
Old Dominion University
ODU Digital Commons
Modeling, Simulation & Visualization Engineering
Faculty Publications Modeling, Simulation & Visualization Engineering

2011

Executable Architecture Research at Old
Dominion University
Andreas Tolk
Old Dominion University, atolk@odu.edu

Johnny J. Garcia
Old Dominion University

Edwin A. Shuman
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_fac_pubs

Part of the Computer and Systems Architecture Commons, and the Systems Architecture
Commons

This Conference Paper is brought to you for free and open access by the Modeling, Simulation & Visualization Engineering at ODU Digital Commons.
It has been accepted for inclusion in Modeling, Simulation & Visualization Engineering Faculty Publications by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Repository Citation
Tolk, Andreas; Garcia, Johnny J.; and Shuman, Edwin A., "Executable Architecture Research at Old Dominion University" (2011).
Modeling, Simulation & Visualization Engineering Faculty Publications. 22.
https://digitalcommons.odu.edu/msve_fac_pubs/22

Original Publication Citation
Tolk, A., Shuman, E. A., & Garcia, H. M. (2011). Executable architecture research at Old Dominion University. Paper presented at the
MODSIM World 2010 Conference and Expo, NASA Langley Research Center, Hampton, VA, United States. https://ntrs.nasa.gov/
search.jsp?R=20110012136

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_fac_pubs/22?utm_source=digitalcommons.odu.edu%2Fmsve_fac_pubs%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ntrs.nasa.gov/search.jsp?R=20110012136
https://ntrs.nasa.gov/search.jsp?R=20110012136
mailto:digitalcommons@odu.edu


 

98 

2.1 Executable Architecture Research at Old Dominion University 

 

 

https://ntrs.nasa.gov/search.jsp?R=20110012136 2018-11-06T16:00:39+00:00Z

Executable Architecture Research at Old Dominion University 
Andreas Talk 

Old Dominion University 
atolk@odu.edu 

Johnny J. Garcia 
Old Dominion University (SimlS Inc.) 

iohnnv.garcia@simisinc.com 
Edwin A. Shuman 

Old Dominion University (MITRE) 
ashuman@mitre.org 

Abstra,ct. Executable Architectures allow the evaluation of system architectures not only regarding their static. but also their dynamic 
behavior. H_owever, th7 sys~ems engineenng community do not agree on a common formal specification of executable architectures. 
To _close this _gap and 1dent1fy necessa_ry elements of an executable architecture, a modeling language. and a modeling formalism is 
topic of ongoing P_hD research. In_ add1t1on, systems are generally defined and applied in an operational context to provide capabili
ties and enable m1ss1o~s. To ~ax1m12e the benefits of ex~cutable architectures, a second PhD effort introduces the idea of creating 
an executable context 1n add1t1on to the executable architecture. The results move the validation of architectures from the current 
information domain into the knowledge domain and improve the reliability of such validation efforts. The paper presents research 
and results of both doctoral research efforts and puts them into a common context of state-of-the-art of systems engineering me
thods supporting more agility. 

1.0 INTRODUCTION 
This paper introduces two ongoing related 
PhD efforts at Old Dominion University. 
Both efforts contribute to the topic of Ex
ecutable Architecture research. Being 
members of the active M&S work force in 
Hampton Roads, both PhD candidates col
lected valuable experiences in projects and 
research. Embedding these experiences 
into the scholastic education within the 
Modeling and Simulation program of Old 
Dominion University ensures academically 
valuable results that promise to be practi
cally useful as well. 

The mentor for this work has experiences in 
the academic and practical realm as well. In 
a study on Active Layered Theatre Ballistic 
Missile Defense (AL TBMD) for NA TO, he 
was member of an international team that 
used the "Command, Control, Communica
tions, Computers, Intelligence, Surveillance 
and Reconnaissance (C4ISR) Architecture 
Framework," which evolved later into the 
"Department of Defense (DoD) Architecture 
Framework (DoDAF)" and the "NATO Ar
chitecture Framework (NAF)," to define 
ALTBMD architecture and execute them 

using simulation systems like the German 
"Tactical Missile Defense Simulator 
(TMDSIM)," the US "Extended Air Defense 
Simulator (EADSIM)," and the US "Ex
tended Air Defense Test Bed (EADTB)" to 
evaluate and compare the different archi
tecture proposals [1]. 

