

27

3.1.3 Credibility

The next step in the ELECTRE III process is the computation of the credibility matrix (S)

given the concordance and discordance indices. If there are no veto thresholds specified, then

𝑆(𝑎, 𝑏) = 𝐶(𝑎, 𝑏), otherwise Equation 3-8 is used to determine the level of credibility in the

assertion that alternative a is better than alternative b.

The degree of credibility is equal to the concordance reduced by the level of discordance for

each criteria j

𝑆(𝑎, 𝑏) = 𝐶(𝑎, 𝑏) ∏
1 − 𝐷𝑗(𝑎, 𝑏)

1 − 𝐶(𝑎, 𝑏)
𝑗 ∈ Ψ(𝑎,𝑏)

Where Ψ(a, b) is the set of criteria for which 𝐷𝑗(𝑎, 𝑏) > 𝑐𝑗(𝑎, 𝑏)

Eq. 3-8. Degree of credibility calculation between a and b17

3.1.4 Distillation

After calculation of the credibility between alternative a and alternative b, the

credibility’s are ranked in two separate methods (or pre-orders). The first is called descending

distillation which ranks the alternatives best to worst. The second, ascending distillation, ranks

the alternatives worst to best. The combined results of the two distillations gives a final ranking

of alternatives. The descending and ascending distillations use the following five steps17:

Step 1: Set λ0 equal to the maximum value of S(a, b) in the credibility matrix A as in

Equation 3-9.

𝜆0 = max
𝑎,𝑏 ∈𝐴

𝑆(𝑎, 𝑏)

Eq. 3-9. Maximum lambda value from the credibility matrix17

29

 The distillation procedures are complex but provide results for partial ranking. The set of

descending distillates is formed by using progressively less restrictive rules on incrementally

smaller subsets of alternatives. This allows for the assertion alternative a outranks alternative b

to be truer for each progressive distillation run. After the first iteration, each subsequent iteration

produces the best ranking alternative(s) from the remaining subset. The distillation procedures

continue until all alternatives have either been exhausted or cannot be ranked separately from

each other. The results from the two distillation procedures are combined which give a final

picture ranking all alternatives16.

 The final ranking of alternatives is achieved through four possible cases16:

(1) Alternative a is higher ranked than alternative b in both distillations or alternative a is

better than alternative b in one distillation and has the same ranking in the other

distillation; a is better than b: a P+ b

(2) Alternative a is higher ranked than alternative b in one distillation but alternative b is

higher ranked than alternative a in the other distillation; a and b are incomparable: a

R b

(3) Alternative a has the same ranking as alternative b in both distillations; a and b are

indifferent: a I b

(4) Alternative a is ranked lower than alternative b in both distillations or alternative a is

lower than alternative b in one distillation and has the same rank in the other

distillation; a is less preferable than b: a P- b

The total sum of P+ values for each alternative determines its rank. If alternatives are tied,

they are assigned the same rank. A simple distillation example is shown in Figures 3-4 and 3-5.

33

the number of alternatives and criteria that are being evaluated. The class was written to utilize

up to eight threads at a time in order to reduce computation time. Table 4-1 lists the worst case

complexities for the main ELECTRE III calculations performed by the Compute class.

Function Complexity

Concordance calculation O(n1) * O(n2) * (2 * O(n1))

Discordance calculation O(n1) * O(n2) * O(n1)

Credibility calculation O(n1) * O(n1)

Distillation calculation; runs twice for

ascending then for descending

O(n2) * (2 * O(n1) + O(n1)
2 + O(n2) + O(n2)

2
 +

O(n2))

Ranking calculation 2 * O(n2) + O(n1)
2 + [2 * O(n2) + O(n1)

2 +

O(n2)
2] + O(n2)

2 + 3 * O(n2)
2

Where:

n1: number of criteria

n2: number of alternatives

Table 4-1. Complexity of ELECTRE III functions in the WOP

 From the complexities of the functions for the ELECTRE III procedure, it is easily seen

that, for large numbers of alternatives and criteria, the concordance and discordance calculations

are about equal but the distillations functions are the most time consuming to finish. The

bracketed part within the ranking calculation complexity is threaded with up to eight threads so

that the ranking time can be reduced. Sample total cycle calculation for various numbers of

alternatives and criteria are shown in Table 4-2.

