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Volume viscosity in fluids with multiple dissipative processes

Allan J. Zuckerwar'? and Robert L. Ash®®
'NASA Langley Research Center, Mail Stop 238 Hampton, Virginia 23681, USA
2Department of Aerospace Engineering, Old Dominion University, Norfolk, Virginia 23508, USA

(Received 22 May 2008; accepted 22 January 2009; published online 20 March 2009)

The variational principle of Hamilton is applied to derive the volume viscosity coefficients of a
reacting fluid with multiple dissipative processes. The procedure, as in the case of a single
dissipative process, yields two dissipative terms in the Navier—Stokes equation: The first is the
traditional volume viscosity term, proportional to the dilatational component of the velocity; the
second term is proportional to the material time derivative of the pressure gradient. Each dissipative
process is assumed to be independent of the others. In a fluid comprising a single constituent with
multiple relaxation processes, the relaxation times of the multiple processes are additive in the
respective volume viscosity terms. If the fluid comprises several relaxing constituents (each with a
single relaxation process), the relaxation times are again additive but weighted by the mole fractions
of the fluid constituents. A generalized equation of state is derived, for which two special cases are
considered: The case of “low-entropy production,” where entropy variation is neglected, and that of
“high entropy production,” where the progress variables of the internal molecular processes are
neglected. Applications include acoustical wave propagation, Stokes flow around a sphere, and the
structure and thickness of a normal shock. Finally, it is shown that the analysis presented here
resolves several misconceptions concerning the volume viscosity of fluids. © 2009 American

Institute of Physics. [DOI: 10.1063/1.3085814]

I. INTRODUCTION

Previously the authors applied Hamilton’s principle of
least action to derive expressions for the volume viscosity in
fluids, and demonstrated that the analysis leads to two dissi-
pative terms in the Navier—Stokes equation: the traditional
volume viscosity term, proportional to the rate of dilatation,
and a “pressure relaxation” term, proportional to the (mate-
rial) time rate of change of the pressure gradient.l’2 Both
dissipative processes can be delineated in acoustics where
frequency-dependent dissipation and volume-viscous effects
are elements of classical theory. In the previous work, we
showed that separating pressure relaxation from volume vis-
cosity resulted in a modified Navier—Stokes equation that
included both dissipative transport processes, removing them
from the acoustic equation of state. Isolation of those effects
in acoustics is relatively straightforward because pressure
signals are generally of small amplitude compared with the
total pressure and the decomposition of radiated acoustic
pressure fluctuations into spectral components with associ-
ated frequency-dependent dissipation is an accepted charac-
terization procedure. This is not the case in fluid dynamics.

In fluid dynamics, radiated sound is considered generally
to be a nuisance that is part of the local fluid pressure for
flows over objects. Furthermore, fluid flows with streamwise
strain rates comparable in magnitude to shear rates are rare
making it difficult to isolate and separate volume-viscous
and pressure relaxation effects. Stationary normal shock
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waves will be addressed later in this paper as a notable ex-
ception, but that type of flow exhibits strong convective non-
linearities. Indeed, the nonlinear contributions to material de-
rivatives in flowing systems preclude straightforward
spectral decomposition of velocity or pressure for purposes
of isolating volume-viscous and pressure relaxation effects.

Lichtenstein’ may have been the first to apply Hamil-
ton’s least action principle to fluid systems. Concurrently,
Bateman” utilized a variational principle based on Clebsch’s
equations,5 with virtually the same mathematical formalism,
for a class of two-dimensional, isentropic compressible
flows. Serrin® employed Lagrange multipliers to incorporate
conservation of mass, energy, and particle identity in his
study of perfect fluids and showed that the constraint on the
entropy variation produced a somewhat puzzling thermody-
namic relationship. He observed that because the material
rate of change in that Lagrange multiplier for the entropy
equation was equal to temperature, that material rate of
change could be equated to the isochoric variation in internal
energy with entropy, i.e., [DB/Dt=T=(du/ds),]. The tem-
perature relationship appears to imply that the Lagrange mul-
tiplier for a fluid particle traveling in an isothermal fluid will
increase linearly with time. However, as Serrin’s thermody-
namic identity implies, the material rate of change in this
multiplier is actually a function of temperature, and this con-
straint is similar to the implied thermodynamic relationship
between the volume viscosity and the material rate of change
in density.

Recently, Anthony7 and Scholle® utilized Noether’s first
theorem,’ relating differentiable symmetries of Lagrangian
integrals to the conservation laws, to define valid flux-flux
density constitutive relationships in applying Hamilton’s ac-

© 2009 American Institute of Physics
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tion principle to reversible and irreversible processes in con-
tinuum mechanics. Scholle® was able to generalize the use of
Galilean invariance in constructing the necessary invariance
principles for a range of applications.

Here, we have extended Hamilton’s action principle for
dissipative fluids to fluids subject to multiple dissipative pro-
cesses. For convenience, equation numbers taken from Ref. 1
are preceded by “I.”

Il. THE VARIATION

We assume that the dissipative processes are indepen-
dent, each occurring as though all the others were absent.
The Einstein summation convention is used for indices
(i,j,k,l,m) designating coordinates, but not for indices
(N, u,v) designating reactions. The Lagrangian (I-25) re-
mains

L= Jpvw—p(U+Q), (1)

but the updated set of constraints (I-26 to I-28) is rewritten as
follows:
Conservation of mass

D Jv
P, (k=1,2.3). )
Dt (9 Xk
Conservation of reacting species
D&,

-L\A=0, (A=1,2,....,n). 3
Dt AAN ( n) (3)

Material entropy constraint

n

DS

— =D LA2=0, 4
Dt T?l M “

where p, U, ), S, and T are the density, internal energy, body
force potential function, entropy, and temperature of the
fluid; x; and v, the kth components of particle position and
velocity; &, Ay, and L, the progress variable, affinity, and a
constant associated with the Ath process; ¢ the time, n the
number of processes; and D/ Dt the material time derivative.

