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A fast numerical solution of scattering by a cylinder: Spectral 
method for the boundary integral equations 

Fang Q. Hu 
Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529 

(Received 16 March 1994; accepted for publication 9 July 1994) 

It is known that the exact analytic solutions of wave scattering by a circular cylinder, when they 
exist, are not in a closed form but in infinite series which converge slowly for high frequency waves. 
In this paper, a fast numerical solution is presented for the scattering problem in which the boundary 
integral equations, reformulated from the Helmholtz equation, are solved using a Fourier spectral 
method. It is shown that the special geometry considered here allows the implementation of the 
spectral method to be simple and very efficient. The present method differs from previous 
approaches in that the singularities of the integral kernels are removed and dealt with accurately. The 
proposed method preserves the spectral accuracy and is shown to have an exponential rate of 
convergence. Aspects of efficient implementation using FFT are discussed. Moreover, the boundary 
integral equations of combined single- and double-layer representation are used in the present paper. 
This ensures the uniqueness of the numerical solution for the scattering problem at all frequencies. 
Although a strongly singular kernel is encountered for the Neumann boundary conditions, it is 
shown that the hypersingularity can be handled easily in the spectral method. Numerical examples 
that demonstrate the validity of the method are also presented. 

PACS numbers: 43.20.Fn 

INTRODUCTION 

The exact analytic solutions of wave scattering by a cir- 
cular cylinder, obtainable for simple incident waves, are not 
in a closed form but in infinite series of Bessel and Hankel 

functions of increasing orders. Such solutions converge 
slowly, especially for high frequency waves, which render 
their numerical evaluation inefficient. This paper presents a 
fast numerical solution of wave scattering that only requires 
the computation of Bessel and Hankel functions of order 
zero. Furthermore, the numerical solution is valid for any 
form of the incident waves of all frequencies. 

When developing numerical solutions, wave scattering 
problems are often conveniently formulated in boundary in- 
tegral equations (BIE). • The advantages of the boundary in- 
tegral equation method (BIEM) include reducing the dimen- 
sion of the problem and transforming an infinite domain to 
finite boundaries in which the far-field radiation condition is 

satisfied automatically. The Boundary Integral Equations are 
commonly solved computationally by the boundary element 
methods (BEM). 2 In this method, the boundary is divided 
into finite elements and integrations over each boundary el- 
ement are approximated by quadratures, e.g., the linear ele- 
ments. 

In this paper, we develop a spectral method of solving 
the boundary integral equations, reformulated from the 
Helmholtz equation, for numerical solutions of wave scatter- 
ing by a circular cylinder. Previously, for this special geom- 
etry, a "fast numerical method" based on the Fourier ap- 
proximations has been formulated by Bojarski, 3 who pointed 
out that the boundary integral equation of wave scattering 
can be solved easily and efficiently in the Fourier spectrum 
domain of the solution. Due to the simplicity of the geom- 
etry, an explicit relation between the Fourier coefficients of 

the solution and those of the boundary condition was found. 
It was argued that the numerical approach was more efficient 
than directly evaluating the infinite series of the exact solu- 
tions. Indeed, the exact solutions contain Bessel and Hankel 
functions of higher orders whose numerical evaluation is 
more difficult and costly as the order increases. Recently, a 
similar approach has been used and extended by Schuster 4 
for a wave transmission problem of concentric cylinders. 

In the present paper, we point out that the numerical 
formulations given previously are not achieving the optimal 
accuracy of the Fourier spectral methods. It is known that, 
although any periodic function can be approximated by a 
truncated Fourier series, the rate of convergence of such an 
approximation depends on its smoothness. Unfortunately, the 
integral kernels for the Helmholtz equation are not smooth. 
In particular, the 2D Green's function of the Helmholtz equa- 
tion, appearing in the integral equations, possesses a loga- 
rithmic singularity. Furthermore, the normal derivative of the 
Green's function also contains a term involving the logarith- 
mic function. The nonsmoothness of the integral kernels, 
however, was not explicitly treated in the previous formula- 
tions. It will be seen that it is critical to remove the non- 

smoothness of the integral kernels in order to achieve fast 
convergence in the Fourier spectral formulation. By a proper 
treatment of the singularities, the present numerical formula- 
tion yields accurate solutions with significantly fewer datum 
points. Moreover, the boundary integral equations of com- 
bined single- and double-layer representation are used in the 
present paper. This ensures the uniqueness of the numerical 
solution for the scattering problem at all frequencies. •'5 Al- 
though a combined layer formulation results in a strongly 
singular kernel for the Neumann boundary conditions, we 
show that the hypersingularity is handled easily in the spec- 
tral method. 
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In the next section, the formulations of the boundary 
integral equations for wave scattering problems are given. 
Then, in Secs. II and III, the Fourier spectral methods for the 
Dirichlet and Neumann boundary conditions are presented. 
Numerical results are shown in Sec. IV. Section V contains 

the conclusions. Some analytic results are also given in the 
Appendix. 

