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calculating /  £  gi-Ax. Because, the model contribution is assumed to have no statis-
V  W bins

tical uncertainties, the statistical errors in the integrals come solely from the propagation 
of the statistical error of the measured g\ or A \F\.

The other two integrals and their errors are evaluated in the same manner, with g\ 
replaced by their corresponding integrands and again calculating the three parts of the 
integrals separately.

These integrals are then compared with the latest available predictions from different 
theories (mainly ^PT) and phenomenological calculations along with EG lb or DIS data 
whenever applicable.

5.3.1 FIRST MOMENT OF gi (T,)

The first integral of interest is the first moment of gi i.e., T  \ (see Eq. 61) , which was 
calculated for all Q2 bins for which the new data are available. Figs. 98 and 99 show 

the two calculations (with and without model input) along with EG lb data and several 
^PT and model predictions. One important observation here is that our measurements 

provide the only data points in the very low Q2 region (i.e for Q2 <  0.05 GeV2) where 
%PT is thought to be able to make rigorous calculations. Therefore, our data will provide 
important benchmarks for the future calculations in this kinematics. Particularly, the latest 
^PT prediction by Bernard et al. [37] seems to agree remarkably well in the very low Q2 
region.

While all other higher Q2 predictions, except that of Ji et a l, seem to be within the 

uncertainties of our measurements, it can be seen that the phenomenological predictions 
of Soffer et al. compare slightly better with data than others (excluding, of course, the 
Bernard et al. prediction).

5.3.2 THE EXTENDED GDH INTEGRAL I T T

Using the measured values o f^ iF i, the generalized GDH integral I t t  =  2 A /2/ 0 2 J  A\F\ (x, Q2)dx 
was also calculated and compared (see Figs. 100 and 101) with the latest ^PT calculation 
from Bernard et al. [37]. We can see that at the very low Q2, the #PT prediction and the 
measurement get very close. The ^PT methods determine the higher powers of Q2 in the 
Taylor expansion of the integral around the photon point Q2 =  0, beyond the prediction 
of the GDH sum rule which determines the lowest order term. Our data seem indeed to 
converge towards the GDH sum rule at our lowest Q2. However, only one or two higher or­

der terms can be calculated confidently, since higher orders require additional (unknown)
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FIG. 98. Extracted T i for deuteron compared with some of the past measurements and 

various theoretical predictions with a linear scale used for Q2.

constants. Therefore, #PT predictions do reasonably well at ultra-low Q1 but cannot be 

expected to work at the higher Q2, where the data show a turn-around and a transition 

towards positive values.

5.3.3 THE GENERALIZED FORWARD SPIN POLARIZABILITY %

Finally, the generalized forward polarizability (as given by Eq. 65) for the deuteron 
was also calculated using the measured values of A \F\ and then compared with various 
predictions as shown in Figs. 102 and 103. The comparison shows that both £PT calcula­

tions by Bernard et al. and Kao et al. converge with data at the lowest Q2 bins. The MAID 
prediction is shown for reference but seems to be somewhat off the current results.
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CHAPTER 6

CONCLUSION

The EG4 experiment collected a large amount of very low momentum transfer (Q2) 
data for the helicity dependent inclusive cross section (difference) for the scattering of 
longitudinally polarized electrons off longitudinally polarized protons and deuterons (from 
DNP polarized NH3 and ND3 targets respectively). The use of low beam energies (1.0 — 
3.0 GeV) (from CEBAF accelerator) and the modified CLAS detector optimized for low 

scattering angle measurements (down to 6  degrees), allowed data collection at an unprece­
dented level of precision and low Q2 coverage. The deuteron data (collected using 1.337 

and 2.0 GeV beam energies) which is the subject of this thesis has the kinematic coverage 
of (0.02 GeV2  <  Q2 < 0.7 GeV2) and (1.08 GeV < W < 2.0 GeV2). Although, past 
measurements from EGlb go as low as 0.05 GeV2  in Q2, the new measurements have 
higher precision (due to higher statistics and better detection efficiency) in the overlap­
ping region in addition to new high precision data in the previously unmeasured lower Q2 
region.