Each PhD effort is an individual contribution, 
but presenting them together in this paper 
allows focusing on the synergy between the 
research results. Both contributions address 
important gaps in the body of knowledge for 
executable architecture research. To do 
this, the paper is structured as follows. Sec
tion two will deal with a state of the art over
view and present a summary of related re
search. The third section will focus on the 
necessity for a more formal approach to ex
ecutable architecture, comprising the defini
tion of elements that are pivotal for such an 
architecture, evaluating alternative modeling 
languages to model what needs to be ex
ecuted, and a formalism allowing to intro
duce the necessary rigor. The fourth section 
introduces the idea of executable contexts. 
While the executable architecture 
represents the system under development, 
the executable context represents the oper-



 

99 

 

ational environment the system will be ap
plied in. Finally, the concluding section will 
synthesize both efforts and place them into 
a broader research agenda. 

2.0 STATE OF THE ART 
The overview in this section is neither com
plete nor exclusive. However, it shows the 
trend of recent developments, in particular 
for defense related architecture evaluations. 
The general underlying idea motivating the 
use of executable architectures is to enable 
the evaluation of dynamic aspects. A sys
tem's architecture is the static blueprint of a 
system that identifies who (function) is doing 
what (capability) where (component). Ex
ecutable architectures allow furthermore to 
evaluate when (time) something is done. 
Dead locks, internal loops, and other related 
problems can be detected in the definition 
phase of the system. 

Zinn [2] investigated the utility of using Do
DAF architecture products to provide 
needed data for agent based simulations. 
This was accomplished by means of a case 
study where architecture data from a pro
posed Air Operations Center architecture 
was used in the combat model System Ef
fectiveness Analysis Simulation (SEAS). 
The research concluded that DoDAF if im
plemented properly, does provide th~ 
needed information for developing agent
based simulations. Zinn proposed a process 
of taking information from DoDAF architec
tures and importing it into an agent-based 
si_mulation. To model process information, 
Zinn used information contained in the OV-5 
and OV-6a (IDEF3) to feed the agent-based 
simulation. The OV-5 provides the process 
and information flow, while the OV-6a pro
vides the decision logic associated with the 
process. 

Wagenhals et al. [3] provide a description of 
an architecting process based on the object
oriented Unified Modeling Language (UML). 
They describe a mapping between the UML 
implementations and an executable model 
based on Colored Petri nets. They examine 
DoDAF product sufficiency in terms of the 

Colored Petri Nets (CPN) simulations end 
state objective. Wagenhals et al. focus on 
the UML Sequence Diagram (OV6c), the 
UML Collaboration Diagram (OV5b) and the 
Class Diagram (OV5a - with extensions). 

In 2005, Ziegler and Mittal [4] described the 
translation of DoDAF compliant architec
tures into DEVS simulations. They provided 
a set of DoDAF foundational Views and re
lated UML diagrams for construction of 
DEVS-based simulations 

In 2006, Mittal [5] addressed the question of 
extending DoDAF to support integrated 
DEVS-based modeling. His work cited Do
DAF's shortcomings, to include his asser
tion of ill-defined information exchanges, the 
need for a coupling of entities, activities, 
and nodes, and a need to identify ports as
sociated with activity-to-activity communica
tion (since DEVS is a port-based modeling 
construct). He defined two new OV prod
ucts, the OV-8 and the OV-9, as extensions 
of the DoDAF. The OV-8 addresses activi
ties and their logical interface information. 
The OV-9 maps nodes, entities, and activi
ties. This is similar conceptually to Activi
ties-based methodology [6]. Mittal asserted 
the need for the OV-8 and OV-9 as inter
mediate precursor products in the develop
ment of the DEVS simulation. Mittal used 
the OV-5 activity model, the OV-6c (Se
quence Diagram) and the OV-6a (Rules di
agram - IDEF3), as a basis for generating a 
DEVS-based simulation. 

In 2006, Mittal [7] described a means for 
semantically strengthening the critical OV-
6a Rules Model, through application of Do
main Meaning, Units of Measure (UOM), 
and formatting to domain specific rules, the
reby removing ambiguity and aiding in 
translation of static to dynamic architec
tures. 

In 2009, Risco-Martin et al. [8] described the 
essential mappings between UML and 
DEVS modeling. That work focused on the 
UML Structure and Behavior models that 
contribute to the development of a DEVS
based system model. Those UML models 



 

100 
 

are the Component Diagram, the State Ma
chine, the Sequence Diagram, and the 
Timing Diagram. 