n1 n2 Discordance Concordance Distillation (x2) Ranking Total

4 1,000 16k 32k ~2b ~5m ~4.005b

4 10,000 160k 320k ~2t ~500m ~4.0005t

4 100,000 1.6m 3.2m ~2q ~50b ~4.0005q

8 1,000 64k 128k ~2b ~5m ~4.005b

8 100,00 640k 1.28m ~2t ~500m ~4.0005t

8 100,000 6.4m 12.8m ~2q ~50b ~4.0005q

Table 4-2. Sample complexity results with varying numbers of criteria and alternatives

 It is interesting that, while the number of alternatives and criteria has a noticeable impact

on the number of cycles that the discordance and concordance calculations take, the number of

34

criteria has a negligible impact on the distillation and ranking calculations where the number of

criteria far outweighs it.

4.2 Possible solution files

 The possible solution (or alternative) class files represents the collection of units,

capabilities used, overages, underages, and distances to the target location and to the starting

location for a mission. The classes that are required for solution information are:

possibleSolution, matrix, gcPoint, unit, and unit_identifier. Figure 4-2 shows the diagram of how

these classes are dependent on each other.

35

Fig. 4-2. Possible solution class dependencies

 The possible solution for a given mission is a container for all units used for the solution,

matrices for the capabilities not met and preclusions used for each unit, and information needed

for ranking of solutions: underages, overages, total distance of all units to the starting location,

total distance of all units to the target location, and number of units. The capabilities left and unit

preclusion matrices are row vectors of the matrix class type. The matrix class provides basic

matrix manipulation functions. The possible solution class also includes a collection of units of

36

the unit class. The unit class contains the information about a particular unit including: distance

(nm) to avoid land masses, a row vector of capabilities, the current location of the unit (gcPoint

class type), a collection of one or more missions that the unit may be assigned to, the preclusion

matrix for the type of unit, the maximum speed (nm) that the unit can go, and a collection of

waypoints that the unit has and will visit on each mission.

4.3 Mission source files

 The overall mission that is required contains one class called mission. The mission

controls everything to do with unit movement and position, possible solution generation,

capabilities needed versus met, all waypoints that will be followed by the units attached to the

mission, and the total time elapsed when running the mission. Figure 4-3 shows the dependencies

for the mission class.

37

Fig. 4-3. Mission class dependencies

 The mission class contains the bulk of the logic in computing possible mission solutions

given a variety of factors: mission prerequisites, mission starting/target areas, exclusion areas,

and mission requirements. Missions can be prerequisites for other missions. If mission A is a

prerequisite for mission B, then mission A must be completed before mission B can start. This

allows for multiple mission scenarios to be chained together in a structured way where the

missions can be run systematically, if needed, instead of having to run in parallel. When creating

a new mission, the user will need to follow these steps:

38

1. Choose the set of imported waypoints for the mission’s units to follow or create a

new set.

2. Build a set of requirements for the mission. The requirements consist of a row vector

of all available mission types (AD, ASW, INTEL, MCM, MINE, MIO, NSFS, S,

SUBINTEL, SUW, and TBMD) in which the total of the row must be greater than

zero.

3. Choose units for the mission manually or let the WOP automatically find potential

solutions.

4. Choose to modify the default exclusionary start radius for units. The exclusionary

start radius automatically excludes units that are 100nm (default) from the starting

location to reduce the time for complete mission solution generation.

5. Choose whether or not to include any units that may have already been assigned to

currently running or planned missions. Multiple missions can be created and executed

simultaneously depending on the user’s requirements.

6. After mission solutions have been exhaustively created, the user must determine

whether to sort possible solutions manually or through the ELECTRE III method.

7. Once possible solutions are sorted, the remaining choices for the user are: whether or

not to change any unit starting or ending positions, whether or not to add stoppage

time for any unit(s) at any of the scheduled waypoints for the mission, and whether or

not to set any path exclusions for the mission.

