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ABSTRACT 
 

MULTI-MODE RESOURCE CONSTRAINED PROJECT SCHEDULING USING 
DIFFERENTIAL EVOLUTION ALGORITHM  

 
Faisal Manour Altarazi 

Old Dominion University, 2017 
Director: Dr. Han Bao 

 
 
 

Project scheduling is a tool that manages the work and resources associated with 

delivering a project on time. Project scheduling is important to organize, keep track of the 

finished and in-progress tasks and manage the quality of work delivered. However, many 

problems arise during project scheduling. Minimizing project duration is the primary 

objective. Project cost is also a critical matter, but there will always be a trade off between 

project time and cost (Ghoddousiet et al., 2013), so scheduling activities can be challenging 

due to precedence activities, resources, and execution modes. Schedule reduction is heavily 

dependent on the availability of resources (Zhuo et al., 2013). 

There have been several methods used to solve the project scheduling problem. This 

dissertation will focus on finding the optimal solution with minimum makespan at lowest 

possible cost. Schedules should help manage the project and not give a general estimate of 

the project duration. It is important to have realistic time estimates and resources to give 

accurate schedules. Generally, project scheduling problems are challenging from a 

computational point of view (Brucker et al., 1999). 

This dissertation applies the differential evolution algorithm (DEA) to multi mode, 

multi resource constrained project scheduling problems. DEA was applied to a common 14-

task network through different scenarios, which includes Multi Mode Single Non Renewable 

Resource Constrained Project Scheduling Problem (MMSNR) and Multi Mode Multiple Non 

Renewable Resource Constrained Project Scheduling Problem (MMMNR). DEA was also 

applied when each scenario was faced with a weekly constraintand when cost and time 



contingencies such as budget drops or change in expected project completion times interfere 

with the initial project scheduling plan. A benchmark problem was also presented to compare 

the DEA results with other optimization techniques such as a genetic algorithm (GA), a 

particle swarm optimization (PSO) and ant colony optimization (ACO). The results indicated 

that our DEA performs at least as good as these techniques as far as the project time is 

concerned and outperforms them in computational times and success rates. Finally, a pareto 

frontier was investigated,  resulting in optimal solutions for a multi objective problem 

focusing on the tradeoff of the constrained set of parameters. 
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CHAPTER I 

INTRODUCTION 

Projects are unique in nature. Time, cost and resources are normally considered when 

scheduling a traditional project. Project scheduling problems typically specify the 

minimization of project duration as the primary objective. However, cost is also a critical 

matter. Minimizing project time and cost is important in projects but it will have an influence 

on the project quality and risk (Zhou et al., 2013), and will always be a trade off between 

project time and cost (Ghoddousi et al., 2013). Scheduling activities can be challenging due 

to precedence activities, resources, and execution modes. Schedule reduction is heavily 

dependent on the availability of resources (Zhuo et al., 2013). This leads to the resource-

constrained project scheduling problem (RCPSP) that was first introduced by Kelly in 1963. 

RCPSP concentrates scheduling activities over time and resources simultaneously based on 

the precedence that optimizes the scheduling objective, minimizing the project makespan.  

Resources may be renewable or non-renewable. Renewable resources are used up in 

each period but reappear again at the beginning of the next period or when the task or tasks, 

which use those resources, are complete. Examples of renewable resources include 

manpower and many types of equipment and machines. Non-renewable resources are 

depleted as they are used and are available on a total project basis. Examples of non-

renewable resources include capital, energy and raw materials. Any task may require a single 

resource or a set of resources, and the resource usage may vary over the duration of the task. 

A task may also have multiple execution modes (Sprecher, 1994).  

The extension of RCPSP is the multi-mode resource constrained project scheduling 

problems (MRCPSP) which are more common in the real world where each activity is 

executed in one of several modes, “M1 (regular), M2 (fast), M3 (extreme)”, representing a 

combination of resources and durations. It is a challenging problem, and several techniques 
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have been proposed to solve this problem. MRCPSP are considered combinatorial problems, 

the optimum solution of which can be theoretically determined through finite steps (Mori & 

Tseng, 1997). 

RCPSP and MRCPSP assume that once an activity starts, it will be executed until its 

completion (Peteghem & Vanhoucke, 2010). However, in resource-constrained project 

scheduling problems, the tasks have resource requirements and the resources are limited. In 

multi-mode resource-constrained project scheduling problems, each task may be executed in 

more than one mode, and each mode may have different resource requirements.  

Problems need to be explicitly formulated (i.e. the objective function and constraints) 

(Zhuo et al., 2013). There have been several methods that were used to solve the project 

scheduling problem. This dissertation will focus on finding the optimal solution with 

minimum makespan at lowest possible cost. In addition, it is attempting to determine a 

contingency plan when a project faces a  customer’s request for a new delivery time and/or a 

change in budget constraints. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Project Scheduling 

Project scheduling problems are focused on finding the feasible optimal solution by 

investigating different execution modes with minimum makespan. The program evaluation 

and review technique (PERT) and critical path method (CPM) were widely used methods for 

project planning and scheduling (Lancaster & Ozbayrak, 2007). They were developed in the 

late 1950s (Kelly & Walker, 1959). Activities on the critical path are considered critical 

activities. CPM can determine the shortest possible time to complete the project (Zhou et al., 

2013) by using the estimated task durations without considering probabilities (Lewis, 2011). 

It takes into account the time and determines critical activities to minimize project makespan, 

but resource availability is not considered, and an activity can start when all predecessor 

activities are completed. This is impractical because in a real project, resource availability 

and allocation will affect the entire project scheduling. The effect of resource constraint on 

project duration is very important (Chen & Zhou, 2013). To overcome CPM limitations, 

several techniques and optimizations have been proposed in project scheduling (Ghoddousi et 

al., 2013). 

Usually a schedule is developed under the assumption of unlimited resources (Lewis, 

2011). In reality real constraints such as those due to limited resources force the schedule to 

be modified before becoming a practical one. However, schedules should help to manage the 

project and not give a general estimate of the project duration. It is important to have realistic 

time estimates and resources to give accurate schedules. Generally, project scheduling 

problems are challenging from a computational point of view (Brucker et al., 1999).  
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2.2 Fundamentals of Project Scheduling 

Over the last 4 decades, many books have appeared that focus on sequencing and 

scheduling; here is a brief review of books on sequencing and scheduling: 

• Muth & Thompson (1963): This book contains a collection of papers focusing on 

computational aspects of scheduling. 

• Conway, Maxwell & Miller (1967): This book deals with some of the stochastic aspects 

and priority queues. 

•  Baker (1974): This source gives an excellent overview of the many aspects of 

deterministic scheduling. This book does not deal with computational complexity issues 

since it appeared just before research in computational complexity started to become 

popular. 

• Coffman (1976): This book is a compendium of papers on deterministic scheduling and 

covering computational complexity. 

• French (1982): This covers most of the techniques that are used in deterministic 

scheduling techniques. 

•  Dauzere-Peres & Lasserre (1994): This source focuses primarily on job shop 

scheduling. 

• Brucker (1995): This book presents a very detailed algorithmic analysis of many 

deterministic scheduling. 

• Pinedo & Chao (1999): This source is more application oriented and describes a number 

of different scheduling models for problems arising in manufacturing as well as services. 

• Neumann, Schwindt & Zimmermann (2002): This book covers basic concepts on 

project scheduling, resource constrained project scheduling with minimizing project 

duration and non-regular objectives. 
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• Sule (2008): This book provides a broad outlook on optimization and planning from the 

initial stages in the area of industrial scheduling and sequencing. 

• Lewis (2010): This book presents real-world examples and provides applications-oriented 

understanding on project planning, scheduling and control. 

• Wilson (2014): This source presents principles and techniques of scheduling and cost 

control. It focuses on the specific principles, techniques, and best-practice methodologies 

of scheduling and cost control. 

 

2.3 Multi-Mode Multi Resource Constrained Project Scheduling Problems 

Multi-mode multi resource constrained project scheduling problems (MMRCPSP) are 

more common in the real world. Each activity can be executed in one of a set of modes. Once 

the activity starts the selected mode cannot be changed. The objective is to find a minimal 

makespan schedule that meets the constraints imposed by the precedence relations and by the 

limited resources available (Brucker et al., 1999). 

Several approaches have been proposed to solve the MMRCPSP such as the branch 

and bound proposed by Bruker et al. (1998) and Sprecher and Drexl (1998). However, the 

branch and bound is not able to solve large realistic projects since they cannot find the 

optimal solution in reasonable computation time (Peteghem & Vanhoucke, 2010).  

Integer Programming (IP)/ Linear programming (LP) is a mathematical method for 

solving the optimization problem with linear objective functions subject to linear equality and 

inequality constraints. Mathematical methods for scheduling have received a considerable 

amount of attention due to their innate efficiency and accuracy. A disadvantage of this 

method is that the computational burden may grow tremendously as the problem size 

increases. In addition, this method has a single focus (leveling the resources); thus, the 

maximization of production rates is not considered (Zhou et al., 2013).  
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Heuristic methods are non-computer approaches that require less computational effort 

than mathematical methods. Traditional heuristic methods can only optimize one objective, 

and a global optimum is not guaranteed. The advantage of heuristic methods is their 

simplicity. However, most heuristic methods are problem dependent, which makes it difficult 

to apply them to other projects equivalently (Zhou et al., 2013). 

Metaheuristic methods are used for solving combinatorial optimization problems by 

mimicking certain natural processes. Bouleiman and Lecocq (2003) and Józefowska et al. 

(2001) used the simulated annealing (SA) approach to solve MRCPSP. Jarboui et al. (2008) 

presented the particle swarm optimization (PSO). Genetic algorithm (GA) and ant colony 

optimization (ACO) are also methods to ensure optimal solutions (Zhou et al., 2013). 

Genetic algorithms introduced by Holland (1975) use techniques and procedures 

inspired by the biological theory of evolution to solve complex optimization problems. Mori 

and Tseng (1997) proposed a genetic algorithm for MMRCPSP. Hartmann (2001) and 

Alcaraz et al. (2003) worked on a genetic algorithm for solving MMRCPSP. The genetic 

algorithm differs from the other meta-heuristic techniques (such as simulated annealing or 

tabu search) by producing a population of solutions rather than a unique current solution 

(Lancaster & Ozbayrak, 2007). 

Evolutionary algorithms have been developed based on a form of meta-heuristic 

techniques especially by genetic algorithms. Evolutionary algorithms have shown to be well 

suited for complex problems. Project scheduling problems are distinctly complex and would 

benefit from evolutionary techniques for finding optimal solutions or near optimal solutions 

(Lancaster & Ozbayrak, 2007). One of the large algorithms developed in the domain of 

evolution  was differential evolution (DE) introduced by Storn and Price in 1997. Because 

this dissertation relies extensively on the application of this method to solving project 

scheduling problems, it will be discussed at length later. 
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2.4 Common Software in Project Scheduling 

Currently there are many commercially available software packages used for project 

scheduling. A listing of these software is provided below.  

Microsoft Project: Is a project management software program developed and sold by 

Microsoft. It is very easy to learn, designed to assist a project manager in developing a plan, 

assigning resources to tasks, tracking progress, managing the budget and analyzing 

workloads.  

Add ons to MS Project 

• Concerto: Is critical chain project management software that requires a 

realization-consulting contract on top of the software costs (Concerto Integrated 

Software Solutions, 2016). 

• CC- (M) Pulse: Uses the concept of critical chain methodology to create project 

plans. It is open source software and download is free (CC- (M) Pulse, 2016). 

• Pro-Chain: Pro-Chain Project Management Solutions enhances the office software 

MS Project. There is an enterprise version, which acts as a database engine for the 

data (ProChain Solutions Inc, 2016). 

• PD-Trak: PD-Trak Solution Software is an add-on for MS Project. User interface 

appears like someone wrote it in MS Access based on the website’s screen shots 

(PD-Trak, 2016).  

Primavera: Is a powerful and easy to use solution for planning and executing projects. It can 

plan, schedule and control complex projects, allocates best resources and tracks progress 

(Oracle’s Primavera P6 Professional Project Management, 2016).  

PS8 (used by Newport News Shipyard): Is a robust yet scalable project management tool. 

The program enables you to save time with its powerful resource leveling that you can use to 

keep your task plans viable given your resource constraints. Its leveling algorithm supports 
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single- and multi-project leveling using time-phased, resource-availability profiles (Project 

Management Software, 2016). 

CC based software 

• Agile CC from AdeptTracker: Is single project/ multi project CCPM software. The 

user can backward schedule a plan, identify the critical chain, size and place both the 

project and feeding buffer, size and place capacity buffer (AgileCC for AdeptTracker, 

2008).  

Corporate Systems 

• Siemen’s PLM: Product lifecycle management (PLM) is an information management 

system that can integrate data, processes, business systems and, ultimately, people in 

an extended enterprise. PLM software allows you to manage this information 

throughout the entire lifecycle of a product efficiently and cost-effectively, from 

ideation, design and manufacture, through service and disposal (Siemens PLM 

Software, 2016). 