The new deuteron data were used to extract the deuteron’s spin structure function gi by 
comparing the experimental data with simulated data produced by using a realistic cross 
section model for the deuteron under similar kinematic conditions. The newly extracted 
data pushes the lower limit on Q2 in the resonance region with reduced systematic and 
statistical uncertainties that will contribute greatly to the world data set. It is observed 

that the data from two beam energies give results that are in good agreement. The low Q2 
results clearly show resonance structure in the region W < 2.0 which smooths out as Q2 
becomes larger. In particular, the A-resonance shows a strongly and consistently negative 
signal at all Q2, but the second resonance region (around W=1.5 GeV) shows a rather 
unexpected rapid transition of g\ (or cross section) from strongly negative values at low 
Q2 to clearly positive values at high Q2. is not well described by the model because it is 
not constrained in the region due to the lack of experimental data and indicates that the 

spin-flip helicity amplitude A f  dominates the cross section at low g 2  while the non-flip 

amplitude A \  becomes stronger at higher Q2.
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The product A\F\ o f the virtual photon asymmetry A\ and the unpolarized structure 
function F\ was also extracted from the same data and method. The extracted results 
on gi and A\F\ were then used to evaluate the following three important moments - the 
first moment V( of g i , the generalized GDH integral l f T and the generalized forward 
spin polarizability - in each of the Q2 bins in which the new gi and A\F\ have been 

extracted. The new low Q2 measurements of the moments evaluated both with and without 
model inputs for the unmeasured kinematic regions were then compared with various ^PT 
calculations, phenomenological predictions and past measurements, particularly the EG lb 
or DIS data whenever applicable.

The EG4 results provide the only data points in the very low Q2 region (i.e for Q2 < 
0.05 GeV2) where #PT is thought to be able to make rigorous calculations. The high preci­

sion data will provide important benchmarks for the future calculations in this kinematics. 
In the case of the first moment r f , the EG4 results show remarkable agreement with the 
latest #PT prediction by Bernard et al. [37] in the very low Q2 region. The phenomeno­
logical predictions which have much larger Q2 coverage also seem to agree within the 
uncertainties of our measurements, with the predictions of Soffer et al. showing slightly 
better comparison than others. Likewise, the very low Q2 results of the generalized GDH 

integral Itt are indeed observed to converge towards the GDH sum rule and thus getting 
very close to the ^PT predictions by Bernard et al. [37]. Finally, the generalized forward 
polarizability (y^) for the deuteron calculated from the EG4 data and the #PT calculations 
by Bernard et al. and Kao et al. seem to converge at the lowest Q2 bins. The MAID 
prediction, however, seems to be somewhat off the current results.

The deuteron data in combination with the EG4 proton data taken under similar condi­

tions (currently being analyzed by another collaborator and results expected to come very 
soon) will be useful in extracting neutron quantities in near future, which is valuable be­

cause of the unavailability of the free neutron targets. Moreover, due to the complexities of 
the nuclear medium effects, neutron data from deuteron will be very important to enhance 

confidence in similar neutron results extracted from other nuclear targets particularly3 He.
The new data on spin structure functions will help MAID and other phenomenologi­

cal models to better constrain their parameters enabling them to make better predictions 
in the future. With the availability o f the high precision data in the previously (largely) 
unmeasured region that has the potential to help constrain the theories and models, it is 
hoped that a unified description of spin structure functions over all kinematic regions will 

be possible in future.
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APPENDIX A

DERIVATION OF THE GDH SUM RULE

The real photon Gerasimov-Drell-Heam (GDH) sum rule is derived [25,26] using the gen­

eral assumptions of Lorentz and Gauge invariance (in the form of low energy theorem), 
unitarity (in the form of optical theorem) and causality (in the form of an unsubtracted 
dispersion relation for the forward Compton scattering, also assuming crossing symmetry)
[32]. For the forward Compton scattering of a real photon on a nucleon, the scattering am­

plitude T( v, 6 =  0) is given as follows in terms of the spin-independent and spin dependent 
amplitudes / ( v )  andg(v):