3.0 A FORMAL APPROACH TO EX
ECUTABLE ARCHITECTURES 
\Mien evaluating the current approaches to 
derive executable architectures from static 
architectures, such as captured in DoDAF 
or comparable frameworks, it becomes ob
vious that the objective of these efforts is 
the use of dynamic simulation software to 
evaluate architecture models [5]. However, 
the current research is more concerned 
about concrete methods and tools, like the 
use of DEVS and DoDAF, the use of CPN 
and DoDAF, and similar projects. 

The objective of the first PhD thesis is 
therefore to contribute to a theory of ex
ecutable architectures. First results of this 
research are presented in [9]. The research 
derived from the observations of current ap
proaches that it can be hypothesized that 
three categories are needed to define the 
necessary components for an executable 
architecture. 

3.1 Elements 
Elements define the static WHO, WHAT, 
and WHERE parts of an architecture. The 
elements provide the conceptual, structural, 
functional and state descriptions needed to 
describe and analyze a system. An archi
tecture framework helps us to establish the 
boundaries for the discussion and to give it 
context and perspective. Examination of 
relevant elements of an architecture frame
work from conceptual, structural, functional 
and state perspectives helps to scope the 
topic of discussion. 

3.2 Language 
A modeling language allows us to instan
tiate the specifics of our architectural subset 
by describing both static and dynamic as
pects of a system. The modeling language 
provides graphical, symbolic, standard no
tations designed to address various kinds of 
analysis and inquiry. A specific example of 
this would be a System Modeling Language 

(SysML) instantiation of the DoDAF OV-5, 
Operational Activity Diagram. That SysML 
diagram allows us to describe system beha
vior, or the functional system perspective. 

3.3 Modeling Formalism 
A modeling formalism for executable archi
tectures should holistically describe the 
elements of an executable architecture us
ing a standard mathematical notation. This 
ties the WHO, WHAT, WHERE, and WHEN 
together in a consistent and complete way. 
Traditionally, validation and verification sup
ports this task. The formalism provides the 
mathematical frame to really prove that all 
functions are provided, interconnected, etc. 
The DEVS formalism is a promising first 
candidate. The elements of an executable 
architecture should be described using a 
modeling formalism, and minimally in the 
context of DEVS. 

Figure 1 shows the concept triangle, in
cluding some examples for the components. 

Figure 1. Concept Triangle 

A theory of executable architectures must 
ensure that the architecture can be de
scribed completely and consistently through 
all three components. All elements captured 
in the Architecture Elements need to be part 
of the formalism and should be the subject 
or object of activities modeled with the 
Modeling Language. The Modeling Lan
guage must be the subject of the formalism 
and should not use elements that are not 



 

101 
 

captured in the Architecture Elements. The 
Formalism must bind elements and actions 
together and provide the mathematics to 
support validation and validity. 

The first results published in [9] already 
show how to show alignment between Ar
chitecture Elements and Modeling Lan
guages and apply metrics to the degree of 
alignment. Shuman showed, e.g. , that for 
executable architectures the use of the 
SysML may be preferable to the use of the 
UML. 

He also showed that the Fishwick modeling 
taxonomy [10] , which distinguishes between 
conceptual, declarative, functional, con
straint-oriented and spatial models, has sig
nificant value to support the three compo
nents of the concept triangle for executable 
architecture and provides foundational input 
for the general theory. 

Such a theory will help to transfer valuable 
and practically relevant results between the 
various contributions so far. It will also sup
port transferability of architecture artifacts, 
as de facto the components elements, lan
guage, and formalism must become a gen
eral meta-model of relevant approaches al
lowing to derive specialized solutions, like 
used in the examples described earlier. 

4.0 ADDING EXECUTABLE 
CONTEXT 
The focus so far has been on the system. 
Validating system architectures and as
sessing the contribution and efficiency of 
the specified systems before a system is 
built is the objective supported by the re
search of the second PhD effort. As pointed 
out before, the current state of the art of va
lidation in practice is limited to static me
thods answering questions regarding who is 
doing what where. Executable architectures 
support system behavior analysis. They 
support examination of system timing ques
tions (WHEN). They address questions re
lated to the WHY and HOW of system be
havior. In addition to this, executable archi
tecture should address system context as 

well. Garcia presented the theory in [11] and 
showed an application example in [12]. 