I. BOUNDARY INTEGRAL EQUATIONS 

Let us consider wave scattering by a circular cylinder F 
of radius a. The wave equation for the scattered function •b 
with assumed time dependency of e -iø•t is reduced to the 
Helmholtz equation 

V2•+ K2•=O, (1) 

where K=ro/c (c is the wave speed) and V 2 is the 2D 
Laplace operator V 2= 32/3x2+ 32/3y 2. The boundary condi- 
tion considered in this paper will be one of the following 
types 

Dirichlet (soft)' 4(r)= b(r) on F 

or 

Neumann (hard): '•n (r)=b(r) on F. 
The Helmholtz equation (1) together with the boundary 

condition can be reformulated into a boundary integral equa- 
tion. This can be done in various ways. 1'5 For scattering 
problems considered in the present paper, we use a combi- 
nation of single- and double-layer formulation in which the 
solution •b at any point r' in the scattered field is represented 
by an integral on the boundary as 5 

•b(r') = •--ivG f(r)dr, (2) 
where r/is any real number such that 

r/Re(to)>0. 

The use of a combined formulation ensures the uniqueness of 
the numerical solution for exterior problems. •'5 In (2), f(r) is 
an unknown layer distribution function and the Green's func- 
tion G(r,r'), whose form will be given later, satisfies the 
following equation 

V2G + tc2G = - 6(r- r'). (3) 

Here the normal derivative 0/8n is assumed to be taken in the 

direction outward from the cylinder. 
The boundary integral equation associated with the layer 

representation (2) is 5 

• f(r•)+ •nn-i•7G f(rr)dF=b(r•) (4a) 
for Dirichlet boundary conditions and 

iv , f r( O2G OG • f(rr)+ On' O'-'-'• -ir/On '•- f(rr)dr=b(r•) (4b) 
for Neumann boundary conditions, respectively. In (4a) and 
(4b), rr denotes the boundary points. After the layer distri- 

bution function f has been solved from the integral equation 
(4a) or (4b), the solution of the Helmholtz equation 4 is 
found by the boundary integral (2). 

Now for a circular cylinder of radius a, the boundary 
contour can be expressed as 

rr(0) = (a cos O,a sin 0), 0 •< 0• < 2 z'. (5) 

The normal vector to be used in (4a) and (4b) is 
n=(cos 0,sin 0). 

The Green's function and its normal derivative are 5'6 

i H(o)(glrr (0)-rr(0')l) 

i H(o•) 2 tea sin =• 2 ' (6) 

and 

OG i• (rr(0)- rr(0')). n 
- - -- Irr(0) rr(0 )l 3n 4 - 

iK 

- -- H?) 2Ka sin 0-0' I 2 

in which we have used 

Irr(o)-rr(o')l=2alsin (0- 0')/21. 

0--0 t 

sin 2 ' (7) 
the fact that 

It is important to note here that G and OG/On are func- 
tions of 0-0'. As will be seen later, this allows the imple- 
mentation of the Fourier spectral method to take a simple 
form. 

Thus we express the boundary integral equation (4a) for 
the Dirichlet boundary conditions as 

OG 

•- (0- 0')-i •G( O- 0') f( O)a dO 

=b(0') 

and Eq. (4b) for the Neumann boundary conditions as 

-5- f( )+ 8n' 8n (0-0')-i•7 0n'-•- (0- ) 

(8a) 

x f(o)a a o= b(o'). (8b) 

For clarity, the dependencies on 0 and O' have been ex- 
pressed explicitly in (8a) and (8b). 

In the next two sections, we give the numerical formu- 
lations of solving the integral equations (8a) and (8b) by a 
Fourier spectral method. Since different types of singularities 
are encountered, the two equations will be dealt with sepa- 
rately. 

II. SPECTRAL METHOD FOR DIRIcHLET BOUNDARY 
CONDITIONS 

A. Formulation 

Let the layer distribution function f(0) and the bound- 
ary condition b(0) be approximated by the truncated Fourier 
series as 
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31/2-1 

f( O)= • fn einO, (9) 
n = -N/2 

N/2-1 

b( 0)-- E bn einO, (10) 
n= -N/2 

where b n are obtained by the FFT from the prescribed 
boundary condition and fn are the unknown coefficients. In 
(9) and (10), the particular form of truncated Fourier series 
has been taken for the convenience of applying FFT pro- 
grams. 

Substituting (9) and (10) into the boundary integral 
equation for the Dirichlet boundary conditions (8a), we get 

N/2-1 N/2-1 

1 o' fo'.• OG O' • • fn ein q- • fn • (0--) 
n = -N/2 n = -N/2 

] N/2-1 ' O' -irIG(O- 0') einøa dO = • bn e'n (11) 
n = -N/2 

For simplicity, let 

x=O-O'. 

By equating the coefficients of e inO' 
duced to 

, Eq. (11) is easily re- 

1 • (x)- i riG(x) einXa dx= bn, (12) 

for -N/2 •< n •<N/2-1. 

