Anthropogenic Lead Deposition and Four National Parks in Poland as Determined by Lead Isotope Ratios

Shannon Simcoe
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/oeas_etds

Part of the Environmental Sciences Commons, Geochemistry Commons, and the Geology Commons

Recommended Citation
https://digitalcommons.odu.edu/oeas_etds/19

This Thesis is brought to you for free and open access by the Ocean & Earth Sciences at ODU Digital Commons. It has been accepted for inclusion in OES Theses and Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
ANTHROPOGENIC Pb DEPOSITION IN FOUR NATIONAL PARKS IN POLAND AS DETERMINED BY Pb ISOTOPE RATIOS

by

Shannon Simcoe
B.S. May 2002, Old Dominion University

A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of

MASTER OF SCIENCE

GEOLOGY

OLD DOMINION UNIVERSITY

AUGUST 2004

Approved by:

Joseph H. Rule (Director)

Dennis A. Darby (Member)

Zhongxing Chen (Member)
Polluted soils are recognized by having high concentrations of heavy metals, including Pb. Partitioning of metals in geochemical fractions, by sequential chemical extractions, may indicate whether a metal has been recently deposited in the soil. While concentration levels alone cannot distinguish between natural and anthropogenic Pb, studies have demonstrated that anthropogenic pollution is accurately recorded by specific Pb isotope signatures, which differ from natural Pb isotopes. The objective of this project was to use \(^{206}\text{Pb}/^{207}\text{Pb}\) and \(^{206}\text{Pb}/^{204}\text{Pb}\) isotope ratios to differentiate between the anthropogenic Pb input and the naturally occurring Pb in four national parks in Poland. A second goal was to test the postulate that sequential chemical extractions could be used to evaluate the pollution status of the soils. Soils from Tatry National Park underwent sequential chemical extractions and total acid extractions, while soils from Bieszczady National Park, Roztocze National Park, and Poleski National Park underwent total acid extractions. This project supports the fact that by coupling Pb isotope signatures with Pb concentrations in different geochemical phases an accurate characterization of soil pollution status may be reached. Soils in all of the national parks in this study contain Pb isotope ratio signatures indicative of anthropogenic Pb. Isotope signatures recorded from soil samples taken within Bieszczady National Park and Roztocze National Park indicate that anthropogenic Pb is dominant. Soil samples from Poleski National Park show
mostly Pb isotope signatures indicative of anthropogenic Pb in surface samples, while most subsurface samples contain Pb isotope signatures consistent with natural Pb. In Tatry National Park, a majority of the total and sequential chemical extraction Pb isotope ratios recorded indicate anthropogenic input. In soil samples that portrayed natural total Pb isotope signatures, there were still anthropogenic Pb isotope signatures present in the more easily soluble geochemical phases. This indicates that these soils have been affected by Pb pollution. Data from this portion of the study is consistent with the postulate that elevated amounts of Pb in the more easily soluble geochemical phases indicate anthropogenic input. The Pb pollution in the soils is most likely attributed to the release of local automobile emissions and atmospheric deposits of industrial emissions originating in Upper Silesia and Slovakia.
ACKNOWLEDGMENTS

I would like to thank Dr. Joseph Rule, Dr. Dennis Darby, and Dr. Zhongxing Chen for their guidance throughout this project. I would especially like to thank Dr. Rule for the numerous hours he gave me, and his constant support. I am grateful to my parents, Tom and Barb Simcoe, for their support. I greatly appreciate Michael Labocki for his care and patience through all stages of this project.
TABLE OF CONTENTS

LIST OF TABLES .. vii
LIST OF FIGURES .. viii

Chapter

1. INTRODUCTION .. 1
 * PREVIOUS Pb ISOTOPE STUDIES ... 4
 * SOURCES OF POLLUTION IN POLAND ... 8
 * ATMOSPHERIC Pb .. 8
 * SOIL GEOCHEMICAL PHASES .. 10
 * OPERATIONALLY BASED EXTRACTIONS .. 11
 * PURPOSE ... 13

2. METHODS... 14
 * STUDY AREA .. 14
 * FIELD AND LABORATORY PROCEDURES ... 15

3. RESULTS AND DISCUSSION .. 17
 * TATRY NATIONAL PARK ... 17
 * BIESZCZADY NATIONAL PARK .. 21
 * ROZTOCZE NATIONAL PARK ... 22
 * POLESKI NATIONAL PARK .. 23
 * Pb CONCENTRATIONS VS. Pb ISOTOPE RATIOS 26

4. SUMMARY AND CONCLUSIONS ... 30

REFERENCES .. 31

APPENDIX A. MAP OF POLAND INCLUDING LOCATIONS OF NATIONAL PARKS STUDIED ... 36

APPENDIX B. SELECTIVE EXTRACTION SEQUENCE AND ACID EXTRACTABLE TRACE METALS IN SOILS
 * CONCENTRATED HNO$_3$/H_2O$_2$ EXTRACTION PROCEDURE ... 38
APPENDIX C. SEQUENTIAL EXTRACTION Pb CONCENTRATIONS FROM TATRY NATIONAL PARK AND POLESKI NATIONAL PARK, TOTAL ACID EXTRACTION Pb CONCENTRATIONS FROM TATRY NATIONAL PARK, BIESZCZADY NATIONAL PARK, ROZTOCZE NATIONAL PARK, AND POLESKI NATIONAL PARK ..41

APPENDIX D. 206Pb/204Pb, 206Pb/207Pb, 206Pb/208Pb, AND 208Pb/207Pb ISOTOPE RATIOS FROM SEQUENTIAL EXTRACTIONS AND TOTAL ACID EXTRACTIONS ...45

VITA ...50
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Commonly used Pb isotope signatures</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Tatry National Park Pb concentrations measured in each sequential extraction and the total Pb present in each sample (mg/kg)</td>
<td>18</td>
</tr>
<tr>
<td>3.</td>
<td>Total Pb concentrations (mg/kg), $^{206}\text{Pb}/^{207}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios measured from samples taken within Bieszczady National Park</td>
<td>22</td>
</tr>
<tr>
<td>4.</td>
<td>Total Pb concentrations (mg/kg), $^{206}\text{Pb}/^{207}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios measured from samples taken from Roztocze National Park</td>
<td>23</td>
</tr>
<tr>
<td>5.</td>
<td>Total Pb concentrations (mg/kg), $^{206}\text{Pb}/^{207}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios measured from samples taken from Poleski National Park</td>
<td>25</td>
</tr>
<tr>
<td>A1.</td>
<td>Sequential extraction Pb concentrations (mg/kg) from Tatry National Park</td>
<td>42</td>
</tr>
<tr>
<td>A2.</td>
<td>Sequential extraction Pb concentrations (mg/kg) from Poleski National Park</td>
<td>43</td>
</tr>
<tr>
<td>A3.</td>
<td>Total acid extraction concentrations from Tatry National Park, Bieszczady National Park, Roztocze National Park, and Poleski National Park</td>
<td>44</td>
</tr>
<tr>
<td>A4.</td>
<td>Pb isotope ratios of sequential extractions from Tatry National Park</td>
<td>46</td>
</tr>
<tr>
<td>A5.</td>
<td>Pb isotope ratios of total acid extractions from near Polance, Nowa Huta, Tatry National Park, Bieszczady National Park, Roztocze National Park, and Poleski National Park</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tatry National Park elevation vs. Pb concentration</td>
<td>19</td>
</tr>
<tr>
<td>2.</td>
<td>Tatry National Park $^{206}\text{Pb}/^{207}\text{Pb}$ isotope ratios vs. elevation</td>
<td>19</td>
</tr>
<tr>
<td>3.</td>
<td>Tatry National Park $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios vs. elevation</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>Poleski National Park $^{206}\text{Pb}/^{207}\text{Pb}$ isotope ratios vs. Pb concentration</td>
<td>29</td>
</tr>
<tr>
<td>5.</td>
<td>Poleski National Park $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios vs. Pb concentration</td>
<td>29</td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

More than 95% of the Pb deposited in the soils and sediment is of anthropogenic origin (Luck and Othman, 2002). Anthropogenic Pb is added to soil by atmospheric dust settling and precipitation scavaging (Flament et al., 2002). High concentrations of Pb in surface soils are frequently attributed to coal ash, Pb additives in gasoline, metal mining and smelting activities, and agricultural input (Semlali et al., 2001). Up to 53% of the anthropogenic Pb input is due to gasoline consumption of tetraethyl lead (Farmer et al., 1996). Natural Pb is transported to sediment or soil by the weathering of Pb rich soils or bedrock (Renberg et al., 2002).

Polluted soils are generally recognized by having elevated concentrations of Pb and other heavy metals. Concentration levels alone cannot distinguish between natural and anthropogenic Pb sources. Lead isotope studies have demonstrated that anthropogenic pollution is accurately recorded by specific Pb isotopic signatures, which differ from those of natural Pb isotopes (Hansmann and Koppel, 2000).

The four stable naturally occurring Pb isotopes are: ^{206}Pb (formed by the decay of ^{238}U), ^{207}Pb (formed by the decay of ^{235}U), ^{208}Pb (formed by the decay of ^{232}Th), and ^{204}Pb (not decay product) (Charalampides and Manoliadis, 2002). When the common lead ore galena (PbS) is mined, its isotopic signature is fixed in time. Meanwhile, the reservoir will continue to evolve because it still contains concentrations of U and Th. The differences in fixed Pb signatures versus changing signatures will allow us to

The model journal for this thesis was the Journal of Environmental Quality.
recognize extracted and processed Pb from natural Pb (Chiaradia and Cuplin, 2000).

$^{206}\text{Pb}/^{207}\text{Pb}$ ratio is the most widely used Pb isotope ratio in studies because it can be the most accurately measured (Watmough et al., 1999). Other ratios commonly used in Pb isotope studies include $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, $^{208}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{206}\text{Pb}$, $^{208}\text{Pb}/^{206}\text{Pb}$ and $^{207}\text{Pb}/^{208}\text{Pb}$.

Anthropogenic Pb is commonly derived from ore bodies, which tend to have distinctly lower $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ ratios. Natural (unpolluted) soils and sediments have a $^{206}\text{Pb}/^{207}\text{Pb}$ signature of 1.20-1.24 (Aberg et al., 2001; Marcantonio et al., 2002; Semlali et al., 2001), and a $^{206}\text{Pb}/^{204}\text{Pb}$ signature >18.8 (Hansmann and Koppel, 2000). $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ ratios will be discussed further in my analysis simply because there is more scientific reference data available for these ratios.

Some of the most important lead ores in the world are located in Australia ($^{206}\text{Pb}/^{204}\text{Pb}$=16.0-16.1), Europe ($^{206}\text{Pb}/^{204}\text{Pb}$=17.9-18.4) and North America ($^{206}\text{Pb}/^{204}\text{Pb}$= >19) (Hansmann and Koppel, 2000). Ore signatures vary slightly, depending on the age of the ore, and the specific time of mining. Other significant Pb isotopic signatures are included in Table 1.

Heavy metals are not held uniformly by soil. Lead commonly accumulates in the surface soil, and tends not to migrate lower in the soil profile. This type of behavior indicates the persistent nature of Pb in soils and its relative immobility. This lack of movement indicates that lead is being stored rather than being dispersed by natural processes (Bacon et al., 1996).

Sequential chemical extraction techniques have been used to help characterize chemical forms of trace elements in soils. This characterization helps determine trace
element environmental availability, toxicity and hazards to living organisms. There are many different ways sequential chemical extractions can be performed. A basic requirement for any selective chemical extraction sequence procedure is that it should be able to dissolve specific components of the soil. It also should provide information on the trace element behavior in soils over time and at various concentrations, and provide insight into how that behavior affects organisms’ uptake of trace elements (Berti et al., 1995).

Partitioning of metals in geochemical fractions, by sequential chemical extractions, may indicate whether a metal has been recently deposited in the soil. Recently deposited metals are thought to be more abundant in easily soluble phases (Rule, 2003).

Table 1. Commonly used Pb isotopic signatures (a Hansmann and Kopell, 2000; b Flament et al., 2002; c Maracantoino, et al., 2002; d Charalampides and Manoliadis, 2002; e Aberg et al., 2001; f Semlali et al., 2001; g Watmough et al., 1999).

<table>
<thead>
<tr>
<th>Source</th>
<th>206Pb/204Pb</th>
<th>208Pb/204Pb</th>
<th>207Pb/204Pb</th>
<th>206Pb/207Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>European ore</td>
<td>17.9-18.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian ore</td>
<td>16.0-16.1</td>
<td>1.03-1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mississippi Valley ore</td>
<td>>19.0</td>
<td>1.28-1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden ores</td>
<td></td>
<td>0.99-1.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morocco ores</td>
<td></td>
<td>1.16-1.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>European gasoline</td>
<td></td>
<td>1.16^c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greek gasoline</td>
<td></td>
<td>1.20^d</td>
<td>1.06^g</td>
<td></td>
</tr>
<tr>
<td>Italy gasoline</td>
<td></td>
<td></td>
<td>1.067-1.155</td>
<td></td>
</tr>
<tr>
<td>Switzerland gasoline</td>
<td></td>
<td></td>
<td>1.075-1.136</td>
<td></td>
</tr>
<tr>
<td>Hungarian gasoline</td>
<td></td>
<td></td>
<td>1.07^e</td>
<td></td>
</tr>
<tr>
<td>Austrian gasoline</td>
<td></td>
<td></td>
<td>1.11^f</td>
<td></td>
</tr>
<tr>
<td>French gasoline</td>
<td></td>
<td></td>
<td>1.069-1.094</td>
<td></td>
</tr>
<tr>
<td>Swiss Fly ash/industrial</td>
<td>17.95^a</td>
<td>37.8^a</td>
<td>1.15^a</td>
<td></td>
</tr>
<tr>
<td>France Fly ash/industrial</td>
<td>17.98-18.06^a</td>
<td>37.95-38.25^e</td>
<td>1.14-1.15^a</td>
<td>1.143-1.155^f</td>
</tr>
<tr>
<td>Germany Fly ash/industrial</td>
<td>17.95-18.06^a</td>
<td></td>
<td></td>
<td>1.14-1.16^e</td>
</tr>
<tr>
<td>Belgian coal</td>
<td>18.28-18.57^a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.K. coal</td>
<td></td>
<td></td>
<td></td>
<td>1.18^g</td>
</tr>
</tbody>
</table>
The leaching of soils with strong acid allows for the separation of anthropogenic lead from natural lead (Zhu et. al., 2001). Nearly 95% of anthropogenic Pb can be removed by a strong acid extraction (Monna et. al., 1999). The natural Pb in the soil will remain in the residual phase (Rule, 2003).

