
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Civil & Environmental Engineering Theses & 
Dissertations Civil & Environmental Engineering 

Summer 2017 

Efficient Algorithms for Solving Size-Shape-Topology Truss Efficient Algorithms for Solving Size-Shape-Topology Truss 

Optimization and Shortest Path Problems Optimization and Shortest Path Problems 

Gelareh B. Sanjabi 
Old Dominion University, gbakh001@odu.edu 

Follow this and additional works at: https://digitalcommons.odu.edu/cee_etds 

 Part of the Civil Engineering Commons 

Recommended Citation Recommended Citation 
Sanjabi, Gelareh B.. "Efficient Algorithms for Solving Size-Shape-Topology Truss Optimization and 
Shortest Path Problems" (2017). Doctor of Philosophy (PhD), Dissertation, Civil & Environmental 
Engineering, Old Dominion University, DOI: 10.25777/rk3y-yg34 
https://digitalcommons.odu.edu/cee_etds/19 

This Dissertation is brought to you for free and open access by the Civil & Environmental Engineering at ODU Digital 
Commons. It has been accepted for inclusion in Civil & Environmental Engineering Theses & Dissertations by an 
authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee_etds
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_etds?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/cee_etds/19?utm_source=digitalcommons.odu.edu%2Fcee_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


i 

 

 EFFICIENT ALGORITHMS FOR SOLVING SIZE-SHAPE-TOPOLOGY 

TRUSS OPTIMIZATION AND SHORTEST PATH PROBLEMS 

 

by 

 

 

Gelareh B. Sanjabi 

B.S. August 2003, Razi University, Iran 

M.S. August 2013, Old Dominion University 

 

 

 

A Dissertation Submitted to the Faculty of 

Old Dominion University in Partial Fulfillment of the 

Requirements for the Degree of 

 

 

DOCTOR OF PHILOSOPHY 

CIVIL ENGINEERING 

OLD DOMINION UNIVERSITY 

August 2017 

 

 

        Approved by: 

Duc T. Nguyen (Co-Director) 

 

Manwo Ng (Co-Director) 

 

Mecit Cetin (Member) 

 

Gene Hou (Member) 

 

 

 

 

  



ii 
 

ABSTRACT 
 

EFFICIENT ALGORITHMS FOR SOLVING SIZE-SHAPE-TOPOLOGY 

TRUSS OPTIMIZATION AND SHORTEST PATH PROBLEMS 

 
Gelareh B. Sanjabi 

Old Dominion University, 2017 

Co-Directors: Dr. Duc T. Nguyen 

                                                                    Dr. ManWo Ng 

 

 

Efficient numerical algorithms for solving structural and Shortest Path (SP) problems are 

proposed and explained in this study. A variant of the Differential Evolution (DE) algorithm for 

optimal (minimum) design of 2-D and 3-D truss structures is proposed. This proposed DE 

algorithm can handle size-shape-topology structural optimization. The design variables can be 

mixed continuous, integer/or discrete values. Constraints are nodal displacement, element stresses 

and buckling limitations. 

For dynamic (time dependent) networks, two additional algorithms are also proposed in 

this study. A heuristic algorithm to find the departure time (at a specified source node) for a given 

(or specified) arrival time (at a specified destination node) of a given dynamic network. Finally, 

an efficient bidirectional Dijkstra shortest path (SP) heuristic algorithm is also proposed. Extensive 

numerical examples have been conducted in this study to validate the effectiveness and the 

robustness of the proposed three numerical algorithms. 

 

 

 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

 

 

Copyright, 2017, by Gelareh B. Sanjabi, All Rights Reserved. 

 

 

 

 

 

 

 

 

 

 

 

  



iv 
 

I dedicate this thesis to my wonderful family. First, I must thank my loving mother who 

has given me her fullest support. My sister has never left my side and is very special. Many thanks 

to my understanding and patient husband who has supported me throughout the process.  I also 

dedicate this thesis to my brothers, my nephew, and my nieces, I am grateful for your heartwarming 

support.  Finally, I dedicate this work to my late father, who believed in the pursuit of academic 

excellence.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGMENTS 
 

My special thanks to Dr. Nguyen for providing me with invaluable guidance and 

encouragement throughout my graduate studies. I greatly appreciate his confidence in my work 

and his scholarly advice. His patience and encouragement have played a fundamental role in the 

completion of this work in the present form. I am grateful to him as he supported me during tough 

times and helped me through the process.  

Many thanks to Dr. Ng for providing me with insight and helping me stay encouraged 

about my research.  

I would like to thank Dr. Cetin for his support, interest, and time serving on my dissertation 

committee.  

I would also like to thank Dr. Hou for the time serving on my dissertation committee and 

for his scholarly advice and encouragement. 

 

 

 

 
 

 

 

  



vi 
 

TABLE OF CONTENTS 
 

 

  Page 

 

 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... xi 

Chapter 

 

1.  INTRODUCTION ..................................................................................................................... 1 

 

2.  SIZE-SHAPE-TOPOLOGY OPTIMIZATION OF TRUSS USING DEFFERENTIAL 

EVOLUTION ALGORITHM ........................................................................................................ 6 

2.1 INTRODUCTION ................................................................................................................. 6 

2.2 BASIC CONCEPT OF TRUSS OPTIMIZATION ............................................................. 11 

2.3 REVIEW OF DIFFERENTIAL EVOULOTION ............................................................... 13 

2.4 MODIFIED DIFFERENTIAL EVOLUTION .................................................................... 30 

2.5 NUMERICAL IMPLEMENTATION ................................................................................. 45 

2.6 CONCLUSION ................................................................................................................... 65 

 

3.  BACKWARD DIJKSTRA ALGORITHMS FOR FINDING THE DEPARTURE TIME 

BASED ON THE SPECIFIED ARRIVAL TIME FOR REAL-LIFE TIME-DEPENDENT 

NETWORKS ................................................................................................................................ 66 

3.1 INTRODUCTION ............................................................................................................... 66 

3.2 TIME DELAY FACTOR AND PIECE-WISE LINEAR FUNCTION IN DYNAMIC 

NETWORKS ............................................................................................................................. 68 

3.3 FINDING THE DEPARTURE TIME BASED ON THE SPECIFIED ARRIVAL TIME . 71 

3.4 NUMERICAL RESULTS AND DISCUSSIONS ............................................................... 76 

3.5 CONCLUSION ................................................................................................................... 79 

 

4.  BIDIRECTIONAL DIJKSTRA ALGORITHM USING PIECE-WISE LINEAR    

FUNCTION .................................................................................................................................. 80 

4.1 INTRODUCTION ............................................................................................................... 80 

4.2 PROPOSED TIME DEPENDENT BIDIRECTION DIJKSTRAL ALGORITHM ........... 82 

4.3 NUMERICAL IMPLEMENTATION ................................................................................. 87 

4.4 CONCLUSION ................................................................................................................... 97 



vii 
 

REFERENCES ............................................................................................................................. 99 

 

APPENDIX A: EVALUATION OF DEB’S CONSTRAINT HANDLING METHOD............ 108 

APPENDIX B: EXTRAPOLATED GUESSED ARRIVAL TIME ........................................... 117 

 

VITA ........................................................................................................................................... 121 

 

 

  



viii 
 

LIST OF TABLES 

 

Table                                      Page 

  

1. Comparison of the best solution of the DE and the GA optimizer ........................................... 19 

2. Differential evolution algorithm ............................................................................................... 31 

3. The procedures of the proposed DE algorithm ......................................................................... 44 

4. Optimum size and shape solution for 15 bar planar truss ......................................................... 47 

5. Optimum size, shape, and topology solution for 15 bar planar truss. ....................................... 49 

6. Optimum size, and shape solution for 18 bar planar truss. ....................................................... 52 

7. Imposed nodal loads on 25 bar space truss. .............................................................................. 55 

8. Optimum size, and shape solution for 25 bar space truss. ........................................................ 57 

9. Nodal coordinates of bottom and top nodes of 39 bar space truss............................................ 60 

10. Optimum size, and shape solution for 39 bar space truss. ...................................................... 61 

11. Optimum size, and shape solution for11 bar planar truss. ...................................................... 63 

12. Numerical Results for Dynamic Network in Figure 20. ......................................................... 72 

13. Comparisons of Forward and Backward Dijkstra Results for Real Networks. ...................... 77 

14. Information for exploring all the outgoing links of node 2. ................................................... 89 

15. Information for exploring all the outgoing links of node 1. ................................................... 89 

16. Information for exploring all the outgoing links of node 5. ................................................... 90 

17. Information for exploring all the outgoing links of node 8 (backward search). ..................... 91 

18. Information for exploring all the outgoing links of node 9 (backward search). ..................... 92 

19. Information for exploring all the outgoing links of node 6. ................................................... 92 

20. Number of explored nodes for all the cases in Problem 4.2. .................................................. 94 

21. Properties of the large scale examples. ................................................................................... 95 



ix 
 

Page 
 

22. Results for forward and bidirectional algorithms for 10 examples of Table 21. .................... 96 

23. Comparison of consuming time for forward Dijkstra and the proposed algorithms for 10 

examples of Table 21. ........................................................................................................... 97 

24. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE and GA with constraint handling scheme on test problem 1(True optimum 

solution =13.59085)............................................................................................................. 112 

25. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE and GA with constraint handling scheme on test problem 3(True optimum 

solution=-15). ...................................................................................................................... 112 

26. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE and GA with constraint handling scheme on test problem 4(True optimum 

solution=7049.330923)........................................................................................................ 112 

27. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE and GA with constraint handling scheme on test problem 5 (True optimum 

solution=680.630573).......................................................................................................... 113 

28. Number of runs (out of 50 runs) converged using real-coded DE and GA with constraint 

handling scheme on the Ackley function with 5 variables (True optimum solution=0). .... 113 

29. Number of runs (out of 50 runs) converged using real-coded DE and GA with constraint 

handling scheme on the Rastrigin function with 5 variables (True optimum solution=0). . 113 

30. Comparison of the best solution of DE and GA optimizer. .................................................. 114 

31. Comparison of the time consuming for DE and GA optimizer. ........................................... 114 

 

 

 



x 
 

Page 

 

32. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE with constraint handling scheme on test problem 1(True optimum solution 

=13.59085). ......................................................................................................................... 115 

33. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE with constraint handling scheme on test problem 3(True optimum solution=-15).

 ............................................................................................................................................. 115 

34. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE with constraint handling scheme on test problem 4(True optimum 

solution=7049.330923)........................................................................................................ 115 

35. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution using real-

coded DE with constraint handling scheme on test problem 5(True optimum 

solution=680.630573).......................................................................................................... 115 

36. Number of runs (out of 50 runs) converged using real-coded DE with constraint handling 

scheme on the Ackley function with 5 variables (True optimum solution=0). ................... 116 

37. Number of runs (out of 50 runs) converged using real-coded DE with constraint handling 

scheme on the Rastrigin function with 5 variables (True optimum solution=0). ................ 116 

 

 

 

  

 



xi 
 

LIST OF FIGURES 

 

Figure                           Page 

 

1. The schematic diagram for the evolutionary process during the ‘’ DE/current-to-rand/best/1 ‘’ 

strategy is divided in to two phases and three stages. ............................................................. 35 

2. (a) An illustration of the DE/rand/1 a basic DE mutation strategy in two-dimensional 

parametric space. (b) An illustration of the new directed mutation strategy in two-

dimensional parametric space (local exploitation). (c) An illustration of the modified 

DE/rand/1 basic DE mutation strategy in two-dimensional parametric space (global 

exploration). ............................................................................................................................ 40 

3. 15 bar planar truss ..................................................................................................................... 46 

4. Convergence history for size and shape optimization of 15 bar truss. ..................................... 48 

5. Geometry and optimal shape for size and shape optimization of 15-bar truss. ........................ 49 

6. Convergence history for size, shape, and topology optimization of 15 bar truss. .................... 50 

7. Geometry and optimal shape for size, shape, and topology optimization of 15 bar truss. ....... 50 

8. 18 bar planar truss. .................................................................................................................... 52 

9. Convergence history for size and shape optimization of 18 bar truss. ..................................... 53 

10. Geometry and optimal shape for size and shape optimization of 18 bar truss. ...................... 54 

11. 25 bar space truss. ................................................................................................................... 55 

12. Convergence history for size and shape optimization of 25 bar truss. ................................... 58 

13. Geometry and optimal shape for size and shape optimization of 25 bar truss. ...................... 58 

14. 39 bar space truss. ................................................................................................................... 59 

15. Convergence history for size and shape optimization of 39 bar truss. ................................... 62 

16. 11 bar planar truss. .................................................................................................................. 63 



xii 
 

Page  

 

17. Convergence history for size, shape, and topology optimization of 11 bar truss. .................. 64 

18. Geometry and optimal shape for size, shape, and topology optimization of 11 bar truss. ..... 64 

19. Piece-wise linear time function for a typical link k. ............................................................... 69 

20. (a) A dynamic network topology, (b) A dynamic reversed network topology ....................... 71 

21. Piece-wise linear time function for a typical link k. ............................................................... 83 

22. A network topology with 9 nodes and 15 links. ..................................................................... 87 

23. The reversed network topology with 9 nodes and 15 links. ................................................... 88 

 

 

 

 

 

 

  



1 
 

CHAPTER 1 

 

INTRODUCTION 

 
 

A broad class of man-made structures are made of trusses such as bridges, towers, cranes, 

and roof support trusses. The individual elements of truss are generally rod elements (bars) which 

only carry axial forces. The rod elements are connected at two end nodes; the common connection 

type is pinned connections. 

The ubiquity of the truss structures in industrial world is because of their simple and 

functional construction. However, the structures made from trusses can be very complex and 

difficult to model. As a result, the usage of the modern design optimization tools is necessary to 

achieve competitive and economic designs based on the basic design standards. The optimal design 

of truss structures can be divided in three types based on the category of the selected design 

variables. The first category of design variables is the truss size so that one can find the optimal 

cross sections of truss elements. The second category is the optimization of the parameters defining 

the shape of the structure. More specifically, the optimum location of the selected joints in the 

structure are determined. The last category is the optimization of topology variables in order to 

find the optimum number of required members in the structure. The objective of the optimization 

is to minimize the weight of the structure for a given loading condition subjected to the limitations 

of element stresses and buckling as well as nodal displacements. Size variables are the dimensions 

of the member’s cross sectional area. They are selected from a list of standard profiles which means 

the size variables are treated as discrete variables. Shape variables which represent nodal 

coordinates are selected from a continuous space. This optimization is challenging because it is 

necessary to treat the continuous variables and discrete variables together for solving shape, size, 



2 
 

and topology simultaneously. Various evolutionary algorithm such as Genetic Algorithm (GA), 

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Harmony Search (HS), 

Firefly Algorithm (FA) and Differential Evolution (DE) have been used for solving the mentioned 

problems. DE has shown superiority when compared with other evolutionary algorithms. It is also 

considered a powerful and reliable method for structural optimizations. DE is more successful in 

finding the global minimum with far less sensitivity to the selection of the initial guess. DE can 

converge fast and has far less tunable parameters when compared with GA (Ho-Huu et al., 2015). 

This reliable and versatile optimizer is a population based algorithm like other evolutionary 

algorithms which uses processes inspired by biological evolution of the nature, such as mutation, 

crossover, and selection. 

Candidate solutions of the optimization problem are individuals in the population. The 

mutation and crossover help to improve the diversity of the population, while the selection process 

helps to explore the better candidates in the search domain. The original DE algorithm proposed 

by Storn and Price in 1995 was one of the most successful method for solving continuous 

optimization problems. The original DE algorithm provides a fast method of achieving the global 

minimum. In the past decades, various methods were utilized to improve the original DE 

algorithm. DE applications were also expanded to solve broader range of optimization problems. 

There was no constraint handling capability in the original DE algorithm. The improved DE 

algorithm was combined with multiple constraint handling methods to overcome this shortcoming. 

Notably the DE algorithm combined with the Deb’s constraint handling method has provided the 

required flexibility to handle complex constraints within the DE context. Other improvements 

include adding the generalized rule in order to solve problems with discrete variables (Lampinen 



3 
 

& Zelinka, 1999), and addition of various mutation and crossover methods to increasing the 

diversity of population. 

Truss optimization is considered a constrained optimization problem with mixed discrete-

continuous design variables. In this study, several strategies were utilized to improve the state of 

the art DE algorithms available in literature for this application. The capability of DE algorithm 

depends significantly on the selected strategies for mutation, crossover, and selection operations 

as well as the value of DE control parameters.   

In this study, the mutation and crossover strategies were modified to enhance the Improved 

(𝜇 + 𝜆)-Differential Evolution (IDE) method (Jia et al., 2013). Three mutation and crossover 

strategies were used in IDE to generate the offspring population. In the proposed algorithm, one 

of the IDE mutation strategies (DE/rand/1/bin) was replaced by a combination of strategies 

originally used in unconstrained optimization (Mohamed et al., 2012). More specifically, 

“DE/rand/1” and a directed mutation strategy defined based on the weighted difference vector 

between the best and the worst individuals of a generation were combined and replaced 

(DE/rand/1/bin) in IDE. In the proposed algorithm, the scaling factors of the combined mutation 

strategy was calculated by random and ranked based methods. Also, the crossover rate of this 

strategy was obtained by a dynamic nonlinearly increasing probability. Moreover, the third 

crossover strategy of IDE was modified in the proposed algorithm to maintain the diversity of the 

population. Additionally, an Improved Adaptive Tradeoff Model (IATM) was used for selection 

phase of the algorithm (Wang & Cai, 2011). To be able to handle discrete variables a generalized 

method proposed by Lampinen & Zelinka in 1999 was adopted in this study. 

Finally, the proposed algorithm was evaluated by solving several well-known benchmark 

problems. The numerical result obtained using the proposed differential evolution algorithm 



4 
 

outperformed the existing methods found in literature both in terms of finding the final optimal 

solution and the convergence rate. The proposed improved DE algorithm is further explained in 

Chapter 2.  

The Shortest Path Problem (SPP) on static graphs has been one of the most studied 

problems in recent years, because of its practical application related to network problems. 

Although static shortest path algorithms play an essential role in problems which are not changing 

over time, recently more focus have been moved toward Time Dependent Shortest Path Problems 

(TDSPP). TDSPP is the SPP in which the cost of edges can vary as a function of time. For example 

in a road network, the shortest path from a specified source node to a destination node during low 

traffic periods is not the same as during rush over. The time and cost of travel are important factors 

from travel forecasting outlook. In the time dependent network, the travel time along each arc is 

treated as a function of the departure time along the arc. These functions are known for all times 

in advance. There are various application for TDSPP; network control, automobile driver 

guidance, ship routing, and dynamic traffic assignment are the most typical applications of TDSPP. 

In part of Dynamic Traffic Assignment (DTA) problems, the goal is to find the earliest 

arrival time at a destination(s) from a specified source node at a specified departure time. This 

problem is called the backward shortest path problem, which is examined in this work. The link 

travel cost is defined as a piece-wise linear function. The network is assumed to be First In, First 

Out (FIFO) and non-FIFO. The implemented heuristic backward Dijkstra algorithm has been 

tested through some small and real life networks and their results are compared with the forward 

Dijkstra algorithm to show the accuracy of the resultant shortest path. Chapter 3 is devoted to 

describe the mentioned backward Dijkstra algorithm for finding the departure time. 



5 
 

Finding the shortest path from a source to a destination over a time dependent network is 

the essential problem in DTA and numerous other applications. This problem can be computed 

using a Dijkstra algorithm, but this may not be fast enough for useful applications. Therefore, in 

Chapter 4, a new heuristic time dependent bidirectional search algorithm is proposed which can 

find point to point shortest path and arrival time. This proposed algorithm is based on Dijkstra 

algorithm. The proposed Time Delay Factor method is combined with a piece-wise linear function 

to describe the link cost as a function of time. The backward Dijkstra SP algorithm, developed in 

Chapter 3, is aslo used for the backward search of the proposed bidirectional algorithm in Chapter 

4. This algorithm is explained via a simple and small network. Then, its application is expanded 

to analyze real life networks and evaluated by several numerical examples. The results are 

compared with Dijkstra algorithm. The performance of the above mentioned algorithms in finding 

the shortest path, arrival time, and the computational cost are compared. The number of explored 

nodes is reduced in comparison with the classical time dependent forward Dijkstra algorithm.  

 

 

 

 

  



6 
 

CHAPTER 2 

 

 

SIZE-SHAPE-TOPOLOGY OPTIMIZATION OF TRUSS USING 

DEFFERENTIAL EVOLUTION ALGORITHM 

 
 

2.1 INTRODUCTION 

The truss optimization problem is considered one of the challenging and practical 

engineering problems because it deals with continuous and discrete variables. In the last decade, 

various evolutionary algorithms have been implemented for structural optimization which are 

shown to be both robust and reliable computational tools in comparison with the conventional 

gradient-based methods. 

This field of structural optimization is divided into three categories based on the selected 

design variables to optimize the size, shape, and topology of the structure. It was proven that by 

considering size and shape or size, shape, and topology variables simultaneously, the optimization 

problem can find enhanced optimum design. Hence, the obtained optimum design will save more 

material resulting in lighter structures when compared to pure size optimization methods 

(Gholizadeh, 2013). The difficulty of the problem will increase by including discrete design 

variables to the existing continuous ones. The necessity to include discrete design variables is 

caused by the existing limitations of the manufactured standard profiles and the related cost 

savings when off the shelf items are used.  As a result, the designer is limited to use the available 

cross sectional areas in the manufacturer’s catalogue. 



7 
 

Several metaheuristic algorithms, which are generated in the context of evolutionary 

algorithms, have been implemented to handle the mixed discrete-continuous difficulties in solving 

truss optimization problems. The popular methods in this field include Genetic Algorithm (GA) 

(Rajeev & Krishnamoorthy, 1992; Rajan, 1995; Ruiyi et al., 2009; Kaveh & Kalatjari, 2004; 

Balling et al., 2006; Tang et al., 2005), Ant Colony Optimization (ACO) (Camp & Bichon, 2004), 

Harmony Search (HS) (Lee et al., 2005), Evolutionary Strategy (ES) (Chen & Chen, 2008), 

Particle Swarm Optimization (PSO) (Kaveh & Talatahari, 2009), Firefly Algorithm (FA) 

(Gandomi et al., 2011; Miguel et al., 2013), Search Group Algorithm (SGA) (Goncalves et al., 

2015), Differential Evolution (DE) (Wu & Tseng, 2009; 2010; Wang et al., 2009; Ho-Huu et al., 

2015), etc. 

Among many metaheuristic algorithm, Differential Evolution (DE) is a simple, robust, and 

reliable method (Storn & Price, 1995).  It has been proven that DE is a powerful method for solving 

various optimization problems in science and technology (Das & Suganthan, 2011). DE is a 

population based method and follow the general procedures of evolutionary algorithms (EA).There 

are four basic operators in DE:  Initialization, Mutation, Crossover, and Selection. Mutation and 

Crossover operators both diversify the population. Selection helps the progress of exploitation in 

finding better candidates in the search domain.  

Since 1995, the DE algorithm has been progressively improved and established promising 

result in solving complex Constrained Optimization Problems (COPs). For instance, Mallipeddi 

and Suganthan (2010) proposed a DE algorithm with an Ensemble of Constraint Handling 

Techniques (ECHT) in which each population associates with its own constraint handling method. 

Liao (2010) presented two hybrid DE algorithms. One of them improved a basic DE algorithm 

with a local search operator, and the second one used a Harmony Search (HS) to comply with the 



8 
 

DE algorithm in order to find improved cooperative result. Mohamed and Sabry (2012) 

implemented a modified DE algorithm which is different in mutation method, control parameters, 

and constraint handling policy. Wang and Cia (2011) introduced (𝜇 + 𝜆) DE with an Improved 

Adaptive Trade-off Method (IATM) to solve COPs efficiently. In this method, each individual in 

the population produces three offspring by using three different mutation strategies and the next 

generation can be selected among the combined populations of parent and offspring. Then, Jia et 

al. (2013) improved this method by introducing a new mutation method and modified the 

constraint handling method in order to promote diversity and convergence of the population and 

called the method Improved Constrained Differential Evolution (ICDE).  Wang et al. (2012) 

proposed a DE algorithm with a new crossover method called orthogonal crossover (OX) and 

claimed that this new method which is based on orthogonal design, can make a systematic and 

rational search in parent population. A hybrid version of DE with two differential mutation to 

increase the population diversity through the evolution was presented by Hernandez et al. (2013). 

Another algorithm proposed by Cui et al. (2016) named MPADE, adaptive differential evolution 

algorithm with novel mutation strategies in multiple sub-populations. They split the parent 

population into three sub-populations based on the value of objective function then three different 

DE strategies are applied on each sub-population to improve the exploitation and exploration.  

Several DE algorithm have been proposed in the literature for solving truss optimization 

problems. A combined heuristic optimization method which is a combination of the threshold 

accepting algorithm with differential evolution proposed by Schmidt and Thierauf (2005). The 

aforementioned algorithm was designed for solving mixed discrete-continuous variables with 

emphasis on structural optimization. A novel DE for solving truss structures with both continuous 

and discrete variables was presented by Wang et al. (2009). Wu and Tseng (2010) applied Multi-



9 
 

Population Differential Evolution (MPDE) with a penalty based, self-adaptive strategy for 

adjusting control parameters of the algorithm. They showed that the self-adaptive strategy 

improved the performance of MPDE especially for solving constrained truss optimization 

problems. Krempser et al. (2012) presented a differential evolution assisted by surrogate models. 

The surrogate model selects the best offspring found by different mutation strategies. Ho-Huu et 

al. (2015) modified ICDE (Jia et al., 2013) to handle discrete and continuous design variables for 

solving truss size and shape optimization. A generalized method for solving mixed integer-

discrete-continuous optimization which was proposed by Lampinen and Zelinka (1999) is used to 

implement discrete-ICDE (D-ICDE). This method also used by Schmidt and Thierauf (2005) to 

handle discrete variables.  

Pham (2016) introduced a discrete optimal sizing of truss using adaptive directional 

differential evolution (ADDE). He used a new self-adaption approach and a simple directional 

strategy to balance global exploration and local exploitation for promoting the final solution. 

Generally, the main goals of researchers are to increase the diversity of the population, balance 

exploration and exploitation, and improve the constraint handling ability of the DE.  

A new variant of DE is proposed in this work to enhance the performance of differential 

evolution in size, shape, and topology optimization of trusses. The Improved (μ+λ) Differential 

Evolution (IDE) method (Jia et al., 2013) generates the offspring population using three different 

mutation strategies. The first mutation strategy (DE/rand/1/bin) maintains the population diversity 

and has good global search capability. However, its local search capability and the resulting 

convergence rate are sub-optimal. In this work, a mutation strategy which was first introduced in 

Alternative Differential Evolution (ADE) algorithm (Mohamed et al., 2012) was adopted to 

overcome the aforementioned shortcomings in original IDE. More specifically, in the proposed 



10 
 

algorithm, the first IDE mutation strategy was replaced by a combination of “DE/rand/1” and 

“directed mutation” strategies through a linearly decreasing probability rule. The directed mutation 

strategy is a function of weighted difference between the best and the worst individuals of the 

current population. 

In the proposed algorithm, a binomial crossover was used to generate the offspring 

population of this combined mutation strategy. Additionally, the crossover rate was calculated by 

a dynamic nonlinearly decreasing probability scheme similar to ADE (Mohamed et al., 2012). The 

other unique feature of the proposed algorithm is the method used to calculate the scaling factor 

of the directed mutation. This scaling factor was calculated by a proposed ranked based method 

which is a modified version of the method used in Individual Dependent Mutation (IDM) strategy 

(Tang et al., 2014). Unlike IDE, the scaling factors of “DE/rand/1” was obtained randomly. In the 

proposed algorithm, the selected scaling factor and crossover rates are unique to each strategy 

while in original IDE fixed values are used for scaling factor and the crossover rate in all strategies.  

The third mutation in original IDE method is called “DE/current-to-rand/best/1” strategy, 

where no crossover operation was applied to generate offspring population of “DE/current-to-

rand/1” mutation strategy. The diversity of the generated population in the proposed algorithm was 

improved by utilizing a binomial crossover method. The method used for selection operation can 

significantly affect the performance of the DE optimization algorithm. The Improved Adaptive 

Tradeoff Model (IATM), which was used in solving constrained optimization problems (Wang & 

Cai, 2011) was adopted as the selection operation method in the proposed algorithm.  

Hence, both the local search capability and the convergence rate of the proposed algorithm 

for solving truss optimization problems are improved. As a result, the number of required 



11 
 

evaluations of the objective function and constraints are considerably reduced which translates 

into significant reduction of computational cost. 