The variational integral (I-26) is accordingly modified to
the following:

o/ [ [ [seerem=o{ 352

- pZ a)\<— - L}\A)\> ( E L\A? )]dth

T)\ 1
=0. (5)

The independent variations of the velocity components, den-
sity, entropy, and equilibrium departures (I-30-1-33) then
yield

+B—+ E =, (6)
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op:

D¢ P

E=%vkvk—(u+m—;, (7)
oS:

DB

—=T, 8

_. (8)
O\

D

—E=-a,. ©)

Dt

Equation (6) is a modified Clebsch representation for the
velocity® and Eq. (7) a modified Bernoulli’s equation.” As
will be shown later, Egs. (8) and (9) ensure that the varia-
tional procedure will determine the stationarity of the solu-
tions for the temperature and affinity. Following the same
procedure leading to the equation of motion [Eq. (I-40)] for a
single dissipative process, we find for multiple dissipative
processes

L L . {E AD—§*+ﬁ—]. (10)

Dt .xk (9xk &Xk =1

Let (§,,&,...,¢,,P,S) be the independent variables. Then
p:p(é:l’§2""’§n9p9s) and
b p—é(’?—”) (6 - & >+( )(P Py
—po= ) 0
RSN PSg] P
ﬁp)
+| — S—-350), 11
((9S Pg( 0) (11)

where the subscript O indicates a value at equilibrium, the
primed subscript & indicates a differentiation with all £'s
held constant except &,, and unprimed subscript ¢ indicates a
differentiation with all &s held constant. Upon taking the
material time derivative of Eq. (11) we find

2( ) %@(@)2(@)%
A=1 ﬂf)\ PSé’ Dt Dt l?P S§Dt (9S P§Dt.
(12)

Now assume

(2], ea-(20) -2 2]
IE) psel Dt Dt \gP)g Dt \3S/pgDt |’
(13)

where f, is a constant (constrained by 2, f,=1), and let

-5 ﬁp) 14
“ fxp(ﬁfx PS§. (1

Then, it follows that
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n D n
E axj = 2 Cx{
A=1

Dt \o

1(ap\ DS
+—<—p> —}. (15)
p\dS/ pe Dt

o\aP) .. Dr

1Dp 1<o7p> DP
_——+ —

Further, we eliminate the progress variable &, and entropy S
from the equation of motion (10) by letting

- 1 3p)
=— C—\— ] . 16
B ; Ap<as B (16)

Then substituting Egs. (15) and (16) into Eq. (10), we get

Dv, Q0 1P 4 < 1Dp
Dt ox,

1{ap\ DP
+—<—p> —} (17)
p\aP ) Dr

Two cases will be considered here: Multiple species each
containing a single process or a single species containing
multiple processes. The case of multiple species containing
multiple processes is beyond the scope of this work.

In the former case the contribution of a relaxing degree
of freedom in any species is diluted by the presence of the
other species. In the acoustical literature this effect is taken
into account by multiplying the associated specific heat by
the mole fraction of the species—a procedure not applicable
to general flows because the specific heat per se does not
always appear as a parameter. Instead, the mole fraction is
included here in the governing equations directly. In the lat-
ter case, since there is only a single species, the mole fraction
associated with each process is simply equal to unity, as
noted on page 130 of Bauer."”

Compatibility with the equations of acoustical wave
propagation requires that

’T, T)\
CA:XA_Z;=X>\_0=X>\T>\P0"(2)’ (18)
Kg Kg

where 7, and 7, are the isentropic relaxation times for the
Ath process at constant pressure and constant volume, re-
spectively, X, is the mole fraction of the species containing
the Ath process, x5 and &) are the frozen and unfrozen isen-
tropic compressibilities, and a, is the unfrozen (low-
frequency) speed of sound of the mixture. The term “unfro-
zen” implies that all degrees of freedom contribute to the
specific heat; the term “frozen” implies that the relaxing de-
grees of freedom do not contribute to the specific heat.
Upon inserting

1D av;
__p:__.L (19)
and
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1(D
K§°=—<—p) (20)
pP\DP /g

together with Eq. (18) into Eq. (17), and including the shear
terms, we find the modified Navier—Stokes equation for mul-
tiple dissipative processes,

Du I IP I < v, ,DP
P_k=— _—_"'_E X\ TxPoa%_l"'T)/\_
Dt 0X,  OXp  OXpyoy Ix; Dt
4 P, P
7Y _Z7
+ - — MUEixmEii , 21
3M&xk &x]’ MEikm ijl axm (9x] ( )

where u is the shear viscosity and € is the permutation
symbol or alternator. Consequently, the volume viscosity co-
efficients for multiple processes are

n

7= pody 2 Xy 7 (22)
A=l
and
np= > X\7y.. (23)
=1

The determination of the volume viscosity coefficients from
relaxation parameters is described in Appendix A, and values
of the volume viscosity coefficients for multiple relaxations
in selected fluids are found in Table I. Results (8) and (9) of
the variational procedure, together with the assigned rela-
tionships (14), (16), and (18) for the parameters ay, B, and
C,, ensure stationary solutions for the temperature and affin-
ity, as shown in Appendix B.

lll. THE DYNAMIC EQUATION OF STATE
A. Preliminary remarks

The dynamic equation of state is a relationship among a
set of state variables such as (&, ,p,S) and their material time
derivatives. It is derived from the principles of irreversible
thermodynamics, using Egs. (3), (11), and (12), along with
appropriate Maxwell relations. The derivation for acoustical
flows is well established in literature'™'*'®!'” but cannot be
applied to the general flows considered here for three basic
reasons.