• SAP: The original SAP idea was to provide customers with the ability to interact with 

a common corporate database for a comprehensive range of applications. It has the 

capability to manage financial, asset, and cost accounting, production operations and 

materials, personnel, plants, and archived documents (Payne et al., 2014). 
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CHAPTER 3 

DIFFERENTIAL EVOLUTION ALGORITHM WITH MULTI-MODE MULTI 

RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM 

 

3.1 Principles of DEA 

Some problems are difficult if not impossible to solve. Differential Evolution (DE) 

can be used to find an approximate solution to such problems. It is a well-known scheme for 

global optimization and is a powerful heuristic method for solving multi-objective 

optimization problems. Based on the manipulation of random numbers, it is inspired by the 

genetic algorithm.  DE has helped solve many industrial problems over the last ten years. DE 

is based on four main steps: population structure, mutation, crossover and selection.  

Population Structure: The initial population of feasible solutions is randomly generated 

which conforms to their precedence constraints. Each feasible solution is represented by a 

vector of attributes associated with each task involved in the project. For example, one 

attribute may be the task’s sequence. Another attribute may be the task’s  mode of operation.   

Mutation: Two parents from the population are used to create a child, M, using some type of 

numeric function. 

Crossover: The idea of the crossover is to create a trial vector from the target vector and the 

mutant vector by crossing them over.  

Selection: It will be performed between the target vector and the trial vector, keeping the 

better individual and discarding the worse one. 

The principles above will be illustrated in the case study given in section 3.2 below. 
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3.2 A Case Study of Multi-Mode Multi Resource Constrained Project Scheduling 

Problem 

Damak et al. (2009) proposed a DE algorithm to solve MMRCPSP. The case study 

shown in Figure 3.1 involves six tasks that can be executed in either of the two modes as 

indicated in Table 3.2. Each sequence of a task is feasible only if it follows the precedence 

rule. The objective is to select the sequence with a makespan as small as possible. A solution 

is represented by two vectors: a position vector, which refers to the position of each task in 

the sequence, and a mode vector, which indicates the corresponding mode of each task. An 

example of a feasible solution is shown in Table 3.1 where the task sequence and related 

mode are shown for each of the 6 tasks in the network. 

 

 

Figure 3.1: Damak et al. Example Network 

 
 

Table 3.1: Representation of a Feasible Solution 

Task 1 2 3 4 5 6 
Task Sequence 1 4 2 5 3 6 
Task Mode 2 1 2 2 1 1 

 

 

Damak et al. explained the differential evolution steps for one generation manually 

and did not present the results. In this dissertation, a new case study will be introduced, and 

the differential evolution algorithm will be used to present the optimal solution through 

different scenarios using Matlab. 

1 3 5 

2 4 6 

Start End 
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Table 3.2: Resource Requirements and Corresponding Durations for Two Modes 

Task 
Mode 1  Mode 2 

Consumption NR/NN Duration  Consumption NR/NN Duration 
1 2/4 3  1/2 4 
2 3/4 4  2/3 6 
3 4/2 2  2/2 3 
4 4/6 2  3/3 3 
5 3/1 1  1/5 3 
6 2/1 4  1/1 6 

Note. From “Differential evolution for solving multi-mode resource-constrained project scheduling 
problems” by N. Damak, B. Jarboui, P. Siarry and T. Loukil, 2009, Journal of Computers & Operation 
Research, 36, p. 2655.  
NR= Renewable Resources 
NN=Non-Renewable Resources 

 
 
3.3 Research Gaps 

 
The case study presented in Damak’s paper is an important demonstration of the 

power of DE in providing an optimum solution for a project involving 6 tasks restricted by 

both renewable and non-renewable resources and by the number of modes available to each 

task. Nevertheless, a number of gaps can be identified as explained below. 

• Multi-Mode Project Scheduling 

Damak et al. presented a case study with only two modes. This research extends the 

application of PSP to more than 2 modes. 

• Multi-Resource Project Scheduling 

Damak et al. presented a case study with only two resources. This research extends the 

application of PSP to more than 2 resources. 

• Impact of Contingency Event 

The most important part of this dissertation is investigating project scheduling with 

weekly constraints and changes in budget and comparing DEA with a benchmark 

problem. In addition, it develops a pareto frontier, which is an important and practical 

tool to test tradeoff between cost and time.   

  



 12 

CHAPTER 4 

APPLICATIONS OF DEA TO VARIOUS SCENARIOS 

 
4.1 General Network for All Scenarios 

The case study shown in Figure 4.1 involves fourteen tasks that can be executed in 

either of the three modes as indicated in Table 4.1. Each sequence of tasks is feasible only if 

it follows the precedence rule. Two vectors represent a solution: a position vector, which 

refers to the position of each task in the sequence, and a mode vector, which indicates the 

corresponding mode of each task. 

 

 
 

Figure 4.1: Case Study Network 
 
 

In the last row of Table 4.1, the total project times and costs are indicated for the 

different modes. For example, if all tasks are performed in Mode 1, the project can be 

finished in 32 time units with a cost of 198. 

The resource (cost) constraint scheduling problem is to find the minimum project time 

such that the total project cost does not exceed a prescribed limit (equivalence is permitted). 

The cost constraint in this example is set to , which is equal to the cost when all 

tasks are executed in Mode 2. 

236=rN
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Table 4.1: Resource requirements and corresponding durations for three modes 
 

Task 
Mode 1 (Regular)  Mode 2 (Fast)  Mode 3 (Extreme) 

Duration R1  Duration R1  Duration R1 

A 8 20  6 24  5 26 
B 5 14  4 16  3 19 
C 4 15  3 18  2 24 
D 8 18  6 22  5 23 
E 4 12  3 15  2 19 
F 5 16  4 18  3 21 
G 6 20  5 22  4 24 
H 6 15  4 20  3 24 
I 7 15  5 19  4 21 
J 5 8  4 9  3 11 
K 5 8  4 9  3 10 
L 7 15  5 19  4 21 
M 6 12  5 13  4 15 
N 4 10  3 12  2 13 

Total 32 198  25 236  20 271 
 
 

According to Storn and Price, DE is based on generating new vectors and selecting 

the vector that survives to the next generation by applying these four steps (Damak et al., 

2009). 

 

Step 1: Population Structure 

The initial population is randomly generated with respect to precedence constraints. In 

this example, a 4-individual population is generated (see Table 4.2). Note that the sequence 

vector contains positions and not the order of execution. For example, in 1C , Task A should 

be executed at the 3rd place, and not the 3rd task executed in the first place. 

We start by selecting randomly four individuals. Three of them will be used in the 

mutation step, and the fourth will be the target vector. In this example 𝐶3, 𝐶4, 𝐶5 are selected 

for mutation, and the target will be . 

 
 
 
 

Tg =C1
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Table 4.2: Initial population 
 

Tasks A B C D E F G H I J K L M N 
 

Sequence/C1  3 1 7 4 5 2 9 11 6 12 8 10 13 14 
Mode/C1  1 2 1 2 3 1 2 1 1 3 3 2 1 1 

 
Sequence/C2  1 2 3 5 4 11 7 8 6 9 13 12 10 14 

Mode/C2  3 2 2 1 3 2 3 2 2 3 1 2 3 2 

 
Sequence/C3  1 5 3 2 7 6 4 9 11 10 13 8 12 14 

Mode/C3  3 1 1 2 3 1 1 2 2 2 1 3 3 3 
 

Sequence/C4  1 2 10 8 5 3 12 9 6 11 7 4 13 14 
Mode/C4  1 3 1 3 2 2 3 2 3 1 2 3 2 3 

 
 

Step 2: Mutation 

Two parents C4  and  C3 −C2  are used to create a child M  by using the following 
equation: 
 
 M =C4 + A ⋅R ⋅ (C3 −C2 )  (1) 
 
A represents a positive number, which controls the evolution rate (should be chosen greater 

than 1). In this example  was chosen. R  is a 2 by 14 matrix having uniformly 

distributed random values between 0 and 1.  

 
Table 4.3: Random Numbers for Sequences and Modes 

 
rand1 seq.  0.23 0.24 0.03 0.14 0.73 0.99 0.16 0.13 0.75 0.43 0.78 0.57 0.24 0.20 
rand1 mode 0.08 0.92 0.82 0.01 0.30 0.55 0.92 0.09 0.94 0.77 0.40 0.24 0.49 0.01 

 

Table 4.3 presents the assumed random numbers for each sequence and mode per task. Using 

Eq. (1), we calculate the mutants for the sequences and modes and the results are combined in 

a mutant vector and shown in Table 4.4.  

For example, the sequence and mode mutant of Task C is: 

𝑀6,7 = 10 + 1.5 ∗ 0.03 ∗ 3 − 3 = 	10 
 

5.1=A
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𝑀6,$ = 1 + 1.5 ∗ 0.82 ∗ 2 − 5 = 	−0.23 
 
 

Table 4.4: Mutant Vector 
 

Sequence/ M  1 3.08 10 7.37 8.28 -4.42 11.28 9.19 11.62 11.64 7 0.58 13.7 14 
Mode/ M 1 1.62 -0.23 3.01 2 1.17 0.24 2 3 -0.15 2 3.36 2 3.01 

 
 

Step 3: Crossover 

The idea of the crossover is to create a trial vector Tr  from the target vector Tg  and 

the mutant vector by crossing them over based on the following procedure: 

 

 
î
í
ì £

=
otherwise,

,,,
,

ji

jrjiji
ji Tg

CrM
Tr  (2) 

 
Equation (2) defines how the i,j component of the trial vector should be calculated 

after crossover for 2,1=i  (sequence/mode) and j = A,….., N (tasks). In case the randomly 

generated jir ,  number is less than the prescribed jrC ,  crossover factor then the mutated 

element is copied into the ( i,j ) element of the trial vector. Otherwise the corresponding 

element of the target vector is used.  

We start this step by repeating the target vector in Table 4.5, then we perform the 

crossover and update the target vector using properties of the mutated individual.  The 

random numbers jir ,  generated are shown in Table 4.6. The crossover factors are assumed to 

be 2.01, =rC  for the sequences and 1.02, =rC  for the modes. The crossed-over trial vector is 

shown in Table 4.7. 

 
Table 4.5: Target Vector 

 
Sequence/ 𝑇D 3 1 7 4 5 2 9 11 6 12 8 10 13 14 
Mode/	𝑇D 1 2 1 2 3 1 2 1 1 3 3 2 1 1 

 
 
 



 16 

Table 4.6: New Random Numbers for Sequences and Modes 
 

r1 sequence  0.32 0.14 0.03 0.97 0.36 0.90 0.24 0.62 0.33 0.27 0.24 0.68 0.62 0.83 
r1 mode 0.23 0.52 0.94 0.05 0.59 0.25 0.82 0.43 0.93 0.03 0.74 0.95 0.06 0.36 

 
 
 

Table 4.7: Trial Vector (not arranged) 
 

Sequence/	𝑇# 3 3.08 10 4 5 2 9 11 6 12 8 10 13 14 
Mode/ 𝑇# 1 2 1 3.01 3 1 2 1 1 -0.15 3 2 2 1 

 
 

Finally, the trial vector will be arranged. First, the sequence vector is manipulated 

using the precedence relationship and ascending values (this one is the hardest part). 

Secondly, the mode vector is updated. 

We start with the latter because it is easier. The elements of the mode vector are 

rounded down to the nearest integer. Exceptionally, values less than 1 are adjusted to 1, and 

the values that exceed the maximal number of modes are converted to 3. Thus, 

 
22
115.0
301.3

®
®-
®

 

 
Next, the new sequence has to be created. After the Start node, Task A and Task B 

compete for execution (see network graph). Since Task A has 3 and Task B has a value of 

3.08, Task A gets the first position (3 < 3.08). 

Next, the successors of Task A (= Task C and Task D) and the remaning Task B 

compete for second place. Their values respectively are: 10, 4, 3.08. Thus, Task B wins (3.08 

< 4 < 10). 

Next, the successors of Task B (= Task E and Task F) and the remaning Task C, Task 

D compete for third place. Their values respectively are: 5, 2, 10, 4. Thus, Task F wins (2 < 4 

< 5 < 10). 

Next, the successors of Task F (= Task K and Task L) and the remaning Task C, Task 

D, Task E compete for fourth place. Their values respectively are: 8, 10, 10, 4, 5. Thus, Task 



 17 

D wins (4 < 5 < 8 < 10 = 10). Here, a very important rule has to be mentioned: at this point, 

Task K could not have been chosen since it requires Task I to be finished. It can be chosen 

only after both Task F and Task I are finished (see network graph). Luckily, we don’t have to 

deal with this since Task K does not have the minimum value. Damak et al. don’t handle this 

kind of problem for two reasons: 1) a computer process can be run after one of its 

predecessor finished but not all and 2) they might not encounter this kind of problem due to 

the network they use 

Next, the successor of Task D (= Task G) and the remaining Task C, Task E, Task K 

(still cannot be chosen), Task L compete for fifth place. Their values respectively are: 9, 10, 

5, 8, 10. Thus, Task E wins. 