Based on the inputs from the user, the mission class will find all combinations of units

that can satisfy the mission requirements. The pseudocode for mission solution generation can be

followed in Table 4-3.

39

allUnits = allUnits minus any that are already used (depending on user preference)

allUnits = allUnits minus any that cannot at least partially reduce the requirements based on

the unit’s capabilities

first loop:

loop through allUnits:

 if unit can reduce the mission requirements then

 create a possible solution with the unit

 if unit is within exclusion radius or exclusion radius is ignored then

 add possible solution to solution list

 else

 add possible solution to the extra solutions list

 end if

 end if

end loop

if there are no possible solutions and there are extra solutions then

 double the exclusionary radius

 go to first loop

end if

if there are no possible solutions and there are no extra solutions then

 end solution generation because there is no combination of units that will work

end if

start expansion routine:

 loop through all possible solutions

 loop through each possible unit for solution

 loop through each preclusion for this unit

 if preclusion is not used and preclusion can reduce mission requirements then

 create a solution with current unit and this preclusion

 add solution to the list of total solutions

 end if

 end loop

 end loop

 end loop

end routine

loop through all possible solutions

 loop through all possible units

 loop through all preclusions for this unit

 if unit with this preclusion is not already in solution

 if solution still has remaining requirements then

40

 create a copy of solution

 add unit to solution copy with this preclusion

 end if

 end if

 end loop

 end loop

end loop

reduce equivalents routine:

 loop through all possible solutions[1]

 loop through all possible solutions[2]

 if possible solution[1] is not equal to possible solution[2] then

 if preclusion matrix[1] is equal to preclusion matrix[2] then

 add possible solution[2] to equivalent solutions list

 remove possible solution[2] from possible solutions

 end if

 end if

 end loop

 end loop

end routine

reduce duplicates routine:

 loop through all possible solutions[1]

 loop through all possible solutions[2]

 if possible solution[1] is not equal to possible solution[2] then

 if possible solution[1] is equal to possible solution[2] then

 remove possible solution[2] from all solutions

 end if

 end if

 end loop

 end loop

end routine

loop through all possible solutions

 if there are no solutions that full satisfy the mission requirements and there are extra units

then

 add extra units to list of all possible units

 start back at expansion routine

 else

 if there are any equivalent solutions then

 loop through all possible solutions

 loop through all equivalent solutions

 copy possible solution

 swap copy main preclusion with equivalent

 add copy to all possible solutions

 end loop

41

 end loop

 end if

 end if

end loop

Table 4-3. Mission solution generation pseudocode

 After the WOP has generated all possible solutions, the user will have to execute Steps 6

and 7 to finish the creation of the mission. During Step 6 of mission creation, the user has the

choice to choose either a manual method or ELECTRE III to sort missions from best to worst. If

the manual method is chosen, the user will be able to sort by one or more of the following

methods and whether to prefer to minimize or maximize the sort criteria: underages, overages,

distance to start location, distance to target location, or number of units. The ELECTRE III

method provides for a much more robust way to sort and rank possible solutions but

understanding the threshold values required can be a challenge in itself.

 After units are chosen for a mission, the mission class allows the user to execute a

mission for a determined set of hours (or until the mission is complete). The execution of a

mission is performed by navigating all units for the mission through the waypoints while

navigating around land masses (or exclusion points) taking into account any stoppage points

along the way. Examples of how the WOP navigates units through a set of waypoints that were

generated for a mission with a distance of 100nm set to avoid land and a starting location of

32.6896, -117.232 (latitude, longitude) and a target location of -11.3212, 136.199 (latitude,

longitude) can be seen in Figures 4-4, 4-5, and 4-6.

42

Fig. 4-4. Overall sample mission waypoint set

Fig. 4-5. Sample mission waypoints avoiding Marshall Islands at 100nm

43

Fig. 4-6. Sample mission waypoints avoiding Bismarck Sea islands

4.4 Predicted homeport source files

 The predictedHomeport class contains, per mission, each of the potential new homeports

for that mission, the bearing and distance from the mission starting point to the new homeport,

and the waypoint of the new homeport. While the actual homeport prediction functions are

contained in the mission class, the predictedHomeport container provides a convenient way to

keep track of these homeports. Figure 4-7 shows the simple layout of the predictedHomeport

class.