First, the acoustical derivation includes multiplication by
a factor such as (1+iw7,)7!, a step that conveniently permits
the grouping of the parameters of a specific process into a
single term (called “localization” for future reference). Here
w is the acoustical angular frequency. The equivalent factor
in the time domain would be the operator (1+7,D/Dt)~!, but
this is an undefined operator and cannot be used. Conse-
quently, the comparable procedure for general flows necessi-
tates successive material time differentiations.

Second, acoustical methodology places the dissipative
terms in the acoustical equation of state, but the volume vis-
cosity representation transfers these terms to the equation of
motion, as indicated in Eq. (21). Further, the fact that the
volume viscosity terms therein are independent of each other
must be taken into account in the dynamic equation of state.
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TABLE 1. Values of the volume viscosity coefficients for multiple relaxations [other than translation (see Table
10)] in selected fluids. RH=relative humidity. S=salinity in parts per thousand.

Fluid Conditions (,Zi) (PZVS) Relaxation strength ¢ Relaxation process
Air" 0% RH P=1 atm 6640 944 0.000 675 4 O, vibration
T=293.15 K 17 700 2512 0.000 126 6 N, vibration
Air, 50% RH P=1 atm 4.47 0.635 0.000 664 8 O, vibration
T=293.15 K 478 67.8 0.000 124 6 N, vibration
Air, 100% RH P=1 atm 1.97 0.280 0.000 654 2 O, vibration
T=293.15 K 242 34.3 0.000 122 6 N, vibration
Air® P=1 atm 0.0033 0.000 56 0.148 0,, N, rotation
T=293.15 K
Sea water® P=1 atm 142 3.23X10° 5.642 %< 107° B(OH); ionization
T=283.16 K 2.08 4739 2.751x 1073 MgSO, ionization
§=35 297X107  6.52%1073 0.8963 H,O structural
Methane® P=1 atm 1.86 0.257 0.02105 Vibration, v, mode
T=298.15 K 1.1Xx1073 49x107* 0.6955 Rotation
“See Ref. 11.

"See Ref. 12, pp. 121-127, and Ref. 13, pp. 153-157. The best estimate Z =5 for the rotational collision
numbers of O, and N, is used for both constituents of air. Humidity dependence is ignored in the determination

of the rotational coefficients.
“See Ref. 14.
9See Ref. 15.

Finally, acoustical derivations are based on the assump-
tion of negligible entropy production (S-S,=0), which obvi-
ously is not valid for general flows (although admittedly an
excellent approximation for acoustical flows). The approach
taken here is to examine two limiting cases, as illustrated by
the substitution of Eq. (4) into Eq. (12),

Dp (ap) DP é(a;;) Dé,
Pe_(2p) PO s (2r) D&
Dt \dP/g Dt 5\ &/ psgr Dt

Ea( (o)

(24)
T 2 Ly\dS Dt

We define a “transition parameter” as the ratio of the terms

under the last two respective summations. Hence, we can use

the definition and chain rule to write

G5
=g e =—i<‘9—§*> Ph )
\ (_p) D& LT\ dS | p, Dt
9/ ps Dt

The condition |y,|<1 corresponds to the (acoustical) ap-
proximation of low-entropy production, in which case the
term S—S, and its time derivative are omitted from the equa-
tion of state. The condition |y,|>1 corresponds to the ap-
proximation of high entropy production, in which case the
entropy terms are retained but the term &, —§,( and its time
derivative are correspondingly omitted. This case will prevail
at high Mach numbers because |y,| increases with flow
speed, which appears in the material time derivative. We
derive the dynamic equation of state for each limiting case.

B. The dynamic equation of state for the limiting case
of low-entropy production

The derivation of the dynamic equation of state for this
case is well documented in literature'® and is not repeated
here. In keeping with the first preliminary remark of Sec.
IIT A, we write this equation for n dissipative processes in
the following manner:

1
_2(D1D27 ,Dn)(P_ PO)

A
o [W”(DIDz, e ,Dn) + NI(D2D3, e ,Dn)
+ N2(D1D3, . ,Dn) + - Nn(DlDZ’ .o ’Dn—l)]
X(p=po) (26)
where
D2
2
Dy=1-7 E, (27a)
2
N}\ =1 T)\T;\ R (27b)
and
W,=1-n (27¢)

for the case of n processes in a single species, but

W, =0 (27d)

for the case of a single process in each of n species. We note
that in the special case of harmonic excitation all terms are
real. For the case of a single dissipative process (n=1), Eq.
(26) becomes
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1
;Dx(P — Py) =Ny\(p—-py), (28)
0

which agrees with Eq. (I-52) of Ref. 1. Equation (26) yields
the correct dispersion, or real part of the sound speed, in the
traditional acoustical analysis, but is not applicable to the
volume viscosity approach described herein, as suggested in
the second preliminary remark. The reason is that Eq. (26)
contains the dissipative terms of all n processes, but Eq. (28)
must be used for the respective terms under the summation
in Eq. (21).

We adopt the convention that A=0 for the volume-
inviscid terms in Eq. (21). Then the dynamic equation of
state, allowing for the localization of the dissipative terms,
combines Egs. (26), (27a)-(27d), and (28) and takes the fol-
lowing form:

1 n n n n
slIlbpP-ry= sn| w,IlD,+2N, ’Dﬂ]
Ao p=1 p=l =1 p=l

+N-2 NI 'D, [ (p-po).
v=1 u=1
(29)

where a prime on a product excludes the value u=v, and &( )
is a delta function that has the value unity for zero argument
and zero otherwise. In sum, Eq. (29) gives the respective
dynamic relationship between (P-P,) and p-p, for the
volume-inviscid terms (A=0) as well as the volume-viscous
terms (A # 0). The volume-viscosity representation, Egs. (21)
and (29), is applied to acoustical wave propagation, as an
example, in Sec. [V A.

