2, and pss, and 90 =  (Ao> ®o> PssoY the vector of the M LE ’s computed 

under H q.

For balanced data, tha t is when the number of children is the same for every 

family, assuming normality of the scores, Fisher’s ANOVA F-statistic can be used 

for testing Ho- However, in general, for any likelihood function L(9), we have the 

following procedures.

(a) Likelihood ratio  test (L R T )

The log likelihood ratio for testing H o  vs. H \  is given by

A =
L ( 9 q)

L (e y

Then by the asymptotic theory (see Serfling, 1980) we have L R T  =  2 log L { 9 )  -  

2 log L ($ o )  _d x 2- We would reject H 0 i f  L R T  >  , where Xatl is the a th  upper

ta il cut off point of the chi-square distribution w ith 1 degrees of freedom.

(b) W a ld ’s test

Suppose 1 ( 9 )  =  E ( d lo g L ( 6 ) \  ( d lo g L { 6 ) \ '
\  ae ae ) is the Fisher information m atrix of

9. I f  pss is the M LE of the sib-sib correlation (pss) and 1(9) is the information 

m atrix evaluated at the MLE, 9, then the Wald test statistic for testing Ha vs. 

H i is
/  \ 2

W  =

where 1 ^  ^  is the 3rd diagonal element of

From the asym ptotic distribution of M LE’s it is clear that W  d  a& n  ---- > oo

(Serfling, 1980). Hence we reject H q i f  W  >  Xaa-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

(c) R ao ’s score test

Suppose S(9) =  9 1 0 is the score vector and 2(6) is the information matrix. 

Suppose S(90) and 1(90) are the score and information marices evaluated at 

9 =  9q, the M LE under null hypothesis. Then the score test statistic is:

R =  s ( $ 0) V ( $ o ) ) - 1s ( $ o ) .

The asymptotic distribution of R  is x 2 w ith  1 degrees of freedom (Serfling, 

1980). Then reject H 0 i f  R >  x 2 t ■

(d ) A  test based on Srivastava’s estim ator

We can also suggest a test based on Srivastava’s combination estimator which 

was given earlier in (2.3), and its asymptotic variance (Srivastava, 1993) given by 

A V (pS3tS) =  2 ( l - p ss) \

(1 6̂ 2tr{(ADr,2)2}+^r{(BD,2)2}+2̂ ^ 6B/Jss)tr(AD,2BD,2)+
{ 6S -  aB( l  -  pss) -  (aA fa -  aB)( 1 -  pss)2} 2

b l ( N - n )
where D ^2 =  diag(r]\, ..... ,p2n), rft =  l - ( l - p s)oj, a4 =  1 - m i 1, A  =  D ^ - fV  1uju,

n
lo =  (m i, ..., mn)', B =  I„ -  n~l l nl 'n, aA =  bA -  (n -  1), bA =  N  -  IV-1 £  m 2,

i=1
n n

N  =  mii a B  — (n ~  1 )n~x (1 ~  m r1), bB =  (n — 1 ). Then the test statistic
i~ l 2=1

and its asymptotic d istribution under H a : pss =  0 vs. H i ■ pss ^  0 is given by:

(Pss,sT
A V (p0)

Ti \F*SS,»b) i 2
s =  - H 7 7 ^ d X l,

where A V (p0) is the asymptotic variance evaluated at pss =  0  , the null hypothesis 

value.

IV .2.1 Performance of the tests: a simulation study

In this section, we adopt the following strategy for comparing various tests for testing 

Ho '• Pss =  0 vs- H i '■ Pss A  0- First, we consider the three likelihood based 

tests under normal d istribution and the test based on Srivastava, and compare their 

performance (using estimated size and power of the tests) when data are simulated
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from normal distribution. Then we compare these tests when data are simulated 

from a non-normal distribution, namely, the Kotz type distribution. As w ill be 

observed later using the simulation results, neither the normal likelihood based tests 

nor Srivastava test achieve the assumed level of the test. Hence, to find a better test, 

we consider the three likelihood tests based on Kotz type distribution and compare 

the performance of all the seven tests when data are simulated from normal, Kotz 

type, and T  distributions.

Thus, our interest is to first compare the three normal d istribution based likeli­

hood tests w ith the non-iterative test based on Srivastava’s estimator as described 

in (d). To assess the performance of these four tests, we conduct a simulation study. 

Familial data on n =  50 and 100 families w ith  unequal fam ily sizes ranging from 

1 to 6 children per fam ily are considered. When n =  50 using truncated negative 

binomial distribution, as described earlier in Chapters 2 and 3, we determine n*, the 

number of families w ith  i  children, i  =  1,2, ..,6. We have used rq =  14, n 2 =  11, 

713 =  15, ru =  5, ris =  4 and Hq =  1. Similarly, when n =  100 we take =  27, 

n 2 =  23, « 3  =  23, n,4 — 19, n5 — 6 and n6 =  2. Ten thousand data sets for each set 

of n and m  are generated when pss =  0 and the test statistics are calculated. For 

all the simulation runs we used p, =  0 and a2 =  1. The simulation estimate of size 

of the test, when the assumed level is a  =  0.05, is computed as ^

where 7* is the value of the particular test statistic in use for the ith  simulation, 

i  =  1, . . . ,  10,000.

For larger sample size, tha t is n =  100, we perform a study to compare the powers 

of these tests. Power of each test is evaluated as 10~o00# {T i ^  x tp }  when the data are 

generated under the alternative hypotheses w ith  the values of pss =  0.1, 0.2 and 0.25. 

As we w ill see later, all the tests already have high power for pss =  0.25. Hence there 

was no need to compute the power at larger values of pss. Results (sizes and power 

of the tests) are provided in Tables IV .1 - IV.13. The simulation estimates of sizes 

and powers of the normal distribution likelihood based tests are denoted by LRTN, 

W aldN and Scores, and these values for the non-iterative procedure is denoted by 

Moment. For convenience, we have used these same symbols for refereing to the tests 

as well. For example, the notation L R T ^  is used to  represent both the likelihood ratio 

test based on normal likelihood and the estimated size (or power) of tha t test. We 

notice from Table IV . 1 that S cor ex and M om ent values are less than the nominal 

level (a =  0.05). Although LRTn  values are higher than the nominal level, they
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do improve when n =  100. Notice tha t W aldx  values are significantly higher than 

0.05 which indicates tha t W aldN test is not a good test for testing H 0 : pss =  0 

even for the sample sizes as large as n =  100. Hence we dropped W aldx  from our 

power computations. A ll three tests, namely the LR T jv, Scorex and Moment tests, 

have very high power (Table IV.2). Based on the size and power of these tests we 

w ill recommend the Scorex test as the best, i f  data are from normal distribution. 

Moment test also performs comparably well.

Next, we want to study the performance of these three tests if  they were applied 

on a non-normal set of data, such as from a Kotz type distribution. From Table IV.3 

we see tha t these tests have significantly higher estimated sizes than the nominal 

level of 0.05.