Next, the successor of Task E (= Task H and Task I) and the remaining Task C, Task 

K, Task L compete for sixth place. Their values respectively are: 11, 6, 10, 8, 10. Thus, Task 

I wins. After this step Task K can be chosen if it has the minimal value since ALL of its 

predecessors are completed (Task F and Task I). 

These rules have to be followed until we reach the end to get the sequence vector of 

the new solution. The result is shown in Table 4.8. The first six positions that have been 

calculated are highlighted (Task A, Task B, Task F, Task D, Task E, Task I). 

 

Table 4.8: Trial Vector (arranged) 
 

Tasks A B C D E F G H I J K L M N 
 

Sequence/ S 1 2 8 4 5 3 9 11 6 12 7 10 13 14 
Mode/ S 1 2 1 3 3 1 2 1 1 1 3 2 2 1 
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Step 4: Selection 

Selection will be performed between the target vector (Table 4.5) and the trial vector 

(Table 4.8). This is where we keep the better individual and discard the worse one, i.e. the 

new generation will be more evolved. Note the target was ( ) originally the second 

individual  in the population. Thus, this place has to be updated.  

 

𝐶3EFG =
	𝑇𝑟					𝑓 𝑇𝑟 ≤ 𝑓 𝑇𝑔
𝑇𝑔											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                (3) 

 
 

Equation 3 defines how we should select the individual from the current generation to 

create the next, hopefully better, generation. To do this we use the fitness function which is 

the sum of the total makespan for the given individual and a penalty.  

 
 Fitness = 𝐶$%&+ Penalty (4) 
 

Here 𝐶$%& is calculated by solving the network for the modes of the given individual, 

i.e. 𝐶$%& is the length of the critical path. The makespan of Tr and Tg are 

𝑇𝑟$%& = 27 
 

𝑇𝑔$%& = 29 
 

We are seeking the minimum completion time. Thus simply, if the fitness value of the 

target vector Tg is greater than the fitness of the new solution vector Tr, we set the second 

individual of the new population to be Tr, i.e. 𝐶3EFG = 𝑇𝑟	and we keep all the other 

individuals from the previous generation and start all over from Step 1. In the opposite case 

the target vector is kept and no modification occurs to the population. At this point, Tr has 

lower fitness, but we still need to calculate the penalties too. 

The better solution is not necessarily feasible due to the resource constraint, so we need to 

somehow filter them. This is done by the penalty function. Table 4.9 shows the costs of Tr 

and Tg respectively.  

2C
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𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 	𝜕.max [F.\]#-F	6\E.]$F^
[F.\]#-F	_`#F.`\0^

− 1,0                                (5) 
 

 
 

Table 4.9: Costs of Trial and Target Vector 
 

Tasks A B C D E F G H I J K L M N 

 
Sequence/ S 1 2 8 4 5 3 9 11 6 12 7 10 13 14  
Mode/ S 1 2 1 3 3 1 2 1 1 1 3 2 2 1  
Cost/ S 20 16 15 23 19 16 22 15 15 8 10 19 13 10 å221 

 
Sequence/ 𝑇D 3 1 7 4 5 2 9 11 6 12 8 10 13 14  
Mode/ 𝑇D 1 2 1 2 3 1 2 1 1 3 3 2 1 1  
Cost/ 𝑇D 20 16 15 22 19 16 22 15 15 11 10 19 12 10 å222  

 
 

The penalty function has one purpose, namely to indicate if a given mode and 

sequence vector would produce an infeasible solution, i.e. if the threshold levels of the 

resources are violated. Since Evolutionary Algorithms cannot directly handle nonlinear 

constraints of the optimization variables, hence a common approach is to increase the fitness 

value in case of infeasibility by a penalty function (as in Damak’s paper).  

Here, the penalty function is chosen in proportion of the level of infeasibility, i.e. the more 

we violate the resource thresholds the greater penalty we get. Thus, the penalty function in 

our case can be considered.     

)ity"Infeasibil Of Level("×¶=Penalty  
 

If ¶  is increased, the penalty becomes a (death) penalty i.e. it is more likely that the 

given mode and sequence vector will not survive to the next generation. On the other hand, if 

¶  is decreased then it is more likely for an infeasible solution to survive the next generation. 

The trade-off has to be found, since we want to eliminate infeasibility from the population, 

hoping to find the GLOBAL optimal solution; however, we also want some perturbations 

(degenerates, infeasible solutions) to avoid stagnation in a LOCAL optimum.  
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Using 2.35=¶ (chosen 10% higher than max cmax), the penalty functions are: 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦_#= 35.2 * max 33a
34b

− 1,0 = 35.2 * max(-0.0636, 0)= 35.2 * 0 = 0 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦_D= 35.2 * max 333
34b

− 1,0 = 35.2 * max(-0.0593, 0)= 35.2 * 0 = 0 

When the penalty = 0 it means that the solution is feasible. (Clearly, both 221 and 222 costs 

are less than the prescribed limit of 236). Thus, the overall fitness are: 

𝑓 𝑇𝑟 = 27 + 0                𝑓 𝑇𝑔 = 29 + 0 
 

This means that	𝑓 𝑇𝑟 ≤ 𝑓 𝑇𝑔 , i.e. 𝐶3EFG = 𝑇𝑟 

The new generations are therefore shown in Table 4.10. 

 

Table 4.10: Second generation population 
 

Tasks A B C D E F G H I J K L M N 
 

Sequence/C1
new  1 2 8 4 5 3 9 11 6 12 7 10 13 14 

Mode/C1
new  1 2 1 3 3 1 2 1 1 1 3 2 2 1 

 
Sequence/C2

new  9 1 11 10 2 3 12 5 4 8 7 6 13 14 

Mode/C2
new  1 1 1 2 3 1 2 1 1 3 3 2 1 1 

 
Sequence/C3

new  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Mode/C3
new  3 1 1 2 3 1 1 2 2 2 1 3 3 3 

 
Sequence/C4

new
 2 1 6 5 4 3 12 8 7 11 10 9 13 14 

Mode/C4
new

 3 2 2 1 3 2 3 2 2 3 1 2 3 2 
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4.2 Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project 

Scheduling Problem  

The single resource project scheduling problem is a simple optimization problem with 

one resource (R1 or Cost) involved. Using Table 4.1, the Cost constraint is set to 236; thus, 

the sum of all cost usage should not exceed this limit (equivalence is permitted). By using 

differential evolution algorithm, the optimal solution will indicate the best mode for each 

activity to be executed and determine the optimal total cost and total project time. The 

objective of resource constraint project scheduling problems is to find the precedence and 

resource feasible completion times for all activities minimize the makespan of the project.  

The computer program consists of two levels (Appendix A). At low-level the critical 

path computation is performed using topological sort with finding the longest path in the 

directed acyclic graph (project network) and backpropagation for slack time calculation. At 

high-level the program performs the steps of the DEA algorithm which is repeated for every 

generation until the stopping criterion is met. The connection between the two level is the 

fitness function where the low-level function is called for a given individual in the 

population. Constraints enforce the presedence constraints between activities and constraint 

limits for each resource type k and each time instant t that the resource demand of the 

activities which are currently processed does not exceeed the capacity (Weglarz, 1999). 
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Finding Optimal Solution:  
 
 
Project Time = 20.00 
Penalty = 0.00 
Fitness = 20.00 
 
Activity Mode vector  Time Cost Critical 
 
      A           3   5.0 26.0    yes 
      B           3   4.0 16.0    yes 
      C           1   4.0 15.0     no 
      D           3   5.0 23.0    yes 
      E           2   2.0 19.0    yes 
      F           1   5.0 16.0     no 
      G           3   4.0 24.0    yes 
      H           2   4.0 20.0    yes 
      I           1   7.0 15.0    yes 
      J           2   4.0  9.0    yes 
      K           1   5.0  8.0    yes 
      L           1   7.0 15.0     no 
      M           3   4.0 15.0    yes 
      N           3   2.0 13.0    yes 
 
Total cost: 234.0  
Total project time: 20.0 

 
 
Verification of Results: 
 
Total cost: 26+19+15+23+15+16+24+20+15+9+8+15+15+13 = 234 

Project time (A-D-G-M-N): 5+5+4+4+2 = 20 

Project time (B-E-H-J-M-N): 5+5+4+4+2 = 20 

Project time (B-E-I-K-N): 4+2+7+5+2 = 20 

 
 

 

 

 

 

 

 



 23 

Table 4.11: Mode Selected for Each Resource According to the Optimal Solution 
(highlighted) 

 
 

Task 
Mode 1 (Regular)  Mode 2 (Fast)  Mode 3 (Extreme) 

Duration R1  Duration R1  Duration R1 

A 8 20  6 24  5 26 
B 5 14  4 16  3 19 
C 4 15  3 18  2 24 
D 8 18  6 22  5 23 
E 4 12  3 15  2 19 
F 5 16  4 18  3 21 
G 6 20  5 22  4 24 
H 6 15  4 20  3 24 
I 7 15  5 19  4 21 
J 5 8  4 9  3 11 
K 5 8  4 9  3 10 
L 7 15  5 19  4 21 
M 6 12  5 13  4 15 
N 4 10  3 12  2 13 

Total 32 198  25 236  20 271 
 
 
 
 
 

 
 
 

Figure 4.2: Evolution of Feasible Optimal Solution 
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4.3 Multi Mode Multiple NonRenewable (MMMNR) Resource Constrained Project 

Scheduling Problem 

Three resource types are assumed: R1, R2 and R3 (for example: cost, work hour, 

material quantity). For example, Task A needs 24 units of R1, 8 units of R2 and 4 units of R3 

if executed in Mode 2. If all tasks are executed in extreme mode (Mode 3), total of 271 of R1, 

94 of R2 and 58 of R3 would be needed. The total project time would be 20 units of time 

(from Table 4.12). The total duration is based on critical path. 

 

Table 4.12: Three Resource Requirements for Three Modes 

Task 
Mode 1 (Regular)  Mode 2 (Fast)  Mode 3 (Extreme) 

Duration R1 R2 R3  Duration R1 R2 R3  Duration R1 R2 R3 

A 8 20 7 3  6 24 8 4  5 26 9 5 
B 5 14 5 2  4 16 6 3  3 19 7 4 
C 4 15 5 3  3 18 6 3  2 24 8 5 
D 8 18 6 3  6 22 8 4  5 23 8 5 
E 4 12 4 2  3 15 5 3  2 19 7 4 
F 5 16 6 3  4 18 6 3  3 21 7 4 
G 6 20 7 3  5 22 8 4  4 24 8 5 
H 6 15 5 3  4 20 7 3  3 24 8 5 
I 7 15 5 3  5 19 7 3  4 21 7 4 
J 5 8 3 2  4 9 3 2  3 11 4 3 
K 5 8 3 2  4 9 3 2  3 10 4 3 
L 7 15 5 3  5 19 7 3  4 21 7 4 
M 6 12 4 2  5 13 5 2  4 15 5 4 
N 4 10 4 2  3 12 4 2  2 13 5 3 

Total 32 198 69 36  25 236 83 41  20 271 94 58 
 

 
Constraint Settings: 
 
The following assumptions are made:  

• R1 must be LESS or EQUAL to 236 

• R2 must be LESS or EQUAL to 83 

• R3 must be LESS or EQUAL to 41 
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These settings are identical to the case when all tasks are executed in Mode 2. Without 

optimization, the total duration would be 25. The same DEA for single constraint project 

scheduling program was used but adjusted to include the additional resources R2, R3. The 

new modes/durations have been added to the program (R2, R3). The penalty function now 

takes into consideration all resources by computing the penalty function for each resource 

and then summing it (Appendix B). If all penalties are zero then the feasible mode sequence 

is found by taking into consideration all resources and limitations. 

The extension of multi modes requires the update of the TimeTable and 

ResourceTable variables according to the specified values. Moreover, in each fitness function 

call the resource consumption of each activity for each resource has to be tracked. This is 

done by selecting the corresponding values of the ResourceTable to the actual mode vector. 

After this, we can compute the total resource consumption/resource type over the project 

(three values in our case). Dividing them by the corresponding resource thresholds and 

subtracting 1 from them would give <= 0 for feasible allocation and >0 for infeasible 

allocation. Clearly the sum of these results will be <= 0 if ALL resource allocations are 

feasible and  >0 if AT LEAST ONE of them are not feasible.  

This will be the new penalty function: 
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In our case it is:  
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 26 

Finding Optimal Solution:  
 
 
Total Project Time = 24.00 
Penalty = 0.00 
Fitness = 24.00 
 
Activity Mode Time  R1  R2  R3  Critical Sequence 
 
    A       2  6.0 24.0  8.0  4.0    yes     1. 
    B       1  5.0 14.0  5.0  2.0    yes     2. 
    C       1  4.0 15.0  5.0  3.0     no     3. 
    D       2  6.0 22.0  8.0  4.0    yes     4. 
    E       1  4.0 12.0  4.0  2.0    yes     5. 
    F       2  4.0 18.0  6.0  3.0     no     7. 
    G       2  5.0 22.0  8.0  4.0    yes     8. 
    H       2  4.0 20.0  7.0  3.0    yes    10. 
    I       1  7.0 15.0  5.0  3.0    yes     6. 
    J       2  4.0  9.0  3.0  2.0    yes    11. 
    K       1  5.0  8.0  3.0  2.0    yes    12. 
    L       1  7.0 15.0  5.0  3.0     no     9. 
    M       3  4.0 15.0  5.0  4.0    yes    13. 
    N       2  3.0 12.0  4.0  2.0    yes    14. 
 
