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Steady incompressible magnetohydrodynamic flow near
a point of reattachment

J. M. Dorrepaal
Department of Mathematics & Statistics, Old Dominion University, Norfolk, Virginia 23529

S. Moosavizadeh
Department of Mathematics, Norfolk State University, Norfolk, Virginia 23504

~Received 9 June 1997; accepted 27 January 1998!

The oblique stagnation-point flow of an electrically conducting fluid in the presence of a magnetic
field is a highly nonlinear problem whose solution is of interest even in the simplest of geometries.
The problem models the flow of a viscous conducting fluid near a point where a separation vortex
reattaches itself to a rigid boundary. A similarity solution exists which reduces the problem to a
coupled system of four ordinary differential equations which can be integrated numerically. The
problem has two independent parameters, the conductivity of the fluid and the strength of the
magnetic field. Solutions are tabulated for a variety of cases involving the two parameters. The
geometry of the flow as well as that of the induced magnetic field is determined near the point of
reattachment. ©1998 American Institute of Physics.@S1070-6631~98!00406-1#

I. INTRODUCTION

One of the oldest similarity solutions to the full Navier–
Stokes equations is stagnation-point flow in which a viscous
incompressible fluid flows steadily towards a two-
dimensional rigid wall. The flow has a centerline of symme-
try and the incoming flow along this centerline is at right
angles to the wall. A trio of authors~Stuart,1 Tamada,2 and
Dorrepaal3! has shown more recently that by combining tra-
ditional stagnation-point flow with a shear flow directed par-
allel to the wall, one can come up with a similarity solution
describing oblique flow towards the wall. The new problem
involves a coupled system of nonlinear ordinary differential
equations which yield easily to numerical integration. One
interesting feature of the equations is the fact that the angle
of incidence of the impinging stream can be scaled out of the
problem. As a result the equations can be solved indepen-
dently of this angle and the existence of constants valid for
all angles of incidence can be proven.

Magnetohydrodynamic stagnation-point flow was a
popular area of investigation approximately 35 years ago. In
this class of problems, the fluid is electrically conducting and
its motion towards the wall occurs in the presence of a mag-
netic field. A variety of cases have been treated depending
upon how the applied magnetic field is oriented relative to
the wall. The early attempts~Meyer,4 Poots and Sowerby,5

and Axford6! prescribed a constant magnetic field perpen-
dicular to the wall and then later, Gribben7 considered both
the two-dimensional and axisymmetric problems where the
magnetic field was parallel to the wall. In all of the cases
considered, the fluid flow was directed orthogonally towards
the wall.

In the present paper, two magnetohydrodynamic
stagnation-point flows are examined. In the first the flow is
directed orthogonally towards the wall and because the wall
is impenetrable, the streamlines of the undisturbed flow are

rectangular hyperbolas just as in the classical problem. Un-
like previous magnetohydrodynamic studies, however, an
applied magnetic field is prescribed which is perfectly
aligned with the undisturbed flow. It is expected, of course,
that the no-slip conditions at the wall and the induced mag-
netic field will disrupt the alignment of the two fields near
the wall. But far from the wall, the alignment of the two
fields is preserved.

In the second problem, we consider an oblique
stagnation-point flow. Once again the applied magnetic field
is aligned with the fluid streamlines far from the wall. As in
the electrically inert case, the angle which the incident flow
makes with the wall can be scaled from the problem. The
solution of magnetohydrodynamic stagnation-point flow for
arbitrary angles of incidence serves as a model for the flow
of an electrically conducting fluid in a magnetic field near a
point on a rigid boundary where a region of separated flow
reattaches itself to the boundary.