Next, we consider the likelihood based tests constructed from Kotz type distribu­

tion. We w ill denote the simulation estimates of sizes and powers of the Kotz type 

likelihood based tests by LR Tx, W  aid x  and Scorex■ Table IV.4 summarizes these 

results. We note that the LRTk  and Scorex are slightly higher than the nominal 

level, but have quite high power.

Finally, we study the performance of all the likelihood based tests, tha t is, those 

based on normal and Kotz type distribution, and the non-iterative test, when data 

under investigation are from multivariate T  w ith  different degrees of freedom. Results 

are provided in Tables IV.6 - IV . l l .  We observe that, for different degrees of freedoms 

the Scorex values are the only values tha t are <  0.05, and they have very high power. 

(Table IV.6 - IV . l l ) .  One last thing we want to do is to study the performance of 

Kotz type likelihood based tests when data are from normal distribution. Tables 

IV.12 and IV.13 provide these results. We note tha t LRTk  has higher size than a 

when n =  50 and this size improves as n increases to 100, while the Scorex has 

nominal level tha t is significantly smaller than 0.05 for any value of n, w ith  high 

power.

IV .  2.2 R ecom m endations

We do not recommend using Wald test for testing H 0 : pss =  0. I f  i t  is known to 

us tha t the data under consideration are from normal d istribution then we highly 

recommend using Scores or the non-iterative test based on Srivastava’s estim ator. 

But if  this can not be guaranteed then we highly recommend using Scorex• Based 

on its performance under different distributions and for large or small samples, we
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believe tha t it  is the best test to use.

IV .3  Testing for pps, the M om -S ib  Correlation

Suppose ( x i , y n , y i 2 , ■■.,yimi ) is the data vector on the ith  fam ily where x t is the 

observation made on a parent and yn ,y i2 , ■■■,yimi are those made on rnt children 

in that family. Suppose E (x i )  =  pp, E (y i j )  =  p s, var(x i )  =  op, v a r (y i j ) =  a 

cor r (y i j ,y i j i )  =  pss, and co r r (x t , y2J) =  pps. The main parameter of interest in this 

section is pps. We have studied estimation of pps in the previous chapter. Here we 

want to test H 0 : pps =  0 vs. H i : pps ±  0.

Let 9 =  (p. , y s, crp , crs, pps, pss)' be the vector of parameters and L(9)  be the 

likelihood function of 9 given fam ilial data on n  families. Let 9 be the M LE of 9 

obtained by maximizing L(9)  w ith  respect to 9 and 90 be the M LE of 9 obtained by 

maximizing L(9)  w ith  respect to 9 under the null hypothesis. Let S(9)  be the score 

vector and 2(9)  be the Fisher information matrix. Then the three asymptotic tests 

based on the likelihood theory are the likelihood ratio test (L R T ), W a ld  test and 

Rao's score test. We use these three tests each under the normal d istribution and the 

Kotz distribution. Thus we have six tests for testing H 0 : pps — 0 vs. H \ : pps ^  0.

Testing for mom-sib correlation was discussed first by Donner and Bull (1984). 

They considered the likelihood ratio test (LRT), a test based on the large sample 

variance of the maximum likelihood estimator (M LE), an adjusted pairwise test, and 

a test (Zp) based on the large sample variance of the pairwise estimator, which uses 

the ratio of the pairwise estimator to its large sample standard error for testing, that 

mom-sib correlation is zero. They found that under certain conditions, including that 

the data is from a normal d istribution and fam ily size is around 25, Zp has size and 

power comparable to the LRT, especially for the most common moderate-to-small 

values of the mom-sib correlation.

Velu and Rao (1990) studied testing procedures using the mean-sib correlation, 

the ensemble estimator, and Srivastava’s estimator for small sample situations. They 

derived the exact d istribution for Srivastava’s estimator because it  has smaller asymp­

totic variance, and gave sizes of the test based on the asymptotic variance of Sri­

vastava’s estimator. Since then there have been no discussions regarding testing for 

mom-sib correlations using either the ensemble or Srivastava’s estimator.

Along w ith  the likelihood based tests discussed above we propose to consider a 

test based on Srivastava’s estimator for testing H q. A brief description of these tests
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are provided next.

(a) Likelihood ratio  test (L R T )

By the asymptotic theory we have L R T  =  2 log L{9) — 2 log L(90) x\- Then we

reject H 0 i f  L R T  >  Xat l ' where x t a is the a  upper ta il cut off point of the chi-square 

distribution w ith  1 degrees of freedom.

(b) W a ld ’s test

Let pps be the M LE of the mom-sib correlation pps and 1(0) be the information 

m atrix evaluated at 6. Then by the large sample theory,

W rps

m / S ,V V n  /

A

where 1 ^ )  is the 5th diagonal element of the inverse of 1(9). We reject H 0 i f  W  >

A a,i

(c) R ao’s score test

Let 0 — (p,p, ps, ap, crs, pps, pss)' be the vector of parameters and 60 =  (ppo) 

ftsoi &po, ®so-, ppso, Peso)' be the vector of the M LE ’s under H 0. Then the Score test 

statistic is:

R =  s { d o ) ' ( i ( e 0) ) - 1s ( 9 0) d , x 21,

where S and 1(9a) are the score function and information m atrix evaluated at 

^o- Then we reject H 0 i f  R  >  x^ x ■

(d) A  test based on Srivastava’s estim ator

Srivastava (1984) introduced his remarkable estimator for the mom-sib correlation 

pps S which is given in (III. 1), and its asymptotic variance derived by Srivastava and 

Katapa (1986) is given in ( I I I .2). Then pps S ss N (pps S, A V(pps S)). Hence a test can 

be proposed as follows:

Reject H q i f (.pPs,sy > x l  j , where A V(ppSts)o is the asymptotic variance w ith
A V  (Pps,s) o

the nuisance parameter pss replaced by pss0, the estimator of pss under H q.
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As in the sib-sib case, using simulation we w ill evaluate the performance of various 

tests.

Familial data on n =  50 and 100 families w ith  unequal fam ily sizes ranging from 

1 to 5 children per fam ily are generated. When n =  50, using truncated negative 

binomial distribution, as described earlier in Chapters 2 and 3, we determine n*, the 

number of families w ith  i  children, i  =  1,2, ..,5. We have used n\ =  17, n2 =  15, 

n 3 =  9, r ii =  6, and n 5 =  3. Similarly, when n=100 we took n\ =  21, n2 =  32, 

n 3 =  29, n$ — 11, and n 5 =  7. Ten thousand data sets for each set of n and m, when 

pps =  0 and pps — 0.2 and 0.5 are generated and the test statistics are calculated. 