T(v) = e* -e /(v )  +  id- (e* x e)g(v) (155)

where e and e* are the polarization vectors o f the incident and scattered photons respec­
tively. In order for the crossing symmetry to hold true, the T-matrix must be symmetric 
under the exchange of the incoming and the outgoing photons, £*<->■£ and v -» — v, im­
plying that the amplitudes f  and g are an even and odd functions of v respectively. These 
amplitudes can be separately determined by scattering circularly polarized photons off 
a longitudinally polarized nucleon, with f  and g obtained from the cases of parallel or 

anti-parallel target polarization with respect to the photon momentum q. The polarization 
vectors for a left-handed (+ 1 ) and right-handed (-1 ) circularly polarized photons moving 

along z-axis are given by:

e± =  ± ^ = ( 3 t±  ie'y) ( 156)

with the transverse gauge (e q =  0) used and photon 4-momentum and polarization defined 

as q =  (v, q) and £ = (0 , £ with the condition q ■ q.
Unitarity of scattering matrix means that the imaginary parts of the forward amplitudes 

f  and g are connected to the total photoabsorption cross sections via the optical theorem as 

follows:

W ( v )  =  ^ ( < x , ( v )  +  <7,(v)) = ^ < r r  (157)

and

/ '» * (v) =  ^ (< 7 i( v ) - < 7 §M )  =  ^ < J r r  (158)
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with the helicity dependent cross-sections as defined earlier in section.
At small photon energies, the amplitudes can be expanded in powers of v with the low 

energy theorem (LET) resulting in

where Z is the charge of the target (in units of ”e”). In the expansion for the spin- 
independent amplitude / ( v ) ,  the leading term f(0) is the classical Thomson scattering 
result, the 0 ( v 2 term describes Raleigh scattering in terms of the electric and magnetic 
dipole polarizabilities a  and J3 respectively. On the other hand, in the expansion of the 

spin-flip amplitude g, the leading term is associated with he anomalous magnetic moment 
(fc), and the next 0 (v3) term is related to the forward spin polarizability yo, which carries 
the information on the spin structure.

Finally, the dispersion relations for the two forward amplitudes / ( v )  and g(v) are 
derived using the analytic properties of the forward Compton scattering amplitudes with 
unitarity and crossing symmetry. For the spin-averaged amplitude / ( v ) ,  the Kramers- 
Kronig relation from optics, which connects the real part of f  with an integral over the 

imaginary part of f:

Where &  denotes the principal value o f the integral. The imaginary part is next replaced 

by the total cross-section using the optical theorem, so the dispersion relation becomes:

with /(0 )  being the Thomson limit of eq. 159. Because the total cross section rises in 
a slow logarithmic manner above the resonance region, a subtraction is made at v =  0  to 

ensure the integral converges.
Applying through the same method, an unsubtracted dispersion relation is derived for 

the spin-dependent amplitude as follows:

/ ( v) =  4^ + ( a  +  /3)y2 +  ^ ( v 4) (159)

S(V) =  8 ^ V +  ) t ) V 3  +  ^ (v5)
(160)

(161)

(162)

/teg(v) (163)
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where, now the optical theorem is used to replace the imaginary part o f the amplitude 
with the helicity dependent cross-section difference. In this spin-dependent case, the non­
subtraction hypothesis is used because unlike the total cross-section the helicity dependent 
cross-section difference does not rise at large v', but decreases fast enough to ensure the 
convergence of the integral without any subtraction.

Finally, by comparing the first order i.e. 0(v )  terms in Eq.160 and Eq.163, we arrive 
at the GDH sum rule as follows:

(164)

where a  = |^ . One can similarly derive the sum rules for the electric and magnetic polar- 
izabilities and the forward spin polarizability.
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APPENDIX B

FFREAD CARDS USED BY GSIM

TABLE 2. Some o f the ffread cards & their values which are used as GSIM input parame­
ters. _______________________

Cards Values

MAGTYPE 2

MAGSCALE -0.5829 0.0 (for 1.337 GeV)

MAGSCALE -0.3886 0.0 (for 1.993 GeV)

GEOM ’ALL’

NOMC ’EC’ ’SC’ ’CC’ ’DC’
NOGEOM ’MINI’ ’ST’ ’TG2’ ’TG’ ’SOL’

NOGEOM ’PTG’ ’FOIL’
NOMATE ’PTG’ ’FOIL’

PTGIFIELD 1

TMGIFIELD 1

TMGIFIELDM 1

TMGFIELDM 51.0

TMGSCALE 0.979

PTGMAXRAD 300.0

MGPOS 0.0 0.0-100.93

BAFF 3. 9. 165.3 9. 180.5 9. 195.8

RUNG 50556
AUTO 1

KINE 1
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