The presented method is applied to truss optimization problem with stress, displacement, 

and buckling constraints. Several numerical examples are solved and their result compared to the 

previous state-of-the-art methods to examine the performance and efficiency of the proposed 

method. 

This chapter is organized as follows. The basic concept of truss optimization problems 

presented in Section 2.2. Section 2.3 contains a concise review of the original Differential 

Evolution. The proposed algorithm is explained in Section 2.4. The numerical implementation and 

conclusion are presented in Section 2.5 and Section 2.6, respectively. 

 

2.2 BASIC CONCEPT OF TRUSS OPTIMIZATION 

The truss optimization problem can be formulated as below: 

Minimize 
𝑓(𝑋) = ∑ 𝜌𝑚𝑥𝑚𝑙𝑚

𝑠

𝑚=1

 
(1) 

Subjected to : Δ(𝑋) ≤ ∆𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 (2) 

 σ(𝑋) ≤ 𝜎𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 (3) 

 λ(𝑋) ≤ 𝜆𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 (4) 

 𝑋 = {𝑥𝑚
𝑙 ≤ 𝑥𝑚 ≤ 𝑥𝑚

𝑢 },𝑚 = 1,2, … , 𝑠, … , 𝐷 (5) 

where 𝑓(𝑋) is the objective function representing the structural weight of the truss in which 𝜌𝑚 is 

the material density and  𝑙𝑚 is the length of the 𝑚th member. 𝑋 is the design variables vector which 

contains the size and shape variables of the truss elements. 𝐷 is the number of design variables. 

∆(𝑋), 𝜎(𝑋), and 𝜆(𝑋) represents nodal displacement, element stress, and buckling stress, 



12 
 

respectively, and all of them are determined within their allowable values. 𝑥𝑚 is the 𝑚𝑡ℎ design 

variable defined within the lower bound 𝑥𝑚
𝑙  and upper bound 𝑥𝑚

𝑢  , 𝑚 = 1,2,… , 𝑠 are indices 

related to the area design variables and 𝑚 = 𝑠 + 1, … , 𝐷 are indices related to the nodal 

coordinates. 

The above optimization problem can be reformulated as: 

Minimize 𝑓(𝑋) = ∑ 𝜌𝑚𝑥𝑚𝑙𝑚

𝑠

𝑚=1

 (6) 

Subjected to : Δ(𝑋)

∆𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
− 1 ≤ 0 (7) 

 σ(𝑋)

𝜎𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
− 1 ≤ 0 (8) 

 λ(𝑋)

𝜆𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
− 1 ≤ 0 (9) 

 𝑋 = {𝑥𝑚
𝑙 ≤ 𝑥𝑚 ≤ 𝑥𝑚

𝑢 },𝑚 = 1,2, … , 𝑠, … , 𝐷 (10) 

When we have an inequality constraint like 𝑔𝑘(𝑋) ≤ 0, the constraint violation, 𝐺𝑘(𝑋), of 

a design variable or an individual 𝑋 on the 𝑘𝑡ℎ constraint is calculated by  

 𝐺𝑘(𝑋) = max {0, 𝑔𝑘(𝑋)}, 𝑘 = 1, … , 𝑃 (11) 

where 𝑃 represents the number of constraints in the optimization problem and  𝑔𝑘(𝑋) is the value 

of 𝑘𝑡ℎ constraint for individual 𝑋. 

 

 

 

 

 

 



13 
 

2.3 REVIEW OF DIFFERENTIAL EVOULOTION 

2.3.1 BASIC DIFFERENTIAL EVOLUTION 

Differential evolution is an efficient evolutionary algorithm for solving global optimization 

problem. This method was first proposed by Storn and Price in 1995. The four basic operations in 

DE are explained below.  

2.3.1.1 INITIALIZATION  

An initial population must be generated to stablish a starting point for the optimization 

process. The initial population contains 𝑁𝑃 individuals hence 𝑁𝑃 represents number of population. 

The population individuals are randomly sampled values selected within the range between the 

lower and upper limit of each design variable. This sampled population can be generated using 

Equation (12). 

 𝑥𝑖𝑗
0 = 𝑥𝐿𝑗 + 𝑟𝑎𝑛𝑑𝑖𝑗(𝑥𝑈𝑗 − 𝑥𝐿𝑗)      , 𝑖 = 1,2, … ,𝑁𝑃, 𝑗 = 1,2, … , 𝐷 (12) 

where 𝑥𝑖𝑗
0  is the initial population in which the super script, 0, is corresponding to the generation 

number. The subscript 𝑖𝑗 corresponds to the 𝑖th population, and the 𝑗th decision variable, 

respectively. Equation (12) guarantees that the lower and upper bound constraints on decision 

variables are satisfied. The 𝑟𝑎𝑛𝑑𝑖𝑗  denotes a uniformly distributed number between[0,1], which 

is generating a new value for each decision variables. The lower bound for the 𝑗th decision variable 

is denoted by 𝑥𝐿𝑗  and 𝑥𝑈𝑗 stands for upper bound for the 𝑗th decision variable.  𝐷 is the total 

number of decision variables. 

 

 

 



14 
 

2.3.1.2 MUTATION 

DE generates a mutant (donor) vector 𝑣𝑖
𝑔+1

 for each target vector 𝑥𝑖
𝑔

  at each iteration 

through mutation operation. The superscript of the mutant and target vectors stands for generation 

number and the subscript 𝑖 represents the 𝑖th population. The mutation strategy of DE generally 

named as “DE/x/y/z”, where x denotes the basic vector to be perturb, y represents the number of 

difference vectors considered for perturbation, and z is the crossover method being used (exp: 

exponential; bin: binomial) (Das et al., 2016).  Note that when the binomial crossover is used the 

mutation strategy can be named as “DE/x/y”. Six most frequently used mutation strategies (Das et 

al., 2016) are described as follows: 

DE/rand/1: 𝑣𝑖
𝑔+1

= 𝑥𝑟1
𝑔
+ 𝐹. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
) (13) 

DE/rand/2: 𝑣𝑖
𝑔+1

= 𝑥𝑟1
𝑔
+ 𝐹. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
) + 𝐹. (𝑥𝑟4

𝑔
− 𝑥𝑟5

𝑔
) (14) 

DE/best/1: 𝑣𝑖
𝑔+1

= 𝑥𝑏𝑒𝑠𝑡
𝑔

+ 𝐹. (𝑥𝑟1
𝑔
− 𝑥𝑟2

𝑔
) (15) 

DE/best/2: 𝑣𝑖
𝑔+1

= 𝑥𝑏𝑒𝑠𝑡
𝑔

+ 𝐹. (𝑥𝑟1
𝑔
− 𝑥𝑟2

𝑔
) + 𝐹. (𝑥𝑟3

𝑔
− 𝑥𝑟4

𝑔
) (16) 

DE/current-to-rand/1: 𝑣𝑖
𝑔+1

= 𝑥𝑖
𝑔
+ 𝐹. (𝑥𝑟1

𝑔
− 𝑥𝑖

𝑔
) + 𝐹. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
) 

          = (1 − 𝐹). 𝑥𝑖
𝑔
+ 𝐹. 𝑥𝑟1

𝑔
+ 𝐹. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
) (17) 

DE/current-to-best/1: 𝑣𝑖
𝑔+1

= 𝑥𝑖
𝑔
+ 𝐹. (𝑥𝑏𝑒𝑠𝑡

𝑔
− 𝑥𝑖

𝑔
) + 𝐹. (𝑥𝑟1

𝑔
− 𝑥𝑟2

𝑔
) 

          = (1 − 𝐹). 𝑥𝑖
𝑔
+ 𝐹. 𝑥𝑏𝑒𝑠𝑡

𝑔
+ 𝐹. (𝑥𝑟1

𝑔
− 𝑥𝑟2

𝑔
) (18) 

In Equations (13) to (18), 𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑟5 are distinct integers randomly chosen from 

the range [1,  𝑁𝑃], and all are different from the base index 𝑖. These indices are randomly generated 

for each mutant vector. 𝑥𝑏𝑒𝑠𝑡
𝑔

 is the best individual vector with the best objective function value of 

the current generation. The scaling factor, which is used to control the mutation scale, is denoted 

by 𝐹 and controls the amplification of the differential variation and is restricted in (0,1]. 



15 
 

Note that in Equation (17), “DE/current-to-rand/1” strategy, the vector which generated 

with the scaled difference of the two other population members is a convex combination of the 

current target vector and another random member of the population for 𝐹 < 1 (Das et al., 2016). 

Since 1 − 𝐹 + 𝐹 = 1, for 𝐹, 1 − 𝐹 ≥ 0, the (1 − 𝐹)𝑥𝑖
𝑔
+ 𝐹. 𝑥𝑟1

𝑔
  is a convex combination. 

This means the base vector for mutation is an arithmetic recombination between 𝑥𝑖
𝑔

 and 

𝑥𝑟1
𝑔

because it denotes a point on the line joining the target vector and a random chosen population 

member. Therefore, the resulting mutant vector is considered as a mutated recombinant. Similarly, 

the same argument is true for Equation (18). 

2.3.1.3 CROSSOVER 

To enhance the diversity of the perturbed mutant vectors, crossover is introduced in the DE 

algorithm. During crossover, the mutant vector, 𝑣𝑖
𝑔+1

, mixes its components with the target vector, 

𝑥𝑖
𝑔

, to form the trial/offspring vector, 𝑢𝑖
𝑔+1

. Commonly two crossover methods are utilized in DE; 

binomial (uniform) method and exponential (or two point modulo) method. The most common 

method is binomial crossover, in which the number of components inherited from the mutant 

vector follow a nearly binomial distribution. This method can be formulate as:  

 
𝑢𝒊𝒋
𝒈+1

= {
𝑣𝑖𝑗
𝑔+1

     if 𝑗 = 𝑘 or 𝑟𝑎𝑛𝑑𝑖𝑗 ≤ 𝐶𝑟

𝑥𝑖𝑗
𝑔

                              otherwise
 (19) 

where 𝑟𝑎𝑛𝑑𝑖𝑗  is a uniform random number in [0,1] range which is generated once for every 

component of each vector per iteration. Also, 𝑘 is any randomly chosen natural number in 

{1,2,3, … , 𝐷}, 𝐷 is the total number of decision variables, this random value ensures that trial 

vector, 𝑢𝑖
𝑔+1

, gets at least one element from mutant vector, 𝑣𝑖
𝑔+1

. Furthermore, 𝐶𝑟 is the Crossover 



16 
 

rate which has to be determined by user. It controls how many components of trial vector, 𝑢𝑖
𝑔+1

, 

are inherited from the mutant vector, 𝑣𝑖
𝑔+1

.  

2.3.1.4 SELECTION 

After crossover, DE evaluates both the objective function and constraints for all the 

trial/offspring vector, 𝑢𝑖
𝑔+1

, in the population. Selection determines whether the target (parent) 

vector, 𝑥𝑖
𝑔

, or the trial (offspring) vector, 𝑢𝑖
𝑔+1

, survives to the next iteration (i.e., 𝑔 + 1). The 

original DE proposed by Storn and Price (1995) was implemented for unconstraint optimization 

problems and always the vector which yields a smaller cost function (for minimization problem) 

will survive to the next generation. Thus, each individual of the trial population is compared with 

its counterpart in the current population, following Equation (20). 

 
𝑥𝒊
𝒈+1

= {
𝑢𝒊
𝒈+1

     if 𝑓(𝑢𝒊
𝒈+1

) ≤ 𝑓(𝑥𝒊
𝒈
) 

𝑥𝑖
𝑔

                            otherwise
 

(20) 

Note that the initialized vector, 𝑥𝑖
0, is calculated by Equation (12) (i.e., 𝑥𝑖𝑗

0 = 𝑥𝐿𝑗 + 𝑟𝑎𝑛𝑑𝑖𝑗(𝑥𝑈𝑗 −

𝑥𝐿𝑗)), also the mutant/donor vector, 𝑣𝑖
𝑔+1

, is obtained using strategies mentioned in Equations (13) 

to (18). The trial/offspring vector, 𝑢𝒊
𝒈+1

, is generated by crossover method stated in Equation (19), 

and the target vector, 𝑥𝒊
𝒈+1

, is obtained by the selection operation. 

2.3.2 CONSTRAINT HANDLING 

In this section, the added constraint handling methods to DE algorithm are explained.  

2.3.2.1 BOUNDARY (LOWER OR UPPER BOUND) CONSTRAINTS 

It is important to make sure that the value of generated vectors lie within their allowed 

range after reproduction. After mutation, one should check the lower and upper bounds for the 



17 
 

mutant vectors. Four different techniques were studied in this work to make the solutions feasible 

and repair the variables violating their given lower and upper bounds as explained below.  

I. Setting the decision variables to the violated bound (Price, 1999) by enforcing Equation 

(21). 

 𝑣𝑖𝑗
𝑔+1

= {
𝑥𝐿𝑗       , if    𝑣𝑖𝑗

𝑔+1
≤ 𝑥𝐿𝑗

𝑥𝑈𝑗       , if    𝑣𝑖𝑗
𝑔+1

≥ 𝑥𝑈𝑗
 (21) 

II. Randomly reinitiate the considered decision variable within its allowable bounds (use 

Equation (12)) (Price, 1999). 

III. Setting the decision variable midway between its parent initial value 𝑥𝑖𝑗
𝑔

 and the violated 

bound (i.e., 𝑥𝐿𝑗 and 𝑥𝑈𝑗) (Price, 1999). 

 

𝑣𝑖𝑗
𝑔+1

=

{
 
 

 
 𝑥𝑖𝑗

𝑔
+ 𝑥𝐿𝑗

2
      if    𝑣𝑖𝑗

𝑔+1
≤ 𝑥𝐿𝑗

𝑥𝑖𝑗
𝑔
+ 𝑥𝑈𝑗

2
    if    𝑣𝑖𝑗

𝑔+1
≥ 𝑥𝑈𝑗

 (22) 

IV. Use the violated bound (i.e., 𝑥𝐿𝑗 and 𝑥𝑈𝑗) is used as a symmetry center for sending the 

considered variable to the feasible side of the boundary. The distance to the violated bound 

is equal to the initial constraint violation in this approach which is further explained in 

Equation (23) (Mezura-Montez et al., 2006). 

 
𝑣𝑖𝑗
𝑔+1

= {
2𝑥𝐿𝑗 − 𝑣𝑖𝑗

𝑔+1
      , if    𝑣𝑖𝑗

𝑔+1
≤ 𝑥𝐿𝑗

2𝑥𝑈𝑗 − 𝑣𝑖𝑗
𝑔+1

      , if    𝑣𝑖𝑗
𝑔+1

≥ 𝑥𝑈𝑗
 (23) 

 

Say 𝑣𝑖𝑗
𝑔+1

= 𝛼𝐿𝑥𝐿𝑗, when 𝛼𝐿 ∈ [0,1], then 2𝑥𝐿𝑗 − 𝑣𝑖𝑗
𝑔+1

= 2𝑥𝐿𝑗 − 𝛼𝐿𝑥𝐿𝑗 = (2 −

𝛼𝐿). 𝑥𝐿𝑗 ≥ 𝑥𝐿𝑗. Say 𝑣𝑖𝑗
𝑔+1

= (𝛼𝑈 + 1). 𝑥𝑈𝑗, when 𝛼𝑈 ∈ [0,1], then 2𝑥𝑈𝑗 − 𝑣𝑖𝑗
𝑔+1

=

2𝑥𝑈𝑗 − (𝛼𝑈 + 1). 𝑥𝑈𝑗 = (1 − 𝛼𝑈). 𝑥𝑈𝑗 ≤ 𝑥𝑈𝑗.  



18 
 

 

2.3.2.2 CONSTRAINT FUNCTIONS 

The initial DE algorithm was proposed to solve unconstrained optimization problems. 

Numerous methods were proposed to add constraint handling to evolutionary optimization 

algorithms. One well-known method is proposed by Deb (2000) and is based on feasibility rules. 

He used this method for genetic algorithm (GA) and stated that his method was initiated from the 

work of Goldberg in 1992. The Deb’s constraint handling methods is a tournament selection 

because each individual of the current population is compared with the corresponding individual 

in the offspring population. In other words, the 𝑖th individual of the current population is compared 

with the 𝑖th individual of the offspring population. This method is enforced by following the 

criteria below. 

 Any feasible solution is preferred to any infeasible solution. 

 Among two feasible solution, the one having better objective function is preferred. 

 Among two infeasible solution, the one having smaller constraint violation is preferred. 

Note that in the mentioned method, there is no need to apply penalty parameters because 

solutions are never compared simultaneously in terms of both the objective function and constraint 

violation values. In other words, in all of three above mentioned criteria, solutions are either 

compared in terms of objective function values or constraint violation values. 

To evaluate the mentioned constraint handling method in conjunction with DE algorithm, 

6 test problems was solved and the numerical result were compared with those of genetic algorithm 

proposed by Deb (2000). Four test problems were selected from the Deb’s paper (Deb, 2000) to 

compare the performance of DE with GA. In addition, two more milestone problems, namely the 

Ackley and Rastrigin problems were considered to further compare DE and GA performance. Each 



19 
 

of these two benchmark problems has 5 variables. The details of this comparison using all 6 

benchmark problems are given in Appendix A. 

 

Table 1. Comparison of the best solution of the DE and the GA optimizer 

Test 

Problem 

True 

Optimum 

DE 's Best 

Solution 

GA 's Best 

Solution 

Error (%) 

DE GA 

Problem 1 13.59085 13.5908 13.9511 0 2.651 

Problem 3 -15 -14.9888 -14.9902 0.075 0.065 

Problem 4 7049.330923 7056.7 7153.6 0.105 1.479 

Problem 5 680.6300573 681.0933 681.1196 0.068 0.072 

Ackley 0 8.8818E-16 6.37E-4 0 0.064 

Rastrigin 0 8.8818E16 8.8818E-14 0 0 

 

In 5 out of 6 benchmark problems considered above, DE outperforms GA in finding the 

optimum solution. As seen in Table 1, only for test problem 3 the best computed optimal value 

found by GA is closer to the true optimum solution. More specifically, in test problem 3, the 

relative error of the optimum value found by DE is 0.075% while the relative error of GA is 

0.065%. The numerical results clearly show that DE has outperformed GA in finding the global 

optimum solution.  

Improved Adaptive Trade-off Model (IATM) is another constraints handling method 

proposed by Wang and Cai (2011) for solving constrained optimization problems. This method 

was used when the parent and offspring population are combined. Generally, the combined 

population certainly experiences three possibilities: (1) The infeasible situation occurs when all 

the individual in the combined population are infeasible; (2) The semi-infeasible situation occurs 

when population contains both feasible and infeasible individuals; and (3) The feasible situation 



20 
 

occurs when all the individuals in the population are feasible. In this method, for each situation 

one constraint handling method is considered as follows. 

I. The Constraint Handling Method for the Infeasible Situation: In a constrained optimization 

problem, it does not make sense to use the individuals who are far from the boundaries of 

feasible region (Wang et al., 2008). Consequently, in this method, the population is sorted 

based on the value of constraint violation in ascending order. Then, 𝑁𝑃 (number of 

population) individuals are selected to survive to the next generation. Two methods are 

implemented for calculating the degree of constraint violation of individuals which depends 

on the constraints properties. After initiating the initial population and function evaluation, 

the difference between the violations of constraints is calculated by following Equation (24). 

 𝐺𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖 𝐺𝑘(𝑋𝑖), 𝑖 = 1,… . , 𝑁𝑃, 𝑘 = 1,… , 𝑃 (24) 

 𝑑𝑖𝑓𝑓 = 𝑚𝑎𝑥 (𝐺𝑚𝑎𝑥) − 𝑚𝑖𝑛 (𝐺𝑚𝑎𝑥) (25) 

where 𝐺𝑚𝑎𝑥is a set which contains the maximum values of constraint violation of each 

constraint among all population individuals 𝑖 = 1,… ,𝑁𝑃. 𝑃 is the number of existing 

constraints in the optimization problem. 

 When the difference (𝑑𝑖𝑓𝑓) among the constraints is significant (i.e., greater than 200), 

the degree of constraint violation of each constraint is normalized through dividing it by the 

largest constraint violation of that constraint in the population:  

 

�́�(𝑋𝑖) = ∑(
𝐺𝑘(𝑋𝑖)

𝐺𝑚𝑎𝑥(𝑘)
)

𝑃

𝑘=1

, 𝑖 = 1,… ,𝑁𝑃 (26) 

The maximum constraint violation of each constraint is denoted by 𝐺𝑚𝑎𝑥𝑘(𝑋𝑖) in Equation 

(25) and Equation (26), where 𝑃 is the number of existing constraints in the optimization 

problem, 𝑁𝑃 is the number of individuals in the initial population, and �́�(𝑋𝑖) is the normalized 



21 
 

degree of constraint violation of 𝑋𝑖 individual. Then, the mean of the normalized constraint 

violations of each individual is considered as its degree of constraint violation which is 

formulated in Equation (27). 

 
𝐺(𝑋𝑖) =

�́�(𝑋𝑖)

𝑃
, 𝑖 = 1, … ,𝑁𝑃 (27) 

The right hand side of Equation (27) should be between zero and one. If the difference (𝑑𝑖𝑓𝑓) 

is small (i.e., less than 200), the degree of constraint violation of each individual can be found 

by calculating the summation of all the constraint violations. In Equation (28), 𝐺(𝑋𝑖) is the 

degree of constraint violation of 𝑋𝑖 individual, also 𝐺𝑘 represents the 𝑘 th constraint, 𝑃 is the 

number of existing constraints in the optimization problem, and (𝜇 + 𝜆) is the number of 

individuals in the combined population. Note that the 𝜇 is the size of parent population (i.e., 

𝜇 = 𝑁𝑃). In this study, 𝜇 and 𝑁𝑃 are used interchangeably to mean the number of individual 

in the parent population. The parent population is used to generate an offspring population of 

size 𝜆. The combined population is formed by combining the parent population with the 

offspring population, so the combined population is of size (𝜇 + 𝜆). 

 

𝐺(𝑋𝑖) = ∑𝐺𝑘(𝑋𝑖), 𝑖 = 1, … , (𝜇 + 𝜆)

𝑃

𝑘=1

 (28) 

II. The Constraint Handling Method for the Semi-Infeasible Situation: an adaptive fitness 

transformation scheme is considered which in addition to transfer some feasible individuals 

with small objective function values to the next generation it also transfers some infeasible 

individuals with minor constraint violation and small value of objective function. More detail 

of this method follows. First, the individuals in the population are divided into two group of 

feasible and non-feasible individuals. More specifically, 𝑍1 and 𝑍2sets are initiated to record 

the subscript of the feasible and infeasible individuals, respectively. 



22 
 

 𝑍1 = {𝑖|𝐺(𝑋𝑖) = 0, 𝑖 = 1,… , (𝜇 + 𝜆)} (29) 

 𝑍2 = {𝑖|𝐺(𝑋𝑖) > 0, 𝑖 = 1, … , (𝜇 + 𝜆)} (30) 

Then, the best and the worst feasible member of the population are identified within the 

feasible group and denoted by 𝑋𝑏𝑒𝑠𝑡 and 𝑋𝑤𝑜𝑟𝑠𝑡, respectively. Next, a new value for objective 

function is found using the following equation: 

 
�́�(𝑋𝑖) = {

𝑓(𝑋𝑖),                                                                                     𝑖 ∈ 𝑍1
max {𝜑 × 𝑓(𝑋𝑏𝑒𝑠𝑡) + (1 − 𝜑) × 𝑓(𝑋𝑤𝑜𝑟𝑠𝑡), 𝑓(𝑋𝑖)},   𝑖 ∈ 𝑍2

} (31) 

where �́�(𝑋𝑖) is the converted objective function, 𝜑 is the feasibility proportion of the 

combined population which can be found by dividing the number of feasible individual in the 

combined population by the number of individuals in the combined population (i.e., (𝜇 + 𝜆)). 

If the value of parameter 𝜑 is large (i.e., the population contains more feasible solution than 

infeasible solution), the converted objective function �́�(𝑋𝑖) will be calculated by the left hand 

side of the Equation (31) (i.e., 𝜑 × 𝑓(𝑋𝑏𝑒𝑠𝑡) + (1 − 𝜑) × 𝑓(𝑋𝑤𝑜𝑟𝑠𝑡)). As a result, �́�(𝑋𝑖) of 

infeasible individuals (𝑖 ∈ 𝑍2) are smaller. Consequently, the probability of their survival to 

the next generation may increase. In contrast, if the value of parameter 𝜑 is small (i.e., the 

population contains more infeasible solution than feasible solution), �́�(𝑋𝑖) will be calculated 

by the right hand side of the Equation (31) (i.e., 𝑓(𝑋𝑖)). Therefore, �́�(𝑋𝑖) of infeasible 

individuals (𝑖 ∈ 𝑍2) may be greater which increases the probability of the feasible solution 

survival to the next population. The purpose of this conversion is to maintain a reasonable 

balance between feasible and infeasible individuals of the new population. 

Now, a normalized objective function is calculated by normalizing the converted 

objective function following Equation (32): 



23 
 

 
𝑓𝑛𝑜𝑟𝑚(𝑋𝑖) =

�́�(𝑋𝑖)−𝑚𝑖𝑛𝑗∈(𝑍1∪𝑍2)�́�(𝑋𝑗)

𝑚𝑎𝑥𝑗∈(𝑍1∪𝑍2)�́�(𝑋𝑗)−𝑚𝑖𝑛𝑗∈(𝑍1∪𝑍2)�́�(𝑋𝑗)
, 𝑖 = 1,… , (𝜇 + 𝜆)  (32) 

The constraint violation should have the same order of magnitude with the objective function 

value, so the normalization process presented in Equation (33) is used: 

 

𝐺𝑛𝑜𝑟𝑚(𝑋𝑖) =

{
 
 

 
 
0,                                                                                    𝑖 ∈ 𝑍1 

𝐺(𝑋𝑗),                                               , 𝑖 ∈  𝑍2, second methd

𝐺(𝑋𝑖) − 𝑚𝑖𝑛𝑗∈𝑍2𝐺(𝑋𝑗)

𝑚𝑎𝑥𝑗∈𝑍2𝐺(𝑋𝑗) − 𝑚𝑖𝑛𝑗∈𝑍2𝐺(𝑋𝑗)
, 𝑖 ∈ 𝑍2, first method

 (33) 

where 𝐺(𝑋𝑖) is the degree of constraint violation of each individual. Also, 𝑚𝑖𝑛𝑗∈𝑍2𝐺(𝑋𝑗)and 

𝑚𝑎𝑥𝑗∈𝑍2𝐺(𝑋𝑗) are the minimum and maximum value of constraint violation in the population, 

respectively.  

Finally, the final value of objective function is found by adding the normalized 

objective function and the normalized constraint violation of each individual in the combined 

population: 

 𝑓𝑓𝑖𝑛𝑎𝑙(𝑋𝑖) = 𝑓𝑛𝑜𝑟𝑚(𝑋𝑖) + 𝐺𝑛𝑜𝑟𝑚(𝑋𝑖), 𝑖 = 1,… , (𝜇 + 𝜆) (34) 

Then, the population is sorted based on the value of final objective function in ascending order 

and the 𝜇 (i.e., the number of individual in the parent population) individuals are selected to 

survive and transfer to the next generation. By using the above mentioned method some 

potential feasible and infeasible individuals of the combined population may survive into the 

next generation. 

III. The Constraint Handling Method for the Feasible Situation: When the solution is feasible, 

all the individuals are compared based on the value of their objective function. Since the 

degree of constraint violation is zero the value of the objective function will be the only criteria 

to select the next generation. The 𝜇 (i.e., the number of individual in the parent population) 



24 
 

individuals with smallest value of objective function are selected among all the individuals in 

the combined population to construct the next generation. 

2.3.3 HANDLING OF INTEGER AND DISCRETE VARIABLES 

One method for solving a mixed integer problem with DE was proposed by Lapinen and 

Zelinka in 1999. In this method, the DE algorithm internally works with continuous variable. 

However integer values are used to evaluate the objective function. The basic idea is explained by 

Equation (35). 

 
𝑦𝑖 = {

𝑥𝑖  ,           for continuous variables

𝐼𝑁𝑇(𝑥𝑖), for integer variables
 (35) 

where INT ( ) is a function which converts a real valued variable to the corresponding integer 

valued one “before evaluation” of the objective function. The integer values are not used anywhere 

else in the algorithm which is essential to obtain a diverse population and maintain its robust 

performance (Lapinen & Zelinka, 1999).  

The initialization of the population for integer variables is different from that of continuous 

variables given in Equation (12). 