In the simulations we used pp =  0 ,ps =  0, ap =  1, =  1. Then the simulation

estimate of the size of the test when the assumed level of the test is a  =  0.05 is 

computed as 1Q Q00# { ? i >  ^  } i where T  is the value of the particular test statistic 

in use, for the ith  simulation, i  =  1,..., 10, 000. Notice that we computed the size 

of the test using two different values of pss. Based on the results we claim that for 

large n the effect of the nuisance parameter (pss) seems to be small. To further 

assess these tests we computed the powers. However, the powers are computed for 

only those tests whose sizes were closer to the nominal size. Power of each test is 

calculated as i '0 o0 0# {7 i >  }  when the data are generated under the alternative

hypotheses w ith  the values of pps — 0.1,0.2 and 0.25 and using pss — 0.2. Results 

(sizes and power of the tests) are provided in (Tables IV . 14 - IV.24) for different 

values of n, m  and for a variety of simulations. The estimated sizes and powers are 

denoted in tables using the same symbols described in the sib-sib case.

IV .3.1 Performance of the tests

The estimated sizes and powers of the tests, when data are simulated from normal 

distribution are provided in Tables IV.14 and IV.15. Note from the values in Table 

IV.14 that Scor6m and Moment values are very close to 0.05 (nominal level). LR T y 

and Waldpi are slightly higher than 0.05. The powers for Scores and M om ent tests 

are provided in Table IV.15. The values in  the table show clearly tha t both tests 

have at least 90% power. Based on the size and power of these tests, we recommend 

ScoreN for testing H 0 : pps — 0.

W hen d ata  are sim ulated from K otz type distribution, it is clear from the values 

in  Table IV . 16 tha t the normal likelihood based tests and the M om ent test have 

significantly larger size compared to a =  0.05. However, among the tests based on
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Kotz type likelihood, we find that the Scorex values are always less than or equal 0.05 

and LRTk  values are slightly higher than 0.05 (Table IV.17). Table IV.18 provides 

the power of LR T k  and Scorex- These tests have high power, and both of them 

achieved at least 97% power even for small values of pps.

Next we would like to study the performance of these two groups of tests, namely 

the M om ent test and the three likelihood tests based on normal and the three like­

lihood tests based on Kotz type, when data are generated from multivariate T  w ith  

different degrees of freedom, tha t is, d f=5 and df=10 (due to convergence problem we 

couldn’t  perform the test when df=3). The values in Tables IV . 19 - IV .22 show that 

regardless of the degrees of freedom of the T  distribution, the tests based on normal 

distribution along w ith  the non-iterative test do not perform well. On the other hand 

the tests based on Kotz type perform fa irly well. For example, the Scorex values 

are always less than or equal to 0.05 w ith  very high power. The LR T x  also performs 

well. Tables IV.20 and IV.22 provide the power of the LR T x  and the Scorex■ F i­

nally, for normal d istribution we find that LR T x  and Scorex values are <  0.05 and 

have very high power.

IV . 3.2 Recommendations

I f  i t  is known to us that the data under consideration are from normal distribution 

then we highly recommend using Scorex or the non-iterative test based on Srivas­

tava’s estimator. But i f  this can not be guaranteed, we highly recommend using 

Scorex based on its performance under different distributions and the fact that the 

test doesn’t  depend on nuisance parameters or on how large or small the sample size 

is.

IV .4  Testing the Equality  o f Sib-Sib Correlations for Tw o Independent 

Populations

Suppose there are two independent populations (or groups) and data on children 

of the families randomly selected from these populations are available. Suppose in 

the «th population there are n, families and the number of children in families are 

allowed to be different. We denote the number of children in the j t h  fam ily from the 

ith  population by mtJ.

Suppose Xijk, k — 1, j  =  i  — 1,2 are the observations on the
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kth  child of the j th  fam ily belonging to the ith  population. We assume for the ith  

population tha t E (x ijk ) =  Pi, va r(x ijk ) =  a f, and the sib-sib or intraclass correlation, 

corr(x ijk ,X ijk ') =  pssi for k /  k '. For every i, we have — oo <  p, < oo, o f >  0, and

(.......... ....——  ) <  p <  i .  Let the vector of observations on the jth  fam ily from

zth group be x y- =  ...,xumij)'. Then E (x ij)  =  p l} =  /L 1™,,. where l m is an

m  x  1 vector of all ones, and the variance covariance m atrix of is

var(X ij) =  £ i j  =  erf [(1 -  pssi)I mi. +  p6.s,J

1 Pssi • • • Pssi 
1 . . .  p

mi,

° iV ij{P ss i)  =
* S S I

y Pssi Pssi • ' • 1 J

where \ m is an identity m atrix of order m  and J TO is the m  x m  m atrix of all ones. 

Note that the determinant and inverse of respectively are

isp-i = K2r-[( i - + (mtj - 1 )Pssi)}
and

e l 1 =  1
?(i

In  this section, we consider the problem of testing equality of two sib-sib correla­

tions, namely testing H 0 : pSSi =  pSS2 =  pss vs. H x : pSSl ^  pssr

Note tha t the common values of pss under H 0 is a nuisance paremeter and an 

interest is also to estimate it.

The problem of testing equality of two intraclass correlations is considered by 

many authors. Donner and Bull (1983) considered this problem when fam ily sizes 

w ith in  a population and between populations were the same. Khatri, Pukkila, and 

Rao (1989) considered this when family sizes in the two populations were differ­

ent. These authors derived and studied the performance of the likelihood ratio 

test. For the problem of testing equality of several correlations, Konishi and Gupta 

(1989) have suggested a modified likelihood ratio test and a test based on Fisher’s 

z-transformat ion, Paul and Barnwal (1990) suggested a C (a) test, and Haung and 

Sinha (1993) derived the optimum invariant test, assuming the fam ily sizes w ith in  

population are the same, but different for different populations.

Young and Bhandary (1998) and Bhandary and Alam (2000) respectively con­

sidered the problems of testing the equality of two and three correlation coefficients
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when the fam ily sizes are unequal. They used Srivastava (1984)’s estimator of in tr­

aclass correlation and proposed the approximate likelihood ratio test and compared 

its performance w ith  two other asymptotic tests based on normal distribution. They 

also made the assumption that the variances for different populations are the same.

We consider the problem of testing H 0 : pSSl =  pSS2 =  pss vs. H 1 : pssi /  pSS2, 

using tests based on the likelihood theory. Let 9 — pSSi, p2 la \, pSS2)' be

the vector of the parameters and L(9) be the likelihood function of 9. Let 9 be 

the maximum likelihood estimator (M LE) of 9 which is obtained by maximizing 

L(9) and 90 be the M LE obtained by maximizing L(9) under the null hypothesis 

H o ■ PSS1 =  Pss2 =  Pss■ Note that 00 =  { P i^ \ , p ss,p 2,a 22lpssy  which is the same as 

9 but under the null hypothesis. We w ill assume that the two samples are drawn 

from multivariate normal, T, and Kotz type distributions when the fam ily sizes 

are unequal and the variances are different for different populations w ith  possibly 

different means but the same intraclass correlation coefficient, pss. The hypothesis of 

a common pss maybe be tested through the application of likelihood based tests for 

normal d istribution as well as the likelihood based tests for Kotz type distributions. 