C. The dynamic equation of state for the limiting case
of high-entropy production

For convenience we choose (&,,P,T) as the independent
state variables. In accord with the final remark of Sec. IIT A,
we assume that the terms in &, —§,o and their derivatives can
be ignored when compared to the entropy terms. Then the
entropy, its material time derivative, and the affinity for pro-
cess N\ are expanded about their equilibrium points as fol-
lows:

a8 38
S—So=<—> (P—Po)"‘(_) (T-Ty), (30)
IP) o IT) op
DS [(aS\ DP [aS\ DT
—=l=] —+|=] —, (31)
Dt \oP) gDt " \oT/ Dt
9A 9A
A)\z(—x) (P—P0)+<—)‘) (T-Tp). (32)

The entropy production is written
DS
T— =

> L, AA, =2 LAY, (33)
Dt W™ N

in which L, ,=0 for A # u since the reactions are indepen-
dent. Then inserting Eq. (32) into Eq. (33) yields
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DS _ 94\ A |
. _%L{< P )H(P—PO)+< aT)gp(T TO)} :

(34)

Upon comparing Eq. (34) with Eq. (31) we find the dynamic
equation of state for the case of high entropy production:

(as) DP (as) DT
o) PE () 2L
dP) gDt "\ T/ z Dt

_1 94z 94z ’
- T% Lh[( JP >§T(P_P°) +< T )gp(T_ TO)} '
(35)

Equation (35) can be expressed in terms of phenomenologi-
cal quantities:

)2,
IP) g \T)

where 6 is the frozen isobaric thermal expansion coeffi-
cient, and it can be related to the unfrozen thermal expansion
coefficient as follows:'’

0

C
Hw: 00— wP E L)\T)\AH)\AV)\, (37)
vl

where superscripts 0 and % indicate unfrozen and frozen con-
ditions. Here Cp is the specific heat at constant pressure,
AH, the reaction enthalpy at constant pressure, and AV, the
volume change of a (dissociation) reaction per unit change in
&,. The constant L, is equal to (V/RT) multiplied by the
forward reaction rate,m’17 or equivalently, the backward re-
action rate at equilibrium. If the reaction has no volume
change, then for an ideal gas

1
F=60=—. 38
T (38)
Further,
N Cp
(—) = (39)
IT)gp T
0A A%
B
P/ e IE p
0A as AH
Bz
IT)ep \0&)7p T
Upon substituting Egs. (36)—(41) into Eq. (35), we obtain
DP C,DT
-V —+ L—
Dt T Dt
1< AH 2
=—2 L{—AVA(P—PO) + = HT-T)| . (42
T}\=1 T

As pointed out by Bauer,'’ in a dissociation reaction both
AV, and AH, are positive definite; thus the two effects are in
opposition.
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It is often more convenient to express the equation of
state in terms of (P,p) instead of (P,T). We expand the
specific volume accordingly:

A% A%
V-V,= <§P>§T(P_PO)+(6T)§P(T_TO)’ (43)
in which

A% -
(5], 7w (4‘”
A%

— | = . 4
(5, = “

Upon solving Eq. (43) for T-T,, taking the material time
derivative, and noting the reciprocal relationship p=1/V, we
rewrite Eq. (42) as follows:

T C?x?)@ CoDp
( p.9°°+ 0 ) Dt p& Dt
. AH, k 2
=2L>\{<—AV>\+ T;f)w Py) - (p po)
=0
(46)

We adopt the convention that A=0 corresponds to the case of
no volume change (no dissociative reactions, i.e., AVy=0).
The difference between the frozen and unfrozen isothermal
compressibilities comprises a relationship similar to Eq. (37),

oy
Ky =Ky — CPP > Lo (AV))2. (47)

If the reaction has no volume change, then for an ideal gas

1
©_ 0
K= Kp=—. 48
== (48)
Two limiting cases are of interest. First, consider a very
rapidly varying flow, in which the time-dependent terms in
Eq. (46) are much greater in magnitude than the time-
independent terms. Then

DP/IDt 1 c
Dp/Dt  pos . T(6)*’
Cp——=
PKT

which for a reaction in an ideal gas with no volume change
becomes

DP/Dt 1 Cr 1 Ch Yoo
= oo oo 00 = oo = aOC’
Dp/Dt  poky - P pokr Cp =R pory
P
pT

(49)

the frozen adiabatic sound speed squared. Here R is the ideal
gas constant in units J/(kg K). In this class of flows the con-
tinuum flow speed is so high that the internal degrees of
freedom can be considered frozen, corresponding to the
acoustical case of frequencies well above the internal relax-
ation frequencies. Dissipation is due to the equilibration of

Phys. Fluids 21, 033105 (2009)

the translational degrees of freedom, in which case the spe-
cific heat ratio assumes the value y.,=5/3 for all gases, in
agreement with Bhatia.'® The application to shock structure
is illustrated in Sec. IV C.

If, on the other hand, the flow is nearly steady such that
the material time dependent terms are negligible, it follows
that

> AH,
P—PO _ 1 A (50)
P=Po p0K$2 (AH}\—EAV)\)
A KOTC

In the case of no volume change, this relation can be simpli-
fied to

P—PO 1
P=Po POKT

=(a7)*=RT, (51)

which is the ideal gas law. If there is a volume change, this
case will apply, for example, to dissociative reactions in
flows with slow variations.