 𝑥𝑖𝑗
0 = 𝑥𝐿𝑗 + 𝑟𝑎𝑛𝑑𝑖𝑗(𝑥𝑈𝑗 − 𝑥𝐿𝑗 + 1), 𝑖 = 1,2, … ,𝑁𝑃, 𝑗 = integer (36) 

It is also necessary to modify the boundary constraint handling method for integer variables 

following Equation (37): 

 𝑣𝑖𝑗
𝑔+1

= 𝑥𝐿𝑗 + 𝑟𝑎𝑛𝑑𝑖𝑗(𝑥𝑈𝑗 − 𝑥𝐿𝑗 + 1),    if    𝑣𝑖𝑗
𝑔+1

≤ 𝑥𝐿𝑗  𝐨𝐫   𝑣𝑖𝑗
𝑔+1

≥ 𝑥𝑈𝑗 (37) 

There is a straight forward method to handle discrete variables. Suppose a set of discrete 

variables with 𝑙 elements should be assigned to discrete design variables. First, the set of discrete 

variables are sorted in ascending order and saved in set named 𝐸. Then, another set, 𝐿, is initiated 

containing variable indices 1 to 𝑙 (i.e., 𝐿 = {1,2, … , 𝑙}). Hence, set 𝐿 represents the index of 



25 
 

elements in set 𝐸. This conversion makes it possible to transform the original set of discrete 

variables 𝐸 to a set of continuous integer variables 𝐿. Therefore, the original population is 

generated via following formula: 

 𝑥𝑖𝑗
0 = 𝑥𝐿𝑗 + 𝑟𝑜𝑢𝑛𝑑 (𝑟𝑎𝑛𝑑𝑖𝑗(𝑥𝑈𝑗 − 𝑥𝐿𝑗))

 
, 𝑖 = 1,2, … ,𝑁𝑃, 𝑗 = discrete (38) 

Since the discrete variable should be chosen from set 𝐿, the upper bound and lower bound 

values are equal to the smallest and largest values in the set (i.e.,  𝑥𝐿𝑗 = 1, and 𝑥𝑈𝑗 = 𝑙). 

Consequently, Equation (38) can be modified as follows: 

 𝑥𝑖𝑗
0 = 1 + 𝑟𝑜𝑢𝑛𝑑 (𝑟𝑎𝑛𝑑𝑖𝑗(𝑙 − 1))

 
, 𝑖 = 1,2, … ,𝑁𝑃, 𝑗 = discrete (39) 

Based on Equation (39), an integer value between 0 and (𝑙 − 1) (the span between lower 

and upper bounds) is added to the lower bound, 𝑥𝐿𝑗, which has the value of 1. Therefore, all initial 

individuals are integers while the diversity of the initial population is ensured. 

Since the variables have to be integer values between 0 and 𝑙, it is also necessary to modify 

the mutation method. To this end, Equation (13) to (18) are modified as follows: 

DE/rand/1: 𝑣𝑖
𝑔+1

= 𝑥𝑟1
𝑔
+ 𝑟𝑜𝑢𝑛𝑑 (𝐹. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
)) (40) 

DE/rand/2: 𝑣𝑖
𝑔+1

= 𝑥𝑟1
𝑔
+ 𝑟𝑜𝑢𝑛𝑑 (𝐹. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
) + 𝐹. (𝑥𝑟4

𝑔
− 𝑥𝑟5

𝑔
)) (41) 

DE/best/1: 𝑣𝑖
𝑔+1

= 𝑥𝑏𝑒𝑠𝑡
𝑔

+ 𝑟𝑜𝑢𝑛𝑑 (𝐹. (𝑥𝑟1
𝑔
− 𝑥𝑟2

𝑔
)) (42) 

DE/best/2: 𝑣𝑖
𝑔+1

= 𝑥𝑏𝑒𝑠𝑡
𝑔

+ 𝑟𝑜𝑢𝑛𝑑 (𝐹. (𝑥𝑟1
𝑔
− 𝑥𝑟2

𝑔
) + 𝐹. (𝑥𝑟3

𝑔
− 𝑥𝑟4

𝑔
)) (43) 

DE/current-to-rand/1: 𝑣𝑖
𝑔+1

= 𝑥𝑖
𝑔
+ 𝑟𝑜𝑢𝑛𝑑(𝐹. (𝑥𝑟1

𝑔
− 𝑥𝑖

𝑔
) + 𝐹. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
)) (44) 

DE/current-to-best/1: 𝑣𝑖
𝑔+1

= 𝑥𝑖
𝑔
+ 𝑟𝑜𝑢𝑛𝑑 (𝐹. (𝑥𝑏𝑒𝑠𝑡

𝑔
− 𝑥𝑖

𝑔
) + 𝐹. (𝑥𝑟1

𝑔
− 𝑥𝑟2

𝑔
)) (45) 

It is important to note that the crossover operation exchanges information between target 

vector and mutant vector. Consequently, the elements of the trial vectors are also integers. For 



26 
 

selection operation, it is necessary to transform the integer values to corresponding discrete value 

in the set E. Because for objective function and constraints evaluation we need to use the original 

discrete values for discrete design variables. 

In this method, the evolution of population and constraint handling method is the same as 

the original DE algorithm. Hence, by using this method, the advantages of the DE algorithm are 

preserved and while expanding the application and usefulness of DE algorithms (Ho-Huu et al., 

2015). 

2.3.4 DE PARAMETERS  

There are three total DE control parameters that should be tuned: the population size, 𝑁𝑃, 

the scale or mutation Factor, 𝐹, and the crossover probability or Crossover rate, 𝐶𝑟. The scale 

factor, 𝐹, controls the size of the search area around the base individual. The Crossover rate, 𝐶𝑟, 

implies the probability of inheriting elements from the mutant individual in the development of 

each trial individual.  

There is no consistent methodology for determining the control parameters of an 

evolutionary algorithm (Brest et al., 2006). The performance of DE is sensitive to the selected 

control parameters. Changing the DE parameters leads to variations in DE performance 

characteristics. The DE control parameters should be tuned for each individual problem and may 

differ from one problem to the other (Islam et al., 2012).  Tuning the DE control parameters is 

challenging because of their dependency on the nature and size of the optimization problems (Azad 

& Fernandes, 2013). As a common practice, most of the traditional DE algorithms use a set of 

fixed control parameters or set them within some predefined ranges (Brest et al., 2006). It is 

necessary to note that DE is much more sensitive to the choice of 𝐹 than it is to the choice of 𝐶𝑟.  



27 
 

Setting the control parameters can be classified into three categories: constant, random, 

and adaptive (including self-adaptive) (Tang et al., 2015). In constant parameter setting, used in 

classic DE, parameters are defined before starting the search process and kept constant for all the 

iterations. Storn and Price (1997) declared that it is not difficult to choose control parameters for 

finding good results. Based on their experience, a suitable range for 𝑁𝑃 (number of population) is 

between 5𝐷 and 10𝐷, where 𝐷 is the number of decision variables. They also suggested that 𝑁𝑃 

must be at least 4 to guarantee that DE will have enough mutually different vectors with which to 

work. For control parameter 𝐹, the best and reasonable initial choice is 0.5. If the population 

converges prematurely, then F and/or 𝑁𝑃 should be increased. Values of 𝐹 smaller than 0.4 and 

greater than 1, are only occasionally effective. An appropriate first choice for 𝐶𝑟 is 0.1, considering 

that a large 𝐶𝑟 often speeds up the convergence, so it’s proper to first try 𝐶𝑟 = 0.9 or 𝐶𝑟 = 1.0 

for checking if a quick solution is desired.  

Rönkkönen et al. (2005) suggested that a reasonable range of 𝑁𝑃 is between 2𝐷 and 40𝐷. 

Also, the control parameter 𝐹 should be selected between 0.4 and 0.95 (0.9 provides a compromise 

between exploration and exploitation), and that 𝐶𝑟 should be drawn from the range (0.0, 0.2) if the 

problem is separable, or [0.9, 1] if the problem is both nonseparable (i.e., the objective function is 

nonseperable) and multimodal (i.e., optimization that involves finding all or most of the multiple 

solutions of a problem). They set 𝐹 and 𝐶𝑟 to 0.9, and 𝑁𝑃 to 30 for all experimental functions in 

the CEC 2005 contest benchmark suite. Feoktistov (2006), in his book, recommended that 

parameter 𝐹 should be a constant in the range [0, 2]. Gamperle et al. (2002) stated that a proper 

range of 𝑁𝑃 is between 3𝐷 and 8𝐷, an effective initial value for 𝐹 is 0.6, and a suitable range for 

𝐶𝑟 is [0.3, 0.9]. The diverse conclusions found by these researchers implies it is nearly impossible 



28 
 

that one constant parameter setting fits all problems, and effective control parameters are problem-

dependent.  

Random parameter setting can be adopted to automatically set the control parameter values 

and avoid manual parameter assignments. The common rules which are usually employed for 

generating diverse values for the control parameters are:  Linear variation, probability distribution, 

and specified heuristic (Tang et al., 2015). In a method presented by Das et al. (2005), the control 

parameter 𝐹 was set using two different approaches. In one approach, the value of the control 𝐹 

was assigned randomly and in the other approach, it was defined as a time-varying value. In the 

random method, F was set to be a random real number from the range of (0.5, 1); for the time 

varying method, F was reduced linearly within a given range of [0.4, 1.2]. In a different study, F 

was randomly generated from a normal distribution, 𝑁(0.5, 0.3), for each target individual in the 

current population (Qin et al., 2009). Abbass (2002) generated control parameter F from the 

standard normal distribution 𝑁(0, 1). Similarly, Omran et al. (2005) generated the control 

parameter 𝐶𝑟  from a normal distribution 𝑁(0.5, 0.15). It was shown that the random setting 

increases searching diversity which can improve the exploration ability of the DE algorithm. 

Adaptive control parameter is another automatic parameter setting method in which adjusts 

the control parameters according to the feedback from the searching process (Liu & Lampinen, 

2005; Brest et al., 2006), or through evolutionary operation (Abbass, 2002; Teo, 2006). Liu and 

Lampinen (2005) introduced the fuzzy adaptive differential evolution algorithm, which uses fuzzy 

logic controllers to tune the control parameters 𝐹 and 𝐶𝑟 by incorporating relative objective 

function values and the individuals of successive generations as inputs. One of the famous self-

adaptive methods was proposed by Brest et al. (2006). This method assigns the values from the 

ranges [0.1, 1.0] and [0.0, 1.0] in an adaptive manner with probabilities 𝜏1 and  𝜏2 to 𝐹 and 𝐶𝑟, 



29 
 

respectively. Control parameters 𝐹 and 𝐶𝑟 are generated for each individual member of the 

population during mutation and crossover operations. Zhang and Sanderson (2009) introduced 

another adaptive method which 𝐶𝑟 is generated from a normal distribution and F is generated by 

a Cauchy distribution for each individual at each generation. Later, an improve version of this 

method was proposed by Tanabe and Fukunaga (2013). They used a different success-history 

based mechanism to update 𝐹 and 𝐶𝑟.  Qin et al. (2009) also presented a DE variant with an 

adapting control parameters method. They also used a normal distribution with mean value 0.5 

and standard deviation 0.3, denoted by 𝑁(0.5,0.3) for generating 𝐹. In this method, they adaptively 

adjusts 𝐶𝑟 values following a normal distribution with the mean value depending on the previous 

successful 𝐶𝑟 values.  

Mohamed et al. (2012) presented a self-adaptive control parameters method for their novel 

DE algorithm. For generating 𝐹, a uniform random probability distribution was used and for 𝐶𝑟 a 

dynamic nonlinearly increased probability scheme was implemented. A difference-based 

mechanism was proposed by Tang et al. (2015) in which the control parameters and mutation 

operators were set for each individual based on the current generation value of the objective 

function which improved the DE convergence rate and diversity. Other self-adaptive methods 

implemented by researchers in Fan and Yan (2015) and Zamuda and Brest (2015) in which each 

individual had its own mutation and crossover parameters. One famous method which was 

proposed by Brest et al. (2006) is explained below. 

In this method, control parameters 𝐹 and 𝐶𝑟 are encoded into the individual. The better 

values of these (encoded) control parameters lead to better individuals which are more likely to 

survive and generate offspring and consequently propagate these better parameter values.  



30 
 

For each individual, with a probability 𝜏1, control parameter 𝐹 is reinitialized a new 

random value in the range of [0.1, 1.0], otherwise, it retains its earlier value in the next generation. 

The control parameter 𝐶𝑟 is adapted in the same way, but with a different re-initialization range of 

[0.0, 1.0] and with the probability of 𝜏2 for each individual. With probability𝜏2, 𝐶𝑟 takes a random 

value in [0.0, 1.0], otherwise it is kept unchanged. This control parameters setting method is 

calculated as described:  

 
𝐹𝑖
𝑔+1

= {
𝐹𝑙 + rand1 𝐹𝑢      𝑖𝑓 rand2 ≤ 𝜏1
𝐹𝑖
𝑔
                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (46) 

 
𝐶𝑟𝑖

𝑔+1
= {

rand3                𝑖𝑓 rand4 ≤ 𝜏2
𝐶𝑟𝑖

𝑔
                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (47) 

where 𝑖 = 1,2, … ,𝑁𝑃 (𝑁𝑃 represent number of population), 𝑟𝑎𝑛𝑑𝑗 , 𝑗 ∈ {1,2,3,4} are uniform 

random values ∈[0.0,1.0]. 𝜏1 and 𝜏2 represent probabilities to adjust factors 𝐹 and 𝐶𝑟, respectively. 

Brest et al. (2006) set 𝜏1 and 𝜏2 to 0.1. The value of 𝐹𝑙 =0.1  and  𝐹𝑢 =0.9, the new 𝐹 could take a 

value from [0.1, 1.0] in a random manner. The new 𝐶𝑟 was assigned a value from the range of 

[0.0, 1.0]. 𝐹𝑖
𝑔+1

and 𝐶𝑟𝑖
𝑔+1

 were calculated before the mutation was performed. Therefore, they 

influence the mutation, crossover, and selection operations of the new vector 𝑥𝑖
𝑔+1

.  The initial 

value for  𝐹  and 𝐶𝑟 were set to 0.9 and 0.5, respectively. 

2.4 MODIFIED DIFFERENTIAL EVOLUTION  

Generally, all the variant of DE algorithm are based on the basic DE, but they employ 

various methods for mutation, crossover, and selection operations as well as in setting the control 

parameters. Table 2 contains a pseudo code to show the procedure of DE algorithm. The DE ability 

to solve a specific problem depends significantly on the choice of methods to perform operations 



31 
 

such as mutation, crossover, and selection (Price et al., 2006), and the setting of control parameters 

(Eiben et al., 1999; Gämperle et al., 2002).  

 

Table 2. Differential evolution algorithm 

Initialization 

Objective Function and Constraints Evaluation 

for g=1: Number of Generations 

       for i=1: NP (Number of Populations) 

               for j=1: Number of design variables 

                      Generate Trial Vector: 

                                 Perform mutation 

                                 Perform crossover            

                                 Check Boundary Constraint               

               end for 

               Evaluate the Objective Function and Constraints 

               Select the offspring population  

       end for 

       Select the best solution as the optimum solution 

End for 

 

 

Improper combinations of mutation methods and control parameters can cause stagnation 

or premature convergence because of over exploration or over exploitation, respectively. In 

exploration, the algorithm searches every promising solution area with good diversity. In 

exploitation, the algorithm executes a local search in some promising solution areas to find the 

optimal point with a high convergence rate.  

The crossover operator constructs a new trial/offspring vector from the current and mutant 

vectors. It also controls which components and how many of them are mutated in each vector of 

the current population. The parameter 𝐶𝑟 can be considered as a mutation probability because it 

controls the number of components inherited from the mutant vector. Previous studies showed that 



32 
 

parameter 𝐶𝑟 influences the convergence speed and its proper value is problem specific (Gämperle 

et al., 2002).  

Hence, choosing appropriate methods for DE operations and setting control parameters to 

get a good balance between the algorithm’s effectiveness (solution quality) and efficiency 

(convergence rate) is still an open field of research. 

The Improved Constrained Differential Evolution (ICDE) algorithm combines an 

improved (𝜇 + 𝜆)-differential evolution (IDE) method with an Archiving-based Adaptive 

Tradeoff Method (ArATM) to solve constrained optimization problem. Recently a DE variation is 

proposed to solve discrete-continuous truss optimization problems (Ho-Huu et al., 2015). This 

method which is called D-ICDE integrates a discrete variable scheme into the ICDE (Jia et al., 

2013) for solving discrete-continuous truss optimization problems.  

In this study, a new variant of the Differential Evolution algorithm for solving mixed 

discrete-continuous truss optimization problem is proposed. To validate the proposed algorithm 

the numerical results are compared with those of D-ICDE.   

The IDE method is a combination of mutation and crossover operations which generates 

the offspring population. The proposed DE algorithm developed in this work modifies both 

mutation and crossover strategies of  IDE method. In addition, the DE parameters such as scaling 

factor and crossover rate are modified. For the selection operation of the proposed algorithm the 

Improved Adaptive Trade off Method (IATM) is adopted which was initially proposed by Wang 

and Cia (2011). The IATM was used in the Constrained Differential Evolution (CDE) algorithm 

and explained in Section 2.3.2.2 under constraint handling methods.  

Note that the IDE was combined with an ArATM in ICDE algorithm (Jia et al., 2013). This 

is different form the proposed algorithm where a modified IDE is combined with IATM method. 



33 
 

The contribution of this work is further explained in the following sections. In Section 2.4., first 

the original IDE method is explained then, the proposed modified IDE is described in details. 

Moreover, the differences between IATM used in the proposed algorithm and ArATM is clarified 

in Section 2.4.2.  

2.4.1 THE OFFSPRING GENERATION 

As mentioned before, a proper combination of mutation and crossover strategies can 

improve the performance of DE algorithm. IDE is introduced as a reliable method in the field of 

constrained evolutionary optimization. It serves as the search engine of DE algorithm which 

includes the mutation and crossover operations. In this study, the mutation and crossover strategies 

as well as scaling factors and crossover rate of the original IDE were modified to generate a 

superior DE algorithm for solving truss optimization problems. 

To explain the proposed algorithm in depth, first the original IDE is presented in Section 

2.4.1.1. Then, in Section 2.4.1.2, the proposed modified IDE method is described. 

2.4.1.1 THE ORIGINAL IDE 

The original IDE adopts three mutation and crossover strategies to generate the offspring 

population (Jia et al., 2013). The parent population, 𝑃𝑔, with 𝜇 (i.e., the number of parent 

population, 𝑁𝑃) individuals generates offspring population, 𝑄𝑔, with 𝜆  (i.e., the size of the 

offspring population) individuals by operating the following procedure: 

Step.1 Set 𝑄𝑔 = Φ ; 

Step.2 For each individual 𝑋𝑖, 𝑖 = 1,2, … , 𝜇 in 𝑃𝑔  

Step.3 generate the first offspring, 𝑌1, by using the “DE/rand/1” strategy and the binomial 

crossover; 



34 
 

Step.4 generate the second offspring, 𝑌2, by using the “DE/rand/2” strategy and the binomial 

crossover (explained in Section 2.3.1.3); 

Step.5 generate the third offspring, 𝑌3, by using a new mutation strategy “DE/current-to-

rand/best/1” and the improved Breeder Genetic Algorithm (BGA) mutation; 

Step.6 𝑄𝑔 = 𝑄𝑔 ∪ 𝑌1 ∪ 𝑌2 ∪ 𝑌3 

Step.7 End  

The mutation strategy “DE/current-to-rand/best/1” which was used in Step.5 was first 

proposed by Jia et al. (2013). This mutation strategy is a combination of two mutation strategies: 

“DE/current-to-rand/1”, and “DE/current-to-best/1”. In the “DE/current-to-rand/best/1” strategy, 

first the current generation number is compared with a threshold generation number which is found 

using Equation (48). 

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑘 × 𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 (48) 

If the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 is smaller than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, then 

“DE/current-to-rand/1” strategy is used to generate the third offspring, 𝑌3, and crossover strategy 

is not applied to the mutant vector. Factor 𝑘 in Equation (48) is set to 𝑘 = 0.6. If the 

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 is greater than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛    𝑛𝑢𝑚𝑏𝑒𝑟, then 

“DE/current-to-best/1” strategy is used the third offspring, 𝑌3, along with the improved BGA 

mutation strategy (Wang et al., 2007) in order to increase the diversity of the population. The 

improved BGA mutation strategy is applied to the mutation vector, 𝑣𝑖𝑗, with a probability 𝑝𝑚 for 

producing the offspring 𝑌3. This methods works as follows: 

 

𝑣𝑖𝑗 = {
𝑣𝑖𝑗 ± 𝑟𝑎𝑛𝑔𝑖 ×∑𝛼𝑟2

−𝑟 , 𝑖𝑓 𝑟𝑎𝑛𝑑 <
1

𝐷

15

𝑟=𝑜

𝑣𝑖𝑗                                  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          , 𝑖 = 1, … , 𝑁𝑃; 𝑗 = 1,… , 𝐷 (49) 



35 
 

where 𝑟𝑎𝑛𝑑 is a uniformly distributed random number between 0 and 1, and 𝑟𝑎𝑛𝑔𝑖 is the mutation 

range and is set to  

 
𝑟𝑎𝑛𝑔𝑖 = (𝑥𝑈𝑗 − 𝑥𝐿𝑗). (1 −

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
)
6

 (50) 

The + and – sign in Equation (49) is chosen with a probability of 0.5 (i.e., if a uniformly distributed 

random number between 0 and 1 is less than 0.5 the sign is +, else the sign is –), and 𝛼𝑟 ∈ {0,1} 

is randomly generated with probability of 𝑝(𝛼𝑟 = 1) = 1/16. 

To further explain the implementation of the ‘‘DE/current-to-rand/best/1’’ strategy, a 

schematic diagram is depicted in Figure 1. The whole evolutionary process is divided into two 

phases by considering the threshold generation number as shown in Figure 1. Generally, the 

evolutionary process is divided into three stages: the early stage, the middle stage, and the later 

stage. It is expected that the first phase includes the early stage and some part of the middle stage 

of evolution, while the second phase includes the remaining part of the middle stage and the later 

stage of evolution (Jia et al., 2013).  

 

 

Figure 1.  The schematic diagram for the evolutionary process during the ‘’ DE/current-to-

rand/best/1 ‘’ strategy is divided in to two phases and three stages. 

 



36 
 

In order to prevent the population from getting stuck in a local optimum, the global search 

ability of the population should be improved in the first phase. The ‘‘DE/current-to-rand/1’’ 

strategy is a proper choice here because in this strategy, the individuals learn the information from 

other individuals randomly chosen from the population. Therefore, the ‘‘DE/current-to-rand/1’’ 

strategy was used in the first phase of this study in which the first scaling factor of this strategy 

was randomly chosen between 0 and 1 to further enhance the global search ability. 

The ‘‘DE/current-to-best/1’’ strategy exploits the information of the best individuals in the 

current population. As a result, it accelerates the convergence of the population and guides the 

population toward the global optimum. Hence, this strategy is well suited and used for the second 

phase in this study. As discussed before, in order to preserve a good balance between the diversity 

and convergence of the population, the ‘‘DE/current-to-rand/best/1’’ strategy is implemented by 

combining the ‘‘DE/current-to-rand/1’’ and ‘‘DE/current-to-best/1’’ strategies.  

2.4.1.2 OFFSPRING GENERATION – MODIFIED IDE 

The IDE method is modified in the proposed algorithm to enhance its local search 

capability and increase its convergence rate. More specifically, Step 3 and Step 5 of the original 

IDE, which were explained in the previous section, were modified. The proposed modified IDE 

method is described in following procedure.  

 

Step.1 Set 𝑄𝑔 = Φ ; 

Step.2 For each individual 𝑋𝑖, 𝑖 = 1,2, … , 𝜇 in 𝑃𝑔;  

Step.3 Generate the first offspring, 𝑌1, according to the following procedure: 

 Find the scaling factor by the proposed rank based or random method for “directed 

mutation” or “DE/rand/1” strategies, respectively; 



37 
 

 Perform mutation by using a combination of “DE/rand/1” and  the “directed mutation” 

strategies through a linearly decreasing probability rule; 

 Calculate the crossover rate by a dynamic nonlinearly decreasing probability scheme;  

 Generate the offspring population by binomial crossover; 

Step.4 Generate the second offspring, 𝑌2, by using the “DE/rand/2” strategy and the binomial 

crossover (𝐹 = 0.6, 𝐶𝑟 = 0.95); 

Step.5 Generate the third offspring, 𝑌3, by using a “DE/current-to-rand/best/1” strategy. Set 

factor 𝑘 in Equation (48) to 𝑘 = 0.6. 

 If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟, then use 

“DE/current-to-rand/1” and binomial crossover strategies to generate the third 

offspring, 𝑌3 (𝐹 = 0.9, 𝐶𝑟 = 0.95). Note no crossover is used in this step of the 

original IDE; 

 If 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛  𝑛𝑢𝑚𝑏𝑒𝑟, then use 

“DE/current-to-best/1” strategy along with the improved BGA mutation strategy (𝐹 =

0.6) to generate the third offspring, 𝑌3; 

Step.6 𝑄𝑔 = 𝑄𝑔 ∪ 𝑌1 ∪ 𝑌2 ∪ 𝑌3 

Step.7  End 

Unlike the original IDE, in Step.3, a mutation strategy is used which has been introduced 

first in Alternative Differential Evolution (ADE) for solving unconstrained optimization problems 

(Mohamed et al., 2012). The proposed mutation strategy is a combination of the “directed 

mutation” and  “DE/rand/1” strategies. The directed mutation strategy is obtained based on the 

weighted difference vector between the best and the worst individuals in the current population. 

This strategy is combined with “DE/rand/1” through a linear decreasing probability rule as follows: 



38 
 

If 

 
𝑟𝑎𝑛𝑑 ≥ (1 −

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
) 

(51) 

then  

 𝑣𝑖
𝑔+1

= 𝑥𝑟
𝑔
+ 𝐹1. (𝑥𝑏𝑒𝑠𝑡

𝑔
− 𝑥𝑤𝑜𝑟𝑠𝑡

𝑔
) (52) 

else 

 𝑣𝑖
𝑔+1

= 𝑥𝑟1
𝑔
+ 𝐹2. (𝑥𝑟2

𝑔
− 𝑥𝑟3

𝑔
) (53) 

The directed mutation strategy is formulated in Equation (52) in which  𝑟 is a randomly 

chosen value, not equal to 𝑖, and is picked from the range of [1, 𝑁𝑃]. Also,  𝑥𝑟
𝑔

 is a randomly 

selected individual among the current population. 𝑥𝑏𝑒𝑠𝑡
𝑔

 and 𝑥𝑤𝑜𝑟𝑠𝑡
𝑔

 are individuals with the best 

and worst objective function values, respectively.  

The mutation scaling factor, 𝐹, is an important parameter that controls the evolving rate of 

the population. The value of 𝐹 has a considerable effect on exploration: small values of 𝐹 lead to 

premature convergence, and high values of 𝐹 slow down the search (Feoktistov, 2006). In this 

work, two scaling factors 𝐹1 and 𝐹2 are proposed for the two different mutation rules.  

For the mutation presented in Equation (52), the generated difference vector is in fact a 

directed difference vector from the worst to the best vectors of the current population. In order to 

maintain the same search direction for all the target vectors, 𝐹1 must have a positive value. 

Therefore, in this study, 𝐹1 is defined as a normal random number picked from a normal 

distribution with mean value of (𝑖/𝑁𝑃) and standard deviation of 0.1;  𝑖 is the index of the current 

target vector.  



39 
 

This method of finding 𝐹1 is a rank-based method because all the individuals in the current 

population are sorted in ascending order based on the value of the objective function. 

Consequently, 𝑋𝑖 is the 𝑖th superior individual in the current population.  

This proposed ranked-based scheme is a modified version of the scheme used in Individual 

Dependent Mutation (IDM) strategy (Tang et al., 2015). Tang et al., (2015) used the based vector 

index of mutation strategy instead of the current population index used in this study (i.e., 𝑖). For 

this mutation, the binomial crossover is used.  

The difference vector in the “DE/rand/1” strategy, Equation (53), is a pure random 

difference vector because the objective function values are not used for finding their indices. Since 

the best direction that can lead to good exploration is unknown, 𝐹2 is introduced as a uniform 

random variable in the interval of (−1, 0)  ∪ (0, 1). Furthermore, 𝐹2 helps to advance the 

exploration and to cover the whole search space by generating mutant vectors with opposite 

directions. Also, 𝐹2 is set to be random for each target vector such as 𝐹1. 

The basic mutation strategy (DE/rand/1) with the constant scaling factor, the new directed 

mutation strategy, and the modified basic mutation strategy are depicted in Figure 2 (Mohamed et 

al., 2011). The process of generating a mutation vector, 𝑣𝑖, for each individual 𝑥𝑖 using the 

“DE/rand/1” mutation strategy and a constant scaling factor, 𝐹, is depicted in Figure 2a.  