                   Threshold   >=   Consumption 
Resource Type  1:  236.00   221.00 
Resource Type  2:  83.00   76.00 
Resource Type  3:  41.00   41.00 
 
 
 
 

 
 

Figure 4.3: Evolution of Feasible Optimal Solution 
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The optimal solution is 24 weeks (the optimization decreased the TPT 1 week 

compared to the 25 week Mode 2 solution). The optimal TPT increased by 4 weeks compared 

to the single resource solution.   

 

Table 4.13: Mode Selected for Each Resource According to the Optimal Solution 
(highlighted) 

 

Task 
Mode 1 (Regular)  Mode 2 (Fast)  Mode 3 (Extreme) 

Duration R1 R2 R3  Duration R1 R2 R3  Duration R1 R2 R3 

A 8 20 7 3  6 24 8 4  5 26 9 5 
B 5 14 5 2  4 16 6 3  3 19 7 4 
C 4 15 5 3  3 18 6 3  2 24 8 5 
D 8 18 6 3  6 22 8 4  5 23 8 5 
E 4 12 4 2  3 15 5 3  2 19 7 4 
F 5 16 6 3  4 18 6 3  3 21 7 4 
G 6 20 7 3  5 22 8 4  4 24 8 5 
H 6 15 5 3  4 20 7 3  3 24 8 5 
I 7 15 5 3  5 19 7 3  4 21 7 4 
J 5 8 3 2  4 9 3 2  3 11 4 3 
K 5 8 3 2  4 9 3 2  3 10 4 3 
L 7 15 5 3  5 19 7 3  4 21 7 4 
M 6 12 4 2  5 13 5 2  4 15 5 4 
N 4 10 4 2  3 12 4 2  2 13 5 3 

Total 32 198 69 36  25 236 83 41  20 271 94 58 
 
 
 
Verification of Results: 
 
R1: 24+14+15+22+12+16+20+20+15+8+8+19+15+13 = 221  

R2: 8+5+5+8+4+6+7+7+5+3+3+7+5+5 = 76 

R3: 4+2+3+4+2+3+3+3+3+2+2+3+4+3 = 41  

 
Figure 4.4 presents two graphs to show the evolution of the resource allocation in 

function of the generation number. The columns in both graphs represent the resource types. 

In the first graph (A) the total resource consumption with the corresponding threshold levels 

and the evolution of the optimal duration of the activities can be seen. The second graph (B) 

shows the individual consumption of each activity for each resource over the generations. 



 28 

 

 
(A) 

 

 
 

(B) 
 

Figure 4.4: Resource Allocations 
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Figure 4.5: Gantt Charts 
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Figure 4.5 shows the evolution of the optimal scheduling over the generations by 

using Gantt charts. The red activities are critical; the green ones have slack time and they can 

be shifted along the dotted lines until reaching their end such that the optimal solution is not 

violated. The optimal scheduling is 24 weeks long (after the 646th generation). 

Figure 4.6 shows the final optimal network structure with the highlighted critical 

path(s) and the modes. This corresponds to the solution given in Table 4.13.  

 

 

 
 
 

Figure 4.6: Optimal Network Structure 
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4.4 Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project 

Scheduling Problem with Weekly Constraint 

The same network in Figure 4.1 and same resource requirements in Table 4.1 are 

applied here. A new constraint is added by introducing an extra penalty function 

(implemented in xpenalty) which is added to the already existing one. The new function first 

computes the weekly resource needs of the different modes (resource need/duration). 

According to the current mode vector, a matrix similar to the Gantt Chart can be created 

which keeps track of the weekly resource consumption of each activity between its starting 

and ending time. Since activities can be executed in parallel (satisfying precence constraints), 

the total consumption of a given week can be obtained by adding up the weekly resource 

consumption for ALL active tasks in that week. Doing this for ALL weeks, we can check 

whether there is a week with higher consumption than the given weekly threshold level. If so, 

penalty is introduced proportionally to the number of weeks that are violated in this level 

(Appendix C).   

The total resource threshold level is still set at 236. Additionally to this constraint, a 

weekly threshold level is defined. It is assumed that in each week (separately) the 

consumption of R1 cannot exceed this threshold. 

In the next example the weekly threshold constraint is assumed to be 15. Note that the 

project can be done in 20 weeks below 236 total R1 usage. This means that 236/20 = 11.8 is 

the average consumption of each week. The problem is to find the minimum makepsan of the 

project that satisfies BOTH constraints (weekly and total threshold). 
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Finding Optimal Solution: 
 

 
Constraints settings: 
 - weekly constraints set = 15 
 - maximum resource consumption allowed is 236.0 
 
Generations: 
# 100 
… 
#2500 
Elapsed time is 48.920122 seconds. 
 
Optimal solution: 
----------------- 
Total Project Time = 22.00 
Penalty1 = 0.00 
Penalty2 = 0.00 
Fitness  = 22.00 
 
Activity Mode Time  R1  Critical Sequence 
 
    A       3  5.0 26.0    yes     1. 
    B       3  3.0 19.0    yes     4. 
    C       1  4.0 15.0     no     2. 
    D       2  6.0 22.0    yes     3. 
    E       1  4.0 12.0    yes     6. 
    F       2  4.0 18.0     no     7. 
    G       2  5.0 22.0    yes     5. 
    H       1  6.0 15.0    yes     8. 
    I       1  7.0 15.0     no    10. 
    J       3  3.0 11.0    yes    11. 
    K       3  3.0 10.0     no    13. 
    L       1  7.0 15.0     no     9. 
    M       3  4.0 15.0    yes    12. 
    N       3  2.0 13.0    yes    14. 
 
                   Threshold   >=   Consumption 
Resource Type  1:  236.00   228.00 
Weekly Threshold:  15.00 
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Table 4.14: Weekly Resource Needs 

 
Activity A B C D E F G H I J K L M N SUM 

Week1 5.2 6.3 0 0 0 0 0 0 0 0 0 0 0 0 11.5 
Week2 5.2 6.3 0 0 0 0 0 0 0 0 0 0 0 0 11.5 
Week3 5.2 6.3 0 0 0 0 0 0 0 0 0 0 0 0 11.5 
Week4 5.2 0 0 0 3 4.5 0 0 0 0 0 0 0 0 12.7 
Week5 5.2 0 0 0 3 4.5 0 0 0 0 0 0 0 0 12.7 
Week6 0 0 3.75 3.66 3 4.5 0 0 0 0 0 0 0 0 14.9 
Week7 0 0 3.75 3.66 3 4.5 0 0 0 0 0 0 0 0 14.9 
Week8 0 0 3.75 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 14.2 
Week9 0 0 3.75 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 14.2 

Week10 0 0 0 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 10.4 
Week11 0 0 0 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 10.4 
Week12 0 0 0 0 0 0 4.4 2.5 2.1 0 0 2.1 0 0 11.2 
Week13 0 0 0 0 0 0 4.4 2.5 2.1 0 0 2.1 0 0 11.2 
Week14 0 0 0 0 0 0 4.4 0 2.1 3.6 0 2.1 0 0 12.3 
Week15 0 0 0 0 0 0 4.4 0 0 3.6 3.3 0 0 0 11.4 
Week16 0 0 0 0 0 0 4.4 0 0 3.6 3.3 0 0 0 11.4 
Week17 0 0 0 0 0 0 0 0 0 0 3.3 0 3.75 0 7.1 
Week18 0 0 0 0 0 0 0 0 0 0 0 0 3.75 0 3.75 
Week19 0 0 0 0 0 0 0 0 0 0 0 0 3.75 0 3.75 
Week20 0 0 0 0 0 0 0 0 0 0 0 0 3.75 0 3.75 
Week21 0 0 0 0 0 0 0 0 0 0 0 0 0 6.5 6.5 

Week22 0 0 0 0 0 0 0 0 0 0 0 0 0 6.5 6.5 
 

 

Each task through out the weeks should add up to its total values. For example:  

Task A: 5.2/ week for five weeks which is 5.2 * 5 =  26 

Another example: 

Task J needs 3.6/ week for three weeks, which is 3.6 * 3 = 10.8 in total. However, Table 4.12 

shows that in mode 3 Task J consumes 11 resources. This is still valid since it is actually 

3.666666666666666...*3 = 10.99999999999999.... = 11. 
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Figure 4.7: Weekly Resource Consumption of Optimal Solution 

 
 

Figure 4.7 shows the total weekly consumption for the optimal solution (tpt = 22 

weeks) along with the threshold level. It can be seen that around the 6-7th week, the 

consumption was the highest but still not over the limit; thus, the optimal solution is indeed 

feasible. 

 
Next, the weekly threshold level is varied between 10 and 20. The results are shown below. 
 
 
Constraints settings: 
 - weekly constraints set between 10.0 and 20.0 
 - maximum resource consumption allowed is 236.0 
 
DEA optimization started... 
OPT  1/11 ... Problem is infeasible! 
OPT  2/11 ... Problem is infeasible! 
OPT  3/11 ... Problem is infeasible! 
OPT  4/11 ... Solution found! 
OPT  5/11 ... Solution found! 
OPT  6/11 ... Solution found! 
OPT  7/11 ... Solution found! 
OPT  8/11 ... Solution found! 
OPT  9/11 ... Solution found! 
OPT 10/11 ... Solution found! 
OPT 11/11 ... Solution found!  
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Figure 4.8: Total Project Time of the Weekly Threshold 
 

 
Figure 4.8 shows the total project time in function of the weekly threshold level along 

with the optimal project time without weekly consraints (single resource, TPT = 20 weeks, 

red dashed line). It can be seen that if the threshold is below 13 than no feasible solution 

exist. Between 13 and 17 the original optimal 20 week project time is increased due to the 

stronger constraints imposed on the project. Above the 18 weekly threshold level, we get the 

same 20 week solution.  

 
For 236 total R1, the TPT are shown above in function of the weekly thresholds: 

weekly threshold <= 12  no feasible solution exist 

weekly threshold = 13  TPT = 23 

weekly threshold = 14  TPT = 23 

weekly threshold = 15  TPT = 22 

weekly threshold = 16  TPT = 21 

weekly threshold = 17  TPT = 21 

weekly threshold >= 18  TPT = 20 
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4.5 Multi Mode Multiple Non Renewable (MMMNR) Resource Constrained Project 

Scheduling Problem with Weekly Constraints 

The same network in Figure 4.1 and the same resource requirements in Table 4.12 are 

applied here. Three new constraints were added by introducing an extra penalty function 

(implemented in xpenalty) which is added to the already existing one. The new function first 

computes the weekly resource needs of the different modes (resource need/duration) AND 

different resources. According to the current mode vector, a matrix similar to the Gantt Chart 

can be created, this is called a Summary Table, which keeps track of the weekly resource 

consumption of each activity between its starting and ending time. Since activities can be 

executed in parallel (satisfying precence constraints), the total consumption of a given week 

and given resource can be obtained by adding up the weekly resource consumption for ALL 

active tasks in that week and for that resource. Doing this for ALL weeks we can check 

whether there is a week with higher consumption than the given weekly threshold level for a 

given resource. If so, penalty is introduced proportionally to the number of weeks that are 

violated this level. FOR ALL three resources, we can obtain three different penalties. The 

goal is to make them zero, i.e. no penalty is needed for the optimal solution. This means that 

the sum of the penalyties is also needed to be zero (Appendix D). 

The total resource threshold level is still set at [236, 83, 41]. In addition to this 

constraint, three weekly threshold levels are defined. It is assumed that in each week 

(separately) the consumption of R1, R2 and R3 cannot exceed these thresholds: 15, 5 and 3, 

respectively. 

In the next example the weekly threshold constraints are assumed to be [15, 5, 3]. 

Note that the project can be done in 24 weeks (see Scenario 2) with 226 total R1 usage and 

76 total R2 usage and 41 total R3 usage. This means that 226/24 = 9.42, 76/24 = 3.2, 41/24 = 

1.71 is the average consumption of the resources in each week. The problem is to find the 
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minimum makepsan of the project that satisfies BOTH constraints types (weekly and total 

threshold) for ALL THREE resources. 

 
 
Finding Optimal Solution: 
 
 
DEA optimization started... 
 
Generations: 
# 100 
… 
#1500 
Elapsed time is 34.458197 seconds. 
 