It is seen that the integrals appearing in (12) are related 
to the Fourier coefficients of (OG/On)(x) and G(x). From (6) 
and (7), it is also clear that both are periodic functions of x, 
with a period of 2z-. Thus, if we let G(x) and (OG/o•n)(x) be 
approximated by truncated Fourier series as 

N/2-1 

G(x) = • gn e-inx, (13) 
n = -N/2 

OG N/2-1 
On (x)= • hn e-inx, (14) 

n = -N/2 

then, the integral in (12) equals to 2rra(hn-i rign)' It fol- 
lows that 

2•n q- 2 ,ra f n( h n - i rign) = bn . (15) 

Therefore, the Fourier coefficients of the layer distribu- 
tion function f(0) are obtained explicitly as 

bn 
fn = ß (16) 1 

•+ 2 rra( hn- i rign) 

The above equation shows that once the Fourier coeffi- 
cients of G(x) and (OG/On)(x) have been found, the layer 
distribution function f(0) is known immediately. 

Actually, the Fourier coefficients of G(x) and (OG/ 
0n)(x) can be found in exact form using higher-order Bessel 
and Hankel functions. They are derived in Appendix A. 

Nonetheless, the numerical evaluation of the exact expres- 
sions becomes more ineffective and costly as the order of the 
special functions increases. In what follows we give the nu- 
merical method that computes the Fourier coefficients gn and 
h n accurately and efficiently. 

B. Computation of g n and h n 

In general, the Fourier coefficients of a periodic function 
can be obtained efficiently by using a fast Fourier transform 
algorithm (FFT). However, the accuracy of the Fourier coef- 
ficients computed by the FFT using a given number of datum 
points depends on the smoothness of the function. Only 
when the function is infinitely smooth (i.e., infinitely differ- 
entiable), the error of Fourier coefficients computed by FFT 
decays faster than any power of 1/N, where N is the number 
of datum points. Such a convergence is often referred to as 
an exponential convergence and the method is said to have 
spectral accuracy. 7'8 Our aim here is to compute gn and h n 
by the FFT with spectral accuracy even though the functions 
G and OG/On are not smooth. 

In the numerical approaches proposed previously, 3'4 the 
Fourier coefficients gn and h n were computed directly as the 
FFT of the G(x) and (OG/On)(x), respectively. However, the 
Green's function G(x) has a logarithmic singularity at x=0, 
where 0= 0', due to the Hankel function of order zero in (6), 

and its Fo•urier series converges at the rate of 1/N. Thus, 
direct computation of gn from G(x) using FFT yields results 
whose accuracy is only comparable to a first-order method. 
Furthermore, the function (OG/On)(x) also has a nonsmooth 
derivative at x = 0, and its Fourier series converges at the rate 
of 1/N 3. Thus direct computation of h n from (OG/On)(x) is 
only comparable to a third order method. Alternatively, as 
will be shown below, by properly treating the nonsmoothness 
of G(x) and (OG/On)(x), gn, and h n are computed with 
spectral accuracy. 

To examine the singularity of G(x), we note that 

4 J0 2Ka sin +iYo 2Ka sin 
in which J0 and Y0 are the zeroth order Bessel functions of 
the first and second kind, respectively. Using the asymptotic 
series for small arguments, we have 9 

Z 2 Z 4 

Jo(Z)= 1- T + .... ' 

(;) = -- In Jo(z) + • Jo(z) + ..... ß Yo(z) • • 2• 
It follows that, for Ixl small 

G(x)=- • In Ka sin J0 2Ka sin -- • 
+O(x2), 

in which O(x 2) represents a power series in x 2, and T is the 
Euler's constant, T=0.577 215 .... To compute the Fourier 
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coefficients of G(x) efficiently and accurately, we note that 
the Fourier series of the logarithmic periodic function 
ln(•:alsinx/21) in (17)is 6 

• cos(nx) . 
n--1 

(18) 

Thus, we can "subtract out" the singularity in G(x) by form- 
ing 

i 

6(x)= 7 (01) 

+ • In tra sin J0 2tia 

and then writing the Green's function as 

(20), it does not have a smooth second derivative at x-0. 
For this reason, its Fourier approximation will converge only 
at the rate of 1/N 3. • 

The Fourier coefficients of OG/On, however, can be 
found easily using the relation to gn given in the Appendix. 
In particular, we have 

-- 

t tc2a N N 

---•--• ( g n + l -- g n -1) , rt • O , 2 '2 1, 
tc2 a 1 

•- (g2-go)- a g •' n O, 
K2a 

- -•n g-N/2+ 1, 
N 

, 

t•2a N 

-•n gN/2-2, n = •- - 1. 
(21) 

1 ( G(x)=O(x)- • In 
(19a) 

It is easy to see that •(x) is finite for all values of x. 
Furthermore, both •(x) and Jo (2:alsinx/21)in (19a) are 
periodic and infinitely differentiable. Thus, their Fourier co- 
efficients can be computed with spectral accuracy using FFT. 
The Fourier coefficients of the Green's function G(x), gn, 
will be computed according to (19a) where the term involv- 
ing the logarithmic function is computed by using convolu- 
tion sums. 