Previous Pb Isotope Studies

Lead isotopic studies have been utilized in a number of different ways, by a variety of different scientists. Charalampides and Manoliadis (2002) used Sr and Pb isotopes as environmental indicators of pollution in western Macedonia, Greece. They gathered samples from a nearby lignite mining area \(^{206}\text{Pb}/^{207}\text{Pb} = 1.20 \), an air filter close to the town \(^{206}\text{Pb}/^{207}\text{Pb} = 1.12 \), and wheat samples. By using Pb isotopic signatures they were able to determine that the isotopic signature of the wheat more closely matched that of the air filter than the lignite mining area, suggesting that atmospheric deposition of Pb was the main cause of their polluted wheat.

Stable Pb isotopes have been used by scientists to construct historical records of Pb input in environments worldwide. Watmough et. al. (1999) used Pb isotope ratios and Pb concentrations in tree rings to monitor environmental changes from 1965 to present day in northwest England. By comparing sycamore tree ring samples, this group of scientists was able to correlate changes in \(^{206}\text{Pb}/^{207}\text{Pb} \) ratios to historical dates. For example, they found an increase in \(^{206}\text{Pb}/^{207}\text{Pb} \) ratios in tree rings formed in 1993 and attribute this increase in ratios to the reduction of Pb additives in vehicle emissions. Watmough et. al. (1999) were able to conclude that \(^{206}\text{Pb}/^{207}\text{Pb} \) ratios in sycamore tree rings may be used to document historical changes in sources and bioavailability of Pb in an area.
Lead isotopes and Pb concentrations in Lake Geneva, France were measured in order to investigate the origin and history of Pb inputs in the lake. Samples were collected from many areas in and around the lake, and $^{206}\text{Pb}/^{207}\text{Pb}$, $^{208}\text{Pb}/^{204}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ ratios were compared. Material was dated by cosmogenic ^{210}Pb and ^{137}Cs methods. Based on their data, Monna et. al. (1999) were able to construct a stable Pb isotope record dating back almost 150 years, and were able to distinguish predominant contamination sources during this time period. Renberg et. al. (2002) conducted a similar study in lake sediments in 31 lakes in Sweden. $^{206}\text{Pb}/^{207}\text{Pb}$ ratios were used to show changes in the pollution trend over time. Both groups of scientists concluded that over the last 20 years gasoline-derived Pb accounted for a minor portion of Pb contamination in the area, while most of the contamination stemmed from industrial and domestic activities.

Some scientists have used more unconventional techniques to differentiate between recent and ancient sources of pollution. Aberg et. al. (2001) collected recent and ancient teeth samples, in western Macedonia, Greece, and compared the Pb isotopic signatures of them to samples collected at a lignite mine, air filter samples, and wheat samples all from the same area. By comparing the Pb isotopic signatures from the samples they collected to Pb isotopic signatures derived from other sources, they were able to conclude that the $^{206}\text{Pb}/^{207}\text{Pb}$ ratios of the teeth samples were closely related to the $^{206}\text{Pb}/^{207}\text{Pb}$ ratios collected from the local lignite mine site. This conclusion infers that a majority of the local pollution in this area was caused by lignite mining activities.

Isotope ratios of Pb are commonly employed to determine anthropogenic Pb from natural Pb in soil and air samples, and to distinguish between possible anthropogenic...
sources (Flament et. al., 2002; Hansmann and Koppel, 2000; Monna et. al., 1999; Renberg et. al., 2002; and Teutsch et. al., 2001). The National Park in Switzerland was examined to determine anthropogenic Pb from natural Pb, and to identify the anthropogenic sources of pollution. In order to identify suspected sources accurately, samples were collected from the exhaust pipes of cars ($^{206}\text{Pb}/^{204}\text{Pb}= 17.13-17.52$), sewage sludge ($^{206}\text{Pb}/^{204}\text{Pb}= 17.74-17.88$), filter ashes from waste incinerators ($^{206}\text{Pb}/^{204}\text{Pb}= 17.92-17.96$), ZnO-rich filter dust from a metal processing plant, and filters from air samples near the city of Zurich ($^{206}\text{Pb}/^{204}\text{Pb}= 17.99$). By comparing soil profile data to the Pb isotopic composition of suspected sources, Hansmann and Koppel (2000) concluded that pollution was caused by air fall deposition. The Pb isotopic composition of the pollutants did not allow the two to clearly identify a specific source because of anthropogenic inputs from several sources and atmospheric mixing.

Other attempts have been made in Switzerland to distinguish between possible sources of Pb pollution. Air filters were sampled from an urban city and an agricultural area. Then, leaded gasoline samples were collected from four different gas stations, representing four different companies (Shell, Coop, Agip, and BP). Samples were also collected from ashes from household waste incinerators, heating oil, and coal. By comparing the $^{206}\text{Pb}/^{204}\text{Pb}$ isotopic signatures, Chiaradia and Cupelin (2000) were able to determine that a mixture of leaded gasoline, from all four companies, was the main source of Pb pollution in the city, and household waste incineration was the main source of Pb pollution in the agricultural area.

Zhu et. al. (2001) used Pb isotopes to determine the source of pollution in the Pearl River Delta, China. By collecting and comparing samples of aeolian dust, aerosols,
and soils to previously reported Pb isotopic data on automobile exhaust and industrial materials, they were able to conclude that 45-64% of the total Pb in the soil was attributed to automobile exhaust.

Lead isotope signature have been investigated to support a source appointment on a continental scale. Atmospheric aerosols were collected over Cap Gris-Nez, France to determine the extent to which various continental sources influence the lead abundance in aerosols. Lead concentrations in aerosols are seven times higher when air masses are derived from continental Europe, versus marine air masses (Flament et al., 2002). Gasoline and industrial Pb isotopic signatures are closely related to the Pb isotopic signatures present in aerosol samples.

The practice of studying the distribution of anthropogenic Pb in different soil fractions in soil samples is not as common. Teutsch et al. (2001) studied the distribution of natural and anthropogenic Pb in Mediterranean soils. Soil samples were collected within 8-23m of a busy highway and 500m away from that same highway, then a selective extraction sequence was employed to determine the distribution of Pb in the different soil components: soil carbonate, organic matter, Fe-oxides and hydrous oxides, and aluminosilicates. Teutsch et al. (2001) determined that natural Pb is mainly associated with aluminosilicates (60%) and Fe-oxides (30%). In contrast, anthropogenic Pb is mainly associated with soil carbonates (40%), Fe-oxides (35%). Most of the anthropogenic Pb accumulates in the top 10cm of the soil profile. By comparing their Pb isotopic signatures with other published isotopic signatures, a determination was made that the anthropogenic Pb present in their soil profiles is attributed to a mixture of American and European petrol Pb.
Sources of Pollution in Poland

Poland has been subjected to significant environmental contamination for quite some time. The extensive pollution can be attributed to Poland's continued reliance on coal as a primary source of energy, coupled with industrial emissions, the use of leaded gasoline, and atmospheric deposition (Szpunar et. al., 1990).

Upper Silesia, located in south-central Poland, is one of the most polluted regions in Poland. This region houses many of the country's major industrial plants and is the center of Poland's coal and lignite mining industry. Other large coal and lignite-fired power plants are scattered throughout the country and contribute to air and water pollution (Szpunar et. al., 1990).

Generally, the wind flow pattern throughout Poland is from the west-southwest to the east-northeast. Some northeasterly airflow is common in the summer. In the winter, Central Asia's high-pressure system may cause east-southeasterly airflow (Szpunar et. al., 1990). The predominant westerly winds over Poland make it feasible that emissions originating in central and western Poland can be transported through the atmosphere and deposited in eastern Poland.

Atmospheric Pb

Metal compounds in the atmosphere originate from both natural and man-made processes. Metal compounds, including Pb, can occur naturally through terrestrial, marine, volcanic or biogenic activity. More specifically, volcanoes, forest fires, sea spray and gaseous emissions from the ocean are the most important natural sources of metal compounds in the atmosphere. Anthropogenic emissions of many metals, including As, Cd, Cr, Ni, Pb and Zn often exceed the input of the trace elements from natural sources.
Lead is a good example of this trend, with its natural atmospheric levels, which range from $4-19 \times 10^6$ Kg/yr compared to its anthropogenic emissions levels ranging from $400-450 \times 10^6$ Kg/yr (Puxbaum, 1991). The most common anthropogenic sources of metal compounds in the atmosphere are coal combustion, smelting, and automobiles.

Metal particles in the atmosphere occur in a wide variety of sizes. Particulate matter with a 50% cut-off diameter of $10\mu M$ is referred to as PM$_{10}$, and considered inhalable (Fang et al., 1999). Inhalable particles (PM$_{10}$) and coarse particles (PM$_{2.5-10}$) are formed during mechanical processes such as erosion or abrasion. Particulate matter with a size range less than $2.5\mu M$ (PM$_{2.5}$) is considered fine and formed from coagulation and condensation processes. Lead usually occurs in the finer fraction of particulate matter, ranging from 0.3-0.8μM in size (Puxbaum, 1991).

Particle size is a governing factor for the amount of time a particle spends in the atmosphere. In general, finer sized particles will remain in the atmosphere for a longer period of time and presumably be able to travel greater distances from the source, compared to coarser particles (Puxbaum, 1991). This means that we can expect to find Pb contamination significant distances from the source. Continental air masses generally carry higher concentrations of trace metals farther distances, compared to marine air masses (Flament, 2002).

Atmospheric Pb is commonly found in association with atmospheric Zn and Cd, presumably because of their similar particulate matter size. Chemical speciation is common among trace metals in the atmosphere. Trace metals in polluted atmospheres are found in the carbonate, sulfate, nitrate or chloride fractions (Puxbaum, 1991).
Kyotani and Iwatsuki (2002) recently proved that a large part of atmospheric Pb can be removed in the water soluble, carbonate and sulfate fractions.

Atmospheric deposition is a major source of trace metal input in soils and waterways worldwide. Atmospheric particles can be deposited by dry deposition, which is dependent on particle size and air mass movement, or by wet deposition, which is dependent on rainfall and atmospheric metal concentrations. Wet deposition accounts for the majority of atmospheric deposition of trace metals, including Pb (Puxbaum, 1991).

Soil Geochemical Phases

Metal cations in soil systems may occur in different geochemical forms: free or complexed ions in solution, exchangeable (or specifically sorbed), and metal hydroxide and carbonate. The geochemical form of the metal cation determines the availability of the metal for bioaccumulation and potential groundwater contamination. Adsorbed, or exchangeable metals are the most bioavailable geochemical forms in the soil. There are associations of certain metals to certain geochemical phases depending on the nature of the soil (i.e. soil composition, soil mineralogy, soil pH, soil organic matter content, etc.).

Water soluble phase: Metals exist in the water soluble phase as free or complexed ions. The metals associated with this phase commonly have a high bioavailability. Contaminated soils commonly have an abundance of water soluble metals.

Exchangeable/specifically sorbed phase: When significant amounts of anthropogenic metals are present in the soil, this geochemical fraction will be high. In uncontaminated soils most trace metal cations are chemisorbed (specifically sorbed), and only small amounts are readily exchangeable.
Carbonate phase: Carbonates can contain various amounts of trace metals, generally by coprecipitation. Most trace metal cations precipitate as oxides and hydroxides at higher pH levels.

Fe-Mn oxide phases: Different extraction techniques may be employed to distinguish Mn oxides from Fe oxides, but since the two elements are so closely associated, extracting both fractions at the same time is more convenient. More recent inputs of trace metals should be associated with more reducible forms of Fe-Mn oxides.

Organic (sulfide) phase: Humic substances account for roughly 60-80% of soil organic matter. Moderate amounts of trace metals are associated with the organic fraction in soils, unless the soil texture is very sandy or the organic content is very high. In these soils a high proportion of trace metals are bound to the organic matter. The sulfide fraction may be extracted separately, but would not be a significant fraction unless dealing with wetland soils.

Residual phase: This fraction would include trace metals that are matrix bound to the phylosilicate structure and any other portion of trace metal that may not have been completely removed by the other extractions. Nearly 95% of trace metals can be removed in this fraction.

(All of the above information was obtained form Betri et. al., 1995; Rule, 1998; Wenzel and Blum, 1999).

Operationally Based Extractions

Due to questionable specificity of the extractants, operationally based fractions are commonly used instead of naming the geochemical fraction.
Water soluble phase (WSP): When attempting to extract water soluble metals out of the soil, one would simply extract with DI water.

Exchangeable phase (EP): Exchangeable cations are measured after displacement with a neutral salt solution. Extraction with NH$_4$NO$_3$ seems to be the most desirable reagent, because of its efficiency to displace adsorbed cations and its volatility (which decreases background interference during analysis).

Carbonate phase (CP): The extraction of the carbonate fraction should also remove oxides and hydroxides. This extraction employs acetic acid, and sodium acetate (which should have a minimal effect on the other soil fractions).