We also propose using two non-iterative tests based on Srivastava’s combination 

estimator and its asymptotic variance.

The the likelihood ratio test statistic for testing H 0 vs. H i is given by

(a) Likelihood ratio  test (L R T )

A m )  

m

Then by the asymptotic theory (see Serfling, 1980), we have L R T  =  2 log L(9) — 

2 log L(90) Xi- We would reject H 0 i f  L R T  >  x la i , where x i a is the a th  upper 

ta il cut off point of the chi-square distribution w ith 1 degrees of freedom.

(b ) R ao’s score test

Let S(9) — dlogL(9)/d9  be the 6 x 1  vector of the score function and 

1(9) =  E [(d logL(9)/ 89)(dlogL(9)/ 89)'] be the 6 x 6  Fisher information matrix. 

Suppose S(9q) and 1(9Q) are the score and information matrices at 9 — 90, the 

M LE under null hypothesis. Then the score test statistic is

R =  S (9oy  ( l ^ y ' S  ( fo )  ■
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The asymptotic d istribution of R  is x 2 w ith  1 degrees of freedom (Serfling, 1980). 

Then reject H 0 i f  R >  x 2 t •

Note that S(9 )  =  (S i ( 9 ) ,  S ^tf))', where

Si (6)  =  (dlogL(9)/dp,i ,d logL (9 )/da ‘̂ ,d logL(9)/dp i )'

Next, we note that the Fisher information m atrix 2 ( 9 )  is a block diagonal m atrix 

containing two blocks of 3 x 3 matrices. Then 2 ( 9 ) ~ 1, the inverse of the Fisher 

information m atrix, w ill also be block diagonal. The fth  block, 2,, of the Fisher 

information m atrix (for the normal distribution, as an example) is the following:

/

Ti

E
j =i

0 \

E
j =1

rrijj
2 a j E

V
ni ( i\E Pimij{rnij — \) ____________

2cr? ( i - P i ) ( i + ( m o — i ) P i )  ^  2 ( 1 - P i ) 2 ( i + ( m y - 1 ) P i ) 2j=j. j= i

j =1rii
E

/

(c) W a ld ’s test

Suppose 1(0) is the fisher information m atrix of 0. I f  pSSi and pSS2 are the MLEs 

of the sib-sib correlations pSSl and pSS2 and 2(9) is the information m atrix eval­

uated at the MLE, 9 =  (/xj, a \, pSSl, p2, PSS2)', then the Wald test statistic

for testing H q vs. H i is:

W  = Pssi Ps

\ n i n2 J

where 2^,X) and 2^}^  are the 3rd and the 6th diagonal elements of (Z(0))_1 

respectively. From the asymptotic d istribution of MLEs it  is clear tha t W  

X 2  as n — > oo (Serfling, 1980). Hence we reject H 0 i f  W  > x 2 1-

(d) N on-iterative  tests

The two non-iterative tests we propose are based on Srivastava’s combined esti­

m ator of the intraclass correlation coefficient and its asym ptotic variance. T he two 

tests differ in the way we estimate the standard error of the difference between the 

intraclass correlation coefficients.
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The uniform ANOVA and the generalized weighted ANOVA estimators of pssi 

due to Smith’s (1957) can be w ritten as follows

. = . _________ ^E ^E jg ifo f* - ^ ) 2  . .
Pui (m i -  m) E jU (X ij  -  xwif  +  aui E ?=1 {Xiik -  % ) 2 ’ 1 ‘ >

where aui =  (rii -  1 )n~l E " i i ( l  “  bUi =  -  1).

- =  -  E " l i  E r = i (Xijk -  X jj)2______________

Pm (m i -  Hi) E j L l  m i j  (Xi j  -  Xwi) 2 + awi E”il E™=1 (Xijk ~  Xi j Y  ’
where awi =  bwi -  (n* -  1), bwi =  m* -  m ,:1 m|'> m i =  E”iimd> ^  =

m i E j = l m i j x i j i  x i j  ~  m i j Efc=l x i jk,

Then Srivastava’s combination estimator of pssi (Srivastava, 1993) is defined as

= , E .  ■ ( i v -3)I  A  PWi Py
The estimation of the common intraclass correlation, pss, using Srivastava’s com­

bination estimator (IV.3) can be done as follows. For i  — 1,2, suppose we write

Pvn =  1 — where and w2% respectively the numerator and denominator ex­

pressions on the right hand side of (IV. 1) and sim ilarly pui =  1 — where uu and 

U 2i  respectively the numerator and denominator expressions on the right hand side 

of (IV.2).

2 2 
i  i ^  1 w l i  ,  ~ 1 W itLet pw =  1 -  -  ^  —  and p„ =  1 -  -  ^  —  •

2 t 2 ^  u2i

Then we suggest =
1  +  Pw ~  Pu ’

as an estimator of the common intraclass correlation. Now using Srivastava (1993)’s 

expression for the asymptotic variance of his combined estimator we provide the 

following two results.

For the first, the test statistic and the asymptotic distribution are:

rprt (Pssi PsS )̂ J  2
JO =  , A X ,  as n — > °°.

AVx(ps) +  AV2(ps ) -  A l  

Hence we reject Ho U T S  >  x 2xa. And the second test is given by:

m n *  (P s s i  P ss^ j  2
1 b — ~; Ty /-— n--t t t t t — c a y, os n — > oo.

Hence we reject H 0 i f  TS* >  Xaa-
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IY .4 .1  Performance of the tests

Next, we compare the performance of the likelihood based tests based on multivariate 

normal d istribution w ith  the non-iterative tests based on Srivastava’s combination 

estimator using simulation study. Familial data on 30 families w ith  unequal family 

sizes ranging from 2 to 4 children per fam ily are simulated from a multivariate normal 

distribution. As before we computed the significance levels and power of these five 

tests. The results are presented in Table IV.25 and Figure 27. I t  shows that Scorex 

and TS  values are <  nominal level and do not depend on the nuisance parameter (pss, 

the common value of intraclass correlation). L R T x  values are slightly higher than 

0.05 for all values of pss. On the other hand we can see that W aldx  and TS* depend 

on the nuisance parameter, so both of these tests have size of test that is higher than 

0.05 when pss is small to moderate, and they both have size that is <  0.05 when 

pss is large (=  0.8). Next, we compare these tests when data are simulated from a 

Kotz type distribution. I t  is clear from the values which are provided in Table IV.26 

that the normal likelihood based tests and TS  and TS* tests have sizes larger than 

a  =  0.05. On the other hand, among the tests based on Kotz type likelihood, the 

Scorex and the LR T x  tests do not depend on the nuisance parameter. Moreover 

Scorex has size that is considerably close to 0.05. L R T x  values are always higher 

than the nominal level, but do not depend on the nuisance parameter (Table IV.27). 

