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ABSTRACT

ESTIMATING FAMILIAL CORRELATIONS USING A
KOTZ TYPE DENSITY

Amal Helu
Old Dominion University, 2005
Director: Dr. Dayanand N. Naik

Two useful familial correlations often used to study the resemblance between the
family members are the sib-sib correlation (p,,) and the mom-sib or parent-sib cor-
relation (p,,). Since their introduction early in the last century by Galton, Fisher
and others, many improved estimators of these correlations have been suggested in
the literature. Several moment based estimators as well as the maximum likelihood
estimators under the assumption of multivariate normality have been extensively
studied and compared by various authors. However, the performance of these es-
timators when the data are not from multivariate normal distribution is poor. In
this dissertation, we provide alternative estimates of p,, and p,, by minimizing the

objective function,
nlog| ]+ [(xi — ) S7Hx; — w3,
i=1

where ¥ is a positive definite matrix with an appropriate structure involving p,,
and p,,. Using extensive simulations from different multivariate distributions and
using the bias, the mean squared error, and Pitman probability of nearness we have
established that the alternative estimators are better than the existing estimators in
most situations. The problems of testing of hypothesis about p,, and p,, and those
of testing the equality of two sib-sib correlations and two mom-sib correlations are
also considered. Alternative tests using Srivastava’s well known estimators of sib-sib
and mom-sib correlations and their asymptotic variances are proposed and compared
using simulations. The proposed tests have better estimated sizes and powers than
the likelihood based tests when data are from a multivariate normal distribution.
Proposed methods are illustrated on Galton’s famous classical data set on statures
of families. These data are important, in that, the original note book on which these

data were recorded by Galton in 1886 has been recently discovered and digitalized.
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CHAPTER 1
INTRODUCTION

An interest in the study of familial correlations has been around for a long time,
since Galton (1888). Galton worked with data on human stature of family members.
In an attempt to study the relationships between various measurements on parents
and their children, Galton and then Pearson (1896) considered different correlation
measures, such as, sib-sib (or child to child ) and parent-sib (or mom-sib) correlations.
Numerous attempts have been made since then to provide better estimates of these
correlations. Even after more than one hundred years, the study of these correlations
have not ceased to exist. The problems of studying the familial correlations such as
sibling-sibling (sib-sib) and parent-sibling (mom-sib) correlations are still important
is clear from the vast amount of literature that as is being produced. The literature
mainly deals with estimation of sib-sib (or intraclass) correlation (p,,) and mom-
sib (or interclass) correlation (p,,, or p,,) under equal and unequal family sizes.
Several articles also have considered the problems of testing of hypothesis about
these parameters. There are also some articles discussing testing problems involving
equality of these correlations from two or more populations.

Pearson (1896) proposed estimating sib-sib correlation by computing the sample
product moment of every possible pair of observations from siblings. Fisher (1925)
proposed a sib-sib correlation based on the analysis of variance (ANOVA) and this
was appropriate for the balanced case where sib-ships are identical in size. Fisher’s
ANOVA estimator was generalized by Fieller and Smith (1951) to accommodate
unbalanced sibship sizes. Smith (1957) proposed a further improvement by asso-
ciating a weight with each component of the between sum of squares, yielding the
uniform ANOVA (p,) estimator in the case where weights are equal. Donner and
Koval (1980) derived the maximum likelihood estimator of the sib-sib correlation
for the unbalanced case. Using simulations from a multivariate normal distribution
they showed their MLE outperforms the ANOVA intraclass correlation coefficient for
extreme values of sib-sib correlation.

Although many measures of correlation among siblings have been proposed, each

one has its own deficiency. For example, Pearson’s pairwise intraclass correlation
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coefficient weights a sibship of size 10 by 45 times as much as a sibship of size 2, al-
though it does not provide 45 times as much information. The dependence on balance
limits the usefulness of Fisher’s estimator, since families vary in size. While Fieller
and Smith’s estimator addresses both Pearson’s and Fisher’s problems, providing
only 5 times as much weight in this instance, their estimator is inefficient for small
sib-sib correlations. Although Smith’s estimator, p,, addresses several weaknesses of
previous estimators, it also possesses Fieller and Smith’s inefficiency for small sib-sib
correlations. While Donner and Koval’s ML estimator outperforms the ANOVA and
Pearson’s correlation measures for the unbalanced case, there is no closed form for
this measure. Keen (1993) showed that the product-moment estimators and ANOVA
estimators have similar efficiencies, but again noted that efficiencies are cumbersome
to calculate without closed forms in the unbalanced case, even with the aid of nu-
merical methods.

Srivastava (1993) suggested an estimator which is an efficient combination of two
non-iterative estimators proposed by Smith (1957) and showed that this combination
estimator has better efficiency than either one of them.

Estimation of the mom-sib correlation has been of interest since early 1950’s.
Kempthorne and Tandan (1953) used a linear model to estimate this interclass cor-
relation under the assumptions that o2= 012,, that is, the parent and sibling variances
are the same and p,,, the intraclass correlation, is given. Since these assumptions are
unnecessarily restrictive, another measure called the pairwise estimator, was intro-
duced. The pairwise estimator of mom-sib correlation (r,) is computed by pairing
values for each sibling in the family with the parent’s value. While the pairwise
estimator has intuitive merit, it violates the required assumption that the data are
independent.

Other estimators used in lieu of the pairwise estimator are the sib-mean estimator,
where the mean value for all siblings is paired with the parent’s value, and the random
sib estimator, where a single sibling from the family is chosen randomly and this
sibling’s value is paired with the parent’s value. Rosner, Donner and Hennekens
(1977) proposed the ensemble estimator, based on the random sib estimator, and
compared these three measures to the pairwise estimator. This ensemble estimator
computes an expected mom-sib correlation over all possible random mom-sib pairings
as described in the random sib estimator. Rosner, et al. (1977) determined that the

ensemble and pairwise estimators were superior to both the sib-mean and random
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sib estimators based on smallest MSE criteria. And when p,,; is small (<=0.1),
the pairwise estimator outperforms the ensemble estimator and when p,, is large
(>=0.5), the ensemble estimator outperforms the pairwise estimator.

The linear model approach was re-examined by Mak and Ng (1981) following
Rosner’s (1979) development of MLEs for the balanced and unbalanced cases. Mak
and Ng’s approach simplified derivation of the MLEs by using a linear model, such
that given the mother’s value, the mom-sib correlation can be determined and tested.
Their approach assumes, as in Kempthorne (1953), that only the mother’s score is
random, whereas Rosner’s approach allows both mom and sib scores to be random.
Srivastava (1984) gives an estimate of mom-sib correlation for the unbalanced case
that has a similar bias, but smaller asymptotic variance compared to the ensemble
estimator, as noted in Velu and Rao (1990). Srivastava and Katapa (1986) provided
the asymptotic variance of the Srivastava estimator.

Since the introduction of Srivastava’s estimator, variants of the traditional in-
terclass correlations have been proposed, but in each case compared to Srivastava’s
estimator and the ensemble estimator. Two comparisons by Srivastava and Keen
(1988) and Eliasziw and Donner (1990) determine that Srivastava’s estimator is uni-
formly more efficient than the ensemble estimator, but the magnitude is relatively
small. Thus, both estimators perform similarly and choice of approach lies in the
small increase in efficiency by using the Srivastava estimator.

Although not directly applicable to familial data, in the same spirit, Khattree
and Naik (1994) considered the problem of estimating interclass correlation under a
circular covariance matrix and this work was later expanded by Hartley (1997) and
Hartley and Naik (2001).

Testing theory for the intraclass and interclass correlations was discussed in the
late 1970s and early 1980s. In 1984, around the same time when Srivastava proposed
his estimator (but before Srivastava discussed testing), Donner and Bull (1984) com-
pared four methods for testing that the mom-sib correlation is zero. The four tests
they considered were the likelihood ratio test (LRT), a test based on the large sample
variance of the maximum likelihood estimator (MLE), an adjusted pairwise test, and
a test (Zp) based on the large sample variance of the pairwise estimator. Z, uses the
ratio of the pairwise estimator to its large sample standard error for testing. They
found that under certain conditions, including that the data are from a normal dis-

tribution and family size is around 25, Z, has size and power comparable to the LRT,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



especially for the most common moderate-to-small values of the mom-sib correlation.

Once the ensemble and Srivastava’s estimators were introduced, comparison of
testing procedures using these was done. For example, Konishi (1985) proposed two
tests based on pairwise and ensemble estimators and via simulation from the normal
distribution compared these estimators with the LRT. His simulation results showed
that the LRT was most efficient. Velu and Rao (1990) studied testing procedures
using the mean-sib correlation, the ensemble estimator, and Srivastava’s estimator
for small sample situations. They derived the exact null distribution of Srivastava’s
estimator.

The problem of testing the equality of sib-sib correlations for two populations was
considered by Donner and Bull (1983) when family sizes within a population and
between populations were the same, and by Khatri, Pukkila, and Rao (1989) when
family sizes in the two populations were different. These authors derived and studied
the performance of the likelihood ratio test. For the problem of testing equality of
several correlations, Konishi and Gupta (1989) have suggested a modified likelihood
ratio test and a test based on Fisher’s z-transformation. Paul and Barnwal (1990)
suggested a C(a) test, and Haung and Sinha (1993) derived the optimum invariant
test, assuming the family sizes within populations are the same, but different for
different populations.

Young and Bhandary (1998) and Bhandary and Alam (2000) respectively con-
sidered the problems of testing the equality of two and three correlation coefficients
when the family sizes are unequal. They used Srivastava (1984)’s estimator of intr-
aclass correlation and proposed the approximate likelihood ratio test and compared
its performance with two other asymptotic tests based on normal distribution. They
also made the assumption that the variances for different populations are the same.

It appears that there is not much work done for testing the equality of two parent-
sib correlations.

So far in the literature, all the comparisons, whether it is of different estimators
of intraclass or interclass correlations or of testing procedures for testing hypothesis
about these correlations, is performed mostly via simulation experiments where the
data are generated from multivariate normal distribution. The performance of these
methods is unclear when the data may be from other symmetric but heavy tailed
distributions. The main objective of this thesis is to investigate the performances of

various procedures under non-normal distributions, such as a Kotz type distribution
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and multivariate T distribution. The T distribution has been used in the context of
repeated measures study by Lange et al. (1989).
The Kotz type distribution, the probability density function (pdf) of which is

provided below, has fatter tail regions than that of multivariate normal distribution.

foomE) =c| 272 exp {—[(x — u)S7 (x — p)},

2
where p € RP, X is a positive definite matrix and ¢ = 5%(—1% .
w2 T(p

See Plungpongpun (2003) and the references therein for properties and other
details about this distribution. The contour plots of the pdf of this and normal
distribution for the same set of parameters are provided in Figures I and 2 for com-
parison. Notice that the Kotz type density has a much narrower peak as compared
to normal. Hence it is clear that the area covered in the tail regions of Kotz type
density is larger than that under a normal density.

The Kotz distribution we have considered here was used in the context of multi-
variate analysis of variance and discriminant analysis by Plungpongpun (2003) and
Naik and Plungpongpun (2004). The motivation behind using this distribution was
two fold. First, by extensive simulation study it was determined in Plungpongpun
(2003) that the tests for multivariate normality against other symmetric heavy tailed
alternatives are not powerful and hence one cannot easily guaranty, based on these
tests, that the data in hand are multivariate normal. Secondly, this particular Kotz
type distribution has the property that the MLE of the location parameter is the
generalized spatial median, which is a robust ( against outliers) estimate of location
parameter. It is expected that the estimators of scale parameters are also robust.

Hence in this thesis, we have adopted this density for estimation of scale matrix,
in particular the intra and interclass correlations. Taking this Kotz type distribution
as a model for fitting the familial data, we derive the maximum likelihood estimates
and asymptotic tests based on the maximum likelihood theory. Our interest then
points to a comparison of these estimators and tests with those derived using the
maximum likelihood theory for multivariate normal distribution.

While it is true that the normal distribution based maximum likelihood estima-
tors may be asymptotically biased under the assumption that the true model is a
Kotz type distribution and vice versa, it is not uncommon in statistics to compare
such estimators using the mean squared error and other criteria, such as, bias and

Pitman nearness probability. In the statistical literature, in fact, there is a whole
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topic named “biased estimation” under which comparison of biased and unbiased
estimators is routinely done. Of course one would not use the variance of the esti-
mators for comparison here. For example, in the standard linear regression theory,
the least squares estimators (which are unbiased) are routinely compared with the
ridge regression estimators (which are by construction biased).

In this thesis we investigate the problem of estimation of the sib-sib correlation
in Chapter 2 and that of mom-sib correlation in Chapter 3. Using simulation exper-
iments and data from normal, Kotz type and T distributions, we compafe different
estimates by comparing their bias, mean squared error, and Pitman nearness proba-
bility.

Chapter 4 deals with four different testing of hypothesis problems. Testing of
sib-sib correlation equal to zero is considered first. We use two sets (one under
multivariate normal distribution and another under Kotz type distribution) of three
well known asymptotic likelihood theory based tests, namely the likelihood ratio test
(LRT), the Wald’s test, and Rao’s score test. These tests along with a test based
on Srivastava’s estimator are compared using extensive simulations. The data are
simulated from different distributions. The simulation estimate of the sizes of the
tests and powers are used for comparison. The problem of testing mom-sib correlation
is zero is considered next and a similar type of comparison study is performed.

Next, the problems of testing the equality of two sib-sib correlations and testing
the equality of two mom-sib correlations are considered. By adopting Srivastava’s
estimate we have provided estimates of common correlations under each of the null
hypothesis. Alternative tests based on Srivastava’s estimate and its asymptotic vari-
ance are proposed and compared with the likelihood based tests.

Recently, Hanley (2004) worked with family data on human stature obtained
directly from Galton’s note books (cf. Galton, 1886, 1889). The data consists of
heights of 205 families with the number of children ranging from 1 to 15. For more
details on this data set and on how to obtain it, see Hanely (2004), or visit http :
//www.epi.mcgill.ca/hanely/galton. At the end of each chapter we illustrate our
procedures on Galton’s data.

All the computations and simulations are performed using SAS software. To

obtain the programs electronically, send a request by e-mail to dnaikQodu.edu.
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Figure 1. Contours of Bivariate normal distribution.
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Contours of Bivariate Kotz Distribution
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CHAPTER I1

ESTIMATION OF SIB-SIB CORRELATIONS

II.1 Introduction

To measure the degree of resemblance between family members with respect to a
specified characteristic, sib-sib correlation and parent-sib correlation are used. Nu-
merous methods have been proposed in the literature to estimate the sib-sib or in-
traclass correlation (p,,) since its introduction by Galton (1888). Pearson (1896)
suggested estimating it by computing the product moment over every possible pair
of observations from siblings. Fisher (1925) suggested using the analysis of variance
(ANOVA) method for the balanced data where the sibship sizes are all equal. Fisher’s
estimator was generalized by Fieller and Smith (1951) to accommodate unbalanced
sibship sizes. Smith (1957) proposed a further improvement by associating a weight
with each component of the between sum of squares.

Suppose z;;, j = 1,...,m;; ¢ = 1,...,n is an observation on the jth child of the
ith family. Let the vector of observations on the ith family be x; = (z1, ..., Tim, )-
Then the sib-sib correlation coefficient p,, is the correlation coefficient between any
z;; and x5 for § # j'.

The variance covariance matrix of x; then can be written as

CO’U(Xi) =3; = 02[(1 - pSS)Imi + pss']mi]

L pys oo Pss
—e| Pt e v,
pSS pss M 1

2

where 0 = var(z;;), and I, is an identity matrix of order m; and J,,, is the m; x m;

matrix of all ones.
The uniform ANOVA estimator (p,,,) of Smith (1957) in the case where weights
are equal is given by
n o noomy
>o(F — 7,)? — E=E) S S (g 7)?

R i=1 i=1j=1

pu = n D3 n m; ) (II].)
So(@ — 3,2 — B2 S S (@702

i=1 i=1j=1
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n
where %, = n~! Z:E,,a,—l— d—nlzalandN Zm,
Smith addltlonally proposed a generahzed welghted AN OVA estimator, p,,, which

can be rewritten with weights p; = m;(m; — 1) as

_i pi(Zi — %) — Z Z (i —Z:)?
bw _ =1 i=1j= (112)

T

> pulE — T)? Mm”izuna>

i=1 i=1j=

n n
where xP szpz/P Dec = Z(pi'"p?/P)/mi, Dbo= (P—;pg/P)/pc, and P = ;pl

=1

Donner and Koval (1980) derived the maximum likelihood estimator (M LE;;) of

pss and showed, when data are simulated from a multivariate normal distribution,
that the M LEy outperformed the ANOVA intraclass correlation coefficient for ex-
treme values of sib-sib correlation. Additionally, for the unbalanced case, the M LEy
outperformed Pearson’s correlation for all but the zero correlation scenario. Srivas-
tava (1993) proposed an improved estimator of p,, based on an efficient combination
of p, and p,, as R

. Py

Ps = Iy (IL.3)
This estimator shows a great increase in asymptotic relative efficiency over either
Pu O D, While it is clear why M LEy, being asymptotically the most efficient
estimator, performs better than the other estimators under the multivariate normal
data, its performance when data are not normal is not clear.

In this chapter we provide an alternative estimator for estimating p,, and assess

the performance of the new estimator against the others via a simulation experiment.
For our simulation we generate data from multivariate normal and other symmetrical

multivariate distributions, namely multivariate T and Kotz type.

II.2 An Alternative Approach: Balanced Case

First let us consider the case when all families have the same number of children.
Suppose x;, ¢ = 1,...,n is a vector of observations on m children in the ith family
such that F(x;) = p =pl, var(x;) = B =02[(1 — p.; )L + psedm] = 02V (p,,).-

Note that the determinant and inverse of X respectively are
IZI = (02)7"[(1 - pss)m_l(l + (m - l)pss)] and

-1 _ 1 . Pss
2= i T T Dy
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In the new approach we propose to estimate p,, by minimizing the objective function

n
Fu,0% p0) =10g |Z]2 + Y V(% — 0/ =1 (i — p), (IL.4)
i=1

simultaneously with respect to p,,, p and o
Let v =1+ (m—1)p% and w = 1+ (m — 1)p,,.

This process leads to solving the following three equations
oF s 1

_ Z (X —pl) =0,
a'u \/(xz (X - ﬂ'l)

oF -
507 = 27 * 3007 3/22\/ V(p,,) " (ki — 1) =0,

OF _ mn(m—1)pys 1 i (xi = p1) (I — 7 Im) (0 — 1)
Opss 2(1 - pss>w 202(1 - pss)2 i—1 \/(xz - Ul)lz—l(xi - ﬂl)

(IL5)

simultaneously with respect to u, 02 and p,,. Note the second equation can be written

more compactly as

Z\/ pss)) (i_/v"l)'

There is no closed form solutions to these equations and hence one needs to solve
these iteratively and numerically. Alternatively, using software one can directly nu-
merically minimize the objective function (I1.4) w.r.t. u, o2, and p,,. We have used
SAS/IML procedure’s dual Quasi Newton Method (NLPQN) routine for obtaining
the estimates. The optimization gives unique estimates in the feasible regions under
the above covariance structure. We observe that these estimators are also the maxi-
mum likelihood estimators of u, o2, and p,, when x;,i =1, ...,n is a random sample
from a Kotz type distribution where the probability density function of an m x 1

random vector X is given by
foo ) =B exp {~[(x — p)E7 (x - w2}, pER™, X p.d, (IL6)

where ¢ = ﬂr‘?‘—(—s p = pl, and ¥ = 02V (p,,). The asymptotic distribution of these

estimators under Kotz type distribution can be studied by computing the Fisher

information matrix.
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The following theorem is useful for computing the elements of the Fisher infor-

mation matrix. See Mitchell (1989) and Lange, Little, and Taylor (1989) for details
and proofs.

Theorem 1 Suppose the pdf of x is given by
enl 22 g((x - 8YZ 7 (x - 8))

for an appropriate constant c,, and nonnegative function g(.), x € R™, § € R™,
positive definite (p.d.) matriz B. Then y = £72(x — &) (i.e. x = 6 + Biy) has
the pdf cm g(yy) and further t =r? =yy has the probability density function

m

T2

Cm@

t2 7 1g(t),t > 0.

Suppose u = () (= H)’ then we have the following results:
(a) E(r*u) = - 2{= E(Tu);T =r?}
(b) E(yAyu*) = Ltr(A)E (r? u*)
(c) E(yAyyByut) = m {2tr(AB) + tr(A)tr(B)} E (r* u¥)

For a given function g(t), cm,u, and pdf of v° are completely specified and hence
(b) and (c) can be completely evaluated.