Easily reducible phase (ERP): The easily reducible fraction will involve the use of NH$_2$OH-HCl in HNO$_3$, and will extract predominantly Mn oxides.

Moderately reducible phase (MRP): To remove the moderately reducible fraction, mainly Fe oxides, NH$_2$OH-HCl in HOAc is employed.

Organic (sulfide) phase (OSP): For the organic (sulfide) extraction technique, H$_2$O$_2$ is used. Extraction with NH$_4$Oac is then used to prevent readsorption.

Acid extracted phase (AEP): To extract the residual fraction from the soil sample, strong acid digestion with concentrated NHO$_3$ and H$_2$O$_2$ are commonly used.

A more specific version of the general procedure for the extraction of contaminated soils is included in Appendix B.

(All of the above information was obtained from Betri et. al., 1995; Rule, 1998; Wenzel and Blum, 1999).
Purpose

Measuring Pb isotope ratios in each geochemical phase will allow us to indicate the percent of anthropogenic Pb that is water soluble, exchangeable, easily reducible, etc. Determining Pb abundance in these geochemical fractions may allow us to determine the potential health or environmental risk.

The original objective of this project was to use Pb isotope ratios to assess the anthropogenic Pb input from the naturally occurring Pb in four national parks in Poland. More specifically, to test Pb isotope ratios in each geochemical phase, and to determine if the majority of Pb is present in the water soluble phase, exchangeable phase, etc. A second goal was to test the postulate that sequential extractions can be used to evaluate the pollution status of the soils.

After a cost analysis, I determined that the experiment would be very expensive to complete. The new objective of this project is to test the acid extractable Pb isotope ratios in the samples from the four chosen national parks in Poland, by means of concentrated HNO₃/H₂O₂ extraction. Sequential extractions from Tatry National Park will be analyzed to determine the Pb isotope ratios in each geochemical phase.
CHAPTER II

METHODS

Study Area

Soils from four National Parks in Poland were collected, sampled and compared. Two Parks, Tatry National Park and Bieszczady National Park, are located in southern Poland and two Parks, Roztocze National Park and Poleski National Park, are located in eastern central Poland.

The Tatry National Park lies 80km south of the City of Krakow, along the Polish-Slovakian border, within the Carpathian Range (Appendix A). The popular tourist town of Zakopane is located at the northern border of the Park. Heavily industrialized areas are situated to the southeast of the Park in Slovakia. Tatry National Park encompasses an area of 21km² which is 71% forested with elevations ranging from 1100m to 2500m. This area is geologically complex, but consists mostly of metamorphic and sedimentary rocks. Soil samples were obtained within meadows, from areas containing granitic or sedimentary rocks, from 1110-1350m elevations of the Park.

The Bieszczady National Park is located in the southeast portion of the country, also within the Carpathian Range (Appendix A). This park is situated in a sparsely populated area. Bieszczady National Park encompasses an area of 15km² which is 60% forested with elevations ranging from 600-1300m. The Park contains mostly clastic with some carbonate rocks. Soil samples from this Park were taken at 900m elevations, in an area of fine textured clastic rocks.
The Roztocze National Park lies 80km south of the City of Lublin, in eastern Poland, in a moderately populated agricultural region (Appendix A). This 7.8km\(^2\) area is approximately 93% forested with elevations ranging from 100m to 350m. Between this area’s limestone hills are wide valleys covered with thick post-glacial sands, containing numerous peat bogs. Soil samples obtained in Roztocze National Park were taken in sandy soils and peat deposits at 200m elevations.

The Poleski National Park lies 60km northwest of the City of Lublin, in a sparsely populated agricultural region of the country (Appendix A). This nearly flat area encompasses 4.8km\(^2\), is about 80% forested, and ranges in elevations from 170m to 250m. Glacial sands, boulder clays and silty peat deposits form the soils in Poleski National Park. Soil samples were taken from 170m elevations in sandy and peat parent material.

Soil samples were collected for comparison from two other locations: Nowa Huta (an iron and steel manufacturing plant) located on the northern outskirts of the City of Krakow, and near the town of Polaniec (a non-cultivated area of agricultural fields) 90km northeast of Nowa Huta.

(All of the above information was obtained from Rule, 2003).

Field and Laboratory Procedures

Surficial soils, from the depth of 0-15 cm, were collected from all four parks. Samples from 15-30 cm depth were also collected in Poleski National Park. Either plastic or stainless steel tools were used to collect all samples. Up to 15 locations were sampled in each park. Samples were mixed using material from three separate locations.
within a 10m2 area. All samples were air-dried, crushed and sieved through a 2mm plastic sieve. The samples were then stored in plastic bags (Rule, 2003).

The Tatry National Park samples were subjected to selective chemical extractions (Rule, 1998) to determine the fraction of Pb present in each of the following phases: water soluble, exchangeable (NH_4NO_3), carbonate ($\text{pH}5$, $\text{NH}_2\text{OH. HCl in 25\% HOAc}$), organic-sulfide ($30\% \text{H}_2\text{O}_2$ in $0.01M\text{HNO}_3$; extract with HNO_4OAc) and acid extractable (concentrated HNO_3 and $30\% \text{H}_2\text{O}_2$) (Appendix B). Samples from all four national parks were subjected to a total chemical extraction, using concentrated HNO_3 and $30\% \text{H}_2\text{O}_2$, to determine the total Pb present (Appendix B).

Sequential chemical extraction samples from Tatry National Park, samples obtained from the total chemical extractions, and procedural blanks underwent Pb analysis, at the Laboratory for Isotope and Trace Element Research of Old Dominion University. All of the solutions were diluted to a ratio of 1% HNO_3, with the exception of the total acid extraction samples 01-27, which have a 1:1 dilution factor. The dilution matrix consisted of a sodium solution, prepared previous to our analysis in a Class 100 clean lab. Pb concentrations and Pb isotope ratios were measured by the Finnigan element 2 high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS). To correct for mass bias all solutions were spiked with 20 ppbTI and the NIST 982 certified reference material was run in conjunction with our samples to ensure precision and accuracy.
CHAPTER III
RESULTS AND DISCUSSION

As mentioned in the introduction, $^{206}\text{Pb}/^{204}\text{Pb}$ and $^{206}\text{Pb}/^{207}\text{Pb}$ ratios will be used to differentiate between natural and anthropogenic Pb sources for this discussion. All of the $^{206}\text{Pb}/^{204}\text{Pb}$, $^{206}\text{Pb}/^{207}\text{Pb}$, $^{206}\text{Pb}/^{208}\text{Pb}$, and $^{208}\text{Pb}/^{207}\text{Pb}$ isotope ratios obtained from the total acid extractions taken from all four National Parks and the Tatry National Park sequential extractions are presented in Appendix D. Total Pb concentrations obtained from all four National Parks, and sequential extraction Pb concentrations for Tatry National Park were previously determined by Rule (2003), and will be incorporated in this discussion (Appendix C).

Tatry National Park

Within the four National Parks studied, Tatry National Park has the highest recorded Pb concentrations, ranging from 42.08-113.3 mg/kg (Table 2; Appendix C). These concentrations are higher than recently determined background levels of Pb in Polish soils, which range from 12-18 mg/kg in central, northeast and eastern Poland; and slightly higher (25-50 mg/kg) concentrations in northwest and western Poland (Lis and Pasieczna, 1995). Because of these higher Pb concentrations, sequential extractions were performed on all of the Tatry samples to determine which phase holds the majority of Pb. Pb isotope ratios were determined for both the total acid extraction samples and the sequential extraction samples to determine if the different phases contained natural or anthropogenic Pb signatures.
In general, the highest Pb concentrations were found in the acid extractable phase. The organic sulfide phase held the second highest concentrations (Table 2). This means that a majority of Pb found in these samples is matrix bound, or bound to the organic matter in the soil.

There seems to be a relationship between elevation and Pb concentration. Samples taken from higher elevations within the park tend to have higher total Pb concentrations (Table 2; Figure 1). There is also a trend between Pb isotope ratios and elevation. As the $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios decrease (indicating more anthropogenic Pb) elevations increase (Figure 2; Figure 3). This is most likely because higher elevations serve as catchments for wind and precipitation carrying Pb.

Table 2. Tatry National Park Pb concentrations measured in each sequential extraction and the total Pb present in each sample (mg/kg) (Rule, 2003).

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Location</th>
<th>Elevation (m)</th>
<th>EP</th>
<th>CP</th>
<th>ERP+MRP</th>
<th>OSP</th>
<th>AEP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Mala Lake</td>
<td>1325</td>
<td>43.18</td>
<td>13.84</td>
<td>10.57</td>
<td>9.08</td>
<td>18.53</td>
<td>95.20</td>
</tr>
<tr>
<td>8</td>
<td>Mala Lake</td>
<td>1160</td>
<td>0.00</td>
<td>5.73</td>
<td>8.98</td>
<td>9.76</td>
<td>26.50</td>
<td>50.97</td>
</tr>
<tr>
<td>9</td>
<td>Mala Lake</td>
<td>1140</td>
<td>2.20</td>
<td>8.55</td>
<td>10.42</td>
<td>10.81</td>
<td>21.49</td>
<td>53.47</td>
</tr>
<tr>
<td>10</td>
<td>Mala Lake</td>
<td>1120</td>
<td>2.11</td>
<td>9.60</td>
<td>12.12</td>
<td>11.35</td>
<td>24.64</td>
<td>59.82</td>
</tr>
<tr>
<td>11</td>
<td>Rusinowa</td>
<td>1225</td>
<td>0.00</td>
<td>3.85</td>
<td>28.25</td>
<td>4.97</td>
<td>8.6</td>
<td>45.67</td>
</tr>
<tr>
<td>12</td>
<td>Rusinowa</td>
<td>1200</td>
<td>4.14</td>
<td>1.48</td>
<td>15.41</td>
<td>13.69</td>
<td>29.09</td>
<td>63.81</td>
</tr>
<tr>
<td>13</td>
<td>Rusinowa</td>
<td>1200</td>
<td>18.22</td>
<td>7.08</td>
<td>16.99</td>
<td>14.40</td>
<td>19.87</td>
<td>76.56</td>
</tr>
<tr>
<td>14</td>
<td>Chocholowska</td>
<td>1350</td>
<td>49.42</td>
<td>15.77</td>
<td>13.11</td>
<td>8.06</td>
<td>26.94</td>
<td>113.30</td>
</tr>
<tr>
<td>15</td>
<td>Chocholowska</td>
<td>1110</td>
<td>16.08</td>
<td>6.60</td>
<td>5.52</td>
<td>5.12</td>
<td>8.76</td>
<td>42.08</td>
</tr>
<tr>
<td>16</td>
<td>Chocholowska</td>
<td>1110</td>
<td>0.00</td>
<td>6.61</td>
<td>30.35</td>
<td>4.97</td>
<td>24.91</td>
<td>66.84</td>
</tr>
</tbody>
</table>
Fig. 1 Tatry National Park elevation (m) vs. total Pb concentration (mg/kg).

Fig. 2. Tatry National Park total $^{206}\text{Pb}/^{207}\text{Pb}$ isotope ratios vs. elevation (m).
Fig. 3. Tatry National Park $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios vs. elevation (m).

The $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ data indicates that a majority of the total Pb present in the Tatry National Park samples is anthropogenic in origin. This was expected considering that Tatry lies northwest of a heavily industrialized area in Slovakia, and southwest of the heavily industrialized region of Upper Silesia.

All of the samples taken from the Mala Lake region indicate that the Pb present in each geochemical phase is anthropogenic. The sequential extraction Pb isotope ratios from this region tend to closely mimic the total Pb extraction ratios. Out of the three samples obtained near Rusinowa, two (Samples 11 and 13) contain anthropogenic Pb in all phases, while the other (Sample 12) shows both anthropogenic and natural Pb ratios. Upon examination of the sequential extraction results for Sample 12, it is clear that the natural $^{206}\text{Pb}/^{207}\text{Pb}$ ratios occur in the moderately reducible, the organic sulfide, and the acid extractable phases, while the natural $^{206}\text{Pb}/^{204}\text{Pb}$ ratio occurs in the acid extractable phase. Even though the $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios in the exchangeable,
carbonate, and easily reducible phases clearly indicate anthropogenic input indicative of pollution, the Pb concentrations in Sample 12 are the highest in moderately reducible, organic sulfide, and acid extractable phases, which gives the overall sample a natural Pb isotope signature. Samples collected from Chocholowska contain Pb ratios that are constant with anthropogenic ratios, with one exception. Sample 16 contains a natural $^{206}\text{Pb}/^{207}\text{Pb}$ ratio of 1.2035 in its acid extractable phase, even though its total extraction $^{206}\text{Pb}/^{207}\text{Pb}$ ratio is 1.19 and considered anthropogenic. From this one can infer that the Pb present in the acid extractable phase is natural in origin, but the remainder, and majority of the Pb present in the sample is anthropogenic (Appendix D).

The patterns exhibited by Samples 12 and 16 are more expected. Most soils contain natural (residual) Pb. This natural Pb is usually incorporated in the soil matrix and would be expected in the more insoluble geochemical phases (moderately reducible, organic sulfide, and acid extractable phases). More recently deposited anthropogenic Pb would tend to reside in the more soluble phases (exchangeable, carbonate, and easily reducible phases). In fact, it is surprising that more natural Pb isotope signatures were not predominant for the more insoluble geochemical phases throughout more areas in Tatry National Park.

Bieszczady National Park

The Bieszczady National Park samples contain somewhat higher Pb concentrations than what was expected, considering that these samples were taken from lower elevations (900m) and this park is situated in a sparsely populated area. These concentration levels are similar to Tatry National Parks concentration levels in that they
exceed the expected average background levels of Pb expected in Polish soils.

