
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Mechanical & Aerospace Engineering Theses &
Dissertations Mechanical & Aerospace Engineering

Spring 2017

Multi-Mode Resource Constrained Project Scheduling Using Multi-Mode Resource Constrained Project Scheduling Using

Differential Evolution Algorithm Differential Evolution Algorithm

Faisal Manour Altarazi
Old Dominion University, tarazifm@yahoo.com

Follow this and additional works at: https://digitalcommons.odu.edu/mae_etds

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Altarazi, Faisal M.. "Multi-Mode Resource Constrained Project Scheduling Using Differential Evolution
Algorithm" (2017). Doctor of Philosophy (PhD), Dissertation, Mechanical & Aerospace Engineering, Old
Dominion University, DOI: 10.25777/ryrx-5s13
https://digitalcommons.odu.edu/mae_etds/23

This Dissertation is brought to you for free and open access by the Mechanical & Aerospace Engineering at ODU
Digital Commons. It has been accepted for inclusion in Mechanical & Aerospace Engineering Theses &
Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae_etds
https://digitalcommons.odu.edu/mae
https://digitalcommons.odu.edu/mae_etds?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mae_etds/23?utm_source=digitalcommons.odu.edu%2Fmae_etds%2F23&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

MULTI-MODE RESOURCE CONSTRAINED PROJECT SCHEDULING USING

DIFFERENTIAL EVOLUTION ALGORITHM

by

Faisal Manour Altarazi
B.S. August 2004, Riyadh College of Technology, Saudi Arabia

M.S. December 2010, Gannon University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for Degree of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF MECHANICAL & AEROSPACE ENGINEERING

OLD DOMINION UNIVERSITY
May 2017

 Approved by:

 Han Bao (Director)

 Rafael Landaeta (Member)

 Xiaoyu Zhang (Member)

ABSTRACT

MULTI-MODE RESOURCE CONSTRAINED PROJECT SCHEDULING USING
DIFFERENTIAL EVOLUTION ALGORITHM

Faisal Manour Altarazi

Old Dominion University, 2017
Director: Dr. Han Bao

Project scheduling is a tool that manages the work and resources associated with

delivering a project on time. Project scheduling is important to organize, keep track of the

finished and in-progress tasks and manage the quality of work delivered. However, many

problems arise during project scheduling. Minimizing project duration is the primary

objective. Project cost is also a critical matter, but there will always be a trade off between

project time and cost (Ghoddousiet et al., 2013), so scheduling activities can be challenging

due to precedence activities, resources, and execution modes. Schedule reduction is heavily

dependent on the availability of resources (Zhuo et al., 2013).

There have been several methods used to solve the project scheduling problem. This

dissertation will focus on finding the optimal solution with minimum makespan at lowest

possible cost. Schedules should help manage the project and not give a general estimate of

the project duration. It is important to have realistic time estimates and resources to give

accurate schedules. Generally, project scheduling problems are challenging from a

computational point of view (Brucker et al., 1999).

This dissertation applies the differential evolution algorithm (DEA) to multi mode,

multi resource constrained project scheduling problems. DEA was applied to a common 14-

task network through different scenarios, which includes Multi Mode Single Non Renewable

Resource Constrained Project Scheduling Problem (MMSNR) and Multi Mode Multiple Non

Renewable Resource Constrained Project Scheduling Problem (MMMNR). DEA was also

applied when each scenario was faced with a weekly constraintand when cost and time

contingencies such as budget drops or change in expected project completion times interfere

with the initial project scheduling plan. A benchmark problem was also presented to compare

the DEA results with other optimization techniques such as a genetic algorithm (GA), a

particle swarm optimization (PSO) and ant colony optimization (ACO). The results indicated

that our DEA performs at least as good as these techniques as far as the project time is

concerned and outperforms them in computational times and success rates. Finally, a pareto

frontier was investigated, resulting in optimal solutions for a multi objective problem

focusing on the tradeoff of the constrained set of parameters.

 iv

Copyright, 2017, by Faisal Manour Altarazi, All Rights Reserved.

 v

I dedicate this dissertation to my loving parents Khadija Ahmad Bukhari and Manour

Mahmood Altarazi who guided me with their prayers. I also dedicate this dissertation to my

supportive wife Arwa and my children Mariah, Sarah and Abdallah who were my motivation.

Also, to my siblings Suad, Raed, Mohammad, Daniah and Sultan and everyone who

supported me throughout this journey.

 vi

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. Han Bao for his support and help. He

guided me through my courses and research, and gave advice and encouragement throughout

my degree.

 I would also like to thank Dr. Rafael Landaeta and Dr. Xiaoyu Zhang for being on

my committee. I will always owe a great deal of gratitude toward these professors who

provided guidance, knowledge and advice.

 vii

 NOTATIONS

DEA Differential Evolution Algorithm

MM Multiple Mode

SNR Single Non-Renewable Resource

MNR Multiple Non-Renewable Resources

i Vector’s Population

j Task

g Generation

𝐶" Feasible Solution Vector i

𝐶# Crossover Factor

CP Critical Path

𝐶$%& Critical Path Total Project Time

𝑠" Sequence Vector

𝑚" Mode Vector

A Scale Factor to Control Evolution Rate

rand Random Number betwen 0 and 1

𝑟",+ Random Generated Number for Sequence or Mode i and task j

𝑀-,. Mutation Vector for Task C, Sequence Vector

𝑀-,$ Mutation Vector for Task C, Mode Vector

𝑁0 Units of Resources for Resource Type l Available

𝑇𝑔",+ Target Vector for Sequence or Mode i and task j

𝑇𝑟",+ Trial Vector for Sequence or Mode i and task j

TPT Total Project Time

RCPSP Resource Constrained Project Scheduling Problem

MRCPSP Multi-mode Resource Constrained Project Scheduling Problem

MMRCPSP Multi-mode Multi Resource Constrained Project Scheduling Problem

GA Genetic Algorithm

SA Simulated Annealing

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

 viii

TABLE OF CONTENTS

Page
LIST OF TABLES ... x

LIST OF FIGURES .. xi

Chapter
1. INTRODUCTION ... 1

2. LITERATURE REVIEW .. 3
2.1 Project Scheduling ...3
2.2 Fundamentals of Project Scheduling ...4
2.3 Multi-Mode Multi Resource Constrained Project Scheduling Problems5
2.4 Common Software in Project Scheduling ..7

3. DIFFERENTIAL EVOLUTION ALGORITHM WITH MULTI-MODE MULTI
RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM 9

3.1 Principles of DEA ..9
3.2 A Case Study of Multi-Mode Multi Resource Constrained Project Scheduling
Problem ..10
3.3 Research Gaps ..11

4. APPLICATIONS OF DEA TO VARIOUS SCENARIOS ... 12
4.1 General Network for All Scenarios ..12
4.2 Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project
Scheduling Problem ... 21
4.3 Multi Mode Multiple NonRenewable (MMMNR) Resource Constrained Project
Scheduling Problem ...24
4.4 Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project
Scheduling Problem with Weekly Constraint ..31
4.5 Multi Mode Multiple Non Renewable (MMMNR) Resource Constrained Project
Scheduling Problem with Weekly Constraints ..36
4.7 Cost and Time Contingencies for Multi Mode Multiple Non Renewable (MMMNR)
Resource Constrained Project Scheduling Problem ..48