We now study the nonsmoothness of the normal deriva- 
tive of the Green's function (OG/o•)(x). The asymptotic se- 
ries of the Bessel functions of first order for small argument 

9 
are 

z z 3 

Jl(Z)-- •-- 16 t..., 

2 2 
Yi(z) = - --+- In 

q'rz 71' 

2y-1 
2,r 

Then 

OG 
(x) = - - 

On iK H? ) 2Ka sin •1 
-itc[J (2teasing[) 4 1 

+iYl(2•:asin•) 
I ( - • + In 

4vra 

sin 
2Ka 

Thus although •G/On is a finite function, due to the 
logarithmic function appearing in the second term shown in 

Thus, it is only necessary to compute gn, the Fourier coeffi- 
cients of G(x). 

C. Fast Fourier transforms 

The numerical implementation of computing gn by (19a) 
is given in this subsection. Let us introduce Fourier colloca- 
tion points 

2rj 
xj= N ' j=0,1,2,...,N-1. 

For convenience of discussion, denote the following Fourier 
series approximations 

N/2-1 

•(X) = Z •n e-inx, (22a) 
n = -N/2 

i • ) N/2-1 J0(2tra sin = Z Pn e-inx' n = -N/2 

(22b) 

The coefficients of these expansions are computed by FFT 
(backward in the usual sense) as follows 

gn--• •(Xj) einxj' (22a') 
j=0 

( Pn=• j=0 Jo 2•a 
xj 

sin •- einXj, (22b') 

in which •(xj) is computed by (19). For the value of (•(x) 
at x = 0, the following limit, obtained from (17), can be used 

y i 
0(o)=- ß 

In addition, we denote (18) as 

In( ira sin = an e-inx, (22C) 

where ao=ln(tca/2) and an=--1/2lnl for n:/:0. 
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Then, by (19a), the Fourier coefficients of G(x) are 
computed as 

1 

gn=•n -- • lln , (23) 
where//n is the convolution sum 

N/2 - 1 

lln: Z pman-m ß 
m = -N/2 

(24) 

We note that the convolution sums in (24) require N 
multiplications for each u n . Thus, the total operations for the 
convolution sums are of order O(N2). This cost can be re- 
duced considerably to O(N log2 N) by the use of a pseu- 
dospectral transformation method with dealiasing 
techniques? For completeness, evaluation of (24) with a 
"padding" dealiasing technique is given in the Appendix. 

8G 

80' 

i 8 

4 Ox _ _ m H(o •) 2Ka 

iKa 

• H?) 2Ka •x sin • 
iKa 

• H? ) 2Ka 
sin x 

sin Isin x/21' (27) 

Recalling (20), the asymptotic expression of OG/00' for 
small x is found as 

0G sin x xa ( •0' 8rrlsinx/212 • In sin• 
xJ•(2xa 

sin x 

Isin x/21 
(28) 

III. SPECTRAL METHOD FOR NEUMANN BOUNDARY 
CONDITIONS 

We now discuss the Fourier spectral method for the 
boundary integral equation (8b) of the Neumann boundary 
conditions. Upon substituting the truncated Fourier series of 
the layer distribution function f(0) into (8b), we get 

N/2-1 N/2-1 [ f0(02 3-fi7n' ) i rl • fneinO, 2• G o'G 2 + Z •fn On' On ir/ 
n = -N/2 n = -N/2 

N/2 - 1 xeinøa dO = • bn einø', 
n = -N/2 

(25) 

where b n are the Fourier coefficients of the specified Neu- 
mann boundary condition. 

Again, the integral appearing in Eq. (25) is directly re- 
lated to the Fourier coefficients of 02G/Sn ' 8n and OG/Sn'. It 
is easy to find that the Fourier coefficients of OG/Sn' are the 
same as those of OG/Sn, already given in the previous sec- 
tion as h n . The apparent difficulty here is with the second 
normal derivative of the Green's function 02G/Sn ' 8n. It can 
be shown that this function is strongly singular at x = 0 and, 
indeed, is not integrable in the ordinary sense. Fortunately, it 
can also be shown that the integral with the second normal 
derivative can be transformed into one involving tangential 
derivatives with reduced singularity. In particular, we have 1ø 

f o f o "•10einø l øG 2• 02G einøa dO= 
On' On a 80 a 80' 

+ x2n '- nGeinø]a d O, (26) 
where (1/a)(O/00) and (1/a)(O/00') represent tangential 
derivatives on the boundary. 