For the Kotz type distribution,

gty =™ t= (x — py T (x - p),

=95, 40 = 900

Lety = (xi - IJ’) Then f(,u’7027pss|y) = Cm 12’_5 g(t) and

1
log f =log ¢ + 3 log [E"1| + log g(t)

=log cpm — —7;—7'-loga2 - (m; Y log(1 — p,,) — 10% +log g(t).
dlogf  m  g(t) ot
We have 592 = 257 ol )8—
ot _ ___(_—J) ~ H
807 = oz p) ~ of ence

Ologf —m  gl(t)t and
902 202 o2g(t)
(Blogf . m? WP maut _m2+t+mtu

802)*4fc4+ a4+04 T 404 ot
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Using the expected values formula in Theorem 1 we get

Ologf., m
B( do? ) = 404"
Next,
8logf_(m—l)[ 1 _1] g(t) ot
apss 2 (1 - pss) w g(t) apss,

o y(I-dy
8pss B 02(1 _pss) .
alogf _ m(m - 1):033 uy,Ay
I 21-pw | 1= po )
Ologf., m’(m—1°02  ~m(m—1p,uy'Ay  (uy'Ay)’
opn ) ALt T - g A= et

A=1--"Jand
w

(

Then we can show that

dlog f.,  m(m— 1)((m+2)v+m)'

E =
( apss ) 4(m + 2)(1 - pss)2w2
Also,
Olog fOlog f _ (m+ 2ut) [m(m — 1)p,, uy’ Ay | Th
do®  Op,, 202 21— pw | 21— p )P
B (Blogfalogf) _ _E(m +2ut) m(m — L)p,, . (m + 2ut)uy’Ay
do2  Bp,, 202 2(1 - py)w 204(1 — p,,)?
__[mE(uy 'Ay) + 2Eu’ty’Ay] but
- 204(1 - pss)2 ot
2r($2 AX? + mir(TiAT?)
E 2t IA — 2,2
_ m(m+1) _ m(m+1)o? v
= m tr(B) = 1 (1- E) Thus
B (alogfalogf) __m(m—1)p,,
0a? apss B 4(1 - pss),wo-2 .
Finally,
dlog f _ 4(t) Ot [ —
=t—=-2==(1'%Y and
Ou  g(t)ou g(t)( )
dlog f ., 2 el gl dlog f 1
=4 '$1-3 2av). 2 _
( o ) u*(y JX72y). Then we get E( o ) —
Olog f Olog f Olog f Olog f
E = —}=0
( 9 90 ) =0, and E( o op. )=0
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Thus the information matrix for the Kotz type distribution can be written as

1
—— 0 0
o*w
0 m . m(m — 1)pss
Ix = 40! 40%(1 — p,)w

_m(m = 1)p,  m(m = 1){fm + 3o+ m]
402(1 - pss)w 4(m + 2)’11}2(1 - pss)2

Theorem 2 Suppose x has probability density function as in (II.6) and X1, ..., X, s
a random sample from this distribution. Suppose the maximum likelihood estimator
of u,0? and p,, obtained by solving the equations in (II.5) are 6% and Pss- Then
V@ —6) d N3(0,Z), where 0 = (1,02 p,.) and 6 = (11,62 p,,) is the MLE of
6.

A similar result for multivariate normal distribution is given below.

Theorem 3 (Donner and Koval, 1980) Suppose x;,i =1, ...,n, is a random sample
from multivariate normal distribution with mean pl, and variance covariance matrix
S = 02V(p,,) and 0 = (i, 52, b,,) s the MLE of 6. Then /n(6 — 6) 4 N3(0,Z3h),

m
- 0 0
0w
m m(m — 1)pss
— 0 — —
where Iy = 903 202(1 — p,.)w
m(m—1)p,,  m(m— 131}

202(1 - pss)w 21.02(1 - pss)2

The Kotz type distribution has fatter tail regions than that of multivariate nor-
mal distribution and hence can be an alternative model to the multivariate normal
distribution. In the following we will simulate data from multivariate normal dis-
tribution, multivariate T distribution with degrees of freedom=5, and Kotz type
distribution, and in each case we compute the bias, the relative efficiency (RE), and

the Pitman nearness (PN) probabilities for p and p.

I1.3 Simulation Study

In the following we provide algorithms for simulating random samples from each of

the three multivariate distributions mentioned above.
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I1.3.1 Simulating from multivariate normal distribution

(a) Generate m independent standard normal random variables zi, ..., 2, and let

z = (21, ..., 2m)-

(b) Suppose p and ¥ = I'T are given. Then x = I'z+p. Then x has a multivariate
normal distribution with mean vector g and variance covariance matrix 3. See
Khattree and Naik (1999).

(c) Repeat the above steps n times to obtain a sample of size n.

I1.3.2 Simulating from multivariate T distribution

(a) Generate m independent standard normal random variables 2y, ..., 2z, and let

Z = (21, . Zm)

(b) Suppose ¥ =I'T is given. Then x = Iz has a multivariate normal distribution

with mean vector 0 and variance covariance matrix X.

(c) Generate a gamma random variate V with a shape parameter v/2 and scale

parameter 1, (in our case v = 5).

(d) Let x* = 2V. Then x? is distributed as a chi-square random variable with v

degrees of freedom.

(e) Let t =, /2% + p. Then t has a multivariate T distribution with parameters
p, X, and v. See Lange et al. (1989).

(f) Repeat the above steps n times to obtain a sample of size n.

I1.3.3 Simulating from Kotz type distribution

The following algorithm to generate a random sample from an m-variate Kotz type
distribution (II.6) is given in Naik and Plungpongpun (2004). Here we provide only

an outline.

(a) Simulate y’ = (yi, ..., Yn) having the density

f(y) = c exp{~/¥'y},
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5 1:{(?() ;- Note that f(y) is the standard-
ized version of Kotz type distribution given in (IL.6} and also E(y) = 0 and

Var(y) = (m + 1)L

where —0co0 < y; < 00, and ¢ =

(b) Obtain x’ = (z1, ..., Trm) having the distribution as in (I1.6) by making the trans-
formation x = Iy + p, where p' = (g, ..., 4,,) and X =TT

The simulation of y is achieved by using the polar coordinate transformation,

y; = Rcos

y2 = Rsinf; cosb,

Ym—1 = Rsinb, sinfs---sinb,,_5cosb,,_;

Ym = Rsinfysinbs---sinb,,_osinby,_1,

where R = /y'y, 0; € [0,m) for 1 <j<m—2 and 6,-; € [0,2r). The Jacobian
of the transformation is R™! H;";f sin™~771(9,).

To simulate 8 ~ g(#), we use the bisection method which is one of the popular
numerical inversion algorithms and is described below. See Devroye (1986) for de-
tails.

Algorithm: Find an initial interval [a, b] to which the solution belongs.

REPEAT

0 — (a—2f~b)

IF G(6) <U THEN a — ¢
ELSE b~ 6
UNTIL b—a <26
RETURN ¢
Here 6 > 0 is a small number.
Our simulation study includes generating data from each one of these three distri-
butions and comparing the MLE’s based on Kotz type and normal distribution. For
all three simulation experiments, the parameters used include the total number of
families n = 10, 20, 30, 50, 100 to cover small, medium, and large sample sizes, the
family sizes, m = 3,4, 5,6, sib-sib correlations p,, = 0.1,0.3,0.5,0.7,0.9, 02 = 1,
and g = 0. For each set of these parameters, 10, 000 data sets were simulated. The
three criteria used for comparison are simulation estimates of (i) Bias (ii) Relative

efficiency and (iii) Pitman Nearness (PN) probability.
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Bias is computed as p,, — p,,, Where p is the average of the 10,000 estimates of p,j,

one for each simulation, and p,, is the value that is used in the simulation.

Relative officioncy | .\ _ MSE(p)
elative efficiency is computed as RE(p,,,Ps,) = M_SE(—,?)—_)’ where
881

10000
MSE(Dss;) = 5555 2o (Pssji — Pss)’s Pssj, being the estimate of p,; for the ith sim-
D=

1=
ulated data set and j = 1,2. We say that p.  is better estimator of p; than p, , if
RE > 1.

Pitman Nearness (PN) Probability is computed as PN = P{|p,, —pss| <
[f’ssz—pssl} = W}f(ﬁ #{ ﬁssli — Pss| < i)sszi ~ Pss
estimates of p,, for the ith simulated data set. We say that p,,, is a better estimator
than p,,, for p,, if PN > 0.5.

where p,, and p,, are the
’ pssl1 psszl

II.4 Results and Remarks

Various results are provided in Figures 3 - 17 given at the end of the chapter and a

summary of the results are provided below.

¢ In general we observe that the MLE’s underestimate the sib-sib correlation p,,.
e The family size (m) seems not to affect the bias.

o When data are simulated from a multivariate normal distribution, the M LE
are slightly different from the M LEy and for extreme values of p,, (0.1 and
0.9) or when (n) increases, they both have the same bias. On the other hand
M LEy has noticeably higher bias than the M LE when the simulation is from
a Kotz type distribution (Figures 3-11).

e When data are simulated from a multivariate normal distribution, the relative
efficiency (RE) of M LEK as relative to M LEy is almost 1 for large m (= 5, 6)
and small n (= 10) and RE is close to 1.1 when n is large and m is small (= 3,4).
These values indicate that the M LEy is at least as efficient as M LEyN when
sampling is from multivariate normal distribution. However, when the sampling
is from Kotz type distribution, the M LEy is not as efficient as M LE, this is

more so for large sample sizes and small m values (Figures 12-14).
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¢ We note from Figures 15-17 that M LE is better than M LEy for all m,n and
for different values of p,, with high PN values. However, MLEy is slightly

better than M LE} for small n and also for large n, when m = 3 and p,, = 0.3.

In Summary, these estimators perform as expected in relation to one another
with regard to bias, relative efficiency, and PN probability. M LEx outperforms
MLEyN when data come from Kotz type distribution and vice versa. However, the
magnitudes of the differences in these criteria are much greater when using M LEy.
When data are simulated from the multivariate T distribution, the estimators under
Kotz type distribution are superior for all values of m,n and p,,. The results are
provided in the Figures 9 - 11, 14, and 17. Clearly we can see that the alternative

estimator proposed here is more efficient.

II.5 Alternative Approach: Unbalanced Case

The proposed estimators under unbalanced case can be similarly obtained by mini-

mizing the objective function

(‘N_;_ZL_)_ log(l - pss)+

N
F(,u’>0-2>pss) = -2—10g02+

n Pss

Z log(wi)_i_ Zn: (xi — 1) (L — w2 dm ) (xi — ) (IL7)

2 02(1 - pss)

i=1
simultaneously w.r.t. u,02, and p,,, where w; = 1+ (m; — 1)p,,, i = 1,2, ...,n and
n
N =Y~ m,. The solutions 1, %, and p,, are the maximum likelihood estimators when
i=1
the distribution is Kotz type.

The Fisher’s Information matrix for a given Xi(m,x1) I8 given by

71257 0 0
m; —1
Iei=| O e, 402[;2,,83){ e )} (IL.8)
0 Pos { mi(m;—1) } 1 mi(m=1)[(m;+2)v,+m,]
407 (1—p,,) w; 4(1-p,.)% (m+2)w?

n
For large n, 1 3~ Ty, will converge to Z,

i=1
1
Fan 0 0
— 1 p.
where IK = 0 17022 magg ,

Pss 1
a a
402(1‘.053) 23 4(1_pss)2 33
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=00 n—0o

n
. . . 1
with a;; = lim £ 3 wii, age = lim 1 3 m;,
= '

2 mi(m,—1)[(m,+2)v,+m,)
Z (mi+2)w?

n
. 1 mi{m;—1) . 1
Qo3 = llm = ) ———+— g3 = lim = .
8= ,,Zl w0 @83 = 1 -

1= i=1

If 8= (3,6% p,,)" is the MLE of § = (1,02, p,,)’ then \/n(8 — ) d N3(0,Zx").

Similarly, for normal distribution we have v/n(f — 6) 4 N3(0,Z7"), where 6 is
the MLE of 6 under normal distribution and

Lbn 0 0
In= 0 #bm m’%ﬁmbm )
1

0 mahisbs gamppbes
where w; = 1+ (m; — 1)p,,, vs = 1 + (m; — 1)p2,,

by = lim =5 —, by = lim - > m,,
n—00 i1 Wy L |

n n
1 1 mi(m;—1) BT 1 m;(mi—1)v;
by = Jim 3 32 T = i 15 e,
i= i=

In practice we can calculate the asymptotic variance of 0 as:
n -1

var(@) ~ [Z IKi] , where Zg; is given in (I1.8). Similarly the asymptotic
i=1

variance of 6 is calculated.

I1.5.1 Simulating data with unequal family sizes

In the unbalanced case we follow the same procedure as that for the balanced case in
for generating data from the three types of distribution, namely, multivariate normal,
multivariate T, and Kotz type. Along with M LEy and M LEyg, we consider a non-
iterative estimator given in (II.3) due to Srivastava (1993). Only this non-iterative
estimator is considered because it has been shown in Srivastava (1993) that it is more
efficient compared to the other commonly used non iterative estimators.

In the unbalanced case, one extra problem we face is the determination of m;, the
family sizes. For this we used a procedure due to Brass (1958) who suggested that
the negative binomial distribution truncated below 1 fits the observed distribution
of sibship sizes very well in a variety of human populations for appropriate choice of

parameters n and P. The distribution has the probability mass function given by

(n+r—DIQ™(E)
(n—1Ir(1 - Q™)

P(m=r)= , @=1+P r=1,2,....

_‘héproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

Since recent census data notes that family sizes are small, (for example, see
http:/ /www. census.gov/population/socdemo/hh-fam/cps2002/tabAVG1.pdf), for our
simulations we used the negative binomial distribution truncated above by 6, that is
1<m<6.

We include the total number of families n = 50, and 100 and sib-sib correla-
tion coefficient, p,, = 0,0.1,0.3,0.5,0.7, and 0.8. Also to avoid certain convergence
problems we encountered during simulations, we simulated data from multivariate T
distribution with df=3 instead of 5. As before we will compare the bias, RE and PN
probabilities for MLEy, M LEy, and Srivastava’s estimator.

I1.6 Results and Remarks

e Increasing the sample size didn’t affect the bias for the three estimators. When
the sampling is from multivariate normal distribution, M LEx has slightly
higher bias compared to M LEy and Srivastava’s estimator, especially for mod-
erate to high values of p,,. When data are simulated from Kotz type distri-
bution, there is a major difference between M LEy and the other estimators,
compared to the differences that existed when data were from normal distribu-
tion. When the simulation is from multivariate T distribution, the M LE has
the highest bias, but the magnitude of the bias is smaller than 0.05 (Figures
18 - 20).

e When data are simulated from multivariate normal distribution, the relative
efficiency (RE) of MLEy relative to MLEy is close to 1 as p,, increases and
when n = 5 (Figure 21). When data are simulated from Kotz type distribution,

the RE value of MLEy relative to MLEy is at least 1.5 for n = 50 and for

moderate to large values of p,, (> 0.5). Also we can see that the relative
efficiency of Srivastava’s estimator relative to MLFEk is at least 2.5 for all

values of p,, and all values of n (Figure 22).

e When the simulation is from multivariate T, the efficiency of M LE is consid-
erably higher than the efficiency of M LEy and Srivastava’s estimator (Figure
23).

e By the PN probability, when the simulation is from Kotz type distribution,
the MLEy is almost as good as M LEyx when p,, = 0,0.1. But for the other
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values, M LEk is better in all the cases and the PN value is more than 0.7 for
large p,,. M LEy is more efficient than Srivastava’s estimator for all n and all
values of p,, (Figure 24). Figure 25 shows that when data are simulated from
multivariate normal distribution, then M LFEy is better, but the PN values do

not exceed 0.7.

e When the simulation is from multivariate T distribution, clearly MLEg is
better than both M LEy and Srivastava’s estimator for all values of p,, and all
n, (Figure 26).

In summary, here we have considered two multivariate heavy-tailed distributions
which have fatter tail regions than that of multivariate normal distribution and stud-
ied the estimation of sib-sib correlation. We find the estimators of p,, by maximizing
the log-likelihood function of Kotz type distribution and normal distribution and
using other non-iterative methods. We have provided a simulation algorithm for
generating samples from Kotz type distribution with unequal family sizes. Next,
we performed a simulation experiment to compare the ML estimators of the sib-sib
correlation by using three measures, Bias, RE and Pitman Nearness probability un-
der multivariate normal, multivariate T and Kotz type samples. Based on all three
criteria and using the results provided in previous subsections we conclude that these
estimators perform as expected in relation to one another with regard to Bias, RE
and PN probability. M LEy and Srivastava’s estimator outperform the M LEy when
data come from a normal distribution, and M LEg outperforms all other estimators
when data come from the Kotz-type distribution. However, the magnitudes of the
differences in these criteria are much greater if M LE is used, when the parent distri-
bution is heavy tailed. This implies that the greatest loss occurs if normal estimates

are used for non-normal cases.

II.7 Analysis of Galton’s Data

Recently, Hanley (2004) worked with family data on human stature obtained directly
from Galton’s note books (cf. Galton, 1886, 1889). The data consists of heights of
205 families with the number of children ranging from 1 to 15. Over all, there
were 962 children, 486 of them were sons and the remaining 476 were daughters.
However, only 934 children had numerical values. The remaining children scores

were described as “tall”, “tallish”, “short”, etc.. Some other children’s hights were
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described as “deformed” and “idiotic”. For more details on this data set see Hanely
(2004).

We will use these data to illustrate our procedures discussed earlier for estimat-
ing the sib-sib correlations. The correlations we have considered include the son-son,
daughter-daughter, and child child correlations. For the son-son correlation, we will
consider data on only sons, and for the daughter-daughter correlation, we will con-
sider data on only daughters and for the child-child correlation we will consider all
the children. For each case we will use the normal and Kotz likelihood based meth-
ods to compute the maximum likelihood estimates. We will also use Srivastava’s
estimator as an example of non-iterative moments based method. In each case, we
assume that the expected value of sib score is the same and the variance of the sib
score is the same for all the sibs and families. The standard errors of these estimates

will also be provided.

e Out of the 205 families, only 168 families have girls and for these families, the
pairs: (the number of daughters, the number of families having those many
daughters) are (1, 56), (2, 39), (3, 33), (4, 20), (5, 9), (6, 5), (7, 3), (8, 2), and
(9, 1). That is, there are 56 families with one daughter, 39 families with two
daughters and so on. Our interest is to estimate p,; the correlation between
the daughters. The maximum likelihood estimates of p,, with their standard

errors are provided in the Table below.

e Out of 205 families, only 173 families have boys and for these families, the
pairs: (the number of sons, the number of families having those many sons) are
(1, 40), (2, 49), (3, 40), (4, 7), (5, 8), (6, 6), (7, 2), and (10, 1). That is, there

are 40 families with one son, 49 families with two sons and so on.

If p,, is the correlation between the sons then the estimators and the standard

errors of these estimators are provided in the Table below.

e Out of 205 families there are 197 families with at least one child. The pairs
(the number of children, the number of families having those many children)
are (1, 32), (2, 20), (3, 22), (4, 29), (5, 27), (6, 20), (7, 16), (8, 16), (9, 7), (10,
4), (11, 3), and (15, 1).

The results are summarized in the Table below.
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Method Pad p

MLE_N  0.420 (0.0545) 0.366 (0.0532) 0.175 (0.0341)
( (
( (

SS pCC

MLE_K  0.533 (0.0554) 0.476 (0.0575) 0.207 (0.0382)
Srivastava 0.439 (0.0552) 0.374 (0.0546) 0.17 (0.0356)

Remarks and conclusions:

e We notice that the strongest correlation exists between daughters and daugh-

ters.

e The child-child correlation estimates are smaller than the son-son or daughter-
daughter correlations. This may be because of the assumption that the daugh-
ters and the sons have common mean and common variances and also the

assumptions that the correlation is common.

e We notice that all the methods have provided almost identical standard errors
for each category of sib-sib correlation estimates. However, the estimators are

some what different for different methods.
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Figure 3. Bias comparison of MLEy with MLEg when simulation is from normal

for n=10.
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Figure 4. Bias comparison of MLEy with MLEg when simulation is from Normal
for n=30.
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Figure 5. Bias comparison of MLEy with MLEg when simulation is from normal

for n=100.
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Figure 6. Bias comparison of MLEy with MLEg when simulation is from Kotz
type distribution for n=10.
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Figure 7. Bias comparison of MLEy with MLEy when simulation is from Kotz

type distribution for n=30.
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Figure 8. Bias comparison of MLEy with MLEg when simulation is from Kotz

type distribution for n=100.
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Figure 9. Bias comparison of MLEy with MLEg when simulation is from T distri-
bution for n=10.
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Figure 10. Bias comparison of MLEy with MLEg when simulation is from T
distribution for n=30.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

nE3 =100 =4 =100
—
09
@ 004 OMEN o 00 OMEN
“ -0 BMEK ® o0 MEK
008 008
-0.10 010
rho rho
=5 =100
[T R— e
01 7 09
002
g 00 OMEN PR OMEN
o 06 ME K D 06 BMEK
008 £.08
0.10 010
rho rho

Figure 11.

Bias comparison of MLEy with MLEx when simulation is from T
distribution for n=100.
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Figure 12. RE comparison of MLEy with MLEg when simulation is from normal

distribution.
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Figure 13. RE comparison of MLEg with MLEx when simulation is from Kotz

type distribution.
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Figure 14. RE comparison of MLEy with MLEy when simulation is from T distri-
bution, with df=>5.
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Figure 16. PN comparison of MLEg with MLEy when simulation is from Kotz

type distribution.
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Figure 17. PN comparison of MLEg with MLEy when simulation is from T distri-
bution, with df=5.
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Figure 18. Bias comparison of MLEy with MLEg in the unbalanced case when

simulation is from normal distribution.
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Figure 19. Bias comparison of MLEy with MLEg in the unbalanced case when
simulation is from Kotz type distribution.
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Figure 20. Bias comparison of MLEy with MLEg in the unbalanced case when
simulation is from T distribution, with df=3.
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Figure 21. RE comparison of MLEy with MLEk in the unbalanced case when
simulation is from normal distribution.
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Figure 22. RE comparison of MLEx with MLEy in the unbalanced case when

simulation is from Kotz type distribution.
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Figure 24. PN comparisons in the unbalanced case when simulation is from Kotz
type distribution.
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Figure 25. PN comparisons in the unbalanced case when simulation is from normal

distribution.
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Figure 26. PN comparisons in the unbalanced case when simulation is from T
distribution, with df=3.
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CHAPTER III

ESTIMATION OF MOM-SIB CORRELATIONS

III.1 Introduction

From the early 1950’s parent-sibling (mom-sib) or interclass correlation has been
of interest. Sibling-sibling (sib-sib) correlation or intraclass correlation (p,,) was
already in use by this time, and methods for estimating mom-sib correlation were
being developed. Kempthorne and Tandan (1953) used a linear model to estimate
this interclass correlation (p,,), though made the assumptions that the variance of the
parent (02) and that of children (o2) populations were equal (that is, 02= 02) and p,,
is given. Since these assumptions are unnecessarily restrictive, the pairwise estimator,
was computed in the spirit of pearson’s correlation coefficient. The pairwise estimator
of mom-sib correlation (r,) is computed by pairing values for each sibling in the
family with the parent’s value. While the pairwise estimator has an intuitive merit,
it violates the required assumption that the data are independent. To over come
these problems various estimators are introduced in the literature.