5. BENCHMARK RESULTS & PARETO FRONTIER .. 55
5.1 Benchmark Results .. 55
5.2 Principle of Pareto Frontier ..62
5.3 Pareto Frontier for MMSNR Scheduling Problem ..62

6. CONCLUSION .. 74

REFERENCES .. 76

APPENDICES

A ...80
B ...82
C ...83
D ...84
E ...85
F ...87
G ...89

 ix

Page

H ...90
VITA .. 91

 x

LIST OF TABLES

Table Page

3.1 Representation of a Feasible Solution..10

3.2 Resource Requirements and Corresponding Durations for Two Modes........................11

4.1 Resource Requirements and Corresponding Durations for Three Modes......................13

4.2 Initial Population..14

4.3 Random Numbers for Sequences and Modes...14

4.4 Mutant Vector...15

4.5 Target Vector..15

4.6 New Random Numbers for Sequences and Modes..16

4.7 Trial Vector (modified target with mutant via crossover) ...16

4.8 New Solution Vector (modified target with mutant) ...17

4.9 Costs of New Solution and Target Vector..19

4.10 Second Generation Population...20

4.11 Mode Selected for Each Resource According to the Optimal Solution.......................23

4.12 Three Resource Requirements for Three Modes..24

4.13 Mode Selected for Each Resource According to the Optimal Solution.......................27

4.14 Weekly Resource Needs...33

4.15 Weekly Resource Needs of R1...38

4.16 Weekly Resource Needs of R2...39

4.17 Weekly Resource Needs of R3...40

4.18 Cost of Resources Each Week..46

4.19 Resources After Budget Drop (until 9th Week)………………………………………50

4.20 Resources After Budget Drop (After 9th Week)………………………………......... 53

5.1 Information About the Three Modes..56

5.2 Benchmark Results...61

 xi

LIST OF FIGURES

Figure Page

3.1 Damak et al. Example Network...10

4.1 Case Study Network..12

4.2 Evolution of Feasible Optimal Solution..23

4.3 Evolution of Feasible Optimal Solution..26

4.4 Resource Allocations...28

4.5 Gantt Charts...29

4.6 Optimal Network Structure..30

4.7 Weekly Resource Consumption of Optimal Solution...34

4.8 Total Project Time of the Weekly Threshold..35

4.9 Weekly Resource Consumption of Optimal Solution of R1...41

4.10 Weekly Resource Consumption of Optimal Solution of R2..41

4.11 Weekly Resource Consumption of Optimal Solution of R3..42

4.12 Initial DEA with Showing 9th Week Completed and Uncompleted Tasks...................44

4.13 Evolution of Feasible Optimal Solution..45

4.14 DEA for Remaining Network..46

4.15 Initial Dea with Showing 9th Week Completed and Uncompleted Tasks...................49

4.16 Evolution of Feasible Optimal Solution After Budget Drop...52

4.17 DEA for Remaining Network (After Budget Drop)...53

 xii

Figure Page

5.1 Benchmark Network..55

5.2 Evolution of Feasible Optimal Solution..58

5.3 Gantt Charts...58

5.4 Optimal Network Structure..59

5.5 Pareto Frontier Feasible Space..62

5.6 Pareto Frontier (Run #1)..64

5.7 Pareto Frontier (Run #2)...65

5.8 Pareto Frontier (Run #3)..66

5.9 Pareto Frontier (Run #4)..67

5.10 Pareto Frontier (Run #5)..68

5.11 Pareto Frontier (Run #6)..69

5.12 Pareto Frontier (Run #7)..70

5.13 Pareto Frontier (Run #8)..71

5.14 Pareto Frontier (Run #9)..72

5.15 Pareto Frontier (Run #10)..73

6.1 DEA Flowchart..74

 1

CHAPTER I

INTRODUCTION

Projects are unique in nature. Time, cost and resources are normally considered when

scheduling a traditional project. Project scheduling problems typically specify the

minimization of project duration as the primary objective. However, cost is also a critical

matter. Minimizing project time and cost is important in projects but it will have an influence

on the project quality and risk (Zhou et al., 2013), and will always be a trade off between

project time and cost (Ghoddousi et al., 2013). Scheduling activities can be challenging due

to precedence activities, resources, and execution modes. Schedule reduction is heavily

dependent on the availability of resources (Zhuo et al., 2013). This leads to the resource-

constrained project scheduling problem (RCPSP) that was first introduced by Kelly in 1963.

RCPSP concentrates scheduling activities over time and resources simultaneously based on

the precedence that optimizes the scheduling objective, minimizing the project makespan.

Resources may be renewable or non-renewable. Renewable resources are used up in

each period but reappear again at the beginning of the next period or when the task or tasks,

which use those resources, are complete. Examples of renewable resources include

manpower and many types of equipment and machines. Non-renewable resources are

depleted as they are used and are available on a total project basis. Examples of non-

renewable resources include capital, energy and raw materials. Any task may require a single

resource or a set of resources, and the resource usage may vary over the duration of the task.

A task may also have multiple execution modes (Sprecher, 1994).

The extension of RCPSP is the multi-mode resource constrained project scheduling

problems (MRCPSP) which are more common in the real world where each activity is

executed in one of several modes, “M1 (regular), M2 (fast), M3 (extreme)”, representing a

combination of resources and durations. It is a challenging problem, and several techniques

 2

have been proposed to solve this problem. MRCPSP are considered combinatorial problems,

the optimum solution of which can be theoretically determined through finite steps (Mori &

Tseng, 1997).

RCPSP and MRCPSP assume that once an activity starts, it will be executed until its

completion (Peteghem & Vanhoucke, 2010). However, in resource-constrained project

scheduling problems, the tasks have resource requirements and the resources are limited. In

multi-mode resource-constrained project scheduling problems, each task may be executed in

more than one mode, and each mode may have different resource requirements.

Problems need to be explicitly formulated (i.e. the objective function and constraints)

(Zhuo et al., 2013). There have been several methods that were used to solve the project

scheduling problem. This dissertation will focus on finding the optimal solution with

minimum makespan at lowest possible cost. In addition, it is attempting to determine a

contingency plan when a project faces a customer’s request for a new delivery time and/or a

change in budget constraints.

 3

CHAPTER 2

LITERATURE REVIEW

2.1 Project Scheduling

Project scheduling problems are focused on finding the feasible optimal solution by

investigating different execution modes with minimum makespan. The program evaluation

and review technique (PERT) and critical path method (CPM) were widely used methods for

project planning and scheduling (Lancaster & Ozbayrak, 2007). They were developed in the

late 1950s (Kelly & Walker, 1959). Activities on the critical path are considered critical

activities. CPM can determine the shortest possible time to complete the project (Zhou et al.,

2013) by using the estimated task durations without considering probabilities (Lewis, 2011).

It takes into account the time and determines critical activities to minimize project makespan,

but resource availability is not considered, and an activity can start when all predecessor

activities are completed. This is impractical because in a real project, resource availability

and allocation will affect the entire project scheduling. The effect of resource constraint on

project duration is very important (Chen & Zhou, 2013). To overcome CPM limitations,

several techniques and optimizations have been proposed in project scheduling (Ghoddousi et

al., 2013).

Usually a schedule is developed under the assumption of unlimited resources (Lewis,

2011). In reality real constraints such as those due to limited resources force the schedule to

be modified before becoming a practical one. However, schedules should help to manage the

project and not give a general estimate of the project duration. It is important to have realistic

time estimates and resources to give accurate schedules. Generally, project scheduling

problems are challenging from a computational point of view (Brucker et al., 1999).