The right-hand side of (26) is now integrahie in the 
sense of the Cauchy principal value. To show this, we only 
need to note that by the expression of the Green's function 
given in (6) we get 

where O(x) denotes smooth terms of order x and higher. 
The singular first term shown above is integrable in the 

sense of the Cauchy principal value. In fact, we have 

I f0'• sin X e inx dx 2 z' Isin x/212 

={0' when n=0, (29) 2i, sign(n) when n4 =0. 

Upon substituting x= 0-0' and equating the coeffi- 
cients of e inO', Eq. (25) is reduced to 

irl f••(inOG dG -•- fn + fn • • (X)-• K 2 cos(x)G(x)-irl On • (x) 
x einxa dx = bn, (30) 

in which we have used the fact that, for a circular cylinder 

n'. n= cos(0- 0'). 

The integral in (30) will now be evaluated through the Fou- 
rier coefficients of each term. 

For the first term, the Fourier coefficients of 0G/80' are 
obtained from the relation 

N/2 - 1 
OG OG 
..... • in gn e-inx, (31) 
00' Ox 

n = -N/2 

where gn are the Fourier coefficients of G(x) by (13). 
The Fourier series approximation of the second term in 

the integral of (30) can also be found using gn since we have 

N/2-1 N/2-1 

COS(x)G(x)=cos(x) • gn e-inx• Z •n e-lax, 
n = -N/2 n = -N/2 

(32) 

where 
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TABLE I. Values of the layer distribution function f(O) at selected points on the boundary. Dirichlet boundary 
condition. 

N 0=0 ø 0=90 ø 0 = 180 ø Error 

Ka=] 

4 1.101 447 573 1.102 982 967 1.124 378 820 10 -2 
8 1.113 205 176 1.095 419 894 1.146 430 615 10 -3 

16 1.112 753 432 1.094 877 536 1.145 739 275 10 -8 
24 1.112 753 420 1.094 877 525 1.145 739 263 10 -•2 

Ka=10 

24 4.590 213 453 6.904 710 445 5.180 354 736 10 -2 
32 4.546 357 630 6.901 732 036 5.132 718 905 10 -3 
48 4.545 461 066 6.901 500 667 5.132 515 158 10 -8 
56 4.545 461 055 6.901 500 659 5.132 515 156 10 -•2 

Ka=100 

224 20.642 556 59 6.841 653 547 18.932 559 34 10 -3 
256 20.643 257 31 6.842 244 857 18.932 216 46 10 -9 
512 20.643 257 33 6.842 244 863 18.932 216 44 10 -•2 

TABLE If. Values of the scattered function •b at selected points at far-field r= 10a. Dirichlet boundary condi- 
tion. 

N 0=0 ø 0=90 ø 0= 180 ø Error 

Ka=l 

4 0.414 644 990 3 0.278 771 854 5 0.185 224 871 6 10 -2 
8 0.422 420 907 6 0.261 278 502 9 0.255 115 198 5 10 -4 

16 0.422 415 315 4 0.261 303 144 5 0.255 218 338 1 10 -•ø 
Exact 0.422 415 315 4 0.261 303 144 5 0.255 218 338 1 '" 

Ka= 10 

24 0.825 595 200 3 0.196 967 920 0 0.186 474 971 0 10 -2 
32 0.828 517 664 4 0.195 358 066 5 0.230 006 705 5 10 -4 
48 0.828 511 066 4 0.195 354 381 4 0.230 093 970 7 10 -lø 

Exact 0.828 511 066 4 0.195 354 381 4 0.230 093 970 7 -" 

Ka=100 

224 0.856 222 828 3 0.188 130 185 3 0.229 523 254 8 10 -3 
256 0.856 228 991 1 0.188 132 640 9 0.229 422 927 4 10 -lø 

Exact 0.856 228 991 1 0.188 132 640 9 0.229 422 927 4 --- 

TABLE III. Values of the layer distribution function f(0) at selected points on the boundary. Neumann 
boundary condition. 

N 0=0 ø 0=90 ø 0 = 180 ø Error 

Ka=l 

4 1.035 182 633 0.302 807 302 7 0.861 658 703 0 10 -1 
8 1.200 134 116 0.397 228 164 8 0.851 841 124 7 10 -2 

16 1.199 187 560 0.396 380 679 6 0.849 564 389 6 10 -7 
24 1.199 187 560 0.396 380 658 9 0.849 564 358 7 10 -•2 

Ka=10 

24 0.600 448 635 3 0.481 445 422 5 1.362 228 889 10 -1 
32 0.627 462 596 9 0.657 589 964 2 1.577 833 267 10 -2 
48 0.630 238 116 3 0.656 708 135 8 1.460 119 442 10 -7 
56 0.630 238 151 7 0.656 708 119 8 1.460 119 455 10 -12 

Ka=100 

224 0.218 554 708 1 1.282 490 390 2.054 272 775 10 -2 
256 0.215 794 872 5 1.283 008 634 2.057 912 965 10 -7 
512 0.215 794 780 3 1.283 008 643 2.057 913 072 10 -12 
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TABLE IV. Values of the scattered function •b at selected points at far field r= 10a. Neumann boundary 
condition. 

