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Abstract 
A practical transportation problem for finding the “departure” time at “all source nodes” in order 
to arrive at “some destination nodes” at specified time for both FIFO (i.e., First In First Out) and 
Non-FIFO “Dynamic ” Networks is considered in this study. Although shortest path (SP) for dy-
namic networks have been studied/documented by various researchers, contributions from this 
present work consists of a sparse matrix storage scheme for efficiently storing large scale sparse 
network’s connectivity, a concept of Time Delay Factor (TDF) combining with a “general piece- 
wise linear function” to describe the link cost as a function of time for Non-FIFO links’ costs, and 
Backward Dijkstra SP Algorithm with simple heuristic rules for rejecting unwanted solutions 
during the backward search algorithm. Both small-scale (academic) networks as well as large- 
scale (real-life) networks are investigated in this work to explain and validate the proposed dy-
namic algorithms. Numerical results obtained from this research work have indicated that the 
newly proposed dynamic algorithm is reliable, and efficient. Based on the numerical results, the 
calculated departure time at the source node(s), for a given/specified arrival time at the destina-
tion node(s), can be non-unique, for some Non-FIFO networks’ connectivity. 

 
Keywords 
Backward Dijkstra, Dynamic Networks, Piece-Wise Linear Function, Specified Arrival Time 

 
 

1. Introduction 
For most people who have to commute from their homes to their work-places, they want to have the answers for 
either of the following questions: if we leave our home at a specified time, what time we will arrive at the office? 
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Or what time we should depart from home in order to arrive at the office at a specified time? Similar questions 
have been asked by long distance travelers, etc. 

The vast majority of Shortest Path Problem (SPP) publications have dealt with static (i.e., non-time-dependent) 
networks that have fixed topology and constant link costs. In recent years, there has been a renewed interest in 
the study of Time-Dependent Shortest Path Problems (TDSPP). Thus, one of the fundamental network problems 
in such applications is the computation of the shortest paths from all nodes to a set of destination nodes for all 
possible departure time, in a given time-dependent network.  

Orda and Rom [1] have presented an algorithm for finding the shortest path and minimum delay under various 
waiting constraints, and for all instances of time. The properties of the derived path (under arbitrary functions 
for link delays) are also investigated in their studies. Daganzo [2] have solved the backward SSP on a network 
with FIFO links. The FIFO property means “First In First Out” and states that if a vehicle leaves node i at time 

1t  and the other one leaves the same node at time 2 1t t> , then the second vehicle cannot arrive at node j before 
the first one. Chabini and Ganugapati [3] have proposed an efficient dynamic solution algorithm, call algorithm 
DOT, and prove that no sequential algorithm with a better worst-case computational complexity can be devel-
oped. Wuming and Pingyang [4] introduced an algorithm to solve the shortest paths in time-dependent network 
by converting Non-FIFO network to a FIFO network and solve the problem using the traditional SSP algorithms. 
Ding, Yu, and Qin [5] have proposed a new Dijkstra-based algorithm by decoupling path-selection and time-re- 
finement in the starting-time interval T. They have also established/proved the time complexity and space com-
plexity based on their proposed 2 step approached. Through extensive numerical studies, they have also con-
cluded that their dynamic algorithm outperforms existing solution algorithms in terms of efficiency. 

Bidirectional Dijkstra search is a standard technique to speed up computations on static networks. However, 
since the arrival time at the destination is unknown, the cost of time-dependent links around the target node 
cannot be evaluated, thus bidirectional search cannot be directly applied on time-dependent networks. Nannicini 
[6] has proposed a solution to the above problem by using a time-independent lower bounding function in the 
backward search.  

Computational strategies for families of Frank-Wolfe (FW), Conjugate FW, Bi-conjugate FW Deterministic 
User Equilibrium (DUE) algorithms for static networks have also been reported by Allen [7]. 

The focus of this paper is to find the departure time at the source node(s) for a given (or specified) arrival time 
at the destination node(s) in FIFO, and Non-FIFO networks. This present work consists of a sparse matrix sto-
rage scheme for efficiently storing large scale sparse network’s connectivity, a concept of Time Delay Factor 
(TDF) combining with a general piece-wise linear function to describe the link cost as a function of time (for 
Non-FIFO links’ costs), and Backward Dijkstra SP Algorithm with simple heuristic rules for rejecting unwanted 
solutions during the backward search algorithm. 