 4

2.2 Fundamentals of Project Scheduling

Over the last 4 decades, many books have appeared that focus on sequencing and

scheduling; here is a brief review of books on sequencing and scheduling:

• Muth & Thompson (1963): This book contains a collection of papers focusing on

computational aspects of scheduling.

• Conway, Maxwell & Miller (1967): This book deals with some of the stochastic aspects

and priority queues.

• Baker (1974): This source gives an excellent overview of the many aspects of

deterministic scheduling. This book does not deal with computational complexity issues

since it appeared just before research in computational complexity started to become

popular.

• Coffman (1976): This book is a compendium of papers on deterministic scheduling and

covering computational complexity.

• French (1982): This covers most of the techniques that are used in deterministic

scheduling techniques.

• Dauzere-Peres & Lasserre (1994): This source focuses primarily on job shop

scheduling.

• Brucker (1995): This book presents a very detailed algorithmic analysis of many

deterministic scheduling.

• Pinedo & Chao (1999): This source is more application oriented and describes a number

of different scheduling models for problems arising in manufacturing as well as services.

• Neumann, Schwindt & Zimmermann (2002): This book covers basic concepts on

project scheduling, resource constrained project scheduling with minimizing project

duration and non-regular objectives.

 5

• Sule (2008): This book provides a broad outlook on optimization and planning from the

initial stages in the area of industrial scheduling and sequencing.

• Lewis (2010): This book presents real-world examples and provides applications-oriented

understanding on project planning, scheduling and control.

• Wilson (2014): This source presents principles and techniques of scheduling and cost

control. It focuses on the specific principles, techniques, and best-practice methodologies

of scheduling and cost control.

2.3 Multi-Mode Multi Resource Constrained Project Scheduling Problems

Multi-mode multi resource constrained project scheduling problems (MMRCPSP) are

more common in the real world. Each activity can be executed in one of a set of modes. Once

the activity starts the selected mode cannot be changed. The objective is to find a minimal

makespan schedule that meets the constraints imposed by the precedence relations and by the

limited resources available (Brucker et al., 1999).

Several approaches have been proposed to solve the MMRCPSP such as the branch

and bound proposed by Bruker et al. (1998) and Sprecher and Drexl (1998). However, the

branch and bound is not able to solve large realistic projects since they cannot find the

optimal solution in reasonable computation time (Peteghem & Vanhoucke, 2010).

Integer Programming (IP)/ Linear programming (LP) is a mathematical method for

solving the optimization problem with linear objective functions subject to linear equality and

inequality constraints. Mathematical methods for scheduling have received a considerable

amount of attention due to their innate efficiency and accuracy. A disadvantage of this

method is that the computational burden may grow tremendously as the problem size

increases. In addition, this method has a single focus (leveling the resources); thus, the

maximization of production rates is not considered (Zhou et al., 2013).

 6

Heuristic methods are non-computer approaches that require less computational effort

than mathematical methods. Traditional heuristic methods can only optimize one objective,

and a global optimum is not guaranteed. The advantage of heuristic methods is their

simplicity. However, most heuristic methods are problem dependent, which makes it difficult

to apply them to other projects equivalently (Zhou et al., 2013).

Metaheuristic methods are used for solving combinatorial optimization problems by

mimicking certain natural processes. Bouleiman and Lecocq (2003) and Józefowska et al.

(2001) used the simulated annealing (SA) approach to solve MRCPSP. Jarboui et al. (2008)

presented the particle swarm optimization (PSO). Genetic algorithm (GA) and ant colony

optimization (ACO) are also methods to ensure optimal solutions (Zhou et al., 2013).

Genetic algorithms introduced by Holland (1975) use techniques and procedures

inspired by the biological theory of evolution to solve complex optimization problems. Mori

and Tseng (1997) proposed a genetic algorithm for MMRCPSP. Hartmann (2001) and

Alcaraz et al. (2003) worked on a genetic algorithm for solving MMRCPSP. The genetic

algorithm differs from the other meta-heuristic techniques (such as simulated annealing or

tabu search) by producing a population of solutions rather than a unique current solution

(Lancaster & Ozbayrak, 2007).

Evolutionary algorithms have been developed based on a form of meta-heuristic

techniques especially by genetic algorithms. Evolutionary algorithms have shown to be well

suited for complex problems. Project scheduling problems are distinctly complex and would

benefit from evolutionary techniques for finding optimal solutions or near optimal solutions

(Lancaster & Ozbayrak, 2007). One of the large algorithms developed in the domain of

evolution was differential evolution (DE) introduced by Storn and Price in 1997. Because

this dissertation relies extensively on the application of this method to solving project

scheduling problems, it will be discussed at length later.

 7

2.4 Common Software in Project Scheduling

Currently there are many commercially available software packages used for project

scheduling. A listing of these software is provided below.

Microsoft Project: Is a project management software program developed and sold by

Microsoft. It is very easy to learn, designed to assist a project manager in developing a plan,

assigning resources to tasks, tracking progress, managing the budget and analyzing

workloads.

Add ons to MS Project

• Concerto: Is critical chain project management software that requires a

realization-consulting contract on top of the software costs (Concerto Integrated

Software Solutions, 2016).

• CC- (M) Pulse: Uses the concept of critical chain methodology to create project

plans. It is open source software and download is free (CC- (M) Pulse, 2016).

• Pro-Chain: Pro-Chain Project Management Solutions enhances the office software

MS Project. There is an enterprise version, which acts as a database engine for the

data (ProChain Solutions Inc, 2016).

• PD-Trak: PD-Trak Solution Software is an add-on for MS Project. User interface

appears like someone wrote it in MS Access based on the website’s screen shots

(PD-Trak, 2016).

Primavera: Is a powerful and easy to use solution for planning and executing projects. It can

plan, schedule and control complex projects, allocates best resources and tracks progress

(Oracle’s Primavera P6 Professional Project Management, 2016).

PS8 (used by Newport News Shipyard): Is a robust yet scalable project management tool.

The program enables you to save time with its powerful resource leveling that you can use to

keep your task plans viable given your resource constraints. Its leveling algorithm supports

 8

single- and multi-project leveling using time-phased, resource-availability profiles (Project

Management Software, 2016).

CC based software

• Agile CC from AdeptTracker: Is single project/ multi project CCPM software. The

user can backward schedule a plan, identify the critical chain, size and place both the

project and feeding buffer, size and place capacity buffer (AgileCC for AdeptTracker,

2008).

Corporate Systems

• Siemen’s PLM: Product lifecycle management (PLM) is an information management

system that can integrate data, processes, business systems and, ultimately, people in

an extended enterprise. PLM software allows you to manage this information

throughout the entire lifecycle of a product efficiently and cost-effectively, from

ideation, design and manufacture, through service and disposal (Siemens PLM

Software, 2016).

• SAP: The original SAP idea was to provide customers with the ability to interact with

a common corporate database for a comprehensive range of applications. It has the

capability to manage financial, asset, and cost accounting, production operations and

materials, personnel, plants, and archived documents (Payne et al., 2014).

 9

CHAPTER 3

DIFFERENTIAL EVOLUTION ALGORITHM WITH MULTI-MODE MULTI

RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM

3.1 Principles of DEA

Some problems are difficult if not impossible to solve. Differential Evolution (DE)

can be used to find an approximate solution to such problems. It is a well-known scheme for

global optimization and is a powerful heuristic method for solving multi-objective

optimization problems. Based on the manipulation of random numbers, it is inspired by the

genetic algorithm. DE has helped solve many industrial problems over the last ten years. DE

is based on four main steps: population structure, mutation, crossover and selection.