The asymptotic alignment of the velocity and magnetic
fields far from the wall is similar to another problem treated
some 35 years ago, namely magnetohydrodynamic Blasius
flow. In this problem a viscous electrically conducting fluid
moves past a semi-infinite flat plate. Far from the plate both
the velocity and magnetic fields are uniform and parallel to
the plate. A linear version of the problem was first consid-
ered by Greenspan and Carrier,8 and subsequent authors
~Glauert,9 Reuter and Stewartson,10 Wilson,11 and Stewart-
son and Wilson12! treated various aspects of the full nonlin-
ear problem. Some of the techniques developed in these pa-
pers are useful in analyzing the problems considered here.

II. ORTHOGONAL MAGNETOHYDRODYNAMIC
STAGNATION-POINT FLOW

The equations governing the steady magnetohydrody-
namic flow of a viscous electrically conducting incompress-
ible fluid are
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The position-dependent quantities are defined as follows:v,
fluid velocity; p, fluid pressure;H, magnetic field intensity;
E, electric field intensity; andJ, current density. The con-
stants arer, fluid density;n, kinematic viscosity;m, mag-
netic permeability; ands, electrical conductivity.

The standard two-dimensional stagnation-point geom-
etry will be assumed; viz., the fluid velocityv and the mag-
netic field H are each perpendicular to thez direction. A
rigid wall lies in the planey50 and the fluid occupies the
half spacey.0. Far from the wall, the flow is directed to-
wards the wall and follows hyperbolic streamlines. The mag-
netic field lines are aligned with the flow wheny@1.

One of the consequences of the two-dimensionality of
the flow is that the current densityJ and the cross product
v3H in Eq. ~2! are both directed perpendicular to the plane
of the flow. It follows thatE is in the z direction. This
coupled with equation~5! implies thatE52E0k̂ whereE0 is
constant. Following Greenspan and Carrier,8 we take E0

50. The flow which we obtain corresponds to a stagnation-
point flow between two plates atz56z0 , (z0@1) which are
perfectly conducting and joined together by a wire of zero
resistance. There is no potential difference between the
plates and therefore no electric field affecting the flow.

The solenoidal nature of both the velocity and magnetic
fields permits the definition of scalar potential functions for
each field as follows:

v5“3$c~x,y!k̂%, H5“3$f~x,y!k̂%. ~6!

When the current density is eliminated between Eqs.~2! and
~3!, we obtain the magnetic diffusion equation

h~“3H!5v3H, ~7!

whereh51/sm is the magnetic diffusivity~or magnetic vis-
cosity! of the fluid. The scalar version of~7! is found by
substituting~6! into ~7! to obtain

h¹2f1
]c

]x

]f

]y
2

]c

]y

]f

]x
50. ~8!

A second equation relating the two scalar potentials is found
by eliminatingJ between Eqs.~1! and~3! and then taking the
curl to eliminate the pressure term. After considerable sim-
plification, the momentum equation appears as follows:

n¹4c1
]c

]x

]¹2c

]y
2

]c

]y

]¹2c

]x

2
m

r F]f

]x

]¹2f

]y
2

]f

]y

]¹2f

]x G50. ~9!

The no-slip conditions at the wall translate into boundary
conditions on the stream function; viz.,c(x,0)5cy(x,0)
50. In addition, the normal component ofmH must be con-
tinuous across the boundaryy50. We assume the magnetic
field in the fluid and the induced field in the solid regiony
,0 are both parallel to the wall whenuyu!1. This is con-
sistent with the fact that the applied magnetic field in the
fluid has hyperbolic field lines which asymptote to the wall
as uxu→`. As a result, the normal component of the mag-
netic field must vanish at the wall which meansf(x,0)50.
Far from the wall, the velocity and magnetic fields have the
form

v;g~xî2y ĵ !, H;H`~xî2y ĵ !, ~10!

whereg andH` are dimensional constants of proportionality
having units (time)21 and ~charge!•~length!21

•~time!21, re-
spectively.

Equations~8! and ~9! can be nondimensionalized using
(n/g)1/2 as the length scale. If nondimensional variables are
denoted by bars, then

x5S n

g D 1/2

x̄, y5S n

g D 1/2

ȳ, c5nc̄, f5
H`n

g
f̄.