N 0=0 ø 0=90 ø 0= 180 ø Error 

•:a=l 

4 0.158 330 060 6 0.169 020 414 4 0.161 996 420 0 10 -• 
8 0.173 291 616 0 0.156 341 483 i 0.231 252 339 4 10 -4 

16 0.173 335 891 9 0.156 326 024 3 0.231 358 372 4 10 -•ø 
Exact 0.173 335 891 9 0.156 326 024 3 0.231 358 372 4 '" 

•:a=10 

24 0.767 958 446 7 0.216 764 338 2 0.157 413 697 7 10 -• 
32 0.774 071 463 2 0.195 606 942 4 0.228 223 889 4 10 -3 
48 0.774 087 417 3 0.195 596 069 1 0.228 339 414 3 10 -•ø 

Exact 0.774 087 417 3 0.195 596 069 1 0.228 339 414 3 '" 

•:a = 100 

224 0.768 801 527 7 0.187 165 643 2 0.229 525 031 5 10 -3 
256 0.768 801 859 0 0.187 171 729 5 0.229 399 551 2 10 -•ø 

Exact 0.768 801 859 0 0.187 171 729 5 0.229 399 551 2 '" 

«g-N/2+•, n= -N/2, 
1 

•n = 5(gn- • + gn+ •), -N/2 +1•< n•<N/2- 2, 
«gN/2 - ß 2, n=N/2-1 

(33) 

Hence, Eq. (30) is reduced to the following algebraic 
equations 

ir] ( n 2 ) -•- f n q- 2'tra f n -- • gn q- K2•n-- i r]h n = b n, (34) 
for -N/2•< n•<N/2 - 1. 

Therefore, the Fourier coefficients of the layer distribu- 
tion function f(0) for the Neumann boundary conditions are 
obtained explicitly as 

bn 

fn=irl/2+2yra[_(n2/a2)gn+ tc2•,n_irlhn], (35) 
where gn, •n, and h a are computed by (23), (33), and (21), 
respectively. 

We point out, however, that •n as given by (33) and, 
indeed, h n of (21), are not exact for n = -N/2 and N/2-1, 
owing to a truncated series of G(x) in the computation. 
Whereas it is possible to compute these two coefficients ex- 

o N= • 

N= 16 

0 0.2 0.4 0.6 0.8 1 

O/2•t 

0 0.2 0.4 0.6 0.8 1 

O/2•t 

FIG. 1. Layer distribution function f(0) for •:a= 1, Dirichlet boundary 
condition. 

-10 

o N=24 
N=48 

0 0.2 0.4 0.6 0.8 1 

O/2•t 

-10 

0 0.2 0.4 0.6 0.8 1 

O/2•t 

FIG. 2. Layer distribution function f(0) for Ka = 10, Dirichlet boundary 
condition. 
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FIG. 3. Layer distribution function f(0) for t•a = 100, Dirichlet boundary 
condition. 

I0 

-10 

o N= 24, 
__ N=I[8 

0 0.2 0.4 0.6 0.8 1 

O/2n 

-1o 

0 0.2 0.4 0.6 0.8 1 
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FIG. 5. Layer distribution function f(0) for t•a= 10, Neumann boundary 
condition 

o N= I[ 

[] N=,8 

N= 16 

0 0.2 0.4 0.6 0.8 1 

O/2n 

0 0.2 0.4 0.6 0.8 1 

O/2n 

FIG. 4. Layer distribution function f(0) for tea= 1, Neumann boundary 
condition. 

1 

_ N=512 

0 0.2 0.4 0.6 0.8 1 

012n 

0 0.2 0.4 0.6 0.8 1 

O/2n 

FIG. 6. Layer distribution function f(0) for tea= 100, Neumann boundary 
condition 
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•ca=10 

FIG. 7. Directivities of the far-field scattered function, Dirichlet boundary 
condition. 

actly, the resulting error in the last two coefficients of fn is 
negligible because bn, in the numerator, decays exponen- 
tially as for smooth boundary conditions. That is, fn for n = 
-N/2 and N/2-1 are necessary negligibly small if N is 
sufficiently large. For simplicity and practicality, (21) and 
(33) are retained in the numerical calculations. 

IV. NUMERICAL EXAMPLES 

In this section, numerical results of a plane-wave scat- 
tering by a circular cylinder are presented. The incident wave 
is assumed to be 

•b i -- eiKX. 

Ka= I 

}ca=10 

FIG. 8. Directivities of the far-field scattered function, Neumann boundary 
condition. 

The scattered wave & satisfies the Helmholtz Eq. (1). The 
boundary conditions considered here are the Dirichlet type 
&:- &i and the Neumann type 

The solutions for the scattered field are obtained by the 
layer representation (2) as 

&(r') = •- i •G f( O)a d 0 

=a • in •-i•G e inO dO. 
n = -N/2 

The above integral can be easily evaluated directly using 
FFT, since the Green's function has no singularity for points 
lying outside of the boundary. The details are omitted here. 