Population Structure: The initial population of feasible solutions is randomly generated

which conforms to their precedence constraints. Each feasible solution is represented by a

vector of attributes associated with each task involved in the project. For example, one

attribute may be the task’s sequence. Another attribute may be the task’s mode of operation.

Mutation: Two parents from the population are used to create a child, M, using some type of

numeric function.

Crossover: The idea of the crossover is to create a trial vector from the target vector and the

mutant vector by crossing them over.

Selection: It will be performed between the target vector and the trial vector, keeping the

better individual and discarding the worse one.

The principles above will be illustrated in the case study given in section 3.2 below.

 10

3.2 A Case Study of Multi-Mode Multi Resource Constrained Project Scheduling

Problem

Damak et al. (2009) proposed a DE algorithm to solve MMRCPSP. The case study

shown in Figure 3.1 involves six tasks that can be executed in either of the two modes as

indicated in Table 3.2. Each sequence of a task is feasible only if it follows the precedence

rule. The objective is to select the sequence with a makespan as small as possible. A solution

is represented by two vectors: a position vector, which refers to the position of each task in

the sequence, and a mode vector, which indicates the corresponding mode of each task. An

example of a feasible solution is shown in Table 3.1 where the task sequence and related

mode are shown for each of the 6 tasks in the network.

Figure 3.1: Damak et al. Example Network

Table 3.1: Representation of a Feasible Solution

Task 1 2 3 4 5 6
Task Sequence 1 4 2 5 3 6
Task Mode 2 1 2 2 1 1

Damak et al. explained the differential evolution steps for one generation manually

and did not present the results. In this dissertation, a new case study will be introduced, and

the differential evolution algorithm will be used to present the optimal solution through

different scenarios using Matlab.

1 3 5

2 4 6

Start End

 11

Table 3.2: Resource Requirements and Corresponding Durations for Two Modes

Task
Mode 1 Mode 2

Consumption NR/NN Duration Consumption NR/NN Duration
1 2/4 3 1/2 4
2 3/4 4 2/3 6
3 4/2 2 2/2 3
4 4/6 2 3/3 3
5 3/1 1 1/5 3
6 2/1 4 1/1 6

Note. From “Differential evolution for solving multi-mode resource-constrained project scheduling
problems” by N. Damak, B. Jarboui, P. Siarry and T. Loukil, 2009, Journal of Computers & Operation
Research, 36, p. 2655.
NR= Renewable Resources
NN=Non-Renewable Resources

3.3 Research Gaps

The case study presented in Damak’s paper is an important demonstration of the

power of DE in providing an optimum solution for a project involving 6 tasks restricted by

both renewable and non-renewable resources and by the number of modes available to each

task. Nevertheless, a number of gaps can be identified as explained below.

• Multi-Mode Project Scheduling

Damak et al. presented a case study with only two modes. This research extends the

application of PSP to more than 2 modes.

• Multi-Resource Project Scheduling

Damak et al. presented a case study with only two resources. This research extends the

application of PSP to more than 2 resources.

• Impact of Contingency Event

The most important part of this dissertation is investigating project scheduling with

weekly constraints and changes in budget and comparing DEA with a benchmark

problem. In addition, it develops a pareto frontier, which is an important and practical

tool to test tradeoff between cost and time.

 12

CHAPTER 4

APPLICATIONS OF DEA TO VARIOUS SCENARIOS

4.1 General Network for All Scenarios

The case study shown in Figure 4.1 involves fourteen tasks that can be executed in

either of the three modes as indicated in Table 4.1. Each sequence of tasks is feasible only if

it follows the precedence rule. Two vectors represent a solution: a position vector, which

refers to the position of each task in the sequence, and a mode vector, which indicates the

corresponding mode of each task.

Figure 4.1: Case Study Network

In the last row of Table 4.1, the total project times and costs are indicated for the

different modes. For example, if all tasks are performed in Mode 1, the project can be

finished in 32 time units with a cost of 198.

The resource (cost) constraint scheduling problem is to find the minimum project time

such that the total project cost does not exceed a prescribed limit (equivalence is permitted).

The cost constraint in this example is set to , which is equal to the cost when all

tasks are executed in Mode 2.

236=rN

 13

Table 4.1: Resource requirements and corresponding durations for three modes

Task
Mode 1 (Regular) Mode 2 (Fast) Mode 3 (Extreme)

Duration R1 Duration R1 Duration R1

A 8 20 6 24 5 26
B 5 14 4 16 3 19
C 4 15 3 18 2 24
D 8 18 6 22 5 23
E 4 12 3 15 2 19
F 5 16 4 18 3 21
G 6 20 5 22 4 24
H 6 15 4 20 3 24
I 7 15 5 19 4 21
J 5 8 4 9 3 11
K 5 8 4 9 3 10
L 7 15 5 19 4 21
M 6 12 5 13 4 15
N 4 10 3 12 2 13

Total 32 198 25 236 20 271

According to Storn and Price, DE is based on generating new vectors and selecting

the vector that survives to the next generation by applying these four steps (Damak et al.,

2009).

Step 1: Population Structure

The initial population is randomly generated with respect to precedence constraints. In

this example, a 4-individual population is generated (see Table 4.2). Note that the sequence

vector contains positions and not the order of execution. For example, in 1C , Task A should

be executed at the 3rd place, and not the 3rd task executed in the first place.

We start by selecting randomly four individuals. Three of them will be used in the

mutation step, and the fourth will be the target vector. In this example 𝐶3, 𝐶4, 𝐶5 are selected

for mutation, and the target will be .

Tg =C1

 14

Table 4.2: Initial population

Tasks A B C D E F G H I J K L M N

Sequence/C1 3 1 7 4 5 2 9 11 6 12 8 10 13 14
Mode/C1 1 2 1 2 3 1 2 1 1 3 3 2 1 1

Sequence/C2 1 2 3 5 4 11 7 8 6 9 13 12 10 14

Mode/C2 3 2 2 1 3 2 3 2 2 3 1 2 3 2

Sequence/C3 1 5 3 2 7 6 4 9 11 10 13 8 12 14

Mode/C3 3 1 1 2 3 1 1 2 2 2 1 3 3 3

Sequence/C4 1 2 10 8 5 3 12 9 6 11 7 4 13 14
Mode/C4 1 3 1 3 2 2 3 2 3 1 2 3 2 3

Step 2: Mutation

Two parents C4 and C3 −C2 are used to create a child M by using the following
equation:

 M =C4 + A ⋅R ⋅ (C3 −C2) (1)

A represents a positive number, which controls the evolution rate (should be chosen greater

than 1). In this example was chosen. R is a 2 by 14 matrix having uniformly

distributed random values between 0 and 1.

Table 4.3: Random Numbers for Sequences and Modes

rand1 seq. 0.23 0.24 0.03 0.14 0.73 0.99 0.16 0.13 0.75 0.43 0.78 0.57 0.24 0.20
rand1 mode 0.08 0.92 0.82 0.01 0.30 0.55 0.92 0.09 0.94 0.77 0.40 0.24 0.49 0.01

Table 4.3 presents the assumed random numbers for each sequence and mode per task. Using

Eq. (1), we calculate the mutants for the sequences and modes and the results are combined in

a mutant vector and shown in Table 4.4.