IV. APPLICATIONS
A. Acoustical wave propagation.

For simplicity consider the case of two independent re-
laxations (A=0,1,2). For small-signal, one-dimensional,
harmonic wave propagation, the Navier—Stokes Eq. (21), to-
gether with the continuity Eq. (2), takes the form

2
— p,+ kP, + kD X\ (dliwTy\p, — i07 P) =0, (52)
A=l

where p, and P, are harmonic wave amplitudes of the den-
sity and pressure, w the angular frequency, and k the com-
plex wave number. Recalling that A=0 designates the first
two terms of Eq. (52), and A\=1,2 the respective volume-
viscous terms, we write the dynamic equation of state (29)
for each value of \ for the single-species case, for example,
vibrational and rotational relaxations in a diatomic gas,

1+ 0’7 7h

1+ 0?77,
- 2 72 )pa’ (533)

1+ sz{Z

A:O:Pa:a§<—1+ 1
+

\=1:P, —(J(M)p (53b)
N 1+?7? )7
1+ w'nT
A=2:P, _ao(—zﬁf)pa (53¢c)
I+ o'

Upon inserting Egs. (53a)—(53c) into Eq. (52) we find the
complex sound speed,

a’ o l+o’n1 1+0*nth io(r-7)
a(z) a(z)k2 l+w T'2 1 + w*7 '2 1+ w 7'2
iw(m,— 7)) 53d
2 /2 ’ ( )
1+w

which after some rearrangement agrees with Eq. (5.4.15) of
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Ref. 19 and Eq. (21-16) of Ref. 16. For the case of single
relaxations in two species (e.g., vibrational relaxation of ni-
trogen and oxygen in air), Eq. (53a) becomes

’ 77 W’ 7

> /2+X21+ 2 /2)pa’ (54&)

Ty

>\=0:Pa=a§<1+x11

with the result

@ o o onn-r)  o’d(n-1)
3= 2, =1+ X 2,02 ) 2,02
ay apk l+w 1+w
(T — ) iw(Tz )
+ X, L+ o ,2 1+ 5 ,2 . (54b)

The analysis accordingly yields the correct expressions for
the acoustical dispersion and absorption and therewith satis-
fies a necessary condition for a viable theory of the volume
viscosity.

B. Stokes flow around a sphere

Stokes flow assumes an incompressible fluid and ne-
glects the material time derivative of the velocity.20 The
equation of motion, including the pressure relaxation compo-
nent of the volume viscosity, is then

P U,gé’P) )
v|P- — 4+ =uV 55
[ "P(U’ar+ r a0 } Py, (55)

in which (v,,v,) are the radial and azimuthal components of
the velocity v and w the shear viscosity. Upon defining

p_p ( P v0&P> (56)
= —_ —_— + —_—— s
e\ Ur ar r 06
we reduce Eq. (55) to the familiar form
VP' = uVv, (57)
with known solutions
_vy 9(1 3—a+a—3) (58a)
v, =V cos 5t 53) a
Vg si 9(1 da_ @ ) (58b)
=V sin -— -,
Vo= Vs 4r 41
3uV 0
pr=_ THESAERT (59)
2r

where V is the free-stream velocity and a the radius of the
sphere. The presence of the volume viscosity term does not
change the velocity components nor the boundary condi-
tions. Insertion of Egs. (58a), (58b), and (56) into Eq. (59)
yields
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P — npVy cos 0(1 3a )aP
2r 2
. 3a 10P 3uVsa cos 0
+ 7pVs sin 0(1_5 4r)r&0 T2
(60)

Restricting our analysis to the far-field (r>a) for simplicity,
we reduce Eq. (60) to

JaP 1

dr  Lpcos 6

_ 3MVSCl
- 2LPr2 ’

(61)

where a “relaxation length” is defined as Lp=7pVs. With the
aid of Egs. (3.351.4) and (8.215) of Ref. 21, we find the
solution to Eq. (61) in the following form:
3MVSQ
2Ly

—qr

er ] (@>0)  (62)

eq’{qu(— qr) +

in which g=(Lp cos6)~' and Ei( ) is the exponential integral
function. Substitution of an explicit series for the latter yields
the solution for the pressure P:

3uVsa cos 6
P=—%
2r
21Lpcos @ 3! (Lpcos 6)?
X|1- + 5 -+,
r r
(r>a). (63)

The first term, independent of volume losses, remains valid
for all r and leads to the familiar Stokes expression for the
drag. The volume losses in Stokes flow have no effect upon
the velocity distribution, and serve only to accelerate the
pressure drop with distance from the sphere. As seen from
Eq. (23), the processes with the longer relaxation times will
make the greater contributions. Since the boundary condi-
tions require the velocity components to vanish at the surface
of the sphere, the material time derivative there is zero, and
as a result the volume viscosity makes no contribution to the
drag. This conclusion will be true for Stokes flow around any
obstacle. This example illustrates that it is possible to have
volume losses in an incompressible flow.

C. Structure and thickness of a normal shock

The development of a normal shock in supersonic flow
is assumed to conform to the condition of “high entropy
production,” for which the dynamic equation of state is given
by Eq. (49). In other words, at sufficiently high Mach num-
bers dissipation due to the translational processes over-
whelms the internal molecular processes. Then the (one-
dimensional) equations of continuity, momentum (modified
Navier—Stokes), state, and thermal transport are, respectively,

pU = P10y, (64)
,dv dpP

pU2+P—7]VE—77PUE:p1U%+P], (65)

P-P =al(p-p), (66)
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2

ot d—T—Ed—Z=%vd—’3, (67)
dx pdx® p° dx

where (C(\J,,K ,r,v,P) are the unfrozen specific heat at con-
stant volume, thermal conductivity, density, velocity, and
pressure; coordinate x is in the direction of the flow, and the
subscript “1” refers to far upstream values. Further, we de-
fine

=Ty Sa. (68)

Note that Eq. (66) is the integrated version of Eq. (49). The
present analysis differs from those in the pastzz_25 by the
inclusion of the volume viscosity terms in the momentum
Eq. (65), which will be shown to be essential to a compre-
hensive understanding of the shock structure.