Optimal solution: 
----------------- 
Total Project Time = 24.00 
Penalty1 = 0.00 
Penalty2 = 0.00 
Fitness  = 24.00 
 
Activity Mode Time R1  R2  R3 Critical Sequence 
 
    A       3  5.0 26.0  9.0  5.0    yes     1. 
    B       1  5.0 14.0  5.0  2.0    yes     3. 
    C       1  4.0 15.0  5.0  3.0     no     7. 
    D       1  8.0 18.0  6.0  3.0    yes     2. 
    E       1  4.0 12.0  4.0  2.0    yes     5. 
    F       1  5.0 16.0  6.0  3.0     no     4. 
    G       3  4.0 24.0  8.0  5.0    yes    12. 
    H       2  4.0 20.0  7.0  3.0    yes     8. 
    I       1  7.0 15.0  5.0  3.0     no     6. 
    J       2  4.0  9.0  3.0  2.0    yes     9. 
    K       1  5.0  8.0  3.0  2.0     no    11. 
    L       1  7.0 15.0  5.0  3.0     no    10. 
    M       2  5.0 13.0  5.0  2.0    yes    13. 
    N       3  2.0 13.0  5.0  3.0    yes    14. 
 
                   Threshold   >=   Consumption 
Resource Type  1:  236.00   218.00 
Resource Type  2:  83.00   76.00 
Resource Type  3:  41.00   41.00 
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Table 4.15: Weekly Resource Needs of R1 
 

Activity A B C D E F G H I J K L M N SUM 
Week   1 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
Week   2 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
Week   3 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
Week   4 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
Week   5 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0 
Week   6 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 
Week   7 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 
Week   8 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 
Week   9 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2 
Week  10 0.0 0.0 0.0 2.3 0.0 3.2 0.0 5.0 2.1 0.0 0.0 0.0 0.0 0.0 12.6 
Week  11 0.0 0.0 0.0 2.3 0.0 0.0 0.0 5.0 2.1 0.0 0.0 2.1 0.0 0.0 11.5 
Week  12 0.0 0.0 0.0 2.3 0.0 0.0 0.0 5.0 2.1 0.0 0.0 2.1 0.0 0.0 11.5 
Week  13 0.0 0.0 0.0 2.3 0.0 0.0 0.0 5.0 2.1 0.0 0.0 2.1 0.0 0.0 11.5 
Week  14 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 2.1 2.3 0.0 2.1 0.0 0.0 12.5 
Week  15 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 2.1 2.3 0.0 2.1 0.0 0.0 12.5 
Week  16 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 2.1 2.3 0.0 2.1 0.0 0.0 12.5 
Week  17 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 2.3 1.6 2.1 0.0 0.0 12.0 
Week  18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2 
Week  19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2 
Week  20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2 
Week  21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2 
Week  22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.6 
Week  23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 6.5 
Week  24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 6.5 
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Table 4.16: Weekly Resource Needs of R2 
 

Activity A B C D E F G H I J K L M N SUM 
Week   1 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 
Week   2 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 
Week   3 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 
Week   4 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 
Week   5 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 
Week   6 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 
Week   7 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 
Week   8 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 
Week   9 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2 
Week  10 0.0 0.0 0.0 0.8 0.0 1.2 0.0 1.8 0.7 0.0 0.0 0.0 0.0 0.0 4.4 
Week  11 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.8 0.7 0.0 0.0 0.7 0.0 0.0 3.9 
Week  12 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.8 0.7 0.0 0.0 0.7 0.0 0.0 3.9 
Week  13 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.8 0.7 0.0 0.0 0.7 0.0 0.0 3.9 
Week  14 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.7 0.8 0.0 0.7 0.0 0.0 4.2 
Week  15 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.7 0.8 0.0 0.7 0.0 0.0 4.2 
Week  16 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.7 0.8 0.0 0.7 0.0 0.0 4.2 
Week  17 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.8 0.6 0.7 0.0 0.0 4.1 
Week  18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6 
Week  19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6 
Week  20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6 
Week  21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6 
Week  22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 
Week  23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.5 
Week  24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.5 
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Table 4.17: Weekly Resource Needs of R3 
 

Activity A B C D E F G H I J K L M N SUM 
Week   1 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 
Week   2 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 
Week   3 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 
Week   4 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 
Week   5 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 
Week   6 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 
Week   7 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 
Week   8 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 
Week   9 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2 
Week  10 0.0 0.0 0.0 0.4 0.0 0.6 0.0 0.8 0.4 0.0 0.0 0.0 0.0 0.0 2.2 
Week  11 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.8 0.4 0.0 0.0 0.4 0.0 0.0 2.0 
Week  12 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.8 0.4 0.0 0.0 0.4 0.0 0.0 2.0 
Week  13 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.8 0.4 0.0 0.0 0.4 0.0 0.0 2.0 
Week  14 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.4 0.5 0.0 0.4 0.0 0.0 2.6 
Week  15 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.4 0.5 0.0 0.4 0.0 0.0 2.6 
Week  16 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.4 0.5 0.0 0.4 0.0 0.0 2.6 
Week  17 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.5 0.4 0.4 0.0 0.0 2.6 
Week  18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8 
Week  19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8 
Week  20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8 
Week  21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8 
Week  22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 
Week  23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5 

 

Each task for each resource through out the weeks should add up to its total values.  

For example:  

Task A (R1 resource): 5.2/week for five weeks which is 5.2 * 5 =  26 

The following figures show the weekly consumption of R1, R2 and R3 resources along with 

the corresponding threshold levels. It can be seen that all weekly contraints are satisfied. The  

Weekly Threshold   >=   Consumption (weekly maximum) 

Resource R1:  15.00     12.59 

Resource R2:  5.00      4.41 

Resource R3:  3.00      2.61 
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Figure 4.9: Weekly Resource Consumption of Optimal Solution of R1 

 
 
 
 

 
Figure 4.10: Weekly Resource Consumption of Optimal Solution of R2  
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Figure 4.11: Weekly Resource Consumption of Optimal Solution of R3  

 
 

Figure 4.9, 4.10, 4.11 show the total weekly consumption for the optimal solution 

(TPTt = 24 weeks) along with the threshold levels. It can be seen that between the 5-15th 

week, the consumption was the highest but still not over the limit; thus, the optimal solution 

is indeed feasible. 
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4.6 Cost and Time Contingencies for Multi Mode Single Non Renewable (MMSNR) 

Resource Constrained Project Scheduling Problem 

The same network in Figure 4.1 and the same resource requirements in Table 4.1 are 

applied here. In the initial DEA optimization after 1500 generations the optimal TPT= 20 

week using 236 threshold level using Table 4.1. Assuming in the 9th week (vertical red 

dashed line) the budget drops by approximatly 10%. This means that task1 (A), task2 (B), 

task3 (C), task5 (E) and task6 (F) is already finished.  Tasks D, H, I are in progress. The red 

boxes are the critical tasks, the green boxes are the non-ciritcal tasks scheduled “as early as 

possible”. After the 9th week a new DEA optimizes the remaining network (without tasks 

A,B,C,E,F) to minimizes the additional delay due to budget drop.   

The main difficulty here is building up a second project network, which is considered 

to be started just right after the budget drop appeared by preserving the very last „states” of 

the original network. This means, that already finished tasks has to be eliminated and the 

durations of the activities in progress have to be decreased by the „already finsihed amount of 

job”. These „in-progress” actvities are connected with a NEW Start mode and once the new 

network is completed the DEA algorithm can be invoked. The algorithm can be done by the 

following steps (Appendix E): 

1) Acquire current completion of the project by the result of the first DEA 

2) Find “in-progress” and “already-finsihed” activities. The latter nodes should be 

eliminated. 

3) Insert a new START node 

4) Since some nodes might have been eliminated, hence renumber the new project. 

5) Update the following: edge list of the network (G), TimeTable. 

6) Compute resource consumed until budget drop and subtract it from the threshold. 

7) Finally, update the remaining ResourceTable according to the new network. 
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Figure 4.12: Initial DEA with Showing 9th Week Completed and Uncompleted Tasks 
 

 

The cost of 236 is needed to finish in 20 weeks. At the 9th week approximately 113.5 

was the consumption already. The remaining budget is then 236 - 113.5 = 122.5 

approximately. This 122.5 is needed to finish every task according to the first plan. However, 

if the budget 122.5 is dropped (lowered) by 10 units of the 9th week budget it will actually be 

10/122.5 = 8.16% budget drop. 

The 112.5 cost falls between the pure mode 1 and mode 2 completion time (17 and 14 

weeks respectively). Still, the re-optimized network can produce 13 weeks (with 112.5 cost) 

for the remaining tasks. Thus, the total project time due to budget drop would be 9 + 13 = 22 

weeks, which is 2 weeks more than the original 20 weeks.  

By using MC simulation we can investigate the overall delay in function of the budget drop.  

Noticing that almost all activities became critical. 
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Finding Optimal Solution for the Remaining Network After 9th Week: 
 
 
Mode Cost TPT 
  1 106.5 17.0 
  2 117.5 14.0 
  3 127.5 11.0  
 
New cost threshold: 112.5 
 
DEA optimization 
---------------- 
Progress: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
 
Optimal solution 
---------------- 
Cost threshold = 112.5 
Total project cost = 112.5 
Total project time = 13.0 
Penalty = 0.00 
 
Activity Mode       Time  Cost Critical 
 
    D       3   1.0  4.6    yes 
    G       1   6.0 20.0    yes 
    H       3   2.0 16.0    yes 
    I       2   6.0 12.9    yes 
    J       1   5.0  8.0    yes 
    K       1   5.0  8.0    yes 
    L       1   7.0 15.0     no 
    M       3   4.0 15.0    yes 
    N       3   2.0 13.0    yes 

 
 
 
 

 
 
 

 Figure 4.13: Evolution of Feasible Optimal Solution 
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Figure 4.14: DEA for Remaining Network  
 
 

Table 4.18: Cost of Resources Each Week 
 

Activity Cost of Regular Cost of Fast Cost of Extreme 

D 18/8= 2.25 22/6= 3.66 23/5= 4.6 

G 20/6= 3.33 22/5= 4.4 24/4= 6 

H 15/6= 2.5 20/4= 5 24/3= 8 

I 15/7= 2.14 19/5= 3.8 21/4= 5.25 

J 8/5= 1.6 9/4= 2.25 11/3= 3.66 

K 8/5= 1.6 9/4= 2.25 10/3= 3.33 

L 15/7= 2.14 19/5= 3.8 21/4= 5.25 

M 12/6= 2 13/5= 2.6 15/4= 3.75 

N 10/4= 2.5 12/3= 4 13/2= 6.5 
 

 
 

D Task4  (1 week) mode3  cost = 4.6 * 1 week = 4.6 

G Task7  (6 week) mode1  cost = 3.33 * 6 week = 20 

H Task8  (2 week) mode3  cost = 8 * 2 week = 16 

I Task9  (6 week) mode2  cost = 3.8 * 6 week = 12.9 

J Task10 (5 week) mode1  cost = 1.6 * 5 week = 8 

K Task11 (5 week) mode1  cost = 1.6 * 5 week = 8 

13 weeks 



 47 

L Task12  (7 week) mode1  cost = 2.14 * 7 week = 15 

M Task13  (4 week) mode3  cost = 3.75 * 4 week = 15 

N Task14  (2 week) mode3  cost = 6.5 * 2 week = 13 

 

Total cost = 4.6 +20 +16 +12.9 + 8 + 8 + 15 + 15 + 13 = 112.5 

TPT = 9 + 13 weeks = 22 weeks in total  
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4.7 Cost and Time Contingencies for Multi Mode Multiple Non Renewable (MMMNR) 

Resource Constrained Project Scheduling Problem 

The same network in Figure 4.1 and same resource requirements in Table 4.12 are 

applied here. In the initial DEA optimization after 1500 generations the optimal TPT= 24 

week using threshold levels of [236, 83, 41] for R1, R2 and R3, respectively (second 

scenario). 

 
Finding Optimal Solution Before Budget Drop: 
 
 
Total Project Time = 24.00  
Penalty = 0.00 
Fitness = 24.00 
 
Activity Mode  Time R1  R2  R3 Critical    Sequence 
 
    A       3  5.0 26.0  9.0  5.0     no     1. 
    B       1  5.0 14.0  5.0  2.0    yes     2. 
    C       1  4.0 15.0  5.0  3.0     no     4. 
    D       2  6.0 22.0  8.0  4.0     no     5. 
    E       1  4.0 12.0  4.0  2.0    yes     3. 
    F       1  5.0 16.0  6.0  3.0     no     7. 
    G       2  5.0 22.0  8.0  4.0     no     6. 
    H       2  4.0 20.0  7.0  3.0    yes     9. 
    I       2  5.0 19.0  7.0  3.0     no    11. 
    J       2  4.0  9.0  3.0  2.0    yes    10. 
    K       1  5.0  8.0  3.0  2.0     no     8. 
    L       2  5.0 19.0  7.0  3.0     no    14. 
    M       2  5.0 13.0  5.0  2.0    yes    12. 
    N       3  2.0 13.0  5.0  3.0    yes    13. 
 