Suede introduces the system's context as "a 
set of entities that can impact the system 
but cannot be impacted by the system. The 
entities in the systems context are respon
sible for some of the systems require
ments." [13, p. 38] He also introduces ex
ternal systems that interact with the system 
under development. Together, they intro
duce the system environment. Figure 2 
captures these ideas. 

Cor,tot 

lrrp.n:s, but r.othTp<lctCd by, "Systcim· 

Figure 2. System, External Systems, and 
Context 

While the executable architectures allow 
evaluation of system behavior (such as 
deadlocks and infinite loops), Fig. 2 shows 
that significant effects to system behavior 
will occur as a result of interaction with other 
external systems or even as a result of inte
ractions between external systems. It is 
possible that the same category of dynamic 
problems that are evaluated in the previous 
section for the system's internal compo
nents by executable architectures - such as 
deadlocks between components - can oc
cur between the system and external sys
tems in the contexts of operations as well. 
Without an executable context, such in
sights are not supported by using an ex
ecutable architecture alone. 

Sage and Rouse aligned the six key inter
rogatives to information and knowledge cat
egories, distinguishing between those that 
relate to information and those that relate to 



 

102 
 

knowledge: who, what, where, when refer to 
information; how and why deal with know
ledge [14, p. 264]. Executable architectures 
should address both the information and 
knowledge categories. Adding system con
text allows us to address why a system acts 
as it does (and in so doing following the op
erational requirements of a given scenario) 
and how it performs its actions (in the colla
boration with the other influencing systems 
(by meeting mission need). 

All information needed to provide for the 
context is normally captured in systems en
gineering documents. The systems archi
tecture is based on operational require
ments (OR) that are derived from mission 
requirements (MR). These OR are refined 
into Systems Requirements (SR), Func
tional Requirements (FR), and Component 
Requirements (CR), which build the founda
tion for the systems architecture. MR and 
OR can be used to identify scenarios and 
metrics to measure the success of a mis
sion. Figure 3 shows how the executable 
architecture is derived from SR, FR, and CR 
to be embedded into an executable context 
based on MR and OR. 

Sr,p I · Blut Print 
Mb""" s,,i.m 

S<tMrio• Sysltm-
fnlitl<s fu-
l!dilloM Componcnu 
,,,.,oKtJon, '"""'" &I 
8'havlot lnttrl"" lntom,I 
Mnts DatJ 