The power comparison between Scorex and L R T x  is shown in Figure 28 and i t  is 

clear from the graph tha t both tests have similar power. We also notice that the 

performance of W aldx  is similar to W aldx  when data are from normal distribution. 

The Wald test, however, depends on the nuisance parameter and hence i t  is not a 

reliable test for testing Hq : pSSl =  pSS2 =  pss.

Next we compare all the above mentioned tests under the multivariate T  d istri­

bution. The results are recorded in Table IV.28. Clearly Scorex has the best size 

(which is less than or equal 0.05) and has a very high power (see Figure 29). Finally 

we study the performance of the likelihood based tests based on Kotz type distribu­

tion, but when data are simulated from a multivariate normal distribution. We find 

that Scorex values are always less than or equal to the nominal level. Further the 

power of Scorex do not differ from the power of Scorex, or the power of the TS 

(Table IV .29 and Figure 30).
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I V .4.2 Recommendations

I f  the sample under study is from a multivariate normal d istribution then we rec­

ommend using normal based score test or TS test because of their small nominal 

significance levels and due to the fact that these tests are independent of the nui­

sance parameter pss. However, i f  normality cannot be guaranteed then we recommend 

using the score test based on Kotz likelihood, Scorex, since our simulation results 

show tha t this test performs well under different distributions, and i t  doesn’t  depend 

on the nuisance parameter pss.

IV .5  Testing the E quality  of M om -S ib  Correlations for Tw o Indepen­

dent Populations

Suppose there are two independent populations and data on mother and her children 

are randomly selected. Suppose in the ith  population there are n* families and the 

number of children in families are allowed to be different. We denote the number of 

children in the j t h  fam ily from the i th  population by t/ijj.

Suppose Xij, j  =  1 ,..., n.(; i  =  1 ,2  are the observations on the mom’s score from 

the j t h  fam ily belonging to the ith  population and yy  =  is the vector

of children scores, such that y ^ k is the observation on the /ctli child of the j t h  family 

from the ith  population. We assume for the ith  population tha t E (x ij) =  p^, 

va r(x ij)  =  o 2n, E (y ijk ) =  psl, va r(y ijk) =  o2si and the sib-sib or intraclass correlation, 

corr (y i jk ,y i jkl) =  pssi and the mom-sib correlation, c o r r {x i j , y i j k ) =  ppsi. For every 

i, we have -o o  <  p^ ,  p si <  oo, c r ^ ,  <r2si >  0, p2psi <  p3Si, and 0 <  pssi <  1. Recall that 

the last two conditions are needed to keep the variance covariance m atrix positive 

definite.

Our main interest in this section is testing H 0 : ppsi =  ppS2 =  pps vs. H \ : 

PPsi /  PPs2■ However, estimating the common mom-sib correlation, pps, becomes an 

im portant problem as well.

The hypothesis of a common pps can be tested using likelihood based tests for 

normal d istribution as well as the likelihood based tests for Kotz type distribution. 

We also proposed two non-iterative tests based on Srivastava’s estimator and its 

asymptotic variance.

Let e =  (pp l, ps l, d p i, crs l , ppsl, pssi,  pP2 , PS2 ,e P2 ,<?s2 , PpS2 , Pss2 )' be tbe vector of 

parameters and L(9) be the likelihood function of 0. Let 6 be the maximum likelihood
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estimator (M LE) of 9 which is obtained by maximizing L{9 ) and 9q be the MLE 

obtained by maximizing L{9) under the null hypothesis H 0 : ppsi =  pp92 =  pps. Note 

tha t 90 =  (P'p!, p-si,(Tp l,(Ts l, Pps, pssl, p,p2, ns2,a p2,(TS2 , Pps, pss2y  which is the same as 

6, but under the null hypothesis.

We w ill assume that the two samples are drawn from multivariate normal, T, and 

Kotz type distributions, the fam ily sizes are unequal, and the means and variances 

are different for different populations.

(a) Likelihood ratio  test (L R T )

By the asymptotic theory we have L R T  =  2 log L(9) — 2 log L[8q) y 2. We

would reject H 0 i f  LR T  >  ^  where y » , is the a th  upper ta il cut off point 

of the chi-square distribution w ith  1 degrees of freedom.

(b) R ao’s score test

Let S(9) =  dlogL(9)/d9  be 12 x 1 vector of the score function and T (8) =  

E[(d logL(9)/d9)(d logL(9)/d9)'] be the 12 x 12 Fisher information matrix. 

S(e0) and T (60) are these when evaluated at 9 =  90, the M LE under null 

hypothesis. Then the score test statistic is

R =  S( 00) ' { I  ( f t O r ' S ^ o ) .

The asymptotic d istribution of R  is y 2 w ith  1 degrees of freedom. Then reject

H0 if R > x l 1-
Note that S(6) =  (Si(9), 82(6))', where

Si(9) =  (d logL(8 )/d fipi,d logL (9 )/d fisi,dlogL(9)/d(Tpi,dlogL(9)/d(Tsi 

,d logL(9)/dppsi,d logL(8)/dpssiY

Next, we note tha t Fisher information m atrix 1  (6) is a block diagonal m atrix 

containing two blocks of 6  x 6  matrices. Then (I  (0))-1 , the inverse of Fisher informa­

tion m atrix, w ill also be block diagonal. In  the following we provide the expressions 

for the ith  block, I psi, of Fisher information m atrix (for normal likelihood, as an 

example), which can be used in practice and inverse of which can be computed.
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T  . —-L,pSl —

-  —  * 1 2  
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- j r h  22
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0
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P p s i  u 
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symm h 55 Ppsi  ^56
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where wt =  (1  +  (m -  1 )pssi), and =  1 +  (m# -  l)p ssi -  m ^ p ^ .

m  n nz m  m

All = E f , *12 = E f ,  A22 = E if. A32 = E A31 = E if
j = l  i= l  j = l  j = l  j = l

n  m  . 2k _ mij u   Zmijgi+rriijp u mi,
-  A , "5T> " 4 4  -  2 - , -------5; > 45 -  2 .  — ,

^= 1  ^=1  j= i

722 712
, _  V '  ’m i j ( l + ( m i j - l ) p s s + m i jP ps2)  , m i j ( m i j - l )
“ 55 — gi2  > 46 — 2 ^  Si i

j = l  j = l

, _  m « K - l)  l  _  (">y~l)[ (m>3-l)(l-P»»)2+Si]
“ 56 — „4------- 1 “ 66 — Z ^   ^ ------------------ i

J= 1  * 1=1 1

(c) W a ld ’s test

Suppose Xps{9) is the Fisher information m atrix of 0. I f  ppsi and ppS2 

are the MLEs of the mom-sib correlations ppsi and ppS2 and Xps(6) 

is the inverse of the information m atrix evaluated at the MLE, 9 =

(Api? Psi2 “ "pij &si) Ppsi> Pssii Pp2 > Âs25 “ ”p2 i &s2 i Pps2 i Pss2 ) • Then the Wald test 
statistic for testing Ho vs. H i is:

\ 2/

W ps i  rpS2

\
K  (5,5) T ps (11,11)

“ 1 “ 2 /
where Xp^ 5 ^  and X~^n  n  ̂ are the 5th and the 11th diagonal elements of 

(Xps(6))~l . From the asymptotic d istribution of MLEs it  is clear that W  x\- 

Hence we reject H f) if  W  > Xa x •

(d ) N on-iterative  tests
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The two non-iterative tests we proposed are based on Srivastava’s estimator and 

its asymptotic variance (see ( I I I . l )  and ( I I I .2)). The two tests differ in the way 

we estimate the standard error of the estimated difference between the interclass 

correlation coefficient.