Other estimators used in lieu of the pairwise estimator are the sib-mean estimator,
where the mean value of all siblings is paired with the parent’s value, and the random
sib estimator, where a single sibling from the family is chosen randomly and this
sibling’s value is paired with the parent’s value. Rosner, Donner and Hennekens
(1977) proposed the ensemble estimator (p,, g), based on the random sib estimator.
This estimator computes an expected mom-sib correlation over all possible random
mom-sib pairings as described in the random sib estimator. Rosner, et al. (1977)
compared these three estimators to the pairwise estimator and determined that the
ensemble and pairwise estimators are superior to both the sib-mean and random sib
estimators based on smallest MSE criteria. And when p,, is small, that is, < 0.1, the
pairwise estimator outperforms the ensemble estimator and when p,, is large, that
is, > 0.5, the ensemble estimator outperforms the pairwise estimator.

The linear model approach was re-examined by Mak and Ng (1981) following
Rosner’s (1979) development of MLEs for the balanced and unbalanced cases. Ros-
ner assumed the scores followed a multivariate normal distribution and derived the
MLEs. However, the algorithm used by Rosner is complicated. Mak and Ng’s ap-
proach simplified derivation of the MLEs by using a linear model, such that given
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the mother’s score, the mom-sib correlation can be determined and tested. Their
approach assumes, as Kempthorne and Tandon (1953), that only the mother’s score
is random, whereas Rosner’s approach allows both mom and sib scores to be random.

Srivastava (1984) gives an estimator of p,, that has a similar bias, but smaller
asymptotic variance compared to the ensemble estimator, as noted in Velu and Rao
(1990). Srivastava and Katapa (1986) provided the asymptotic variance of the Sri-
vastava estimator.

Since the introduction of Srivastava’s estimator, variants of the traditional inter-
class correlations have been proposed, and are compared to Srivastava’s estimator
and the ensemble estimator. Two comparisons by Srivastava and Keen (1988) and
Eliasziw and Donner (1990) determine that Srivastava’s estimator is uniformly more
efficient than the ensemble estimator, but the magnitude of the difference is relatively
small.

In this chapter we provide an alternative method of estimating parent-sib corre-
lation, by minimization the negative log of of Kotz type probability density based
likelihood function, as in the previous case where sib-sib correlation was estimated.

Assume that we have a sample of measurements from n families and let
(@i, Yir, Yizy -y Yimy) = (23, ¥1),% = 1,2, ..., n, be the measurements from the sth family,
where z; is the measurement of the mom (in general, the parent’s measurement)
and ¥, Yi2, ..., Yim, are the measurements on her m,; siblings. It is assumed that
the families are independently distributed with (m; + 1) x 1 mean vector u, =
(tps thss-otts) and (m; + 1) x (m; + 1) variance covariance matrix X, given by
( 7 Tpe ) , Where o'y, = pp,0p01p,. Also, o2 is variance of mom’s score, o is

Ops; s,
variance of sib’s score, and X, = 02 {(1 = p,5) Im; + Psslm, 1y, } - Recall that p,, is

the mom-sib correlation and p,, is the sib-sib correlation.

Necessary and sufficient conditions for 3; to be positive definite for all m; are,
Pis < pss and 0 < p,, <1 (Rosner, et al., 1977). Note that

1+ (mi - 1)pss ~Pps 1
- o2g; Op0sGi
¥t o= % . s and
P g 2—__{1"“ _ Ess_f’mjmi}
Op0sGi O (1 - pss) 9i
1B = oo™ (1-p, )" g,
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where g; = 1+ (m; — 1)p,, — Mip2,.

Then the Srivastava’s estimator is given by

i( i = Zm) (Jis — Us)

Pps,s = = o (L)
hs xm)2 N353 g~ 3 + 3500 - 0
=1 i=1j=1 i=
where
im:%_zlxbgis:‘nll—iz:lyiju ?js:%.zzlgim (1 mh 1)(” 1)/2( '—1),31'1(1
1= N 1= —l 1=
mt ={am £ 1jm |
The asymptotic variance of p,,  is
Av(pps,s) = E[pps + pps{éc —2X - 5} + /\]7 (1112)
2 — 1 1 2 aemsh?
where ¢ = 1= 2(1 = p,)(1 =) + (1L—pu)? [E X {1 - |+ S|

A=1-(1-p,)(1—m, "), and m = (1/n) Z: m.

I1II.2 An Alternative Approach: Balanced Case

As in the case of sib-sib correlation, we provide an alternative method for estimating
Pps, the parent-sib correlation. Given the objective function, when m; = m for all

1=1,...,n, as
n
F iy Bss Ops Osy Ppss Pss) = nlogo, + Nlogo, + §(m —1)log(1 — p,,)
n - _ 1
+5logg+ D [0~ p)'S7H o — )3, (I1L3)
=1

where g = 14+(m—1)p,, —mpf,s, our procedure involves minimizing F’ simultaneously
with respect to u,, pg, 0, 05, pys, and pg,. Let v, = (1,0,...,0) and v, = (0,1, ..., 1)".

This process leads to solving the following six equations simultaneously
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or _ 1 Z vy ) (Xi “WE
a'up i= 1 \/3(1 X - l'l‘)
oF _ Z v, 2 N) + (Xz‘ — [.L)’Z_1V2 _ O,
a'us i=1 \/vx - X - H)
) 5

OF Z - 0,
9o \/ (x; — % — )
oF nm ) a 2 Hxi — p) _
o, T1(x; — ) '

)' 23" ( — )
oF _ nmpps Z o,
Opp, v (% — )
OF  nm-1)|m (pss - pps) B 12 (x; — H)/aisz—l(xi —u) o
aps.s 2 (1 - pss) w 2 i=1 \/(Xl - u)’Z“l(x, - [J,) ‘

None of the above partials have an explicit solution. However an iterative ap-
proach can be adopted using SAS/IML procedure. We used a dual Quasi Newton
Method (NLPQN) routine for optimizing the objective function to get the estima-
tors. The optimization gives unique estimates in the feasible regions under the above
covariance structures. The only difficulty with the suggested algorithm (NLPQN) is
that it fails to converge when ,0]235 is close to p,,. We will report the results from only
those iterations where the convergence was achieved.

We observe that these estimators are also the maximum likelihood estimators of
Bops lss Tp, Ts, Pps, and p,, when maximizing the log-likelihood function of Kotz type
distribution with respect to u,, ps, 0, 05, pys, and p,.

For finding the asymptotic distribution of the maximum likelihood estimators
under the assumed Kotz type distribution, we determine the Fisher information
matrix. We will apply Theorem 1 to compute the various elements of this matrix.

Ing Lok

Suppose Zps k = . The Lok = I3 x =0,
bykx Ik
w ‘Qmpps
2 . .
Iig= (’f;n%”vg (m+lopoag | " and the symmetric matrix
ps

m
(m+1)oyosg (m+1)o2g
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Ik =
g(m+1)+(m+2)w ____-,ry__l_{w+2/7?75 } -m(m+1)pps —m(m—-l)(p%s —Pss)
(m+3)o3g opos L {m+3)g (m+3)apg 2(m+3)g(1-pys)op
mimA)g+(m2ek]  —2mpp,  m(m=-1)(m+4)(eh—p,.)
mr3)o%s T 8)oes 2iB)ges(-pra)
M Y2
symm Y3
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where w = (1 + (m — 1)p,,),

_ m(m+2wtmE(m+1)p2
1= mi3)g° v

_ m(m_l)pps[ m(pgs_pss)_2(m+2)(1_psa) ]
T2 = 2(m-+8)g7(1=ps,) ’

_ —mm=1)(pF, —pso)[ (m+4)g+m(1—p5,)+2(m+2)(p5, ~1)(1—p,,) |
T3 = 4(m+3)g2(1~-p,,)? :

If the distribution of (z;,y;) is assumed to be Kotz type distribution as in equation
(I1.6) then as in Theorem 2, the asymptotic distribution of the MLE’s 96x1 =

(Fips fray G, Gy Prsy Pss) 15 /(B — 0) d, No(0, T L),

Similarly, if the distribution of (z;,y;) is assumed to be multivariate normal then

as in Theorem 3, the asymptotic distribution of MLE’s 6 = (Hips sy Tpy T s, Pps» Pss)’

-~ Ill N IlZ N
is v/n(0 — 8) d_Ng(0,Z,.'y), where Zp, vy = ’ ’ with Iia v = I3; y = 0,
iy Isan
. MPps
oZg 0pTsg
f— P I4
Inn —mp., . , and
Op0sg a2g
w+g —mpzes ~MPps 0
G%g Op0sg opg
2mg+mp?, —MPps m(m—l)(p223_pss)
v}
I = 739 asg gas(l"pss)
2N m(w+mp?,) —m(m=1)p,,
P Py
symm (m=1)[ (n—1)(1=p,)?+” ]

29%(1-p,,)?

In the following we will simulate data from multivariate normal distribution,
multivariate T distribution, with degrees of freedom = 3 and Kotz type distribution,
and in each case we will compare the bias, Mean squared error (MSE) and the Pitman
Nearness (PN) probability, for balanced and unbalanced cases. Our simulation study
includes generating data from each of these three distributions and comparing the
MLE’s based on Kotz type and normal distribution as well as Srivastava’s non-
iterative estimator provided in (3.1). For all simulations, the parameters used are

the total number of families n = 10 and 50 to cover small and large sample sizes,
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family sizes, m = 2,3,4, and 5 and different combinations of mom-sib (p,,) and sib-
sib (p,s) correlations. For these, we used the values 0.1, 0.3, 0.5, and 0.7 with the
restrictions p2, < p,s and 0 < p,; < 1. Also we used 02, = 2, 02 = 1, pg; = 0, and
u, = 0. For each set of these parameters, 10,000 data sets were simulated. The three

criteria used for comparison are simulation estimates of bias, MSE, and PN values.

I11.3 Results and Remarks

Various results based on the simulation are provided in Tables III.1 - I11.48 at the

end of the chapter. However, a summary of the conclusion is given below.

e Tables III.1 - I11.8 show that when data are simulated from multivariate normal

distribution, the three estimators py ., Pps v @nd s ¢ have relatively large bias
when p,; and p,; are both > 0.3 and n = 10. However, the bias decreases as n
increases to 50. Srivastava’s estimator has higher bias for smaller values of p,,
that is, when p;; = 0.1. We also notice that the bias of p,, x is either smaller

than the bias of p,,; v or very close to it in magnitude when n = 50 and m > 4.

As for the MSE, we notice that p,, y has the smallest mean squared error as
expected, except when n = 10 and for extreme values of (p,,, ps;), i-e. (0.1,
0.1) and (0.7, 0.7). At these values, the Srivastava’s estimator had the smallest
MSE. Furthermore, for large n (= 50) the Srivastava’s estimator and the p,, y
have almost the same MSE. However the MSE value for p,, x is comparable
to the MSE value for p,, v and p,, 5. If we consider the magnitude of the
differences between the MSE’s of p,,  and p,, x, we find the differences to be

negligible when n = 50. More specifically, the differences are shown below:

— For n = 10 and for
m = 2 the differences run from 0.0023 to 0.0058;
m = 3 the differences run from 0.0016 to 0.0051;
m = 4 the differences run from 0.0011 to 0.0043;
m = 5 the differences run from 0.0009 to 0.0035.

— For n = 50 and for
m = 2 the differences run from 0.0003 to 0.0018;
m = 3 the differences run from 0.0003 to 0.0018;
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m = 4 the differences run from 0.0003 to 0.001;
m = 5 the differences run from 0.0001 to 0.0009.

As can be seen easily the differences decrease as m increases, and the highest
difference occurs when p,, = 0.1 and p,, = 0.7, whereas the smallest difference

occurs when p,; = 0.5 and p,; = 0.3.

When data are simulated from Kotz type distribution, it can be seen from
Tables I11.9 - II1.16 that p,, x and p,, v have a relatively smaller bias when
Pss = 0.1 as compared to that of the Srivastava's estimator and this is more
so when n is small (= 10). Furthermore, p,, x has the lowest MSE in almost
all the cases except when n is small and m = 2,3,and4. The Srivastava’s
estimator has the lowest MSE when (p,,, p,,) = (0.1,0.1). We notice also that
the performance of p,, s and p,, v is the same especially for large n (= 50).
The differences between the p,, x and p,; v in their MSE values are provided

below:

— For n = 10 and for
m = 2 the differences run from 0.0032 to 0.0067;
m = 3 the differences run from 0.0014 to 0.0053;
m = 4 the differences run from 0.0014 to 0.0036;
m = 5 the differences run from 0.001 to 0.0042.

— For n = 50 and for
m = 2 the differences run from 0.0009 to 0.0034;
m = 3 the differences run from 0.0006 to 0.0024;
m = 4 the differences run from 0.0005 to 0.0021;
m = 5 the differences run from 0.0005 to 0.0016.

When the data are simulated from multivariate T distribution with degrees of
freedom = 3, p,, x has the least bias for all m and n except for the case when
n and m are small (n = 10, m = 3), and for lower value of p,, (= 0.1). When
n = 50 we find that p,, y and p,, ¢ have almost the same bias and most of the

time these are at least twice as much as the bias of p, ;. Refer to Tables I11.17

- I11.24.
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e Next we note that p,, ;- always has the smallest MSE value, and for large n
this value is almost half the value of the MSE for either the p,; g or p,,, n. Also,
the MSE values for p,, s and p,, y are almost equal. Having n to be large
didn’t reduce the differences between the MSE’s of the estimators, but for sure

it reduces the MSE value of each estimator.

e Tables II1.25 - II1.32 show that when data are simulated from normal distri-
bution, the PN probability of p,, y relative to p, i is greater than 0.5, while
the PN probability of p,, x relative to p,, ¢ is less than 0.5, but this last value
increases to 0.5 as p,, and p,, increase. Also, we notice that p, i is better
than p,; g for small n (= 10), small m (= 2,3), and (p,,, p,) = (0.5,0.3),
and for m = 4,5 and p,, = 0.3 and 0.5. When samples are from Kotz type
distribution, we see from Tables II1.33 - II1.40 that the PN probability of p,,
relative to Py, g is less than 0.5, while the PN probability of p,, ; relative to
Pps,s is greater than 0.5. Also, the PN probability of p,; y relative to p,, ¢ is
> 0.5. We also notice that even when data are from multivariate T distribution,
the results were similar to what we found earlier, in that the estimates of the
Kotz type distribution are more efficient than their competitors. Tables I111.41
- I11.48 show this clearly.

I11.4 Alternative Approach: Unbalanced Case

The proposed estimators under the unbalanced case can be similarly obtained by

minimizing

- 1
F(#p: Hs) Up: Ts; pps7 pss) = TLlOg UP + Z(mz log Os + é(mz - 1) ].Og(]. - pss))

=1

+Zglogfh+2[ Y S )]t (IT14)

with respect to iy, i, 0p, 05, pps, and pg, Where g; = 1+ (m; — 1)p,, — mupl,
¢ = 1,2,...,n. The solutions f,, fi;, 6p, Gs, Pps, and P, are the maximum likelihood
estimators when the underlying distribution is Kotz type. The Fisher information

matrix for a given (z;,y;) is given by

Reproduced with permission of the copyright owner. Further reproduction prohlblted without permission.



Ips,lﬁ
[ Zen, e, 0 0 0 0
a2 Wi oo, “12%
1
;Z-szi 0 0 0 0
2
1 -1 ~Pps —(p3s—Pss)
% €33; OpTs €34, op O35 2((1 Pss)a)p €36
1 =2pps PEs—Pss
03044i Ts C45i 2(1 pss)as i
1
symm Cs5; 2(1 Y. )CSGi
_ (P}—pss)
S 33
\ 4(1 £ )2 066

where w; = 1+ (m; — 1)p,,, g = 1+ 1+ (m; — 1)p,, — mapl,,

Wi — my — m;
O = GaaDyg G2 mitDg’ €22 = Tmitlygr

Caq. = B FmARw; (@it )me L mi(mitl)
33 (mi+3)g; 134 T TmiA3)g 0 3% T (mit3)e:

mif(mi+4)gs+Hmi+2)p2,]
(m;+3)9: ’

_ mi(m;—1)

C36: = Tmi+3)g; » C44i =

m4 ('rnz —1)('rni+4)

m; -
C45: = Tmi+3)g: G460 = (mi+3)g: 7

mi{mi+2)w;i+mZ (mi+1)pZ,

C85: = (mi+3)g7 ’
c _ mi(mi_1){mi(p;2m_pss)_Q(mi+2)(1_pss)}
56 — (mi+3)g? '
C — mi(ml_l)[(ml+4)gl+ml(1 pps)+2(ml+2)(pps 1)(1 pss)]
66, (mq+3)g?
n
For large n, 2 3 T, x; will converges to Z,, k, where
i=1
1 —20ps
;—21;011 op0s C12 0 0 0 0
%sz 0 0 0 0
) (P2 —pss)
1 —Pps —\Pps —Pss
T . -2C33 ——a o 034 5 Cas —p,,)op C36
ps, K — r 2
’ 1 —2p,, c (Ps—Pas)
‘73 44 Ts 45 2(1—pss)‘75 46
1
\ symm Cs5 ——‘—2(1 ™) C56
_ (P2,—p,,)
S 83
4(1—p,,)? Cee

3=
S =

n n
where Cip = hm Z C11;, C12 = li C12;, C22 = 11 Z 259
b —oo T i

o
I
-
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(IIL.5)

n n n
S 1 — 13 1 — 1 1
C33 = lim " E C33,, C34 = lim Py g C34,, C35 = lim n E C35; 5
i=1 no0 T =1 =00 T =]

n—oo
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3m
NIE

c45i B

n—oo 7 TL—’OO n—o0

n
¢ = lim = Z C36;, Caa = lim = Z Cag;, C45 = lim

.
1
—

:II)—‘
3

n
. - . 1 _ .
¢ = lim 2 Z C46,, Cs5 = M = > css,, €56 = lim Z Cs6; 5
n—oo ™ ;=] n—oo ™ 7] n—oo " 2

n
5 1
Ceg = lim Py E C66; -

n-—00

If 6 = (Bips sy 62,07, Do, Pss)' is the MLE of § = (Lps 15,03, 02, Ppsy Pss)’ then
\/_(9 9) d N6(0 psK)

Similarly, for normal distribution we have v/n(6 — 6) d Ne(0, IP'S}N), where 0 is
the MLE of 6 under normal distribution

L - pps
P dit p—— di2 0 0 0 0
%d22 0 0 0 0
2 2
1 __Pps __Pps
T.n= odsy —ida —dss 0
P Ld _Pgsd (pzzs_pss)d
o-:sz 44 Cs 45 as(l_pss) 46
symm d55 —ppsd56
1
BTy 66

n n
Here d11= lim %Z%,dlz— lim %Zﬁ, d22_—_ im %Z%L,

n—o0 o i=1

n n
d33= lim %z—w i, d34= lim %Z—L,

1 n 1 n 2m4g4+m.p2
d35=11m—21"—‘,d44:hm— e
n—oo ™7 % n—oo ™ i 9i
i=1 i=1
1 1 (1 (mi~1)pss+mPps?)
— i L m; i 1 mi mi—1)pss+mPps
dys = lim 2 3 o ,dss = lim - _ p
n—00 n—oo ™ 177

n 7
dyg = lim 157 MY gy — fim L5 mimel),

- 2
des = lim 2 3 (mi=)[ (ms=1)(1=py,)*+7]

n—oo ™ ] 93

In practice we can calculate the asymptotic variance of @ as:

-1
var(6) E Lps ki ,

where Z,; g; is given in IIL.5. Similarly the asymptotic variance of 8 is calculated.
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II1.4.1 Simulating data with unequal family sizes

In the unbalanced case we follow the same procedure as that for the balanced case
for generating the data from the three types of distributions, namely, multivariate
normal, multivariate T with 3 degrees of freedom and Kotz type distribution. Here
we also have to simulate the family sizes (m;). As in the previous chapter, we used the
procedure due to Brass (1958), that is, the negative binomial distribution truncated
below by 1 and truncated above by 5, that is, 1 < m; < 5. As before we will compare
the bias, the MSE, and the PN probability values for MLEy, MLEg, and Srivastava’s
estimator.

We include the total number of families, n = 50, and 100, and different combi-
nations of mom-sib (p,,) and sib-sib (ps,) correlations taking the values 0.1,0.3,0.5,
and 0.7, but with the restrictions, pf,s < p,s and 0 < p,, <1 (these are necessary and

sufficient condition for 3; to be positive definite for all m;).

II1.5 Results and Remarks

Results are summarized in Tables I11.49 - II1.60 provided at the end of the chapter.

A summary of the results is provided below.

e Tables II1.49 - TT1.50 show that when the simulation is from multivariate normal,
Pps,nv has the smallest bias for small p,; (=0.1, 0.3). However, interestingly
Pps,x has the the smallest bias when n=50 and for moderate to large values of
pss(= 0.5,0.7) and also when n=100, p,, small (= 0.1) and p,, = 0.5 and 0.7.