The remaining of this paper is organized as following. Dynamic networks are discussed in Section 2, where 
the concept of TDF in conjunction with piece-wise linear time function for the links’ costs are also introduced in 
this section. A small numerical example of a dynamic network (with 5 nodes and 9 links) is used in Section 3 to 
facilitate the discussions of the Polynomial LCA and Forward Dijkstra algorithms for finding the arrival time at 
the destination node, based on the known departure time at the source node. Furthermore, this same dynamic 
network will also be used in Section 3 for finding the departure time at the source node in order to arrive at the 
destination node at a given time. The issue of unique (or non-unique) solution for this focused problem (i.e. 
finding the departure time at the source node for a specified arrival time at the destination node) is also dis-
cussed in Section 3. Real-life (large-scale) dynamic transportation networks are investigated, using the proposed 
time-dependent Backward Dijkstra algorithm, and the numerical results are presented in Section 4 to validate the 
proposed dynamic algorithm. Finally, conclusion is summarized in Section 5. 

2. Time Delay Factor and Piece-Wise Linear Time Function in Dynamic Networks 
For dynamic networks, the time to travel from node “i” to node “j” of a particular link “k” is no longer a con-
stant. The actual travel time on link “k” will depend on the departure time at node “i”. In this work, the follow-
ing formulas are employed for a typical link “k”, connected by node “i” to node “j”:  

( )AT DT CST TDF DT= + ∗                                  (1) 

where AT =  Arrival Time at node “j” for a typical link “k”, DT =  Departure Time at node “i” for a typical 
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link “k”, CST =  Constant “Static” Time for a typical link “k”, ( )TDF DT =  Time Delay Factor ( TDF ), 
which is dependent on DT  and can be defined as Equation (2), and ( )y DT  is the appropriated time function 
for a typical link “k”.  

( ) ( )1TDF DT y DT= +                                      (2) 

In this work, the time function (which depends on DT ) can be represented as shown in Figure 1 where 
piece-wise linear time function is used. For typical travel time in real dynamic networks, travel time will be in-
creased during certain hours of the day, say during 6 am - 8 am in the morning (due to morning rush, since trav-
elers drive to work), and say during 16 hours-18 hours (or 4:00 pm - 6:00 pm, since travelers leave their offices 
for heading homes). 

In Figure 1, the coordinates ( , ( )DT y DT ) of such points O, A, B, C, D, E, F, G, H, and I are defined as the 
input parameter (provided by the software user). Thus, this piece-wise linear time function can be (conveniently, 
and appropriately) provided to take into account of different local traffic congested time. In general, one may 
have different function ( )y DT  for different links. However, in our research work, we assume that all links (see 
Figure 2(a)) will have the same travel behavior as the one shown in Figure 1. 

The value of ( )y DT  can be varied (say, from 0.00 to 1.00 as indicated in Figure 1). Thus, for static net-
works, the TDF  defined in Equation (2) is equal to 1 (by setting ( )y DT  = 0.00), while for dynamic networks, 
the value of TDF  could be any where within the range [1.00 2.00]− , depending on the value of ( )y DT . The 
following 2 important observations can be made: 

1) On a typical link “k”, if the departure time at node “i” is known, then the arrival time at node “j” can be 
uniquely and easily computed (by using Equation (1-2), and Figure 1). 

2) On a typical link “k”, if the arrival time at node “j” is known, then the departure time at node “i” can also 
be computed (by using Equation (1)-(2), and Figure 1). However, in this case, the computed departure time at 
node “i” may NOT be unique. Some sorts of elimination (heuristic) rules need be developed in order to find an 
acceptable single solution. 

3. Finding the Departure Time at the Source Node(s) Based on the Specified 
Arrival Time at the Destination Node(s) 

In this section, a dynamic network with 5 nodes and 9 links, shown in Figure 2(a), will be analyzed. For con-
venience, all links will be assumed to have the same time function as illustrated in Figure 1. The following 
problem’s cases will be investigated. 

Problem 1. Use the polynomial LCA (time dependent) method to find the time dependent shortest path from 
any source node, say 5s =  to any destination node, say 2t =  at the following three possible departure time: 

Case (a): 9 hrs. = 9:00 am (to simulate right after rushed /busy hours, see Figure 1). 
Case (b): 15 hrs. = 3:00 pm (to simulate right before rushed /busy hours, see Figure 1). 
Case (c): 16.75 hrs. = 4:45 pm (to simulate during rushed /busy hours, see Figure 1). 