Using the directed mutation strategy, two new mutant vectors 𝑣1and 𝑣2 are generated for 

two target vectors 𝑥1 and 𝑥2 with small, and large random positive scaling factors, respectively. 

This is illustrated in Figure 2b. Additionally, 𝑣𝑖 is the mutation vector generated for individual 𝑥𝑖 

using the “DE/rand/1” mutation strategy with random scaling factor 𝐹2 where 𝐹2 is assigned both 

a large negative number and a small positive number shown in Figure 2c. 



40 
 

 
Figure 2.  (a) An illustration of the DE/rand/1 a basic DE mutation strategy in two-dimensional 

parametric space. (b) An illustration of the new directed mutation strategy in two-dimensional 

parametric space (local exploitation). (c) An illustration of the modified DE/rand/1 basic DE 

mutation strategy in two-dimensional parametric space (global exploration).  

 



41 
 

After mutation operation, the binomial crossover is used to generate the trial vector. The 

Crossover rate, 𝐶𝑟, controls the population diversity. A dynamic non-linearly increasing crossover 

probability strategy is used (Mohamed et al., 2012) as follows: 

 𝐶𝑟 = 𝐶𝑟𝑚𝑎𝑥 + (𝐶𝑟𝑚𝑖𝑛 − 𝐶𝑟𝑚𝑎𝑥). (1 −
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟

𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
)
4

 (54) 

where 𝐶𝑟𝑚𝑖𝑛 and 𝐶𝑟𝑚𝑎𝑥 are the minimum and maximum value of the 𝐶𝑟, respectively. The optimal 

setting for these parameters are 𝐶𝑟𝑚𝑖𝑛 = 0.1 and 𝐶𝑟𝑚𝑎𝑥 = 0.9 in this study which 𝐶𝑟𝑚𝑎𝑥  is 

different from the one used by Mohamed et al. (2012). 

Based on this strategy, the algorithm starts at 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 = 1 with 𝐶𝑟 

value close to 𝐶𝑟𝑚𝑖𝑛 = 0.1. However, as generation number increases toward 

𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 the 𝐶𝑟 value increases to reach 𝐶𝑟𝑚𝑎𝑥 = 0.9.  

In order to avoid high level of diversity in the early stages, small value of 𝐶𝑟 is considered 

as a good initial rates (Storn & Price, 1997). Furthermore, when the maximum value of 𝐶𝑟 is close 

to 𝐶𝑟𝑚𝑎𝑥 = 0.9 a balance can be achieved between exploration and exploitation. The mutation 

vector contributes more to the trial/offspring vector for larger values of 𝐶𝑟. 

In the beginning of the search process, the vectors in the population are completely 

different from each other and population is completely diverse. To prevent the high level of 

diversity that may result in premature convergence and decrease convergence speed, the value of 

𝐶𝑟 must be small. Then, over generations, the vectors in the population become more and more 

similar and the diversity of the population will decrease. Hence, at this stage, the value of  𝐶𝑟 must 

be large to promote diversity and increase the convergence rate.  

Moreover, in Step 5 of the proposed modified IDE, when the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛   

𝑛𝑢𝑚𝑏𝑒𝑟 is smaller than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 and “DE/current-to-rand/1” strategy is 



42 
 

used for generating the third offspring 𝑌3, the binomial crossover strategy is applied to the mutant 

vector.  

2.4.2 IATM AND ITS DIFFERENCES WITH ArATM 

In IDE method, the parent population, 𝑃𝑔, with size 𝜇 (i.e., the number of population 𝜇 =

𝑁𝑃) generates an offspring population, 𝑄𝑔, with size 𝜆. Then, a combined population 𝑃𝑔 + 𝑄𝑔 is 

constructed by combining the parent and offspring populations. The combined population has (𝜇 +

𝜆) members and may inevitably experience one of these three situations: the infeasible situation, 

the semi-feasible situation, and the feasible situation. As mentioned in Section 2.3.3 under 

constraint handling method, in the infeasible situation, the population only contains infeasible 

individuals; in the semi-feasible situation, the populations contain both feasible and infeasible 

individuals; and in the feasible situation, all the individuals in the population are feasible.  

The original IDE method was combined with ArATM as the selection operator in the ICDE 

algorithm proposed by Jia et al. (2013). In this study to decrease the computational cost, IATM 

(Wang & Cai., 2011) method was adopted as the selection operator. The IATM method was 

explained in details in Section 2.3.3. The differences between this method and ArATM are 

summarized below: 

I. For the infeasible situation, IATM and ArATM implement different constraint-handling 

methods. ArATM randomly selects 𝑟𝑎𝑛𝑑𝑠𝑖𝑧𝑒 individuals from a predefined archive, 𝐴, then 

puts them into the combined population, 𝐻𝑔, to improve the diversity of the population. Where 

𝑟𝑎𝑛𝑑𝑠𝑖𝑧𝑒 is an integer randomly generated between 0 and the size of 𝐴. The archive 𝐴 is used 

to store the individuals of 𝐻𝑔 which cannot survive to the next population. Then, ArATM uses 

the hierarchical non-dominated individual selection method developed by Wang et al. (2008) 

to select the promising individuals for the next generation. In IATM method, the population 



43 
 

is sorted based on the degree of constraint violation in ascending order. Then, the 𝜇 individuals 

are selected to survive to the next generation. Different methods were implemented for 

calculating the degree of constraint violation of individuals. These methods are problem 

specific and depend on the property of the constraints as mentioned in Section 2.3.2.2. 

II.  For the semi-feasible situation, in ArATM, the objective function is converted based on 

the feasibility proportion of the combined population, 𝐻𝑔, to achieve a good balance between 

the diversity and the convergence of the population. However, the conversion of the objective 

function in IATM, is based on the feasibility proportion of the last population and in each 

generation there is no need to save the individuals that were not survived to next generations.   

2.4.2 PROPOSED DE ALGORITHM 

The main procedure of the proposed DE algorithm is shown in Table 3. Initially, a 

population, 𝑃𝑔, of size 𝜇 is produced. Then, this population is used to create an offspring 

population, 𝑄𝑔, of size 𝜆 by using the proposed modified IDE method explained in Section 2.4.1.2. 

After combining 𝑃𝑔 and 𝑄𝑔 , IATM presented in Section 2.3.2.2 is applied to select 𝜇 promising 

individuals for the next population. This procedure will continue until the termination criterion is 

satisfied. 

The discrete variables rule which was explained in Section 2.3.3 is used to handle the 

discrete variables. To initialize the discrete variables, Equation (36) is used. The mutation 

operations are modified following the proposed modifications of Section 2.3.3.  

After crossover, the integer values corresponding to the discrete variables should be 

exchanged to their real values before evaluation of the objective function and constraints. This is 

the only part of the code that the real value of discrete variables should be used. 

  



44 
 

Table 3.  The procedures of the proposed DE algorithm 

set 𝑁𝑃 , number of population, 𝜇 = 𝑁𝑃 

initialization: generate an initial population, 𝑃0, by randomly sampling from the 

search space 𝑆 ; 

compute the variable 𝑑𝑖𝑓𝑓 using Equation (24) to determine the suitable method for 

calculating degree of constraint violation of individuals during the evolution; 

Evaluation: Evaluate objective function and constrains for each individual in the 

initial population 𝑃0; 

𝑔 = 0; 
repeat 

𝑔 =  𝑔 +  1; 
𝑃𝑔  =  𝑃(𝑔−1); 

𝑄𝑔  =  𝛷; 

for each individual in the population 𝑃𝑔 do 

                 

 generate the first offspring, 𝑌1, by using the proposed combined mutation 

strategy and the binomial crossover; 

 generate the second offspring, 𝑌2, by using the ‘‘DE/rand/2’’ strategy and the 

binomial crossover; 

 generate the third offspring, 𝑌3 , by using the ‘‘DE/current-to-rand/best/1’, 

binomial crossover, and  the improved breeder genetic algorithm (BGA) 

mutation; 

 𝑄𝑔 = 𝑄𝑔 ∪ 𝑌1 ∪ 𝑌2 ∪ 𝑌3 

end 

compute the objective function value and the degree of constraint violation for each 

individual in the population 𝑄𝑔 ; 

check number of feasible solution in the combined population (𝑃𝑔 +𝑄𝑔) of size 

(𝜇 + 𝜆) ;  
determinate the current situation of the combined population (𝑃𝑔 + 𝑄𝑔) in terms of 

feasibility; 

select the best 𝜇 individuals from the combined population (𝑃𝑔 + 𝑄𝑔)based on the 

IATM and generate the new population 𝑃𝑔+1; 

      find the best and the worst individuals of the newly generated population 𝑃𝑔+1; 

until the stopping criterion is met; 

 

output: print out the best individual of the population 𝑃𝑔 

 

 

 



45 
 

2.5 NUMERICAL IMPLEMENTATION 

In this section, the performance of the proposed DE algorithm is tested on five well-known 

benchmark truss optimization problems.  For all of these examples, the population number is 

consider as 15 (𝑁𝑃 = 𝜇 = 15) and 𝜆 =45. The examples are divided into two groups: planar 

trusses and space trusses based on characteristics of their structure. Note that the proposed 

algorithm was coded in the Matlab environment (Matlab R2015b). The test problems were 

executed on an Intel(R) Core(TM)2 Duo CPU P8600@ 2.40GHz PC under Windows 7. 

2.5.1 FIFTEEN BAR PLANAR TRUSS 

This fifteen-bar planar truss was also studied by Wu and Chow (1995), Tang et al. (2005), 

Miguel et al. (2013), and Ho-Huu et al. (2015). The ground structure is illustrated in Figure 3. The 

objective is to minimize the weight of the truss with stress constraints. A vertical load of 

10,000 𝑙𝑏 is applied on node 8. The stress limit (𝜎) is 25,000 (𝑝𝑠𝑖)  for both tensile and 

compressive stresses for all members. Young’s modulus (𝐸) is specified as 1.0×107 (𝑝𝑠𝑖) and the 

material density (𝜌) is 0.1 (
𝑙𝑏

𝑖𝑛3
). The 𝑥 and 𝑦 coordinates of joints 2, 3, 6, 7 are allowed to vary, 

joints 6 and 7 are constrained to have the same 𝑥 coordinates as joints 2, and 3, respectively. Joints 

4 and 8 are allowed to move only in 𝑦 direction.  The problem includes 15 sizing variables (cross-

sectional area of members) and 8 geometry variables (𝑥2 = 𝑥6, 𝑥3 = 𝑥7,  𝑦2,  𝑦3,  𝑦4,  𝑦6,  𝑦7,  𝑦8). 

Side constraints for geometry variables are:  

 100 (𝑖𝑛. ) ≤  𝑥2 ≤140 (𝑖𝑛. ) 

 220 (𝑖𝑛. ) ≤ 𝑥3 ≤  260 (𝑖𝑛. ) 

 100(𝑖𝑛. ) ≤ 𝑦2 ≤140(𝑖𝑛. ) 

 100(𝑖𝑛. ) ≤ 𝑦3 ≤140(𝑖𝑛. ) 

 50(𝑖𝑛. ) ≤ 𝑦4 ≤90(𝑖𝑛. ) 

 −20(𝑖𝑛. ) ≤ 𝑦6 ≤20(𝑖𝑛. ) 
 



46 
 

 −20(𝑖𝑛. ) ≤ 𝑦7 ≤  20(𝑖𝑛. ) 

 20 (𝑖𝑛. ) ≤ 𝑦8 ≤60 (𝑖𝑛. ) 
 

The cross-sectional areas are taken from the set 𝐷 =(0.111, 0.141, 0.174, 0.220, 

0.270,0.287,0.347,0.440,0.539,0.954,1.081,1.174,1.333, 1.488, 1.764,2.142, 2.697, 2.800, 3.131, 

3.565, 3.813, 4.805, 5.952, 6.572,7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180)  (

𝑖𝑛2).  

First, the problem is solved as a size and shape optimization with discrete variables; then 

as a size, shape, and topology optimization problem. 

 

 

Figure 3.  15 bar planar truss 

 

2.5.1.1 SIZE AND SHAPE OPTIMIZATION 

This problem has been solved in the literature using different methods. The result of this 

work compared with the result of Tang et al. (2005), Miguel et al. (2013), and Ho-Huu et al. (2015); 

they used a genetic algorithm, a firefly algorithm, and a D-ICDE algorithm for solving this 

problem, respectively. The numerical results obtained in this study are compared with the 



47 
 

aforementioned results found in literature and presented in Table 4. To keep the tradition, similar 

to previous studies, the presented numerical result is the best solution found over 100 runs. 

As presented in Table.4, the best result found in the literature for this problem achieves the 

minimum truss weight of 74.6818 (𝑙𝑏. )  after 7980 objective function evaluation in study of Ho-

Huu et al. (2015). The proposed algorithm in the present study, achieves a lower minimum truss 

weight of 72.73 (𝑙𝑏. )  only after 7216 objective function evaluations. 

 

 

Table 4.  Optimum size and shape solution for 15 bar planar truss 

Design 

Variables 

Tang 

 et al., 

2005 

Miguel 

et al., 

2013 

Ho-Huu 

et al., 

2015 

This 

work 

𝐴1(𝑖𝑛2) 1.081 0.954 1.081 0.954 

𝐴2(𝑖𝑛2) 0.539 0.539 0.539 0.539 

𝐴3(𝑖𝑛2) 0.278 0.22 0.141 0.174 

𝐴4(𝑖𝑛2) 0.954 0.954 0.954 0.954 

𝐴5(𝑖𝑛2) 0.954 0.539 0.539 0.539 

𝐴6(𝑖𝑛2) 0.22 0.22 0.278 0.278 

𝐴7(𝑖𝑛2) 0.111 0.111 0.111 0.111 

𝐴8(𝑖𝑛2) 0.111 0.111 0.111 0.111 

𝐴9(𝑖𝑛
2) 0.287 0.287 0.141 0.174 

𝐴10(𝑖𝑛2) 0.22 0.44 0.347 0.44 

𝐴11(𝑖𝑛2) 0.44 0.44 0.44 0.44 

𝐴12(𝑖𝑛2) 0.44 0.22 0.27 0.174 

𝐴13(𝑖𝑛2) 0.111 0.22 0.27 0.174 

𝐴14(𝑖𝑛2) 0.22 0.27 0.278 0.278 

𝐴15(𝑖𝑛2) 0.347 0.22 0.174 0.174 

𝑥2 (𝑖𝑛) 133.612 114.967 100.0309 110.3585 

𝑥3 (𝑖𝑛) 243.752 27.04 238.701 246.825 

𝑦2(𝑖𝑛) 100.449 125.919 132.8471 134.228 

𝑦3(𝑖𝑛) 104.738 111.067 125.3669 112.8878 

𝑦4 (𝑖𝑛) 73.762 58.298 60.3072 55.4056 

𝑦6 (𝑖𝑛) -10.067 -17.564 -10.6651 -18.0723 

𝑦7(𝑖𝑛) -1.339 -5.821 -12.2457 2.0917 

𝑦8 (𝑖𝑛) 50.402 31.465 59.9931 55.0023 

Weight (lb.) 79.82 75.55 74.6818 72.73 

Function 

 Evaluation 
8000 8000 7980 7216 

 



48 
 

The maximum value of stress constraint in this problem was 24979 (𝑝𝑠𝑖). The constraint 

violation was zero for the optimum solution. The convergence history of this example is presented 

in Figure 4. In addition, the proposed algorithm in this study achieved a higher convergence rate 

when compared with previous studies. The geometry of truss after optimization is shown in Figure 

5. 

 
Figure 4.   Convergence history for size and shape optimization of 15 bar truss. 

 

 

 

 
Figure 5.  Geometry and optimal shape for size and shape optimization of 15-bar truss. 

 

 



49 
 

2.5.1.2 SIZE, SHAPE, AND TOPOLOGY OPTIMIZATION 

The optimization of the size, shape, and topology is considered in this section. This is also 

a discrete-continuous optimization problem and the only different with the previous problem is 

that the truss element(s) can be removed as along as the structure remain stable and the design 

solution satisfies all the constraints. The numerical results are presented in Table 5 where the 

optimum solution of this study is compared with previous results found by Tang et al. (2005), 

Miguel et al. (2013), and Goncalves et al. (2015) using a genetic algorithm, a firefly algorithm, 

and a search group algorithm, respectively.  

 

 

Table 5.  Optimum size, shape, and topology solution for 15 bar planar truss. 

Design 

Variables 
Tang 
2005 

Miguel 

2013 
Goncalves 

2015 
This 

work 

𝐴1(𝑖𝑛2) 1.081 0.954 0.954 0.954 

𝐴2(𝑖𝑛2) 0.539 0.539 0.954 0.539 

𝐴3(𝑖𝑛2) 0 0.141 0 0.174 

𝐴4(𝑖𝑛2) 1.081 0.954 2.142 0.954 

𝐴5(𝑖𝑛2) 0.954 0.539 1.081 0.539 

𝐴6(𝑖𝑛2) 0.44 0.278 1.333 0.27 

𝐴7(𝑖𝑛2) 0 0.141 0.111 0 

𝐴8(𝑖𝑛2) 0.141 0 0.141 0 

𝐴9(𝑖𝑛
2) 0 3.813 0.374 0.22 

𝐴10(𝑖𝑛2) 0.27 0.44 0.44 0.44 

𝐴11(𝑖𝑛2) 0.27 0.44 0 0.44 

𝐴12(𝑖𝑛2) 0.539 0.22 0.141 0.174 

𝐴13(𝑖𝑛2) 0.141 0.22 1.488 0.22 

𝐴14(𝑖𝑛2) 0.44 0.347 0.539 0.27 

𝐴15(𝑖𝑛2) 0 0.141 0.111 0.174 

𝑥2 (𝑖𝑛) 111.85 112.027 135.945 110.3891 

𝑥3 (𝑖𝑛) 242.45 247.076 234.961 251.3094 

𝑦2(𝑖𝑛) 104.02 137.514 104.173 135.9221 

𝑦3(𝑖𝑛) 109.22 116.776 110.63 115.4637 

𝑦4 (𝑖𝑛) - 50.162 54.8032 58.092 

𝑦6 (𝑖𝑛) -10.82 -10.905 2.99213 -16.0743 

𝑦7(𝑖𝑛) -11.13 -3.179 6.10237 4.3532 

𝑦8 (𝑖𝑛) 48.84 48.825 46.0236 57.9002 

Weight (lb.) 77.84 74.33 123.452 70.4869 



50 
 

 

Figure 6.  Convergence history for size, shape, and topology optimization of 15 bar truss. 

 

 

 
Figure 7.  Geometry and optimal shape for size, shape, and topology optimization of 15 bar truss. 

 

2.5.2 EIGHTEEN BAR PLANAR TRUSS 

The ground structure of a planar truss is shown in Figure 8. Similar to the 15 bar planar 

truss structure, the objective function is to minimize the truss weight. The system is restricted 

within the stress and buckling constraints. More specifically, buckling constraints defined for those 

members of truss which are under compression. The absolute value of the stress for these members 



51 
 

should be less than corresponding buckling stress of those member ( 
𝑘𝐸𝐴𝑖

𝑙𝑖
2 , 𝑖 = 1,… ,18). The cross-

section arears of the members of the truss are put in four groups as follows: 

1) 𝐴1 = 𝐴4 = 𝐴8 = 𝐴12 = 𝐴16 

2) 𝐴2 = 𝐴6 = 𝐴10 = 𝐴14 = 𝐴18 

3) 𝐴3 = 𝐴7 = 𝐴11 = 𝐴15 

4) 𝐴5 = 𝐴9 = 𝐴13 = 𝐴17 
 

The coordinates 𝑥 and 𝑦 corresponding to the nodes 3, 5, 7, and 9 are taken as geometric variables. 

There are 4 discrete area variables and 8 nodal coordinate variables in this system. The stress limit 

(𝜎) is 20,000 (𝑝𝑠𝑖)  for both tensile and compressive stresses of all members. Young’s modulus 

(𝐸) is specified as 1.0×107 (𝑝𝑠𝑖). The material density (𝜌) is 0.1 (
 𝑙𝑏.

𝑖𝑛3
). The buckling coefficient 

(𝑘) is 4. Five vertical loads of 20,000 (𝑙𝑏. ) imposed on nodes 1, 2, 4, 6, and 8. The sections are 

taken from a profile list 𝐷 of 80 sections starting with an area of 2.0 (𝑖𝑛.2 ) increasing in the steps 

of 0.25 (𝑖𝑛.2 ) to 21.75 (𝑖𝑛.2 ). Side constraints for geometry variables are defined as following: 

 775 (𝑖𝑛. ) ≤  𝑥3 ≤1225 (𝑖𝑛. ) 

 525(𝑖𝑛. ) ≤  𝑥5 ≤975(𝑖𝑛. )  

 275(𝑖𝑛. ) ≤ 𝑥7 ≤725 (𝑖𝑛. ) 

 25(𝑖𝑛. ) ≤  𝑥3 ≤475(𝑖𝑛. ) 
 75(𝑖𝑛. ) ≤ 𝑦3, 𝑦5, 𝑦7, 𝑦9 ≤1225(𝑖𝑛. ) 

 

The 18 bar planar truss problem is a size and shape optimization problem previously solved 

by several researcher (Hasancebi & Erbatur, 2002; Kaveh & Kalatjari, 2004; Rahami et al., 2008; 

Ho-Huu et al., 2015). The presented results are extracted from 100 independent runs of the 

algorithm. The optimal designs found by proposed algorithm and its comparison with those 

available in the literature is presented in Table 6. 

 

 

 



52 
 

 
Figure 8.  18 bar planar truss. 

 

Table 6.  Optimum size, and shape solution for 18 bar planar truss. 

 

Design 

Variables 

Hasancebi 

& 

Erbatur 

(2002) 

Kaveh & 

Kalatjari 

(2004) 

Rahami 

et al. 

(2008) 

Ho-Huu 

et al. 

(2015) 

This 

work 

𝐴1(𝑖𝑛2) 12.5 12.25 12.75 13 9.75 

𝐴2(𝑖𝑛2) 18.25 18 18.5 17.5 18.75 

𝐴3(𝑖𝑛2) 5.5 5.25 4.75 6.5 4.75 

𝐴5(𝑖𝑛2) 3.75 4.25 3.25 3 3.5 

𝑥3(in) 933 913 917.4475 914.06 928.421 

𝑦3(in) 188 186.8 193.7899 183.46 201.0471 

𝑥5(in) 658 650 654.3243 640.53 668.2497 

𝑦5(in) 148 150.5 159.9436 133.74 163.8746 

𝑥7 (in) 422 418.8 424.4821 406.12 434.023 

𝑦7 (in) 100 97.4 108.5779 92.63 105.2616 

𝑥9 (in) 205 204.8 208.4691 196.69 213.3768 

𝑦3 (in) 32 26.7 37.6349 37.06 29.85221 

Weight (lb.) 4574.28 4547.9 4530.68 4554.29 4214.65 

Function 

 Evaluation 
- - 8000 8025 6765 

 

 

 

The optimal weight obtained in this study is 4214.65(𝑙𝑏. ) which is achieved after 200 

iterations. The algorithm proposed in this study not only obtained a lower minimum weight when 

compared to previous studies but also achieved the solution in fewer iterations. In other words, the 



53 
 

convergence rate is increased when compared with the previous studies. The best results in the 

aforementioned studies was obtained by Ho-Huu et al. (2015) which found the optimum weight of 

4554.29 (𝑙𝑏. ) after 250 iterations. The convergence history of this example is shown in Figure 9. 

The final shape of truss is depicted in Figure 10 where the optimum shape of truss evolves 

dramatically from the initial shape.  

At the beginning of the truss, the optimal result has larger overall section because degree 

of freedom is constrained while section becomes smaller at the end of the truss. This is consistent 

with the previous result found in the literature for this example and is based on structural principals 

of loading resistance. Additionally, the optimum cross-sectional areas show that bars with greater 

size are subjected to greater loads.  

 

 

 
Figure 9.  Convergence history for size and shape optimization of 18 bar truss. 

 



54 
 

 
Figure 10.  Geometry and optimal shape for size and shape optimization of 18 bar truss. 

 

 

2.5.3 TWENTY FIVE BAR SPACE TRUSS 

In this section, a space truss structure with 25 bar elements is optimized using the proposed 

algorithm. The initial geometry of a space truss together with the nodal numbering is shown in 

Figure 11. Members of this structure are categorized into 8 groups resulting in 8 discrete size 

variables: 

1)  𝐴1 

2) 𝐴2 = 𝐴3 = 𝐴4 = 𝐴5 

3) 𝐴6 = 𝐴7 = 𝐴8 = 𝐴9  

4) 𝐴10 = 𝐴11 

5) 𝐴12 = 𝐴13  

6) 𝐴14 = 𝐴15 = 𝐴16 = 𝐴17 

7) 𝐴18 = 𝐴19 = 𝐴20 = 𝐴21  

8) 𝐴22 = 𝐴23 = 𝐴24 = 𝐴25   
 

Five geometry variables are defined for this problem as follows: 

1) 𝑥4 = 𝑥5 = −𝑥3 = −𝑥6, 

2) 𝑥8 = 𝑥9 = −𝑥7 = −𝑥10,  

3) 𝑦3 = 𝑦4 = −𝑦5 = −𝑦6, 

4) 𝑦7 = 𝑦8 = −𝑦9 = −𝑦10, 

5) 𝑧3 = 𝑧4 = 𝑧5 = 𝑧6.  

 

The stress limit (𝜎) is 40,000 (𝑝𝑠𝑖)  for both tensile and compressive stresses for all members. 

 



55 
 

 

Figure 11.  25 bar space truss. 

 

Young’s modulus (𝐸) is specified as 1.0×107 (𝑝𝑠𝑖). The material density (𝜌) is 0.1 (
 𝑙𝑏

𝑖𝑛3
). 

The displacements of all nodes are limited within 0.3 (𝑖𝑛.) range in all 𝑥, 𝑦, 𝑧 directions. Seven 

loads are imposed on nodes 1, 2, 3, and 6. The details of the loading is provided in Table 7.  

 

 

Table 7.  Imposed nodal loads on 25 bar space truss. 

Loads Node 𝑭𝒙(𝒌𝒊𝒑𝒔) 𝑭𝒚(𝒌𝒊𝒑𝒔) 𝑭𝒛(𝒌𝒊𝒑𝒔) 

1 1.0 -10 -10 

2 0.0 -10 -10 

3 0.5 0 0 

6 0.6 0 0 

 

 



56 
 

The sections are taken from a profile list of 30 sections, 𝐷 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,  2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 

3.2, 3.4)(𝑖𝑛.2 ). Side constraints for geometry variables are:  

 20 (𝑖𝑛. ) ≤  𝑥4 ≤60 (𝑖𝑛. ) 

 40 (𝑖𝑛. ) ≤  𝑥8 ≤ 80 ( 𝑖𝑛. ) 

 40 (𝑖𝑛. ) ≤  𝑦4 ≤80 (𝑖𝑛. )  

 100  (𝑖𝑛. ) ≤  𝑦8 ≤40( 𝑖𝑛. ) 

 90(𝑖𝑛. ) ≤  𝑧4 ≤130( 𝑖𝑛. ) 

The presented results are extracted from 100 independent runs of the algorithm similar to 

the other examples. 

This size and shape optimization problem is previously solved using a Genetic Algorithm 

(GA) (Rajeev & Krishnamoorthy, 1992; Wu & Chow, 1995; Tang et al. , 2005; Rahami et al., 

2008), as well as a Firefly Algorithm (Miguel et al., 2013), and a Differential Evolution (DE) 

model (Ho-Huu et al., 2015). 

Since the cross-sectional areas are taken from a set of 30 discrete variables and the nodal 

coordinates are continuous, this problem is also a mixed variable optimization problem which 

deals simultaneously with integer and continuous design variables. 

The GA proposed by Rahami et al. (2008) resulting in 10,000 objective function 

evaluations with the optimum result equal to 120.115 (𝑙𝑏. ). Miguel et al. (2013) found the 

optimum weight of 118.83(𝑙𝑏. ) for this example after 6000 objective function evaluations. The 

optimum solution found by Ho-Huu et al. is 118.76 (𝑙𝑏. ) after 6000 objective function evaluations. 

The proposed algorithm found the optimum solution of 117.40 (𝑙𝑏) which is lower than previous 

studies after only 50 iterations and the total number of objective function evaluations was almost 

2310. The numerical details of this comparison is presented in Table 8.  

  



57 
 

Table 8.  Optimum size, and shape solution for 25 bar space truss. 

Design 

Variables 

Kaveh & 

Kalatjari 

(2004) 

Tang 

 et al. 