The nonequilibrium and equilibrium sound speeds for a
diatomic gas are related by

o 5/3 25
=L =22,

69
v T 757 0 (692)

in which the y’s are the specific heat ratios. The temperature
dependence of the shock properties are contained in the
sound speed,

(69b)

Upon substituting Egs. (64) and (66) into Egs. (65) and (67)
to eliminate p and P, we obtain the following equations for
the velocity and temperature:

%] %5}
(— 7+ npaim;)d(—

v
5 5T = Pp1vdx, (70)
Uy dy, Uy a, U
—{1—(1+7)—+77J
v vi/ v Vv
d_T_ (Pl_aozop])d(v/vl) a_idln(v/vl) (71)
dx plCS dx CS dx

In Eq. (71) the thermal diffusion term found in Eq. (67) is
neglected. To simplify notation, let

=22 (72a)
vy p
and
2
ay, Yoo
y=— = <1, (72b)
v% yle

in which M is the Mach number. (Sherman22 calls the recip-
rocal of i the “monatomic Mach number.”) Substitution of
Egs. (72a) and (72b) into Egs. (70) and (71) yields the fol-
lowing differential equations:

(= myz+ Wpﬂipl)ﬁ

G-De-w dax 7
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FIG. 1. Profile of a normal shock in air at Mach numbers M=2 and 5 at
upstream temperature and pressure of 293.15 K and 1 atm according to Egs.
(75) and (76).

dr _ (Pi-asp)dz _azdIn()

dx Png dx_CS dx

; (74)

with the boundary conditions v=v;, =T}, and vanishing
spatial derivatives as x — —o.

The solutions to Egs. (73) and (74), satisfying the
boundary conditions, are

’ 2 ’ 2
B ( v — MpAPi >1n(1 )+ ( i — Mpacp; >ln(z— )

1-y -y

== p1v(x+x), (75)
(P, -dZp) a

T=T, - Tgl(z -1)- Fgln(z)- (76)

The constant of integration (x,) permits us to adjust the
x-axis origin arbitrarily and is set to x,=0 for present pur-
poses. Based on an iterative procedure, the shock profile ob-
tained from Egs. (75) and (76) is plotted in Fig. 1 for Mach
numbers M =2 and M =5, using the volume viscosity values
for air listed in Table II.

The shock thickness Ox is defined in terms of the maxi-
mum velocity ratio 7. the minimum ratio z,;,, and the
maximum magnitude of the slope |dz/dx|

Zmax ~ Zmin
Sx= i ) (77)
dx | max
Here
Zmax = 1» (78a)

TABLE II. Contributions to the volume viscosity of dry air due to the
translational relaxation of its major constituents (see Ref. 26 for the proper-
ties of air). 7=293.15 K. P=1 atm.

Constituent Mole fraction np (us) = 77v+% n (Pas)
Argon 0.01 -8.9%107° 50X 1073
Oxygen 0.21 -2.1x107° 3.8X 107
Nitrogen 0.78 -32X107° 3.3X107°
Air" 1.00 -3.0x107° 3.4x107

“See Egs. (22) and (23).
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FIG. 2. Ratio of mean free path to shock thickness at upstream temperature
and pressure of 293.15 K and 1 atm. Solid line: theory of Mott-Smith (Ref.
27) based on a solution to the Boltzmann equation. Dashed line: theory
based on Egs. (70), (71), (72a), (72b), (73)-(77), (78a), and (78b) of this
work.

Zmin = l)b’ (78b)

and the value of the maximum slope (magnitude) is found
numerically from Egs. (73) and (74) for several Mach num-
bers. In Fig. 2 the ratio of mean free path to shock thickness
as a function of Mach number is compared to that derived by
Mott—Smith,27 based on a solution to the Boltzmann transport
equation. The solution presented here, based on Egs. (70),
(71), (72a), (72b), (73)—(77), (78a), and (78b) and the vol-
ume viscosity values listed in Table II, contains no adjustable
parameters. The mean free path is corrected for temperature
and pressure, the upstream value taken to be €;=6.5
X 1078 m at 293.15 K and 1 atm. This example illustrates
the role of the equation of state for the case of high entropy
production.

The M =5 case is interesting because it is considered by
many to be the lower Mach number limit for the so-called
hypersonic flow regime and, although the fluid behind that
normal shock continues to obey an ideal gas compressibility
(of unity) model, thermally induced chemical effects can be
detected and the property variations across a normal shock
wave cannot be modeled accurately with elementary gas dy-
namics normal shock wave relations (where the velocity ra-
tio at M =5, would be 0.2 in Fig. 1). Huber®® investigated the
thermally dissociating normal shock behavior for air at alti-
tudes as low as 10.9 km (T=217 K and P=0.222 bar), and
determined that the velocity ratio across a M=35, normal
shock would be 0.186.

V. MISCONCEPTIONS CONCERNING THE VOLUME
VISCOSITY OF FLUIDS

The results presented here together with those of Ref. 1
permit us to resolve several misconceptions concerning the
volume viscosity of fluids.

First, a single constitutive constant is inadequate to de-
scribe volume losses in fluids; rather two different effects are
needed: one to represent the thermodynamic deviations from
equilibrium equations of state, the other to represent the
transport processes associated with the kinetics of a volume-
dissipative process. A single constitutive coefficient, for ex-
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ample, leads to expressions for acoustical dispersion and ab-
sorption that are valid only in the low-frequency limit (with
limited accuracy even then).

Second, the volume viscosity coefficients of a mon-
atomic gas are not zero. The prevailing dissipative process is
heat conduction (as long as the flow is not isothermal). How-
ever, other processes may contribute to the volume losses.
For example, near the liquid-gas phase boundary, dimeriza-
tion or other aggregation processes may lead to volume
losses, although the authors are unaware of any related mea-
surements in monatomic fluids.