For example, the sequence and mode mutant of Task C is:

𝑀6,7 = 10 + 1.5 ∗ 0.03 ∗ 3 − 3 = 	10

5.1=A

 15

𝑀6,$ = 1 + 1.5 ∗ 0.82 ∗ 2 − 5 = 	−0.23

Table 4.4: Mutant Vector

Sequence/ M 1 3.08 10 7.37 8.28 -4.42 11.28 9.19 11.62 11.64 7 0.58 13.7 14
Mode/ M 1 1.62 -0.23 3.01 2 1.17 0.24 2 3 -0.15 2 3.36 2 3.01

Step 3: Crossover

The idea of the crossover is to create a trial vector Tr from the target vector Tg and

the mutant vector by crossing them over based on the following procedure:

î
í
ì £

=
otherwise,

,,,
,

ji

jrjiji
ji Tg

CrM
Tr (2)

Equation (2) defines how the i,j component of the trial vector should be calculated

after crossover for 2,1=i (sequence/mode) and j = A,….., N (tasks). In case the randomly

generated jir , number is less than the prescribed jrC , crossover factor then the mutated

element is copied into the (i,j) element of the trial vector. Otherwise the corresponding

element of the target vector is used.

We start this step by repeating the target vector in Table 4.5, then we perform the

crossover and update the target vector using properties of the mutated individual. The

random numbers jir , generated are shown in Table 4.6. The crossover factors are assumed to

be 2.01, =rC for the sequences and 1.02, =rC for the modes. The crossed-over trial vector is

shown in Table 4.7.

Table 4.5: Target Vector

Sequence/ 𝑇D 3 1 7 4 5 2 9 11 6 12 8 10 13 14
Mode/	𝑇D 1 2 1 2 3 1 2 1 1 3 3 2 1 1

 16

Table 4.6: New Random Numbers for Sequences and Modes

r1 sequence 0.32 0.14 0.03 0.97 0.36 0.90 0.24 0.62 0.33 0.27 0.24 0.68 0.62 0.83
r1 mode 0.23 0.52 0.94 0.05 0.59 0.25 0.82 0.43 0.93 0.03 0.74 0.95 0.06 0.36

Table 4.7: Trial Vector (not arranged)

Sequence/	𝑇# 3 3.08 10 4 5 2 9 11 6 12 8 10 13 14
Mode/ 𝑇# 1 2 1 3.01 3 1 2 1 1 -0.15 3 2 2 1

Finally, the trial vector will be arranged. First, the sequence vector is manipulated

using the precedence relationship and ascending values (this one is the hardest part).

Secondly, the mode vector is updated.

We start with the latter because it is easier. The elements of the mode vector are

rounded down to the nearest integer. Exceptionally, values less than 1 are adjusted to 1, and

the values that exceed the maximal number of modes are converted to 3. Thus,

22
115.0
301.3

®
®-
®

Next, the new sequence has to be created. After the Start node, Task A and Task B

compete for execution (see network graph). Since Task A has 3 and Task B has a value of

3.08, Task A gets the first position (3 < 3.08).

Next, the successors of Task A (= Task C and Task D) and the remaning Task B

compete for second place. Their values respectively are: 10, 4, 3.08. Thus, Task B wins (3.08

< 4 < 10).

Next, the successors of Task B (= Task E and Task F) and the remaning Task C, Task

D compete for third place. Their values respectively are: 5, 2, 10, 4. Thus, Task F wins (2 < 4

< 5 < 10).

Next, the successors of Task F (= Task K and Task L) and the remaning Task C, Task

D, Task E compete for fourth place. Their values respectively are: 8, 10, 10, 4, 5. Thus, Task

 17

D wins (4 < 5 < 8 < 10 = 10). Here, a very important rule has to be mentioned: at this point,

Task K could not have been chosen since it requires Task I to be finished. It can be chosen

only after both Task F and Task I are finished (see network graph). Luckily, we don’t have to

deal with this since Task K does not have the minimum value. Damak et al. don’t handle this

kind of problem for two reasons: 1) a computer process can be run after one of its

predecessor finished but not all and 2) they might not encounter this kind of problem due to

the network they use

Next, the successor of Task D (= Task G) and the remaining Task C, Task E, Task K

(still cannot be chosen), Task L compete for fifth place. Their values respectively are: 9, 10,

5, 8, 10. Thus, Task E wins.

Next, the successor of Task E (= Task H and Task I) and the remaining Task C, Task

K, Task L compete for sixth place. Their values respectively are: 11, 6, 10, 8, 10. Thus, Task

I wins. After this step Task K can be chosen if it has the minimal value since ALL of its

predecessors are completed (Task F and Task I).

These rules have to be followed until we reach the end to get the sequence vector of

the new solution. The result is shown in Table 4.8. The first six positions that have been

calculated are highlighted (Task A, Task B, Task F, Task D, Task E, Task I).

Table 4.8: Trial Vector (arranged)

Tasks A B C D E F G H I J K L M N

Sequence/ S 1 2 8 4 5 3 9 11 6 12 7 10 13 14
Mode/ S 1 2 1 3 3 1 2 1 1 1 3 2 2 1

 18

Step 4: Selection

Selection will be performed between the target vector (Table 4.5) and the trial vector

(Table 4.8). This is where we keep the better individual and discard the worse one, i.e. the

new generation will be more evolved. Note the target was () originally the second

individual in the population. Thus, this place has to be updated.

𝐶3EFG =
	𝑇𝑟					𝑓 𝑇𝑟 ≤ 𝑓 𝑇𝑔
𝑇𝑔											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

Equation 3 defines how we should select the individual from the current generation to

create the next, hopefully better, generation. To do this we use the fitness function which is

the sum of the total makespan for the given individual and a penalty.

 Fitness = 𝐶$%&+ Penalty (4)

Here 𝐶$%& is calculated by solving the network for the modes of the given individual,

i.e. 𝐶$%& is the length of the critical path. The makespan of Tr and Tg are

𝑇𝑟$%& = 27

𝑇𝑔$%& = 29

We are seeking the minimum completion time. Thus simply, if the fitness value of the

target vector Tg is greater than the fitness of the new solution vector Tr, we set the second

individual of the new population to be Tr, i.e. 𝐶3EFG = 𝑇𝑟	and we keep all the other

individuals from the previous generation and start all over from Step 1. In the opposite case

the target vector is kept and no modification occurs to the population. At this point, Tr has

lower fitness, but we still need to calculate the penalties too.

The better solution is not necessarily feasible due to the resource constraint, so we need to

somehow filter them. This is done by the penalty function. Table 4.9 shows the costs of Tr

and Tg respectively.

2C

 19

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 	𝜕.max [F.\]#-F	6\E.]$F^
[F.\]#-F	_`#F.`\0^

− 1,0 (5)

Table 4.9: Costs of Trial and Target Vector

Tasks A B C D E F G H I J K L M N

Sequence/ S 1 2 8 4 5 3 9 11 6 12 7 10 13 14
Mode/ S 1 2 1 3 3 1 2 1 1 1 3 2 2 1
Cost/ S 20 16 15 23 19 16 22 15 15 8 10 19 13 10 å221

Sequence/ 𝑇D 3 1 7 4 5 2 9 11 6 12 8 10 13 14
Mode/ 𝑇D 1 2 1 2 3 1 2 1 1 3 3 2 1 1
Cost/ 𝑇D 20 16 15 22 19 16 22 15 15 11 10 19 12 10 å222

The penalty function has one purpose, namely to indicate if a given mode and

sequence vector would produce an infeasible solution, i.e. if the threshold levels of the

resources are violated. Since Evolutionary Algorithms cannot directly handle nonlinear

constraints of the optimization variables, hence a common approach is to increase the fitness

value in case of infeasibility by a penalty function (as in Damak’s paper).