                   Threshold   >=   Consumption 
Resource Type  1:  236.00  228.00 
Resource Type  2:  83.00  82.00 
Resource Type  3:  41.00  41.00 

 

Assuming in the 9th week (vertical red dashed line) the budget drops by approximately 

10%. This means that task1 (A), task2 (B), task3 (C), and task5 (E) are already finished.  

Task D and Task F are in progress. The red boxes are the critical tasks, the green boxes are 

the non-ciritcal tasks scheduled “as early as possible”.  
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Figure 4.15:  Initial DEA with Showing 9th Week Completed and Uncompleted Tasks 
 

After the 9th week a new DEA optimizes the remaining network (without tasks 

A,B,C,E) to minimizes the additional delay due to budget drop.   

The main difficulty here is building up a second project network, which is considered to be 

started just right after the budget drop appeared by preserving the very last „states” of the 

original network. This means, that already finished tasks has to be eliminated and the 

durations of the activities in progress have to be decreased by the „already finsihed amount of 

job”. These „in-progress” actvities are connected with a NEW Start mode and once the new 

network is completed the DEA algorithm can be invoked. The algorithm can be done by the 

following steps (Appendix F): 

1) Acquire current completion of the project by the result of the first DEA 

2) Find “in-progress” and “already-finsihed” activities. The latter nodes should be 

eliminated. 
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3) Insert a new START node 

4) Since some nodes might have been eliminated, hence renumber the new project. 

5) Update the following: edge list of the network (G), TimeTable. 

6) Compute resource consumed until budget drop and subtract it from the threshold. 

7) Finally, update the remaining ResourceTable according to the new network by using 

an universal Summary Table which contains every cost details for each task and for 

each time instance. 

R1 <= 236, R2 <= 83, R3 <= 41 are needed to finish in 24 weeks.  

At the 9th week the consumption was already: 

 

Table 4.19: Resources After Budget Drop (Until 9th Week) 
 

Task Completion Opt. Mode R1 cost R2 cost R3 cost 

A 5/5=100% 3 26*100%=26 9*100%=9 5*100%=5 

B 5/5=100% 1 14*100%=14 5*100%=5 2*100%=2 

C 4/4=100% 1 15*100%=15 5*100%=5 3*100%=3 

D 4/6=66.67% 2 22*66.67%=14.67 8*66.67%=5.33 4*66.67%=2.67 

E 4/4=100% 1 12*100%=12 4*100%=4 2*100%=2 

F 4/5=80% 1 16*80%=12.8 6*80%=4.8 3*80%=2.4 

   ∑ = 94.47 ∑ = 33.13 ∑ = 17.07 

 

Therefore, the remaining resources at the 9th week a: 

R= the assumed resource thereshold – the consumed resource 

R1 = 236 – 94.47 = 141.53 

R2 = 83 – 33.13 = 49.87 

R3 = 41 – 17.07 = 23.93 

These [141.53,49.87,23.93] resources are needed to finish every task according to the first 

plan. However, after a 10% budget drop, the new resources become 

141.53*0.9 = 127.38 approximately 128 
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49.87*0.9 = 44.88 approximately 45 

23.93*0.9 = 21.54 approximately 22 

The pre-calculations show that 128 (R1) resource falls between the pure mode 1 and 

mode 2 completion time (21 and 17 weeks respectively). 45 (R2) resource falls between the 

pure mode 1 and mode 2 completion time (21 and 17 weeks respectively). 22 (R3) resource 

falls between the pure mode 1 and mode 2 completion time (21 and 17 weeks respectively). 

Pre-Calculations: 
----------------- 
Mode R1           R2                      R3              TPT 
  1 113.5  39.9  21.9  21.0 
  2 133.5  47.9  22.9  17.0 
  3 149.5  51.9  32.9  12.0 
 

Example of R2 (mode 2)= (8*33.33%) + (6*20%) + 8 + 7 + 7 + 3 + 3 + 7 + 5 + 4 = 47.9 

 
Finding Optimal Solution for the Remaining Network After 9th Week: 
 
 
Pre-Calculations: 
----------------- 
Mode R1                R2                         R3               TPT 
  1 113.5  39.9  21.9  21.0 
  2 133.5  47.9  22.9  16.0 
  3 149.5  51.9  32.9  12.0 
 
New R1 threshold = 128.0 
New R2 threshold = 45.0 
New R3 threshold = 22.0 
 
DEA optimization: 
----------------- 
Progress: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
 
Optimal solution: 
----------------- 
Total Project Time = 16.00 
Penalty = 0.00 
Fitness = 16.00 
 
Activity Mode Time  R1  R2   R3 Critical    Sequence 
 
    D       3  2.0  7.3  2.7  1.3    yes     6. 
    F       1  1.0  3.2  1.2  0.6     no     2. 
    G       1  6.0 20.0  7.0  3.0    yes     1. 
    H       2  4.0 20.0  7.0  3.0    yes     5. 
    I       1  7.0 15.0  5.0  3.0     no    10. 
    J       2  4.0  9.0  3.0  2.0    yes     7. 
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    K       1  5.0  8.0  3.0  2.0     no     9. 
    L       1  7.0 15.0  5.0  3.0     no     8. 
    M       2  5.0 13.0  5.0  2.0    yes     3. 
    N       2  3.0 12.0  4.0  2.0    yes     4. 
 
                   Threshold   >=   Consumption 
Resource Type  1:  128.00  122.53 
Resource Type  2:  45.00  42.87 
Resource Type  3:  22.00  21.93 
 
 
 

Still, the re-optimized network can produce 16 weeks with [122.53, 42.87, 21.93] cost 

for the remaining tasks. Thus, the total project time due to budget drop would be 9 + 16 = 25 

weeks, which is only 1 week more than the original optimal 24 weeks.  

 

 
 
 

 Figure 4.16:  Evolution of Feasible Optimal Solution after Budget Drop 
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Figure 4.17: DEA for Remaining Network (after Budget Drop) 
 
 
 
 
 

Table 4.20: Resources After Budget Drop (After 9th Week) 
 

Task Completion Optimal Mode R1 cost R2 cost R3 cost 
D 2/6=33.3% 3* 22×33.3%=7.33 8×33.3%=2.67 4×33.3%=1.33 
F 1/5=20% 1* 16×20%=3.2 6×20%=1.2 3×20%=0.6 
G 6/6 1 20 7 3 
H 4/4 2 20 7 3 
I 7/7 1 15 5 3 
J 4/4 2 9 3 2 
K 5/5 1 8 3 2 
L 7/7 1 15 5 3 
M 5/5 2 13 5 2 
N 3/3 2 12 4 2 
   ∑ = 122.53 ∑ = 42.87 ∑ = 21.93 

 
 

 

Task D and Task F were already completed by 66.67% and 80% until the 9th week, so 

only 33.33% and 20% remain. In Table 4.20, although Task D follows mode 3 after the 

16 weeks 
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budget drop, it is still calculated with mode 2 as indicated in the DEA before the budget drop. 

It is assumed that if a task is running at the time of the drop, its mode cannot be altered after 

the drop. The task  has to finish in its original mode.  

For example, if the task is to produce 4 specific materials in the automotive industry, 

and already the aluminium panels have been cut, the robots programmed, the workers 

assigned, etc. these numbers cannot be altered. They can only be changed after everything is 

finished.   

 

Total resource consumption is: 

R1 = 94.47 (before 9th week) + 122.53 (after 9th week) = 217 

R2 = 33.13 (before 9th week) + 42.87 (after 9th week) = 76 

R3 = 17.07 (before 9th week) + 21.93 (after 9th week) = 39 

 

More Generally: 

Completion of Task i at time T 

= 0	𝑖𝑓	𝐹" 	> 𝑇
1	𝑖𝑓	𝐹" 	≤ 𝑇 

_f7g
hgf7g

  if 𝐹" 	> 𝑇 

Example: 

Task D (𝑆j = 5, 𝐹j = 11) 

T= g when budget drop 

Completion Time of Task D= 
_f7g
hgf7g

 = kfl
aafl

 = 5
b
 = 66.7%  
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CHAPTER 5 

BENCHMARK RESULTS & PARETO FRONTIER 

5.1 Benchmark Results 

The effectiveness of the DEA algorithm is compared to a bechmark problem given in 

paper Ant Colony Optimization for Multimode Resource-Constrained Project Scheduling  by 

Hong Zhang (Journal of Management in Engineering, vol 2., issue 2, pp 150-159, 2012). 

The benchmark network is from page 155. The actvities are identified as A, B, C, D, E, F, G, 

H, I, J instead of 1-10 from now on. 

 

 
 

Figure 5.1: Benchmark Network 
 

 
This benchmark problem uses a single RENEWABLE resource with three modes. 

NOTE that up to this point only stronger constraints (as NON-RENEWABLE) are imposed 

on the project networks. Renewable constraints are easier to handle. The resource needs and 

the corresponding durations are shown in Table 5.1. Notice that activities 4, 6 and 7 (or D, F 

and G) can only be executed in mode 1 and 2.  
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Table 5.1: Information About the Three Modes 
 
 

Activity 

Mode 1  Mode 2  Mode 3  
  

Resource 
Requiremement (R1) 

 
Duration 

(day) 

  
Resource 

Requiremement (R1) 

 
Duration 

(day) 

  
Resource 

Requiremement (R1) 

 
Duration 

(day) 

 

 A 4 2  3 3  2 5  

 B 4 2  2 4  1 6  
 C 3 2  2 3  1 4  

 D 3 1  1 3  _ _  
 E 3 2  2 3  1 4  

 F 2 1  1 2  _ _  

 G 2 3  1 5  _ _  
 H 4 2  3 3  2 4  

 I 4 3  3 4  2 5  

 J 4 3  3 4  2 5  

 

The basic DEA code is modified to accept renewable resources by computing the 

resource consumption of each week similar to the (Weekly constraints) scenario. This means 

that for any time instance the total resource consumption should not exceed the given 

threshold level. 

For example, let’s start with Activity A at day 0. It needs 4 constant resources in mode 

1 for 2 days. Now, if Activity B (in mode 1) was started in day 1, it would need 4 additional 

resources until day 3 (2 days duration). Thus, the resource consumption would be 4, 8 and 4 

between days 0-1, 1-2 and 2-3 respectively. If the given resource threshold level was below 8, 

this scheduling would clearly violate the constraints.       

Thus, for every day (time instance) the total resource consumption has to be computed and 

compared to the threshold level. If AT LEAST one of them violates the threshold limit then 

penalty is produced. This value is proportional to the maximum of the violations (Appendix 

G).  

 

 
 
 
 

÷
ø
ö

ç
è
æ -×¶= 0,1

 LevelThreshold Resoure
nConsumptio Daily of MaximummaxPenalty
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First, the network was used to compare DEA with ACO only with threshold R1=6, 

according to the paper (Zhang, 2012). The results for R1 threshold of 6 are produced by the 

DEA algorithm as below. 

 
 
DEA optimization started... (Single RENEWABLE Resource with 3 Modes) 
 
Generations: 
# 100 
… 
#1500 
Elapsed time is 14.833308 seconds. 
 
Optimal solution: 
----------------- 
Total Project Time = 12.00 
Penalty = 0.00 
Fitness = 12.00 
 
Activity Mode Time  R1  Critical Sequence 
 
    A       1  2.0  4.0     yes      1. 
    B       2  4.0  2.0     yes      2. 
    C       3  4.0  1.0     yes      5. 
    D       1  1.0  3.0      no      3. 
    E       1  2.0  3.0     yes      4. 
    F       1  1.0  2.0     yes      6. 
    G       2  5.0  1.0      no      7. 
    H       2  3.0  3.0     yes      8. 
    I       3  5.0  2.0     yes     10. 
    J       1  3.0  4.0     yes      9. 
 
                   Threshold   >=   Consumption 
Resource Type  1:  6.00   6.00 
 
 
 

The evolution of the feasible optimal solution in the function of the generation 

number (Figure 5.2) and the corresponding Gantt-chart (Figure 5.3) can be seen below. The 

obtained optimal project time is TPT=12, the same as given in the paper. 
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Figure 5.2: Evolution of Feasible Optimal Solution 
 

 
Figure 5.3: Gantt Charts 
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Figure 5.4: Optimal Network Structure 

 

Now, the network is used for comparison by tightening the resource threshold level to 

R1= 5. This leads to increased difficulty of the problem. In the paper the authors used 100 

outer and 20 inner maximum iterations (Genetic Algorithm, Ant Colony Opt., Particle Swarm 

Opt.) which corresponds to 20*100 = 2000 iterations of the DEA algorithm. The population 

number was 10 and a total of 40 runs was made. All the other parameters cannot be directly 

matched with the parameters of the DEA algorithm. The code producing the results is 

presented in (Appendix H). 