(2005) 

Rahami 

et al. 

(2008) 

Miguel 

 et al. 

(2013) 

Ho-Huu 

et al. 

(2015) 

This 

work 

𝐴1(𝑖𝑛2) 0.1 0.1 0.1 0.1 0.1 0.1 

𝐴2(𝑖𝑛2) 0.1 0.1 0.1 0.1 0.1 0.1 

𝐴3(𝑖𝑛2) 1.1 1.1 1.1 0.9 0.9 1.0 

𝐴4(𝑖𝑛2) 0.1 0.1 0.1 0.1 0.1 0.1 

𝐴5(𝑖𝑛2) 0.1 0.1 0.1 0.1 0.1 0.1 

𝐴6(𝑖𝑛2) 0.1 0.2 0.1 0.1 0.1 0.1 

𝐴7(𝑖𝑛2) 0.1 0.2 0.2 0.1 0.1 0.1 

𝐴8(𝑖𝑛2) 1.0 0.7 0.8 1 1.0 0.9 

𝑥4(in) 36.23 35.47 33.0487 37.32 36.83 37.39 

𝑦4(in) 58.56 60.37 53.5663 55.74 58.53 56.413 

𝑧4(in) 115.59 129.07 129.9092 126.62 122.67 127.457 

𝑥8(in) 46.46 45.06 43.7826 50.14 49.21 51.198 

𝑦8 (in) 127.95 137.04 136.8381 136.40 136.74 139.49 

Weight (lb.) 124.0 124.943 120.115 118.83 118.76 117.40 

Function 

 Evaluation 
 6000 6000 6000 6000 2310 

 

 

Again, this example demonstrates the capability of the proposed algorithm in finding 

improved solution with a lower computational cost. The convergence rate is significantly increased 

when compared the previous studies while obtaining an improved optimal solution. The 

convergence history of the best solution is shown in Figure 12 and the geometry and optimal 

topology of the truss is shown in Figure 13. 

 



58 
 

 
Figure 12.  Convergence history for size and shape optimization of 25 bar truss. 

 

 
Figure 13.  Geometry and optimal shape for size and shape optimization of 25 bar truss. 

 

2.5.4 THIRTY NINE BAR SPACE TRUSS 

This example is a size and shape optimization problem for a tower truss structure with 39 

bar elements as shown in Figure 14. The truss is subjected to three vertical loads of 10 (𝑘𝑁) at 

three top nodes. The nodal coordinates are provided in Table 9. Members of this structure are 

categorized into 5 groups resulting in 5 discrete size variables as follows: 



59 
 

1) 𝐴1 = [(1,4), (2,5), (3,6)] 
2) 𝐴2 = [(4,7), (5,8), (6,9)] 
3) 𝐴3 = [(7,10), (8,11), (9,12)] 
4) 𝐴4[(10,13), (11,14), (12,15)]  
5) 𝐴5 for the remaining elements  

 

 

 

Figure 14.  39 bar space truss. 

 

There are 6 geometry variables: 𝑧4, 𝑦4, 𝑦7, 𝑧7, 𝑦10, and 𝑧10. Displacement of node 13 is limited 

within 4 (𝑚𝑚) in 𝑦 directions. The tensile stresses are constrained to remain under 240 (𝑀𝑃𝑎) 

for all elements. Young’s modulus (𝐸) is specified as 210 (MPa). The material density (𝜌) is 

7800 (
𝑘𝑔

𝑚3). The sections are taken from a profile list of sections, 𝐷 =(0.1, 0.2, …, 13)(𝑐𝑚2). Side 

constraints for geometry variables are defined below: 

 0.28 𝑚 ≤  𝑧4 ≤ 1 𝑚 

 0.0 𝑚 ≤  𝑦4 ≤ 2 𝑚 

 0.28 𝑚 ≤  𝑦7 ≤ 1𝑚 



60 
 

 1 𝑚 ≤ 𝑧7 ≤ 3 𝑚 

 0.28 𝑚 ≤  𝑦10 ≤ 1 𝑚 

 2 𝑚 ≤  𝑧10 ≤ 4 𝑚  
 

 

Table 9. Nodal coordinates of bottom and top nodes of 39 bar space truss. 

Bottom Nodes Top Nodes 

Number 𝑥(𝑚) 𝑦(𝑚) 𝑧(𝑚) Number 𝑥(𝑚) 𝑦(𝑚) 𝑧(𝑚) 

1 0 1 0 13 0 0.28 4 

2 
−
√3

2
 

0.5 0 14 −0.42

√3
 

−0.14 4 

3 √3

2
 

0.5 0 15 0.42

√3
 

−0.14 4 

 

 

 

 

The comparison of the optimal designs with those of other references is provided in Table 

10. The comparison of the results confirms that the proposed DE algorithm for mixed discrete–

continuous 39-bar space truss outperforms previous methods in finding the minimal structure 

weight. Ho-Huu et al. (2015) found optimum objective value of 140.35(kg) after 1140 objective 

function evaluation while the proposed algorithm reached 138.9853(kg) after 825 objective 

function evaluations. The proposed algorithm continued its search and reached the optimum 

weight of 130.7979(kg). This is show that the proposed algorithm has a good search capability 

while maintain a good convergence rate. The result shows considerable changes of the topology 

compared with original design. The Convergence history for size and shape optimization is 

depicted in Figure 15. 

 



61 
 

Table 10.  Optimum size, and shape solution for 39 bar space truss. 

Design 

Variables 

Wang  

et al. 

(2002) 

Shojaee 

et al. 

(2013) 

Ho-Huu 

et al. 

(2015) 

This 

work 

𝐴1(𝑐𝑚2) 11.01 10.12 13 12.7 

𝐴2(𝑐𝑚2) 8.63 9.91 12.9 9.5 

𝐴3(𝑐𝑚2) 6.69 8.56 9 6.3 

𝐴4(𝑐𝑚2) 4.11 3.92 2.7 2.1 

𝐴5(𝑐𝑚2) 4.37 3.44 1.6 1.5 

𝑦4(m) 0.805 0.6683 0.9549 0.8129 

𝑧4(m) 1.186 1.9 0.8589 1.6079 

𝑦7(m) 0.654 0.4732 0.9258 0.6429 

𝑧7(m) 2.204 2.8734 2.0154 2.6727 

𝑦10 (m) 0.466 0.3002 0.7160 0.3991 

𝑧10 (m) 3.092 3.4415 3.1011 3.5327 

Weight (kg) 203.18 176.834 140.35 130.7979 

 

 

 

2.5.5 ELEVEN BAR PLANAR TRUSS 

The 11-bar, 6-node truss shown in Figure 16 has been widely published in the optimization 

literature. The optimization of its size, shape and topology is considered in this study. In this 

example, applied load on nodes 5 and 6 is equal to 100 (𝑘𝑖𝑝). Stress is constrained to be less than 

25 (𝑘𝑠𝑖). Vertical displacements at joints 2 and 4 were constrained to less than 2(𝑖𝑛). The modulus 

of elasticity and the material density are 10,000 (𝑘𝑠𝑖) and 0.1(𝑙𝑏/𝑖𝑛3), respectively. The sizing 

variables, cross-sectional areas are discrete and are taken from a set of 32 discrete values 𝐷 = 

(1.62, 1.80, 2.38, 2.62, 2.88, 3.09, 3.13, 3.38, 3.63, 3.84, 3.87, 4.18, 4.49, 4.80, 4.97, 5.12, 5.74, 

7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 

33.50) (𝑖𝑛2) (Rajan, 1995). 

 

 



62 
 

 
Figure 15.  Convergence history for size and shape optimization of 39 bar truss. 

 

 

 

Shape is optimized by allowing the vertical coordinates of joints 1, 3, and 5 to move 

between 180 (𝑖𝑛. ) and 1000 (𝑖𝑛. ). Topology is optimized by allowing all members to be removed 

except member 3 (between nodes 4 and 5) and member 4 (between nodes 5 and 6), see Figure 16. 

The optimum result found by proposed DE algorithm is 2733.5(𝑙𝑏. ) after almost 7665 

objective function evaluations. The best result in literature is found by Miguel et al. (2013) where 

the optimum structure weight is found 2705.16(𝑙𝑏. ) after 50,000 objective function evaluations. 

The comparison of the numerical results of this work and the previous studies are presented in 

Table 11.  

The convergence rate of the proposed DE algorithm is significantly greater than other 

methods although the objective function value is not better than the best result by Miguel et al. 

(2013). Note that this study has reduced the required number of objective function evaluations 



63 
 

considerably (i.e., number of structural analysis) which translate into considerably lower 

computational cost.   

 

 

 

Figure 16.  11 bar planar truss. 

 

Table 11.  Optimum size, and shape solution for11 bar planar truss. 

Design 

Variables 
Rajan 

(1995) 

Balling et 

al. (2006) 

Martini 

(2011) 

Miguel et 

al.(2013) 
This 

work 

𝐴1(𝑖𝑛2) 9.9 - - 11.5 13.9 

𝐴2(𝑖𝑛2) 9.4 - - 0 0 

𝐴3(𝑖𝑛2) 11.5 - - 11.5 11.5 

𝐴4(𝑖𝑛2) 1.5 - - 7.22 7.22 

𝐴5(𝑖𝑛2) 0 - - 0 0 

𝐴6(𝑖𝑛2) 12 - - 0 0 

𝐴7(𝑖𝑛2) 11.5 - - 5.74 5.74 

𝐴8(𝑖𝑛2) 3.6 - - 2.88 2.13 

𝐴9(𝑖𝑛
2) 0 - - 13.5 13.5 

𝐴10(𝑖𝑛2) 10.4 - - 0 0 

𝐴11(𝑖𝑛2) 0 - - 0 0 

𝑦1(in) 186.5 - - - 598.1636 

𝑦3(in) 554.5 - - - 460.2370 

𝑦5(in) 786.9 - - - 768.7939 

Weight (lb.) 3254.0 2736 2900 2705 2733.5 

Function 

 Evaluation 
- 500,000 4075 50,000 7665 



64 
 

The objective function value presented by Martini (2011) is greater than this work, but 

their number of objective function evaluations is smaller. The convergence history of this work is 

presented in Figure 17 and the optimal shape and geometry of the 11 bar truss is shown in Figure 

18. 

 

 
Figure 17.  Convergence history for size, shape, and topology optimization of 11 bar truss. 

 

 
Figure 18.  Geometry and optimal shape for size, shape, and topology optimization of 11 bar 

truss. 

 



65 
 

2.6 CONCLUSION  

A new variant of differential evolution algorithm for solving discrete-continuous design 

variables by incorporation a modified version of Improved (𝜇 + 𝜆)Differential Evolution and 

Improve Adaptive Trade of Method (IATM) is proposed. The effectiveness and robustness of 

presented algorithm were examined by solving several benchmark problems from the literature. 

Both shape and size, and shape, size, and topology optimization problems are considered for 

evaluation of this study. In numerical examples, both cross sectional areas and structural shapes 

were adjusted simultaneously to find the minimum structural weight under specified conditions. 

The benchmark problems are subjected to various combination of stress, displacement, and 

buckling constraints. 

The numerical analysis confirmed that the proposed algorithm is capable of finding the 

optimum solution with a considerably improved convergence rate when compared to the existing 

methods. The improved convergence rate directly effects the required number of structural analysis 

to find the optimum solution of the truss structure. Structural analysis is one of the most time 

consuming and computationally expensive part of the truss optimization. Not only the proposed 

algorithm finds the global minimum faster but also in all but one of the studied cases it 

outperformed other methods in finding the minimum structural weight. The rate of the 

convergence was significantly higher for the case that obtained optimum weight was slightly 

higher than the best found in literature. The proposed algorithm was converged 84.67 percent faster 

and the objective function was only higher by one percent.  The promising results founded in this 

work is a motivation for further development of the proposed algorithm and expansion of its 

application to more complicated real-life engineering problems. 

 



66 
 

 

CHAPTER 3 

 

 BACKWARD DIJKSTRA ALGORITHMS FOR FINDING THE 

DEPARTURE TIME BASED ON THE SPECIFIED ARRIVAL TIME FOR 

REAL-LIFE TIME-DEPENDENT NETWORKS  

 

3.1 INTRODUCTION 

 Most people must commute from home to work, and wonder if they leave their homes at 

a specific time when they will arrive at work. They may also wonder what time they should depart 

home to arrive at work at a specific time. Similar questions have been asked by long distance 

travelers. 

The vast majority of the literature found on Shortest Path Problem (SPP) has dealt with 

static (i.e., non-time-dependent) networks that have fixed topology and constant link costs. In 

recent years, there has been a renewed interest in the study of Time-Dependent Shortest Path 

Problems (TDSPP). One of the fundamental network problems in TDSPP is the computation of 

the shortest paths from all departure nodes to a set of destination nodes, for all possible departure 

times. Obviously, this problem should be solved in a given time-dependent network.  

TDSPP first developed by Cooke and Halsey (1966) to find the shortest travel time from a 

given source node at a certain time to a given destination node. Orda and Rom (1990) presented 

an algorithm for finding the shortest path and minimum delay under various waiting constraints, 

and for all instances of time. They also investigated the properties of the derived paths under 

arbitrary functions for link delays with possible non-FIFO behavior. The FIFO stands for “First In 



67 
 

First Out” and is also called the non-overtaking property (Nannicini & Liberti, 2008), because it 

states that if 𝑇1 leaves node 𝑖 at time 𝑡1 and 𝑇2 leaves the same node at time 𝑡2 > 𝑡1, then the 

𝑇2 cannot arrive at node 𝑗 before 𝑇1. A time dependent vehicle routing problem proposed with non-

FIFO property proposed by Malandraki and Daskin (2001). Daganzo (2002) solved the backward 

SPP on a network with FIFO links. Chabini and Ganugapati (2002) proposed an efficient dynamic 

solution algorithm, (DOT), and prove that no sequential algorithm with a superior worst-case 

computational complexity can be developed. The also developed a time-based parallel version of 

DOT for the case of minimum time paths in FIFO networks. Wuming and Pingyang (2007) 

introduced an algorithm to solve the shortest paths in time-dependent network by converting non-

FIFO network to a FIFO network and solved the problem using the traditional SPP algorithms. 

Ding et al. (2008) proposed a new Dijkstra-based algorithm by decoupling path-selection and time-

refinement in the starting-time interval T. Their algorithm can handle both FIFO and non-FIFO 

time-dependent graphs. They also established the time complexity and space complexity based on 

their proposed 2 steps approached. Through extensive numerical studies, they also concluded that 

their dynamic algorithm outperforms existing solution algorithms in terms of efficiency. 

Computational strategies for families of Frank-Wolfe (FW), Conjugate FW, Bi-conjugate FW, 

Deterministic User Equilibrium (DUE) algorithms for static networks were also developed by 

Allen (2013). 

The focus of this study is to find the departure time at the source node(s) for a specified 

arrival time at the destination node(s) in FIFO, and non-FIFO networks. This present work consists 

of development of a sparse matrix storage scheme for efficiently storing large scale sparse 

network’s connectivity. In addition, the concept of Time Delay Factor (TDF) is combined with a 

general piece-wise linear function to describe the non-FIFO link’s costs as a function of time. 



68 
 

Furthermore, in this study backward Dijkstra SP algorithm with simple heuristic rules is presented 

for rejecting unwanted solutions during the search. Note that this work was published in the Journal 

of Applied Mathematics and Physics (Bakhtyar et al., 2016). 

The remaining of this Chapter is organized as follows. Dynamic networks are discussed in 

Section 3.2, where the concept of TDF in conjunction with piece-wise linear time function for the 

links’ costs are introduced. A simple but meaningful numerical example is solved in Section 3.3. 

The solution details of this numerical example facilitate the discussions of the Polynomial LCA 

and Forward Dijkstra algorithms for finding the arrival time at the destination node for a given 

departure time. Furthermore, this same example will also be used in Section 3.3 for finding the 

departure time at the source node in order to arrive at the destination node at a given time. The 

possibility of finding multiple or a single solution for this problem is discussed in Section 3.3. 

Real-life, large-scale dynamic networks are investigated using the proposed time-dependent 

Backward Dijkstra algorithm, and the numerical results are presented in Section 3.4 to validate the 

proposed dynamic algorithm. Finally, the conclusion is presented in Section 3.5. 

 

3.2 TIME DELAY FACTOR AND PIECE-WISE LINEAR FUNCTION IN DYNAMIC 

NETWORKS 

Unlike static networks, in a dynamic network the time spent to travel from a node to another 

is not constant. The actual travel time depends on the departure time. In this work, the following 

formulas are employed for a typical link  𝑘, connecting node 𝑖 to node 𝑗. 

 𝐴𝑇 =  𝐷𝑇 + 𝐶𝑆𝑇𝑖𝑗  ×  𝑇𝐷𝐹(𝐷𝑇) (55) 



69 
 

where 𝐴𝑇 is Arrival Time at node 𝑗 ,  𝐷𝑇  is the Departure Time at node 𝑖,  𝐶𝑆𝑇𝑖𝑗 is the constant 

static time for link 𝑘, and 𝑇𝐷𝐹(𝐷𝑇)  stands for Time Delay Factor (𝑇𝐷𝐹) defined by Equation 

(56).     

 𝑇𝐷𝐹(𝐷𝑇) =   1 +  𝑦(𝐷𝑇) (56) 

                           

Note that TDF is a function of time function 𝑦 therefore depends on the DT as described 

by Equation (56). In this work, the function 𝑦 for a typical link is defined as a time dependent, 

piece-wise linear function which is depicted in Figure 19. In real dynamic networks, the travel 

time will be increased during certain hours of the day. For instance, during the morning and 

afternoon rush hours, within 6 hours-8 hours (6am-8am) and  16 hours-18 hours (4:00pm-6:00pm) 

time frames.  

 

 

Figure 19.  Piece-wise linear time function for a typical link k. 

 

In Figure 19, the function 𝑦(𝐷𝑇) is defined as follow: 

 𝑦(𝐷𝑇) = 𝑦1(𝐷𝑇) when 𝐷𝑇 ∈ [0.00, 5.00] hours. 

 𝑦(𝐷𝑇) = 𝑦2(𝐷𝑇) when 𝐷𝑇 ∈ [5.00, 6.00] hours. 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Figure1


70 
 

 𝑦(𝐷𝑇) = 𝑦3(𝐷𝑇) when 𝐷𝑇 ∈ [6.00, 8.00] hours.  

 𝑦(𝐷𝑇) = 𝑦4(𝐷𝑇) when 𝐷𝑇 ∈ [8.00, 9.00] hours. 

 𝑦(𝐷𝑇) = 𝑦5(𝐷𝑇) when 𝐷𝑇 ∈ [9.00, 15.00] hours. 

 𝑦(𝐷𝑇) = 𝑦6(𝐷𝑇)when 𝐷𝑇 ∈ [15.00, 16.00] hours. 

 𝑦(𝐷𝑇) = 𝑦7(𝐷𝑇)when 𝐷𝑇 ∈ [16.00, 18.00] hours. 

 𝑦(𝐷𝑇) = 𝑦8(𝐷𝑇) when 𝐷𝑇 ∈ [18.00, 19.00] hours. 

 𝑦(𝐷𝑇) = 𝑦9(𝐷𝑇)when 𝐷𝑇 ∈ [19.00, 24.00] hours. 

This piece-wise linear time function can be conveniently provided by the end-user to 

consider the variations of congested traffic hours. Thus, the coordinates (𝐷𝑇, 𝑦(𝐷𝑇)) of defining 

points in Figure 19 such as O, A, B, C, D, E, F, G, H, and I are considered input parameters 

provided by the end-user.   

 It is possible and might be necessary to define a separate 𝑦(𝐷𝑇) function for each link. 

However, in this study it is assumed that all links that exist in the network have the travel behavior 

presented in Figure 19.  

The value of 𝑦(𝐷𝑇)  is zero in a static network while it varies between 0.00 to 1.00 in a 

dynamic network as indicated in Figure 19. Thus, for static networks, the 𝑇𝐷𝐹 defined in Equation 

(56) is equal to 1, while in a dynamic network, the value of 𝑇𝐷𝐹 could vary within the range of 

[1.00 – 2.00]. The following two important observations can be made: 

1) On a typical link, if the departure time at starting node is known, then the arrival time at 

ending node can be uniquely and easily computed using Equation (55), Equation (56), and 

Figure 19.  

2) On a typical link, if the arrival time at ending node is known, then departure time at starting 

node can be computed using Equation (55), Equation (56), and Figure 19.  



71 
 

The computed departure time in the second observation may not be unique. Therefore, it 

is necessary to develop a heuristic elimination rule to obtain an acceptable single solution. 

3.3   FINDING THE DEPARTURE TIME BASED ON THE SPECIFIED ARRIVAL 

TIME  

In order to study the performance of the proposed method, three problems are considered 

in this section. All three problems are developed to study a dynamic network with 5 nodes and 9 

links as shown in Figure 20. It is also assumed that all links have the time function illustrated in 

Figure 19.  

 

 

Figure 20.  (a) A dynamic network topology, (b) A dynamic reversed network topology 

 

Problem 3.1 Use the polynomial LCA method to find the time dependent shortest path from any 

source node, say 𝑠 = 5 to any destination node, say 𝑡 = 2 at the following three possible departure 

time: 

Case (a):  9 hours = 9:00 am (to simulate right after rush hours) 

Case (b):  15 hours = 3:00 pm (to simulate right before rush hours) 

Case (c):  16.75 hours = 4:45 pm (to simulate during rush hours) 



72 
 

This problem is rather straight forward, since the departure time (𝐷𝑇) is known at any source 

node 5. For any subsequent link:  

 The function 𝑦(𝐷𝑇) is uniquely defined using the data presented in Figure 19.  

 The Time Delay Factor (𝑇𝐷𝐹) is uniquely determined using Equation (56). 

 The arrival time (𝐴𝑇) at the targeted destination node is uniquely determined using Equation 

(55).  

Following the above mentioned process the values of the arrival time (𝐴𝑇) at node 2 was 

calculated for all cases a, b, and c which are presented in Table 12. 

 

Table 12.  Numerical Results for Dynamic Network in Figure 20. 

Case 
Source 

Node 

Destination 

Node 

Departure 

Time 

Arrival 

Time 

Shortest 

Time 

(Cost) 

Path 

Number of 

Explored 

Nodes 

Polynomial LCA & Forward Dijkstra 

a 5 2 9 16 7 532 5 

b 5 2 15 24 9 5312 5 

c 5 2 16.75 26.25 9.5 532 5 

Backward Dijkstra 

a 2 5 9 16 7 235 4 

b 2 5 15.5714 24 8.4286 235 4 

c 2 5 19.25 26.25 7 235 4 

   

 

 

Problem 3.2. Re-do problem 1 for all cases a, b, and c, but using the time dependent regular 

forward Dijkstra algorithm. 

The numerical results obtained using time-dependent regular forward Dijkstra algorithm 

were identical to those obtained in Problem 1 using time-dependent Polynomial LCA algorithm. 

The result for this problem also presented in Table 12. 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Figure1
file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Table1
file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Table1


73 
 

Problem 3.3. Find the departure time for the known arrival time using dynamic backward Dijkstra 

algorithm for all three cases of the previous problem.  

Case (a):  16 hours = 4:00pm 

Case (b):  24 hours = 0:00 am (midnight) 

Case (c):  26.25 hours= 2:15 pm  

It is necessary to use the proposed modified dynamic backward Dijkstra algorithm to solve 

this problem. This algorithm can be utilized in two major steps:  

Step 1. Revised the links’ direction of the given network, as shown in Figure 20b. 

 Step 2. Find the departure time to arrive at the destination at a specified time. 

The arrival times found in Problems 3.1 and 3.2 can be used as the known departure time 

at the source node 2.  To solve this problem, one can still use Equation (55). However, the known 

variables in this problem are 𝐴𝑇 and 𝐶𝑆𝑇𝑖𝑗, and the unknown variable is 𝐷𝑇. This is completely 

different from the defined problems 1 and 2, where the known variables are 𝐷𝑇 and 𝐶𝑆𝑇𝑖𝑗, and the 

unknown variable is 𝐴𝑇. A unique value for the unknown variable 𝐴𝑇 can be easily found from 

Equation (55) in Problems 3.1 and 3.2. However, in Problem 3.3, it is challenging to find a unique 

value for variable 𝐷𝑇 using Equation (55). Combining Equation (55) and Equation (56), one 

obtains the following equation: 

 𝐷𝑇 =  𝐴𝑇 − 𝐶𝑆𝑇𝑖𝑗  × (1 + 𝑦𝑟(𝐷𝑇)), 𝑟 = 1,… ,9 (57) 

Note that the only unknown in Equation (57) is the departure time (𝐷𝑇). 

 To further clarify the application of Equation (57), the case (b) of the Problem 3.3 is solved 

next. The arrival time (AT) at node 2 is 24 hours (midnight).  

The first iteration starts by initializing the distance vector, the predecessor vector, and the 

array of explored nodes, 𝑆, for the starting node 2 .  

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Figure1


74 
 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =   {  𝐼𝑛𝑓    0 𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓  } (58) 

 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑜𝑟 =     {  0    0  0   0  0} (59) 

 𝑆 =   {2} (60) 

Next, all the out-going links from node 2 are analyzed based on Figure 20b. 

 

o For outgoing link 2-1 set: 

 𝐴𝑇 =  24.00 (61) 

 𝐶𝑆𝑇21   =  2.5 (62) 

Using Equation (57), the value of each departure time (𝐷𝑇) corresponding to the time function   

shown in Figure 19 can be calculated as follows: 

 

{𝐷𝑇1 𝐷𝑇2 𝐷𝑇3 𝐷𝑇4 𝐷𝑇5 𝐷𝑇6 𝐷𝑇7 𝐷𝑇8 𝐷𝑇9}

= {21.5 9.71 19 0.67 21.5 16.9 19 17.3 21.5} 
(63) 

Since 𝑦𝑟(𝐷𝑇), 𝑟 = 1,… ,9, should be in a specified range (see explanation of Figure 19),  

eight of nine computed Departure Time (𝐷𝑇) must be rejected. The only acceptable Departure 

Time is  𝐷𝑇 =  𝐷𝑇9  =  21.5 hours, with the value 𝑦(𝐷𝑇9 ) =  0.00, which correspond to 

the 𝑇𝐷𝐹 =  1.0. Then, the travel information is updated: 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (1)  =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆 (𝑒𝑛𝑑))  +  𝐶𝑆𝑇21 × 𝑇𝐷𝐹 (64) 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =   {  2.5   0 𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓  } (65) 

 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑜𝑟 =     {  2    0  0   0  0} (66) 

o For outgoing link 2-3 set:  

 

 𝐴𝑇 =  24.00 (67) 

 𝐶𝑆𝑇  =  4.5 (68) 

Then, Equation (57) is used to obtain the departure time (𝐷𝑇) values as follows: 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Figure1


75 
 

 

{𝐷𝑇1 𝐷𝑇2 𝐷𝑇3 𝐷𝑇4 𝐷𝑇5 𝐷𝑇6 𝐷𝑇7 𝐷𝑇8 𝐷𝑇9}

= {19.5 7.6 15 6 19.5 15.8 15 18.9 19.5} 
(69) 

Only three out of nine computed Departure Time values can satisfy the requirements: 𝐷𝑇6 =  15.8, 

 𝐷𝑇8  =  18.9, and  𝐷𝑇9 =  19.5. 

The corresponding values for the time function and time delay factor are: 

 

 {𝑦6 𝑦8 𝑦9} = {0.8182 0.1429 0.00} (70) 

 {𝑇𝐷𝐹6 𝑇𝐷𝐹8 𝑇𝐷𝐹9} = {1.82 1.14 1.00} (71) 

Among these three possible solutions the one with the largest value  (𝐷𝑇 =  𝐷𝑇9  =  19.5) is 

selected. This choice also corresponds to the smallest value of time delay factor (𝑇𝐷𝐹 =  𝑇𝐷𝐹9  =

 1.00).  

By selecting the smallest value of time delay factor (𝑇𝐷𝐹) the smallest travel cost is picked 

for this particular link. 

The problem data are updated accordingly: 

 𝐷𝑇 =    19.5 (72) 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(3) =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆(𝑒𝑛𝑑)) + 𝐶𝑆𝑇23 × 𝑇𝐷𝐹 (73) 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =   {  2.5   0 4.5   𝐼𝑛𝑓   𝐼𝑛𝑓  } (74) 

 𝑝𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑜𝑟 =     {  2    0  2   0  0} (75) 

The next node to explore is node 1 so the second iteration can start by searching toward all the 

outgoing links from node 1 in which the arrival time at node 1 is 21.5 (AT=    21.5) , and 𝑆 =

{2 1} . The algorithm will stop when the next node to explore is the destination node. 