The common interclass correlation using Srivastava’s estimator can be estimated

as
2

£ ( « i  -  VPpsM_ *=i_________
Pps,S ~~ 2

£ (« •  -  !)
2 = 1

and this is what we suggest as an estimator of the common interclass correlation. 

Then the first test is given by,

(.Pps,Si Pps, S2 )
2

AVi

Hence we reject H q i f  T P  >  Xaa - The second test is

2

T P * =  A i r ^ Pa,S\  Ppl f r ^  T A  x f a s  n — > OO.AViipp^sJ  +  AV2pps<sJ

Hence we reject H 0 i f  TP * >  Xa.i-

Recall that A V {.) is the asymptotic variance expression for Srivastava’s estimator 

provided in ( I I I .2).

IV .5.1 Performance of the tests

First, we compare the performance of the normal distribution based likelihood tests 

w ith  the non-iterative tests based on Srivastava’s estimator as described in (d). To 

assess the performance of these 5 tests, we conduct a simulation study. Familial data 

on n  =30 families w ith  unequal fam ily sizes ranging from 2 to 4 children per fam ily 

are simulated from a multivariate normal distribution. Then the significance levels 

and power of these five tests are computed. The results are presented in  Table IV.30 

and Figure 31. Notice that the TP and Scorex values are close to the nominal level 

0.05. LR T x  values are moderately higher than 0.05 for all values of p , but W aldN

and TP *  values are significantly larger than the nominal level. Second, we want 

to study the performance of these tests under Kotz type distribution. Table IV.31 

shows tha t these tests have significantly higher estimated size compared to 0.05.
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Third, we consider the tests based on Kotz type type distribution. Table IV .32 

shows that Scorex and LR T x  values are close to the nominal level, but W aldK 

values are the highest compared to the other tests. Notice in this table that none of 

the tests based on Kotz type distribution depend on the nuisance parameter. The 

values given in Table 32 indicates that the Scorex and LR TK have the same power.

Fourth, we compare the performance of all the likelihood based tests, that is, 

those based on normal and Kotz type distributions as well as non-iterative tests, 

when data are simulated from T  distribution. Table IV.33, indicates that Scorex 

and LR T x  values are higher than the nominal level, but these values are smaller 

than the nominal levels for the other tests. These two tests also have high power 

(Table IV.33 and Figure 33).

Finally, we study the performance of the Kotz type likelihood based tests when 

data are from normal distribution. Scorex and LR T x  values are always less than or 

equal the nominal level w ith  very high power and the power values do not differ from 

either the power of Scorejv or the power of the TP test (Table IV.34 and Figure 34).

IV .5 .2  Recommendations

I f  we know that the sample under study are from a multivariate normal distribu­

tion then we recommend using normal based score test or TP test. However, i f  this 

cannot be guaranteed then we recommend using score test based on Kotz type d istri­

bution since our simulation results show that this test performs well under different 

distributions, and it  doesn’t  depend on the nuisance parameter pps.

IV .6  Analysis of G alton ’s D a ta

For illustration of our procedures, that is, of testing the equality of two sib-sib and 

two mom-sib correlations, we divide Galton’s data set into two groups. The first 

group would contain 1 0 2  families and the second group would contain the remaining 

103 families. From the first group we consider data on only daughters and from the 

second we consider data on only sons. For the first group, the pairs: (the number of 

daughters, the number of families w ith  those many daughters) are (1, 25), (2, 21), (3, 

12), (4, 10), (5, 5), (6 , 4), (7, 1) (8 , 1), and (9, 1). That is, there are 25 families w ith  

one daughter, 21 families w ith  two daughters and so on. Sim ilarly these pairs for the 

second group from where only boys are selected are (1, 10), (2, 28), (3, 22), (4, 11),
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(5, 4), and (6 , 4). I f  pdd is the correlation between the daughters from the first group 

and pss is the correlation between the sons from the second group then our interest is 

to test the null hypothesis pdd =  pss (=  p). The maximum likelihood estimates of pdd, 

pss< and p, respectively are, pdd =  0.2938, pss =  0.2023, and p =  0.2489. Srivastava’s 

estimators are pddS =  0.3080, pssS =  0.2016, and ps =  0.2545.

The P-values of the tests are provided in the table below. Clearly all tests fail to 

reject Ho at a =  0.05 significant level.

LRT_N Wald_N ScoreJNf LRTJK WaldJC Score_K TS T S *

0.4063 0.4105 0.4004 0.3798 0.3094 0.4457 0.3635 0.3607
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Table IV. 1
Size o f testing H 0 : pss =  0 when sim ulation is from  norm al

n m LRTx W aldx Scores Moment
~ 50 l< m < 6  0.0687 0.1276 0.0445 0.0454

100 0.0553 0.0855 0.0480 0.0452

T ab le  I V .2

Power of testing Hq : pss =  0 when simulation is from normal, n=100 

m pss L R T x  S cores M om e n t
0 0.0553 0.0480 0.0452

0.1 0.3442 0.3795 0.3129
0.2 0.8314 0.8452 0.7857

0.25 0.9479 0.9480 0.9287

T ab le  IV .3
Size o f testing H 0 : pss =  0 when simulation is from Kotz type distribution

n m L R T x  W a ld x  S cores M o m e n t
n=50 l<m <6 0.1087 0.1163 0J576 0.1780

n=100 l<m <6 0.1106 0.0861 0.1683 0.371

T ab le  IV .4
Size o f testing H q : pss =  0 when simulation is from Kotz type distribution

n m LRTk  W aid k  Scorex
n=50 l< m < 6  0.065±.001 0.0996±.001 0.059±.001 
n=100 l< m < 6  0.053±.002 0.065±.003 0.063±.001

T a b le  IV .5
Power of testing H q : pss — 0 when simulation is from Kotz type distribution,

n—100
m pss LRTx Scorex 

l< m < 6  0 0.0510 0.061
0.1 0.2976 0.3659
0.2 0.7693 0.8129
0.25 0.9060 0.9258

T a b le  IV .6
Size of testing H 0 : pss =  0 when simulation is from T  distribution, with df=3

n m LRTx W aldx Scorex LRTx W aldx Scorex Moment
50 l< m < 6 0.2700 0.3436 0.2064 0.1307 0.2319 0.047±.003 0.2734