Here, the penalty function is chosen in proportion of the level of infeasibility, i.e. the more

we violate the resource thresholds the greater penalty we get. Thus, the penalty function in

our case can be considered.

)ity"Infeasibil Of Level("×¶=Penalty

If ¶ is increased, the penalty becomes a (death) penalty i.e. it is more likely that the

given mode and sequence vector will not survive to the next generation. On the other hand, if

¶ is decreased then it is more likely for an infeasible solution to survive the next generation.

The trade-off has to be found, since we want to eliminate infeasibility from the population,

hoping to find the GLOBAL optimal solution; however, we also want some perturbations

(degenerates, infeasible solutions) to avoid stagnation in a LOCAL optimum.

 20

Using 2.35=¶ (chosen 10% higher than max cmax), the penalty functions are:

𝑃𝑒𝑛𝑎𝑙𝑡𝑦_#= 35.2 * max 33a
34b

− 1,0 = 35.2 * max(-0.0636, 0)= 35.2 * 0 = 0

𝑃𝑒𝑛𝑎𝑙𝑡𝑦_D= 35.2 * max 333
34b

− 1,0 = 35.2 * max(-0.0593, 0)= 35.2 * 0 = 0

When the penalty = 0 it means that the solution is feasible. (Clearly, both 221 and 222 costs

are less than the prescribed limit of 236). Thus, the overall fitness are:

𝑓 𝑇𝑟 = 27 + 0 𝑓 𝑇𝑔 = 29 + 0

This means that	𝑓 𝑇𝑟 ≤ 𝑓 𝑇𝑔 , i.e. 𝐶3EFG = 𝑇𝑟

The new generations are therefore shown in Table 4.10.

Table 4.10: Second generation population

Tasks A B C D E F G H I J K L M N

Sequence/C1
new 1 2 8 4 5 3 9 11 6 12 7 10 13 14

Mode/C1
new 1 2 1 3 3 1 2 1 1 1 3 2 2 1

Sequence/C2

new 9 1 11 10 2 3 12 5 4 8 7 6 13 14

Mode/C2
new 1 1 1 2 3 1 2 1 1 3 3 2 1 1

Sequence/C3

new 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Mode/C3
new 3 1 1 2 3 1 1 2 2 2 1 3 3 3

Sequence/C4

new
 2 1 6 5 4 3 12 8 7 11 10 9 13 14

Mode/C4
new

 3 2 2 1 3 2 3 2 2 3 1 2 3 2

 21

4.2 Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project

Scheduling Problem

The single resource project scheduling problem is a simple optimization problem with

one resource (R1 or Cost) involved. Using Table 4.1, the Cost constraint is set to 236; thus,

the sum of all cost usage should not exceed this limit (equivalence is permitted). By using

differential evolution algorithm, the optimal solution will indicate the best mode for each

activity to be executed and determine the optimal total cost and total project time. The

objective of resource constraint project scheduling problems is to find the precedence and

resource feasible completion times for all activities minimize the makespan of the project.

The computer program consists of two levels (Appendix A). At low-level the critical

path computation is performed using topological sort with finding the longest path in the

directed acyclic graph (project network) and backpropagation for slack time calculation. At

high-level the program performs the steps of the DEA algorithm which is repeated for every

generation until the stopping criterion is met. The connection between the two level is the

fitness function where the low-level function is called for a given individual in the

population. Constraints enforce the presedence constraints between activities and constraint

limits for each resource type k and each time instant t that the resource demand of the

activities which are currently processed does not exceeed the capacity (Weglarz, 1999).

 22

Finding Optimal Solution:

Project Time = 20.00
Penalty = 0.00
Fitness = 20.00

Activity Mode vector Time Cost Critical

 A 3 5.0 26.0 yes
 B 3 4.0 16.0 yes
 C 1 4.0 15.0 no
 D 3 5.0 23.0 yes
 E 2 2.0 19.0 yes
 F 1 5.0 16.0 no
 G 3 4.0 24.0 yes
 H 2 4.0 20.0 yes
 I 1 7.0 15.0 yes
 J 2 4.0 9.0 yes
 K 1 5.0 8.0 yes
 L 1 7.0 15.0 no
 M 3 4.0 15.0 yes
 N 3 2.0 13.0 yes

Total cost: 234.0
Total project time: 20.0

Verification of Results:

Total cost: 26+19+15+23+15+16+24+20+15+9+8+15+15+13 = 234

Project time (A-D-G-M-N): 5+5+4+4+2 = 20

Project time (B-E-H-J-M-N): 5+5+4+4+2 = 20

Project time (B-E-I-K-N): 4+2+7+5+2 = 20

 23

Table 4.11: Mode Selected for Each Resource According to the Optimal Solution
(highlighted)

Task
Mode 1 (Regular) Mode 2 (Fast) Mode 3 (Extreme)

Duration R1 Duration R1 Duration R1

A 8 20 6 24 5 26
B 5 14 4 16 3 19
C 4 15 3 18 2 24
D 8 18 6 22 5 23
E 4 12 3 15 2 19
F 5 16 4 18 3 21
G 6 20 5 22 4 24
H 6 15 4 20 3 24
I 7 15 5 19 4 21
J 5 8 4 9 3 11
K 5 8 4 9 3 10
L 7 15 5 19 4 21
M 6 12 5 13 4 15
N 4 10 3 12 2 13

Total 32 198 25 236 20 271

Figure 4.2: Evolution of Feasible Optimal Solution

 24

4.3 Multi Mode Multiple NonRenewable (MMMNR) Resource Constrained Project

Scheduling Problem

Three resource types are assumed: R1, R2 and R3 (for example: cost, work hour,

material quantity). For example, Task A needs 24 units of R1, 8 units of R2 and 4 units of R3

if executed in Mode 2. If all tasks are executed in extreme mode (Mode 3), total of 271 of R1,

94 of R2 and 58 of R3 would be needed. The total project time would be 20 units of time

(from Table 4.12). The total duration is based on critical path.

Table 4.12: Three Resource Requirements for Three Modes

Task
Mode 1 (Regular) Mode 2 (Fast) Mode 3 (Extreme)

Duration R1 R2 R3 Duration R1 R2 R3 Duration R1 R2 R3

A 8 20 7 3 6 24 8 4 5 26 9 5
B 5 14 5 2 4 16 6 3 3 19 7 4
C 4 15 5 3 3 18 6 3 2 24 8 5
D 8 18 6 3 6 22 8 4 5 23 8 5
E 4 12 4 2 3 15 5 3 2 19 7 4
F 5 16 6 3 4 18 6 3 3 21 7 4
G 6 20 7 3 5 22 8 4 4 24 8 5
H 6 15 5 3 4 20 7 3 3 24 8 5
I 7 15 5 3 5 19 7 3 4 21 7 4
J 5 8 3 2 4 9 3 2 3 11 4 3
K 5 8 3 2 4 9 3 2 3 10 4 3
L 7 15 5 3 5 19 7 3 4 21 7 4
M 6 12 4 2 5 13 5 2 4 15 5 4
N 4 10 4 2 3 12 4 2 2 13 5 3

Total 32 198 69 36 25 236 83 41 20 271 94 58

Constraint Settings:

The following assumptions are made:

• R1 must be LESS or EQUAL to 236

• R2 must be LESS or EQUAL to 83

• R3 must be LESS or EQUAL to 41

 25

These settings are identical to the case when all tasks are executed in Mode 2. Without

optimization, the total duration would be 25. The same DEA for single constraint project

scheduling program was used but adjusted to include the additional resources R2, R3. The

new modes/durations have been added to the program (R2, R3). The penalty function now

takes into consideration all resources by computing the penalty function for each resource

and then summing it (Appendix B). If all penalties are zero then the feasible mode sequence

is found by taking into consideration all resources and limitations.