Finally, it is possible to have volume dissipation in in-
compressible flow (again, as long as the flow is not isother-
mal), for a pressure gradient in the fluid implies a tempera-
ture gradient. Molecules at an initial temperature convected
to a region of a different temperature will strive to adjust
their degrees of freedom to the new temperature. Conse-
quently the fluid will incur volume losses.

VI. CONCLUSIONS

The Hamilton principle of least action is applied to fluids
with multiple dissipative processes—subject to conservation
of mass, conservation of reacting species, and material en-
tropy constraints—to derive the volume viscosity in fluids.
Under the assumption that the dissipative processes are inde-
pendent of each other, the variational procedure therewith, as
in the case of a single dissipative process, yields two
volume-viscous terms in the Navier-Stokes equation: the
conventional volume-viscosity term, proportional to the dila-
tational component of the velocity, and a “pressure relax-
ation” term, proportional to the material time derivative of
the pressure gradient. Furthermore, the relaxation times as-
sociated with each process are additive in the respective
volume-viscosity terms.

A generalized dynamic equation of state is derived from
the principles of irreversible thermodynamics, allowing for
dissociative reactions. In the limiting case of low-entropy
production, where the entropy terms are ignored, the result-
ing equation of state and “modified” Navier—Stokes equation
lead to the correct expressions for the dispersion and absorp-
tion of sound waves in fluids with multiple dissipative pro-
cesses (e.g., vibrational relaxation of nitrogen and oxygen in
air). In the limiting case of high entropy production, where
the progress variables are ignored, the density and pressure
are related by the “high-frequency” speed of sound, in which
case the specific heat ratio is 5/3 for all gases. In the absence
of dissociative reactions, the underlying process is relaxation
of the translational degrees of freedom. Here the translational
relaxation times of the fluid constituents are again additive
when weighted by their mole fractions.

Three examples were presented to illustrate the role of
the volume-viscosity terms in fluid flow. First, acoustical
wave propagation exemplifies the case of low-entropy pro-
duction, whereby the volume viscosity terms yield the cor-
rect solutions for the dispersion and absorption of sound in
fluids with multiple dissipative processes—a necessary re-
quirement for a viable theory of volume viscosity. Second, in
Stokes (incompressible) slow viscous flow around a sphere,
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the traditional volume viscosity term vanishes but the re-
maining “pressure relaxation” term illustrates that volume
losses are possible in incompressible flow, even though these
losses do not contribute to the drag. Finally, the formation of
a normal shock in supersonic flow exemplifies the case of
high entropy production. Here the volume-viscous terms are
essential to describe the shock wave behavior between the
upstream and downstream limits—a situation not possible
with the traditional Rankine—Hugoniot equations.

Experimental data on acoustical relaxation processes in
fluids remain the leading source of data for the volume vis-
cosity coefficients, as explained in Appendix A.

APPENDIX A: DETERMINATION OF VOLUME
VISCOSITY COEFFICIENTS FROM RELAXATION
PARAMETERS

A single relaxation process is characterized by two of
three parameters:lo’17 the isentropic relaxation time at con-
stant pressure 7pg, the isentropic relaxation time at constant
volume 7y, and the relaxation strength . These are related
by

M' (A1)

E=
7ps

The relaxation strength is determined from thermodynamic
considerations. For a de-excitation reaction it is given by

B RC;
el
and for a dissociation reaction (e.g., of a diatomic molecule)
by

(A2)

&€

&€

(A3)

AVCY T
CAHVE |

RC, [1
Gl
where C; is the specific heat of the relaxing degree of free-
dom or the “excess” specific heat of the dissociation reaction,
respectively; the other parameters are defined in the text. A

relaxation time 7, determined from an absorption experiment
is equal to

7. = (TpsTys) ' (A4)

and a relaxation time 7, determined from a dispersion experi-
ment is simply equal to

Tg= Tys- (AS)

Usually an experimenter reports only one of the two relax-
ation times because the absorption and dispersion are rarely
measured simultaneously. In this case the second relaxation
time can be determined from Eq. (Al), together with a
knowledge or estimate of the relaxation strength. The differ-
ence between the two relaxation times is important only
when it appears as such in the expression for the flow dissi-
pation, as, for example, in acoustical wave propagation.
These considerations are valid for the multiple relaxation
model described here, because the relaxation processes are
assumed independent. However, it is pointed out that, in a
mixture, the appropriate relaxation time of a particular spe-
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cies is that in the mixture, as opposed to that in the pure
substance. In a binary mixture of two species A and B we
have
1 X, 1-X
—o A, (A6)

T TaA TAB
in which X, is the mole fraction of species A, 7,4 the relax-
ation time of species A due to self-de-excitation, 7,45 the
relaxation time of species A due to de-excitation by species
B, and 7 the relaxation time of A in the mixture.

Once the relaxation times for each process A\ are estab-
lished, they are inserted into Egs. (22) and (23) to yield the
volume viscosity coefficients. In these equations 7, and 7,
represent the isentropic relaxation times due to process \ at
constant volume (7yg) and constant pressure (7pg), respec-
tively, and p, and a, are the density and sound speed at
reference conditions. (In a mixture they are properties of the
mixture). It is important to note that the relaxation times vary
inversely with density, or in the case of an ideal gas, with
pressure. The isentropic relaxation times may be appropriate
for flows other than acoustical flows; in some cases the iso-
thermal relaxation times may be more appropriate, for ex-
ample, in flows through a narrow duct. At constant pressure
the isothermal relaxation time is Cg/ C) times the isentropic
relaxation time, and at constant volume this factor becomes
)/ Cy.