 

 
               Figure 1. Piece-wise linear time function for a typical link “k”. 
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(a)                                   (b) 

Figure 2. (a) A dynamic network topology; (b) A dynamic reversed network 
topology with 5 nodes and 9 links. 

 
This problem is rather straight forward, since the departure time ( )DT  is known at the source node 5. For 

any subsequent links i j− , since the departure time of node “i” for links i j−  is known, hence: 
The function ( )y DT  can be easily/uniquely determined (from Figure 1), the Time Delay Factor ( )TDF  

can be easily/uniquely determined (from Equation (2)), and the arrival time ( )AT  at node “j” can be easily/ 
uniquely determined (from Equation (1)). Eventually, the AT  at node 2 (for all cases a, b, and c) were found 
and presented in Table 1. 

Problem 2. Re-do problem 1 (for all cases a, b, and c), but using the regular forward time dependent Dijkstra 
algorithm. 

The final results are identical to the one obtained in Problem 1 (using Polynomial LCA time-dependent algo-
rithm (see Table 1)). 

Problem 3. Find the departure time for the known arrival time using dynamic backward Dijkstra algorithm 
for all three cases of the previous problem. Based on the numerical results obtained in problems 1 and 2, we 
knew that if the driver departs from the source node 5 at 9:00am (case a), or at 3:00pm (case b), or at 4:45pm 
(case c), then he/she will arrive at the destination node 2 at 16.00 (or 4:00pm), or at 24.00 (or mid-night), or at 
26.25 (or 2:15am next day), respectively. 

To find the solutions for the above questions, our proposed modified dynamic backward Dijkstra algorithms 
can be summarized in the following major steps: 

Step 1. Revised the links’ direction of the given network (see Figure 2(b)). The given arrival times (obtained 
from problems 1 and 2) can be used as the known departure time at the source node 2.  

Step 2. In this step, we would like to find “what time the driver should depart from the source node i (for link
i j− ), in order to arrive at the destination node j at a specified time?”. For this situation, Equation (1) can also 
be used. However, the known variables are AT  and CST , and the unknown variable is DT . This is com-
pletely different from the defined problems 1 and/or 2, where the known variables are DT  and CST , and the 
unknown variable is AT . While the unknown variable AT  can be easily (and uniquely) found from Equation 
(1) for Problems 1 and 2, the unknown variable DT  for Problem 3 may not be easily (and/or uniquely) found 
from Equation (1). Combining Equation (1) and Equation (2), one obtains: 

[ 1 ( )]AT DT CST TDF y DT= + × = +                               (3) 

The only unknown in Equation (3) is Departure time ( DT ). To illustrate this point, the following numerical 
details are provided and explained for Problem 3, case (b), where we start with the known AT  at node 2 as 
24.00 (or mid-night). Starting from node 2j = , find all the connected out-going links j i−  (based on Figure 
2(b)). 

Start first iteration, when { }0distance Inf Inf Inf Inf= , { }0 0 0 0 0predecesor = , { }2S =  
(the array of explored nodes), 24.00AT =  (Given arrival time at destination node). For Outgoing link 2-1, we 
have 1, 24.00jnode AT= = , and (  2 1) 2.5CST for link − = , Equation (3) will give the 9 computed DT  val-
ues (corresponding to the 9 time functions 1 2 3 9, , , ,y y y y…  shown in Figure 1) as following: 

{ }
{ }

1 2 3 4 5 6 7 8 9

21.5 9.71 19 0.67 21.5 16.9 19 17.3 21.5

DT DT DT DT DT DT DT DT DT

=
                    (4) 

However, Figure 1 implies that the time function 1( )y DT  is only valid if DT  is within the range [0.00 - 
5.00 hours], the time function 2 ( )y DT  is only valid if DT  is within the range [5.00 - 6.00 hours], the time  

0 
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Table 1. Numerical Results for Dynamic Network in Figure 2.  