~11!

After dropping the bars, the two equations of motion for
c(x,y) andf(x,y) are

¹4c1
]c

]x

]¹2c

]y
2

]c

]y

]¹2c

]x

2bH ]f

]x

]¹2f

]y
2

]f

]y

]¹2f

]x J 50, ~12!

¹2f1eH ]c

]x

]f

]y
2

]c

]y

]f

]x J 50, ~13!

whereb5mH`
2 /rg2 is the square of the ratio of the Alfve´n

velocity to the fluid velocity far from the wall, ande5n/h
5nsm is the magnetic Prandtl number. Reuter and
Stewartson10 have shown that no solution exists in magneto-
hydrodynamic Blasius flow whenb.1. A similar result
holds for the present problem.

The well-known similarity solution for viscous two-
dimensional stagnation-point flow can be modified to give a
similarity solution to the system of equations given in~12!
and ~13!. We let

c~x,y!5x f~y!, f~x,y!5xg~y! ~14!

and substitute. The resulting system of differential equations
is as follows:

f-1 f f 92~ f 8!2112b$gg92~g8!211%50, ~15!

g91e$ f g82 f 8g%50, ~16!

where f (0)5 f 8(0)5g(0)50, and f 8(`)5g8(`)51.
The challenge is to find values forf 9(0) and g8(0)

which, when combined with the boundary conditions aty
50, give a solution to the system of equations~15! and~16!
which satisfies the conditions at infinity. The difficulties
posed by a simultaneous search forf 9(0) and g8(0) in a
coupled system can be averted, however, by using the same
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transformation as that employed by Wilson11 in the Blasius
problem. We defineF(h) andG(h) as follows:

F~h!5A1/2f ~A1/2h!, G~h!5A21/2Bg~A1/2h!, ~17!

whereA andB are constants. The conditions at infinity onf
and g indicate that A5 limh→` F8(h) and B
5 limh→` G8(h), which suggests thatA andB are propor-
tional to fluid velocity and Alfve´n velocity, respectively, at
infinity. It follows that

b5
B2

A2 . ~18!

When these relations are substituted into~15! and ~16!,
the resulting system of equations forF(h) and G(h) is
given by

F-1FF92~F8!22@GG92~G8!2#1K50, ~19!

G91e@FG82F8G#50, ~20!

whereK5A22B2. The boundary conditions at the wall (h
50) are given by

F~0!5F8~0!5G~0!50,
~21!

G8~0!51.

The value ofG8(0), taken here to be 1, can be chosen arbi-
trarily because of the linearity of Eq.~20! with respect to
G(h). Fixing the parametersK ande, a shooting method is
used to find the value ofF9(0)5C which makesF8(h)
constant ash→`. This constant, of course, isA. For large
h, Eq. ~19! simplifies to

GG92~G8!21B250, ~22!

whose solution isG8(h)5B. Therefore the numerical inte-
gration of Eqs.~19! and ~20! using ~21! and F9(0)5C as
initial conditions yields values for the constantsA, B, andb
@from ~18!#. The corresponding solution to Eqs.~15! and~16!
is found from~17!. In particular, we have

f 9~0!5C/A3/2, g8~0!51/B. ~23!

Even though the procedure givesb only after K and e are
fixed, it can be modified to provide desired values ofb by
iterating onK.

Results are presented in Figs. 1 and 2. Figure 1 is a plot
of f 9(0) vs b for various values ofe. Figure 2 gives similar
plots for g8(0) vs b.

The conditions onf andg at infinity indicate that

f ,g;y2b as y→`, ~24!

whereb is displacement thickness. From~17!, we have

b5A21/2 lim
h→`

@Ah2F~h!#. ~25!

Figure 3 is a plot ofb vs b for various values ofe.