All of the isotope ratios calculated for this region indicate that the Pb present is of anthropogenic origin (Table 3). Since this National Park is located in such a sparsely populated area, one can assume that the anthropogenic Pb found in these samples was caused by atmospheric deposition.

Table 3. Total Pb concentrations (mg/kg), $^{206}\text{Pb}/^{207}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios measured from sampled taken within Bieszczady National Park (* indicates natural Pb).

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Elevation (m)</th>
<th>Pb Concentration</th>
<th>$^{206}\text{Pb}/^{207}\text{Pb}$</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>900</td>
<td>62.92</td>
<td>1.1851</td>
<td>18.5149</td>
</tr>
<tr>
<td>18</td>
<td>900</td>
<td>62.19</td>
<td>1.1910</td>
<td>18.5179</td>
</tr>
<tr>
<td>19</td>
<td>900</td>
<td>53.87</td>
<td>1.1860</td>
<td>18.5692</td>
</tr>
</tbody>
</table>

Roztocze National Park

Samples were collected from Roztocze National Park in a variety of areas containing different soil material, all at elevations of approximately 200m. Samples obtained from a peat meadow contain the highest Pb concentrations obtained in the National Park. This was expected because peats and clays tend to sorb trace metals more tightly than other soil constituents. The remainder of the samples were retrieved from sandy soils and have relatively low Pb concentrations, which is typical (Table 4).

All of the $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios recorded in this area are anthropogenic in origin (Table 4). Since Roztocze National Park lies in a moderately populated area of Poland, the likely causes for the anthropogenic Pb in the region could be the release of automobile emissions in the area coupled with atmospheric deposition of industry emissions originating in Upper Silesia and Slovakia.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table 4. Total Pb concentrations (mg/kg), $^{206}\text{Pb}/^{207}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios measured from samples taken within Roztocze National Park (* indicated natural Pb).

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Location</th>
<th>Elevation (m)</th>
<th>Pb Concentration</th>
<th>$^{206}\text{Pb}/^{207}\text{Pb}$</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Peat Meadow</td>
<td>200</td>
<td>76.55</td>
<td>1.1699</td>
<td>18.1706</td>
</tr>
<tr>
<td>21</td>
<td>Peat Meadow</td>
<td>200</td>
<td>86.57</td>
<td>1.1715</td>
<td>18.2124</td>
</tr>
<tr>
<td>22</td>
<td>Peat Meadow</td>
<td>200</td>
<td>80.18</td>
<td>1.1735</td>
<td>18.3241</td>
</tr>
<tr>
<td>23</td>
<td>Meadow</td>
<td>200</td>
<td>14.61</td>
<td>1.1727</td>
<td>18.2744</td>
</tr>
<tr>
<td>24</td>
<td>Meadow</td>
<td>200</td>
<td>12.50</td>
<td>1.1789</td>
<td>18.3352</td>
</tr>
<tr>
<td>25</td>
<td>Meadow</td>
<td>200</td>
<td>13.62</td>
<td>1.1779</td>
<td>18.3621</td>
</tr>
<tr>
<td>26</td>
<td>Birch Sand</td>
<td>200</td>
<td>13.49</td>
<td>1.1749</td>
<td>18.2852</td>
</tr>
<tr>
<td>27</td>
<td>Birch Sand</td>
<td>200</td>
<td>6.74</td>
<td>1.1756</td>
<td>18.2608</td>
</tr>
<tr>
<td>28</td>
<td>Birch Sand</td>
<td>200</td>
<td>11.62</td>
<td>1.1765</td>
<td>18.3197</td>
</tr>
</tbody>
</table>

Poleski National Park

A total of 30 soil samples were analyzed from Poleski National Park. A different sampling scheme was employed at this Park. Soil samples were collected from five different areas, and at two different depths within each area. Samples taken from the other National Parks were all surface soils. Results from this study found that there are distinctive differences in Pb concentration and Pb isotope ratios at varying depths.

In general, surface Pb concentrations exceeded subsurface levels. This is an indication that there is anthropogenic input in this area. Samples obtained from areas containing peaty soils (Duren Bango, Jez Dkugie, and West Meadow) have higher surface Pb concentrations compared to samples taken from areas containing sandy soils (Lowiszow Polana and a forest near Jez Dkugie) (Table 5).

Poleski National Park shows the greatest variation in Pb isotope ratios, out of all four National Parks studied. The subsurface samples collected in Poleski National Park

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
contain the lowest Pb concentrations observed in this study. A majority of the subsurface samples contain Pb isotope ratios indicative of natural Pb, which was expected. Soils taken from the subsurface should be more protected from anthropogenic input, giving the soils natural Pb isotope signatures (Table 5).

Almost all of the surface samples contain Pb isotope ratios consistent with ratios caused by anthropogenic input. The one exception is the samples obtained from the Lowiszow Polana region of the Park. Pb isotope ratios measured from Lowiszow Polana indicate that all of the Pb present there is natural (Table 5). Since Poleski National Park is located in the eastern portion of Poland, in a sparsely populated agricultural region, the most logical source of anthropogenic Pb would be atmospheric deposition of Pb transported from Upper Silesia or Slovakia and local automobile traffic.
Table 5. Total Pb concentrations (mg/kg), $^{206}\text{Pb}/^{207}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios measured from samples taken within Poleski National Park (* indicates natural Pb).

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Location</th>
<th>Sample Depth</th>
<th>Pb Concentration</th>
<th>$^{206}\text{Pb}/^{207}\text{Pb}$</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Durne Bango</td>
<td>0-15 (cm)</td>
<td>23.10</td>
<td>1.177</td>
<td>18.3530</td>
</tr>
<tr>
<td>31</td>
<td>Durne Bango</td>
<td>15-30 (cm)</td>
<td>2.84</td>
<td>*1.2014</td>
<td>18.6898</td>
</tr>
<tr>
<td>32</td>
<td>Durne Bango</td>
<td>0-15 (cm)</td>
<td>29.78</td>
<td>1.177</td>
<td>18.3430</td>
</tr>
<tr>
<td>33</td>
<td>Durne Bango</td>
<td>15-30 (cm)</td>
<td>2.27</td>
<td>*1.2104</td>
<td>*18.8713</td>
</tr>
<tr>
<td>34</td>
<td>Durne Bango</td>
<td>0-15 (cm)</td>
<td>27.57</td>
<td>1.177</td>
<td>18.3237</td>
</tr>
<tr>
<td>35</td>
<td>Durne Bango</td>
<td>15-30 (cm)</td>
<td>3.56</td>
<td>*1.2052</td>
<td>18.7411</td>
</tr>
<tr>
<td>36</td>
<td>Łowiszów Polana</td>
<td>0-15 (cm)</td>
<td>8.67</td>
<td>1.1975</td>
<td>18.6754</td>
</tr>
<tr>
<td>37</td>
<td>Łowiszów Polana</td>
<td>15-30 (cm)</td>
<td>11.10</td>
<td>*1.2447</td>
<td>*19.5000</td>
</tr>
<tr>
<td>38</td>
<td>Łowiszów Polana</td>
<td>0-15 (cm)</td>
<td>13.70</td>
<td>*1.2028</td>
<td>*18.8097</td>
</tr>
<tr>
<td>39</td>
<td>Łowiszów Polana</td>
<td>15-30 (cm)</td>
<td>8.59</td>
<td>*1.2692</td>
<td>*19.9394</td>
</tr>
<tr>
<td>40</td>
<td>Łowiszów Polana</td>
<td>0-15 (cm)</td>
<td>10.20</td>
<td>1.1999</td>
<td>18.7242</td>
</tr>
<tr>
<td>41</td>
<td>Łowiszów Polana</td>
<td>15-30 (cm)</td>
<td>3.93</td>
<td>*1.2415</td>
<td>*19.3974</td>
</tr>
<tr>
<td>42</td>
<td>Jez Dkugie</td>
<td>0-15 (cm)</td>
<td>12.82</td>
<td>1.1857</td>
<td>18.4952</td>
</tr>
<tr>
<td>43</td>
<td>Jez Dkugie</td>
<td>15-30 (cm)</td>
<td>8.03</td>
<td>*1.2271</td>
<td>*19.2041</td>
</tr>
<tr>
<td>44</td>
<td>Jez Dkugie</td>
<td>0-15 (cm)</td>
<td>10.14</td>
<td>1.1895</td>
<td>18.4981</td>
</tr>
<tr>
<td>45</td>
<td>Jez Dkugie</td>
<td>15-30 (cm)</td>
<td>7.47</td>
<td>1.1959</td>
<td>18.5816</td>
</tr>
<tr>
<td>46</td>
<td>Jez Dkugie</td>
<td>0-15 (cm)</td>
<td>7.15</td>
<td>1.1864</td>
<td>18.3605</td>
</tr>
<tr>
<td>47</td>
<td>Jez Dkugie</td>
<td>15-30 (cm)</td>
<td>6.67</td>
<td>*1.2035</td>
<td>18.6893</td>
</tr>
<tr>
<td>48</td>
<td>Forest near Jez Dkugie</td>
<td>0-15 (cm)</td>
<td>9.43</td>
<td>1.1834</td>
<td>18.4532</td>
</tr>
<tr>
<td>49</td>
<td>Forest near Jez Dkugie</td>
<td>15-30 (cm)</td>
<td>8.42</td>
<td>*1.2009</td>
<td>18.7095</td>
</tr>
<tr>
<td>50</td>
<td>Forest near Jez Dkugie</td>
<td>0-15 (cm)</td>
<td>11.05</td>
<td>1.1900</td>
<td>18.5355</td>
</tr>
<tr>
<td>51</td>
<td>Forest near Jez Dkugie</td>
<td>15-30 (cm)</td>
<td>2.00</td>
<td>*1.2375</td>
<td>*19.2213</td>
</tr>
<tr>
<td>52</td>
<td>Forest near Jez Dkugie</td>
<td>0-15 (cm)</td>
<td>3.04</td>
<td>*1.2082</td>
<td>*18.8118</td>
</tr>
<tr>
<td>53</td>
<td>Forest near Jez Dkugie</td>
<td>15-30 (cm)</td>
<td>7.16</td>
<td>1.1834</td>
<td>18.4645</td>
</tr>
<tr>
<td>54</td>
<td>West Meadow</td>
<td>0-15 (cm)</td>
<td>25.17</td>
<td>1.1781</td>
<td>18.4258</td>
</tr>
<tr>
<td>55</td>
<td>West Meadow</td>
<td>15-30 (cm)</td>
<td>12.98</td>
<td>1.1818</td>
<td>18.4399</td>
</tr>
<tr>
<td>56</td>
<td>West Meadow</td>
<td>0-15 (cm)</td>
<td>36.06</td>
<td>1.1791</td>
<td>18.3234</td>
</tr>
<tr>
<td>57</td>
<td>West Meadow</td>
<td>15-30 (cm)</td>
<td>17.61</td>
<td>1.1807</td>
<td>18.4209</td>
</tr>
<tr>
<td>58</td>
<td>West Meadow</td>
<td>0-15 (cm)</td>
<td>41.63</td>
<td>1.1786</td>
<td>18.3566</td>
</tr>
<tr>
<td>59</td>
<td>West Meadow</td>
<td>15-30 (cm)</td>
<td>17.77</td>
<td>1.1783</td>
<td>18.3704</td>
</tr>
</tbody>
</table>
Pb Concentrations vs. Pb Isotope Ratios

Contaminated soils are generally recognized by containing elevated levels of heavy metals and trace elements. However, concentration levels alone cannot differentiate between metals that occur naturally in the soil and metals that occur because of anthropogenic input. Sequential chemical extractions are a good way to determine environmental availability of certain trace elements.

While excess Pb concentration levels may indicate anthropogenic contamination, slightly elevated Pb concentration levels do not. Tatry National Park exhibited the highest Pb concentrations out of all four Parks studied (Appendix C). The sequential chemical extraction results showed that most of the Pb present was being stored in the moderately reducible, organic sulfide, and acid extractable phases, which indicate that the majority of the Pb is matrix bound, or bound to the organic matter in the soil. The greater than expected amounts of Pb in the exchangeable phase, carbonate phase, and easily reducible phase fractions were postulated to indicate anthropogenic input (Rule, 2003). A majority of the Pb isotope ratios recorded prove that the predominant Pb signature present is anthropogenic, with two exceptions (Samples 12 and 16). Sample 12 showed anthropogenic Pb isotope signals in the exchangeable, carbonate, and easily reducible phases and natural Pb isotope signals in the moderately reducible, organic sulfide, and acid extractable phases, giving the sample an overall natural signal. Sample 16 exhibited a natural Pb isotope signal in the acid extractable phase, but the remainder of the sequential extraction Pb isotope ratios gave off anthropogenic signals giving the sample an overall anthropogenic Pb isotope signal.
All of the Pb isotope ratios recorded from the Tatry National Parks exchangeable phases, carbonate phases, and easily reducible phases indicate anthropogenic origin of Pb. Recently deposited metals are generally more abundant in these more easily mobile phases. One would expect natural Pb isotope signals in the moderately reducible, organic sulfide, and acid extractable phases in all soils, even those with anthropogenic input, because Pb tends to be relatively abundant in the Fe-Mn oxide, residual, and organic fractions naturally. The fact that natural Pb was found in the more insoluble phases, and bound to the soils matrix was expected. It was actually a surprise that more natural Pb was not found in the more insoluble phases since most soils start out with natural concentrations of Pb. This information is consistent with the postulate that based on metal concentrations in different geochemical fractions, sequential extractions can be used to evaluate the pollution status of a soil.

Samples obtained from Bieszczady National Park and Roztocze National Park contain various Pb concentration levels ranging from 6.74-86.57mg/Kg, and all of these samples Pb isotope ratios showed that the majority of the Pb present was anthropogenic in origin.