1 0 0 l< m < 6 0.3097 0.3537 0.2758 0.1042 0.1908 0.054±.001 0.3467
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Table IV. 7
Power of testing H q : pss =  0 when simulation is from T  distribution, with df=3 and

n=100
m pss Scorex

l< m < 6  0 0.0559
0 .1 0.2759
0 .2 0.6874
0.25 0.8534
0.3 0.9421

T ab le  IV .8
Size of testing H 0 : pss =  0 when simulation is from T  distribution, with df=5

n L R T x  W aldx Scorex LRTx W aldx Scorex Moment
“ 50 0.1551 0.2216 0.1173 0.1000±.003 0.1859 0.0300±.001 0.1549
100 0.1561 0.1933 0.1411 0.0663±.002 0.1441 0.033±.001 0.1744

T ab le  IV .9
Power of testing Ho : pss =  0 when simulation is from T distribution, with df=5 and
__________________________________ n=100_________________________________

m pss LRTx Scorex
0 0.0663 0.0302

0 .1 0.3109 0.2538
0 .2 0.7767 0.7160

0.25 0.9114 0.8750
0.3 0.9736 0.9576

T ab le  IV .1 0
Size of testing H 0 : pss =  0 when simulation is from T  distribution, with df=10

n m LRTx W aldx Scorex LRTx W aldx Scorex Moment
50 l< m < 6 .1 0 2 .163 ,071±.002 ,085±.002 .174 .024±.002 .082

1 0 0 l< m < 6 .088 .119 .078±.001 ,057±.001 .127 .025±.00 .09

T ab le  I V . l l

Power of testing H q ■ pss — 0 when simulation is from T  distribution, with df—10
and II£

m pss LRTx Scorex
l< m < 6  0 0.0677 0.0309

0 .1 0.3155 0.2561
0 .2 0.7873 0.7274
0.25 0.9176 0.8830
0.3 0.9776 0.9628
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Table IV.12
Size o f testing H 0 : pss =  0 when sim ulation is from  norm al d istribution

n m L R T x  W a ld x  S c o re s  L R T k  W a ld x  S c o re x  M o m e n t

”50 l< m < 6  0.0687 0.1276 0.0445 0.0760 0.1627 0.0191 0.0454
100 0.0553 0.0855 0.0480 0.0515 0.1170 0.0201 0.0452

T ab le  IV .1 3
Power of testing H q : pss — 0 when simulation is from normal distribution, n=100

m p ss L R T x  S c o re x  L R T x  S c o re x  M o m e n t
l< m < 6  0 0.0553 0.0480 0.0515 0.0201 0.0452

0.1 0.3442 0.3795 0.3071 0.2440 0.3129
0.2 0.8314 0.8452 0.7889 0.7331 0.7857
0.25 0.9479 0.9480 0.9272 0.8891 0.9287

T ab le  IV .1 4

Size o f testing H q : pps =  0 when simulation is from normal distribution

n Pss L R T x W a ld x S c o re x M o m e n t

50 0 .2 0.059±.001 0.072±.003 0.052±.001 0.05±.003
50 0.5 0.057±.002 0.068±.003 0.052±.001 0.051±.003

1 0 0 0 .2 0.053±.003 0.058±.002 0.051±.002 0.051±.002
1 0 0 0.5 0.053±.003 0.06±.003 0.051±.003 0.051±.004

T ab le  IV .1 5
Power of testing Ho : pps =  0 when simulation is from normal distribution

n pms S c o re x  M o m e n t
”100 0 0.0511 0.0518

100 0.1 0.273 0.253
100 0.2 0.7854 0.7357
100 0.25 0.9348 0.9051
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Table IV.16
Size o f testing H q  : pps =  0 when sim ulation is from  Kotz type d istribution

n Pss LR T n W aldjj ScoreK Moment
50 0 .2 0.115±.004 0.116±.004 0.126±.004 0.086±.005
50 0.5 0.116±.006 0.122±.005 0.118±.007 0.099±.007

1 0 0 0 .2 0.108±.002 0.102±.003 0.118±.002 0.089±.002
1 0 0 0.5 O .llli.O O l 0 .1 1 2 ± .0 0 1 0.114±.001 0.099±.002

T a b le  IV . 17
Size of testing H 0 : pps =  0 when simulation is from Kotz type distribution

n Pss LR T k WaldK ScoreK
50 0 .2 0.056±.002 0.07±.004 0.051±.003
50 0.5 0.056±,004 0.07±.004 0.052±.003

1 0 0 0 .2 0.052±.002 0.058±.002 0.049±.002
10 0 0.5 0.052±.002 0.058±.002 0.05±.002

T ab le  IV .1 8
Power of testing H q : pps =  0 when simulation is from Kotz type distribution

n Pps L R T k ScoreK
1 0 0 0 0.055 0.051
1 0 0 0 .1 0.2397 0.2354
1 0 0 0 .2 0.7185 0.7092
1 0 0 0.25 0.8913 0.8863
1 0 0 0.3 0.9750 0.9729

T ab le  IV . 19
Size o f testing H 0 : pps =  0 when simulation is from T distribution, with df=5

n Pss L R T k WaldK ScoreK L R T k WaldK ScoreK Moment
50 .2 .157 .178 .152 .065±.001 .08±.001 ,051±.001 .143
50 .5 .158 .177 .15 .061±.003 .082±.003 .0523±.001 .145

1 0 0 .2 .166 .176 .169 .059±.002 .073±.004 ,051±.002 .159
1 0 0 .5 .17 .18 .17 .059±.004 .072±.005 .053±.004 .166
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Table IV.20
Power o f testing H 0 : pps =  0 when sim ulation is from  T  distribution, w ith d f=5

n Pms Scorex
1 0 0 0 0.0521
1 0 0 0 .1 0.2245
1 0 0 0 .2 0.6699
1 0 0 0.25 0.8717
1 0 0 0.3 0.9661

T ab le  IV .2 1
Size o f testing H 0 • Pps 0  when simulation is from T  distribution, with df=10

n Pss LRTx W aldx Scorex LRTx W aldx Scorex Moment
50 .2 .092 .11 .086 .052±.003 .074±.004 .04±.002 .08
50 .5 .093 .107 .086 ,053±.001 .071±.001 ,045±.002 .083

1 0 0 .2 .091 .099 .087 .051±.003 ,062±.004 .044±.004 .085
1 0 0 .5 .087 .095 .084 .047±.001 ,056±.002 .043±.001 .084

T a b le  IV .2 2

Power of testing H q : p ps =  0 when simulation is from T  distribution, with d f= l 0

n pms LRTk  ScoreK
100 0 0.055 0.048
100 0.1 0.235 0.212
100 0.2 0.713 0.686
100 0.25 0.979 0.974