For plane incident waves, an exact solution is given by 
infinite series of the Bessel and Hankel functions. 6 Our pur- 
pose here is to demonstrate the exponential rate of conver- 
gence of the numerical solutions. We emphasize again that 
the numerical formulation applies to any form of the incident 
waves. Due to its simplicity, a sample FORT• program is 
listed in the Appendix. 

In numerical calculations, the radius of the cylinder a is 
taken to be I and also •=1. Computations for xa= 1, 10, 
and 100 have been carried out. In Tables I-IV, numerical 
values of the layer distribution function f(0) and the scat- 
tered function • at far field are given for selected points in 
space. Exact values at hr field are also shown in the tables. 
Clearly, as the number of Fourier collocation points in- 
creases, the numerical solution converges exponentially hst. 
Significant improvements in accuracy are obse•ed with rela- 
tively small increase of the number of data points. This is 
often true for spectral methods in general. The error de- 
creases dramatically when the number of points is large 
enough to resolve the basic features of the solution. 

The corresponding layer distribution function f(0) is 
plotted in Figs. 1-6 for the Dirichlet and Neumann boundary 
conditions for xa= 1, 10, and 100. These graphs demon- 
strate again the remarkable accuracy of the Fourier spectral 
methods with relatively small number of datum points. 

Far-field scattered intensities, computed as Irl• 2, are 
plotted in Figs. 7 and 8 for the Dirichlet and Neumann 
boundary conditions, respectively. 

v. CONCLUSIONS 

A fast numerical solution of wave scattering by a circu- 
lar cylinder has been presented. It is shown that by properly 
removing the nonsmoothness of the integral kernels of the 
boundary integral equations, spectrally accurate numerical 
solutions are obtained. The numerical error decays exponen- 
tially as the number of datum points increase. This implies 
that the present method requires significantly fewer points 
for achieving a given accuracy in comparison with previous 
numerical approaches. The present method is also easy to 
implement. 

Moreover, the combined single- and double-layer for- 
mulation of the boundary integral equations ensures the 
uniqueness of the numerical solution for all frequencies. It is 
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shown that the hypersingularity of the boundary integral 
equations can be handled easily in the spectral method. 
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where use has been made of the formula 9 

d 

a5 
For n = 0, further calculations show that 

h0= 
tc2a i 

16 [H(2•)( ga)J2( ga)-H(ø•)( ga)Jø( ga)] 
i 

4a H?)( s:a)J•( tca) 
APPENDIX 

1. Exact expressions of g n and hn 

In this appendix we derive the exact analytic expressions 
for the Fourier coefficients of G(x) and (SG/Sn)(x). 

It can be shown that, e.g., by (7.2.51) of Ref. 6, 

H(o •) 2s:a sin = • H•)(tca)Jm(tca)e -imx 

Hence 

(A1) 

K2a 1 

4 (g2-go)- a gl. 

2. Evaluation of convolution sums 

An algorithm of computing convolution sums u, with 
O(N log2 N) operations is shown below. 8 

Let M >• 3N and 

•j=2rrj/M, j= 0,1,2,...,M- 1. 

Compute the following using FFT for j = 0,1,2,...,M-1' 

1 foZ'• gn-- • G(x)e inx dx 
M/2-1 

Aj = E t•m e-im•j, 
m= -M/2 

2Ka 

i (1)( . • H n ,:a)Jn(s:a) 

M/2-1 

where 

Pj= E krn e-irn•j, 
m= -M/2 

Moreover, for n g: 0, using integration by part and (A1) 

1 fo z• 8G h n = •--• '•n ( x ) e inx a x 

õrr H •) 2tea sin • e inx dx 
8 •n x sin cos • e inx dx 

a:2a • H•>(tca)Jm(tca)e -imx 16z'n 
m= -o• 

x sin xe inx dx 

a m -N•< m •<N-1, •rn = 0, other, 

Pm, -N/2•<m•<N/2-1, •m-- O, other, 
and form the product 

Uj--AjPj . 

Then the convolution sum u n is the (backward) FFT of Uj as 
follows 

1 M-1 
Un= H • Ujein•j, 

j=o 

for -N/2 •< n •<N/2- 1. 

tc2 a i 

16n [ H(nl+)l ( tca )Jn+ l ( tca ) 

-- H(n I ) -l(Ka)Jn-l(Ka)] 

if2 a 

4n (gn+l-gn-1), 

3. FORTRAN program 

A FORTRAN program of implementing the Fourier spec- 
tral method is listed below. (The external routines ½ftt5., 
cfttf, and cfttb denote initializing, forward, and back- 
ward FFT transforms, respectively.) 
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program circle 

c n : number of points; isoft=l : Dirichlet B.C.; isoft=O : Neumann B.C. 