III. DISCUSSION OF THE ORTHOGONAL FLOW

The orthogonal problem was solved for a full range ofe
values and for 0<b,1. The parametere is proportional to
fluid conductivity andb is a measure of the strength of the
applied magnetic field. The nonexistence of a solution for
b.1 is traceable to the fact that whenb.1, disturbances
are no longer contained within a boundary layer along the
wall, but can travel an infinite distance away from the wall.
This means that boundary conditions can no longer be pre-
scribed at infinity and the problem therefore becomes ill-

FIG. 1. Plot of f 9(0) vs b for various values ofe. When b50, f 9(0)
51.232 588.

FIG. 2. Plot ofg8(0) vs b for various values ofe.

FIG. 3. Plot of displacement thicknessb vs b for various values ofe. When
b50, b50.647 900.
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posed. Whenb,1, the disturbances are contained within a
boundary layer and the problem is well defined. What is
interesting are the predictions of the equations asb→12.

The simplest way to study this limit is to consider the
special case when the fluid is a perfect conductor
(e51`). When e is infinite, Eq. ~16! together with the
boundary conditions indicates thatf (y)[g(y). Equation
~15! then becomes

f-1~12b!$ f f 92~ f 8!211%50, ~26!

whose solution isf (y)5(12b)21/2H@(12b)1/2y# where
H(h) is the classical Hiemenz function defined by

H-1HH92~H8!21150 ~27!

with boundary conditionsH(0)5H8(0)50, H8(`)51.
Rosenhead13 has shown that for smallh,

H~h!5 1
2Ch22 1

6h
31O~h5!, ~28!

whereC51.232 588, and that for largeh,

H~h!;h2c1O$~h2c!24 exp@2 1
2~h2c!2#%, ~29!

wherec50.647 900.
As b→12, the functionsf (y) and g(y) take on the

form f (y)5g(y); 1
2C(12b)1/2y2 and both vanish in the

limit. As the applied magnetic field is strengthened therefore,
the flow is totally brought to rest. A similar result is obtained
in Blasius flow. Greenspan and Carrier8 explain that by in-
creasingb, the induced current in thez direction produces a
strengthening countermagnetic field which ultimately plugs
the flow and annuls the applied magnetic field.

Even when the fluid is not a perfect conductor, the re-
sults in Figs. 1 and 2 indicate that a similar phenomenon
occurs asb→12. The decrease in the values off 9(0) and
g8(0) is moderate whenb is small, but steepens dramatically
whenb is very close to 1.

Figure 3 indicates that the strengthening of the magnetic
field asb→12 is also accompanied by a significant increase
in displacement thickness which of course is proportional to
boundary layer thickness. In fact, whene is infinite, we have
from ~29! that

f ,g;y2c~12b!21/2 as y→`. ~30!

In a perfectly conducting fluid, therefore, displacement thick-
ness becomes infinite asb→12.

IV. OBLIQUE MAGNETOHYDRODYNAMIC
STAGNATION-POINT FLOW

The oblique flow problem involves Eqs.~1!–~5! with the
velocity and magnetic fields again represented by~6!. The
stream functionc(x,y) and the magnetic potentialf(x,y)
satisfy the same homogeneous conditions aty50 as before.
The difference between the orthogonal and oblique problems
lies in the prescribed boundary conditions at infinity. In the
orthogonal case we had

c~x,y!;gxy
f~x,y!;H`xyJ as y→`, ~31!

where g and H` are the dimensional proportionality con-
stants referred to in Eq.~10!. In the oblique problem, the
far-field boundary conditions are given by

c~x,y!;g~xy1ly2!

f~x,y!;H`~xy1ly2!J as y→`, ~32!

wherel is a dimensionless constant related to the angle of
incidence of the impinging stream. Figure 4 gives a picture
of the undisturbed oblique flow as well as the undisturbed
magnetic field lines, the assumption being that the two are
aligned. From Eq.~32! it is clear that the undisturbed stream-
line c(x,y)50 consists of two straight lines; the wally50
and the dividing streamlinex1ly50. The slope of the di-
viding streamline far from the wall, therefore, ism`

521/l. The same is true of the undisturbed magnetic field
line f(x,y)50.