Case Source  
Node 

Destination  
Node 

Departure  
Time 

Arrival  
Time 

Shortest  
Time (Cost) Path Number of  

Explored Nodes 

Polynomial LCA & Forward Dijkstra 

a 5 2 9 16 7 5  3  2 5 

b 5 2 15 24 9 5  3  1  2 5 

c 5 2 16.75 26.25 9.5 5  3  2 5 

Backward Dijkstra 

a 2 5 9 16 7 2  3  5 4 

b 2 5 15.5714 24 8.4286 2  3  5 4 

c 2 5 19.25 26.25 7 2  3  5 4 

 
function 3( )y DT  is only valid if DT  is within the range [6.00 - 8.00 hours], the time function 4 ( )y DT  is 
only valid if 𝐷𝐷𝐷𝐷 is within the range [8.00 - 9.00 hours], the time function 5 ( )y DT  is only valid if DT  is 
within the range [9.00 - 15.00 hours], the time function 6 ( )y DT  is only valid if DT  is within the range 
[15.00 - 16.00 hours], the time function 7 ( )y DT  is only valid if DT  is within the range [16.00 - 18.00 hours], 
the time function 8 ( )y DT  is only valid if DT  is within the range [18.00 - 19.00 hours], and the time function 

9 ( )y DT  is only valid if DT  is within the range [19.00 - 24.00 hours]. 
For the above reasons/restrictions, out of the 9 computed DT  (shown in Equation (4)), we can only accept 

the value 9 21.5DT DT= =  hours, with the value ( )9 0.00y DT = , which correspond to the 1.0TDF = . We 
can update our information as below: 

( ) ( ( ))  distance jnode distance S end link cost TDF= + × , 

{ }2.5 0distance Inf Inf Inf= , { }2 0 0 0 0predecesor = . 

For outgoing link 2-3, we have 24.00AT = , and CST  (for link 2 - 3) = 4.5, Equation (3) will give the 9 
computed DT  values (corresponding to the 9 time functions: 1 2 3 9, , , ,y y y y… , shown in Figure 1) as follow-
ing: 

{ }
{ }

1 2 3 4 5 6 7 8 9

19.5 7.6 15 6 19.5 15.8 15 18.9 19.5

DT DT DT DT DT DT DT DT DT

=
                   (5) 

Based on the restrictions imposed on the 9 functions ( )y DT , shown in Figure 1, out of the 9 computed 
DT  (shown in Equation (5)), there were 3 possible solutions for 6 15.8DT DT= = , or 8 18.9DT DT= = , or 

9 19.5DT DT= =  hours. The corresponding values for { } { }6 8 9 0.8182 0.1429 0.00y y y = , and  

{ } { }6 8 9 1.82 1.14 1.00TDF TDF TDF = . Among the 3 possible solutions for DT  (such as 6DT DT= , or 

8DT DT= , or 9DT DT= ), we select the largest 9 19.5DT DT= =  hours, since this choice will correspond to 
the smallest 9 1.00TDF TDF= = . In other words, our selected choice will give the smallest 𝐷𝐷𝐷𝐷𝑇𝑇which will give 
the smallest travel cost for this particular link. We can update our information as below: 

19.5,DT =  ( ) ( )( )  distance jnode distance S end link cost TDF= + × ,  

{ }2.5 0 4.5distance Inf Inf= , { }2 0 2 0 0predecesor = . 

The next node to explore is node 1 (i.e., 1next = ), so the second iteration can start by searching toward all 
the outgoing links from node 1 in which the arrival time at node 1 is 21.5 ( 21.5AT = ), and { }2 1S = . The 
algorithm will stop when the next node to explore is the destination node. 

Eventually, the AT  at node 5 for all cases a, b, and c of the problem were found, and presented in Table 1. 
Thus, for certain dynamic networks, there may be more than one solution for the departure time at node i (say 

0 
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5i = ) which still give the same specified arrival time at node j (say 2j = ). By using the suggested criterion to 
select the value of DT , the resulted path will also often corresponds to the SP as well. 

4. Numerical Result for Large Scale Real-Life Networks 
In this section, 12 large-scale examples based on real-life networks data have been solved using the regular for-
ward Dijkstra, and backward Dijkstra algorithms. The regular forward Dijkstra algorithm is employed to find the 
arrival time at the destination node j, based on the known departure time at the source node i. The backward 
Dijkstra algorithm is employed to find the departure time at the source node𝑖𝑖, based on the known (specified) 
arrival time at the destination node j. For cases where multiple solutions for DT  do exist, we will select the 
DT  which gives the smallest value of min( )y DT y= , which corresponds to the smallest value for minTDF TDF= . 
This is the criterion which has been used in Section 3.  

For convenient purposes, the arrival time at the destination node j of the Forward Dijkstra algorithm will be 
used as the departure time for the destination j of the Backward Dijkstra algorithm, for the same network with 
reversed links’ directions. All numerical results are compiled and tabulated in Table 2. 