T ab le  IV .2 3

Size o f testing H q : p ps =  0 when simulation is from normal distribution

n Pss LRTx W aldx Scorex LRTx Waldx Scorex Moment
50 .2 .059 .072 .052 .048±.001 .069±.001 .036 .05
50 .5 .057 .068 .052 .044±.001 .061±.002 .038 .051

1 0 0 .2 .053 .058 .051 ,042±.00 .053±.001 .035 .051
1 0 0 .5 .053 .059 .051 .042±.002 .051±.002 .037 .051

T ab le  I V .24
Power o f testing H q : p ps =  0 when simulation is from normal distribution

n Pms Scores LRTx Scorex Moment
100 0 0.0511 0.0427 0.0366 0.0518
100 0.1 0.273 0.231 0.211 0.253
100 0.2 0.7854 0.7256 0.6972 0.7357
100 0.25 0.9348 0.9020 0.8855 0.9051
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T ab le  IV .2 5
Size of testing H 0 : pssl =  pssl =  pss when simulation is from normal distribution,

when a =  0.05

Pss LRTx W aldx Scorex TS TS*
.2 .055±.003 .07±.003 .049±.003 .047±.003 ,059±.003

.5 .057±.001 .063±.002 ,053±.003 ,049±.002 .058±.001

.8 .059±.002 0.042±.001 .053±.003 ,0441±.004 ,04±.003

T ab le  IV .2 6

Size of testing Ho : pssl =  pssl — pss when simulation is from  Kotz type distribution,
when a =  0.05

pss LRTx W ald^ Scorex TS TS*
.2 .1111 .1146 .1183 .0996 .1168

.5 .1119 .1122 .1139 .0994 .1121

.8 .1177 .092 .1144 .0972 .0887

T ab le  IV .2 7
Size o f testing H 0 : pssl =  pssl =  pss when simulation is from  Kotz type distribution,

when a  =  0.05

Pss LR T k W aldx Scorex
.2 .057±.004 .072±.005 .053±.005

.5 .056±.002 ,063±.002 .054±.002

.8 .055±.003 .036±.003 .053±.004

T ab le  IV .2 8
Size of testing H q : pssl =  pssl =  pss when simulation is from T  distribution, when

a =  0.05

Pss LRTx W aldx Scorex LRTx W aldx Scorex TS TS*
.2 .1458 .1667 .1352 .064±.002 ,09±.002 .049±.002 .1382 .1575

.5 .1473 .1578 .1394 .06±.002 ,068±.002 .053±.003 .1369 .1491

.8 .1476 .1185 .1406 .058±.002 ,053±.002 .053±.002 .1257 .1147
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Table IV.29
Size of testing Ho : pssl =  pssl =  pss when simulation is from normal distribution,

with a  =  0.05

Pss L R T m W a ld ^ ScoreN L R T k W aldK ScoreK T S TS*
.2 .055 .07 .049 ,044±,002 .066±.003 ,033±.001 .047 .059

.5 .057 .063 .053 .042±.002 .05±.001 .036±,002 .049 .058

.8 .059 .042 .053 .04±.003 .024±.003 .036±.003 .0441 .04

-♦— LRTN  

«  Score_N  

nfc-TS  

h is*
0.5

I  0.2

1.0

rho2

—♦— LRTN  

*  Score_N  

— TS
0.5

rho2

LRTN

Score_N

TS

TS*

0.5

1.0

rho2

F ig u re  27. Power estimated w ith nominal level a  =  0.05 for testing H 0 : pssl =  
Pss2 ~  Pss when simulation is from normal distribution.
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F ig u re  28. Power estimation using a =  0.05 for testing H 0 : pssl =  pss2 =  pss when 
simulation is from Kotz type distribution.
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F ig u re  29. Power estimation using a =  0.05 for testing H 0 : pssl =  pss2 =  pss when 
simulation is from T  distribution, w ith  df=5.
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F ig u re  30. Power estimated w ith nominal level a =  0.05 for testing Ho : pssl =  
Pss2 =  Pss when simulation is from normal distribution.
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T ab le  IV .3 0

Size of testing H q : ppsl =  pps2 =  pps when simulation is from normal distribution,
with a =  0.05

pvs LRTn  WaldN ScoreN TP  TP*
.1 .061±.005 .07±.004 .057±.004 .056±.004 .07±.005

.3 ,059±.001 .065±.001 ,055±.001 .054±.002 .064±.002

.5 .06±.001 .061±.005 ,054±.001 ,05±.003 .059±.001

T ab le  IV .3 1

Size o f testing H 0 : ppsl =  pps2 =  pps when simulation is from Kotz type distribution,
with a =  0.05

pps LRTn  WaldN ScoreN TP  TP*
.1 .113±.002 ,12±.002 ,11±.007 ,102±.003 ,119±.003

.3 .11±.004 ,114±.005 .11±.002 ,1±,005 .113±.004

.5 .lli.O O l .l li .0 0 1  .lli.O O l .096±.001 .104±.008

T ab le  IV .3 2
Size of testing H 0 : ppsl =  pps2 =  pps when simulation is from Kotz type distribution,

with a =  0.05

Pps LRTk WaldK Scorex
.1 .059±.001 .069±.001 .055±.001

.3 ,06±.002 .067±.003 .056±.001

.5 .058±.002 .06±.002 ,054±.002

T ab le  IV .3 3

Size o f testing H 0 : ppsl =  pps2 =  pps when simulation is from T, with df=5 and
a  =  0.05

Pps LRTn WaldN ScoreN LRTk WaldK ScoreK TP rpp*

.1 .1535 .1656 .1481 ,067±.003 .078±.003 ,061±.003 .1483 .1638

.3 .1568 .1666 .1513 .0 6 5 ± .0 0 3 .0 7 3 ± .0 0 3 .0 5 9 ± .0 0 2 .1526 .1666

.5 .1549 .1561 .147 .064±.001 .066±.001 ,058±.001 .1417 .1507
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Table IV.34
Size o f testing H 0 : ppsl =  pps2 =  pps when simulation is from normal distribution,

with a  =  0.05

Pps L R T ^ WaldN ScoreN L R T k W  aid K ScoreK T P ijpp*

.1 .061 .07 .057 ,04 9± .00 4 ,05 8± .00 3 .0 4 4 ± .0 0 4 .056 .07

.3 .059 .065 .055 .04 5± .00 2 ,051± .002 .04 1± ,00 2 .054 .064

.5 .06 .061 .054 .046± .001 ,05± .001 .04 1± .00 1 .05 .059
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F ig u re  31. Power estimation of mom-sib using a  =  0.05 for testing Ha : ppgl =  
PpS2 — Pps when simulation is from normal distribution.
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F ig u re  32. Power estimation of mom-sib using a =  0.05 for testing Hq : ppsl =  
PPs2 =  PpS when simulation is from Kotz type distribution.
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F ig u re  33. Power estimation of mom-sib using a — 0.05 for testing Ho : ppsl =  
Pps2 =  Pps when simulation is from T  distribution, w ith  df—5.
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