The arrival time (𝐴𝑇) at node 5 for all cases a, b, and c of the Problem 3.3 were found, and 

presented in Table 12. Thus, for certain dynamic networks, there may be more than one solution 

for the departure time at source node which still yields the same specified arrival time at a 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Table1


76 
 

destination node. By using the suggested criterion to select the value of 𝐷𝑇, the resulted path will 

also often correspond to the shortest path. 

3.4 NUMERICAL RESULTS AND DISCUSSIONS 

In this section, 12 large-scale examples based on real-life networks data were solved using 

the regular forward Dijkstra, and the heuristic backward Dijkstra (the proposed algorithm) 

algorithms. The regular forward Dijkstra algorithm was employed to find the arrival time at the 

destination node, based on the known departure time at the source node. The heuristic backward 

Dijkstra algorithm was employed to find the departure time at the source node, based on the known 

(specified) arrival time at the destination node.  

For cases where multiple solutions for 𝐷𝑇 exists, the departure time (𝐷𝑇) which produces 

the smallest value of time function ( 𝑦(𝐷𝑇)  =  𝑦𝑚𝑖𝑛) was selected. This selection also 

corresponds to the smallest value of time delay factor (𝑇𝐷𝐹 =  𝑇𝐷𝐹𝑚𝑖𝑛). This is the criterion 

which has been used in Section 3.3.  

To make the process more convenient, the arrival time at the destination node of the 

Forward Dijkstra algorithm was used as the departure time for the destination node of the 

Backward Dijkstra algorithm, for the same network with reversed links’ directions. All numerical 

results are tabulated in Table 13.  

 

 

 

 

 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Table1


77 
 

Table 13.  Comparisons of Forward and Backward Dijkstra Results for Real Networks. 

E
x

a
m

p
le

 

N
et

w
o

rk
 

N
a

m
e 

S
o

u
rc

e
 

w
.r

.t
. 
 

F
o

rw
a

rd
 S

ea
rc

h
 

D
es

ti
n

a
ti

o
n

 

w
.r

.t
. 
 

F
o

rw
a

rd
 S

ea
rc

h
 

Forward Search 
Backward Search 

(Ymin) 

D
ep

a
rt

u
re

  

T
im

e 
(h

o
u

rs
) 

A
rr

iv
a

l 

T
im

e 
(h

o
u

rs
) 

C
o

st
 

B
a

ck
 

C
a

lc
u

la
te

d
 

D
ep

a
rt

u
re

  

T
im

e 
(h

o
u

rs
) 

C
o

st
 

1 Winnipeg 5 100 6 16.494 10.494 6 10.494 

2 Winnipeg 25 110 6 21.764 15.764 7.236 14.528 

2 Winnipeg 25 110 7.236 21.764 14.528   

3 Barcelona 5 400 6 10.587 4.5876 6.0002 4.587 

4 Barcelona 15 400 5 11.954 6.954 5 6.954 

5 Austin 56 1800 1 22.855 21.855 1 21.855 

6 Austin 156 1500 6 18.735 12.735 6.0007 12.734 

7 Austin 5 6100 23 53.041 30.041 23 30.041 

8 Austin 1 7388 6 22.797 16.797 5.9993 16.797 

9 Philadelphia 6 560 1 13.481 12.481 1 12.481 

10 Philadelphia 36 510 7 22.7 15.7 6.9996 15.700 

11 Philadelphia 48 1415 1 63.352 62.352 1.5262 61.826 

11 Philadelphia 48 1415 1.526 63.352 61.826   

12 Philadelphia 100 1429 6 57.165 51.165 6.0001 51.165 

13* Winnipeg 25 110 6 25.020 19.020 6 19.020 

14* Philadelphia 48 1415 1 199.32 198.32 1 198.32 
* 𝑦=1 (for example 1 through 12, 𝑦 is found by using function introduced in Figure 19) 

 

For the problem of finding the departure time at the source node(s) based on the specified 

arrival time at the destination node(s), and based on the numerical results presented in Table 13, 

the following major observations can be made: 

a) Unique solutions were found in all examples except examples 2 and 11. 

b) Multiple solutions were found in examples 2, and 11 which is not surprising. In example 2, 

if the driver departs at the source node 25 at either 6.00 hours, or at 7.236 hours, he/she still 

arrives at the destination node 110 at the specified time (21.7647 hours). Therefore, this 

situation is called non-overtaking based on the definition of FIFO property. FIFO property, 

also called non-overtaking property, means if 𝑇1 leaves node 𝑖 at time 𝑡1 and 𝑇2 leaves the 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Table1


78 
 

same node at time 𝑡2 > 𝑡1, then 𝑇2 cannot arrive at node 𝑗 before 𝑇1. Non-overtaking situation 

also is observed for example 11 (e.g., if the driver departs at the source node 48 at either 1.00 

hours, or at 1.5262 hours, he/she still arrives at the destination node 1415 at the specified 

time 63.3532 hours.)  

An example was solved in a study published in 2007 by Wuming and Pingyang to 

show the difference between FIFO and non-FIFO properties in a small network. The different 

departure time (i.e., 0, 1, 2, and 3) from a specified source node was examined in the 

mentioned example. For the non-FIFO case, when the departure time at the source node was 

0, the arrival time at the destination node was 8 (𝐷𝑇1 = 0, 𝐴𝑇1 = 8). In addition, when the 

departure time was 1, the arrival time was 23/4 (𝐷𝑇2 = 1, 𝐴𝑇2 = 23/4). This situation is 

called overtaking (i.e., when one departed from the source node sooner (𝐷𝑡1 = 0 < 𝐷𝑇2 =

1) arrived at the destination later ( 𝐴𝑇1 = 8 > 𝐴𝑇2 = 23/4).) which happens in non-FIFO 

network. They also proposed a method to convert non-FIFO into FIFO property. For the FIFO 

case, when the departure time at the destination node was 0 or 1, the arrival time was 23/4, 

(𝐷𝑇1 = 0 or 1, 𝐴𝑇1 = 23/4), so unlike the non-FIFO case there is no overtaking situation. 

Also, when the departure time was 2, the arrival time was 27/4, (𝐷𝑇2 = 2, 𝐴𝑇2 = 27/4), 

which is less than 23/4 (𝐷𝑇1 = 0 𝑜𝑟 1 < 𝐷𝑇2 = 2, 𝐴𝑇1 = 23/4 < 𝐴𝑇2 = 27/4) which is 

expected in a FIFO network. 

Since in examples 2 and 11, there were no overtaking situation therefore the FIFO 

property was satisfied. Consequently, Dijkstra algorithm still can be implemented efficiently 

to find the optimum solution in a time dependent algorithm using the piece-wise linear 

function introduced in Figure 19. 

 



79 
 

3.5 CONCLUSION  

In this study, the well-known polynomial LCA, and the Regular Forward Dijkstra 

algorithms have been applied to dynamic networks, through the concept of piece-wise linear 

function and Time Delay Factor (𝑇𝐷𝐹) which is a function of the departure time (𝐷𝑇) at the source 

node for a typical link.  

The practical problems of finding the departure time at the source node(s) based on the 

specified arrival time at the destination node(s) can be efficiently solved by using the proposed 

Backward Dijkstra algorithm, which basically employs the Forward Dijkstra algorithm on the 

same dynamic network with all links’ direction are reversed. 

 Extensive numerical results based on a small-scale (academic) dynamic network (with 5 

nodes, and 9 links), as well as using 12 real-life (large-scale) dynamic networks, seem to indicate 

that: 

I. The proposed time dependent Backward Dijkstra algorithm always find the correct 

departure time at the source node and guarantees to arrive at the destination node at the specified 

arrival time. 

II. Most of the time, the computed paths correspond to the shortest paths, and the solution is 

unique. 

III. The computed paths often correspond to the shortest paths, although SP is not a 

requirement for the type of time-dependent problems considered in this work. 

IV. The computed solution(s) might be unique or non-unique where multiple solutions exist 

 

 

 



80 
 

CHAPTER 4 

 

 BIDIRECTIONAL DIJKSTRA ALGORITHM USING PIECE-WISE 

LINEAR FUNCTION  

 

 

4.1 INTRODUCTION 

Time dependent shortest path problems (TDSPP) have recently attracted considerable 

interest and utilized extensively to study network problems. TDSPP is the Shortest Path Problem 

(SPP) in which the cost of edges can vary as a function of time. Since, in a road network, the 

shortest path from a source node to a destination node during rush over is different from other time 

of the day, TDSPP is considered as a fundamental optimization problem. TDSPP was first 

developed by Cooke and Halsey (1966) via a recursive formula to find the shortest travel time 

from a given source node at a certain time to a given destination node. Bidirectional Dijkstra search 

is a standard technique to speed up computations on static networks. However, since the arrival 

time at the destination is unknown, the cost of time-dependent links around the target node cannot 

be evaluated. Thus, bidirectional search cannot be directly applied on time-dependent networks. 

Nannicini (2009) proposed a solution to the above  mentioned problem by using a time-

independent lower bounding function in the backward search.  

Nannicini et al. (2012) introduced a bidirectional A*algorithm for solving shortest path 

problem and their algorithms is shown to be faster than Dijkstra’s algorithm while finding only 

slightly sub-optimal solutions. Another bidirectional A*algorithm was proposed by Pijls and Post 

(2009; 2010) to find the shortest path. Geisberger et al. (2008) presented a hierarchical query 

algorithm using bidirectional shortest path search. Their algorithm is found to be faster than 



81 
 

hierarchical Dijkstra. Abraham and Shukla (2015) used bidirectional strategy and genetic 

algorithm for computing the shortest path. Nazemi and Omidi (2013) proposed a neural network 

model to solve SSP.  

In this study, an attempt is made to solve a point to point shortest path problem using a 

bidirectional algorithm while decreasing computational cost. The proposed heuristic bidirectional 

Dijkstra based algorithm looks for the shortest path from node 𝑠 to node 𝑡 in a graph or network 

𝐺(𝑉, 𝐴) in which 𝑉 represents a set of nodes and 𝐴 stands for a set of links. The backward search 

works on the reversed graph in which every original arc (𝑢, 𝑣) ∈ 𝐴 is replaced with arc (𝑣, 𝑢) 

having the same cost. The Time Delay Factor (TDF) method combined with A piece-wise linear 

function, used in Chapter 3, is used to make the links’ cost time dependent. Reducing the consumed 

computational time in finding the shortest path on a large network is far from trivial. In order to 

achieve this goal, a special procedure is used in the bidirectional algorithm to reduce the number 

of the explored nodes. In a bidirectional algorithm, for the forward search the source node and the 

destination nodes are denoted with 𝑠, and 𝑡 , respectively. In the backward search, their roles are 

interchanged. In the forward search, the departure time is known while in the backward search the 

departure time (i.e., the arrival time for the forward search) is unknown. In this work, to start the 

backward search, two methods are examined: in the first method, an arbitrary guessed arrival time 

is used while in the second method an extrapolated guessed arrival time is used to estimate the 

arrival time. Both small and large scale (real size) networks are used to evaluate the proposed 

algorithm. The results of this study show the advantage of the proposed algorithm in term of 

computational cost. The shortest path and arrival time are slightly different from the optimum 

solution in some cases. The proposed algorithm is explained in Section 4.2. The numerical 

implementation and conclusion are provided in Sections 4.3 and 4.4, respectively. 



82 
 

4.2 PROPOSED TIME DEPENDENT BIDIRECTION DIJKSTRAL ALGORITHM 

Suppose a network of 𝑁 nodes and 𝑀 links is described by a graph 𝐺(𝑉, 𝐴) where 𝑉 and 

A are sets containing all the existing nodes and links in the network, respectively. The cost of each 

link connecting node 𝑣  to node 𝑤 is denoted by 𝑐(𝑣, 𝑤). The goal is to find the shortest path from 

the source node 𝑠 to the destination node 𝑡.  

The piece-wise linear function that was introduced in Section 3.2 is also used to generate 

time-dependent cost function for the links in this section. The travel time from node 𝑣 to node 𝑤 

of a link 𝑘 is not constant in dynamic networks and depends on the departure time at the starting 

node 𝑣. The following formulas are employed for finding the arrival time at ending node of a 

typical link (𝑣 → 𝑤).  

 𝐴𝑇 =  𝐷𝑇 + 𝐶𝑆𝑇𝑣𝑤  ×  𝑇𝐷𝐹(𝐷𝑇) (78) 

where 𝐴𝑇  represents arrival time at the ending node 𝑤, 𝐷𝑇 is the departure time at the starting 

node 𝑣, 𝐶𝑆𝑇𝑣𝑤 stands for Constant Static Time of the link, and 𝑇𝐷𝐹is the Time Delay Factor which 

is dependent on departure time, 𝐷𝑇, and can be defined by Equation (79).  

 𝑇𝐷𝐹(𝐷𝑇) =   1 +  𝑦(𝐷𝑇) (79) 

                        

where 𝑦(𝐷𝑇) is the time function for the link. The piece-wise linear time function is depicted in 

Figure 21. Usually in a dynamic network, travel time is increased during rush hours (i.e., during 

6𝑎𝑚 − 8𝑎𝑚 and during 4: 00pm−6: 00pm). In Figure 21, the coordinates (𝐷𝑇, 𝑦(𝐷𝑇)) of such 

points O, A, B, C, D, E, F, G, H, and I are defined as the input parameter provided by the end-user. 

Thus, this piece-wise linear time function can be adjusted to take into account the variations of 

local traffic congestion time. 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Figure1


83 
 

The proposed algorithm is based on the Dijkstra’s algorithm and similarly starts by exploring the 

source node and finding distance array (𝑑) and predecessor array (𝑝𝑟𝑒𝑑) at each iteration for 

outgoing link(s) and then, updates them. The distance array, 𝑑, contains the distance of each node 

from the source node(s). The distance array 𝑑 is found using the following formula: 

 𝑑 (𝑣) =  𝑑 (𝑤) + 𝐶𝑆𝑇𝑣𝑤  × 𝑇𝐷𝐹 (80) 

 

 

 

Figure 21.  Piece-wise linear time function for a typical link k. 

 

where 𝑣 is the starting node and 𝑤 is the ending node of the corresponding link, 𝑘.The static cost 

of travel from node 𝑣 to node 𝑤 for link 𝑘 is denoted by 𝐶𝑆𝑇𝑣𝑤. Also, the corresponding time delay 

factor, 𝑇𝐷𝐹, is calculated by Equation (79). 

The static bidirectional algorithm starts its forward and backward search simultaneously. 

When both searches collide at a node, the algorithm stops. For time dependent networks, this 

method cannot be used because the arrival time is unknown to start the backward search. In a case 



84 
 

where the arrival time for backward search is guessed, the arrival time at the collision node of both 

searches cannot be the same.  

To overcome the above mentioned difficulties a new bidirectional algorithm is proposed 

in this work. The proposed algorithm starts the forward and backward search until the collision 

node is found. Then, the backward search stops and forward search continues to explore nodes 

which was previously explored through backward search process. The backward search is only 

implemented to limit the number of nodes required to be explored by forward search. This idea 

was first presented by Nannicini et al. (2012). They started the backward search using lower 

bounds on arc costs to analyze a dynamic network using a bidirectional A* algorithm. In a different 

manner, in this study, a guessed arrival time is used to start the backward search. Note that the 

departure time for the backward search is found using Equation (81). 

 𝐷𝑇 =  𝐴𝑇 − 𝐶𝑆𝑇𝑖𝑗  × (1 + 𝑦𝑟(𝐷𝑇)), 𝑟 = 1, … ,9 (81) 

 

where the value of each departure time, 𝐷𝑇, can be calculated. Note that 𝑦𝑟(𝐷𝑇), 𝑟 = 1,… ,9, is 

only valid for a certain time range as indicated in Figure 21. For cases where multiple solutions 

for 𝐷𝑇 exists, the departure time which produces the smallest value of time function ( 𝑦(𝐷𝑇)  =

 𝑦𝑚𝑖𝑛) is selected. This selection also corresponds to the smallest value of time delay 

factor(𝑇𝐷𝐹 =  𝑇𝐷𝐹𝑚𝑖𝑛).  Then, the backward search is performed similar to Section 3.2. 

The step by step procedure for the proposed algorithm is summarized below: 

Phase 1. In this phase, the algorithm starts the forward and backward search simultaneously until 

the collision node is found. Note that the forward search uses the network with the reversed link’s 

direction. The phase 1 is performed in the following steps:  

Step1.  Initialize: 

file:///C:/Users/GBS/Desktop/dissertation/final%20paper%20VERSION%20SUBMITTED.docx%23Figure1


85 
 

 the distance array, 𝑑, with an element for each node in the graph. Set the element value 

corresponding to the source node to zero and all the other elements to a large value (i.e., 

𝑖𝑛𝑓): Set 𝑑(𝑠) = 0 and for all 𝑣 ∈  𝑉 − {𝑠}, 𝑠𝑒𝑡 𝑑(𝑣) =  ∞ 

 predecessor array, 𝑝𝑟𝑒𝑑, with a length equal to the number of nodes in the graph. Then 

assign zero or null to all the elements of 𝑝𝑟𝑒𝑑.  

 an array for the exploring nodes, denoted as 𝑆. Increase the size of 𝑆 at each iteration by 

adding a new node. Note that this array starts either with the source node or the destination 

node for forward and backward searches, respectively.  

Step2.  

 For a typical link, 𝑣 → 𝑤, explore all the outgoing nodes of the last coefficient of array 𝑆: 

if  𝑑 (𝑤) >  𝑑 (𝑣) + 𝐶𝑆𝑇𝑣𝑤  × 𝑇𝐷𝐹  then,  

            𝑑 (𝑤) =  𝑑 (𝑣) + 𝐶𝑆𝑇𝑣𝑤  × 𝑇𝐷𝐹, and 

            𝑝𝑟𝑒𝑑 (𝑤) = 𝑣,  

                        else if 𝑑 (𝑤) ≯  𝑑 (𝑣) + 𝐶𝑆𝑇𝑣𝑤  × 𝑇𝐷𝐹  then, 

                                   apply no update to that link (i.e., for 𝑑 and 𝑝𝑟𝑒𝑑 arrays). 

end if 

 

 Find the next node to search which is the node with the minimum value of distance array, 

𝑑.  

 If the next exploring node for backward search and forward search is the same go to phase 

2, else go to step 2. 

Phase 2. Continue the forward search to explore nodes which are settled in the array S found by 

backward search, 𝑆𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑, in phase 1. 

 Explore all the outgoing nodes of 𝑆𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 array from the collision node to the destination 

node and update the information:  

If  𝑑 (𝑤) >  𝑑 (𝑣) + 𝐶𝑆𝑇𝑣𝑤  × 𝑇𝐷𝐹  then, 

        𝑑 (𝑤) =  𝑑 (𝑣) + 𝐶𝑆𝑇𝑣𝑤  × 𝑇𝐷𝐹 and  



86 
 

        𝑝𝑟𝑒𝑑 (𝑤) = 𝑣,  

else if 𝑑 (𝑤) ≯  𝑑 (𝑣) + 𝐶𝑆𝑇𝑣𝑤  × 𝑇𝐷𝐹  then, 

         apply no update to the link (i.e., for 𝑑 and 𝑝𝑟𝑒𝑑 arrays). 

end if 

 

 If the next exploring node is the destination node then stop.  

 Specify the Shortest Path cost= 𝑑(𝑡), then, find the shortest path by back-tracking the 

destination node 𝑡 using 𝑝𝑟𝑒𝑑 array. 

In a dynamic network that utilize a piece-wise function, an estimate of the arrival time can 

be obtained using the following extrapolation (Talbot, private communication). 

 𝑡𝐸 = [|𝛥𝑁#|(
#𝑁
#𝐿
) × 𝐺𝑒𝑜 𝑀𝑒𝑎𝑛 𝑆&𝐷 𝐿. 𝐶.  × (�̅� + 1)] + 𝐷𝑇 (82) 

 

where 𝑡𝐸 is the extrapolated guessed arrival time, 𝛥𝑁# is the difference in node number for the 

source and destination nodes, # 𝑁 is the number of nodes in network, #𝐿 is the number of links in 

network, 𝐺𝑒𝑜 𝑀𝑒𝑎𝑛 𝑆&𝐷 𝐿. 𝐶. is the geometric mean of source and destination link cost, �̅� is the 

arithmetic mean of 𝑦, and 𝐷𝑇 is departure time. 

Equation (82) is the product of three main components: average number of links between 

two given points in a given network, average link cost at source and destination nodes, and average 

piecewise function time penalty plus the departure time. 

The first component of the equation uses a power function to estimate the number of links 

between any two points in a given network.  The second component of the equation uses the 

geometric mean of the source node and destination node link costs to estimate the average link 

cost throughout the entire network.  A geometric mean is used to obtain the “average” since the 

central tendency it delivers is less sensitive to wide variability in the data.  An arithmetic mean is 



87 
 

used to determine the time-based penalty of the network since an input value of zero gives a 

geometric mean of zero. More details on this formula is presented in Appendix B. 

 

4.3   NUMERICAL IMPLEMENTATION 

To facilitate the elaboration of the proposed bidirectional algorithm, a small network is 

solved first. Then, the proposed algorithm is used to solve multiple real-road network problems.  

Problem 4.1 Use the proposed algorithm to find the shortest path from the source node 2 to the 

destination node 8 when departure time is 6 hours (6 am) for the network depicted in Figure 22. 

Assume that the guessed arrival time is 13 hours (1 pm). The network with the reversed link’s cost 

is shown in Figure 23.  

 

 

Figure 22.  A network topology with 9 nodes and 15 links. 

 



88 
 

 

Figure 23.  The reversed network topology with 9 nodes and 15 links. 

 

 

 

Phase1: 

Forward search: 

Step1.  Initialize: 

𝑆𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 =  2 
𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒 =  8 
𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 =  6 
𝑑 = {𝐼𝑛𝑓     0   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 = { 0     0     0     0     0     0     0     0     0} 
𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑 =  2 

 

Step 2. Explore all the outgoing nodes of the last coefficient of array 𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑: 

 

First iteration: Explore all the outgoing links for node 2, when departure time is 6 hours and  

𝑇𝐷𝐹 = 1 + 𝑦 = 2. This information is shown in Table 14.  

The next node to explore is node 1 since the value of distance array for both nodes 1 and 5 are the 

same (i.e., 𝑑(1) = 4 and 𝑑(4) = 4), the smallest node is selected to be explored next. Update the 

information: 𝑛𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 = 1, 𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = {  2   1} 



89 
 

Table 14.  Information for exploring all the outgoing links of node 2. 

Link 2 1 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =      2 

𝑑 = {4     0   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 = {   2     0     0     0     0     0     0     0     0} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 = 10 

Link 2 3 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =     12 

𝑑 = { 4     0    24   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 = { 2     0     2     0     0     0     0     0     0} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 =  30 

Link 2 5 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =      2 

𝑑 = {4     0    24   𝐼𝑛𝑓     4   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 = { 2     0     2     0     2     0     0     0     0} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 =  10 

Link 2 7 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =      5 

𝑑 = {4     0    24   𝐼𝑛𝑓     4   𝐼𝑛𝑓    10   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 = { 2     0     2     0     2     0     2     0     0} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 = 16 

 

 

Second iteration: Explore all the outgoing links for node 1, when departure time is 10 hours and  

𝑇𝐷𝐹 = 1 + 𝑦 = 1. This information is shown in Table 15. 

 

Table 15.  Information for exploring all the outgoing links of node 1. 

Link 1 2 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =      2 

No update for 𝑑 and 𝑝𝑟𝑒𝑑 arrays. 

Link 1 3 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =      5 

𝑑 = {4     0     9   𝐼𝑛𝑓     4   𝐼𝑛𝑓    10   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 = {2     0     1     0     2     0     2     0     0} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 =  15 

 

 

The next node to explore is node 5, update the data to start next iteration:  

  𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = {  2     1     5}.  



90 
 

Third iteration: Explore all the outgoing links for node 5, when departure time is 10 hours and  

𝑇𝐷𝐹 = 1 + 𝑦 =   1. This information is shown in Table 16. 

 

Table 16.  Information for exploring all the outgoing links of node 5. 

Link 5 2 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =      3 

No update for 𝑑 and 𝑝𝑟𝑒𝑑 arrays. 

Link 5 6 

𝐿𝑖𝑛𝑘 𝑐𝑜𝑠𝑡 =      1 

𝑑 = { 4     0     9   𝐼𝑛𝑓     4     5    10   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 = 11 

𝑝𝑟𝑒𝑑 = { 2     0     1     0     2     5     2     0     0} 
 

 

 

 
The next node to explore is node 6, update the data to start next iteration: 

𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = {  2     1    5    6} 

Backward search: 

Step1. Initialize: 

𝑆𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 =  8 
𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒 =  2 

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒 = 13 
𝑑 = {𝐼𝑛𝑓     𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   0   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 = { 0     0     0     0     0     0     0     0     0} 
𝑆𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 =   8 
 

Step 2. Explore all the outgoing nodes of the last coefficient of array  𝑆𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑: 

 

First iteration: Explore all the outgoing links for node 8, when arrival time is 13 hours. Find 

departure time using Equation (81) and select the proper departure time for each outgoing link. 

The information obtained in the first iteration is shown in Table 17. 

 

 

 



91 
 

Table 17.  Information for exploring all the outgoing links of node 8 (backward search). 

Link 8 6 

𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = {  𝐼𝑛𝑓    5.8       𝐼𝑛𝑓    9.0   9.0       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦 = { 𝐼𝑛𝑓    0.8       𝐼𝑛𝑓         0         0       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦𝑚𝑖𝑛 = 𝑦(4) = 0 ⇒  𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 9 

𝑇𝐷𝐹 =      1 

𝑑 =   { 𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓     4   𝐼𝑛𝑓     0   𝐼𝑛𝑓} 
𝑝𝑟𝑒𝑑 =  {  0     0     0     0     0     8     0     0     0} 
Link 8 9 

𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 =  {𝐼𝑛𝑓       𝐼𝑛𝑓    7.0    8.5  10.0      𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦 = { 𝐼𝑛𝑓       𝐼𝑛𝑓    1.0    0.5         0       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦𝑚𝑖𝑛 = 𝑦(5) = 1 ⇒  𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 10 

𝑇𝐷𝐹 =      1 

𝑑 =  {   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓   𝐼𝑛𝑓     4   𝐼𝑛𝑓     0     3} 
𝑝𝑟𝑒𝑑 = {0     0     0     0     0     8     0     0     8} 

 

 

The next node to explore is node 9, update the data to start the next iteration:  

𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒  =     10 
𝑆𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = {  8     9} 
 

Second iteration: Explore all the outgoing links for node 9, when arrival time is 10 hours. This 

iteration is summarized in Table 18. 

The next node to explore is node 6, update the data: 𝑆𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = { 8     9     6}. 

The forward search and backward search met at node 6, so backward search stops here. Forward 

search continues as follows. 

Phase 2: 

 

The forward search continues to explore nodes which are settled in the array S found by 

backward search, 𝑆𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑. 

 𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = {2     1     5     6} 
𝑆𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = { 8     9     6} 
 

First iteration: Explore all the outgoing links for node 6, when departure time is 11 hours and  

𝑇𝐷𝐹 = 1 + 𝑦 =   1. This information is shown in Table 19. 

 

 



92 
 

Table 18.  Information for exploring all the outgoing links of node 9 (backward search). 

Link 9 7 

𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = {𝐼𝑛𝑓    5.5       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦 = { 𝐼𝑛𝑓    0.5       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦𝑚𝑖𝑛 = 𝑦(2) = 0.5 ⇒  𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 5.5 

𝑇𝐷𝐹 =     1.5 

𝑑 =  { 𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓    4.0    7.5         0    3.0} 
𝑝𝑟𝑒𝑑 = {0     0     0     0     0     8     9     0     8} 
Link 9 8 

𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 =  {𝐼𝑛𝑓    5.5       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦_𝑐ℎ𝑒𝑐𝑘 =       { 𝐼𝑛𝑓    0.5       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓       𝐼𝑛𝑓} 
𝑦𝑚𝑖𝑛 = 𝑦(2) = 0.5 ⇒  𝐷𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒 𝑡𝑖𝑚𝑒 = 5.5 

𝑇𝐷𝐹 = 1.5 

No update for 𝑑 and 𝑝𝑟𝑒𝑑 arrays. 

 

 

 

Table 19.  Information for exploring all the outgoing links of node 6. 