In general, p,, y and p,; ¢ have relatively smaller bias, especially for n=100.

e In general, p,, y has the smallest mean squared error. For moderate to large
values of p,, (p,s = 0.5, 0.7), the MSE of the p,, ¢ is close to that of p,, v
However, it is notable that the MSE of py, ; is comparable with that for p,; v

and p,, g, especially for large values of p,; (= 0.7) when n=100.

o Tables II1.51 - II1.52 show that when simulation is from Kotz type distribution,
Pps, i has the smallest bias, except for the case when n=100 and p,, = 0.1 in
which case p,; ¢ has the smallest bias. Moreover, the bias for the Srivastava’s
estimator (p,, s) is comparable with the bias of p,, x, when p,, is small (= 0.1)
and n=100. The MSE of p, x is the smallest in general. However, for p,, = 0.7
the MSE of p,, x and p,, g, are roughly the same.
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e When simulation is from multivariate T distribution with degrees of freedom=3,
Pps,v a0d D,s ¢ have the same bias and it is smaller than the bias of p, , for
pss =0.1, n =50, and for p,, = 0.1 and 0.3 when n = 100. For the remaining
cases the magnitude of the bias of the p,, ; is not only the smallest but it is
negligible compared to the other estimators for p,, = 0.5 and 0.7 and when
n = 50 and 100. The same conclusion holds when p,, = 0.7, (Tables H1.53 -
IT1.54). The MSE values for both p,; y and p,, ¢ is not only larger than that

for the p,, x but it is at least twice as large as the MSE for p,, .

e For data from multivariate normal we see from Tables II1.55 - II1.56 that the
PN probability of p,, v relative to p,, x is greater than 0.5, while the PN
probability of p,, x relative to p,, ¢ is less than 0.5. When we simulate from
Kotz type distribution Tables II1.57 - II1.58 show that the PN probability of
Pps, i Telative to p,, n or relative to p,, ¢ is greater than .5. Also, notice that
the p,, x improves significantly as p,, and p,, increase. And when simulation
is from multivariate T with 3 degrees of freedom, we find from Tables I11.59 -
II1.60 that the PN of p, x relative to p,, y or relative to p,, s is at least .6,

when n = 50 and increases up to 0.7 when n=100.

In summary, we considered two multivariate heavy-tailed distributions which have
fatter tail regions than that of multivariate normal distribution and studied the per-
formance of estimators of mom-sib correlation. We find the estimator p,, by max-
imizing the log-likelihood function of Kotz type distribution and compared it with
the estimator based on normal distribution and an estimator based non-iterative
method. We have provided a simulation algorithm for generating samples from Kotz
type distribution with unequal family sizes. Next, we performed a simulation ex-
periment to compare the ML estimators of the mom-sib correlation by using three
measures, namely, bias, MSE and Pitman Nearness probability under multivariate
normal, multivariate T and Kotz type samples. Based on all the three criteria and
using the results provided in previous subsections we conclude that these estimators
perform as expected in relation to one another with regard to bias, MSE and PN
probability. The estimator p,, v and p,, g outperform p,, , when data come from
a normal distribution, and p,, ; outperforms all other estimators when data come
from the Kotz type distribution. However, the magnitudes of the differences in these

criteria values are much greater when p,, y is used when the distribution is heavy
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tailed. This implies that the greatest loss occurs if normal estimates are used for non

normal cases.

III.6 Analysis of Galton’s Data

We use Galton’s data for illustration of the methods that we have used in this chapter.
We will consider the problem of computing the mom-daughter (p,,,), mom-son (p,,,),
father-daughter (p;,), and father-son (p;,) correlations using all the three methods
described. The estimates and their asymptotic standard errors are provided below
We notice that all the estimators have very similar standard errors for each cat-
egory of parent-sib correlation estimates. The strongest correlation exists between

father-children (daughters or sons) compared to mother-children correlation.

Method Pmd Pms pfd pfs
MLEy  .321 (0574) .316 (.0539) .461 (.0490) .417 (.0490)

(. (. (.
MLEx  .385 (0616) .326 (.0608) .475 (.0548) .448 (0.0539)
(.0583) .309 (.0565) .466 (.0510) .428 (.0500)

Srivastava .337
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Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,s (n=10, m=2), based on 10,000 simulations from normal distribution

Table I11.1

o1

pps/pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -16 691 52 716 -32 795 -37 904
Pps K -24 743 61 772 -32 850 -23 962

Pps,s 62 602 -58 694 -26 85 -30 918

0.3 Pps, N 25 530 -139 613 -160 680 -152 758
Pps, K 21 568 -139 660 -159 732 -162 810

Pps,s -133 494 -159 607 -137 690 -130 769

0.5 Pps,N -176 376 -268 467 -251 557
Pps, K -176 405 -284 503 -269 601

Pps,S -222 404 -233 477 -213 562

0.7 Dps.N 308 214 -303 282
Pps, K -314 230 -312 305

Prs.s 261 230 -248 281

Table I11.2

Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and pp,, (n=10, m=38), based on 10,000 simulations from normal distribution

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -33 474 67 548 -98 684 -94 834
Pps, K -27 506 -67 588 -108 731 -90 882

Pps,s 66 425 -57 556 -86 T05 -85 852

0.3 Pps,N -8 346 -167 453 -214 583 -238 728
Pps. K -6 368 -156 489 -214 619 -249 779

Pps,s -128 349 -136 467 -168 598 -207 742

0.5 Pps,N -251 274 -311 395 -300 523
Pps, K -244 293 -303 421 -298 555

Pps,8 -206 299 -235 403 -247 529

0.7 PN -332 180 -332 256
Pps, K -324 188 -335 272

Prs.s 223 180 -256 252
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I1.3

92

Bias and MSE (x10*) of interclass correlation estimators for different values of p,,

and p,,, (n=10, m=4), based on 10,000 simulations from normal distribution

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 i)ps,N -55 368 -94 484 =77 631 -64 789
st’K -42 388 -86 512 -78 664 -61 832

f’ps,S -71 343 -74 501 -59 656 -52 809

0.3 i)ps,N -26 253 -206 400 -232 537 -18 674
i)ps,K -14 272 -194 422 -229 563 -178 711

i)ps,S -98 272  -148 416 -177 554 -151 689

0.5 i)ps,N 279 233 -342 368 -325 494
i)ps,K -255 244 -328 386 -312 517

f)ps,S -185 249 -250 373 -266 500

0.7 Pps,N -370 166 -343 239
Pos K¢ 344 170 -335 251

Pps.s -238 160 -257 234

Table I11.4

Bias and MSE (x10%) of interclass correlation estimators for different values of p,

and p,,, (n=10, m=5), based on 10,000 simulations from normal distribution

Pps/Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -64 306 -76 442 -94 608 -75 768
Pps. K -58 322 69 468 -96 639 -7T0 801

Pps,s 74 295 53 464 -T4 633 -63 789

0.3 Pps,N -83 202 -219 359 -222 517 -232 690
i)ps,K -69 215 -205 379 -214 540 -234 725

Ppss  -123 227 149 375 -164 535 -195 706

0.5 Pps,N -323 219  -332 345 -282 478
Pps, i -300 228 -319 359 -279 499

Pps,s -203 228 -233 350 -219 484

0.7 PosN 387 151 -361 230
Pps, K -363 154 -351 240

Pps.s -242 142 -269 225

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




and p,,, (n=50, m=2), based on 10,000 simulations from normal distribution

Table II1.5
Bias and MSE (x10%) of interclass correlation estimators for different values of pg,

93

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -7 115 3 130 -13 146 -26 169
Pooxe 1 127 -1 142 15 161 26 187

Pps -2 112 6 130 -10 147 -24 170

0.3  Ppn 16 8 47 106 -43 123 -32 145
pps,K 26 94 -43 116 -48 136 =37 159

Ppss 28 89 -39 106 -36 123 -28 146

0.5 Pps.N 47 67 65 81 34 95
Pos.Kc 49 74 69 89 -38 104

Pos.s 33 68 52 81 26 95

0.7 Pos.N 53 36 56 41

Pos. K 57 40 62 46

Pps. 35 36 -46 41

Table I11.6

Bias and MSE (x10*) of interclass correlation estimators for different values of p,,

and p,,, (n=50, m=38), based on 10,000 simulations from normal distribution

Pps/Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 PN 12 80 22 102 -13 131 -3 157
Pps, i -10 87 -22 111 -15 142 -5 170
Pps,s -16 80 -18 103 -10 132 -1 158
0.3 Pps,N -10 59 -43 86 -39 107 -1 133
Pps, K -3 64 -44 93 -36 116 -55 145
Pps,s -22 62 -29 86 -29 107 -45 134
0.5 Pps,N -64 52 -53 70 -54 88
Pps,K -64 56 -53 75 -58 95
Pps,s -41 52 -36 70 -44 88
0.7 Poo.n 72 28 52 37
Pps, K -73 30 -55 40
Pps.s -48 27 -38 37
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Table IIL.7
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,, (n=50, m=4), based on 10,000 simulations from normal distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N -7 63 -3 94 -7 120 -14 151
Pps,k -4 68 -2 100 -5 130 -12 161
Pps,s -5 64 3 95 -3 121 -12 152
0.3 Pps,N -28 48 -34 74 -52 100 -33 126

Ppsx 23 51 -35 79 51 106 -33 136
Ppss 22 50 -18 75 41 100 -26 127

0.5 Pos.N 61 44 42 62 60 8
Do i 57 47 40 67 59 91
Prs.s 35 4 24 62 49 8
0.7 Pps.N 72 25 66 35
Pps. i 70 27 66 38
Pps.s 45 25 49 35

Table IIL8

Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,, (n=50, m=5), based on 10,000 simulations from normal distribution

Pps/Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N -4 54 -20 88 -8 116 -11 154
Pps, K -2 57 -15 94 -13 123 -16 163

Poss 1 54 14 89 -4 117 -9 154

0.3 Py -4l 41 34 67 45 95 46 125
Ppox 40 43 31 71 44 102 -47 132
Ppsg 26 42 17 67T 33 96 -38 125

0.5 Pos N 6l 40 -80 61 55 82
Dps. K¢ 59 43 718 64 60 88
Pps s 33 40 60 60 -43 83
0.7 Ppen 68 22 68 34
Prs. K¢ 65 23 65 35
Dps. 40 22 51 33
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Table II1.9
Bias and MSE (x10%)of interclass correlation estimators for different values of p,,
and p,,, (n=10, m=2), based on 10,000 simulations from Kotz type distribution

99

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 i)ps,N 20 872 -65 904 -84 1006 -37 1110
Pps K 33 818 -69 844 -71 940 -43 1043

Pps,s -44 747 -78 863 -83 1009 -30 1126

0.3 :bps,N 1 692 -181 774 -208 872 -145 977
f’ps,K -4 641 -162 719 -198 824 -129 913

f)ps,S -201 631 -225 759 -196 880 -126 989

0.5 Pps.N -177 482 281 600 -346 725
Do K -154 447 262 563 -321 683

fops,s -265 514 -266 614 -313 733

0.7 Ppen 314 275 -345 375
Pos.K 201 258 -308 341

Pps.s -291 299 -296 376

Table II1.10
Bias and MSE (x10%)of interclass correlation estimators for different values of p,,
and p,s (n=10, m=38), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N 13 595 -61 681 -143 852 -68 994
Pps, K 20 555 -B5 646 -129 814 -66 941

Pps,S -38 530 -55 683 -130 876 -58 1017

0.3 Pps,N 23 436 -200 569 -203 700 -253 864
fops,K 20 408 -170 535 -184 665 -229 820

Pps,s -119 431 -184 583 -163 720 -223 881

0.5 Pps,N -258 343 -344 471 -339 628
Pps, Kk -223 328 -297 446 -292 589

Pps,s -240 375 -275 483 -286 636

0.7 Pos.n 406 223  -423 334
Pps, K -350 206 -378 311

Dps.s -307 228 -347 330
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and p,,, (n=10, m=4), based on 10,000 simulations from Kotz type distribution

Table ITI.11
Bias and MSE (x10*) of interclass correlation estimators for different values of p,

56

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -5 443 75 572 -131 734 -60 924
Pps, K 3 419 -72 544 -119 702 -58 888

Pps,S -36 409 -57 591 -114 761 48 948

0.3 Pps,N -31 313 -232 481 -270 638 -272 814
Pps K -15 297 -200 455 -237 614 -254 773

Pps,s -131 331 -184 499 -218 659 -238 832

0.5 Pps,N -360 295 -378 445 -375 585
Pps, K -318 281 -332 419 -342 553

Pps,s -283 315 -290 453 -317 592

0.7 Pps,N -419 200 -390 293
Pps, K -359 184 -345 274

Pps.8 -200 194 -304 287

and p,,s (n=10, m=5), based on 10,000 simulations from Kotz type distribution

Table ITI.12
Bias and MSE (x10*) of interclass correlation estimators for different values of pqs

Pps/Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N -26 362 -71 509 -84 697 -81 907
Pps, K -14 344 58 488 66 678 -69 869

Pps,s -43 348 50 532 66 726 -69 932

0.3 Pps,N -80 240 -231 412 -263 596 -250 774
i)ps,K -58 230 -204 396 -231 571 -227 732

Pps,s -130 265 -166 430 -206 617 -213 792

0.5 Pps,N -366 258 -374 399 -313 567
Pps K -326 249 -333 380 -271 535

Pps,s -260 272 -275 404 -250 575

0.7 Do 422 172 375 265
Pps,K -368 161 -332 246

Pps.s -279 162  -282 259
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Table I11.13
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,, (n=50, m=2), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N 15 160 -39 186 -10 213 6 240
Pps,k 8 138 -26 159 -6 184 5 206
Pps,s -9 154 -38 186 -8 214 8 241
0.3 Pps,N 38 126 -28 1563 40 177 -41 205

Pps, K 33 108 -36 133 -32 152  -30 179
Pps,s -30 129 -24 155 -33 178 -36 205

0.5 Pps.N 68 96 -54 117 81 136
Dps i 57 83 45 101 65 117
Pps.s 61 99 42 117 73 137

0.7 Ppsn 94 52 67 61
Pps K 18 45 59 52
Pys.s 77 52 56 60

Table I11.14
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,, (n=50, m=38), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 lbps,N =21 106 -23 144 -22 177 -17 210
Pps. K -21 94 -15 128 -14 155 -20 186
i)ps,s -31 105 -19 145 -19 178 -15 211

03 Py 15 80 32 114 54 143 -50 175
Ppsk 13 7L 25 100 45 125 -46 156
Ppss -4 85 19 115 44 143 44 175

0.5 Prs.N 81 7L 49 94 49 117
Ps. i 68 62 -37 82 45 104
Dps,s 59 7L 32 94 -39 117

0.7 PN 273 38 <70 51
Pps K 63 33 58 45
Pps.s 49 37 55 50
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Table II1.15
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,, (n=50, m=4), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N -3 85 24 122 -17 162 -46 199
Pps K -2 76 -13 109 -12 144 -43 178
Pps.s -4 85 .19 124 14 163 -44 200
0.3 Pps,N -27 59 -60 97 51 133 40 163

Pps, K -25 53 -49 87 -41 119 -30 146
Pps,S -30 62 -45 98 -40 134 -33 164

0.5 Pps.N 81 59 68 80 66 108
Dps. K 65 52 63 72 52 96
Dps.s 55 59 -49 80 -4 108

0.7 Dps.N 85 33 19 46
Pps. i 1320 64 41
Pps.s 59 32 63 46

Table I11.16
Bias and MSE (x10*) of interclass correlation estimators for different values of p,
and p,,s (n=50, m=>5), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N -31 69 -8 105 -36 144 -31 188
Pps, K -25 63 -6 95 =32 131 25 172
Pps,s -27 70 -3 106 32 145 -28 189

03 Py 30 50 -42 8 24 122 43 154
Ppsx 24 45 33 77 -19 111 -38 140
Ppss 20 52 25 8 -12 123 -36 155

0.5 Pos.N 63 50 71 75 77 100
Pos K 55 45 -6l 67 -TL 91
Pps.s 36 50 -50 75 65 100
0.7 Ppan 16 28 82 44
Prs. K 64 26 -3 39
Pro.s 47 28 65 43
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Table II1.17
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,s (n=10, m=2), based on 10,000 simulations from T distribution, when df=3

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N 35 1194 -16 1258 -162 1374 -126 1479

Pps, K 46 933 -25 1010 -137 1109 -115 1197
Pps,s -47 1006 -44 1183 -163 1361 -121 1490

0.3 Py -17 968 -105 1043 -301 1194 -207 1309
Ppsx 46 T4l -84 822 -261 964 -166 1051
Ppss  -207 865 -182 1002 -314 1188 -193 1318

0.5 Pps.N 214 706 -339 831 -387 992
Dps. i 178 539 -270 649 -310 778
Pps.s -353 735 -359 846 -366 1003
0.7 PosN 380 397 472 564
Dos K 315 297 -371 418
Dps.s 409 440 -445 575

Table II1.18
Bias and MSE (x10%) of interclass correlation estimators for different values of p,,
and p,,s (n=10, m=3), based on 10,000 simulations from T distribution, when df=3

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 f’ps,N -14 850 -115 983 -111 1141 -69 1340

Ppsx 19 649 99 772 78 905 -47 1071
bpss -84 734 -118 964 -105 1160 -59 1366

0.3 Pps,N -11 647 -277 822 -317 1002 -314 1231
Pps,K -29 482 -215 634 -249 784 -215 974
Pps,S -190 618 -292 824 -289 1018 -284 1251

0.5 Do 310 510 -443 717 -402 888
Pos K¢ 225 384 -337 548 -302 690

p b
Dps.s -341 552 -397 735 -355 899
0.7 PN 467 326 510 489
Pps. K¢ 356 243 381 355
Drs.s 408 352 -451 490
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Table I11.19
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,, (n=10, m=4), based on 10,000 simulations from T distribution, when df=3

60

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 f’ps,N 14 663 -120 842 -94 1041 -102 1296
f’ps,K 10 499 -99 639 -74 825 =72 1028

f)ps’s -35 597 -117 850 -80 1072 -92 1327

0.3 i)ps,N -36 494 -322 701 -302 905 -356 1163
i)p&K -13 358 -264 534 -220 697 -265 910

f’ps,S -191 497 -297 715 -256 929 -324 1188

0.5 i)ps,N -366 430 -517 661 -453 892
prs,K =272 322 -390 498 -339 671

Pps,s -330 465 -448 678 -398 906

0.7 Pos.N 544 472
Do K 389 331

Pps.5 461 4680

Table II1.20
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,s (n=10, m=5), based on 10,000 simulations from T distribution, when df=3

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N 44 571 -92 760 -119 1024 -73 1274
bpsk 21 413 81 578 99 796 -60 1002
Pps,s -79 529 -76 781 -102 1060 -61 1308
0.3 Pps,N -90 383 -280 615 -368 889 -318 1137
Pps, K -60 287 -220 469 -268 688 -233 877
Pps,s -205 411 -238 637 -317 918 -282 1165
0.5 Pps,N -391 372 -508 636 -486 839
Pps, K -288 277 -378 473 -359 624
Pps,s -326 402 -419 649 -425 851
0.7 Pps.N 551 461
Pps, K -385 311
Pps.S -461 455
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Bias and MSE (x10*) of interclass correlation estimators for different values of p,

Table I11.21

61

and p,,, (n=>50, m=2), based on 10,000 simulations from T distribution, when df=3

pps/pss

Estimate

0.1 i)ps,N
pps,K
Pps,8

0.3 /A)ps,N
pps,K
pps,S

0.5 pps,N
pps,K
Pps,s

0.7 i)ps,N
pps,K
Pps,S

0.1
Bias MSE Bias
52 426 20
38 183 8
9 392 13
44 323 62
39 136 -37
92 315 -86
-75
-72
-119

0.3 0.5 0.7
MSE Bias MSE Bias MSE

460 -21 495 -26 563
206 -7 229  -17 260
447  -22 492 -25 564
382 -119 455 -107 484
172 -3 201 -56 231
377 -120 454 -105 485
242 -130 314 -156 350
108 -63 136 -78 152
265 -130 317 -150 349

-153 133 -171 176

-81 97 -85 70
-152 139 -164 178

Table II1.22
Bias and MSE (x10%) of interclass correlation estimators for different values of p,,
and p,,s (n=50, m=3), based on 10,000 simulations from T distribution, when df=3

Pps/ Pss

Estimate

0.1 pps,N
pps,K
Pps,S

0.3 pps,N
pps,K
pps,S

0.5 ﬁps,N
Pps, K
Pps,s

0.7 ﬁps,N
Pps, K
Pps,S

0.1
Bias MSE Bias
19 303 -36
3 129 -5
-19 288  -38
-37 232 -67
11 97 -45
-67 237 -68
-117
-69
-118

0.3 0.5 0.7
MSE Bias MSE Bias MSE

367 -38 444 -17 529
163 -23 202 -11 241
365 -36 446 -15 531
295 -105 395 -95 453
131 -45 170 -50 204
298 96 396 -89 454
181 -172 262 -159 309
81 -78 111 -75 131
188  -160 263 -150 310

-165 108 -188 158

-80 45 -88 60
-148 111 -174 158
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Table 111.23
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,s (=50, m=4), based on 10,000 simulations from T distribution, when df=3

62

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N 7 235 22 324 .55 422 50 516
Pps K -4 96 -9 142 -32 188 -22 234

Pps,s -16 226 -19 324 -52 424 -48 518

0.3 Pps N -1 174 -122 273 -131 353 -142 471
Pps K -7 73 -58 115 -52 154 -66 202

Pps,s -66 183 -113 274 -121 355 -135 473

0.5 bps,N -135 157 172 242  -192 302
Pps,K -60 67 -74 98 91 130

Pps,s -120 161  -155 242 -181 304

0.7 Pps,N -184 96 -170 148

Pps, K -74 38 -72 56

Pps.s 160 96 -154 147

Table I11.24
Bias and MSE (x10*) of interclass correlation estimators for different values of p,,
and p,,s (n=50, m=5), based on 10,000 simulations from T distribution, when df=3

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N -16 207 -54 300 -39 415 -44 510
Pps,K -9 83 -18 130 -12 180 -29 223
Pps,s -32 202 49 302 -34 418 -42 513
0.3 Pps,N -26 144 -105 249 -106 329 -106 432
Pps,K -21 61 -34 104 43 145 -55 188
Pps,s -66 153 -92 252 93 332 -99 434
0.5 Pps,N -142 150 -174 227 -171 307
Pps, K -67 61 -70 93 -71 129
Pps,s -121 152 -154 228 -158 307
0.7 DN 188 88 -193 139
Pps, K -75 34 -84 53
Pps.s -161 87 -176 138
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Table I11.25