For the problem of finding the departure time at the source node(s) based on the specified/given arrival time 
at the destination node(s), and based on the numerical results presented in Table 2, the following major observa-
tions can be made: 

a) Unique solution has been obtained in all examples except example 2 and 11. 
b) Multiple (or non-unique) solutions have been found in examples 2, and 11. For these examples, different 

departure time at the source node can lead to the same specified arrival time at the destination node. In example 
2, if the driver departs at the source node 25 at either 6.00 hours, or at 7.236 hours, he/she still arrives at the des-
tination node 110 at the specified time 21.7647 hours. Of course, if the driver departs at the source node 25 at 
7.9032 hours, then not only he will arrive at his destination node on time (at the specified time 21.7647 hours), 
but this selected path will also be the shortest path. 

 
Table 2. Comparisons of forward and backward Dijkstra results for real networks.  

Example Network 
Name 

Source 
w.r.t.  

Forward 
Search 

Destination 
w.r.t.  

Forward Search 

Forward Search Backward Search (Ymin) 

Departure  
Time 

Arrival 
Time Cost Back Calculated  

Departure Time Cost 

1 Winnipeg 5 100 6 16.494 10.494 6 10.494 

2 Winnipeg 25 110 6 21.764 15.764 7.236 14.528 

2 Winnipeg 25 110 7.236 21.764 14.528   
3 Barcelona 5 400 6 10.587 4.5876 6.0002 4.587 

4 Barcelona 15 400 5 11.954 6.954 5 6.954 

5 Austin 56 1800 1 22.855 21.855 1 21.855 

6 Austin 156 1500 6 18.735 12.735 6.0007 12.734 

7 Austin 5 6100 23 53.041 30.041 23 30.041 

8 Austin 1 7388 6 22.797 16.797 5.9993 16.797 

9 Philadelphia 6 560 1 13.481 12.481 1 12.481 

10 Philadelphia 36 510 7 22.7 15.7 6.9996 15.700 

11 Philadelphia 48 1415 1 63.352 62.352 1.5262 61.826 

11 Philadelphia 48 1415 1.526 63.352 61.826   
12 Philadelphia 100 1429 6 57.165 51.165 6.0001 51.165 

13* Winnipeg 25 110 6 25.020 19.020 6 19.020 

14* Philadelphia 48 1415 1 199.32 198.32 1 198.32 
*FIFO Network (example 1 through 12 correspond to Non-FIFO Network). 

0 
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c) In example 11, the driver departs from source node 48 at 1.00 hour (=1:00am), and he/she will arrive at the 
destination node 1415 at 63.3523 hours (=63.3523 − 48 = 15.3523 hours, two days later), based on the Forward 
Dijkstra search. Based on the Backward Dijkstra search, the driver should depart (at the same source node) at 
1.5262 hours (=1:5262 am hours), if he/she wishes to arrive at the same destination node at the specified time 
63.3523 hours. 

5. Conclusions 
In this paper, the well-known polynomial LCA, and the Regular Forward Dijkstra algorithms have been conve-
niently applied to dynamic (time dependent) networks, through the concept of piece-wise linear function and 
Time Delay Factor ( TDF ) which is a function of the departure time ( DT ) at node “i” for a typical link i j− .  

The practical problems of finding the departure time at the source node(s) based on the specified/given arrival 
time at the destination node(s) can be efficiently solved by using the proposed Backward Dijkstra algorithm, 
which basically employs the Forward Dijkstra algorithm on the same dynamic network with all links’ direction 
are reversed. Extensive numerical results based on a small-scale (academic) dynamic network (with 5 nodes, and 
9 links), as well as using 12 real-life (large-scale) dynamic networks, seem to indicate that: 

i) The proposed Backward Dijkstra (time dependent) algorithms always find the correct departure time at the 
source node “i” that will guarantee to arrive at the destination node “j” at the specified/given arrival time. 

ii) For FIFO dynamic networks, the computed paths correspond to the shortest paths, and the solution is 
unique. 

iii) For certain NON-FIFO dynamic networks, the computed paths often correspond to the shortest paths, al-
though SP is not a requirement for the type of time-dependent problems considered in this work. 

iv) Depending on the particular NON-FIFO dynamic network, the computed solution(s) might be unique or 
non-unique where multiple solutions do exist. 
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