In Poleski National Park, where Pb concentrations were the lowest recorded out of all four Parks, the Pb isotope ratios showed the presence of both natural and anthropogenic Pb. Surface soil Pb concentrations for the most part exceeded subsurface concentrations. Upon examination of Pb concentrations in the soil geochemical phases, a good portion of the Pb present in the surface soils was bound to the exchangeable and carbonate phases. A majority of the Pb present in the subsurface samples was bound to the organic sulfide and acid extractable phases (Appendix C). This data is consistent
with the fact that more recently deposited, anthropogenic Pb may be held in more soluble geochemical phases, and natural Pb is bound to the more insoluble geochemical phases.

A majority of the surface samples collected exhibited anthropogenic Pb isotope ratios, while a majority of the subsurface samples collected show no sign of anthropogenic Pb input. This is a very important observation and proves that sparsely populated regions of the country are affected by anthropogenic Pb input in surface soils, most likely caused by atmospheric deposition of emissions originating in Upper Silesia and Slovakia and local automobile traffic.

Natural Pb cannot be distinguished from the anthropogenic Pb by concentration levels. Since overall Pb concentration levels in Poleski National Park were low, an examination of Pb isotope ratio distribution within different geochemical phases to determine which geochemical fractions held a majority of the anthropogenic Pb or natural Pb would have been useful. Data from Pb isotope ratio distribution within different geochemical phases could strengthen the postulate that elevated amounts of Pb in the exchangeable, carbonate, and easily reducible phases indicate anthropogenic input.

There is a slight trend between total Pb concentration and Pb isotope ratios (Figure 4; Figure 5). Generally, as Pb concentrations increase, $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios decrease (clearly indicating anthropogenic input). However, when lower Pb concentrations are measured, it is harder to establish a trend. Some areas exhibiting low Pb concentration levels gave off natural Pb isotope ratios, while some areas with low Pb concentrations showed anthropogenic Pb isotope signatures.
Fig. 4. Pokeski National Park $^{206}\text{Pb}/^{207}\text{Pb}$ isotope ratios vs. total Pb concentration (mg/kg).

Fig. 5. Pokeski National Park $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios vs. Pb concentration (mg/kg).
CHAPTER IV
SUMMARY AND CONCLUSIONS

Pb isotope ratio signatures enable distinction between naturally occurring Pb and anthropogenic Pb. By coupling Pb isotope signatures with Pb concentrations in different geochemical phases, an accurate characterization of soil pollution status may be reached.

Soils in all of the National Parks in this study contain Pb isotope ratios indicative of anthropogenic Pb input. The Pb pollution in all of the National Parks could be attributed to the release of local automobile emissions, coupled with atmospheric deposition of industrial emissions originating in Upper Silesia and Slovakia.

There is a relationship between Pb concentrations, Pb isotope ratios, and elevation. As elevations increase, Pb concentrations increase; as elevations increase, $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{206}\text{Pb}/^{204}\text{Pb}$ isotope ratios decrease. There is also a slight trend between Pb concentrations and Pb isotope ratios. As Pb concentrations increase, the Pb isotope ratios decrease.

In Tatry National Park, a majority of the total and sequential extraction Pb isotope ratios recorded indicate anthropogenic input. In soil samples that portrayed natural total Pb isotope signatures, there were still anthropogenic Pb isotope signatures present in the more soluble geochemical phases (exchangeable phase, carbonate phase, and easily reducible phase), which indicates that these soils have been affected by Pb pollution. Data from this portion of the study, concerning Pb isotope ratio distribution within different geochemical phases, is consistent with the postulate that elevated amounts of Pb in the more easily soluble phases indicates anthropogenic input. This data also supports
the fact that one should be cautious when characterizing a soil as being influenced by contamination or receiving anthropogenic inputs based on total Pb content alone.

There were no natural total Pb isotope signatures recorded for samples taken from either Bieszczady National Park or Roztocze National Park. All of the Pb isotope signatures recorded in these two National Parks indicate that anthropogenic Pb is dominant in these soil samples.

Poleski National Park shows the greatest variation in Pb isotope ratios, out of all four National Parks studied. A majority of the subsurface samples contain total Pb isotope ratios indicative of natural Pb, while almost all of the surface samples contain Pb isotope ratios consistent with anthropogenic Pb isotope signatures.

This project was significant in that its results showed that many areas of Poland, including sparsely populated regions, are affected by anthropogenic Pb input. This project’s results also strengthened the validation of using sequential geochemical extractions to measure anthropogenic input of Pb in soil.
REFERENCES

Fig. A1. Map of Poland Including Tatry National Park, Bieszczady National Park, Roztocze National Park, and Poleski National Park.
APPENDIX B

SELECTIVE EXTRACTION SEQUENCE AND ACID EXTRACTABLE TRACE METALS IN SOILS

CONCENTRATED HNO₃/H₂O₂ EXTRACTION PROCEDURES
Selective Extraction Sequence Procedure (Rule, 1998)

1. Water Soluble Phase: Add 24mL of ASTM Type I deionized H₂O to 3.0g sample, shake tubes end-to-end for 1 hour. Centrifuge, remove extract, wash, and centrifuge.

2. Exchangeable Phase: Add 24mL of 1.0M pH 7 NH₄NO₃ to 3.0g sample, shake tubes end-to-end for 1 hour. Centrifuge, remove extract, wash, and centrifuge.

3. Carbonate Phase: Add 24mL of 1.0M, pH 5 NaOAc and place on shaker for 5 hours. Centrifuge, remove extract, wash, and centrifuge.

4. Easily Reducible Phase- predominantly Mn oxides: Add 24mL of 1.0M NH₂OH-HCl in 0.01M HNO₃ and place on shaker for 1 hour. Centrifuge, remove extract, wash, and centrifuge.

5. Moderately Reducible Phase- predominantly Fe oxides: Add 24mL of 0.04M NH₂OH-HCl in 25% HOAc and place samples in a 96°C water bath for 6 hours. Centrifuge, remove extract, wash, and centrifuge.

6. Organic (Sulfide) Phase: a) Add 0.1mL of 1.0M HNO₃ + 5mL 30% H₂O₂, pH 2 and place in 85°C water bath; b) add 5mL 30% H₂O₂, wait for the reaction to subside, add 5mL H₂O₂ and heat on 85°C hot plate for 1 hour; c) add 5mL 30% H₂O₂ and place on 85°C hotplate for 3 hours; d) cool samples, add 7mL of 4M NaOAc in 20% HNO₃, cover beaker opening with parafilm, place on shaker for 30minutes; e) centrifuge, remove extract, wash, and centrifuge.

7. Residual Phase: we will use the concentrated HNO₃ + 30% H₂O₂ procedure (Acid Extractable Residual).
Acid Extractable Trace Metals in Soils

Concentrated HNO₃/H₂O₂ Extraction Procedure (Rule, 1998)

1. Place 3-5g dried, sieved soil into a 180mL digestion beaker; add enough DI H₂O to just wet the entire sample. Record weight.

2. Add 15mL of 15.4M Trace Metal Grade HNO₃, cover with a watch glass and let stand over night.

3. Gently heat at 110°C on large hotplate for 4 hours, adding more acid if necessary.

4. Remove all samples from hotplate onto heat resistant surface, cool for 15 minutes and carefully add 5mL of 30%H₂O₂.

5. Return the samples to the hotplate, cover with watch glasses and heat for an additional 1.5 hours.

6. Remove the watch glasses and evaporate liquid until about 5mL remains.

7. Add 10mL of DI H₂O and warm to dissolve all salts.

8. All filters should be prepared in racks ahead of time. Whatman 541 filter paper in plastic funnels should be washed with 10% Trace Metal Grade HNO₃.

9. Cool the samples and decant the digestate through the pre-washed filters into 50mL volumetric flasks.

10. Rinse the digestion beaker with small amounts of DI H₂O and add to the filter.

11. Rinse the filter paper with small amounts of DI H₂O taking care not to exceed the 50mL volume in the flask.

12. Thoroughly mix each sample in the flask and transfer to storage bottles.
APPENDIX C

SEQUENTIAL EXTRACTION Pb CONCENTRATIONS
FROM TATRY NATIONAL PARK AND POLESKI NATIONAL PARK

TOTAL ACID EXTRACTION

Pb CONCENTRATIONS FROM TATRY NATIONAL PARK, BIESZCZADY
NATIONAL PARK, ROZTOCZE NATIONAL PARK, AND
POLESKI NATIONAL PARK
Table A1. Sequential extraction Pb concentrations (mg/kg) from Tatry National Park (Rule, 2003).

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample</th>
<th>EP</th>
<th>CP</th>
<th>ERP+ MRP</th>
<th>OSP</th>
<th>AEP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mala Lake</td>
<td>6</td>
<td>43.18</td>
<td>13.84</td>
<td>10.57</td>
<td>9.08</td>
<td>18.53</td>
<td>95.20</td>
</tr>
<tr>
<td>Mala Lake</td>
<td>8</td>
<td>0.00</td>
<td>5.73</td>
<td>8.98</td>
<td>9.76</td>
<td>26.50</td>
<td>50.97</td>
</tr>
<tr>
<td>Mala Lake</td>
<td>9</td>
<td>2.20</td>
<td>8.55</td>
<td>10.42</td>
<td>10.81</td>
<td>21.49</td>
<td>53.47</td>
</tr>
<tr>
<td>Mala Lake</td>
<td>10</td>
<td>2.11</td>
<td>9.60</td>
<td>12.12</td>
<td>11.35</td>
<td>24.64</td>
<td>59.82</td>
</tr>
<tr>
<td>Rusinowa</td>
<td>11</td>
<td>0.00</td>
<td>3.85</td>
<td>28.25</td>
<td>4.97</td>
<td>8.60</td>
<td>45.67</td>
</tr>
<tr>
<td>Rusinowa</td>
<td>12</td>
<td>4.14</td>
<td>1.48</td>
<td>15.41</td>
<td>13.69</td>
<td>29.09</td>
<td>63.81</td>
</tr>
<tr>
<td>Rusinowa</td>
<td>13</td>
<td>18.22</td>
<td>7.08</td>
<td>16.99</td>
<td>14.40</td>
<td>19.87</td>
<td>76.56</td>
</tr>
<tr>
<td>Chocholowska</td>
<td>14</td>
<td>49.42</td>
<td>15.77</td>
<td>13.11</td>
<td>8.06</td>
<td>26.94</td>
<td>113.30</td>
</tr>
<tr>
<td>Chocholowska</td>
<td>15</td>
<td>16.08</td>
<td>6.60</td>
<td>5.52</td>
<td>5.12</td>
<td>8.76</td>
<td>42.08</td>
</tr>
<tr>
<td>Chocholowska</td>
<td>16</td>
<td>0.00</td>
<td>6.61</td>
<td>30.35</td>
<td>4.97</td>
<td>24.91</td>
<td>66.84</td>
</tr>
</tbody>
</table>
Table A2. Sequential extraction Pb concentrations (mg/kg) from Poleski National Park. (Rule, 2003).