 
 
Output: 
 
OPT   1/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT   2/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT   3/ 40: tpt =  15, succ = 1, et = 13.4 s 
OPT   4/ 40: tpt =  15, succ = 1, et = 13.0 s 
OPT   5/ 40: tpt =  15, succ = 1, et = 13.5 s 
OPT   6/ 40: tpt =  15, succ = 1, et = 13.3 s 
OPT   7/ 40: tpt =  14, succ = 1, et = 13.3 s 
OPT   8/ 40: tpt = NaN, succ = 0, et = 13.2 s 
OPT   9/ 40: tpt =  15, succ = 1, et = 13.6 s 
OPT  10/ 40: tpt =  15, succ = 1, et = 13.3 s 
OPT  11/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  12/ 40: tpt =  14, succ = 1, et = 12.5 s 
OPT  13/ 40: tpt =  15, succ = 1, et = 13.6 s 
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OPT  14/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  15/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  16/ 40: tpt =  14, succ = 1, et = 13.3 s 
OPT  17/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  18/ 40: tpt = NaN, succ = 0, et = 13.1 s 
OPT  19/ 40: tpt =  15, succ = 1, et = 12.5 s 
OPT  20/ 40: tpt =  14, succ = 1, et = 13.1 s 
OPT  21/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  22/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  23/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  24/ 40: tpt =  15, succ = 1, et = 12.5 s 
OPT  25/ 40: tpt =  15, succ = 1, et = 13.2 s 
OPT  26/ 40: tpt =  15, succ = 1, et = 13.2 s 
OPT  27/ 40: tpt =  15, succ = 1, et = 13.3 s 
OPT  28/ 40: tpt =  17, succ = 1, et = 13.5 s 
OPT  29/ 40: tpt =  14, succ = 1, et = 13.1 s 
OPT  30/ 40: tpt =  15, succ = 1, et = 13.2 s 
OPT  31/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  32/ 40: tpt =  15, succ = 1, et = 12.4 s 
OPT  33/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  34/ 40: tpt = NaN, succ = 0, et = 13.2 s 
OPT  35/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  36/ 40: tpt =  14, succ = 1, et = 13.1 s 
OPT  37/ 40: tpt =  15, succ = 1, et = 13.2 s 
OPT  38/ 40: tpt =  15, succ = 1, et = 13.1 s 
OPT  39/ 40: tpt =  15, succ = 1, et = 13.0 s 
OPT  40/ 40: tpt =  15, succ = 1, et = 13.0 s 
 

 

At some runs DEA was not able to find any (local) optimal solution (in orange). It 

found the global optimum at runs indicated in red. At the blue runs the algorithm was stuck at 

a relatively high makespan; however, all the other solutions showed 15 days. 

Table 5.2 shows the results. Minimum and Average TPT is the minimum and average 

makespan achieved in the 40 runs. Success rate is if the algorithm produces a feasible (local) 

optimum solution but not necessarily the global solution. Computation Time is the average 

time needed for 1 run. 
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Table 5.2: Benchmark Results 

Methods Minimum TPT Average TPT Success Rate Comp. Time 

GA 14 15.4 75 % 18.3 

PSO 14 14.7 75 % 17.2 

ACO 14 14.4 81 % 18.0 

DEA 14 14.89 92.50 % 13.11 
 

 
It can be seen that DEA is better than GA and worse than ACO and PSO. Note that 

the fine tuning of the DEA parameters (such as setting 𝜕, 𝐶#, 𝐴, #	𝑜𝑓	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠..) might 

improve the results. DEA has almost always found a feasible solution by comparing to the 

other methods and found the global optimum six times (6/40 = 15% of the runs). 

This low value can be explained by the difficulty of the problem, which DEA seems to be 

unable to handle. The computational time cannot be compared to the other methods because 

the simulations were performed on a different (and latest) computer. 
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5.2 Principle of Pareto Frontier  

 Pareto frontier is the result of a multi objective optimum design. It is the limit of 

the feasible design space (Figure 5.5). Any point on this frontier is such that there is no other 

feasible solution that reduces at least one objective function without increasing another one. 

On the graph, point A is considered to be the optimal solution because it is located on the 

pareto frontier. A1 is a better solution than A but unfeasible. A2 is a worse solution than A 

but feasible. 

 

 

Figure 5.5: Pareto Fronier Feasible Space 

 

5.3 Pareto Frontier for MMSNR Scheduling Problem 

 The basic definition of the Pareto frontier is that it consists of exactly those 

alternatives that are not dominated by any other alternative. We say that an 

alternative A dominates B if A outscores B regardless of the tradeoff between time and cost 

that is, if A is both better and cheaper than B. 

 A simple algorithm to find the other alternatives on the Pareto frontier is to first sort 

the alternatives according to one of the objectives, cost. One then starts with the cheapest 

alternative (which, as noted, always belongs in the Pareto frontier) and skips successive 

* * * 

Pareto Frontier 

Cost 

Makespan 

A2 A A1 

Unfeasible 
Space 

Feasible 
Space 
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alternatives in order of increasing cost until one finds one with a higher value. This 

alternative is then added to the frontier and the search is restarted from it. 

 A step-by-step description of the algorithm, assuming that A1,…,An are the 

alternatives in increasing order of cost, goes like this: 

1. Let A1,…, An be the alternatives sorted in order of increasing cost/time ratio. Let i:=1. 

Let P:={∅}, where ∅ denotes the combination containing no alternatives. 

2. For each combination C∈P, let C∗	:=C∪{Ai}. If C∗ is not dominated by any 

combination already in P, add C∗ to P. 

3. If i=n, stop. Otherwise increment i by one and repeat from step 2. 

In algorithm B, we don't need to compare C∗ to every combination in P; it's enough to check 

whether C∗ is dominated by the most expensive combination in P that is cheaper than C∗	

(Karonen, 2012).  

In the following Figures 5.6 to 5.15, around 500 feasible solutions (in blue) (i.e., 

solutions which satisfy precedence constraints) according to the 14 tasks network presented 

in Figure 4.1 were plotted according to the pareto frontier algorithm. The solutions (in red) 

are the best solutions. The black curve is the pareto frontier that connects the best solutions. 

Here are the results for 10 runs: 
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Run #1: 
 

 
 

Figure 5.6: Pareto Frontier (Run #1) 
 
 

Pareto Set: 
    
TPT   Cost 
21   238 
22   236 
23   226 
24   222 
25   219 
26   215 
27   213 
28   209 
 
Population number: 490  
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Run #2: 
 

 
 

Figure 5.7: Pareto Frontier (Run #2) 
 
 
Pareto Set: 
   TPT   Cost 
    21   245 
    22   238 
    23   230 
    24   225 
    25   220 
    28   214 
    29   208 
    31   207 
 
Population number: 494  
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Run #3: 
 

 
 

Figure 5.8: Pareto Frontier (Run #3) 
 
Pareto Set: 
 
   TPT   Cost 
    21   236 
    22   234 
    23   227 
    24   224 
    25   223 
    26   218 
    28   212 
    31   211 
 
Population number: 490  
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Run #4: 
 

 
 

Figure 5.9: Pareto Frontier (Run #4) 
 
Pareto Set: 
 
   TPT   Cost 
    20   259 
    21   243 
    22   231 
    24   224 
    25   218 
    27   215 
    29   214 
 
Population number: 492  
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Run #5: 
 

 
 

Figure 5.10: Pareto Frontier (Run #5) 
 
Pareto Set: 
 
   TPT   Cost 
    21   241 
    22   234 
    23   227 
    24   224 
    25   220 
    28   213 
    29   209 
 
Population number: 487  
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Run #6: 
 

 
 

Figure 5.11: Pareto Frontier (Run #6) 
 
Pareto Set: 
 
   TPT   Cost 
    21   246 
    22   238 
    23   229 
    24   224 
    25   221 
    26   215 
    28   214 
    29   213 
    31   209 
 
Population number: 494  
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Run #7: 
 

 
 

Figure 5.12: Pareto Frontier (Run #7) 
 
 
Pareto Set: 
 
   TPT   Cost 
    21   243 
    22   231 
    23   230 
    24   226 
    25   222 
    27   212 
 
Population number: 493  
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Run #8: 
 

 
 

Figure 5.13: Pareto Frontier (Run #8) 
 
Pareto Set: 
 
   TPT   Cost 
    21   242 
    22   235 
    23   228 
    24   222 
    25   218 
    26   214 
    28   213 
    29   208 
 
Population number: 491  
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Run #9: 
 

 
 

Figure 5.14: Pareto Frontier (Run #9) 
 
 
Pareto Set: 
 
   TPT   Cost 
    21   241 
    22   234 
    23   228 
    24   223 
    25   220 
    27   213 
    28   211 
 
Population number: 492  
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Run #10: 
 

 
 

Figure 5.15: Pareto Frontier (Run #10) 
 
Pareto Set: 
 
   TPT   Cost 
    20   249 
    21   241 
    22   230 
    23   225 
    24   222 
    26   221 
    27   216 
    28   212 
    30   211 
 
Population number: 492  
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CHAPTER 6 

CONCLUSION 

Finding an optimal schedule is often confounded not only by meeting existing 

constraints but also by adapting to additional constraints and changes to the problem 

structure. This dissertation attempts to provide optimum solutions to solving complicated 

project scheduling problems due to resource constraints. The major methodology used in this 

dissertation is the DEA, which mimics biological phenomena more than mathematical 

formulation. So far, satisfactory results have been achieved. Future research is contemplated 

to tackle more difficult situations such as probabilistic resource data, dual thresholds for 

project cost and time and mulile budget drops.  

Differential evolution was used to solve the project scheduling problem for a proposed 

network that consists of 14 tasks in three different modes. Differential evolution consists of 

four steps: population structure, mutation, crossover and selection (Figure 6.1). Previous 

chapters explained the steps and showed how the best vector was selected for the follow-up 

generation.  

 
 

Figure 6.1: DEA Flowchart 
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The Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project 

Scheduling Problem involves one resource (cost) in three modes. By using the differential 

evolution algorithm, the optimal solution indicated the best mode for each activity to be 

executed and determined the optimal total cost and total project time. The objective was to 

find the minimium makespan without exceeding the limit of mode 2 duration which is 25 

weeks (without optimization) while taking into consideration the precedense rule. The 

optimal solution was determined to be 20 weeks to complete the project.  

In the Multi Mode Multiple Non Renewable (MMMNR) Resource Constrained 

Project Scheduling Problem the project scheduling problem involves three resources (cost, 

work hours, material quantity) in three modes. Without optimization, the total duration would 

have been 25 (using normal execution). Using DEA, the optimal solution was determined to 

be 24 weeks.   

Each of the MMSNR and MMMNR project scheduling problems experienced a 

weekly constraint. The optimal solution was found by applying DEA. The weekly constraint 

resulted in more total project time. Then each problem MMSNR and MMMNR faced a cost 

and time contingency. The scenario assumed a budget drop during week 9, resulting in 

applying DEA to the remaining tasks to find the optimal solution after the drop incident. In 

addition, a benchmark problem was presented to compare DEA with Ant Colony 

Optimization, Genetic Algorithm and Particle Swarm Optimization. DEA reached the same 

minimum TPT and outperformed in computational time and success rate. 

Finally, pareto frontier was investigated, calculating the optimal solutions for a multi 

objective problem focusing on the tradeoff of the constrained set of parameters. 
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Appendix A 

Low-level main engine: 

 

%% 1) Forward propagation: topological sort + distances	
preced = zeros(1,N);	
indeg  = full(sum(A));  % A is full adjacency matrix with N nodes	
while 1,	
    ix = find(indeg == 0);	
    if ix == N,	
        break;	
    else	
        for i = 1:length(ix),	
            nbor = find(A(ix(i),:) == 1);	
            for j = 1:length(nbor),	
                if dist(ix(i)) + actt(nbor(j)) >  dist(nbor(j)),	
                    preced(1,nbor(j)) = ix(i);	
                end	
                dist(nbor(j)) = max(dist(nbor(j)),dist(ix(i)) + actt(nbor(j)));	
                indeg(nbor(j)) = indeg(nbor(j)) - 1;	
            end	
            indeg(ix(i)) = indeg(ix(i)) - 1;	
        end	
    end	
end	
 	
%% 2) Longest paths in DAG from source to all node	
longestPath = zeros(N+1,N);	
longestPath(1,1:N) = 1:N;	
for i = N:-1:1,	
    k = 1;	
    currNode = i;	
    while 1,	
        k = k + 1;	
        prevNode  = preced(currNode);	
        if prevNode == 0,	
            break	
        else	
            longestPath(k,i) = prevNode;	
            currNode         = prevNode;	
        end	
    end	
end	
 	
% Total project time	
tpt = dist(N); 
 
%% 3) Back propagation for slack time calculation	
At = A';	
late = tpt*ones(size(actt));	
indeg = full(sum(At));	
while 1,	
    ix = find(indeg == 0);	
    if ix == 1, 	
        break	
    else	
        for i = 1:length(ix),	
            nbor = find(At(ix(i),:) == 1);	
            for j = 1:length(nbor),	
                late(nbor(j))  = min(late(nbor(j)),late(ix(i)) - actt(nbor(j)));	
                indeg(nbor(j)) = indeg(nbor(j)) - 1;	
            end	
            indeg(ix(i)) = indeg(ix(i)) - 1;	
        end	
    end	
end	
slack = late - dist + actt;	
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High-level main engine: 

 

 