Link 6 7 

𝑑 = {4     0     9   𝐼𝑛𝑓     4     5     6   𝐼𝑛𝑓   𝐼𝑛𝑓} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒  =  12  
𝑝𝑟𝑒𝑑 =  { 2     0     1     0     2     5     6     0     0} 
Link 6 8 

𝑑 = {4     0     9   𝐼𝑛𝑓     4     5     6     9   𝐼𝑛𝑓} 
𝐴𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒  =  15   
𝑝𝑟𝑒𝑑 = {2     0     1     0     2     5     6     6     0} 

 

 

The next node to explore is node 9, update the data to start next iteration:  

𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = { 2     1     5     6     9} 
 

Second iteration: Explore all the outgoing links for node 9, when departure time is 11 hours and  

𝑇𝐷𝐹 = 1 + 𝑦 =   1. There is no update for array 𝑑 and 𝑝𝑟𝑒𝑑 of both outgoing links from node 9 

(i.e., link 9 4 and link 9 8). Therefore, the next node to explore is node 8 which is the 

destination node.  

𝑆𝐹𝑜𝑟𝑤𝑎𝑟𝑑 = { 2     1     5     6     9     8} 

Third iteration: The search stops here because the next node to explore is the destination node. 

The shortest path cost is 9 (𝑑(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 ) = 𝑑(8) = 9) , the shortest path is found by back-



93 
 

tracking the destination node, 𝑡 = 8, using 𝑝𝑟𝑒𝑑 array: 𝑝𝑎𝑡ℎ =  { 2 → 5 →  6 → 8}, and the 

arrival time is 15 hours (3 pm). 

Problem 4.2 Use the proposed algorithm to find the shortest path from the source node 5 to the 

destination node 6100 when departure time is 23 hours (11 pm) for Austin road network. This 

network has 7388 nodes and 18961 links. Since the arrival time is unknown, consider the following 

6 values for the arrival time to start the backward search. Compare the results of all the 6 cases 

with the forward Dijkstra algorithm. 

1) Guessed arrival time is 30 

2) Guessed arrival time is 40 

3) Guessed arrival time is 50 

4) Guessed arrival time is 60 

5) Guessed arrival time is 70 

6) Guessed arrival time is 31.4261 hours when the extrapolated formula, Equation (81), used. 

 

 
First, the problem was solved using time dependent Dijkstra algorithm and the arrival time 

at node 6100 was 53.041 hours. Then, problem was solved for all the 6 cases using the proposed 

algorithm obtaining identical results to those of Dijkstra algorithm.  

The proposed heuristic bidirectional algorithm explored fewer nodes in comparison with 

the Dijkstra algorithm. In other words, the proposed algorithm reduces the computational cost by 

reducing the number of explored nodes without compromising the accuracy of the results. The 

Dijkstra algorithm explored 6036 nodes while the proposed algorithm explored less nodes for each 

case of guessed arrival time. The results are shown in Table 20. 

 

 

 



94 
 

Table 20.  Number of explored nodes for all the cases in Problem 4.2. 

Dijkstra 

Algorithm 

The Proposed Algorithm 

𝐴𝑇 = 30 𝐴𝑇 = 40 𝐴𝑇 = 50 𝐴𝑇 = 60 𝐴𝑇 = 70 𝐴 = 31.4261 

6036 2605 2689 2711 2597 2703 2667 

 

Based on Table 20, the guessed arrival time has direct effect on the number of explored nodes. A 

proper value for guessed arrival time can help to reduce computational cost of finding the shortest 

path. In this example, the minimum number of nodes were explored when the arrival time was 60 

(hours). 

In order to further evaluate the proposed algorithm, 10 more examples were selected from 

four road networks: Winnipeg, Barcelona, Philadelphia, and Austin. The properties of these 

examples are given in Table 21. The destination and source nodes of all the examples were selected 

arbitrary.  

The above mentioned examples were solved both by forward Dijkstra and the proposed 

bidirectional algorithms. The piece-wise linear function, explained in Section 4.2, was used to 

make both algorithms time dependent. The requirement to start the backward search within the 

bidirectional algorithm is to guess the arrival time. So, two distinct values for the guessed arrival 

time were considered in which one of them was selected arbitrary by user and the other one was 

calculated using the extrapolated guessed arrival time formula given by Equation (82). The results 

are shown in Table 22 and Table 23. 

 

 

 



95 
 

Table 21.  Properties of the large scale examples. 

 

 

 

As seen in Table 22, in all examples but example 6, identical values were found for shortest 

path and arrival time using Dijkstra and the proposed algorithm with arbitrary guessed arrival time. 

When the extrapolated guessed arrival time was used with the proposed algorithm, the calculated 

shortest path and the arrival time values were identical to those of forward Dijkstra algorithm for 

all the examples but examples 6 and 8.  

The numerical results presented in Table 22 also show that the proposed algorithm can 

decrease the number of explored nodes by half when compared to the forward Dijkstra algorithm.  

 

 

 

 

 

 

 

 

 

E
x

a
m

p
le

 

N
et

w
o

rk
 

N
u

m
b

er
 o

f 

L
in

k
s 

N
u

m
b

er
 o

f 

N
o

d
es

 

D
ep

a
rt

u
re

 

T
im

e 
(h

o
u

rs
) 

S
o

u
rc

e
 N

o
d

e
 

D
es

ti
n

a
ti

o
n

 N
o

d
e
 

A
rb

it
ra

ry
 

G
u

es
se

d
  

A
rr

iv
a

l 

T
im

e 
(h

o
u

rs
) 

E
x

tr
a

p
o

la
te

d
  

G
u

es
se

d
 A

rr
iv

a
l 

T
im

e 
(h

o
u

rs
) 

1 Winnipeg 2836 1052 6 5 100 10 15.1562 

2 Barcelona 2522 1020 6 5 400 18 12.2964 

3 Austin 18961 7388 1 56 1800 22 11.3923 

4 Austin 18961 7388 23 5 6100 40 31.4261 

5 Philadelphia 40003 13389 1 6 560 12 3.2907 

6 Philadelphia 40003 13389 1 48 1415 59 1.6266 

7 Philadelphia 40003 13389 6 100 1429 54 6.9814 

8 Philadelphia 40003 13389 1 253 1415 59 2.4835 

9 Austin 18961 7388 6 1 7388 24 21.1258 

10 Barcelona 2522 1020 7 50 1003 22 19.4493 



96 
 

Table 22.  Results for forward and bidirectional algorithms for 10 examples of Table 21. 

 

 
 

The performance of the proposed method in solving the above examples with different 

values of guessed arrival time is summarized below:  

 The number of exploded nodes in five examples (i.e., 1,2,5,9, and 10) was not 

affected by guessed arrival time. 

 In four examples (i.e., 3, 4, 6, and 8), the algorithm explored less nodes with 

arbitrary arrival time when compared with the extrapolated guessed arrival time.     

 In one example (i.e., 7), the algorithm explored less nodes using extrapolated 

guessed arrival time when compared with the arbitrary guessed arrival time. 

 

 

 

 

E
x

a
m

p
le

 

N
et

w
o

rk
 

D
ep

a
rt

u
re

 T
im

e 
 (

h
o

u
rs

) Arrival Time (hours) Number of Explored Nodes 

F
o

rw
a

rd
 D

ij
k

st
ra

 

P
ro

p
o

se
d

  
A

lg
o

ri
th

m
  

 +
A

rb
it

ra
ry

  

G
u

es
se

d
 A

rr
iv

a
l 

T
im

e
 

P
ro

p
o

se
d

  
A

lg
o

ri
th

m
  

 +
 E

x
tr

a
p

o
la

te
d

 

G
u

es
se

d
 A

rr
iv

a
l 

T
im

e
 

F
o

rw
a

rd
 D

ij
k

st
ra

 

P
ro

p
o

se
d

 A
lg

o
ri

th
m

 

+
A

rb
it

ra
ry

  

G
u

es
se

d
 A

rr
iv

a
l 

T
im

e
 

P
ro

p
o

se
d

 A
lg

o
ri

th
m

 

 +
 E

x
tr

a
p

o
la

te
d

 

G
u

es
se

d
 A

rr
iv

a
l 

T
im

e
 

1 Winnipeg 6 16.4940 16.4940 16.4940 563 255 255 

2 Barcelona 6 10.5878 10.5878 10.5878 142 95 95 

3 Austin 1 22.8558 22.8558 22.8558 4129 2082 2100 

4 Austin 23 53.0410 53.0410 53.410 6036 2597 2667 

5 Philadelphia 1 13.4817 13.4817 13.4817 5118 2538 2538 

6 Philadelphia 1 63.3523 66.6138 63.6382 13386 5658 5800 

7 Philadelphia 6 57.1655 57.1655 57.1655 13086 6728 6680 

8 Philadelphia 1 67.8548 67.8548 68.7716 13387 6425 6599 

9 Austin 6 22.7972 22.7972 22.7972 736 277 277 

10 Barcelona 7 14.0048 14.0048 14.0048 566 214 214 



97 
 

Table 23.  Comparison of consuming time for forward Dijkstra and the proposed algorithms for 

10 examples of Table 21. 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the number of explored nodes for Dijkstra algorithms is the same as the number of 

iterations. Since, the proposed algorithm needs less iterations to find the shortest path it also can 

reduces the computation time. Based on the numerical results presented in Table 23, the 

computational speed of the proposed algorithm is at least 60% and at most 430% higher than that 

of forward Dijkstra algorithm. 

 

4.4   CONCLUSION  

In the proposed heuristic bidirectional algorithm, the forward and backward searches start 

simultaneously. When both searches meet at a node, the backward search stops. Then, the forward 

E
x

a
m

p
le

 

N
et

w
o

rk
 

D
ep

a
rt

u
re

 T
im

e 
 (

h
o

u
rs

) 

A
rb

it
ra

ry
 G

u
es

se
d

  

 A
rr

iv
a

l 
T

im
e
  

(h
o

u
rs

) 

E
x

tr
a

p
o

la
te

d
  

G
u

es
se

d
 

A
rr

iv
a

l 
 T

im
e 

 (
h

o
u

rs
) 

Consuming Time (seconds) 

F
o

rw
a

rd
 D

ij
k

st
ra

 

P
ro

p
o

se
d

  
A

lg
o

ri
th

m
  

 +
 A

rb
it

ra
ry

 

 G
u

es
se

d
 A

rr
iv

a
l 

T
im

e
 

P
ro

p
o

se
d

  
A

lg
o

ri
th

m
  

 +
 E

x
tr

a
p

o
la

te
d

 

G
u

es
se

d
 A

rr
iv

a
l 

 T
im

e
 

1 Winnipeg 6 10 15.1562 0.0088 0.0053 0.0053 

2 Barcelona 6 18 12.2964 0.0048 0.0022 0.0020 

3 Austin 1 22 11.3923 0.0879 0.0448 0.0451 

4 Austin 23 40 31.4261 0.1169 0.0598 0.0600 

5 Philadelphia 1 12 3.2907 0.1570 0.0691 0.0689 

6 Philadelphia 1 59 1.6266 0.3640 0.1547 0.1609 

7 Philadelphia 6 54 6.9814 0.3629 0.1832 0.1819 

8 Philadelphia 1 59 2.4835 0.3656 0.1715 0.1732 

9 Austin 6 24 21.1258 0.0312 0.0072 0.0073 

10 Barcelona 7 22 19.4493 0.0072 0.0037 0.0037 



98 
 

search continue to explore nodes which already settled by backward search. To generate a time 

dependent links cost, a Time Delay Factor method was combined with a piece-wise linear function. 

The backward search is only used to restrict the search space of forward search to the nodes 

that have been previously explored by backward search. The backward search explores all the 

nodes on the shortest path which has not been explored by the forward search.  

Based on the numerical results, the proposed bidirectional algorithm is able to find the 

shortest path while decreasing the computational cost. The speedup is significant even though in 

some cases the obtained solutions were slightly sub-optimal. This increased speed is significant 

when the objective is to simultaneously find the shortest paths for multiple routes on a road 

network. 

Since a good guessed arrival time directly affects the number of explored nodes throughout 

the algorithm, the extrapolated guessed arrival time is the preferred method over the arbitrary 

guessed arrival time. The extrapolated guessed arrival time is calculated by proposed algorithm 

and not no longer considered input data. 

 

 

 

 

 

 

 

 



99 
 

REFERENCES  

 

Abbass, H. A. (2002, 12-17 May 2002). The self-adaptive Pareto differential evolution algorithm. 

Paper presented at the Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 

Congress on. 

 

Abraham, S. C., & Shukla, G. D. (2015). Shortest path computation in large graphs using 

bidirectional strategy and genetic algorithms. International Journal of Computer 

Applications, 109(13) doi:http://dx.doi.org.proxy.lib.odu.edu/10.5120/19250-0932 

 

Allen, S. E. (2013) Parallel implementations of the Frank-Wolfe algorithms for the traffic 

assignment problem, M.Sc. Thesis, MSVE Department, Old Dominion University, Norfolk, 

USA. http://dx.doi.org/10.1109/ivs.2005.1505180 

 

Azad, M. A. K., & Fernandes, M. G. P. (2013). Modified constrained differential evolution for 

solving nonlinear global optimization problems. In K. Madani, A. Dourado, A. Rosa, & J. 

Filipe (Eds.), Computational Intelligence: Revised and Selected Papers of the International 

Joint Conference, IJCCI 2011, Paris, France, October 24-26, 2011 (pp. 85-100). Berlin, 

Heidelberg: Springer Berlin Heidelberg. 

 

Bakhtyar, G., Nguyen, V., Cetin, M., & Nguyen, D. (2016) Backward Dijkstra algorithms for 

finding the departure time based on the specified arrival time for real-life time-dependent 

networks. Journal of Applied Mathematics and Physics, 4, 1-7. 

doi: 10.4236/jamp.2016.41001. 

 

Balling, R. J., Briggs, R. R., & Gillman, K. (2006). Multiple optimum size/shape/topology designs 

for skeletal structures using a genetic algorithm. Journal of Structural Engineering, 132(7), 

1158-1165. 

 

Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Self-adapting control 

parameters in differential evolution: A comparative study on numerical benchmark 

problems. IEEE Transactions on Evolutionary Computation, 10(6), 646-657. 

doi:10.1109/TEVC.2006.872133 

 

Camp, C., & Bichon, B. (2004). Design of space trusses using ant colony optimization. Journal of 

Structural Engineering, 130(5), 741-751. 

 

Chabini, I. and Ganugapati, S. (2002) Parallel algorithms for dynamic shortest path problems, 

International Transactions in Operational Research, 9, 279-302. 

http://dx.doi.org/10.1111/1475-3995.00356 

 

Chen, T. Y., & Chen, H. C. (2008).Mixed-discrete structural optimization using a rank-niche 

evolution strategy. Engineering Optimization, 41, 39-58. 

 

http://dx.doi.org/10.1109/ivs.2005.1505180
http://dx.doi.org/10.4236/jamp.2016.41001
http://dx.doi.org/10.1111/1475-3995.00356


100 
 

Cooke, K. L., & Halsey, E. (1966). The shortest route through a network with time-dependent 

internodal transit times. Journal of Mathematical Analysis and Applications, 14(3), 493-

498. doi:http://dx.doi.org/10.1016/0022-247X(66)90009-6 

 

Cui, L., Li, G., Lin, Q., Chen, J., & Lu, N. (2016). Adaptive differential evolution algorithm with 

novel mutation strategies in multiple sub-populations. Computers & Operations Research, 

67, 155-173. doi:http://dx.doi.org/10.1016/j.cor.2015.09.006 

 

Daganzo, C. F. (2002) Reversibility of the time-dependent shortest path problem. Transportation 

Research Part B: Methodological, 36(7), 665-668. http://dx.doi.org/10.1016/s0191-

2615(01)00012-1  
 

Das, S., Konar, A., & Chakraborty, U. K. (2005). Two improved differential evolution schemes for 

faster global search. Paper presented at the Proceedings of the 7th Annual Conference on 

Genetic and Evolutionary Computation, Washington DC, USA.  

 

Das, S., & Suganthan, P. (2011). Differential evolution: A survey of the state-of-the-art. IEEE 

Transactions on Evolutionary Computation, 15(1), 4-31. 

 

Das, S., Mullick, S. S., & Suganthan, P. N. (2016). Recent advances in differential evolution – An 

updated survey. Swarm and Evolutionary Computation, 27, 1-30. 

doi:http://dx.doi.org/10.1016/j.swevo.2016.01.004 

 

Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer 

Methods in Applied Mechanics and Engineering, 186(2), 311-338. 

doi:http://dx.doi.org/10.1016/S0045-7825(99)00389-8 

 

Ding, B., Yu, J.X. ,& Qin, L. (2008) Finding time-dependent shortest paths over large graphs. 

EDBT’2008 Proceedings of the 11th International Conference on Extending Database 

Technology: Advances in Database Technology, 205-216. 

http://dx.doi.org/10.1145/1353343.1353371 

 

Eiben, A. E., Hinterding, R., & Michalewicz, Z. (1999). Parameter control in evolutionary 

algorithms. IEEE Transactions on Evolutionary Computation, 3(2), 124-141. 

doi:10.1109/4235.771166 

 

Fan, Q., & Yan, X. (2015). Self-adaptive differential evolution algorithm with discrete mutation 

control parameters. Expert Systems with Applications, 42(3), 1551-1572. 

doi:http://dx.doi.org/10.1016/j.eswa.2014.09.046 

 

Feoktistov, V. (2006). Differential evolution: In search of solutions (Springer optimization and its 

applications): Springer-Verlag New York, Inc. 

 

 

 

http://dx.doi.org/10.1016/s0191-2615(01)00012-1
http://dx.doi.org/10.1016/s0191-2615(01)00012-1
http://dx.doi.org/10.1145/1353343.1353371


101 
 

Gamperle, R., Müller, S. D., & Koumoutsakos, P. (2002). A parameter study for differential 

evolution, Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation, A. 

Grmela and N. E. Mastorakis, Eds. Interlaken, Switzerland: WSEAS Press, 2002, pp. 293–

298. 

 

Gandomi, A.H., Yang, X., & Alavi, A.H. (2011). Mixed variable structural optimization using 

Firefly Algorithm. Computers and Structures, 89(23), 2325-2336. 

 

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies: Faster and 

simpler hierarchical routing in road networks. In C. C. McGeoch (Ed.), Experimental 

Algorithms: 7th International Workshop, WEA 2008 Provincetown, MA, USA, May 30-

June 1, 2008 Proceedings (pp. 319-333). Berlin, Heidelberg: Springer Berlin Heidelberg. 

 

Gholizadeh, S. (2013). Layout optimization of truss structures by hybridizing cellular automata 

and particle swarm optimization. Computers & Structures, 125, 86-99. 

doi:http://dx.doi.org/10.1016/j.compstruc.2013.04.024 

 

Goldberg, D.E., Personal communication, September 1992. 

 

Gonçalves, M. S., Lopez, R. H., & Miguel, L. F. F. (2015). Search group algorithm: A new 

metaheuristic method for the optimization of truss structures. Computers & Structures, 

153, 165-184. doi:http://dx.doi.org/10.1016/j.compstruc.2015.03.003 

 

Hasançebi, O., & Erbatur, F. (2002). Layout optimisation of trusses using simulated annealing. 

Advances in Engineering Software, 33(7), 681-696. doi:http://dx.doi.org/10.1016/S0965-

9978(02)00049-2 

 

Hernández, S., Leguizamón, G., & Mezura-Montes, E. (2013, 20-23 June 2013). A hybrid version 

of differential evolution with two differential mutation operators applied by stages. Paper 

presented at the 2013 IEEE Congress on Evolutionary Computation. 
 

Ho-Huu, V., Nguyen-Thoi, T., Nguyen-Thoi, M. H., & Le-Anh, L. (2015). An improved 

constrained differential evolution using discrete variables (D-ICDE) for layout 

optimization of truss structures. Expert Systems with Applications, 42(20), 7057-7069. 

doi:http://dx.doi.org/10.1016/j.eswa.2015.04.072 

 

Islam, S. M., Das, S., Ghosh, S., Roy, S., & Suganthan, P. N. (2012). An adaptive differential 

evolution algorithm with novel mutation and crossover strategies for global numerical 

optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 

42(2), 482-500. doi:10.1109/TSMCB.2011.2167966 
 
Jia, G., Wang, Y., Cai, Z., & Jin, Y. (2013). An improved (μ+λ)-constrained differential evolution 

for constrained optimization. Information Sciences, 222, 302-322. 

doi:http://dx.doi.org/10.1016/j.ins.2012.01.017 

 

 



102 
 

Kaveh, A., & Kalatjari, V. (2004). Size/geometry optimization of trusses by the force method and 

genetic algorithm. ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für 

Angewandte Mathematik und Mechanik, 84(5), 347-357. doi:10.1002/zamm.200310106 

 

Kaveh, & Talatahari. (2009). Particle swarm optimizer, ant colony strategy and harmony search 

scheme hybridized for optimization of truss structures. Computers and Structures, 87(5), 

267-283.  

 

Krempser, E., Bernardino, H. S., Barbosa, H. J. C., & Lemonge, A.C.C. (2012). Differential 

evolution assisted by surrogate models for structural optimization problems, in B.H.V. 

Topping, (Editor), Proceedings of the Eighth International Conference on Engineering 

Computational Technology, Civil-Comp Press, Stirlingshire, UK, Paper 49, 2012. 

doi:10.4203/ccp.100.49 

 

Lampinen, J., & Zelinka, I. (1999). Mechanical engineering design optimization by differential 

evolution. In C. David, D. Marco, G. Fred, D. Dipankar, M. Pablo, P. Riccardo, & V. P. 

Kenneth (Eds.), New ideas in optimization (pp. 127-146): McGraw-Hill Ltd., UK. 

 

Lee, K. S., Geem, Z. W., Lee, S.-h., & Bae, K.-w. (2005). The harmony search heuristic algorithm 

for discrete structural optimization. Engineering Optimization, 37(7), 663-684. 

doi:10.1080/03052150500211895 

 

Liu, J., & Lampinen, J. (2005). A fuzzy adaptive differential evolution algorithm. Soft Computing, 

9(6), 448-462. doi:10.1007/s00500-004-0363-x 

 

Liao, T. W. (2010). Two hybrid differential evolution algorithms for engineering design 

optimization. Applied Soft Computing, 10(4), 1188-1199. 

doi:http://dx.doi.org/10.1016/j.asoc.2010.05.007  

 

Malandraki, C., & Daskin, M. S. (1992). Time dependent vehicle routing problems: Formulations, 

properties and heuristic algorithms. Transportation Science, 26(3), 185. 

 

Mallipeddi, R., & Suganthan, P. N. (2010). Differential evolution algorithm with ensemble of 

parameters and mutation and crossover strategies. In B. K. Panigrahi, S. Das, P. N. 

Suganthan, & S. S. Dash (Eds.), Swarm, Evolutionary, and Memetic Computing: First 

International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 

2010, Chennai, India, December 16-18, 2010. Proceedings (pp. 71-78). Berlin, 

Heidelberg: Springer Berlin Heidelberg. 
 

Martini, K. (2011). Harmony search method for multimodal size, shape, and topology optimization 

of structural frameworks. Journal of Structural Engineering, 137(11), 1332-1339. 

doi:doi:10.1061/(ASCE)ST.1943-541X.0000378 

 

Mezura-Montes, E., Velazquez-Reyes, J., & Coello, C. A. C. (2006). Modified differential 

evolution for constrained optimization. Paper presented at the 2006 IEEE International 

Conference on Evolutionary Computation. 



103 
 

Miguel, L. F. F., Lopez, R. H., & Miguel, L. F. F. (2013). Multimodal size, shape, and topology 

optimisation of truss structures using the Firefly algorithm. Advances in Engineering 

Software, 56, 23-37.Doi:http://dx.doi.org/10.1016/j.advengsoft .2012. 11.006 

 

Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential 

evolution algorithm. Information Sciences, 194, 171-208. 

doi:http://dx.doi.org/10.1016/j.ins.2012.01.008 

 

Mohamed, A. W., Sabry, H. Z., & Khorshid, M. (2012). An alternative differential evolution 

algorithm for global optimization. Journal of Advanced Research, 3(2), 149-165. 

doi:http://dx.doi.org/10.1016/j.jare.2011.06.004 

 

Mohrig, J. R., Alberg, D., Holifmeister, G., Schatz, P. F., & Hammond, C. N. (2014). Laboratory 

techniques in organic chemistry. WH Freeman & Co Ltd. 

 

Nannicini, G., & Liberti, L. (2008). Shortest paths on dynamic graphs. International 

Transactions in Operational Research, 15(5), 551-563. doi:10.1111/j.1475-

3995.2008.00649.x 

 

Nannicini, G. (2009) Point-to-point shortest paths on dynamic time-dependent road networks, 

Ph.D. Dissertation, Ecole Polytechnique, France. http://dx.doi.org/10.1007/s10288-010-

0121-0 

 

Nannicini, G., Delling, D., Schultes, D., & Liberti, L. (2012). Bidirectional A* search on time-

dependent road networks. Networks, 59(2), 240-251. doi:10.1002/net.20438 

 

Nazemi, A., & Omidi, F. (2013). An efficient dynamic model for solving the shortest path problem. 

Transportation Research Part C: Emerging Technologies, 26, 1-19. 

doi:http://dx.doi.org/10.1016/j.trc.2012.07.005 

 

Omran, M. G. H., Salman, A., & Engelbrecht, A. P. (2005). Self-adaptive differential evolution. 

In Y. Hao, J. Liu, Y. Wang, Y.-m. Cheung, H. Yin, L. Jiao, J. Ma, & Y.-C. Jiao (Eds.), 

Computational Intelligence and Security: International Conference, CIS 2005, Xi’an, 

China, December 15-19, 2005, Proceedings Part I (pp. 192-199). Berlin, Heidelberg: 

Springer Berlin Heidelberg. 

 

Orda, A., and Rom R. (1990) Shortest path and minimum delay algorithms in networks with time-

dependent edge length, Journal of the Association for Computing Machinery, 37 (3), 607-

625. http://dx.doi.org/10.1145/79147.214078 

 

Pham, A. H. (2016). Discrete optimal sizing of truss using adaptive directional differential 

evolution. Advances in Computational Design, 1(3), 275-296. 

doi:10.12989/acd.2016.1.3.275 

 

 
 

http://dx.doi.org/10.1007/s10288-010-0121-0
http://dx.doi.org/10.1007/s10288-010-0121-0
http://dx.doi.org/10.1145/79147.214078


104 
 

Pijls, W., & Post, H. (2009). Yet another bidirectional algorithm for shortest paths. St. Louis: 

Federal Reserve Bank of St Louis. Retrieved from https://search-proquest-

com.proxy.lib.odu.edu/docview/1698342477?accountid=12967 

 

Pijls, W., & Post, H. (2010). Note on “A new bidirectional algorithm for shortest paths”. European 

Journal of Operational Research, 207(2), 1140-1141. 

doi:http://dx.doi.org/10.1016/j.ejor.2010.06.003 

 

Price, K. (1999). New ideas in optimization: McGraw-Hill Ltd., UK. 

 

Mezura-Montes, E., Velazquez-Reyes, J., & Coello, C. A. C. (2006). Modified differential 

evolution for constrained optimization. Paper presented at the 2006 IEEE International 

Conference on Evolutionary Computation. 

 

Price, K., Storn, R., & Lampinen, J. (2006). Differential evolution: A practical approach to global 

optimization. Berlin/Heidelberg: Springer-Verlag Berlin and Heidelberg GmbH &amp; 

KG. 

 

Qin, A. K., Huang, V. L., & Suganthan, P. N. (2009). Differential evolution algorithm with strategy 

adaptation for global numerical optimization. IEEE Transactions on Evolutionary 

Computation, 13(2), 398-417. doi:10.1109/TEVC.2008.927706 

 

Rahami, H., Kaveh, A., & Gholipour, Y. (2008). Sizing, geometry and topology optimization of 

trusses via force method and genetic algorithm. Engineering Structures, 30(9), 2360-2369. 

doi:http://dx.doi.org/10.1016/j.engstruct.2008. 01.012 

 

Rajan, S. D. (1995). Sizing, shape, and topology design optimization of trusses using genetic 

algorithm. Journal of Structural Engineering, 121(10), 1480-1487. 

doi:doi:10.1061/(ASCE)0733-9445(1995)121:10(1480) 

 

 Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization of structures using genetic 

algorithms. Journal of Structural Engineering, 118(5), 1233-1250. 

doi:doi:10.1061/(ASCE)0733-9445(1992)118:5(1233) 

 

Ronkkonen, J., Kukkonen, S., & Price, K. V. (2005, 5-5 Sept. 2005). Real-parameter optimization 

with differential evolution. Paper presented at the 2005 IEEE Congress on Evolutionary 

Computation. 

 

Ruiyi, S., Liangjin, G., & Zijie, F. (2009). Truss topology optimization using genetic algorithm 

with individual identification technique. Lecture Notes in Engineering and Computer 

Science,2177(1), 1089-1093. 