From Eq.~6! the magnetic field intensity vectorH(x,y)
is related to the magnetic potential functionf(x,y) via

H5“3$f~x,y!k̂%. ~33!

It follows from Eq. ~3! that the current density is given by

J5“3H52 k̂¹2f, ~34!

which in the case of the applied magnetic field@Eq. ~32!#
reduces to

J522lH`k̂. ~35!

Thus the current density far from the wall in oblique
stagnation-point flow is nonzero.

This is in marked contrast to orthogonal flow where the
current density far from the wall was zero. As a result we
were able to takeE50 in Eq. ~2!. In oblique flow the pres-
ence of nonzero current density requires the existence of an
electric field in thez direction to support the applied mag-
netic field in thexy plane. The electric field is constant and
has the formE52E0k̂. Its strength is, from~35!,

E05
2lH`

s
, ~36!

wheres is electrical conductivity andl is the angle of inci-
dence constant. Conditions for such a flow can be established
by maintaining an appropriate potential difference across
plates situated atz56z0 wherez0@1.

FIG. 4. The undisturbed oblique flow. The dividing streamline has equation
y52x/l.
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The existence of an applied electric field perpendicular
to the plane of the flow has a modifying effect on the mag-
netic diffusion equation. When the current density is elimi-
nated between Eqs.~2! and ~3!, and whenE is replaced by
2E0k̂, we obtain

“3H522lH`k̂1
1

h
~v3H!, ~37!

whereh51/sm is the magnetic diffusivity of the fluid. After
substituting~6! into ~37! and simplifying, we have

¹2f1
1

h F]c

]x

]f

]y
2

]c

]y

]f

]x G52lH` . ~38!

The momentum equation, on the other hand, has exactly the
same form as that given in~9!.

We nondimensionalize the two governing equations as
well as the boundary conditions exactly as before@see Eq.
~11!#. The defining equations for oblique magnetohydrody-
namic stagnation-point flow are therefore given by

¹4c1
]c

]x

]¹2c

]y
2

]c

]y

]¹2c

]x

2bH ]f

]x

]¹2f

]y
2

]f

]y

]¹2f

]x J 50, ~39!

¹2f1eH ]c

]x

]f

]y
2

]c

]y

]f

]x J 52l, ~40!

whereb ande are defined in Eqs.~12! and~13!. The nondi-
mensionalized far-field boundary conditions take the form

c~x,y!

f~x,y!J ;xy1ly2 as y→`. ~41!

V. A SIMILARITY SOLUTION FOR OBLIQUE FLOW

Equation~41! suggests a similarity solution for oblique
flow having the form

c~x,y!5x f~y!12lr ~y!,
~42!

f~x,y!5xg~y!12ls~y!.

Upon substituting these into the governing equations~39!
and~40!, we obtain exactly the same two equations~15! and
~16! for f (y) andg(y) as we had in the orthogonal problem.
The functionsf (y) andg(y), therefore, act as the orthogonal
components of the full solution. The functionsr (y) ands(y)
constitute the components of the solution parallel to the wall.
In fact, the functionr (y) behaves like a shear flow with a
shear rate close to the wall which differs from its shear rate
at infinity. In the same way,s(y) corresponds to a magnetic
field having a linear shear profile. The governing equations
for r (y) ands(y) are given by

r-1 f r 92 f 8r 82b$gs92g8s8%1~12b!b50, ~43!

s91e$ f s82gr8%51, ~44!