The equilibration of the translational degrees of freedom
does not constitute a relaxation process per se, but can be
represented as such at time scales exceeding the longest
translational relaxation time.” Based on the continuity, mo-
mentum (Navier—Stokes), state, and thermal transport equa-
tions, the resulting relaxation times for translation, to a good
approximation, are shown to be

;- D(n,—m)7,

= A7
T T+ (- D7, (&7
Te = Tt,r+ (70 - I)Th’ (AS)
where
4 p
T, =T, (A9)
3 poag
K
=T, Al10
= il (10

and K is the thermal conductivity. It is noted that 7, <0 for
nearly all gases because 7, < 7,—a condition needed to con-
form to Truesdell’s conclusion that the sound speed increases
without limit with increasing frequency.30 Further, since
|7/| < 7, the first term on the right hand side of Eq. (A8) can
be ignored.

Upon inserting Egs. (A7)-(A10) into Egs. (22) and (23),
we find the volume viscosity coefficients for translational
relaxation,

77v=(70—1)§, (A11)
P
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In Eq. (A11) the term 7, is ignored.

APPENDIX B: STATIONARITY OF THE SOLUTIONS
FOR THE TEMPERATURE AND AFFINITY

Here we treat the question of compatibility between the
variational solutions Egs. (8) and (9) and the variational pa-
rameter assignments (16) and (14), respectively. The analysis
differs for gases and liquids because of the nature of their
respective relaxation times. We start with the expression for
B [Eq. (16)]. In the case of gases, we specify the value of the
relaxation time at a reference temperature 7,=7,(T;) and
note the invariance of the relaxation time-density product,

™(To)po= 1 (T)p, (B1)

where 7,(T) is the relaxation time and p the density at tem-
perature 7. Then we make use of a Maxwell relation, the
reciprocal relationship p=1/V, and Egs. (38) and (39) to
write

() el --olp) -2
S/ pg 98/ pe IP /5 C,

P

ak

(B2)
Upon substituting Eqs. (B1) and (B2) into Egs. (8) and (16)

and then expanding the density [Eq. (12)], we arrive at the
following:

Dﬁ E T)\(T)QODP
N

Dt Cp, Dt
3o 2.9 (2 2
= |\oP)g Dt " \dS)p\oT) p. Dt
( 0"P) Dgx]
+ZE) ==
9é\/ ps Dt
=T. (B3)

After rearranging Eq. (B3), substituting Egs. (B1) and (B2),
and writing out the material time derivative, we obtain the
following one-dimensional partial differential equation for
the temperature:

oT
[E+v(x)—]+T T..(x,1), (B4)
where
T 2
=S 200G _ 5 Bty (BS)
Y n CpT
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o st () 02 (a0) 0]

x  Crp P/ g Dt &/ ps Dt
(B6)

Because the sound speed squared aé varies linearly with tem-
perature, the thermal time constant 7, [Eq. (B5)] is indepen-
dent of temperature except for a weak dependence of the
relaxation time 7y, which is ignored. The first term in Eq.
(B6) represents a generating term due to gas compression/
rarefaction, and the second term due to the reaction. We note
that Eqs. (B3)-(B6) are valid for a nonreacting gas (&, =0).
The solution to Eq. (B4) is the following:*'

t 1 (! t
T:exp(— —)[@(u)+— Tw(t’,u)exp<—>dt'],
T TJy r

(B7)

where u=x-v(x)t (u treated as a parameter of the integration)
and ®(u) is an arbitrary function.

It is easily shown that T reaches a stationary solution
after a sufficiently long time, as long as ®(u) is well behaved
and T is bounded (as required by physical considerations).
If the first condition is true, then the first term vanishes as-
ymptotically. If the second condition is true, then let 7 be
the bound on 7., and we have as t—

t\1 (" t
expl— — | — | T.(t',u)exp| — |di’
1/ TrJd g, r
t 1 t /
=exp|-— g b Ty exp| — dt
T/ Tr

)

=T, (BS)

Thus Eq. (8) leads to a stationary value of the temperature.

In the case of liquids, since liquid densities are only
weak functions of temperature, the temperature dependence
of B is controlled almost exclusively by the temperature de-
pendence of the relaxation time. As pointed out on page 403
of Ref. 16, the relaxation time has a negative temperature
coefficient, thus leading to the temperature variation de-
scribed by Eq. (B4) and the same conclusion regarding sta-
tionarity.

The analysis for the affinity A, follows a similar line.
Here we use the chain rule [Eq. (94) of Ref. 10] and Eq. (41)
to write

212
dé ) ps P IéE/ ps

() () (2)(2) ]

VO*TAH
__92<AV}\_T)\>
CT
AV, AH
=p(—4+%). (B9)
vV T

Upon substituting Egs. (B1) and (B9) into Egs. (9) and (14),
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and then expanding the density [Eq. (12)], we arrive at the
following:

Da)\ _ TT(T)G?)@

Dt fy Dt
__nlDag (@) E+<@> DS
A | \or)s Dt T\as)p Di
(o) (5]
9&\/) ps\ dA\/ ps Dt
— A, (B10)

After rearranging Eq. (B10), substituting Egs. (B1) and (B9),
and writing out the material time derivative, we obtain the
following one-dimensional partial differential equation for
the affinity:

A, A, .
TA[?+U()C)E}+A)\=A)\, (B11)
where
A Ui V. CpT )\ &) ps\ A\ ps
=M<_ﬂ+ﬂ>z
A V. GT
>0, (B12)
w_ Txpoa(%(_ﬂ+ AH)\)
OA vV o CiT
J DP J DS
ANt I S
OP)sg Dt~ \3S) g DI

The solution, similar to Eq. (B7), will permit conclusions to
be drawn about the stationarity of the affinity.
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