parameter(n=$2,ak=lO.O,isoft=l,eta=l.O,nl=n-l,nhalf=n/2,m=$.n, 
> rn=float(n),pi=3.14159265358979324,euler=O.$??21566490153286) 
complex b(O:nl),fn(O:nl),gbar(O:nl),gn(O:nl),hn(O:nl),p(O:nl), 

> gtilde(O:nl),am(O:m-1),pm(O:m-1),wsave(2000),wsave2(2000),ei,phi 
ei=(O.O,l.O) 
call cffti(n,wsave) 
call getbc(n,ak,b,ei,pi) 
call cfftf(n,b,wsave) 
do lO j=O,n-1 

tmp=2.0*ak*abs(sin(pi*float(j)/rn)) 
if(j.eq.O) then 

gbax(O)=-euler/2.0/pi+ei/4.0 
p(o)=l.o 

else 

gbar(j)=ei/4.0*(besjO(tmp)+ei*besyO(tmp)) 
> +0.5*alog(tmp/2.0)*besjO(tmp)/pi 

p(j)=besjO(tmp) 
endif 

lO continue 

call cfftb(n,gbar,wsav?) 
call cfftb(n,p,wsave) 
am(O)=alog(ak/2.0) 
am(2*n)=-l.O/2.0/rn 
do 21 i=l,n-1 

am(i):-i.O/2.0/float(i) 
21 am(2*n+i)=l.O/2.0/float(i-n) 

do 22 i=O,nhalf-1 

22 pm(5*nhalf+i)=p(nhalf+i) 
call cffti(m,wsave2) 
call cfftf(m,am,wsave2) 
call cfftf(m,pm,wsave2) 
do 23 j=O,m-1 

23 pm(j)=am(j)*pm(j) 
call cfftb(m,pm,wsave2) 
do 31 i=O,nhalf-1 

gn(i) :gbar (i)-O. $*pm(i)/float (m)/pi 
gn(nhalf+i)=gbax(nhalf+i)-O.$*pm($*nhalf+i)/float(m)/pi 

hn(O ) =ak** 2/4. O* (gn (2) -gn (0) ) -gn( 1 ) 
hn (nhalf- 1 ) =ak**2/4. O/float (nhalf- 1 ) *gn (nhalf-2) 
hn (nhalf) =ak**2/4. O/float (nhalf) *gn (nhalf+ 1 ) 
hn(n-1)=ak**2/4.0*(gn(O)-gn(n-2)) 
gtilde(O)=O.$*(gn(1)+gn(n-1)) 
gtilde(nhalf-1)=O.$*gn(nhalf-2) 
gtilde(nhalf)=O.5*gn(nhalf+l) 
gtilde(n-1)=O.$*(gn(O)+gn(n-2)) 
do $2 i=l,n-2 

itrue=i 

if(i.ge.nhalf) itrue=i-n 
if(i.eq.nhalf-l.or.i.eq.nhalf) go to $2 
hn(i)=-ak**2/4.0/float(itrue)*(gn(i+l)-gn(i-1)) 
gtilde(i)=O.5*(gn(i-1)+gn(i+l)) 

32 continue 

do 40 i=O,n-1 

if(isoft.eq.i) then 
fn(i) =b(i)/(0.5*rn+2. O*pi* (hn(i)-ei*eta*gn(i)) ) 

else 

itrue=i 

if(i.ge.nhalf) itrue=i-n 
fn(i)=b(i)/(O.5*ei*eta*rn+2.0*pi*(-float(itrue)**2*gn(i) 

> +ak**2*gtilde(i)-ei*eta*hn(i))) 
endif 

40 continue 

************************************************************ 

c The following is to find phi at far field r=rO 
************************************************************ 

rO=10.O 

npoint=4 
do 70 ii=l,npoint 

sj=2.0*pi*float(ii-1)/float(npoint) 
do 71 j=O,n-1 

theta=2.0*pi*float(j)/rn 
rj=sqrt(1.0+rO*rO-2.0*rO*cos(theta-sj)) 
dj=l. O-tO* co s (theta-s j ) 
tmp=ak*rj 
gn(j )=ei/4. O* (besj 0 (trap) +ei*besyO (trap)) 

71 hn(j)=-ei*ak/4.0*(besjl(tmp)+ei*besyl(tmp))*dj/rj 
call cfftb(n,gn,wsave) 
call cfftb(n,hn,wsave) 
phi=O.O 
do 72 i=O,n-1 

72 phi=phi+2.0*pi*fn(i)*(hn(i)-ei*eta*gn(i))/rn 
70 write(3,100) rO,sj,phi,cabs(phi) 
100 format(' rO=',el$.6,' theta=',el$.6/' phi=',3e17.10) 
999 stop 

end 

c 

subroutine getbc(n,ak,b,ei,pi) 
compldx ei,b(O:n-1),tmp 
do 10 j=O,n-1 

tmp=ei*ak*cos(2.0,pi,float(j)/float(n)) 
10 b(j ) =-cexp(tmp) 

retur• 

end 
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