<table>
<thead>
<tr>
<th>Location</th>
<th>Sample</th>
<th>Depth (cm)</th>
<th>EP</th>
<th>CP</th>
<th>ERP/ MRP</th>
<th>OSP</th>
<th>AEP</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dume Bango</td>
<td>30</td>
<td>0-15</td>
<td>14.45</td>
<td>1.24</td>
<td>1.62</td>
<td>4.40</td>
<td>1.39</td>
<td>23.10</td>
</tr>
<tr>
<td>Dume Bango</td>
<td>31</td>
<td>0-15</td>
<td>1.77</td>
<td>0.00</td>
<td>0.21</td>
<td>0.01</td>
<td>0.85</td>
<td>2.84</td>
</tr>
<tr>
<td>Dume Bango</td>
<td>32</td>
<td>15-30</td>
<td>23.32</td>
<td>1.19</td>
<td>1.75</td>
<td>0.38</td>
<td>3.14</td>
<td>29.78</td>
</tr>
<tr>
<td>Dume Bango</td>
<td>33</td>
<td>15-30</td>
<td>25.50</td>
<td>0.00</td>
<td>1.14</td>
<td>0.00</td>
<td>2.93</td>
<td>27.57</td>
</tr>
<tr>
<td>Dume Bango</td>
<td>34</td>
<td>15-30</td>
<td>0.48</td>
<td>0.01</td>
<td>0.00</td>
<td>1.93</td>
<td>1.14</td>
<td>3.56</td>
</tr>
<tr>
<td>Lowiszow Polana</td>
<td>36</td>
<td>0-15</td>
<td>1.22</td>
<td>0.97</td>
<td>1.47</td>
<td>2.63</td>
<td>2.38</td>
<td>8.67</td>
</tr>
<tr>
<td>Lowiszow Polana</td>
<td>37</td>
<td>0-15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.52</td>
<td>6.25</td>
<td>4.33</td>
<td>11.10</td>
</tr>
<tr>
<td>Lowiszow Polana</td>
<td>38</td>
<td>0-15</td>
<td>1.15</td>
<td>0.00</td>
<td>3.18</td>
<td>5.58</td>
<td>3.79</td>
<td>13.70</td>
</tr>
<tr>
<td>Lowiszow Polana</td>
<td>39</td>
<td>0-15</td>
<td>0.46</td>
<td>0.00</td>
<td>2.30</td>
<td>3.47</td>
<td>2.36</td>
<td>8.59</td>
</tr>
<tr>
<td>Lowiszow Polana</td>
<td>40</td>
<td>0-15</td>
<td>3.34</td>
<td>0.00</td>
<td>1.88</td>
<td>3.35</td>
<td>1.63</td>
<td>10.20</td>
</tr>
<tr>
<td>Lowiszow Polana</td>
<td>41</td>
<td>0-15</td>
<td>0.33</td>
<td>0.00</td>
<td>0.92</td>
<td>1.88</td>
<td>0.80</td>
<td>3.93</td>
</tr>
<tr>
<td>Jez Dkugie</td>
<td>42</td>
<td>0-15</td>
<td>0.90</td>
<td>0.66</td>
<td>1.66</td>
<td>2.93</td>
<td>6.67</td>
<td>12.82</td>
</tr>
<tr>
<td>Jez Dkugie</td>
<td>43</td>
<td>0-15</td>
<td>0.22</td>
<td>0.00</td>
<td>0.18</td>
<td>5.54</td>
<td>2.31</td>
<td>8.03</td>
</tr>
<tr>
<td>Jez Dkugie</td>
<td>44</td>
<td>0-15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.52</td>
<td>6.25</td>
<td>4.33</td>
<td>11.10</td>
</tr>
<tr>
<td>Jez Dkugie</td>
<td>45</td>
<td>0-15</td>
<td>0.00</td>
<td>0.00</td>
<td>2.30</td>
<td>3.47</td>
<td>2.36</td>
<td>8.59</td>
</tr>
<tr>
<td>Jez Dkugie</td>
<td>46</td>
<td>0-15</td>
<td>1.24</td>
<td>0.12</td>
<td>1.47</td>
<td>3.40</td>
<td>1.04</td>
<td>7.15</td>
</tr>
<tr>
<td>Jez Dkugie</td>
<td>47</td>
<td>0-15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.92</td>
<td>1.88</td>
<td>0.80</td>
<td>3.93</td>
</tr>
<tr>
<td>Forest near J. Dkugie</td>
<td>48</td>
<td>0-15</td>
<td>4.84</td>
<td>0.00</td>
<td>0.38</td>
<td>1.39</td>
<td>1.92</td>
<td>9.43</td>
</tr>
<tr>
<td>Forest near J. Dkugie</td>
<td>49</td>
<td>0-15</td>
<td>1.85</td>
<td>0.02</td>
<td>0.12</td>
<td>4.81</td>
<td>1.62</td>
<td>8.42</td>
</tr>
<tr>
<td>Forest near J. Dkugie</td>
<td>50</td>
<td>0-15</td>
<td>1.11</td>
<td>0.00</td>
<td>1.29</td>
<td>1.35</td>
<td>5.54</td>
<td>11.05</td>
</tr>
<tr>
<td>Forest near J. Dkugie</td>
<td>51</td>
<td>0-15</td>
<td>0.00</td>
<td>0.00</td>
<td>1.19</td>
<td>0.45</td>
<td>0.36</td>
<td>2.00</td>
</tr>
<tr>
<td>Forest near J. Dkugie</td>
<td>52</td>
<td>0-15</td>
<td>0.33</td>
<td>0.00</td>
<td>2.09</td>
<td>0.25</td>
<td>0.37</td>
<td>3.04</td>
</tr>
<tr>
<td>Forest near J. Dkugie</td>
<td>53</td>
<td>0-15</td>
<td>2.35</td>
<td>1.46</td>
<td>2.60</td>
<td>0.31</td>
<td>0.44</td>
<td>7.16</td>
</tr>
<tr>
<td>West Meadow</td>
<td>54</td>
<td>0-15</td>
<td>8.28</td>
<td>2.34</td>
<td>3.20</td>
<td>0.41</td>
<td>10.94</td>
<td>25.17</td>
</tr>
<tr>
<td>West Meadow</td>
<td>55</td>
<td>0-15</td>
<td>2.28</td>
<td>1.35</td>
<td>2.50</td>
<td>0.29</td>
<td>6.56</td>
<td>12.98</td>
</tr>
<tr>
<td>West Meadow</td>
<td>56</td>
<td>0-15</td>
<td>11.62</td>
<td>3.20</td>
<td>4.16</td>
<td>0.00</td>
<td>17.08</td>
<td>36.06</td>
</tr>
<tr>
<td>West Meadow</td>
<td>57</td>
<td>0-15</td>
<td>4.73</td>
<td>0.51</td>
<td>2.60</td>
<td>0.29</td>
<td>9.48</td>
<td>17.61</td>
</tr>
<tr>
<td>West Meadow</td>
<td>58</td>
<td>0-15</td>
<td>6.47</td>
<td>3.63</td>
<td>4.34</td>
<td>21.28</td>
<td>5.91</td>
<td>41.63</td>
</tr>
<tr>
<td>West Meadow</td>
<td>59</td>
<td>0-15</td>
<td>2.38</td>
<td>0.52</td>
<td>0.92</td>
<td>0.00</td>
<td>7.35</td>
<td>17.77</td>
</tr>
</tbody>
</table>
Table A3. Total acid extraction concentrations from Tatry National Park, Bieszczady National Park, Roztocze National Park, and Poleski National Park (Rule, 2003).

<table>
<thead>
<tr>
<th>National Park</th>
<th>Location</th>
<th>Sample</th>
<th>Concentration (mg/kg)</th>
<th>National Park</th>
<th>Location</th>
<th>Sample</th>
<th>Concentration (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatry</td>
<td>Mala Lake</td>
<td>6</td>
<td>95.20</td>
<td>Poleski</td>
<td>Durne Bagno</td>
<td>30</td>
<td>23.10</td>
</tr>
<tr>
<td>Tatry</td>
<td>Mala Lake</td>
<td>7</td>
<td>61.99</td>
<td>Poleski</td>
<td>Durne Bagno</td>
<td>31</td>
<td>2.84</td>
</tr>
<tr>
<td>Tatry</td>
<td>Mala Lake</td>
<td>8</td>
<td>50.97</td>
<td>Poleski</td>
<td>Durne Bagno</td>
<td>32</td>
<td>29.78</td>
</tr>
<tr>
<td>Tatry</td>
<td>Mala Lake</td>
<td>9</td>
<td>53.47</td>
<td>Poleski</td>
<td>Durne Bagno</td>
<td>33</td>
<td>2.27</td>
</tr>
<tr>
<td>Tatry</td>
<td>Mala Lake</td>
<td>10</td>
<td>59.82</td>
<td>Poleski</td>
<td>Durne Bagno</td>
<td>34</td>
<td>27.57</td>
</tr>
<tr>
<td>Tatry</td>
<td>Rusinowa</td>
<td>11</td>
<td>45.67</td>
<td>Poleski</td>
<td>Durne Bagno</td>
<td>35</td>
<td>3.56</td>
</tr>
<tr>
<td>Tatry</td>
<td>Rusinowa</td>
<td>12</td>
<td>63.81</td>
<td>Poleski</td>
<td>Lowiszow P.</td>
<td>36</td>
<td>8.67</td>
</tr>
<tr>
<td>Tatry</td>
<td>Rusinowa</td>
<td>13</td>
<td>76.56</td>
<td>Poleski</td>
<td>Lowiszow P.</td>
<td>37</td>
<td>11.10</td>
</tr>
<tr>
<td>Tatry</td>
<td>Chocholowska</td>
<td>14</td>
<td>113.30</td>
<td>Poleski</td>
<td>Lowiszow P.</td>
<td>38</td>
<td>13.70</td>
</tr>
<tr>
<td>Tatry</td>
<td>Chocholowska</td>
<td>15</td>
<td>42.08</td>
<td>Poleski</td>
<td>Lowiszow P.</td>
<td>39</td>
<td>8.59</td>
</tr>
<tr>
<td>Tatry</td>
<td>Chocholowska</td>
<td>16</td>
<td>66.84</td>
<td>Poleski</td>
<td>Lowiszow P.</td>
<td>40</td>
<td>10.20</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>17</td>
<td></td>
<td></td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>41</td>
<td>3.93</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>18</td>
<td></td>
<td></td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>42</td>
<td>12.82</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>19</td>
<td>53.87</td>
<td></td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>43</td>
<td>8.03</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>19</td>
<td>53.87</td>
<td></td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>44</td>
<td>10.14</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>19</td>
<td>53.87</td>
<td></td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>45</td>
<td>7.47</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>19</td>
<td>53.87</td>
<td></td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>46</td>
<td>7.15</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>19</td>
<td>53.87</td>
<td></td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>47</td>
<td>6.67</td>
</tr>
<tr>
<td>Roztocze</td>
<td>peat meadow</td>
<td>20</td>
<td>76.55</td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>48</td>
<td>9.43</td>
</tr>
<tr>
<td>Roztocze</td>
<td>peat meadow</td>
<td>21</td>
<td>77.41</td>
<td>Poleski</td>
<td>Jez Dkugie</td>
<td>49</td>
<td>8.42</td>
</tr>
<tr>
<td>Roztocze</td>
<td>peat meadow</td>
<td>22</td>
<td>86.57</td>
<td>Poleski</td>
<td>Forest</td>
<td>50</td>
<td>11.05</td>
</tr>
<tr>
<td>Roztocze</td>
<td>meadow</td>
<td>23</td>
<td>14.61</td>
<td>Poleski</td>
<td>Forest</td>
<td>51</td>
<td>2.00</td>
</tr>
<tr>
<td>Roztocze</td>
<td>meadow</td>
<td>24</td>
<td>12.50</td>
<td>Poleski</td>
<td>Forest</td>
<td>52</td>
<td>3.04</td>
</tr>
<tr>
<td>Roztocze</td>
<td>meadow</td>
<td>25</td>
<td>13.62</td>
<td>Poleski</td>
<td>Forest</td>
<td>53</td>
<td>7.16</td>
</tr>
<tr>
<td>Roztocze</td>
<td>birch sand</td>
<td>26</td>
<td>13.49</td>
<td>Poleski</td>
<td>Forest</td>
<td>54</td>
<td>25.17</td>
</tr>
<tr>
<td>Roztocze</td>
<td>birch sand</td>
<td>27</td>
<td>11.62</td>
<td>Poleski</td>
<td>West meadow</td>
<td>55</td>
<td>12.98</td>
</tr>
<tr>
<td>Roztocze</td>
<td>birch sand</td>
<td>28</td>
<td>11.62</td>
<td>Poleski</td>
<td>West meadow</td>
<td>56</td>
<td>36.06</td>
</tr>
<tr>
<td>Roztocze</td>
<td>birch sand</td>
<td>28</td>
<td>11.62</td>
<td>Poleski</td>
<td>West meadow</td>
<td>57</td>
<td>17.61</td>
</tr>
<tr>
<td>Roztocze</td>
<td>birch sand</td>
<td>28</td>
<td>11.62</td>
<td>Poleski</td>
<td>West meadow</td>
<td>58</td>
<td>41.63</td>
</tr>
<tr>
<td>Roztocze</td>
<td>birch sand</td>
<td>28</td>
<td>11.62</td>
<td>Poleski</td>
<td>West meadow</td>
<td>59</td>
<td>17.77</td>
</tr>
</tbody>
</table>
APPENDIX D

$^{206}\text{Pb}/^{204}\text{Pb}$, $^{206}\text{Pb}/^{207}\text{Pb}$, $^{206}\text{Pb}/^{208}\text{Pb}$, and $^{208}\text{Pb}/^{207}\text{Pb}$

ISOTOPE RATIOS FROM SEQUENTIAL EXTRACTIONS AND TOTAL ACID EXTRACTIONS
Table A4. Pb isotope ratios of sequential extractions from Tatry National Park.