The extension of multi modes requires the update of the TimeTable and

ResourceTable variables according to the specified values. Moreover, in each fitness function

call the resource consumption of each activity for each resource has to be tracked. This is

done by selecting the corresponding values of the ResourceTable to the actual mode vector.

After this, we can compute the total resource consumption/resource type over the project

(three values in our case). Dividing them by the corresponding resource thresholds and

subtracting 1 from them would give <= 0 for feasible allocation and >0 for infeasible

allocation. Clearly the sum of these results will be <= 0 if ALL resource allocations are

feasible and >0 if AT LEAST ONE of them are not feasible.

This will be the new penalty function:

å
=

=
N

i
iPenaltyPenalty

1

In our case it is:

÷
ø
ö

ç
è
æ -×¶+

÷
ø
ö

ç
è
æ -×¶+÷

ø
ö

ç
è
æ -×¶=

0;1
level thresholdR3

nconsumptio R3Totalmax

0;1
level thresholdR2

nconsumptio R2Totalmax0;1
level thresholdR1

nconsumptio R1TotalmaxPenalty

 26

Finding Optimal Solution:

Total Project Time = 24.00
Penalty = 0.00
Fitness = 24.00

Activity Mode Time R1 R2 R3 Critical Sequence

 A 2 6.0 24.0 8.0 4.0 yes 1.
 B 1 5.0 14.0 5.0 2.0 yes 2.
 C 1 4.0 15.0 5.0 3.0 no 3.
 D 2 6.0 22.0 8.0 4.0 yes 4.
 E 1 4.0 12.0 4.0 2.0 yes 5.
 F 2 4.0 18.0 6.0 3.0 no 7.
 G 2 5.0 22.0 8.0 4.0 yes 8.
 H 2 4.0 20.0 7.0 3.0 yes 10.
 I 1 7.0 15.0 5.0 3.0 yes 6.
 J 2 4.0 9.0 3.0 2.0 yes 11.
 K 1 5.0 8.0 3.0 2.0 yes 12.
 L 1 7.0 15.0 5.0 3.0 no 9.
 M 3 4.0 15.0 5.0 4.0 yes 13.
 N 2 3.0 12.0 4.0 2.0 yes 14.

 Threshold >= Consumption
Resource Type 1: 236.00 221.00
Resource Type 2: 83.00 76.00
Resource Type 3: 41.00 41.00

Figure 4.3: Evolution of Feasible Optimal Solution

 27

The optimal solution is 24 weeks (the optimization decreased the TPT 1 week

compared to the 25 week Mode 2 solution). The optimal TPT increased by 4 weeks compared

to the single resource solution.

Table 4.13: Mode Selected for Each Resource According to the Optimal Solution
(highlighted)

Task
Mode 1 (Regular) Mode 2 (Fast) Mode 3 (Extreme)

Duration R1 R2 R3 Duration R1 R2 R3 Duration R1 R2 R3

A 8 20 7 3 6 24 8 4 5 26 9 5
B 5 14 5 2 4 16 6 3 3 19 7 4
C 4 15 5 3 3 18 6 3 2 24 8 5
D 8 18 6 3 6 22 8 4 5 23 8 5
E 4 12 4 2 3 15 5 3 2 19 7 4
F 5 16 6 3 4 18 6 3 3 21 7 4
G 6 20 7 3 5 22 8 4 4 24 8 5
H 6 15 5 3 4 20 7 3 3 24 8 5
I 7 15 5 3 5 19 7 3 4 21 7 4
J 5 8 3 2 4 9 3 2 3 11 4 3
K 5 8 3 2 4 9 3 2 3 10 4 3
L 7 15 5 3 5 19 7 3 4 21 7 4
M 6 12 4 2 5 13 5 2 4 15 5 4
N 4 10 4 2 3 12 4 2 2 13 5 3

Total 32 198 69 36 25 236 83 41 20 271 94 58

Verification of Results:

R1: 24+14+15+22+12+16+20+20+15+8+8+19+15+13 = 221

R2: 8+5+5+8+4+6+7+7+5+3+3+7+5+5 = 76

R3: 4+2+3+4+2+3+3+3+3+2+2+3+4+3 = 41

Figure 4.4 presents two graphs to show the evolution of the resource allocation in

function of the generation number. The columns in both graphs represent the resource types.

In the first graph (A) the total resource consumption with the corresponding threshold levels

and the evolution of the optimal duration of the activities can be seen. The second graph (B)

shows the individual consumption of each activity for each resource over the generations.

 28

(A)

(B)

Figure 4.4: Resource Allocations

 29

Figure 4.5: Gantt Charts

 30

Figure 4.5 shows the evolution of the optimal scheduling over the generations by

using Gantt charts. The red activities are critical; the green ones have slack time and they can

be shifted along the dotted lines until reaching their end such that the optimal solution is not

violated. The optimal scheduling is 24 weeks long (after the 646th generation).

Figure 4.6 shows the final optimal network structure with the highlighted critical

path(s) and the modes. This corresponds to the solution given in Table 4.13.

Figure 4.6: Optimal Network Structure

 31

4.4 Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project

Scheduling Problem with Weekly Constraint

The same network in Figure 4.1 and same resource requirements in Table 4.1 are

applied here. A new constraint is added by introducing an extra penalty function

(implemented in xpenalty) which is added to the already existing one. The new function first

computes the weekly resource needs of the different modes (resource need/duration).

According to the current mode vector, a matrix similar to the Gantt Chart can be created

which keeps track of the weekly resource consumption of each activity between its starting

and ending time. Since activities can be executed in parallel (satisfying precence constraints),

the total consumption of a given week can be obtained by adding up the weekly resource

consumption for ALL active tasks in that week. Doing this for ALL weeks, we can check

whether there is a week with higher consumption than the given weekly threshold level. If so,

penalty is introduced proportionally to the number of weeks that are violated in this level

(Appendix C).

The total resource threshold level is still set at 236. Additionally to this constraint, a

weekly threshold level is defined. It is assumed that in each week (separately) the

consumption of R1 cannot exceed this threshold.

In the next example the weekly threshold constraint is assumed to be 15. Note that the

project can be done in 20 weeks below 236 total R1 usage. This means that 236/20 = 11.8 is

the average consumption of each week. The problem is to find the minimum makepsan of the

project that satisfies BOTH constraints (weekly and total threshold).

 32

Finding Optimal Solution:

Constraints settings:
 - weekly constraints set = 15
 - maximum resource consumption allowed is 236.0

Generations:
100
…
#2500
Elapsed time is 48.920122 seconds.