Fig. 4-7. Predicted homeport class dependencies

44

 Even though the code for homeport prediction is within the mission class, the explanation

of how the homeport function runs will be explained in this section. In Section 2.2 a general

overview of how the predicted homeport algorithm works, as well as a sample graphic (Figure 2-

3) of how the algorithm could generate potential homeport solutions. Table 4-4 shows the

pseudocode of how homeports are predicted.

bearing = 0

nextPoint = mission target area

targetCountry = closest country to target area

loop while bearing is less than or equal to 360

 nextPoint = find next point from homeport with bearing, and distance of 50 (using Eq. 2-2)

 closestCountry = closest country to nextPoint

 closestCountryDistance = closest country distance to nextPoint

 if closestCountryDistance is within 25nm then

 if closestCountry is not targetCountry then

 add this country to the potential homeport list

 increase bearing by 3 degrees

 set nextPoint back to mission target area

 end if

 end if

end loop

Table 4-4. Potential homeport discovery pseudocode

 The potential homeport code will only work if the user imports a list of countries with at

least one border on an ocean in the KML v2.2 format. Homeport generation can be as accurate as

the level of detail of the KML file as the homeport algorithm uses latitude and longitude border

points for countries to calculate the distance between points. This algorithm assumes landlocked

countries are not imported so no checking is performed when a potential country is found.

Similar to Figure 2-3, Figure 4-8 shows a more accurate representation of what countries the

homeport algorithm would expect when looking for potential homeports.

45

Fig. 4-8. Excludable countries for potential homeport generation

 The shaded countries in Figure 4-8 are countries that are landlocked and should not be

used for homeport generation.

4.5 Timeline source files

 The timeline class controls running of all missions and holds the current step of the

timeline. When the timeline is started by the user, all missions are automatically started if

possible (except those with prerequisites). A timeline tick is represented as an hour of time

(unless specified otherwise by the user). On each tick of the timeline, any mission(s) that might

have prerequisites will be checked to see if those prerequisites are completed, and, any missions

with completed prerequisites will be started. Figure 4-9 shows how the timeline class is designed

with its dependencies.

46

Fig. 4-9. Timeline class dependencies

 It should be noted that, any time a mission is modified, the entire timeline will be reset as

the timeline’s missions are replaced upon any changes.

47

CHAPTER 5

RESULTS AND CONCLUSIONS

 The WOP proves to be a useful tool in helping plan and execute Naval missions. There

are many features which can be improved upon or added (see Chapter 6), but the current feature

set that the WOP provides is a good baseline in acting as a toolkit for the U.S. Navy to provide a

solution through steps 1-4 of the of the NPP (see Figure 1-1). This chapter provides the inputs,

outputs, and an analysis of each of the major features of the WOP.

5.1 Midpoint calculation

 The calculation of midpoints (latitude and longitude coordinates) between a start and an

end point is crucial to the execution of a mission, the calculation of distances, for each unit, to

homeports, target mission areas, and total distance travelled by each unit during a mission. The

calculation of midpoints requires a start point, number of midpoints to generate, and an end

point. This functionality, handled through the waypoints class, can be seen to work with the

following examples. Given the starting location of Naval Station Norfolk, Virginia with the

latitude of 36.9627 and longitude of -76.3307 and ending location of Cape Town, South Africa

with the latitude of -33.9034 and longitude of 18.4375, Tables 5-1 and 5-2 show two examples of

generated waypoints with varying numbers of midpoints.

* 36.9627 -76.3307  Start * -33.9034 18.4375  End

1 31.9447 -65.4481 6 -1.31653 -24.0752

2 26.1004 -55.7774 7 -8.43429 -16.6378

3 19.6754 -47.0703 8 -15.4069 -8.93254

4 12.8643 -39.0544 9 -22.0957 -0.684357

5 5.82324 -31.4701 10 -28.3321 9.34598

Table 5-1. Calculated 10 midpoints between Norfolk, VA and Cape Town, South Africa