63

PN comparison of interclass correlation estimators for different values of pyg, pims
and (n=10, m=2), based on 10,000 simulations from normal distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 f’ps,NVSﬁps,K 0.5504 0.545 0.5492 0.5511
Pps,NVSPps,s 0.5766 0.7206 0.8284 0.8733
Pps,kVSPps,s 0.3878 0.4405 0.4599 0.4626
0.3 ,bps’stf)ps,K 0.5481 0.5477 0.5568 0.5454
Pps,NVSPps,s 0.5922 0.6315 0.6598 0.6723
Pps kVSPps,s 0.4483 0.4664 0.4677 0.4695
0.5 Pps,NVSPps K 0.54 0.5433 0.5484
Pps,NVSPps,g 0.6372 0.58 0.5654
Pps, K V8Pps,s 0.5272 0.4887 0.469
0.7 Pps,NVSPps K 0.5329 0.5496
f’ps,NVSf’ps,S 0.563 0.5246
Pps. K VSPps.8 0.5082 0.4702

Table I11.26

PN comparison of interclass correlation estimators for different values of p,y, Ppms
and (n=10, m=3), based on 10,000 simulations from normal distribution

pps/pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,N VS Pps x  0.5521 0.5521 0.5509 0.5474
Pps,NVSPps,5 0.5951 0.772 0.8518 0.8736
Pps, KVSPps,s 0.4006 0.4559 0.4723 04711
0.3 Pps,NVSPps, K 0.5492 0.5479 0.5415 0.5483
Pps,NVSPps,g 0.6226 0.6357 0.6368 0.6621
Pps, K VSPps, s 0.4877 0.4924 0.4892 0.476
0.5 Pps,NVSPps K 0.5466 0.5485 0.5386
Pps,NV8Pps.s 0.5929 0.5345 0.5555
f’ps,NVSf’ps,K 0.5262 0.4828 0.4857
0.7 Do NVDpa K 0.5466 0.5335
Pps,NVSPps 5 0.4975 0.5083
Pps.NV8 Pps k 0.47 0.489




and (n=10, m=4), based on 10,000 simulations from normal distribution

Table II1.27
PN comparison of interclass correlation estimators for different values of p.g, Pms

64

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,NVSPps k  0.5422  0.5405 0.5409 0.5437
Pps,NVSPps,s 0.6329 0.7944 0.8508 0.8717
Pps, kVSPps,s 0436  0.492  0.4954 0.4827
0.3 Pps,NVSPps ik 0.5554  0.5442 0.5407 0.5415
Pps,NVSPps s 0.6563 0.6069 0.6331 0.6596
Pps,kVSPps,s  0.5305 0.5049 0.4956 0.4852
0.5 Pps,NVSPps K 0.5438 0.5357 0.5374
Pps,NVSPps. s 0.5424 0.5113 0.5433
Pps,NVSPps, K 0.5123 0.4937 0.4913
0.7 Pps,NVSPps K 0.53 0.5444
Pps,NVSPps.s 0.4631 0.5005
0 p 0.4673 0.4848

pps,NVSpps,K

and (n=10, m=5), based on 10,000 simulations from normal distribution

Table I11.28
PN comparison of interclass correlation estimators for different values of pyg, Pms

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,NVSPps k  0.5407 0.5559 0.5362 0.534
Pps,NVSPps g 0.6468 0.8106 0.85 0.8703
Pps,kV8Pps,s  0.4528 0.4995 0.506  0.4938
0.3 Pps,NVSPps i 0.5587 0.542  0.5471 0.5481
Pps,NVSPps s  0.6694 0.5944 0.6204 0.6585
Pps,kVSPps,s  0.563  0.5171 0.5003 0.4846
0.5 Pps,NVSPps, K 0.531 0.536  0.5332
Pps,NVSPps.g 0.5078 0.5131 0.5518
Pps,NVSPps K 0.5101 0.4981 0.4934
0.7 Do, NVSPps, K¢ 0.5312 0.538
Pps,NVSPps. g 0.4521 0.4922
Pps,NVSPps K 0.4736 0.4842
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Table 111.29
PN comparison of interclass correlation estimators for different values of pyg, Prs
and (n=50, m=2), based on 10,000 simulations from normal distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 DponVSPpex 0.5582 05515 05521 0.5502
Dps NVSPps,s  0.6077 0686 0.7142 0.7281
Dpo KVSPps,s  0-4305 0.4533 0.4516 0.4512

0.3 s nVSPpsx 0.5512 0.5497 0.5545 0.5456
Pps NVSPps.s 0.5914 0.5132 0.5128 0.5158
Dps kVSPpsg 04706 0.4563 0.4484 0.4553

05 Pps NVSPps K 0.5432 0.5371 0.5562
Dps. NVSPps. 0.5115 0.4966 0.5136
Dps. 1 VSPps 0.4636 0.4643 0.4458
0.7 PpsNVSPps i 0.5485 0.5512
Dps.NVSPps, 5 0.5079  0.5025
Do, 1 VPps. 5 0.4555  0.45

Table I11.30
PN comparison of interclass correlation estimators for different values of pgys, Pms
and (n=50, m=3), based on 10,000 simulations from normal distribution

pps/pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 f)ps’N V8 ﬁps,K 0.5446 0.5455 0.5528 0.55
Pps,N VS Pps,g  0.6149 0.6613 0.6975 0.7159
Pps,k US Pps g 0.4539 0.4601 0.4518 0.4519

0.3 Ppsn US Ppsx 05443 0.5433 0.5558 0.5538
Dps. VS Ppss  0.5862 0.4969 0.5082  0.508
Dps i VS Pps,g  0.4888 0.4620 0.4503 0.4474

0.5 Pps,N VS Pps Kk 0.5528 0.5515 0.5529
PN VS Pps.s 0.4889 0.5024 0.5083
Pos.K VS Pps.s 0.4552 0.4546 0.4509
0.7 i’ps,N vs i’ps,K 0.5445 0.5414
Pps.N US Pps.s 0.4807  0.506
Pps.k VS Pps.s 0.4574 0.4631
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and (n=50, m=4), based on 10,000 simulations from normal distribution

Table III.31
PN comparison of interclass correlation estimators for different values of pyg, Ppms

66

Pps/Pss 0.1 0.3 0.5 0.7
Estimator PN PN PN PN
01 “Dpon vS bpox 0-5517 05378 05543 05424
Pps,N V3 ps,s 061 0.6599 06906 0.7073
Dps K S Pps,s 04562 0.4701 0.4509 0.4611
03 Ppo U8 Dpoic 05449 0542 05386 0.5506
Pps,N VS Dpe,s 05561 0.4994 05029 0.5172
Dok US Ppss 04859 0.462 04634 0.4525
0.5 Ppsn V8 Ppsk 0.5443 0.543 0.5436
Pps.N VS Pps.s 0.4917 0.5103 0.508
Pps. i VS Pps g 0.4624 0.4665 0.4627
0.7 Pps.N U8 Ppsk 0.5434 0.5483
Pps.N VS Pps g 0.4865  0.495
Prs. K U8 Pps.s 0.458  0.4554

and (n=>50, m=5), based on 10,000 simulations from normal distribution

Table I11.32
PN comparison of interclass correlation estimators for different values of pgs, Pps

Pps/ Pss 0.1 0.3 0.5 0.7
Estimator PN PN PN PN
0.1 ,ops N US pps x 0.5425 0.5447 0.5382 0.5432
pps N US p],,S s 0.5952 0.6436 0.6825 0.7094
Pps,k VS Pps,s  0.4667  0.464 0.4655 0.4616
0.3 Ppsn VS Pps g 0.5352 0.5431 0.5427 0.5387
Pps,N VS Ppss  0.5279 0.5005 0.4985 0.5064
Pps. i VS Pps s 0.4853 0.4667 0.4611 0.4655
0.5 pps N US ppS K 0.5397 0.5357 0.5397
pps N US pps s 0.4858 0.4869 0.5092
Pps, K VS Pps s 0.4643 0.4676 0.4637
0.7 Ppon VS Ppoc 0.5473 0.5402
pps N VS pps s 0.4819 0.4947
Pps K VS Pps.s 0.4576 0.4644
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Table 111.33
PN comparison of interclass correlation estimators for different values of pyg, Pps
and (n=10, m=2), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 0.1 0.3 0.5 0.7
K Estimate PN PN PN PN
0.1 Pps,k VS Pps v 0.544  0.543  0.535  0.542

Pps,N VS Pps,g  0.5593 0.7053 0.8279 0.8832
Pps, K VS Pps,g  0-4519 0.5087 0.5354 0.5518

0.3 Ppoi VS Ppsy 0548 0542 0535  0.538
Dpsn VS Ppss  0.5841 0.6353 0.6878 0.7157
Dok VS Ppss  0.5087 0.5434 0548  0.552

0.5  Ppsk VS Pps 0.5341 0.5272 0.5324
Pps,N VS Pps 5 0.6471 0.6083 0.5968
Pps,i VS Pps,s 0.584 0.5649 0.5482
0.7 Ppsk VS PpsN 0.5179 0.5308
Pps,N VS Pps,s 0.5872 0.5451
0 Pps, K VS Pps s 0.5674 0.5559

Table I11.34
PN comparison of interclass correlation estimators for different values of pgg, Ppms
and (n=10, m=3), based on 10,000 simulations from Kotz type distribution

Pps/ Pss 01 03 05 01
Estimate PN PN PN PN
0.1 ook VS Ppey 05482 0538 0.5231 0.5347
DpsN VS Ppsg  0.5949 07705 0.859 0.8881
Pps,K VS Ppes  0AT3T 0536 0.5443 0.5515

0.3 Py VS Ppsy 0.5353  0.520 0.5377 0.528
Do VS Dpsg  0.6210 0.6466 0.6666 0.6867
Dpakc VS Ppsg  0.5465 0.5598 0.5652 0.5467

0.5  Ppsk VS Pps N 0.5189 0.5286 0.5311
Pps,N V8 Pps.s 0.622 0.5546 0.5034
Pps,ic VS Pps,s 0.5946 0.5595 0.5513
0.7 Ppak VS Ppon 0.5362 0.5242
Pps,N VS Pps.s 0.5004 0.5113
Pps, K VS Pps.s 0.5524 0.5469
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and (n=10, m=4), based on 10,000 simulations from Kotz type distribution

Table I11.35
PN comparison of interclass correlation estimators for different values of pgs, Pms

68

pps/pss

0.1

0.3

0.5

0.7

0.1 0.3 0.5 0.7

Estimate PN PN PN PN
Pps,k VS Ppsny  0.5418 0.5307 0.5244  0.5207
Pps,N VS Ppss 0.6231  0.793  0.8598 0.8871
Pps,k VS Ppss  0.4829 0.5494 0.555  0.544
Pps, VS Pps,y  0.5338  0.5309 0.5197 0.5279
Pps,N VS Pps.g  0.6576 0.6351 0.6497 0.6856
Pps,x V8 Pps,s  0.5904  0.577  0.549 0.5518
Do,k V5 Dps.N 0.5223 0.5325 0.5319
Pps,N VS Pps s 0.5547 0.528 0.5521
Pps,ic VS Pps,s 0.5831 0.5655 0.5568
i)ps,K Vs :bps,N 0.5426 (.5289
Pps,N VS Pps s 0.4708 0.5032
Pps.ic V8 Pps.s 0.541 0.5488

and (n=10, m=5), based on 10,000 simulations from Kotz type distribution

Table I11.36
PN comparison of interclass correlation estimators for different values of pyg, ppms

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,ic VS Pps,v  0.5408  0.5313 0.5176 0.5253
Pps,N VS Ppss 0.6531 0.8126 0.8583 0.8787
Pps,i VS Pps,s  0.5088  0.561 0.5516 0.5467
0.3 Pps,k VS Pps v 0.5224  0.5224 0.5233 0.5364
Pps,N VS Ppss  0.6721  0.611 0.6492 0.6811
Pps,k VS Ppss  0.6132 0.5676  0.56  0.5602
0.5 Pps,K VS Pps N 0.5153 0.5216 0.5309
Pps,N VS Pps.g 0.5158 0.5114 0.5609
Pps,ic VS Pps.s 0.5606 0.5479 0.5601
0.7 Ppak VS Dpan 0.5299 0.5274
Pps,N VS Pps s 0.4493 0.5044
Pps. i VS Pps.s 0.5294 0.5548
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and (n=50, m=2), based on 10,000 simulations from Kotz type distribution

Table II1.37
PN comparison of interclass correlation estimators for different values of pyy, Ppns

69

Pps/Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,k VS Pps v 0.5627 0.5697 0.5634 0.5649
Pps,N VS Ppss  0.6103 0.7218 0.7551 0.7704
Pps,k VS Ppes  0.5434  0.5693 0.5657 0.5658
0.3 Pps,k VS Pps,ny  0.5607 0.5607 0.5662 0.5619
Pps,N VS Ppss 0.6026 0.5406 0.5274 0.5359
Pps, i VS Pps,s  0.5686 0.5675 0.5695 0.5633
0.5 Ppsk VS Pps.N 0.5538 0.5624 0.5619
Pps,N VS Pps.s 0.5399 0.5107 0.5023
Pps,K VS Pps.s 0.565 0.5669 0.5636
0.7 Pps, K VS Pps,N 0.5596 0.5553
Pps,N VS Pps g 0.4869 0.5042
Pps K VS Pps.s 0.5645 0.5581

and (n=50, m=38), based on 10,000 simulations from Kotz type distribution

Table II1.38
PN comparison of interclass correlation estimators for different values of py,, Ppns

Pps/Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Py VS Ppon 05531 0.5453 0.5594 0.5554
PosN VS Ppss 06292 0.7009 0.7338 0.7489
Prs i VS Ppss  0.5428 055 05631 0.5571
0.3 Ppsk VS Py  0.5477 0.5611 0.556  0.5495
PN VS Ppsg 0.6038 05158 0.5153 0.5228
Dosi VS Ppsg 0.5812 0.5646 0.5592 0.5523
0.5 Pk VS Ppsn 0.5564 0.5507 0.5557
Pos.N VS Pps.g 0.4857 0.5107 0.5149
Pps,K V8 Pps,s 0.5587  0.557  0.5601
0.7 Dok VS Ppan 0.5587 0.5553
Pos.N VS Pps.s 0.4919  0.5047
Proskc VS Prss 0.5612  0.5543
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and (n=50, m=4), based on 10,000 simulations from Kotz type distribution

Table I11.39
PN comparison of interclass correlation estimators for different values of ps, Pms

70

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Ppok V8 Pps v 0.5495  0.5537 0.5585 0.5578
Posy VS Ppos  0.6416 0.6017 0.7206 0.7482
Dos. VS Dpss 05516 0.5594 0.5623 0.5598
0.3 Ppsk VS Ppsy 05339 0.556 0551 0.5511
Posiy VS Ppes 05708 0.4907 0.5119 0.5227
Posi VS Ppss 05703 05618 0.5534 0.5555
0.5 Ppsk VS Ppsy 0.5547 0.549  0.5539
Pos. VS Ps.s 0.487 0.5009 0.5085
Pps,i VS Pps.s 0.5594 0.5556 0.5584
0.7 Dpsk VS Pps,n 0.5591  0.5605
Pps,N VS Pps.s 0.4874 0.4959
Pk VS Prs. 0.5571  0.5635

and (n=50, m=5), based on 10,000 simulations from Kotz type distribution

Table III.40
PN comparison of interclass correlation estimators for different values of ps, Ppms

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN

0.1 Ppax VS Ppey 05402 05523 05478 05451

PosN VS Ppss  0.6207 0.6708 0.7083 0.7411

Pps,ix VS i]psys 0.5481 0.5587 0.5525 0.5477

0.3 ook VS Ppsy 0543 05429 05499 0.5503

Pos N VS Ppsg 05417 0.4994 0517 0.5236

ﬁps,K Vs Z);DS,S 0.5681 0.5481 0.5529 0.5521

0.5 pps,K Vs :bps,N 0.5495 0.5495 0.5464

Pps,N V8 Pps s 0.4893 0.4929 0.5057

Pps, i VS Pps,s 0.5553 0.5521 0.5498

0.7 Do VS oo 0.5489 0.5551
Pos.N VS Pps.s 0.481  0.49

Pos.K VS Pos. 0.5486 0.5571
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and (n=10, m=2), based on 10,000 simulations from T distribution, with df=3

Table I1I1.41
PN comparison of interclass correlation estimators for different values of pyg, Prms

71

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,ik VS Pps,y  0.6427 0.6294 0.623  0.6201
Pps,N VS Ppss  0.5532 0.7068 0.8136 0.8831
Pps i VS Ppsg  0.5204 0.5768 0.6063 0.6251
0.3 Pps,ic VS Pps v 0.628  0.6188 0.6078 0.6195
Pps,N VS Ppss  0.5842 0.6575 0.7001 0.7434
Pps.ic VS Pps,s  0.5714  0.5993 0.6174 0.6227
0.5 Pps,K VS Pps N 0.5783 0.5959 0.6041
Pps,N VS Pps.s 0.6663 0.6463 0.6312
Pps. k¢ VS Pps s 0.6431 0.6373 0.6238
0.7 Pps, i VS Pps N 0.6127 0.6128
Pps,N VS Pps.s 0.6206 0.5699
Pps, i VS Pps.s 0.6471 0.6251

and (n=10, m=3), based on 10,000 simulations from T distribution, with df=3

Table I11.42
PN comparison of interclass correlation estimators for different values of pss, Pms

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 P VS Ppen 0.6421 0.6407 0.6124 0.6231
Dps.N VS Pps,g  0.5781 0.7494 0.8491 0.8946
Pps. VS Pps,s  0.5343  0.606 0.6286 0.6314
0.3 Dok VS Ppey 0.6347 0.6174 0.6212 0.6256
Pps.N VS Ppss  0.6309 0.6669 0.6987 0.7269
Pps.k VS Pps.s  0.6119 0.6352 0.6336 0.6393
05 Ppox VS Ppo 0.5898 0.6083 0.6288
Do VS Pps.s 0.6591 0.6023 0.6097
Pps.K VS Pps S 0.6629 0.6339 0.6283
0.7 Ppsi VS Ppon 0.3873 0.6354
Bps.N VS Pps. 0.5369 0.5253
Do,k VS Pps.s 0.6424 0.6283
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and (n=10, m=4), based on 10,000 simulations from T distribution, with df=3

Table I11.43
PN comparison of interclass correlation estimators for different values of p,,, Pms
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Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,k VS Pps v 0.6421  0.6407 0.6124 0.6231
Pps,N VS Pps s 0.5986 0.7882 0.8649 0.8944
Pps Kk VS Pps,s 0.5566 0.6315 0.6302 0.6375
0.3 Pps,ic VS Ppsy  0.6347 0.6174 0.6212 0.6256
DpsN VS Ppsg  0.6575 0.6625 0.6873 0.7271
Pps,k VS Pps,s  0.6548 0.6429 0.6464 0.6403
0.5 Pps, i VS Pps N 0.5898 0.6083 0.6288
Pps,N VS Pps,s 0.6028 0.5654 0.6077
Pps,k VS Pps,s 0.6601 0.6389 0.6474
0.7 Pps,K VS Pps,N 0.6354
Pps,N VS Pps s 0.5097
Pps.ic V8 Pps s 0.6526

and (n=10, m=5), based on 10,000 simulations from T distribution, with df=3

Table I11.44
PN comparison of interclass correlation estimators for different values of pgg, Prms

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,ic VS Pps v 0.6575  0.6318 0.6241 0.6253
Pps,N VS Pps,g  0.6249 0.8105 0.87  0.9008
Pps K VS Pps,s  0.5883 0.636 0.6497 0.6448
0.3 Pps,ic VS Pps, v 0.6182  0.6081 0.6109 0.621
Pps,N VS Pps,s  0.6795 0.6464 0.6865 0.7248
Pps,ic VS Pps,g  0.673  0.643 0.6368 0.6381
0.5 Pps,K VS Pps,N 0.6045 0.6164 0.62
Pps,N VS Pps.s 0.5626 0.5481 0.5927
Pps, K VS Pps,g 0.6626 0.6424 0.6424
0.7 Pps,ic V8 Pps, N 0.6294
Pps,N VS Pps,s 0.5028
Pps. i VS Pps 5 0.643




and (n=50, m=2), based on 10,000 simulations from T distribution, with df=3

Table II1.45
PN comparison of interclass correlation estimators for different values of pyg, Prs
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Pps/Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,k VS Pps,y  0.7083  0.6956 0.6976 0.7041
Pps,N VS Pps,g  0.6194 0.7361 0.8046 0.8241
Pps,ic VS Pps,s  0.6736 0.6902 0.6975 0.7054
0.3 Pps, i VS Pps,ny 0.6996  0.6901 0.6927 0.6914
Pps,N VS Pps,g  0.6034 0.5868 0.5842 0.6035
Pps,K VS Pps,s  0.6884 0.6925 0.6934 0.6919
0.5 Pps,K VS Pps N 0.6812 0.6874 0.6895
Pps,N VS Pps g 0.5865 0.5376 0.5294
Pps,K VS Pps.s 0.702 0.6928 0.6918
0.7 Pps,K VS Pps,N 0.6951 0.6965
Pps,N VS Pps.g 0.5172 0.5154
Pps, i VS Pps.s 0.7011 0.6992

and (n=50, m=3), based on 10,000 simulations from T distribution, with df=3

Table I11.46
PN comparison of interclass correlation estimators for different values of psg, Ppms