<table>
<thead>
<tr>
<th>Sample</th>
<th>206Pb/204Pb RSD (%)</th>
<th>206Pb/205Pb RSD (%)</th>
<th>206Pb/207Pb RSD (%)</th>
<th>206Pb/208Pb RSD (%)</th>
<th>208Pb/207Pb RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP6</td>
<td>18.2067</td>
<td>0.19</td>
<td>1.1743</td>
<td>0.05</td>
<td>0.4794</td>
</tr>
<tr>
<td>EP7</td>
<td>17.8710</td>
<td>0.16</td>
<td>1.1756</td>
<td>0.09</td>
<td>0.4796</td>
</tr>
<tr>
<td>EP8</td>
<td>18.5768</td>
<td>0.65</td>
<td>1.1832</td>
<td>0.06</td>
<td>0.4826</td>
</tr>
<tr>
<td>EP9</td>
<td>18.7020</td>
<td>0.38</td>
<td>1.1821</td>
<td>0.18</td>
<td>0.4803</td>
</tr>
<tr>
<td>EP10</td>
<td>18.6074</td>
<td>0.50</td>
<td>1.1826</td>
<td>0.18</td>
<td>0.4808</td>
</tr>
<tr>
<td>EP11</td>
<td>18.7289</td>
<td>1.04</td>
<td>1.1846</td>
<td>0.34</td>
<td>0.4828</td>
</tr>
<tr>
<td>EP12</td>
<td>18.2473</td>
<td>0.02</td>
<td>1.1609</td>
<td>0.13</td>
<td>0.4857</td>
</tr>
<tr>
<td>EP13</td>
<td>18.2536</td>
<td>0.16</td>
<td>1.1770</td>
<td>0.08</td>
<td>0.4802</td>
</tr>
<tr>
<td>EP14</td>
<td>18.3516</td>
<td>0.20</td>
<td>1.1766</td>
<td>0.18</td>
<td>0.4795</td>
</tr>
<tr>
<td>EP15</td>
<td>18.6987</td>
<td>0.36</td>
<td>1.1853</td>
<td>0.11</td>
<td>0.4827</td>
</tr>
<tr>
<td>EP16</td>
<td>18.3764</td>
<td>0.41</td>
<td>1.1811</td>
<td>0.12</td>
<td>0.4813</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>206Pb/204Pb RSD (%)</th>
<th>206Pb/205Pb RSD (%)</th>
<th>206Pb/207Pb RSD (%)</th>
<th>206Pb/208Pb RSD (%)</th>
<th>208Pb/207Pb RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP6</td>
<td>18.2872</td>
<td>0.04</td>
<td>1.1748</td>
<td>0.02</td>
<td>0.4798</td>
</tr>
<tr>
<td>CP7</td>
<td>18.2957</td>
<td>0.09</td>
<td>1.1769</td>
<td>0.03</td>
<td>0.4802</td>
</tr>
<tr>
<td>CP8</td>
<td>18.3485</td>
<td>0.03</td>
<td>1.1834</td>
<td>0.02</td>
<td>0.4828</td>
</tr>
<tr>
<td>CP9</td>
<td>18.4123</td>
<td>0.08</td>
<td>1.1866</td>
<td>0.05</td>
<td>0.4833</td>
</tr>
<tr>
<td>CP10</td>
<td>18.3841</td>
<td>0.08</td>
<td>1.1839</td>
<td>0.07</td>
<td>0.4828</td>
</tr>
<tr>
<td>CP11</td>
<td>18.3598</td>
<td>0.06</td>
<td>1.1869</td>
<td>0.05</td>
<td>0.4847</td>
</tr>
<tr>
<td>CP12</td>
<td>18.5705</td>
<td>0.09</td>
<td>1.1970</td>
<td>0.07</td>
<td>0.4877</td>
</tr>
<tr>
<td>CP13</td>
<td>18.3193</td>
<td>0.09</td>
<td>1.1755</td>
<td>0.06</td>
<td>0.4791</td>
</tr>
<tr>
<td>CP14</td>
<td>18.3403</td>
<td>0.06</td>
<td>1.1757</td>
<td>0.01</td>
<td>0.4798</td>
</tr>
<tr>
<td>CP15</td>
<td>18.3857</td>
<td>0.07</td>
<td>1.1794</td>
<td>0.05</td>
<td>0.4711</td>
</tr>
<tr>
<td>CP16</td>
<td>18.4743</td>
<td>0.12</td>
<td>1.1917</td>
<td>0.04</td>
<td>0.4860</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>206Pb/204Pb RSD (%)</th>
<th>206Pb/205Pb RSD (%)</th>
<th>206Pb/207Pb RSD (%)</th>
<th>206Pb/208Pb RSD (%)</th>
<th>208Pb/207Pb RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERP6</td>
<td>18.1152</td>
<td>0.16</td>
<td>1.1738</td>
<td>0.01</td>
<td>0.4797</td>
</tr>
<tr>
<td>ERP7</td>
<td>18.1000</td>
<td>0.35</td>
<td>1.1772</td>
<td>0.08</td>
<td>0.4807</td>
</tr>
<tr>
<td>ERP8</td>
<td>18.6036</td>
<td>0.25</td>
<td>1.1828</td>
<td>0.13</td>
<td>0.4808</td>
</tr>
<tr>
<td>ERP9</td>
<td>18.7134</td>
<td>0.21</td>
<td>1.1898</td>
<td>0.22</td>
<td>0.4814</td>
</tr>
<tr>
<td>ERP10</td>
<td>18.6242</td>
<td>0.22</td>
<td>1.1830</td>
<td>0.14</td>
<td>0.4799</td>
</tr>
<tr>
<td>ERP11</td>
<td>18.6967</td>
<td>0.61</td>
<td>1.1882</td>
<td>0.09</td>
<td>0.4824</td>
</tr>
<tr>
<td>ERP12</td>
<td>18.4775</td>
<td>0.22</td>
<td>1.1987</td>
<td>0.02</td>
<td>0.4886</td>
</tr>
<tr>
<td>ERP13</td>
<td>18.1737</td>
<td>0.15</td>
<td>1.1760</td>
<td>0.10</td>
<td>0.4799</td>
</tr>
<tr>
<td>ERP14</td>
<td>18.2847</td>
<td>0.11</td>
<td>1.1763</td>
<td>0.19</td>
<td>0.4798</td>
</tr>
<tr>
<td>ERP15</td>
<td>18.2326</td>
<td>0.14</td>
<td>1.1807</td>
<td>0.04</td>
<td>0.4821</td>
</tr>
<tr>
<td>ERP16</td>
<td>18.4002</td>
<td>0.20</td>
<td>1.1931</td>
<td>0.15</td>
<td>0.4862</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table A4. Continued.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{206}\text{Pb}/^{207}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{206}\text{Pb}/^{208}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{208}\text{Pb}/^{206}\text{Pb}$</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRP6</td>
<td>18.3377</td>
<td>0.05</td>
<td>1.1734</td>
<td>0.07</td>
<td>0.4790</td>
<td>0.09</td>
<td>2.4496</td>
<td>0.02</td>
</tr>
<tr>
<td>MRP7</td>
<td>18.3542</td>
<td>0.19</td>
<td>1.1783</td>
<td>0.06</td>
<td>0.4808</td>
<td>0.08</td>
<td>2.4509</td>
<td>0.05</td>
</tr>
<tr>
<td>MRP8</td>
<td>18.4894</td>
<td>0.16</td>
<td>1.1856</td>
<td>0.08</td>
<td>0.4835</td>
<td>0.11</td>
<td>2.4524</td>
<td>0.11</td>
</tr>
<tr>
<td>MRP9</td>
<td>18.5423</td>
<td>0.08</td>
<td>1.1885</td>
<td>0.15</td>
<td>0.4843</td>
<td>0.04</td>
<td>2.4541</td>
<td>0.15</td>
</tr>
<tr>
<td>MRP10</td>
<td>18.5220</td>
<td>0.09</td>
<td>1.1866</td>
<td>0.09</td>
<td>0.4836</td>
<td>0.07</td>
<td>2.4535</td>
<td>0.01</td>
</tr>
<tr>
<td>MRP11</td>
<td>18.6389</td>
<td>0.07</td>
<td>1.1926</td>
<td>0.13</td>
<td>0.4863</td>
<td>0.12</td>
<td>2.4524</td>
<td>0.07</td>
</tr>
<tr>
<td>MRP12</td>
<td>18.7638</td>
<td>0.03</td>
<td>1.2001</td>
<td>0.12</td>
<td>0.4888</td>
<td>0.13</td>
<td>2.4550</td>
<td>0.07</td>
</tr>
<tr>
<td>MRP13</td>
<td>18.4054</td>
<td>0.15</td>
<td>1.1766</td>
<td>0.05</td>
<td>0.4794</td>
<td>0.11</td>
<td>2.4452</td>
<td>0.08</td>
</tr>
<tr>
<td>MRP14</td>
<td>18.3543</td>
<td>0.05</td>
<td>1.1767</td>
<td>0.06</td>
<td>0.4804</td>
<td>0.11</td>
<td>2.4495</td>
<td>0.06</td>
</tr>
<tr>
<td>MRP15</td>
<td>18.4422</td>
<td>0.01</td>
<td>1.1793</td>
<td>0.01</td>
<td>0.4810</td>
<td>0.18</td>
<td>4.4520</td>
<td>0.18</td>
</tr>
<tr>
<td>MRP16</td>
<td>18.6664</td>
<td>0.08</td>
<td>1.1938</td>
<td>0.03</td>
<td>0.4862</td>
<td>0.08</td>
<td>2.4553</td>
<td>0.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{206}\text{Pb}/^{207}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{206}\text{Pb}/^{208}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{208}\text{Pb}/^{206}\text{Pb}$</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSP6</td>
<td>18.3086</td>
<td>0.11</td>
<td>1.1773</td>
<td>0.19</td>
<td>0.4809</td>
<td>0.08</td>
<td>2.4479</td>
<td>0.11</td>
</tr>
<tr>
<td>OSP7</td>
<td>18.3898</td>
<td>0.14</td>
<td>1.1788</td>
<td>0.10</td>
<td>0.4802</td>
<td>0.14</td>
<td>2.4549</td>
<td>0.04</td>
</tr>
<tr>
<td>OSP8</td>
<td>18.5371</td>
<td>0.05</td>
<td>1.1863</td>
<td>0.09</td>
<td>0.4826</td>
<td>0.05</td>
<td>2.4580</td>
<td>0.10</td>
</tr>
<tr>
<td>OSP9</td>
<td>18.5819</td>
<td>0.06</td>
<td>1.1889</td>
<td>0.09</td>
<td>0.4842</td>
<td>0.09</td>
<td>2.4555</td>
<td>0.04</td>
</tr>
<tr>
<td>OSP10</td>
<td>18.5721</td>
<td>0.22</td>
<td>1.1860</td>
<td>0.12</td>
<td>0.4829</td>
<td>0.03</td>
<td>2.4560</td>
<td>0.10</td>
</tr>
<tr>
<td>OSP11</td>
<td>18.4879</td>
<td>0.26</td>
<td>1.1956</td>
<td>0.04</td>
<td>0.4883</td>
<td>0.15</td>
<td>2.4483</td>
<td>0.15</td>
</tr>
<tr>
<td>OSP12</td>
<td>18.7670</td>
<td>0.09</td>
<td>1.2019</td>
<td>0.18</td>
<td>0.4899</td>
<td>0.22</td>
<td>2.4534</td>
<td>0.07</td>
</tr>
<tr>
<td>OSP13</td>
<td>18.4009</td>
<td>0.12</td>
<td>1.1791</td>
<td>0.10</td>
<td>0.4808</td>
<td>0.21</td>
<td>2.4523</td>
<td>0.15</td>
</tr>
<tr>
<td>OSP14</td>
<td>18.4056</td>
<td>0.09</td>
<td>1.1800</td>
<td>0.11</td>
<td>0.4820</td>
<td>0.13</td>
<td>2.4479</td>
<td>0.15</td>
</tr>
<tr>
<td>OSP15</td>
<td>18.3524</td>
<td>0.21</td>
<td>1.1836</td>
<td>0.07</td>
<td>0.4822</td>
<td>0.21</td>
<td>2.4548</td>
<td>0.26</td>
</tr>
<tr>
<td>OSP16</td>
<td>18.5492</td>
<td>0.24</td>
<td>1.1928</td>
<td>0.02</td>
<td>0.4864</td>
<td>0.06</td>
<td>2.4521</td>
<td>0.06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{206}\text{Pb}/^{207}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{206}\text{Pb}/^{208}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{208}\text{Pb}/^{206}\text{Pb}$</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEP6</td>
<td>18.3583</td>
<td>0.19</td>
<td>1.1776</td>
<td>0.13</td>
<td>0.4810</td>
<td>0.29</td>
<td>2.4479</td>
<td>0.18</td>
</tr>
<tr>
<td>AEP7</td>
<td>18.4806</td>
<td>0.14</td>
<td>1.1841</td>
<td>0.09</td>
<td>0.4814</td>
<td>0.18</td>
<td>2.4596</td>
<td>0.10</td>
</tr>
<tr>
<td>AEP8</td>
<td>18.6306</td>
<td>0.12</td>
<td>1.1926</td>
<td>0.09</td>
<td>0.4849</td>
<td>0.08</td>
<td>2.4596</td>
<td>0.04</td>
</tr>
<tr>
<td>AEP9</td>
<td>18.6823</td>
<td>0.12</td>
<td>1.1957</td>
<td>0.02</td>
<td>0.4858</td>
<td>0.05</td>
<td>2.4615</td>
<td>0.04</td>
</tr>
<tr>
<td>AEP10</td>
<td>18.6012</td>
<td>0.23</td>
<td>1.1934</td>
<td>0.08</td>
<td>0.4858</td>
<td>0.07</td>
<td>2.4562</td>
<td>0.05</td>
</tr>
<tr>
<td>AEP11</td>
<td>18.7254</td>
<td>0.08</td>
<td>1.1982</td>
<td>0.12</td>
<td>0.4875</td>
<td>0.13</td>
<td>2.4579</td>
<td>0.08</td>
</tr>
<tr>
<td>AEP12</td>
<td>18.8739</td>
<td>0.17</td>
<td>1.2051</td>
<td>0.08</td>
<td>0.4890</td>
<td>0.02</td>
<td>2.4644</td>
<td>0.09</td>
</tr>
<tr>
<td>AEP13</td>
<td>18.4122</td>
<td>0.13</td>
<td>1.1794</td>
<td>0.13</td>
<td>0.4801</td>
<td>0.13</td>
<td>2.4566</td>
<td>0.01</td>
</tr>
<tr>
<td>AEP14</td>
<td>18.4890</td>
<td>0.07</td>
<td>1.1818</td>
<td>0.14</td>
<td>0.4814</td>
<td>0.18</td>
<td>2.2552</td>
<td>0.04</td>
</tr>
<tr>
<td>AEP15</td>
<td>18.5932</td>
<td>0.11</td>
<td>1.1907</td>
<td>0.19</td>
<td>0.4831</td>
<td>0.11</td>
<td>2.4644</td>
<td>0.09</td>
</tr>
<tr>
<td>AEP16</td>
<td>18.8160</td>
<td>0.11</td>
<td>1.2035</td>
<td>0.04</td>
<td>0.4903</td>
<td>0.07</td>
<td>2.4546</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table A5. Pb isotope ratios of total acid extractions from near Polance, Nowa Huta, Tatry National Park, Bieszczady National Park, Roztocze National Park, and Poleski National Park.