 

Schmidt, H., & Thierauf, G. (2005). A combined heuristic optimization technique. Advances in 

Engineering Software, 36(1), 11-19. 

doi:http://dx.doi.org/10.1016/j.advengsoft.2003.12.001 

 

http://proxy.lib.odu.edu/login?url=https://search-proquest-com.proxy.lib.odu.edu/docview/1698342477?accountid=12967
http://proxy.lib.odu.edu/login?url=https://search-proquest-com.proxy.lib.odu.edu/docview/1698342477?accountid=12967


105 
 

Shojaee, S., Arjomand, M., & Khatibinia, M. (2013). A hybrid algorithm for sizing and layout 

optimization of truss structures combining discrete PSO and convex approximation. 

International Journal of Optimization in Civil Engineering, 3, 57–83. 

 

Storn, R., & Price, K., "Differential evolution - A simple and efficient adaptive scheme for global 

optimization over continuous spaces" , Technical Report TR-95-012, ICSI, March 1995, 

ftp.icsi.berkeley.edu.  

 

Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global 

optimization over continuous spaces. Journal of Global Optimization, 11(4), 341-359. 

doi:10.1023/a:1008202821328 

 

Talbot, C., Personal communication, June 2017 

 

Tanabe, R., & Fukunaga, A. (2013, 20-23 June 2013). Success-history based parameter adaptation 

for Differential Evolution. Paper presented at the 2013 IEEE Congress on Evolutionary 

Computation. 

 

Tang, W., Tong, L., & Gu, Y. (2005). Improved genetic algorithm for design optimization of truss 

structures with sizing, shape and topology variables. International Journal for Numerical 

Methods in Engineering, 62(13), 1737-1762. doi:10.1002/nme.1244 

 

Tang, L., Dong, Y., & Liu, J. (2015). Differential evolution with an individual-dependent 

mechanism. IEEE Transactions on Evolutionary Computation, 19(4), 560-574. 

doi:10.1109/TEVC.2014.2360890 

 

Teo, J. (2006). Exploring dynamic self-adaptive populations in differential evolution. Soft 

Computing, 10(8), 673-686. doi:10.1007/s00500-005-0537-1 

 

Wang, D., Zhang, W. H., & Jiang, J. S. (2002). Combined shape and sizing optimization of truss 

structures. Computational Mechanics, 29(4), 307-312. doi:10.1007/s00466-002-0343-x 

 

Wang, Y., Cai, Z., Guo, G., & Zhou, Y. (2007). Multiobjective optimization and hybrid 

evolutionary algorithm to solve constrained optimization problems. IEEE Transactions on 

Systems, Man, and Cybernetics, Part B (Cybernetics), 37(3), 560-575. 

doi:10.1109/TSMCB.2006.886164 

 

Wang, Y., Cai, Z., Zhou, Y., & Zeng, W. (2008). An adaptive tradeoff model for constrained 

evolutionary optimization. IEEE Transactions on Evolutionary Computation, 12(1), 80-

92. doi:10.1109/TEVC.2007.902851 

 

Wang, Z., Tang, H., & Li, P. (2009, 19-20 Dec. 2009). Optimum design of truss structures based 

on differential evolution strategy. Paper presented at the 2009 International Conference on 

Information Engineering and Computer Science. 

 

http://www1.icsi.berkeley.edu/~storn/tr-95-012.ps.gz
http://www1.icsi.berkeley.edu/~storn/tr-95-012.ps.gz


106 
 

Wang, Y., & Cai, Z. (2011). Constrained evolutionary optimization by means of (μ + λ)-

differential evolution and improved adaptive trade-off model. Evolutionary Computation, 

19(2), 249-285. doi:10.1162/EVCO_a_00024  

 

Wang, Y., Cai, Z., & Zhang, Q. (2012). Enhancing the search ability of differential evolution 

through orthogonal crossover. Information Sciences, 185(1), 153-177. 

doi:http://dx.doi.org/10.1016/j.ins.2011.09.001 

 

Wu, S.-J., & Chow, P.-T. (1995). Integrated discrete and configuration optimization of trusses 

using genetic algorithms. Computers & Structures, 55(4), 695-702. 

doi:http://dx.doi.org/10.1016/0045-7949(94)00426-4 

 

Wu, C.-Y., & Tseng, K.-Y. (2010). Truss structure optimization using adaptive multi-population 

differential evolution. Structural and Multidisciplinary Optimization, 42(4), 575-590. 

doi:10.1007/s00158-010-0507-9 

 

Wu, C., & Tseng, K. (2009). Stress-based binary differential evolution for topology optimization 

of structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of 

Mechanical Engineering Science, 224(2), 443-457. 

 

Wu, C., & Tseng, K. (2010). Topology optimization of structures using modified binary 

differential evolution. Structural and Multidisciplinary Optimization, 42(6), 939-953. 

 

Wuming, L., & Pingyang, H. (2007) Study on non-FIFO arc in time-dependent networks. Eighth 

ACIS International Conference on Software Engineering, Artificial Intelligence, 

Networking, and Parallel/Distributed Computing http://dx.doi.org/10.1109/snpd.2007.445 

 

Zamuda, A., & Brest, J. (2015). Self-adaptive control parameters ׳randomization frequency and 

propagations in differential evolution. Swarm and Evolutionary Computation, 25, 72-99. 

doi:https://doi.org/10.1016/j.swevo.2015.10.007 

 

Zhang, J., & Sanderson, A. C. (2009). JADE: Adaptive differential evolution with optional 

external archive. IEEE Transactions on Evolutionary Computation, 13(5), 945-958. 

doi:10.1109/TEVC.2009.2014613 

 
 

 

 

 

 

  

http://dx.doi.org/10.1109/snpd.2007.445


107 
 

APPENDICES 

 

 

 

 

  



108 
 

APPENDIX A: EVALUATION OF DEB’S CONSTRAINT HANDLING 

METHOD 

 

This work compared the performance of the Differential Evolution optimizer with the 

performance of the Genetic Algorithm by incorporating Deb’s constraint violation method. Each 

algorithm run 50 times and the computed optimal objective function values was recorder for each 

of the following test problems. Problems 1 to 4 are selected from Deb's paper (Deb, 2000): 

1. Test problem 1: 

Minimize 

  𝑓1(𝑥) = (𝑥1
2 + 𝑥2 − 11)

2 + (𝑥1 + 𝑥2
2 − 7)2 (1a) 

subjected to  

 𝑔1(𝑥) = 4.84 − (𝑥1 − 0.05)
2 − (𝑥2 − 2.5)

2 ≥ 0 (2a) 

 𝑔2(𝑥) = 𝑥1
2 + (𝑥2 − 2.5)

2 − 4.84 ≥ 0 (3a) 

 0 ≤ 𝑥1 ≤ 6, 0 ≤ 𝑥2 ≤ 6 (4a) 

 

The problem has the optimum solution at (3, 2) with a function value equal to zero. The maximum 

number of objective function evaluations is considered as 2,000.  

2. Test problem 3: 

Minimize 

 𝑓3(�⃗�) = 5∑𝑥𝑖

4

𝑖=1

− 5∑𝑥𝑖
2

4

𝑖=1

−∑𝑥𝑖

13

𝑖=5

 (5a) 

subjected to 

 𝑔1(�⃗�) = 2𝑥1 + 2𝑥2 + 𝑥10 + 𝑥11 ≤ 10 (6a) 

 𝑔2(�⃗�) = 2𝑥1 + 2𝑥3 + 𝑥10 + 𝑥12 ≤ 10 (7a) 



109 
 

 𝑔3(�⃗�) = 2𝑥2 + 2𝑥3 + 𝑥11 + 𝑥12 ≤ 10 (8a) 

 𝑔4(�⃗�) = −8𝑥1 + 𝑥10 ≤ 0 (9a) 

 𝑔5(�⃗�) = −8𝑥2 + 𝑥11 ≤ 0 (10a) 

 𝑔6(�⃗�) = −8𝑥3 + 𝑥12 ≤ 0 (11a) 

 𝑔7(�⃗�) = −2𝑥4 − 𝑥5 + 𝑥10 ≤ 0 (12a) 

 𝑔8(�⃗�) = −2𝑥6 − 𝑥7 + 𝑥11 ≤ 0 (13a) 

 𝑔9(�⃗�) = −2𝑥8 − 𝑥9 + 𝑥12 ≤ 0 (14a) 

 0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1, … ,9 (15a) 

 0 ≤ 𝑥𝑖 ≤ 100, 𝑖 = 10, 11, 12 (16a) 

 0 ≤ 𝑥13 ≤ 1 (17a) 

 

The optimum solution for this problem is �⃗� = (1, 1,1,1,1,1,1,1,1,3,3,3,1) , 𝑓3(�⃗�) = −15. The 

maximum number of objective function evaluations is considered as 20,000. 

3. Test problem 4: 

Minimize 

 𝑓4(�⃗�) = 𝑥1 + 𝑥2 + 𝑥3 (18a) 

subjected to:  

 𝑔1(�⃗�) = 1 − 0.0025 (𝑥4 + 𝑥6) ≥ 0 (19a) 

 𝑔2(�⃗�) = 1 − 0.0025(𝑥5 + 𝑥7 − 𝑥4) ≥ 0 (20a) 

 𝑔3(�⃗�) = 1 − 0.01(𝑥8 − 𝑥5) ≥ 0 (21a) 

 𝑔4(�⃗�) = 𝑥1𝑥6 − 833.33252𝑥4 − 100𝑥1 + 83333.333) ≥ 0 (22a) 

 𝑔5(�⃗�) = 𝑥2𝑥7 − 1250𝑥5 − 𝑥2𝑥4 + 1250𝑥4 (23a) 

 𝑔6(�⃗�) = 𝑥3𝑥8 − 𝑥3𝑥5 + 2500𝑥5 − 1250000 ≥ 0 (24a) 

 100 ≤ 𝑥1 ≤ 10000 (25a) 



110 
 

 1000 ≤ 𝑥2, 𝑥3 ≤ 10000 (26a) 

 100 ≤ 𝑥𝑖 ≤ 1000, 𝑖 = 4,… ,8 (27a) 

 

The optimum solution is �⃗� = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,

217.9799, 286.4162, 395.5979),𝑓4(�⃗�) = 7049.330923. The maximum number of objective 

function evaluations is considered as 32,000. 

4. Test problem 5: 

Minimize  

 

𝑓5(�⃗�) = (𝑥1 − 10)
2 + 5(𝑥2 − 12)

2 + 𝑥3
4 + 3(𝑥4 − 11.0)

2 + 10𝑥5
6 + 7𝑥6

2

+ 𝑥7
4 − 4𝑥6𝑥7 − 10𝑥6 − 8𝑥7 

(28a) 

 

 

subjected to: 

 𝑔1(�⃗�) = 127 − 2𝑥1
2 − 3𝑥2

4 − 𝑥3 − 4𝑥4
2 − 5𝑥5) ≥ 0 (29a) 

 𝑔2(�⃗�) = 282 − 7𝑥1
2 − 3𝑥2 − 10𝑥3

2 − 𝑥4 + 𝑥5) ≥ 0 (30a) 

 𝑔3(�⃗�) = 196 − 23𝑥1 − 𝑥2
2 − 6𝑥6

2 + 8𝑥7) ≥ 0 (31a) 

 𝑔4(�⃗�) = −4𝑥1
2 − 𝑥2

2 + 3𝑥1𝑥2 − 2𝑥3
2 − 5𝑥6 + 11𝑥7) ≥ 0 (32a) 

 −10 ≤ 𝑥𝑖 ≤ 10, 𝑖 = 1, … ,7 (33a) 

 

The optimum solution is 𝑥⃗⃗⃗ = (2.330499, 1.951372,− 0.4775414,

4.365726,−0.6244870, 1.038131, 1.594227), 𝑓5(�⃗�) = 680.6300573. The maximum number of 

objective function evaluations is considered as 7,000). 

5. The Ackley function with 5 variables (max objective function evaluations 20,000)  

6. The Rastrigin function with 5 variables (max objective function evaluations 20,000)  

Initial Information is summarized below: 



111 
 

For DE: 𝐶𝑟 ∈ [0, 1] =0.9, 𝐹 = 0.5  

For GA: Polynomial-based mutation parameters: 𝜂𝑚=100 (the distribution index for mutation), 

𝜂𝑐=1(the distribution index for SBX)  

Population Size=10× number of design variables 

Since, (Number of iterations +1)× Population Size= Max Objective Function valuations, the 

maximum number of generation for all the problems are calculated as follows:  

 problem 1: Number of design variables =2, Number of generations =99 

 problem 2: Number of design variables=13, Number of generations=153 

 problem 3: Number of design variables=8, Number of generations=399 

 problem 4: Number of design variables=7, Number of generations=99 

 problem 5: Number of design variables=5, Number of generations=399 

 problem 6: Number of design variables=5, Number of generations =399 

According to Table 24, when DE Method is applied ,48 runs out of 50 runs have found a 

solution within 50% of the optimal objective function value and this has been achieved with only 

a maximum of 2,000 function evaluation. However; 40 runs out of 50 have obtained a solution within 

50% of the optimal objective function value when GA Method is applied. 

For test problem 3 and test problem 4, DE optimizer is able to find optimal solution for all 50 

runs within 2% of the optimum solution. GA optimizer found the optimal solution for 46 runs out of 

50 runs within 2% of the optimum solution for test problem 3 and 1 run out of 50 runs within 2% of 

the optimum solution for test problem 4. These results are shown in Table 25 and Table 26. 

 

 

 



112 
 

Table 24. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE and GA with constraint handling scheme on test problem 1(True optimum 

solution =13.59085). 

Method 𝝐 Infeasible Optimized 𝒇𝟏(�⃗⃗⃗�) 

 ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

DE 47 47 47 47 48 48 2 0 13.5908 13.5908 26.7482 

GA 36 36 36 38 39 40 10 0 13.9511 13.5953 268.2987 

 

 

 

Table 25.  Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE and GA with constraint handling scheme on test problem 3(True optimum 

solution=-15). 

Method    𝝐    Infeasible Optimized 𝒇𝟑(�⃗⃗⃗�) 

 ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

DE 50 50 50 50 50 50 0 0 -14.9888 -14.9094 -14.9569 

GA 46 46 47 49 50 50 0 0 -14.9902 -14.9626 -12.0370 

 

 

 

 

Table 26. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE and GA with constraint handling scheme on test problem 4(True optimum 

solution=7049.330923). 

Method 𝝐 Infeasible Optimized 𝒇𝟒(�⃗⃗⃗�) 

 ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

DE 49 50 50 50 50 50 0 0 7056.7 7065.9 7171.6 

GA 0 1 5 31 44 50 0 0 7153.6 7676.4 9858.6 

 

 

For test problem 5, both optimizers found optimum solution for all 50 runs and all 50 runs have 

optimum solution within 1% of the true optimum solution.  The value of objective function for this 

problem is 680.6300573. The best solution was found by DE is much closer to the true optimum 

solution than the best solution was found by GA (Table A4). 

The Ackley and the Rastrigin functions results are shown in Table 27 and Table 28. The 

optimum solution is zero for both two problems. The best, worst, and median computed optimal values 



113 
 

of all 50 runs show that the DE optimizer can find better result than GA in terms of finding a solution 

closer to the true optimum.   

 

 

Table 27. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE and GA with constraint handling scheme on test problem 5 (True optimum 

solution=680.630573). 

Method    𝝐    Infeasible Optimized 𝒇𝟓(�⃗⃗⃗�) 

 ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

DE 50 50 50 50 50 50 0 0 681.0933 681.7487 683.0978 

GA 50 50 50 50 50 50 0 0 681.1196 681.9538 683.4061 

 

 

 

Table 28. Number of runs (out of 50 runs) converged using real-coded DE and GA with 

constraint handling scheme on the Ackley function with 5 variables (True optimum solution=0). 

Method Optimized 𝒇𝑨𝒄𝒌𝒍𝒆𝒚(�⃗⃗⃗�) 

 Best Median Worst 

DE 8.8818e-16 4.4409e-15 4.4409e-15 

GA 6.3671e-4 0.0030 0.0117 

 

 

According to Table 29, just for test problem 3 the best computed optimal value that has 

been found by GA is closer to the true optimum solution. DE’s distance from the true optimum 

solution (relative error) is 0.075% and GA’s distance is 0.065%. For the other five test problems, 

DE has found better solutions. The consuming time for DE and GA for one run is compared in 

Table 30. The differences for our 6 test problems are negligible. 

 

 

Table 29. Number of runs (out of 50 runs) converged using real-coded DE and GA with 

constraint handling scheme on the Rastrigin function with 5 variables (True optimum 

solution=0). 

Method Optimized 𝒇𝑹𝒂𝒔𝒕𝒓𝒊𝒈𝒊𝒏(�⃗⃗⃗�) 

 Best Median Worst 

DE 8.8818e-16 4.4409e-15 4.4409e-15 

GA 8.8818e-15 4.4608e-4 2.6421 



114 
 

Table 30. Comparison of the best solution of DE and GA optimizer. 

Test Problem True Optimum DE 's Best 

Solution 

GA 's Best 

Solution 

Distance from the True 

Optimum (%) 

DE GA 

Problem 1 13.59085 13.5908 13.9511 0 2.651 

Problem 3 -15 -14.9888 -14.9902 0.075 0.065 

Problem 4 7049.330923 7056.7 7153.6 0.105 1.479 

Problem 5 680.6300573 681.0933 681.1196 0.068 0.072 

Ackley 0 8.8818E-16 6.37E-4 0 0.064 

Rastrigin 0 8.8818E16 8.8818E-14 0 0 

 

 

 

Table 31. Comparison of the time consuming for DE and GA optimizer. 

 Time Consuming for a run (seconds) 

Test Problem DE GA 

Problem 1 0.066596 0.090486 

Problem 3 0.709190 0.829371 

Problem 4 0.916993 0.982227 

Problem 5 0.208502 0.243718 

Ackley 0.751477 0.760782 

Rastrigin 0.696611 0.722260 

 

 

The performance of DE optimizer for three different values of crossover rate 𝐶𝑟 is 

investigated. These results are displayed in Table 32 to Table 37 for all six test problems. 

According to the mentioned results, when 𝐶𝑟 =0.9 the DE algorithm can find the best solution with 

smallest distance from the true optimum.  

It can be concluded that DE optimizer performance is better than GA optimizer in term of 

finding a solution closer to the optimum solution. DE algorithm with constraint handling is a 

practical optimization technique which has the ability to handle non-differentiable, nonlinear and 

multimodal cost functions. It can be parallelized in order to save consuming time and memory 

requirement. It is easy to use with few control variables. DE is a very simple and straightforward 

strategy and converges so well would be of great interest. 



115 
 

Table 32. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE with constraint handling scheme on test problem 1(True optimum solution 

=13.59085). 

Method    𝝐    Infeasible Optimized 𝒇𝟏(�⃗⃗⃗�) 

DE ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

CR=0.9 47 47 47 47 48 48 2 0 13.5908 13.5908 26.7482 

CR=0.5 48 48 49 49 50 50 0 0 13.5908 13.5909 15.8523 

CR=0.1 17 23 31 40 43 44 6 0 13.5957 13.9536 58.7986 

 

 

 

 

Table 33. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE with constraint handling scheme on test problem 3(True optimum 

solution=-15). 

Method    ∈    Infeasible Optimized 𝒇𝟑(�⃗⃗⃗�) 

DE ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

CR=0.9 50 50 50 50 50 50 0 0 -14.9888 -14.9094 -14.9569 

CR=0.5 50 50 50 50 50 50 0 0 -14.9985 -14.9952 -14.9921 

CR=0.1 50 50 50 50 50 50 0 0 -14.9979 -14.9898 -14.9762 

 

 

 

Table 34. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE with constraint handling scheme on test problem 4(True optimum 

solution=7049.330923). 

Method    ∈    Infeasible Optimized 𝒇𝟒(�⃗⃗⃗�) 

DE ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

CR=0.9 49 50 50 50 50 50 0 0 7056.7 7065.9 7171.6 

CR=0.5 0 0 0 39 50 50 50 0 7534.3 7706.3 7952.1 

CR=0.1 0 0 0 1 40 50 0 0 7632.2 8248.9 8725.6 

 

 

 

Table 35. Number of runs (out of 50 runs) converged within ϵ % of the best-known solution 

using real-coded DE with constraint handling scheme on test problem 5(True optimum 

solution=680.630573). 

Method    ∈    Infeasible Optimized 𝒇𝟓(�⃗⃗⃗�) 

DE ≤ 1% ≤ 2% ≤ 5% ≤ 10% ≤ 20% ≤ 50% ≥ 50%  Best Median Worst 

CR=0.9 50 50 50 50 50 50 0 0 681.0933 681.7487 683.0978 

CR=0.5 50 50 50 50 50 50 0 0 685.0433 685.1968 683.4601 

CR=0.1 18 49 50 50 50 50 0 0 682.3544 688.4198 697.4731 



116 
 

Table 36. Number of runs (out of 50 runs) converged using real-coded DE with constraint 

handling scheme on the Ackley function with 5 variables (True optimum solution=0). 

Method Optimized 𝒇𝑨𝒄𝒌𝒍𝒆𝒚(�⃗⃗⃗�) 

DE Best Median Worst 

CR=0.9 8.8818e-16 4.4409e-15 4.4409e-15 

CR=0.5 8.8818E-16 4.4409E-15 4.4409E-15 

CR=0.1 4.4409E-15 4.4409E-15 7.9936E-15 

 

 

 

Table 37. Number of runs (out of 50 runs) converged using real-coded DE with constraint 

handling scheme on the Rastrigin function with 5 variables (True optimum solution=0). 

Method Optimized 𝒇𝑹𝒂𝒔𝒕𝒓𝒊𝒈𝒊𝒏(�⃗⃗⃗�) 

DE Best Median Worst 

CR=0.9 8.8818e-16 4.4409e-15 4.4409e-15 

CR=0.5 0 0 0 

CR=0.1 0 0 0 

 

  



117 
 

APPENDIX B: EXTRAPOLATED GUESSED ARRIVAL TIME 

To obtain an extrapolated guessed arrival time in a dynamic network that utilizes a 

piecewise function, the following equation was developed. 

 𝑡𝐸 = [|𝛥𝑁#|
(
#𝑁
#𝐿
) × 𝐺𝑒𝑜 𝑀𝑒𝑎𝑛 𝑆&𝐷 𝐿. 𝐶.  × (�̅� + 1)] + 𝐷𝑇 (1b) 

 

where 𝑡𝐸 is the extrapolated guessed arrival time, 𝛥𝑁# is the difference in node number for the 

source and destination nodes, # N is the number of nodes in network, #L is the number of links in 

network, 𝐺𝑒𝑜 𝑀𝑒𝑎𝑛 𝑆&𝐷 𝐿. 𝐶. is the geometric mean of source and destination link cost, �̅� the is 

arithmetic mean of y, and 𝐷𝑇 is Departure Time. 

It is the product of three main components plus the departure time given in the Equation 

(1c). That means 𝑡𝐸 =[Average number of links between two given points in a given network 

×Average link cost at source and destination nodes ×Average piecewise function time penalty] 

+Departure Time. 

The first component of the equation uses a power function to estimate the number of links 

between any two points in a given network.  The second component of the equation uses the 

geometric mean of the source node and destination node link costs to estimate the average link 

cost throughout the entire network.  A geometric mean is used to obtain the “average” since the 

central tendency it delivers is less sensitive to wide variability in the data.  An arithmetic mean is 

used to determine the time-based penalty of the network since an input value of zero gives a 

geometric mean of zero. 

The inspiration for using a power function to estimate the number of links along the 

pathway was taken from the equation used to determine the fraction of a solute remaining in the 



118 
 

original water solvent after a solvent extraction.  This is given by the following equation taken 

from p.145 of Laboratory Techniques in Organic Chemistry 4th Edition.   

 

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑔 =
(𝑓𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒)𝑤𝑎𝑡𝑒𝑟

(𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑒)𝑤𝑎𝑡𝑒𝑟

= (
𝑉2

𝑉2 + 𝑉1𝐾
)
𝑛

 

(2b) 

 

where V1 is equal to the volume of organic solvent in each extraction, V2 is equal to the original 

volume of water, n is equal to the number of extractions, and K is equal to the distribution 

coefficient. 

The representation of the number of extractions n by a power function demonstrates the 

ability of a power function to accurately model independent events that are part of a bigger network 

(Mohrig, 2014). In this case, the network of performing multiple extractions on a solute.  

Therefore, a reasonable connection to dynamic networks was made with the intention to use it to 

estimate the average number of links to be traversed in a network from a given point to another.  

Each link functions as an independent event, but the outcome of each link impacts the outcome of 

the next link, impacting the pathway choice in a given network. 

The power function also was raised to the number of nodes in a given network divided by 

the number of links in the network.  The logic being that there can be only one link between any 

two given nodes that are on the shortest path between the source and destination nodes.  This ratio 

of nodes to available links seems to serve as a viable estimator of the number of links between two 

points.  The extreme values of the function are the value one and the value of |𝛥𝑁#|2. The upper 

extreme value is arrived at since the smallest imaginable network would be two points connected 

by a single link in which case the ratio of nodes to links would be two.  Given these extreme values 



119 
 

there will be at least always one link between the source and destination node, or potentially as 

many as the square of the numerical difference between these two nodes represented in the 

extrapolation equation. 

The base of the power function is the absolute value of the difference in the numerical 

labels of the source and destination nodes on the given network.  It is assumed that the network is 

numbered from one end of the network to the other, therefore the absolute value of the difference 

between the numerical labels of the source and destination nodes serves as a sufficient base to raise 

to the number of nodes in the network divided by the number of links in the network to. 

Some possible improvements to this equation would be to include all of the link costs in 

the network when taking the geometric mean to come up with an average link cost to traverse the 

network.  For the piecewise function time penalty, a geometric mean should be able to be taken if 

the value of one is added into the piecewise values before taking the average.  This would remove 

the value of zero from the piecewise function, allowing the geometric mean to be taken.  Again, 

the advantage of the geometric mean is that it is less sensitive to wide variability in the data. 

The following extrapolation equation is proposed for obtaining the estimated arrival time. 

 𝑡𝐸 = [
|𝛥𝑁#|(

#𝑁
#𝐿
) × 𝐺𝑒𝑜 𝑀𝑒𝑎𝑛 𝑆&𝐷 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(𝐴𝑟𝑖𝑡ℎ.  𝑀𝑒𝑎𝑛 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦)
 ] + 𝐷𝑇 (3b) 

 

where 𝐺𝑒𝑜 𝑀𝑒𝑎𝑛 𝑆&𝐷 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is the geometric mean of source and destination distances to all 

immediate connecting nodes and 𝐴𝑟𝑖𝑡ℎ.  𝑀𝑒𝑎𝑛 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 is the arithmetic mean of the 

velocity of all links in the network that is updated every ten minutes.  The arithmetic mean is again 

employed as a safeguard against a velocity of zero, which would make the entire equation 

undefined.  Therefore, an assumption of this equation is that there is always some traffic flow in 



120 
 

the network at any given time.  Again, the geometric mean of the distance could be further 

improved by taking the geometric mean of all the distances between nodes in the network.  The 

flip side of this would be taking the mean of only the source and destination nodes for the 

arithmetic mean network velocity.  This localized mean might perform better than an entire 

network average. 

For the Bureau of Public Roads function, the following equation is proposed.  It represents 

the average number of nodes between two given points multiplied by the average link cost; given 

by taking the average of all input values for the entire network or only the source and destination 

nodes and plugging them into the Bureau of Public Roads function. 

 𝑡𝐸 = 〈|𝛥𝑁#|
(
#𝑁
#𝐿
) × {𝑡𝑎0̅̅ ̅̅ × [1 + �̅� × (

𝑥𝑎̅̅ ̅

𝑐�̅�
)
�̅�

]}〉 + 𝐷. 𝑇. (4b) 

 

which is taken from the following Bureau of Public Roads function for estimating link cost. 

 𝑡𝑎(𝑥𝑎) = 𝑡𝑎0 × [1 + 𝛼 × (
𝑥𝑎
𝑐𝑎
)
𝛽

] (5b) 

 

where 𝑡𝑎 is the travel link cost on link a, which is a function of 𝑥𝑎, 𝑡𝑎0 is the travel time on the link 

a under free flow conditions, 𝑐𝑎 is the capacity of the link a, 𝑥𝑎 is the flow on a link, and 𝛼 and 𝛽 

are given parameters. 

 

 

 

 



121 
 

VITA 

Gelareh Bakhtyar Sanjabi 

Department of Civil and Environmental Engineering  

Old Dominion University 

Norfolk, VA 23529 

B.S. August 2003, Razi University, Kermanshah, Iran 

M.S. August 2013, Old Dominion University, Norfolk, VA, USA 

 


	Efficient Algorithms for Solving Size-Shape-Topology Truss Optimization and Shortest Path Problems
	Recommended Citation

	[Click here and type THESIS TITLE]