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,k VS Pps v 0.7026  0.6987 0.6981 0.7011
Pps,N VS Pps g 0.645  0.7583 0.8023 0.8212
Pps,k VS Pps,s 0.6817 0.6967 0.6981 0.7018
0.3 Pps,K VS Pps v 0.6906  0.696  0.6979 0.7044
Pps,N VS Pps g 0.6325 0.5683 0.5695 0.5933
Pps,ic VS Pps,g 0.7059  0.7029 0.7005 0.7058
0.5 Pps,ic V8 Pps. N 0.6843 0.6945 0.6959
Pps,N VS Pps s 0.5233 0.5099 0.523
Pps,ic VS Pps.s 0.6965 0.6977 0.6979
0.7 Ppsi VS Ppan 0.7027 0.7057
Pps,N V8 Pps.g 0.4838 0.4956
Pps. K VS Pps.s 0.7023 0.704
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and (n=>50, m=4), based on 10,000 simulations from T distribution, with df=3

Table I11.47
PN comparison of interclass correlation estimators for different values of pgg, Ppms

74

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,k VS Ppsy  0.7101  0.6995 0.7003 0.7004
Pps,N VS Pps,s  0.6552 0.7609 0.7978 0.8245
Pps, K VS Ppss  0.6961 0.7002 0.703  0.7018
0.3 Pps, i VS Pps v 0.6759  0.6975 0.6974 0.7034
Pps,N VS Ppss  0.6366 0.5347 0.5563 0.5839
Pps,k VS Pps,s  0.7109  0.7035 0.7 0.7037
0.5 Pps,k VS Pps,N 0.699 0.7069 0.6976
Pps,N V8 Pps.S 0.4974 0.4992 0.51561
Pps,k VS Pps,s 0.7047 0.7101 0.7
0.7 Pps, ik VS Pps,N 0.71 0.7124
Pps,N V8 Pps,s 0.4596 0.5009
ﬁps,K vs i)ps,S 07069 07113

and (n=50, m=5), based on 10,000 simulations from T distribution, with df=3

Table ITI.48
PN comparison of interclass correlation estimators for different values of pys, Ppns

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 lbps,K VS pps,N 0.7089 0.6999 0.7016 0.7108
i)ps,N Vs i)ps,S 0.6627 0.7605 0.7959 0.8147
Pps K VS ﬁps’s 0.7011 0.7021 0.7047 0.7118
0.3 Pps,k VS Pps.y  0.6768 0.6998 0.6971 0.7105
f’ps,N vs /A’ps,S 0.6115 0.5353 0.5485 0.5829
,bps,K vs f)p&S 0.7191 0.7031 0.7012 0.7127
0.5 Ppsk VS Pps.y 0.7107 0.7126 0.7007
:aps,N Vs ,f)p&s 0.4803 0.494 0.5121
Pos.K V8 Pps. 0.7137 0.7137 0.7023
0.7 Pps,ic VS Pps N 0.719 0.6982
/A)ps’N Vs ﬁps,S 0.4448 0.4889
Pps K VS Pps.s 0.7174 0.7019
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Table 111.49
Bias and MSE (x10*) of Pps for the unbalanced case when n=50, based on 10,000
simulations from normal distribution

Pps/Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N 8 107 -4 130 -22 152 22 172
Pps. K 54 130 33 157 9 179  -12 200
Pps,s -14 122 -10 139 -30 154 -34 170

0.3 Pos,N 43 105 50 127 27 145
Prs. K¢ 74 126 43 148 29 167
Dps.s 63 114 -79 130 -62 144
0.5 Pos N 53 84 65 97
Pps. 97 97 23 112
Prs.s 95 90 -121 98

Table II1.50
Bias and MSE (x10%) of p,, for the unbalanced case when n=100, based on 10,000
simulations from normal distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N 5 47 -7 60 -22 72 3 84
Pps,K 43 57 27 71 3 83 14 96
Pps,S -1 55 -8 64 -26 73 -1 84

0.3 Pps.N 0 3 15 48 25 59 34 70
Ppsi 105 42 8 57 52 6 11 8l
Ppos -7 45 22 53 32 6L 46 Tl

0.5 P 23 29 29 39 23 46
Pos i 126 34 93 45 54 53
Ppss 26 33 42 41 42 47
0.7 PN 30 15 <19 20
Pps. i 112 17 83 22
Pps.s 44 17 44 21
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Table III.51
Bias and MSE (x10%) of pps for the unbalanced case when n=50, based on 10,000
simulations from Kotz type distribution

76

Pps/ Pss 0.1 0.3 0.5 0.7

Estimate Bias MSE Bias MSE Bias MSE Bias MSE

0.1 Pps,N 57 140 -104 169 67 206 -21 234
Pps. K 3 134 -41 158 -25 189 -3 212

Pps,S 24 154 60 180 -33 212 -9 234

0.3 Pps,N -203 141 -168 173 -121 204
Pps, i =32 127 -34 155 -26 179

Pps,s -68 146 -70 174 -78 202

0.5 Pps.N 289 124 -190 143
Prps, K 56 101  -36 120

Pps,s -125 116  -119 137

0.7 Pps,N -2656 Tl

Pps, K -61 52

Pps.S -173 63

Table I11.52
Bias and MSE (x10%) of Pps Jor the unbalanced case when n=100, based on 10,000
simulations from Kotz type distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 Pps,N =37 61 -58 81 -50 99 -18 117
Pps, K 13 57 -13 73 -19 88 5 102
Pps,s 5 68 -15 86 -20 102 0 119
0.3 Pps,N -141 48  -148 67 -129 84 -119 101
Pps, K 1 43 16 58 -26 73 -41 85
Pps,S -18 55 -28 69 -33 84 -63 100
0.5 Pos.N 221 46 -194 56 -143 68
Pps,K -18 36 -22 45 -23 55
Pps,g -30 43 -43 53 -52 66
0.7 Pos.v 239 29 196 34
" 38 19 35 24
Pps.s -69 23 -78 29
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Table II1.53
Bias and MSE (x10*) of p,, for the unbalanced case when n=50, based on 10,000
simulations from T distribution, with df=3

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 f’ps,N 20 410 -25 456 -19 522 -97 583
Pps, 74 199 13 225 13 263 44 292
Pps,s 19 434 -35 470 20 523 -105 576

0.3 Ppa.N 79 379 -159 448 -128 508
Pps K 74 188 10 214 1 242
Pos.s 116 399 -178 452 -150 500
0.5 Do 158 312 -176 362
Do, K 75 138 12 159
Prs.s 188 320 -214 357

Table 111.54
Bias and MSE (x10*) of Pps for the unbalanced case when n=100, based on 10,000
simulations from T distribution, df=3

Posl Pas 0.1 0.3 0.5 0.7
Estimate Bias MSE Bias MSE Bias MSE Bias MSE
0.1 i)ps,N -14 252 -18 295 -36 342 -30 397
ﬁpS,K 38 86 23 106 10 124 7 144
Pps,s -45 271 -19 306 -40 343 -33 396

0.3 Dps.N 62 243 -111 297 -109 346
Dps, K 738 29 104 21 120
Dps.S 72 257 -115 301 -115 344
0.5 PosN 98 146 -114 199 -92 229
Pps. K 102 50 8 65 47 79
Pps. -115 166 -124 204 -102 229
0.7 Pps.v -106 90 -308 41
Pps, k¢ 105 2 214 31
Prs.s 127 99 239 36
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Table II1.55
PN comparison of p,s for the unbalanced case when n=50, based on 10,000
simulations from normal distribution

Pps/Ps 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,n VS Pps i 0.5885 0.5950 0.5831 0.5692
Pps, N V8 Pps s 0.5565 0.5318 0.5106 0.4914
Pps.k VS Pps.s 04752 0.4386 04177 0.4191

03 Ppan VS Ppek 0.5983 0.5831 0.5791
Pps.N VS Pps.s 0.5418 0.5284 0.4995
Dps i VS Pps.s 0.4463 0.4300 0.4194
0.5 Ppon VS Ppsic 0.5851 0.5871
Pps.N VS Pps.s 0.5284  0.5081
Pro.kc VS Ppa.s 0.4326  0.4168

Table II1.56
PN comparison of p,, for the unbalanced case when n=100, based on 10,000
simulations from normal distribution

Pps/ Pss 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,N VS Pps x  0.5960 0.5914 0.5793 0.5646
PoaN VS Dpss  0.5648 0.5456 05229 0.5057
Posk VS Ppes  0.4803 04442 04313 0.4305

0.3 Ppon VS Ppsx  0.5264 0.5845 0.5825 0.5730
DpoN VS Pps.s  0.5804 0.5492 0.5252 0.5114
Dok VS Pps.g  0.5133 0.4578 0.4327 0.4255

0.5 Ppsn VS Pps 0.5928 0.5843 0.5802
Pps.N VS Pps s 0.5559 0.5239 0.5086
Pps,ic VS Pps,s 0.4553 0.4353 0.4211
0.7 Dps,N VS Ppg ik 0.5832 0.5836
Pps,N VS Pps,s 0.5480 0.5271
Pps,ic V8 Pps.s 0.4544  0.4302
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Table II1.57
PN comparison of pys for the unbalanced case when n=50, based on 10,000
simulations from Kotz type distribution

Pps/Pgs 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,k VS Pps v 0.5140 0.5166 0.5280 0.5400
Pps,N VS Pps g 0.5436  0.5440 0.5295 0.4996
Pps,i VS Pps,s  0.5531  0.5517 0.5426 0.5401

0.3 Ppok VS Ppo 0.5248 0.5353 0.5050
Pos.v VS Pys.s 0.5225 0.5171 0.4894
Pos.K VS Pps. 0.5506 0.5462 0.5406
0.5 Pook VS Ppsn 0.5499 0.5516
Pos.\ VS Pps.s 0.4884 0.4800
Pos. VS Pps. 0.5468 0.5461
0.7 pps,K \'E i)ps,N 0.5646
Pps,N VS Pps.g 0.4611
f’ps,K VS ﬁps,s 0.5475

Table II1.58
PN comparison of p,, for the unbalanced case when n=100, based on 10,000
simulations from Kotz type distribution

Pps/Pes 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,ic V8 Pps,n 0.5260  0.5379 0.5450  0.5530
Pps,N VS Pps,s  0.5450 0.5451 0.539  0.54150
Pps,k V8 Pps,s  0.5660 0.5710 0.5680 0.5670

0.3 Ppsic VS Ppsy  0.5407 0.5394 0.5411  0.5567
Dps,N VS Bpss  0.5433 0.5276 0.5143  0.5112
Dps i VS Ppss  0.5800 0.5678 0.5578 0.5730

0.5 Prok VS PpsN 0.5625 0.5505 0.5564
Pos.N VS Pps.s 0.4914 0.4843 0.4840
Pos.K VS Pps.s 0.5653 0.5510 0.5637
0.7 Ppoi VS Ppon 0.6057 0.5707
Dps N VS Pps. 0.4424  0.4527
Pps.ic VS Pps.s 0.5651  0.5596




Table I11.59
PN comparison of p,s for the unbalanced case when n=50, based on 10,000
stmulations from T distribution, with df=38

Pps/Pyq 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 Pps,k VS Pps v 0.6719  0.6742 0.6741 0.6685
Pps,N VS Pps.g  0.5384 5191  0.4997 0.4699
Pps,ic VS Ppss 0.6756  .6812 0.6720 0.6675

0.3 Do VS PpsN 0.6550 0.6703 0.6773
Pps.N VS Pps 5 0.5376 0.4996 0.4739
Pps, K VS Pps,s 0.6789 0.6706 0.6739
0.5 Ppsic VS PpaN 0.6548 0.6714
Pps,N V8 Dps,s 0.5237 0.4830
Pps, K VS Pps.S 0.6630 0.6656

Table III.60
PN comparison of p,, for the unbalanced case when n=100, based on 10,000
simulations from T distribution, with df=3

Pps/ Py 0.1 0.3 0.5 0.7
Estimate PN PN PN PN
0.1 :bps,K vs fops,N 0.7114 0.7016 0.7033 0.7164
Pps,N VS Pps s 0.5396 0.5288 .5026 0.4886
Pos.K VS Pps.s 07161 0.7136 0.7065 0.7187

0.3 Ppoi VS Ppsy  0.6830 07039 0.6901 0.7118
Pos,N VS Pps.g)  0.5920 05371 05532 0.4779
Posk VS Dpag 07222 07222 0.7106 0.7125

0.5 Ppsic VS Pps.N 0.6901 0.7012 0.7012
Pps,N VS Pps s 0.5532 0.5160 0.4943
Pps, K VS Pps,s 0.7106 0.7066 0.7014
0.7 Ppsk VS Pps.N 0.6886 0.5889
Pps,N VS Dps s 0.5182 0.4337
Pps,k VS Pps,s 0.6900 0.5593
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CHAPTER IV
TESTING SIB-SIB AND MOM-SIB CORRELATIONS

IV.1 Introduction

Hypothesis testing is an important part of statistical inference. In this chapter we
consider problems of hypothesis testing for p,,, the sib-sib or intraclass correlation
coefficient and p,,, the mom-sib or interclass correlation coefficient, when familial
data with unequal (unbalanced) number of children per family are available. If a
known form of the distribution, like normal, can be assumed for the data then the
likelihood based tests and the asymptotic distribution of the test statistic under
the null hypothesis, can be adopted for testing. The three famous tests, under this
approach are the likelihood ratio test, Wald test, and Rao’s score test. The test
statistics under all approaches have the same asymptotic distribution, but none is
found to be uniformly better than the other. Hence all three tests are generally
considered and efforts are made to determine the best test for the particular testing
problem in hand.

In this chapter, the sections that follow we discuss various testing problems for
the sib-sib and mom-sib correlations. For example, in the next section we consider
hypothesis testing problems for sib-sib correlations, in Section 4.3 we consider testing
of hypothesis for mom-sib correlation. In the sections 4.4 and 4.5 we consider testing
the equality of two sib-sib and two mom-sib correlations respectively.

The testing procedures are developed under three different scenarios: (i) using
normal likelihood function, (ii) using Kotz likelihood function and (iii) using Sri-
vastava’s non-iterative estimators. The first two cases above will provide us three
tests each, namely, the LRT, Wald and Score tests. Further, at least one test can be
constructed using Srivastava’s estimator. Thus for each testing problem we have at
least seven tests. In this chapter, we undertake an extensive simulation study hoping

to identify the best test for each testing problem considered.

IV.2 Testing for p , the Sib-Sib Correlation

Suppose x; = (&1, ..., Tim;) is the vector of observations on the ith family, where

Zij, J =1,...,my; 1 = 1,...,n is an observation on the jth child of the ith family. Let
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E(zi) = p, var(z;;) = o, and corr(zy;, z;) = pq, for j # j'.

In this section, we consider the problem of testing Hy : p,, = 0 vs. Hy : p,, # 0.
Estimation of p,, has been already considered in Chapter 2. Let 8§ = (u, 02, p,,)’ be
the vector of the parameters and L(#) be the likelihood function of 6. Suppose 6 =
(i1, 6%, p,,) is the vector of maximum likelihood estimators obtained by maximizing
L(6) w.r.t. p,0% and p,, and Oy = (i, 62, peso) is the vector of the MLE’s computed
under Hy.

For balanced data, that is when the number of children is the same for every
family, assuming normality of the scores, Fisher’'s ANOVA F-statistic can be used
for testing Hy. However, in general, for any likelihood function L(6), we have the

following procedures.

(a) Likelihood ratio test (LRT)
The log likelihood ratio for testing Hy vs. H is given by

L(8o)

A==
L(9)

Then by the asymptotic theory (see Serfling, 1980) we have LRT = 2log L(8) —
2log L(8,) d x?. We would reject Hy if LRT > x2 , where x2 | is the ath upper

tail cut off point of the chi-square distribution with 1 degrees of freedom.

(b) Wald’s test
14
Suppose Z(§) = E [( aloggL (9)) ( 810%: (9)) ] is the Fisher information matrix of

~

0. If p,s is the MLE of the sib-sib correlation (p,,) and Z(6) is the information
matrix evaluated at the MLE, 9, then the Wald test statistic for testing Hy vs.

Hl 18
2

~

we | _Pss

—1
L(55)

n

Ay 1
where I('3’13) is the 3rd diagonal element of (I (0)) .
From the asymptotic distribution of MLE’s it is clear that Wi Xf as n — 00
(Serfling, 1980). Hence we reject Hy if W > x2 .
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(c) Rao’s score test
Suppose S(8) = l—oggLﬁl is the score vector and Z(0) is the information matrix.
Suppose S (00) and 7 (90) are the score and information marices evaluated at
0= 90, the MLE under null hypothesis. Then the score test statistic is:

R=35 (éo)' (Z(80))™S (80)

The asymptotic distribution of R is x? with 1 degrees of freedom (Serfling,
1980). Then reject Hy if R > Xi,l

(d) A test based on Srivastava’s estimator

We can also suggest a test based on Srivastava’s combination estimator which

was given earlier in (2.3), and its asymptotic variance (Srivastava, 1993) given by
Af‘v(ﬁss,S) = 2(1 - pss)Q'

)
. u—_b;’ﬁgztr{(AD )}+ tr{( )}+—2—%—’ﬁ) tr(AD,2BD,2)+ »,
A
{b5 —ap(1 pss) (a2 — ap)(1 — p,,)*}?
b(N —n)

\
where D,2 = diag(n3, ..., n2), n? = 1-(1—py)as, a; = 1-m;!, A = D, N
w=(my,..my),B=1,—n11,1 ap=bs—(n—1),ba=N - N1 Zmi,

i=1
N = Z mi,ag = (n — 1)n~t Z(l —m; '), bp = (n—1). Then the test statistic
and its asymptotlc distribution under Hy:p,,=0 vs. Hy:p, #0is given by:
o 2
s = EBS‘S’SA_) d Xf)
AV (po) —

where AV (py) is the asymptotic variance evaluated at p,, = 0 , the null hypothesis

value.

IV.2.1 Performance of the tests: a simulation study

In this section, we adopt the following strategy for comparing various tests for testing
Hy : p, =0 vs. Hy :p,, % 0. First, we consider the three likelihood based
tests under normal distribution and the test based on Srivastava, and compare their

performance (using estimated size and power of the tests) when data are simulated
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from normal distribution. Then we compare these tests when data are simulated
from a non-normal distribution, namely, the Kotz type distribution. As will be
observed later using the simulation results, neither the normal likelihood based tests
nor Srivastava test achieve the assumed level of the test. Hence, to find a better test,
we consider the three likelihood tests based on Kotz type distribution and compare
the performance of all the seven tests when data are simulated from normal, Kotz
type, and T distributions.

Thus, our interest is to first compare the three normal distribution based likeli-
hood tests with the non-iterative test based on Srivastava’s estimator as described
in (d). To assess the performance of these four tests, we conduct a simulation study.
Familial data on n = 50 and 100 families with unequal family sizes ranging from
1 to 6 children per family are considered. When n = 50 using truncated negative
binomial distribution, as described earlier in Chapters 2 and 3, we determine n;, the
number of families with ¢ children, ¢ = 1,2,..,6. We have used n; = 14, ny = 11,
ng = 15, ngy = 5, ns = 4 and ng = 1. Similarly, when n = 100 we take n; = 27,
ng = 23, ng = 23, ny = 19, n5 = 6 and ng = 2. Ten thousand data sets for each set
of n and m are generated when p,, = 0 and the test statistics are calculated. For
all the simulation runs we used ¢ = 0 and ¢? = 1. The simulation estimate of size
of the test, when the assumed level is a = 0.05, is computed as ﬁﬁ@#{Ti > x2.}
where T; is the value of the particular test statistic in use for the ith simulation,
i=1,...,10,000.

For larger sample size, that is n = 100, we perform a study to compare the powers
of these tests. Power of each test is evaluated as E%E#{ﬂ > x2.1} when the data are
generated under the alternative hypotheses with the values of p,, = 0.1, 0.2 and 0.25.
As we will see later, all the tests already have high power for p,, = 0.25. Hence there
was no need to compute the power at larger values of p,,. Results (sizes and power
of the tests) are provided in Tables IV.1 - IV.13. The simulation estimates of sizes
and powers of the normal distribution likelihood based tests are denoted by LRTy,
Waldy and Scorey, and these values for the non-iterative procedure is denoted by
Moment. For convenience, we have used these same symbols for refereing to the tests
as well. For example, the notation L RTy is used to represent both the likelihood ratio
test based on normal likelihood and the estimated size (or power) of that test. We
notice from Table IV.1 that Scorey and Moment values are less than the nominal

level (@ = 0.05). Although LRTy values are higher than the nominal level, they

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



85

do improve when n = 100. Notice that Waldy values are significantly higher than
0.05 which indicates that Waldy test is not a good test for testing Hy : p,, = 0
even for the sample sizes as large as n = 100. Hence we dropped Waldy from our
power computations. All three tests, namely the LRTx, Scorey and Moment tests,
have very high power (Table IV.2). Based on the size and power of these tests we
will recommend the Scorey test as the best, if data are from normal distribution.
Moment test also performs comparably well.

Next, we want to study the performance of these three tests if they were applied
on a non-normal set of data, such as from a Kotz type distribution. From Table IV.3
we see that these tests have significantly higher estimated sizes than the nominal
level of 0.05.

Next, we consider the likelihood based tests constructed from Kotz type distribu-
tion. We will denote the simulation estimates of sizes and powers of the Kotz type
likelihood based tests by LRTx, Waldk and Scorey. Table IV.4 summarizes these
results. We note that the LRTx and Scoreg are slightly higher than the nominal
level, but have quite high power.

Finally, we study the performance of all the likelihood based tests, that is, those
based on normal and Kotz type distribution, and the non-iterative test, when data
under investigation are from multivariate T with different degrees of freedom. Results
are provided in Tables IV.6 - IV.11. We observe that, for different degrees of freedoms
the Scoreg values are the only values that are < 0.05, and they have very high power.
(Table IV.6 - IV.11). One last thing we want to do is to study the performance of
Kotz type likelihood based tests when data are from normal distribution. Tables
IV.12 and IV.13 provide these results. We note that LRTk has higher size than a
when n = 50 and this size improves as n increases to 100, while the Scoreyx has
nominal level that is significantly smaller than 0.05 for any value of n, with high

power.