<table>
<thead>
<tr>
<th>Area</th>
<th>Sample</th>
<th>$^{206}\text{Pb}/^{204}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{206}\text{Pb}/^{207}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{208}\text{Pb}/^{206}\text{Pb}$</th>
<th>RSD (%)</th>
<th>$^{208}\text{Pb}/^{207}\text{Pb}$</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polanice</td>
<td>TAE1</td>
<td>18.5737</td>
<td>0.11</td>
<td>1.1900</td>
<td>0.02</td>
<td>0.4814</td>
<td>0.09</td>
<td>2.4719</td>
<td>0.07</td>
</tr>
<tr>
<td>Polanice</td>
<td>TAE2</td>
<td>18.4908</td>
<td>0.11</td>
<td>1.1848</td>
<td>0.09</td>
<td>0.4799</td>
<td>0.16</td>
<td>2.4689</td>
<td>0.09</td>
</tr>
<tr>
<td>Polanice</td>
<td>TAE3</td>
<td>18.4559</td>
<td>0.02</td>
<td>1.1822</td>
<td>0.06</td>
<td>0.4801</td>
<td>0.15</td>
<td>2.4625</td>
<td>0.10</td>
</tr>
<tr>
<td>Nowa</td>
<td>TAE4</td>
<td>18.6777</td>
<td>0.14</td>
<td>1.1955</td>
<td>0.06</td>
<td>0.4835</td>
<td>0.12</td>
<td>2.4727</td>
<td>0.08</td>
</tr>
<tr>
<td>Nowa</td>
<td>TAE5</td>
<td>18.6282</td>
<td>0.06</td>
<td>1.1919</td>
<td>0.03</td>
<td>0.4827</td>
<td>0.01</td>
<td>2.4690</td>
<td>0.04</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE6</td>
<td>18.3218</td>
<td>0.06</td>
<td>1.1733</td>
<td>0.04</td>
<td>0.4791</td>
<td>0.09</td>
<td>2.4488</td>
<td>0.06</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE7</td>
<td>18.4062</td>
<td>0.12</td>
<td>1.1790</td>
<td>0.05</td>
<td>0.4804</td>
<td>0.03</td>
<td>2.4545</td>
<td>0.03</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE8</td>
<td>18.5564</td>
<td>0.08</td>
<td>1.1878</td>
<td>0.05</td>
<td>0.4840</td>
<td>0.02</td>
<td>2.4541</td>
<td>0.04</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE9</td>
<td>18.6202</td>
<td>0.06</td>
<td>1.1917</td>
<td>0.09</td>
<td>0.4848</td>
<td>0.06</td>
<td>2.4579</td>
<td>0.07</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE10</td>
<td>18.5877</td>
<td>0.12</td>
<td>1.1869</td>
<td>0.13</td>
<td>0.4830</td>
<td>0.21</td>
<td>2.4572</td>
<td>0.15</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE11</td>
<td>18.7004</td>
<td>0.13</td>
<td>1.1959</td>
<td>0.04</td>
<td>0.4876</td>
<td>0.14</td>
<td>2.4524</td>
<td>0.10</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE12</td>
<td>18.8014</td>
<td>0.16</td>
<td>1.2052</td>
<td>0.13</td>
<td>0.4902</td>
<td>0.23</td>
<td>2.4588</td>
<td>0.10</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE13</td>
<td>18.4106</td>
<td>0.31</td>
<td>1.1792</td>
<td>0.18</td>
<td>0.4814</td>
<td>0.35</td>
<td>2.4495</td>
<td>0.18</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE14</td>
<td>18.3668</td>
<td>0.14</td>
<td>1.1771</td>
<td>0.06</td>
<td>0.4806</td>
<td>0.21</td>
<td>2.4492</td>
<td>0.21</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE15</td>
<td>18.4919</td>
<td>0.34</td>
<td>1.1824</td>
<td>0.31</td>
<td>0.4815</td>
<td>0.29</td>
<td>2.4554</td>
<td>0.02</td>
</tr>
<tr>
<td>Tatry</td>
<td>TAE16</td>
<td>18.7454</td>
<td>0.28</td>
<td>1.1981</td>
<td>0.04</td>
<td>0.4877</td>
<td>0.09</td>
<td>2.4569</td>
<td>0.06</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>TAE17</td>
<td>18.5149</td>
<td>0.22</td>
<td>1.1851</td>
<td>0.22</td>
<td>0.4814</td>
<td>0.16</td>
<td>2.4618</td>
<td>0.27</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>TAE18</td>
<td>18.5179</td>
<td>0.75</td>
<td>1.1910</td>
<td>0.30</td>
<td>0.4844</td>
<td>0.28</td>
<td>2.4588</td>
<td>0.26</td>
</tr>
<tr>
<td>Bieszczady</td>
<td>TAE19</td>
<td>18.5692</td>
<td>0.37</td>
<td>1.1860</td>
<td>0.04</td>
<td>0.4828</td>
<td>0.08</td>
<td>2.4564</td>
<td>0.11</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE20</td>
<td>18.1706</td>
<td>0.44</td>
<td>1.1699</td>
<td>0.03</td>
<td>0.4783</td>
<td>0.19</td>
<td>2.4459</td>
<td>0.21</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE21</td>
<td>18.2124</td>
<td>0.76</td>
<td>1.1715</td>
<td>0.36</td>
<td>0.4782</td>
<td>0.80</td>
<td>2.4497</td>
<td>0.46</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE22</td>
<td>18.3241</td>
<td>0.36</td>
<td>1.1735</td>
<td>0.19</td>
<td>0.4786</td>
<td>0.13</td>
<td>2.4522</td>
<td>0.11</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE23</td>
<td>18.2744</td>
<td>0.74</td>
<td>1.1724</td>
<td>0.27</td>
<td>0.4793</td>
<td>0.39</td>
<td>2.4467</td>
<td>0.12</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE24</td>
<td>18.3352</td>
<td>0.09</td>
<td>1.1789</td>
<td>0.14</td>
<td>0.4807</td>
<td>0.16</td>
<td>2.4521</td>
<td>0.05</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE25</td>
<td>18.3621</td>
<td>0.25</td>
<td>1.1779</td>
<td>0.20</td>
<td>0.4794</td>
<td>0.59</td>
<td>2.4572</td>
<td>0.39</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE26</td>
<td>18.2852</td>
<td>0.24</td>
<td>1.1749</td>
<td>0.18</td>
<td>0.4796</td>
<td>0.29</td>
<td>2.4495</td>
<td>0.12</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE27</td>
<td>18.2608</td>
<td>0.16</td>
<td>1.1756</td>
<td>0.20</td>
<td>0.4792</td>
<td>0.35</td>
<td>2.4533</td>
<td>0.15</td>
</tr>
<tr>
<td>Roztocze</td>
<td>TAE28</td>
<td>18.3197</td>
<td>0.10</td>
<td>1.1765</td>
<td>0.09</td>
<td>0.4790</td>
<td>0.08</td>
<td>2.4562</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
Table A5. Continued.

<table>
<thead>
<tr>
<th>Area</th>
<th>Sample</th>
<th>206Pb/207Pb</th>
<th>RSD (%)</th>
<th>206Pb/207Pb</th>
<th>RSD (%)</th>
<th>206Pb/207Pb</th>
<th>RSD (%)</th>
<th>208Pb/207Pb</th>
<th>RSD (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poleski</td>
<td>TAE30</td>
<td>18.3530</td>
<td>0.06</td>
<td>1.1778</td>
<td>0.08</td>
<td>0.4794</td>
<td>0.05</td>
<td>2.4566</td>
<td>0.08</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE31</td>
<td>18.6898</td>
<td>0.09</td>
<td>1.2014</td>
<td>0.09</td>
<td>0.4802</td>
<td>0.08</td>
<td>2.5022</td>
<td>0.03</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE32</td>
<td>18.3430</td>
<td>0.13</td>
<td>1.1777</td>
<td>0.09</td>
<td>0.4800</td>
<td>0.05</td>
<td>2.4539</td>
<td>0.12</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE33</td>
<td>18.8713</td>
<td>0.11</td>
<td>1.2104</td>
<td>0.13</td>
<td>0.4882</td>
<td>0.16</td>
<td>2.4791</td>
<td>0.09</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE34</td>
<td>18.3237</td>
<td>0.09</td>
<td>1.1774</td>
<td>0.04</td>
<td>0.4797</td>
<td>0.08</td>
<td>2.4543</td>
<td>0.07</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE35</td>
<td>18.7411</td>
<td>0.14</td>
<td>1.2052</td>
<td>0.14</td>
<td>0.4873</td>
<td>0.11</td>
<td>2.4730</td>
<td>0.07</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE36</td>
<td>18.6754</td>
<td>0.04</td>
<td>1.1975</td>
<td>0.11</td>
<td>0.4834</td>
<td>0.08</td>
<td>2.4772</td>
<td>0.04</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE37</td>
<td>19.5000</td>
<td>0.03</td>
<td>1.2447</td>
<td>0.06</td>
<td>0.4943</td>
<td>0.13</td>
<td>2.5179</td>
<td>0.09</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE38</td>
<td>18.8097</td>
<td>0.25</td>
<td>1.2028</td>
<td>0.06</td>
<td>0.4833</td>
<td>0.15</td>
<td>2.4886</td>
<td>0.09</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE39</td>
<td>19.9394</td>
<td>0.08</td>
<td>1.2692</td>
<td>0.10</td>
<td>0.4958</td>
<td>0.11</td>
<td>2.5598</td>
<td>0.02</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE40</td>
<td>18.7242</td>
<td>0.09</td>
<td>1.1999</td>
<td>0.05</td>
<td>0.4831</td>
<td>0.07</td>
<td>2.4837</td>
<td>0.10</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE41</td>
<td>19.3974</td>
<td>0.20</td>
<td>1.2415</td>
<td>0.06</td>
<td>0.4879</td>
<td>0.09</td>
<td>2.5445</td>
<td>0.04</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE42</td>
<td>18.4952</td>
<td>0.07</td>
<td>1.1857</td>
<td>0.05</td>
<td>0.4820</td>
<td>0.06</td>
<td>2.4599</td>
<td>0.08</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE43</td>
<td>19.2041</td>
<td>0.05</td>
<td>1.2271</td>
<td>0.01</td>
<td>0.4908</td>
<td>0.04</td>
<td>2.4999</td>
<td>0.03</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE44</td>
<td>18.4981</td>
<td>0.30</td>
<td>1.1895</td>
<td>0.28</td>
<td>0.4815</td>
<td>0.16</td>
<td>2.4704</td>
<td>0.13</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE45</td>
<td>18.5816</td>
<td>0.14</td>
<td>1.1959</td>
<td>0.14</td>
<td>0.4830</td>
<td>0.06</td>
<td>2.4763</td>
<td>0.15</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE46</td>
<td>18.3605</td>
<td>0.28</td>
<td>1.1864</td>
<td>0.04</td>
<td>0.4805</td>
<td>0.10</td>
<td>2.4693</td>
<td>0.06</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE47</td>
<td>18.6893</td>
<td>0.09</td>
<td>1.2035</td>
<td>0.24</td>
<td>0.4851</td>
<td>0.16</td>
<td>2.4810</td>
<td>0.24</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE48</td>
<td>18.4532</td>
<td>0.07</td>
<td>1.1834</td>
<td>0.03</td>
<td>0.4803</td>
<td>0.08</td>
<td>2.4636</td>
<td>0.08</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE49</td>
<td>18.7095</td>
<td>0.05</td>
<td>1.2009</td>
<td>0.19</td>
<td>0.4829</td>
<td>0.05</td>
<td>2.4867</td>
<td>0.13</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE50</td>
<td>18.5355</td>
<td>0.06</td>
<td>1.1900</td>
<td>0.18</td>
<td>0.4825</td>
<td>0.08</td>
<td>2.4663</td>
<td>0.13</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE51</td>
<td>19.2213</td>
<td>0.04</td>
<td>1.2375</td>
<td>0.24</td>
<td>0.4829</td>
<td>0.21</td>
<td>2.5629</td>
<td>0.05</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE52</td>
<td>18.8118</td>
<td>0.06</td>
<td>1.2082</td>
<td>0.09</td>
<td>0.4853</td>
<td>0.16</td>
<td>2.4894</td>
<td>0.07</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE53</td>
<td>18.4654</td>
<td>0.20</td>
<td>1.1834</td>
<td>0.08</td>
<td>0.4808</td>
<td>0.17</td>
<td>2.4612</td>
<td>0.12</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE54</td>
<td>18.4258</td>
<td>0.09</td>
<td>1.1781</td>
<td>0.04</td>
<td>0.4790</td>
<td>0.06</td>
<td>2.4595</td>
<td>0.09</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE55</td>
<td>18.4399</td>
<td>0.07</td>
<td>1.1818</td>
<td>0.11</td>
<td>0.4801</td>
<td>0.05</td>
<td>2.4616</td>
<td>0.08</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE56</td>
<td>18.3324</td>
<td>0.05</td>
<td>1.1791</td>
<td>0.08</td>
<td>0.4811</td>
<td>0.40</td>
<td>2.4510</td>
<td>0.38</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE57</td>
<td>18.4209</td>
<td>0.17</td>
<td>1.1807</td>
<td>0.06</td>
<td>0.4794</td>
<td>0.24</td>
<td>2.4627</td>
<td>0.21</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE58</td>
<td>18.3566</td>
<td>0.19</td>
<td>1.1786</td>
<td>0.09</td>
<td>0.4796</td>
<td>0.15</td>
<td>2.4572</td>
<td>0.23</td>
</tr>
<tr>
<td>Poleski</td>
<td>TAE59</td>
<td>18.3704</td>
<td>0.12</td>
<td>1.1783</td>
<td>0.05</td>
<td>0.4792</td>
<td>0.14</td>
<td>2.4588</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
VITA

Shannon Michele Simcoe received a B.S. in Geology from Old Dominion University, Norfolk, VA. in May 2002. In August 2002 Shannon began working towards her Masters of Science degree in Geology at Old Dominion University, Norfolk, VA. While working towards her degree, Shannon worked as a Graduate Teaching Assistant for Introductory Geology Laboratories. As a Teaching Assistant, some of her responsibilities included running laboratory exercises, answering elated laboratory and lecture questions, and grading student exams. Shannon received her M.S. in Geology from Old Dominion University, 4600 Elkhorn Avenue, Norfolk, VA. In August 2004.