wherer (0)5r 8(0)5s(0)5s8(0)50 andr 9(`)51.
The constant term in Eq.~43! contains the displacement

thicknessb discussed in Secs. II and III. The substitution of

~42! into Eq. ~39! results in a fourth-order differential equa-
tion for r (y) which is integrable. The integration reduces the
equation to third order and the evaluation of the constant of
integration follows from the far-field behaviors of the vari-
ous functions. We use

f ,g;y2b1exp. small terms

r ,s; 1
2y

21a1exp. small termsJ as y→`, ~45!

wherea is constant. The value ofa varies with the param-
eters ~e,b! but is only of numerical interest and does not
affect the asymptotics of Eqs.~43! and ~44!.

In order to facilitate the numerical solution of~43! and
~44!, we introduce a transformation similar to that employed
in Sec. II. We define

R~h!5A21r ~A1/2h!, S~h!5A22Bs~A1/2h!, ~46!

where A and B are the same constants used in Eq.~17!.
When these relations are substituted into Eqs.~43! and~44!,
we obtain the following system of equations forR(h) and
S(h):

R-1FR92F8R82$GS92G8S8%1bA23/2K50, ~47!

S91e$FS82GR8%5B/A, ~48!

whereK5A22B2 as before. The boundary conditions trans-
form to

R~0!5R8~0!5S~0!5S8~0!50,
~49!

R9~`!51.

The numerical solution of the oblique problem proceeds
as follows. The parametersK ande are fixed and Eqs.~19!
and ~20! are solved subject to boundary conditions~21! to
obtain the orthogonal componentsF(h) andG(h) of the full
solution. From these the values of the constantsA, B, b and
b5B2/A2 are determined. If a particular value ofb is de-
sired, a feedback mechanism is set up to repeatedly adjustK
until the desired value ofb is obtained to within suitable
tolerances. Once the orthogonal flow has been fully deter-
mined, the parameterse, K, A, B, b are all substituted into
Eqs.~47! and~48!. The coefficient functionsF(h) andG(h)
are known and the system becomes a nonhomogeneous sys-
tem of linear equations forR8(h) andS8(h). Using shoot-
ing methods we find the value ofR9(0) which corresponds
to R9(`)51. The solution of Eqs.~43! and~44! is obtained
from transformation~46! and we find, in particular, that
r 9(0)5R9(0). Figure 5 is a plot ofr 9(0) vs b for various
values ofe.

Whenb50, there is no magnetic field and the solution
reverts back to the electrically inert case treated by
Dorrepaal3 where r 9(0)51.406 544. On the other hand as
e→0, the fluid ceases to conduct electricity and therefore
does not respond to a magnetic field. Once again the system
reverts to the electrically inert case and this is evidenced by
the approach ofr 9(0) to the limiting value 1.406 544. Figure
5 reveals, however, that for finite conductivities, the depen-
dence ofr 9(0) on b can exhibit different behaviors depend-
ing upon the value ofe. Whene is small, increasingb causes
r 9(0) to steadily decrease. Whene51, r 9(0) increases to
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some maximum value and then decreases as the magnetic
field intensifies. Whene is large,r 9(0) increases withb over
its entire range.

In the limiting case when the fluid becomes a perfect
conductor (e→1`), it is known from Sec. III that

f ~y!5g~y!5~12b!21/2H@~12b!1/2y#, ~50!

where H(h) is the Hiemenz function. It follows from Eq.
~44! that s8(y)5r 8(y). Equation~43! then simplifies as fol-
lows:

r-1~12b!$ f r 92 f 8r 81b%50, ~51!

whereb50.647 900(12b)21/2.
The coefficient (12b) can be scaled out of Eq.~51!

using the transformation

r ~y!5~12b!21D@~12b!1/2y#. ~52!

This coupled with~50! reduces~51! to the equation

D-1HD92H8D810.647 90050, ~53!

which is treated in Ref. 3. There Dorrepaal shows that
D9(0)5r 9(0)51.406 544 irrespective of the value ofb.
The data in Fig. 5 bears this out with the values ofr 9(0) on
the curvee51000 being uniformly close to 1.406 544.