IV.2.2 Recommendations

We do not recommend using Wald test for testing Hy : p,, = 0. If it is known to
us that the data under consideration are from normal distribution then we highly
recommend using Scorey or the non-iterative test based on Srivastava’s estimator.
But if this can not be guaranteed then we highly recommend using Scoreg. Based

on its performance under different distributions and for large or small samples, we
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believe that it is the best test to use.

IV.3 Testing for p,,, the Mom-Sib Correlation

Suppose (3, Yit, Yiz, -+, Yim; ) i the data vector on the ith family where z; is the
observation made on a parent and i1, Y2, ..., ¥im;, are those made on m,; children
in that family. Suppose E(z;) = p,, E(yy) = p, var(z:i) = o2, var(y;) = o2,
cor(Yiz, Yij') = Pss, and corr(Zi, i) = p,,- The main parameter of interest in this
section is p,;. We have studied estimation of p,, in the previous chapter. Here we
want to test Ho : p,, =0 vs. Hy:p, #0.

Let 6 = (1, iy, Tp, Ts, Pps, Pss) be the vector of parameters and L(f) be the
likelihood function of # given familial data on n families. Let 6 be the MLE of 6
obtained by maximizing L(8) with respect to  and §; be the MLE of # obtained by
maximizing L{#) with respect to 6 under the null hypothesis. Let S(8) be the score
vector and Z(0) be the Fisher information matrix. Then the three asymptotic tests
based on the likelihood theory are the likelihood ratio test (LRT), Wald test and
Rao's score test. We use these three tests each under the normal distribution and the
Kotz distribution. Thus we have six tests for testing Hy : p,, =0 vs. H;:p,, #0.

Testing for mom-sib correlation was discussed first by Donner and Bull (1984).
They considered the likelihood ratio test (LRT), a test based on the large sample
variance of the maximum likelihood estimator (MLE), an adjusted pairwise test, and
a test (Z,) based on the large sample variance of the pairwise estimator, which uses
the ratio of the pairwise estimator to its large sample standard error for testing, that
mom-sib correlation is zero. They found that under certain conditions, including that
the data is from a normal distribution and family size is around 25, Z,, has size and
power comparable to the LRT, especially for the most common moderate-to-small
values of the mom-sib correlation.

Velu and Rao (1990) studied testing procedures using the mean-sib correlation,
the ensemble estimator, and Srivastava’s estimator for small sample situations. They
derived the exact distribution for Srivastava’s estimator because it has smaller asymp-
totic variance, and gave sizes of the test based on the asymptotic variance of Sri-
vastava’s estimator. Since then there have been no discussions regarding testing for
mom-sib correlations using either the ensemble or Srivastava’s estimator.

Along with the likelihood based tests discussed above we propose to consider a

test based on Srivastava’s estimator for testing Hy. A brief description of these tests
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are provided next.

(a) Likelihood ratio test (LRT)

By the asymptotic theory we have LRT = 2log L(#) — 2 log L(f) 4 x2. Then we
reject Hy if LRT > X(Z,,l, where Xi, , 1s the o upper tail cut off point of the chi-square

distribution with 1 degrees of freedom.

(b) Wald’s test
Let p,; be the MLE of the mom-sib correlation p,, and Z (6) be the information

matrix evaluated at . Then by the large sample theory,

2

Pps

W= d x?,
— — 1
)
n
where Z ;% is the 5th diagonal element of the inverse of Z(#). We reject Hy if W >
(5,5) J

Xg!,l'
(c) Rao’s score test

Let 0 = (1, s Op, Ts, Pps, Pss) be the vector of parameters and by = (o>
Pisos Opos Osor Ppsos Psso) be the vector of the MLE’s under Hy. Then the Score test
statistic is:

!
_ 0 4 -1 i 2
R=5(0) (Z(0o)75 (bo) 4 X%
where S (90) and Z(fy) are the score function and information matrix evaluated at

0. Then we reject Hy if R > x2 -
(d) A test based on Srivastava’s estimator

Srivastava (1984) introduced his remarkable estimator for the mom-sib correlation
Pps,s Which is given in (III.1), and its asymptotic variance derived by Srivastava and
Katapa (1986) is given in (II.2). Then p,, s = N(p,, 5, AV (b, 5))- Hence a test can

be proposed as follows:

. . (Ppss)?
Reject Hy if —2222
) ° AV(pps,S)O

the nuisance parameter p,, replaced by p,,, the estimator of p,, under Hj.

> Xi,w where AV (p,, )o is the asymptotic variance with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

As in the sib-sib case, using simulation we will evaluate the performance of various
tests.

Familial data on n = 50 and 100 families with unequal family sizes ranging from
1 to 5 children per family are generated. When n = 50, using truncated negative
binomial distribution, as described earlier in Chapters 2 and 3, we determine n;, the
number of families with ¢ children, ¢ = 1,2,..,5. We have used n; = 17, ny = 15,
ny = 9, ng = 6, and ns = 3. Similarly, when n=100 we took n; = 21, ny = 32,
ng = 29, ng = 11, and ns = 7. Ten thousand data sets for each set of n and m, when
pps = 0 and p,, = 0.2 and 0.5 are generated and the test statistics are calculated.
In the simulations we used u, = 0,4, = 0, 012, =1, 62 = 1. Then the simulation
estimate of the size of the test when the assumed level of the test is & = 0.05 is

computed as #{T; > Xil }, where T; is the value of the particular test statistic

0,000
in use, for the ith simulation, ¢ = 1,...,10,000. Notice that we computed the size
of the test using two different values of p,,. Based on the results we claim that for
large n the effect of the nuisance parameter (p,,) seems to be small. To further
assess these tests we computed the powers. However, the powers are computed for
only those tests whose sizes were closer to the nominal size. Power of each test is
calculated as T(T,lﬁ#{ﬂ > Xi,l} when the data are generated under the alternative
hypotheses with the values of p,, = 0.1,0.2 and 0.25 and using p,, = 0.2. Results
(sizes and power of the tests) are provided in (Tables IV.14 - 1V.24) for different
values of n,m and for a variety of simulations. The estimated sizes and powers are

denoted in tables using the same symbols described in the sib-sib case.

IV.3.1 Performance of the tests

The estimated sizes and powers of the tests, when data are simulated from normal
distribution are provided in Tables IV.14 and IV.15. Note from the values in Table
IV.14 that Scorey and Moment values are very close to 0.05 (nominal level). LRTy
and Waldy are slightly higher than 0.05. The powers for Scorey and Moment tests
are provided in Table IV.15. The values in the table show clearly that both tests
have at least 90% power. Based on the size and power of these tests, we recommend
Scorey for testing Hy : p,, = 0.

When data are simulated from Kotz type distribution, it is clear from the values
in Table IV.16 that the normal likelihood based tests and the Moment test have

significantly larger size compared to o = 0.05. However, among the tests based on
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Kotz type likelihood, we find that the Scorek values are always less than or equal 0.05
and LRTy values are slightly higher than 0.05 (Table IV.17). Table IV.18 provides
the power of LETx and Scoreyx. These tests have high power, and both of them
achieved at least 97% power even for small values of p,,.

Next we would like to study the performance of these two groups of tests, namely
the Moment test and the three likelihood tests based on normal and the three like-
lihood tests based on Kotz type, when data are generated from multivariate T with
different degrees of freedom, that is, df=5 and df=10 (due to convergence problem we
couldn’t perform the test when df=3). The values in Tables IV.19 - IV.22 show that
regardless of the degrees of freedom of the T distribution, the tests based on normal
distribution along with the non-iterative test do not perform well. On the other hand
the tests based on Kotz type perform fairly well. For example, the Scorey values
are always less than or equal to 0.05 with very high power. The LRT} also performs
well. Tables IV.20 and IV.22 provide the power of the LRTy and the Scoreg. Fi-
nally, for normal distribution we find that LRTx and Scorex values are < 0.05 and

have very high power.

IV.3.2 Recommendations

If it is known to us that the data under consideration are from normal distribution
then we highly recommend using Scorey or the non-iterative test based on Srivas-
tava’s estimator. But if this can not be guaranteed, we highly recommend using
Scoreg based on its performance under different distributions and the fact that the
test doesn’t depend on nuisance parameters or on how large or small the sample size

is.

IV.4 Testing the Equality of Sib-Sib Correlations for Two Independent

Populations

Suppose there are two independent populations (or groups) and data on children
of the families randomly selected from these populations are available. Suppose in
the ¢th population there are n; families and the number of children in families are
allowed to be different. We denote the number of children in the jth family from the
ith population by my;.

Suppose Tk, k = 1,...,m;; 5 = 1,...,n; i = 1,2 are the observations on the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



90

kth child of the jth family belonging to the ith population. We assume for the zth
population that E(z;j) = p;, var(zix) = 02, and the sib-sib or intraclass correlation,
corr(Tiju, Tijir) = pss; for k # k. For every i, we have —oo < p; < 00, 02 > 0, and
(—m) < pgs; < 1. Let the vector of observations on the jth family from
ith group be xi; = (241, ... Tijmy;)'- Then E(xy) = py; = pilm,;, where 1., is an

m x 1 vector of all ones, and the variance covariance matrix of x;; is

'UG/I"(Xij) = zij = 022[(1 - pSSi)Imij + pssi']mij]

1 Pssi +++ Pssi
. 1 .

= WVylpw) =0t | P P
Pssi Pssi -+ 1

where I,,, is an identity matrix of order m and J,, is the m x m matrix of all ones.

Note that the determinant and inverse of X;; respectively are
255 = (07)™ (1~ pasi)™ ™ (L + (155 — 1)pyi)]

and .
j-_l — {I o pssi J ]
Yool ) T L (my = Dpgg

In this section, we consider the problem of testing equality of two sib-sib correla-

tions, namely testing Hy : pg5, = pgq, = P55 v5- Hi: pgg, 7 Pos,-

Note that the common values of p,; under Hy is a nuisance paremeter and an
interest is also to estimate it.

The problem of testing equality of two intraclass correlations is considered by
many authors. Donner and Bull (1983) considered this problem when family sizes
within a population and between populations were the same. Khatri, Pukkila, and
Rao (1989) considered this when family sizes in the two populations were differ-
ent. These authors derived and studied the performance of the likelihood ratio
test. For the problem of testing equality of several correlations, Konishi and Gupta
(1989) have suggested a modified likelihood ratio test and a test based on Fisher’s
z-transformation, Paul and Barnwal (1990) suggested a C(«a) test, and Haung and
Sinha (1993) derived the optimum invariant test, assuming the family sizes within
population are the same, but different for different populations.

Young and Bhandary (1998) and Bhandary and Alam (2000) respectively con-

sidered the problems of testing the equality of two and three correlation coefficients
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when the family sizes are unequal. They used Srivastava (1984)’s estimator of intr-
aclass correlation and proposed the approximate likelihood ratio test and compared
its performance with two other asymptotic tests based on normal distribution. They
also made the assumption that the variances for different populations are the same.

We consider the problem of testing Hy : py,, = g5y = Pos VS Hi t pggy F Pysys
using tests based on the likelihood theory. Let 8 = (uy,0%, pys,, Mo, 0%, Pss,) DE
the vector of the parameters and L(6) be the likelihood function of #. Let f be
the maximum likelihood estimator (MLE) of § which is obtained by maximizing
L(A) and 6, be the MLE obtained by maximizing L(¢) under the null hypothesis
Hy : pys, = Pos, = Pss- Note that 8o = (g, 0%, pyq, fa, 05, Pss)' Which is the same as
# but under the null hypothesis. We will assume that the two samples are drawn
from multivariate normal, T, and Kotz type distributions when the family sizes
are unequal and the variances are different for different populations with possibly
different means but the same intraclass correlation coefficient, p,,. The hypothesis of
a common p,, maybe be tested through the application of likelihood based tests for
normal distribution as well as the likelihood based tests for Kotz type distributions.
We also propose using two non-iterative tests based on Srivastava’s combination
estimator and its asymptotic variance.

The the likelihood ratio test statistic for testing Hy vs. H; is given by
(a) Likelihood ratio test (LRT)
_ L(bo)
L(6)
Then by the asymptotic theory (see Serfling, 1980), we have LRT = 2log L(é) —
2log L(@O) 4 x2. We would reject Hy if LRT > X2, where Xﬁ,l is the ath upper

tail cut off point of the chi-square distribution with 1 degrees of freedom.

(b) Rao’s score test
Let S(8) = OlogL(6)/00 be the 6 x 1 vector of the score function and
Z(6) = E[(OlogL(6)/06)(dlogL(8)/06)'] be the 6 x 6 Fisher information matrix.
Suppose S(6o) and Z(6,) are the score and information matrices at 8 = 8y, the

MLE under null hypothesis. Then the score test statistic is

R=5(by) (Z(00))™'s (80).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92

The asymptotic distribution of R is x? with 1 degrees of freedom (Serfling, 1980).
Then reject Hy if R > XZ,l'
Note that S(0) = (51(0), S2(0))’, where

Si(6) = (9logL(8)/du;, dlogL(8) /a7, DlogL(6) /dp;)

Next, we note that the Fisher information matrix Z(6) is a block diagonal matrix
containing two blocks of 3 x 3 matrices. Then Z(#)™!, the inverse of the Fisher
information matrix, will also be block diagonal. The ith block, Z;, of the Fisher

information matrix (for the normal distribution, as an example) is the following:

74

2 ST ma D) 0 0
J_l i n
S my; . pymij(mi;—1)
L= 0 ]2 304 J; 20 —p ) (LH (3 D7)
2 pimi‘(mi‘_l) i mij(mij—l)(1+(mij—1)p?)
0 Jzzzl 20?(1—p,~)21+(1mu—1)pi) ;4::1 2(1=p;)2(1+(my;—1)p,)?

(c) Wald’s test
Suppose Z(8) is the fisher information matrix of 8. If ., and p,,, are the MLEs
of the sib-sib correlations p,, and p,,, and Z(8) is the information matrix eval-
uated at the MLE, 6 = (f,, 62, Pssy» flo, 65, Dss,)', then the Wald test statistic
for testing Hy vs. H; is:

W = bssl - i)ssz
] )
Tey | oo
ny Mo

where I@}:}) and I@}G) are the 3rd and the 6th diagonal elements of (Z(#))~!
respectively. From the asymptotic distribution of MLEs it is clear that W d
x? as n — oo (Serfling, 1980). Hence we reject Hy if W > x2 .

(d) Non-iterative tests

The two non-iterative tests we propose are based on Srivastava’s combined esti-
mator of the intraclass correlation coefficient and its asymptotic variance. The two
tests differ in the way we estimate the standard error of the difference between the

intraclass correlation coefficients.
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The uniform ANOVA and the generalized weighted ANOVA estimators of p,;
due to Smith’s (1957) can be written as follows

bus 551 Do (Tig — ig)”

by =1— =] L —, (V.1
w (mi - nz) Z;h:l (-Tz'ij - xwi)Q + Gy ?:1 ;cn=]1 (xijk - xij)Q
where a,; = (n; — 1)n;! Dol = m;;Y), bus = (n; — 1).
bwi n,_ m.ij Liik — Tij 2
Pui =1 — Z]_l k=1 (Tiji i) . (Iv.2)

(mi = 1) 3021 i (Tog — Bus)? + Qs Y2500 2ok (Tige = Tig)?
where ay; = by — (n; — 1), by = my — m;! Z;“:l mfj, m; = 27;1 Mij, Ty =
m;! Sy Mgy Tig = Mgt Yok Tigks
Then Srivastava’s combination estimator of p,,; (Srivastava, 1993) is defined as
~ Iawi
Pgi = ———. (Iv.3)
YL Py P
The estimation of the common intraclass correlation, p,,, using Srivastava’s com-
bination estimator (IV.3) can be done as follows. For ¢ = 1,2, suppose we write
Puwi = 1 — %;—, where wy; and wy; respectively the numerator and denominator ex-
pressions on the right hand side of (IV.1) and similarly p,; = 1 — %;1, where u;; and

ug; respectively the numerator and denominator expressions on the right hand side

of (IV.2).
P 1 2 Wi ~ 1 2 Uq
Letpw:l_i;w—m andpu=1—§;u—21
Then we suggest pg = _fA)“L_A_7
1+ Py = Py

as an estimator of the common intraclass correlation. Now using Srivastava (1993)’s
expression for the asymptotic variance of his combined estimator we provide the
following two results.

For the first, the test statistic and the asymptotic distribution are:

TS = (i)ssl B i)ssz)Z
AVi(pg) + AVa(ps)
Hence we reject Hy if T'S > Xi, ,- And the second test is given by:

2
d x;asn — oo,

(ps - ﬁ )2
TS* — = 51 $892 _ d
AVi(Dss,) + AVa(Dss,) =
Hence we reject Hy if TS* > Xi,l-

Xfasn——»oo.
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IV.4.1 Performance of the tests

Next, we compare the performance of the likelihood based tests based on multivariate
normal distribution with the non-iterative tests based on Srivastava’s combination
estimator using simulation study. Familial data on 30 families with unequal family
sizes ranging from 2 to 4 children per family are simulated from a multivariate normal
distribution. As before we computed the significance levels and power of these five
tests. The results are presented in Table IV.25 and Figure 27. It shows that Scorey
and T'S values are < nominal level and do not depend on the nuisance parameter (p,,
the common value of intraclass correlation). LRTy values are slightly higher than
0.05 for all values of p,,. On the other hand we can see that Waldy and T'S* depend
on the nuisance parameter, so both of these tests have size of test that is higher than
0.05 when p,, is small to moderate, and they both have size that is < 0.05 when
pss 18 large (= 0.8). Next, we compare these tests when data are simulated from a
Kotz type distribution. It is clear from the values which are provided in Table IV.26
that the normal likelihood based tests and T'S and T'S* tests have sizes larger than
a = 0.05. On the other hand, among the tests based on Kotz type likelihood, the
Scoreg and the LRT tests do not depend on the nuisance parameter. Moreover
Scorek has size that is considerably close to 0.05. LRTx values are always higher
than the nominal level, but do not depend on the nuisance parameter (Table IV.27).
The power comparison between Scorex and LRTy is shown in Figure 28 and it is
clear from the graph that both tests have similar power. We also notice that the
performance of Waldg is similar to Waldy when data are from normal distribution.
The Wald test, however, depends on the nuisance parameter and hence it is not a
reliable test for testing Ho : py,, = pyq, = Pys-

Next we compare all the above mentioned tests under the multivariate T distri-
bution. The results are recorded in Table IV.28. Clearly Scorex has the best size
(which is less than or equal 0.05) and has a very high power (see Figure 29). Finally
we study the performance of the likelihood based tests based on Kotz type distribu-
tion, but when data are simulated from a multivariate normal distribution. We find
that Scorex values are always less than or equal to the nominal level. Further the
power of Scorex do not differ from the power of Scorey, or the power of the TS
(Table IV.29 and Figure 30).
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IV.4.2 Recommendations

If the sample under study is from a multivariate normal distribution then we rec-
ommend using normal based score test or TS test because of their small nominal
significance levels and due to the fact that these tests are independent of the nui-
sance parameter p .. However, if normality cannot be guaranteed then we recommend
using the score test based on Kotz likelihood, Scoreg, since our simulation results
show that this test performs well under different distributions, and it doesn’t depend

on the nuisance parameter p,,.

IV.5 Testing the Equality of Mom-Sib Correlations for Two Indepen-

dent Populations

Suppose there are two independent populations and data on mother and her children
are randomly selected. Suppose in the ith population there are n; families and the
number of children in families are allowed to be different. We denote the number of
children in the jth family from the ith population by m;;.

Suppose z;;, § = 1,...,n;; ¢ = 1,2 are the observations on the mom’s score from
the jth family belonging to the ith population and y;; = (vij1,...,¥ijmi;) i the vector
of children scores, such that y,;; is the observation on the kth child of the jth family
from the ith population. We assume for the ith population that E(zi;) = p,,,
var(zi;) = 0, E(Yih) = bs» var(ygk) = 02 and the sib-sib or intraclass correlation,
corr(Yijk, Yijk') = Pss; and the mom-sib correlation, corr(z;;, yijr) = Ppsi- For every
i, we have —0o < p,;, pig; < 00, azzn-, 02, >0, pfm- < pysiy and 0 < p. . < 1. Recall that
the last two conditions are needed to keep the variance covariance matrix positive
definite.

Our main interest in this section is testing Hy : p,s, = p,,, = Pps VS. Hy :
Pps, 7 Pps,- However, estimating the common mom-sib correlation, p,,, becomes an
important problem as well.

"The hypothesis of a common p,, can be tested using likelihood based tests for
normal distribution as well as the likelihood based tests for Kotz type distribution.
We also proposed two non-iterative tests based on Srivastava’s estimator and its
asymptotic variance.

Let 6 = (kp15 f1s Op1, Oty Ppsts Pasts Bpas s, Op2, 052, Ppsay Pss2)’ De the vector of
parameters and L(6) be the likelihood function of 6. Let 6 be the maximum likelihood
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estimator (MLE) of # which is obtained by maximizing L(6) and 6, be the MLE
obtained by maximizing L(#) under the null hypothesis Hy : p,,, = p,s, = pps- Note
that 0y = (K1, 1) Tp1, Tsly Ppss Pssir Ky Hsar Tp2s Ts2, Pps» Pss2) Which is the same as
#, but under the null hypothesis.

We will assume that the two samples are drawn from multivariate normal, T, and
Kotz type distributions, the family sizes are unequal, and the means and variances

are different for different populations.

(a) Likelihood ratio test (LRT)
By the asymptotic theory we have LRT = 2log L(6) — 2log L(éo) 4 x2. We
would reject Hy if LRT > x2 , where x2 | is the ath upper tail cut off point

of the chi-square distribution with 1 degrees of freedom.