Sr#fl 1 • Build UArddtt<tur11 

~ r-.. &~ 
~ 

~~~ 
11 I .. , •. 

I • •: 

-, •. 1·· I' • 1·· -, .. :, :: :• :: :; 

St,p J · Map Blut Print to EA 

- s,,i .... 

6, .:"""""""')I, 8 
!wtn 

t(Cll\tfflJlM'f'lt>mmkdati 

-- '""'---1 ~- r --~• - ...,..,.,..,~ 
I : :> IIT 

w rri 11, 111 m 
Strp4• (X (ontut 
Err'l'iranmtnb and Ewnb 

Figure 3. Executable Architecture in the 
Executable Context 

Using the DEVS Unified Process (DUNIP) 
developed in [15] , the system architecture is 
represented as an executable architecture 

in JAVA code and can react to inputs as de
fined in the system architecture and can 
produce the outputs using the appropriate 
causal and temporal constraints as defined 
for the systems. 

Using validated simulation systems 
representing the context and the external 
systems within critical missions identified in 
the MR and OR, the validation of the archi
tecture can now be conducted in the context 
of a valid scenario, using metrics identified 
by the real user for the critical missions. 
Garcia applied the NA TO Code of Best 
Practice for C2 Assessment [16] and the 
Military Missions to Means Framework 
(MMF) [17]. 

This approach allows us to identify counter
intuitive effects, such as worst overall re
sults. 

5.0 CONCLUSION 
The research currently conducted on ex
ecutable architecture at Old Dominion Uni
versity will contribute to better processes for 
validation of system development. Adding 
the power of M&S solutions to the rigor of 
systems engineering allows much better 
decisions on all level , from the stakeholder 
and future user of the system down to the 
implementing engineer. Executable archi
tectures following the theory and being em
bedded into an executable context will allow 
all partners to display and evaluate opera
tionally relevant data in agile contexts by 
executing models using operational data 
exploiting the full potential of M&S and 
producing numerical insight into the beha
vior of complex systems. 

6.0 REFERENCES 
[1] Adshead, S., Kreitmair, T. , and Tolk, A. 
2001 . Definition of ALTBMD Architectures 
by Applying the C4ISR Architecture Frame
work. Proceedings Fall Simulation Interope
rability Workshop, Vol. II, pp. 679-689, 
Orlando, FL, September 

[2] Zinn, A. W. 2004. The Use of Integrated 
Architectures to Support Agent Based Si-



 

103 

 

mulation An Initial Investigation. Master's 
Thesis, Air Force Institute of Technology Air 
University 

[3] Wagenhals, L. W, Haider, S., and Levis, 
A. H. 2002. Synthesizing Executable Mod
els of Object Oriented Architectures. Pro
ceedings of Workshop on Formal Methods 
Applied to Defence Systems, Adelaide, 
Australia, pp. 85-93 

[4] Zeigler, B. P., and Mittal, S. 2005. En
hancing DoDAF with a DEVS-Based Sys
tem Lifecycle Development Process. IEEE 
International Conference on Systems, Man 
and Cybernetics, Hawaii, October 

[5] Mittal, S. 2006, Extending DoDAF to Al
low Integrated DEVS-Based Modeling and 
Simulation. JDMS 3(2):95-123 

[6] Ring, S. J., Nicholson, D., and Pallab S. 
2007. Activity-Based Methodology for De
velopment and Analysis of Integrated DoD 
Architectures. Information Science Refer
ence: Handbook of Enterprise Systems Ar
chitecture in Practice, Chapter 5, pp. 85-
113, Systems Modeling Language OMG, 
2008 

[7] Mittal, S., Mitra, A. , Gupta, A, and 
Zeigler, B.P. 2006. Strengthening OV-6a 
Semantics with Rule-Based Meta-models in 
DEVS/DoDAF based Life-cycle Architec
tures Development. IEEE-Information 
Reuse and Integration, Special Section on 
DoDAF, Hawaii 

[8] Risco-Martin, J.L., de la Cruz, J., Mittal, 
S., and Zeigler, B.P. 2009. Eudevs: Execut
able UML with DEVS Theory of Modeling 
and Simulation, Simulation 85(7):419-450 

[9] Shuman, E. A. 2010. Understanding Ex
ecutable Architectures Through An Exami
nation of Language Model Elements. SCS 
Proceedings of the Summer Computer Si
mulation Conference, Ottawa, Canada, July 

[10] Fishwick, P. 1995. Simulation Model 
Design and Execution. Prentice-Hall, Inc. 

[11] Garcia, J. J ., and Tolk, A. 2010. Adding 
Executable Context to Executable Archi
tectures: Shifting Towards a Knowledge
Based Validation Paradigm for System-of
Systems Architectures. SCS Proceedings of 
the Summer Computer Simulation Confe
rence, Ottawa, Canada, July 

[12] Garcia, J. J . 2010. Methodology Sup
porting Architecture Validations (MAVS). 
SCS Proceedings of the Spring Simulation 
Mu/ti-Conference, Symposium Emerging 
Applications of M&S in Industry and Aca
demia, Orlando, FL, April 

[13] Suede, D. 2000. The Engineering De
sign of Systems: Models and Methods, John 
Wiley & Sons, Inc., New York 

[14] Sage, A. P., and Rouse, W. B. (Eds.). 
1999. Handbook of Systems Engineering 
and Management, John Wi ley and Sons, 
Inc., New York 

[15] Mittal S. 2007. DEVS unified process 
for integrated development and testing of 
service oriented architectures. PhD Thesis. 
United States -- Arizona: The University of 
Arizona 

[16] NATO Code of Best Practice for C2 As
sessment, 2002, CCRP Press, Washington 
DC 

[17] Deitz, P.H., Sheehan, J.H., Harris, B.A. , 
Wong, A.B.H., Bray, B.E., and Purdy, E.M. 
2003. The Military Missions and Means 
Framework (MMF). Proceedings of the /n
terservice/lndustry Training, Simulation, and 
Education Conference (/IITSEC), Orlando, 
FL, December 


	Old Dominion University
	ODU Digital Commons
	2011

	Executable Architecture Research at Old Dominion University
	Andreas Tolk
	Johnny J. Garcia
	Edwin A. Shuman
	Repository Citation
	Original Publication Citation


	Microsoft Word - MODSIM CP1.doc