VI. BEHAVIOR OF THE FLOW NEAR THE WALL

One of the major advantages of having the exact solution
to a magnetohydrodynamic problem of this complexity is
that the fluid streamlines and the magnetic field lines near the
wall can be readily obtained and analyzed. We simply need
the Maclaurin series for the four basic functions in Eq.~42!.
These are easily obtained from the respective differential
equations. We find that

f ~y!5 1
2 f 9~0!y22 1

6$~12b!1bg8~0!2%y31O~y5!,
~54!

r ~y!5 1
2r 9~0!y22 1

6~12b!by31O~y5!, ~55!

g~y!5g8~0!y1 1
24e f 9~0!g8~0!y41O~y5!, ~56!

s~y!5 1
2y

21 1
12er 9~0!g8~0!y41O~y5!. ~57!

When expansions~54! and ~55! are substituted into the
expression for the stream function in~42!, we have

c~x,y!5lr 9~0!y21 1
2 f 9~0!xy22 1

3l~12b!by3

2 1
6$~12b!1bg8~0!2%xy31O~y5!. ~58!

In the vicinity of the origin (x50), the flow is a linear shear.
Separation occurs where the tangential stress along the wall
vanishes@cyy(x,0)50#. From Eq.~58!, the dividing stream-
line meets the wall at

x522lr 9~0!/ f 9~0!. ~59!

If we define a new horizontal coordinateX5x
12lr 9(0)/ f 9(0) to be centered at this separation point, then
the stream function in~58! can be written in the form

c~X,y!5Ly2$y1MX1O~Xy!%, ~60!

where

L5 1
3P/ f 9~0!,

M5 3
2 f 9~0!2/P,

P5l~12b!$r 9~0!2b f9~0!%1lbr 9~0!g8~0!2.

FIG. 6. Plot of slope ratiomr vs b for various values ofe. When b50,
mr53.748 513.

FIG. 7. Graph of streamlines~solid! and magnetic field lines~dashed! near
wall for e51, b50.4.

FIG. 5. Plot of r 9(0) vs b for various values ofe. When b50, r 9(0)
51.406 544.
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From ~60!, the slope of the dividing streamline (c50) at the
wall is mw52M .

In a previous paper,3 it has been shown that in the flow
of an electrically inert Newtonian fluid, the ratio of the slope
of the dividing streamline at the wall to its slope at infinity is
independent ofl, the angle of incidence constant. The same
is true here. The slope ratio for oblique magnetohydrody-
namic stagnation-point flow is given by

mr5mw /m`5 3
2 f 9~0!2/@~12b!$r 9~0!2b f9~0!%

1br 9~0!g8~0!2#. ~61!

The variations ofmr with respect to the two parameters~e,b!
are depicted in Fig. 6. The slope ratios never exceed the
electrically inert value of 3.748 513 and, for any particularb,
they appear to reach a minimum ate'1.

When expansions~56! and ~57! are substituted into the
expression for magnetic potential in~42!, we obtain

f~x,y!5ly$y1g8~0!x/l1O~y3!%. ~62!

The dividing magnetic field linef50 comes into the wall at
the origin having a slope ofnw52g8(0)/l. The magnetic
slope ratio is therefore

nr5nw /m`5g8~0!, ~63!

which from Fig. 2 is always less than unity.
Figures 7 and 8 give streamlines and magnetic field lines

for the casese51, b50.4 ande5100,b50.8, respectively.
The alignment of the two fields fory large is evident. In fact,
Fig. 8 reveals that when a strong magnetic field is applied to
a highly conducting fluid, the aligning of the two fields oc-
curs very rapidly.
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FIG. 8. Graph of streamlines~solid! and magnetic field lines~dashed! near
wall for e5100,b50.8.
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