(b) Rao’s score test

Let S(8) = 0logL(6)/06 be 12 x 1 vector of the score function and Z(6) =
E[(0logL(6)/00)(dlogL(8)/08)'] be the 12 x 12 Fisher information matrix.
S(By) and Z(6y) are these when evaluated at § = , the MLE under null
hypothesis. Then the score test statistic is

R=35 (éo)' (T (o) (by)

The asymptotic distribution of R is x? with 1 degrees of freedom. Then reject
Hyif R > Xi’1 .
Note that S(8) = (S51(8), S2(6))’, where

Si(0) = (OlogL(0)/0u,;, OlogL(0)/0,;, OlogL(#)/0p;, dlogL(#) /Do ;
,0logL(6) /0pys:,0l09 L(8) /0p,s:)'

-

Next, we note that Fisher information matrix Z () is a block diagonal matrix
containing two blocks of 6 x 6 matrices. Then (Z (8))~1, the inverse of Fisher informa-
tion matrix, will also be block diagonal. In the following we provide the expressions
for the ith block, Z,;, of Fisher information matrix (for normal likelihood, as an

example), which can be used in practice and inverse of which can be computed.
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[ Fhy —2=h 0 0 0 0
Lhy 0 0 0 0
T —hss —,,—E:}l‘h:u — 222 pgg 0
psi = pi pr¥ st B 1"- 2 _ .
dh Lk Zetedp
symm hiss ~ Ppsi hse
1
\ 2<1—pssi)2hﬁ6
where w; = (1 + (mij - 1)pssi)7 and %=1+ (mij - 1)pssi - mi]'pf)si'
ni ws n ni s nz it ns s
hin=3 % h Z =2 Tk hgz =) M gy = 5 T,

i=1

n

has = >

7=1 7=1

h55=z

™mi; By = i 2mijgi+mijp;2;g .
T2 ha =3 e s = 3

my; (1+(my; —1)pss+m;; Pps2) h

=1 Jj=1

i
mi

gi’

j=1

12
j=1 g

h Z mlz(m”—l h66

j=1

(c) Wald’s test

ni
Z mi;(ms;;—1)
. b)
= "

Z (mi;—1)( (mzj—l)(l pss)2+g$]

Jj=1 st

j=1

Suppose Z,s(f) is the Fisher information matrix of 6. If Pps, and Dy,
and T,,(6)
is the inverse of the information matrix evaluated at the MLE, ]
Then the Wald test

are the MLEs of the mom-sib correlations p,, and p,,

A A A A a N A A A s oa PO
(,U/pp Hs15Opl; Osly Ppsis Pssis Hp2s Hs2s Op2y 025 Pps2s pssZ) .

statistic for testing Hy vs. H; is:

2
W = ﬁpsl - ppsz
1 _ !
\/Ips (5,5) + Ips (11,11)
ny Ng

where 7! »s (5,5 and I s (11,11 are the 5th and the 11th diagonal elements of
(Z,5(8))™*. From the asymptotic distribution of MLEs it is clear that W d x%
Hence we reject Hy if W > X2, .

(d) Non-iterative tests
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The two non-iterative tests we proposed are based on Srivastava’s estimator and
its asymptotic variance (see (III.1) and (III.2)). The two tests differ in the way
we estimate the standard error of the estimated difference between the interclass
correlation coefficient.

The common interclass correlation using Srivastava’s estimator can be estimated

as 9
(ni - 1)f)ps,Si
~ 1=1
pps,S = 2
;(ni —-1)

and this is what we suggest as an estimator of the common interclass correlation.

Then the first test is given by,
(/A)ps,Sl - ﬁps,Sz)Q

TP = = -~
A‘/l (pps,S) + A‘/?(pps,S)

2
ixl as n — 00.

Hence we reject Hy if TP > x2 . The second test is

TP

— (Z)ps,sl - pps,Sz)z d XZ as n —s 00.

A‘/l (Z)ps,s1) + A‘/zﬁps,SQ) -
Hence we reject Hp if TP* > x2 .

Recall that AV(.) is the asymptotic variance expression for Srivastava’s estimator
provided in (IIL.2).

IV.5.1 Performance of the tests

First, we compare the performance of the normal distribution based likelihood tests
with the non-iterative tests based on Srivastava’s estimator as described in (d). To
assess the performance of these 5 tests, we conduct a simulation study. Familial data
on n =30 families with unequal family sizes ranging from 2 to 4 children per family
are simulated from a multivariate normal distribution. Then the significance levels
and power of these five tests are computed. The results are presented in Table IV.30
and Figure 31. Notice that the TP and Scorey values are close to the nominal level
0.05. LRTy values are moderately higher than 0.05 for all values of p,,, but Waldy
and T P* values are significantly larger than the nominal level. Second, we want
to study the performance of these tests under Kotz type distribution. Table IV.31

shows that these tests have significantly higher estimated size compared to 0.05.
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Third, we consider the tests based on Kotz type type distribution. Table IV.32
shows that Scorex and LRIy values are close to the nominal level, but Waldg
values are the highest compared to the other tests. Notice in this table that none of
the tests based on Kotz type distribution depend on the nuisance parameter. The
values given in Table 32 indicates that the Scorex and LRTk have the same power.

Fourth, we compare the performance of all the likelihood based tests, that is,
those based on normal and Kotz type distributions as well as non-iterative tests,
when data are simulated from T distribution. Table IV.33, indicates that Scoreg
and LRTyx values are higher than the nominal level, but these values are smaller
than the nominal levels for the other tests. These two tests also have high power
(Table 1V.33 and Figure 33).

Finally, we study the performance of the Kotz type likelihood based tests when
data are from normal distribution. Scorex and LRTy values are always less than or
equal the nominal level with very high power and the power values do not differ from
either the power of Scorey or the power of the TP test (Table IV.34 and Figure 34).

IV.5.2 Recommendations

If we know that the sample under study are from a multivariate normal distribu-
tion then we recommend using normal based score test or TP test. However, if this
cannot be guaranteed then we recommend using score test based on Kotz type distri-
bution since our simulation results show that this test performs well under different

distributions, and it doesn’t depend on the nuisance parameter p,,,.

IV.6 Analysis of Galton’s Data

For illustration of our procedures, that is, of testing the equality of two sib-sib and
two mom-sib correlations, we divide Galton’s data set into two groups. The first
group would contain 102 families and the second group would contain the remaining
103 families. From the first group we consider data on only daughters and from the
second we consider data on only sons. For the first group, the pairs: (the number of
daughters, the number of families with those many daughters) are (1, 25), (2, 21), (3,
12), (4, 10), (5, 5), (6, 4), (7, 1) (8, 1), and (9, 1). That is, there are 25 families with
one daughter, 21 families with two daughters and so on. Similarly these pairs for the

second group from where only boys are selected are (1, 10), (2, 28), (3, 22), (4, 11),
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(5, 4), and (6, 4). If p,, is the correlation between the daughters from the first group
and p,, is the correlation between the sons from the second group then our interest is
to test the null hypothesis py; = p,s (= p). The maximum likelihood estimates of pyg,
pss, and p, respectively are, pyy = 0.2938, p,, = 0.2023, and p = 0.2489. Srivastava’s
estimators are py, ¢ = 0.3080, py, ¢ = 0.2016, and pg = 0.2545.

The P-values of the tests are provided in the table below. Clearly all tests fail to
reject Hy at o = 0.05 significant level.

LRT.N Wald.N Score N LRTK Wald K Score.K TS TSs*
0.4063 0.4105 0.4004 0.3798 0.3094 0.4457 0.3635 0.3607
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Table IV.1
Size of testing Hy : p,s = 0 when simulation is from normal
n m LRTy Waldy Scorey Moment
50 1<m<6 0.0687 0.1276 0.0445 0.0454
100 0.0553 0.0855  0.0480 0.0452
Table IV.2

Power of testing Hy : p,, = 0 when simulation is from normal, n=100

m pss LRIy Scorey Moment
1<m<6 0 0.0553  0.0480 0.0452
01 0.3442 03795  0.3129
0.2 08314 0.8452 0.7857
0.25 0.9479 0.9480  0.9287

Table IV.3
Size of testing Hy : p,, = 0 when simulation is from Kotz type distribution
n m LRTy Waldy Scorey Moment

n=50 1<m<6 0.1087 0.1163 0.1576 0.1780
n=100 1<m<6 0.1106 0.0861 0.1683 0.371

Table IV .4
Size of testing Hy : p,; = 0 when simulation is from Kotz type distribution
n m LRTk Waldg Scorey

n=50 1<m<6 0.065+.001 0.0996+.001 0.059+.001
n=100 1<m<6 0.053£.002 0.065+.003 0.063+.001

Table IV.5
Power of testing Hy : p,; = 0 when simulation is from Kotz type distribution,
n=100
m pss LRTx Scoreg
1<m<6 0 0.05610 0.061

0.1 02976 0.3659
0.2 0.7693 0.8129
0.25 0.9060 0.9258

Table IV.6
Size of testing Hy : p,, = 0 when simulation is from T distribution, with df=3
n m LRTy Waldy Scorey LRTyx Waldg Scoreg Moment

50 1<m<6 0.2700 0.3436 0.2064 0.1307 0.2319 0.047+.003 0.2734
160 1<m<6 0.3097 0.3537 0.2758 0.1042 0.1908 0.054+.001  0.3467
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Table IV.7
Power of testing Hy : p,, = 0 when simulation is from T distribution, with df=3 and
n=100

m pPss  Scorex

1<m<6 O 0.0559

0.1 0.2759

0.2 0.6874

0.25 0.8534

0.3 0.9421

Table IV.8
Size of testing Hy : p,, = 0 when simulation is from T distribution, with df=5

n LRTy Waldy Scoren LRTxk Waldg Scorey Moment
50 0.1551 0.2216 0.1173 0.1000+.003 0.1859 0.03004.001  0.1549
100 0.1561 0.1933 0.1411 0.0663+.002 0.1441  0.033+£.001 0.1744

Table IV.9
Power of testing Hy : p,, = 0 when simulation is from T distribution, with df=5 and
n=100
m p.s LRTx Scoreg
1<m<6 0 0.0663 0.0302
0.1 03109 0.2538
0.2 0.7767 0.7160
0.25 0.9114 0.8750
0.3 0.9736 0.9576

Table IV.10
Size of testing Hy : p,, = 0 when simulation is from T distribution, with df=10

n m LRTNy Waldy  Scorey LRT¥ Waldgy  Scorex  Moment

50 1<m<6 .102 .163 .071+.002 .085+.002 174 .024+.002 .082

100 1<m<6  .088 119 .0784+.001 .0574.001 127 .025+.00 .09
Table IV.11

Power of testing Hy : p,, = 0 when simulation is from T distribution, with df=10
and n=100

m pss LRIk Scorex
1<m<6 0 0.0677 0.0309
0.1 0.3155 0.2561

0.2 0.7873 0.7274

0.25 0.9176 0.8830

0.3 09776 0.9628
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Table IV.12
Size of testing Hy : p,s = 0 when simulation is from normal distribution

n m LRTNy Waldy Scorey LRIy Waldg Scorexy Moment

50 1<m<6 0.0687 0.1276 0.0445 0.0760 0.1627 0.0191 0.0454
100 0.0553 0.0855 0.0480 0.0515 0.1170 0.0201 0.0452

Table IV.13
Power of testing Hy : p,, = 0 when simulation is from normal distribution, n=100

m pss LRIN Scorey LRTi Scorexg Moment
1<m<6 0 0.0553 0.0480 0.0515 0.0201  0.0452
0.1 03442 03795 03071 0.2440  0.3129
0.2 08314 0.8452 0.7889 0.7331  0.7857
0.25 0.9479 0.9480 0.9272 0.8891  0.9287

Table IV.14
Size of testing Hy : p,, = 0 when simulation is from normal distribution
n P LRTN Waldy Scorey Moment

50 0.2 0.059+£.001 0.0724£.003 0.052+.001 0.05%.003
50 0.5 0.057+.002 0.068+.003 0.052+.001 0.0514.003

100 0.2 0.053%.003 0.058+.002 0.051+£.002 0.051+.002
100 0.5 0.053+.003 0.06+.003 0.051+£.003 0.051+.004

Table IV.15
Power of testing Hy : p,s = 0 when simulation is from normal distribution

n P, Scorey Moment
100 0 0.0511  0.0518
100 0.1  0.273 0.253
100 0.2 0.7854 0.7357
100 0.25 0.9348  0.9051
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Table IV.16
Size of testing Hy : p,; = 0 when simulation is from Kotz type distribution

N P LRTy Waldn Scoren Moment
50 0.2 0.115+.004 0.116+.004 0.126+.004 0.086+.005
50 0.5 0.116+.006 0.1224+.005 0.118+.007 0.099+.007

100 0.2 0.108+.002 0.102+.003 0.118+.002 0.089+.002
160 0.5 0.111+.001 0.112+.001 0.114+£.001 0.099+.002

Table IV.17
Size of testing Hy : p,, = 0 when simulation is from Kotz type distribution

N Pss LRTy Waldg Scorek
50 0.2 0.056+.002 0.074+.004 0.051+.003
50 0.5 0.056+.004 0.07+.004 0.052+.003

100 0.2 0.052+£.002 0.058+.002 0.049+.002
100 0.5 0.052+.002 0.058+.002 0.05+.002

Table IV.18
Pouwer of testing Hy : p,s = 0 when simulation is from Kotz type distribution

n p,, LRTx Scoreg
100 0  0.055  0.051
100 0.1 0.2397 0.2354
100 0.2 0.7185 0.7092
100 0.25 0.8913 0.8863
100 0.3 0.9750 0.9729

Table IV.19
Size of testing Hy : pps = 0 when simulation is from T distribution, with df=>5

n p,, LRIy Waldy Scoreny LRIy Waldy Scoreg Moment
50 .2 157 178 152 .0656£.001 .08+.001  .051+.001 .143
50 .5 .158 177 15 .0611+.003 .082+.003 .0523%.001 145

100 .2 .166 176 .169 .059+.002 .0734+.004 .051+.002 .159
100 .5 17 .18 17 .059+.004 .072+.005 .053=+.004 .166
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Power of testing Hy : pps = 0 when simulation is from T distribution, with df="5

D Py Scoreg

0.0521
0.2245
0.6699
0.8717
0.9661

100 O
100 0.1
100 0.2
100 0.25
100 0.3

Table IV.21

Size of testing Hy : p,s = 0 when simulation is from T' distribution, with df=10

0 Pss

LRTy

Waldy Scoren

LRTg

WaldK

Scorey

Moment

50 .2
50 .5

100 .2
100 .5

.092
.093

.091
.087

A1

107

099
095

.052+.003
.053+.001

.086
.086

.05614.003
.047+.001

.087
.084

.074+.004
.071+£.001

.062+.004
.056+.002

.04=+.002
.045%.002

.044+.004
.043+.001

.08
.083

.085
084

Table IV.22

Power of testing Hy : p,s = 0 when simulation is from T distribution, with df=10

LRTy

n Pms

Scoreg

0.055
0.235
0.713
0.979

100 O
100 0.1
100 0.2
100 0.25

0.048
0.212
0.686
0.974

Table IV.23

Size of testing Hy : pps = 0 when simulation is from normal distribution

n  p,; LRIy Waldy Scoren LRTy Waldgy  Scorex Moment
50 .2 .059 072 .052 .048+.001 .069+.001 .036 .05
50 .5 .057 .068 .052 .044£.001 .061%.002 .038 .051
100 .2 .053 .058 .051 .0424+.00 .0534.001 .035 .051
100 .5 .053 .059 .051 .042+.002 .051+.002 .037 .051

Table IV.24

Pouwer of testing Hy : p,, = 0 when simulation is from normal distribution

n P, Scorey LRTx Scorex Moment
100 0 0.0511 0.0427 0.0366 0.0518
100 0.1 0.273 0.231 0.211 0.253
100 0.2 0.7854 0.7256 0.6972  0.7357
100 0.25 0.9348 0.9020 0.8855  0.9051
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Table IV.25
Size of testing Hy : pyg = Pgs1 = Pss When simulation is from normal distribution,
when a = 0.05
Pss LRTy Waldn Scoren TS T5*

.2 .055+.003 .07£.003  .049+.003 .047+.003 .059+.003

5 .067£.001 .0634+.002 .053+.003 .049+.002 .058%.001

.8 .059+£.002 0.042+.001 .053£.003 .0441+.004 .04+.003

Table IV.26
Size of testing Hy : pyg = Pg1 = Pss When simulation is from Kotz type distribution,
when o = 0.05
0ss LRIN Waldy Scoreny TS TS*
20 1111 1146 1183 0996  .1168

S5 1119 1122 1139 .0994 1121

8 1177 .092 1144 0972 .0887

Table IV.27
Size of testing Hy : pgg = pg1 = pss wWhen simulation is from Kotz type distribution,
when a = 0.05
Pss LRTy Waldy Scorey
.2 .057+.004 .072+.005 .0534.005

b5 .056+£.002 .063+£.002 .0544.002

.8 .055:£.003 .036+.003 .053+.004

Table IV.28
Size of testing Hy : pys1 = Pss1 = Pss When simulation is from T distribution, when
a=0.05
pss LRITN Waldy Scorey  LRTg Waldg Scorex s 715
2 1458 .1667 1352 .064+.002 .09£.002 .049+.002 .1382 .1575

.5 1473 1578 1394 .06£.002 .068#4.002 .053%.003 .1369 .1491

8 .1476 1185 .1406  .058+.002 .053£.002 .053+.002 .1257 .1147




Size of testing Hy : pos1 = Pss1 =

Table IV.29
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Pss When simulation is from normal distribution,

with a = 0.05
pss LRIy Waldy Scoren LRTy Waldg Scoreg TS T8*
2 .055 .07 .049 .0444+.002 .066+.003 .033+.001 .047 .059
5 .057 .063 .053 .042+.002 .05£.001 .036%£.002 .049 .058
.8 .059 .042 .053 .04+.003 .0244+.003 .036+.003 .0441 .04
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Figure 27. Power estimated with nominal level @ = 0.05 for testing Hy : p,,, =
Pes2 = Pgs When simulation is from normal distribution.
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Figure 28. Power estimation using o = 0.05 for testing Hy : py, = p,e0 = pss When
simulation is from Kotz type distribution.
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Figure 29. Power estimation using oo = 0.05 for testing Hp : pye = pge0 = P,s When
simulation is from T distribution, with df=>5.
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Figure 30. Power estimated with nominal level o = 0.05 for testing Hy : p, =

Pssa = Pss When simulation is from normal distribution.
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Table IV.30
Size of testing Hy : pps1 = Ppsa = Pps when simulation is from normal distribution,
with a = 0.05
Pps LRTN Waldy Scoren TP TP*

.1 .061£.005 .07+.004 .057+.004 .056%+.004 .07£.005
.3 .059+.001 .065+.001 .055£.001 .0544.002 .0644-.002

b5 .06+.001  .061+.005 .054+.001 .05+.003 .059+£.001

Table IV.31
Size of testing Ho : Ppsy = Ppsa = Pps When simulation s from Kotz type distribution,
with o = 0.05
Pps LRTN Waldy Scorepn TP TP*

10 113£.002 .124.002  .11£.007  .102+.003  .119£.003
3 .11£.004 .114+.005 .11£.002 .14+.005  .113+£.004

b5 .114+.001 .114.001  .11£.001 .096+.001 .104+.008

Table IV.32
Size of testing Ho : ppsy = Ppsg = pps When simulation is from Kotz type distribution,
with o = 0.05
Pps LRTy Waldg Scorey
.1 .0594.001 .069+.001 .055+£.001

3 .06+£.002 .067£.003 .056%.001

.5 .058£.002 .06£.002 .054+.002

Table IV.33
Size of testing Ho : ppg1 = pps2 = pps when simulation is from T, with df=5 and
a=0.05
pps LRTy Waldy Scorey LRTyx Waldy Scorey TP TP
1 15835 .1656 1481  .067+.003 .078+.003 .0614+.003 .1483 .1638

3 .1568 .1666 1513 .065+.003 .073+.003 .059£.002 .1526 .1G66

5 .1549 .1561 147 .064+.001 .066+.001 .058+.001 .1417 .1507
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Table IV.34
Size of testing Hy : pps; = ppso = Pps When simulation is from normal distribution,
with a = 0.05
_pps LRTy Waldy Scoren LRT¥ Waldg Scoreg TP TP*
1 .061 .07 .057 .049+.004 .0584.003 .044+.004 .056 .07
3 .059 .065 .055 .045+.002 .051£.002 .041+.002 .054 .064
5 .06 .061 .054 .046+.001 .05+.001 .0414+.001 .05 .059
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Figure 31. Power estimation of mom-sib using a = 0.05 for testing Ho : p,., =

Pps2 = Pps When simulation is from normal distribution.
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Figure 32. Power estimation of mom-sib using o = 0.05 for testing Ho : p,5 =
Ppsz = Pps When simulation is from Kotz type distribution.
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Figure 33. Power estimation of mom-sib using a = 0.05 for testing Ho : 0,5 =

Pps2 = Pps When simulation is from T distribution, with df=5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114



tho_ms1=0.1

-6 -+~ Scora_N
o »-LRT_K
‘4 —+— Score_K
3 TS
2
Al
0 T T T T T T T T T N
00 01 02 03 04 05 06 07 08 09 10
rho_ms2
rho_ms1=0.3
14
09 1
o -
£or]
50‘6 —— Socore_N
o 0'5 ~»- LRT_K
,E 0:4 —— Soore_K
E 03 -~ TS
& o2
0.1
0 T . T : . T . T x
00 01 02 03 04 05 06 07 08 09 10
rtho_ms 2
rho_ms1=0.5
4
09
_g 08
g 07
505 —e Score_N
%05 - LRT K
= 0.
S 04 —— Score_K
803 T8
@
® 02
01
0 T T T T T T T T T 1
00 01 02 03 04 05 06 07 08 09 10
rho_ms 2

Figure 34. Power estimated with nominal level o = 0.05 for testing Hy : p, =
Pps2 = Pp, When simulation is from normal distribution.
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