  

for i = 1:Ng, % for each generation 
     
    % 1) Get parents and target vector 
    % Random selection (Damak's) 
    rix = randperm(Ni); 
    rix = rix(1:4); 
    PT  = pop(rix); 
    C0  = PT{1}; C1 = PT{2}; C2 = PT{3}; T = PT{4}; Tix = rix(4); 
     
    % 2) Mutation 
    M = mutation(C0,C1,C2,A); 
     
    % 3) Crossover (get solution vector) 
    S = crossover(M,T,G,Cr,Cm,Nm); 
     
    % 4) Fitness evaluation 
    fC = fitness(T,G,TimeTable,ResourceTable,Nr,delta,Nm); 
    fS = fitness(S,G,TimeTable,ResourceTable,Nr,delta,Nm); 
     
    % 5) Selection 
    if fS <= fC, 
        pop{Tix} = S; 
    end  
     
end	



 82 

Appendix B 

 

 
 

  

% Get current resource consumptions FOR ALL resource types 
% Nm = number of modes 
% Nr = number of resources 
for i = 1:length(Nr), 
    for j = 1:length(modeVec), 
        idxs = (i-1)*Nm + 1; 
        idxf = (i-1)*Nm + Nm; 
        rtTruncated = ResourceTable(idxs:idxf,:); 
        R(i,j) = rtTruncated(modeVec(j),j); 
    end 
end 
  
% Penalty function (SUM FOR ALL resource types) 
Penalty = 0; 
for i = 1:length(Nr), 
    Penalty = Penalty + delta*max(0,sum(R(i,:))/Nr(i) - 1); 
end	
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Appendix C 

 

   

% Penalty function in fitness calculation 
Penalty1 = delta*xpenalty(G,T,TimeTable,ResourceTable,wThres,modeVec); 
Penalty2 = 0; 
for i = 1:length(Nr), 
    Penalty2 = Penalty2 + delta*max(0,sum(R(i,:))/Nr(i) - 1); 
end 
 
--------------------------------------------------------------------------------------- 
 
function p = xpenalty(G,TT,TimeTable,ResourceTable,wThres,modeVec) 
%XPENALTY New Penalty Function 
  
WeeklyRes = ResourceTable./TimeTable; 
nt = max(max(G)) - 2; 
[tpt,~,~,dist,actt] = cpm(G,TT); 
GC = [dist-actt dist]; 
GC = GC(2:end-1,:); 
SFmat = zeros(nt,tpt);     % Start 2 Finish matrix (filled with ones) 
for i = 1:nt, 
    A = WeeklyRes(modeVec(i),i); 
    SFmat(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1)); 
end 
p = sum((sum(SFmat) <= wThres) == 0)/nt; 
  
end	
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Appendix D 

function p = xpenalty(G,TT,TimeTable,ResourceTable,wThres,modeVec) 
%XPENALTY Summary of this function goes here 
%   Detailed explanation goes here 
  
WeeklyRes(1:3,:) = ResourceTable(1:3,:)./TimeTable; 
WeeklyRes(4:6,:) = ResourceTable(4:6,:)./TimeTable; 
WeeklyRes(7:9,:) = ResourceTable(7:9,:)./TimeTable; 
  
nt = max(max(G)) - 2; 
[tpt,~,~,dist,actt] = cpm(G,TT); 
GC = [dist-actt dist]; 
GC = GC(2:end-1,:); 
  
% Summary Table 1 
SFmat1 = zeros(nt,tpt);     % Start 2 Finish matrix (filled with ones) 
for i = 1:nt, 
    A = WeeklyRes(modeVec(i),i); 
    SFmat1(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1)); 
end 
p1 = sum((sum(SFmat1) <= wThres(1)) == 0)/nt; 
  
% Summary Table 2 
SFmat2 = zeros(nt,tpt);     % Start 2 Finish matrix (filled with ones) 
for i = 1:nt, 
    A = WeeklyRes(modeVec(i)+3,i); 
    SFmat2(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1)); 
end 
p2 = sum((sum(SFmat2) <= wThres(2)) == 0)/nt; 
  
% Summary Table 3 
SFmat3 = zeros(nt,tpt);     % Start 2 Finish matrix (filled with ones) 
for i = 1:nt, 
    A = WeeklyRes(modeVec(i)+6,i); 
    SFmat3(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1)); 
end 
p3 = sum((sum(SFmat3) <= wThres(3)) == 0)/nt; 
  
% Sum of Penalyties 
p = p1 + p2 + p3; 
  
end 
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Appendix E 

function [Gnew,Gnew2,TimeTable,ResourceTable,Rnew,Ropt,gci] = ... 
        build2ndNetwork(G,bestInd,Tdrop,Rdrop,TimeTable,ResourceTable,Nr) 
%BUILD2NDNETWORK   
% Get durations and resource need from the optimal mode vector (1st DEA) 
M = bestInd(2,:); 
T = size(M); 
RR = T; 
for i = 1:length(M), 
    T(i) = TimeTable(M(i),i); 
    RR(i) = ResourceTable(M(i),i); 
end 
RR = [0 RR 0]'; 
Ropt = Nr; 
  
% Calculate network with the optimal solution of the first DEA 
[~,~,~,dist,actt] = cpm(G,T); 
  
% Find cut-off nodes and the remaining nodes 
ix_cut  = find((dist-Tdrop) <= 0); 
ix_okay = find((dist-Tdrop) > 0); 
  
% Insert START node (create new network) 
Gnew = G(ismember(G(:,1),ix_okay),:); 
for i = 1:length(ix_cut),   
    cutNode  = ix_cut(i); 
    nextNode = G(G(:,1) == cutNode,2);  
    for j = 1:length(nextNode), 
        if ismember(nextNode(j),ix_okay) 
            Gnew(end+1,:) = [1 nextNode(j)]; 
        end 
    end 
end 
  
% Re-number network 
gci = unique(Gnew); 
n = numel(gci); 
lut = [(1:n)' gci]; 
GG = Gnew(:); 
for i =1:length(GG), 
    GG(i) = lut(lut(:,2) == GG(i),1); 
end 
Gnew(:) = GG; 
  
% Sort in ascending order 
[tmp,ix] = sort(Gnew(:,1)); 
Gnew = [tmp Gnew(ix,2)]; 
Gnew2 = Gnew(1:end-1,:)-1; 
  
% Create new time vector 
times = actt(ix_okay); 
Tnew = [dist-actt dist]; 
tmp = Tnew(ix_okay,:) - Tdrop; 
innx = find(tmp < 0); 
times(innx) = times(innx) + tmp(innx,1); 
Tnew = times(1:end-1); 
  
% Time Table Update 
TimeTable = [zeros(3,1) TimeTable zeros(3,1)]; 
TimeTable = TimeTable(:,ix_okay); 
for i = 1:length(innx), 
    TimeTable(:,innx(i)) = times(innx(i))*ones(size(TimeTable,1),1); 
end 
TimeTable = TimeTable(:,1:end-1); 
  
% Calculate used resources until Tdrop 
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R = sum(RR(ix_cut)); 
RR = RR(ix_okay); 
times = actt(ix_okay); 
R = R + sum(abs(tmp(innx,1))./times(innx).*RR(innx)); 
  
% New resource threshold 
Rnew = (Ropt - R) - Rdrop; 
  
% Resource Table Update 
ResourceTable = [zeros(3,1) ResourceTable zeros(3,1)]; 
ResourceTable = ResourceTable(:,ix_okay); 
for i = 1:length(innx), 
    ccc = (1 - abs(tmp(innx(i),1))./times(innx(i))).*RR(innx(i)); 
    ResourceTable(:,innx(i)) = ccc*ones(size(ResourceTable,1),1); 
end 
ResourceTable = ResourceTable(:,1:end-1); 
  
end 
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Appendix F 

function [Gnew,TimeTable,ResourceTable,Rnew,Ropt,gci] = ... 
        build2ndNetwork(G,bestInd,Tdrop,Rdrop,TimeTable,ResourceTable,Nr) 
%BUILD2NDNETWORK Build reduced network 
  
Nm = 3; % number of modes 
  
% Get durations and resource need from the optimal mode vector (1st DEA) 
M = bestInd(2,:); 
T  = NaN(size(M)); 
RR = NaN(length(Nr),size(M,2)); 
for i = 1:length(M), 
    T(i) = TimeTable(M(i),i); 
    RR(i) = ResourceTable(M(i),i); 
end 
for i = 1:length(Nr), 
    for j = 1:length(M), 
        idxs = (i-1)*Nm + 1; 
        idxf = (i-1)*Nm + Nm; 
        rtTruncated = ResourceTable(idxs:idxf,:); 
        RR(i,j) = rtTruncated(M(j),j); 
    end 
end 
  
% Threshold levels 
Ropt = Nr; 
  
% Calculate network with the optimal solution of the first DEA 
[~,~,~,dist,actt] = cpm(G,T); 
  
% Find cut-off nodes and the remaining nodes 
ix_cut  = find((dist-Tdrop) <= 0); 
ix_okay = find((dist-Tdrop) > 0); 
  
% Insert START node (create new network) 
Gnew = G(ismember(G(:,1),ix_okay),:); 
for i = 1:length(ix_cut),   
    cutNode  = ix_cut(i); 
    nextNode = G(G(:,1) == cutNode,2);  
    for j = 1:length(nextNode), 
        if ismember(nextNode(j),ix_okay) 
            Gnew(end+1,:) = [1 nextNode(j)]; 
        end 
    end 
end 
  
% Re-number network 
gci = unique(Gnew); 
n = numel(gci); 
lut = [(1:n)' gci]; 
GG = Gnew(:); 
for i =1:length(GG), 
    GG(i) = lut(lut(:,2) == GG(i),1); 
end 
Gnew(:) = GG; 
  
% Sort in ascending order 
[tmp,ix] = sort(Gnew(:,1)); 
Gnew = [tmp Gnew(ix,2)]; 
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% Create new time vector 
times = actt(ix_okay); 
Tnew = [dist-actt dist]; 
tmp = Tnew(ix_okay,:) - Tdrop; 
innx = find(tmp < 0); 
times(innx) = times(innx) + tmp(innx,1); 
Tnew = times(1:end-1); 
 
% Time Table Update 
TimeTable = [zeros(3,1) TimeTable zeros(3,1)]; 
TimeTable = TimeTable(:,ix_okay); 
for i = 1:length(innx), 
    TimeTable(:,innx(i)) = times(innx(i))*ones(size(TimeTable,1),1); 
end 
TimeTable = TimeTable(:,1:end-1); 
  
% Summary Table 
GC = [dist-actt dist]; 
GC = GC(2:end-1,:); 
Rused = NaN(size(Nr)); 
tmpTable = NaN(size(ResourceTable,1),length(ix_okay(1:end-1)-1)); 
for j = 1:length(Nr), 
    Summary = zeros(length(M),max(max(GC))); 
    for i = 1:length(M), 
        Summary(i,GC(i,1)+1:GC(i,2)) =    ones(1,length(GC(i,1)+1:GC(i,2)))*RR(j,i)/T(i); 
    end 
    ttt = [zeros(3,1) ResourceTable((j-1)*3+1:(j-1)*3+3,:) zeros(3,1)]; 
    ttt = ttt(:,ix_okay); 
    ix_okay2 = ix_okay-1; 
    for i = 1:length(innx), 
        icc = ix_okay2(innx(i)); 
        mult = sum(Summary(icc,Tdrop+1:end) > 0); 
        ttt(:,innx(i)) = RR(j,icc)/T(icc)*mult*ones(size(ttt,1),1); 
    end 
    tmpTable((j-1)*3+1:(j-1)*3+3,:) = ttt(:,1:end-1); 
    Rused(1,j) = sum(sum(Summary(:,1:Tdrop))); 
  
end 
  
% New resource table 
ResourceTable = tmpTable; 
  
% New resource threshold (Rdrop) 
Rnew = ceil((Ropt - Rused)*0.9); 
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Appendix G 

 

 
 

  

% Penalty function for RENEWABLE RESOURCE 
GC   = [dist-actt+1 dist]; 
GC   = GC(2:end-1,:); 
TCC1 = zeros(length(GC),Cmax); 
 
for i = 1:length(GC), 
    TCC1(i,GC(i,1):GC(i,2)) = R(1,i)*ones(1,T(i)); 
end 
 
RNmax1  = max(sum(TCC1)); % maximum of daily/weekly resource consumption 
Penalty = delta*max(0,RNmax1/Nr(1) - 1);	
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Appendix H 

 

  

Ni = 40;    % # of runs	
Ng = 2000;  % # of generations	
Np = 10;    % population size	
Nr = 5;     % threshold of renewable resource	
 	
ET = NaN(1,Ni); SC = ET; TP = ET;	
for i = 1:Ni,	
    	
    [tp,sc,et] = funDEA(Nr,TimeTable,ResourceTable,G,Ng,Np);	
    ET(i) = et;	
    SC(i) = sc;	
    TP(i) = tp;	
    fprintf('OPT %3d/%3d: tpt = %3d, succ = %d, et = %2.1f s\n',i,Ni,tp,sc,et);	
 	
end	
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