Optimal solution:

Total Project Time = 22.00
Penalty1 = 0.00
Penalty2 = 0.00
Fitness = 22.00

Activity Mode Time R1 Critical Sequence

 A 3 5.0 26.0 yes 1.
 B 3 3.0 19.0 yes 4.
 C 1 4.0 15.0 no 2.
 D 2 6.0 22.0 yes 3.
 E 1 4.0 12.0 yes 6.
 F 2 4.0 18.0 no 7.
 G 2 5.0 22.0 yes 5.
 H 1 6.0 15.0 yes 8.
 I 1 7.0 15.0 no 10.
 J 3 3.0 11.0 yes 11.
 K 3 3.0 10.0 no 13.
 L 1 7.0 15.0 no 9.
 M 3 4.0 15.0 yes 12.
 N 3 2.0 13.0 yes 14.

 Threshold >= Consumption
Resource Type 1: 236.00 228.00
Weekly Threshold: 15.00

 33

Table 4.14: Weekly Resource Needs

Activity A B C D E F G H I J K L M N SUM

Week1 5.2 6.3 0 0 0 0 0 0 0 0 0 0 0 0 11.5
Week2 5.2 6.3 0 0 0 0 0 0 0 0 0 0 0 0 11.5
Week3 5.2 6.3 0 0 0 0 0 0 0 0 0 0 0 0 11.5
Week4 5.2 0 0 0 3 4.5 0 0 0 0 0 0 0 0 12.7
Week5 5.2 0 0 0 3 4.5 0 0 0 0 0 0 0 0 12.7
Week6 0 0 3.75 3.66 3 4.5 0 0 0 0 0 0 0 0 14.9
Week7 0 0 3.75 3.66 3 4.5 0 0 0 0 0 0 0 0 14.9
Week8 0 0 3.75 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 14.2
Week9 0 0 3.75 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 14.2

Week10 0 0 0 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 10.4
Week11 0 0 0 3.66 0 0 0 2.5 2.1 0 0 2.1 0 0 10.4
Week12 0 0 0 0 0 0 4.4 2.5 2.1 0 0 2.1 0 0 11.2
Week13 0 0 0 0 0 0 4.4 2.5 2.1 0 0 2.1 0 0 11.2
Week14 0 0 0 0 0 0 4.4 0 2.1 3.6 0 2.1 0 0 12.3
Week15 0 0 0 0 0 0 4.4 0 0 3.6 3.3 0 0 0 11.4
Week16 0 0 0 0 0 0 4.4 0 0 3.6 3.3 0 0 0 11.4
Week17 0 0 0 0 0 0 0 0 0 0 3.3 0 3.75 0 7.1
Week18 0 0 0 0 0 0 0 0 0 0 0 0 3.75 0 3.75
Week19 0 0 0 0 0 0 0 0 0 0 0 0 3.75 0 3.75
Week20 0 0 0 0 0 0 0 0 0 0 0 0 3.75 0 3.75
Week21 0 0 0 0 0 0 0 0 0 0 0 0 0 6.5 6.5

Week22 0 0 0 0 0 0 0 0 0 0 0 0 0 6.5 6.5

Each task through out the weeks should add up to its total values. For example:

Task A: 5.2/ week for five weeks which is 5.2 * 5 = 26

Another example:

Task J needs 3.6/ week for three weeks, which is 3.6 * 3 = 10.8 in total. However, Table 4.12

shows that in mode 3 Task J consumes 11 resources. This is still valid since it is actually

3.666666666666666...*3 = 10.99999999999999.... = 11.

 34

Figure 4.7: Weekly Resource Consumption of Optimal Solution

Figure 4.7 shows the total weekly consumption for the optimal solution (tpt = 22

weeks) along with the threshold level. It can be seen that around the 6-7th week, the

consumption was the highest but still not over the limit; thus, the optimal solution is indeed

feasible.

Next, the weekly threshold level is varied between 10 and 20. The results are shown below.

Constraints settings:
 - weekly constraints set between 10.0 and 20.0
 - maximum resource consumption allowed is 236.0

DEA optimization started...
OPT 1/11 ... Problem is infeasible!
OPT 2/11 ... Problem is infeasible!
OPT 3/11 ... Problem is infeasible!
OPT 4/11 ... Solution found!
OPT 5/11 ... Solution found!
OPT 6/11 ... Solution found!
OPT 7/11 ... Solution found!
OPT 8/11 ... Solution found!
OPT 9/11 ... Solution found!
OPT 10/11 ... Solution found!
OPT 11/11 ... Solution found!

 35

Figure 4.8: Total Project Time of the Weekly Threshold

Figure 4.8 shows the total project time in function of the weekly threshold level along

with the optimal project time without weekly consraints (single resource, TPT = 20 weeks,

red dashed line). It can be seen that if the threshold is below 13 than no feasible solution

exist. Between 13 and 17 the original optimal 20 week project time is increased due to the

stronger constraints imposed on the project. Above the 18 weekly threshold level, we get the

same 20 week solution.

For 236 total R1, the TPT are shown above in function of the weekly thresholds:

weekly threshold <= 12 no feasible solution exist

weekly threshold = 13 TPT = 23

weekly threshold = 14 TPT = 23

weekly threshold = 15 TPT = 22

weekly threshold = 16 TPT = 21

weekly threshold = 17 TPT = 21

weekly threshold >= 18 TPT = 20

 36

4.5 Multi Mode Multiple Non Renewable (MMMNR) Resource Constrained Project

Scheduling Problem with Weekly Constraints

The same network in Figure 4.1 and the same resource requirements in Table 4.12 are

applied here. Three new constraints were added by introducing an extra penalty function

(implemented in xpenalty) which is added to the already existing one. The new function first

computes the weekly resource needs of the different modes (resource need/duration) AND

different resources. According to the current mode vector, a matrix similar to the Gantt Chart

can be created, this is called a Summary Table, which keeps track of the weekly resource

consumption of each activity between its starting and ending time. Since activities can be

executed in parallel (satisfying precence constraints), the total consumption of a given week

and given resource can be obtained by adding up the weekly resource consumption for ALL

active tasks in that week and for that resource. Doing this for ALL weeks we can check

whether there is a week with higher consumption than the given weekly threshold level for a

given resource. If so, penalty is introduced proportionally to the number of weeks that are

violated this level. FOR ALL three resources, we can obtain three different penalties. The

goal is to make them zero, i.e. no penalty is needed for the optimal solution. This means that

the sum of the penalyties is also needed to be zero (Appendix D).

The total resource threshold level is still set at [236, 83, 41]. In addition to this

constraint, three weekly threshold levels are defined. It is assumed that in each week

(separately) the consumption of R1, R2 and R3 cannot exceed these thresholds: 15, 5 and 3,

respectively.

In the next example the weekly threshold constraints are assumed to be [15, 5, 3].

Note that the project can be done in 24 weeks (see Scenario 2) with 226 total R1 usage and

76 total R2 usage and 41 total R3 usage. This means that 226/24 = 9.42, 76/24 = 3.2, 41/24 =

1.71 is the average consumption of the resources in each week. The problem is to find the

 37

minimum makepsan of the project that satisfies BOTH constraints types (weekly and total

threshold) for ALL THREE resources.

Finding Optimal Solution:

DEA optimization started...

Generations:
100
…
#1500
Elapsed time is 34.458197 seconds.

Optimal solution:

Total Project Time = 24.00
Penalty1 = 0.00
Penalty2 = 0.00
Fitness = 24.00

Activity Mode Time R1 R2 R3 Critical Sequence

 A 3 5.0 26.0 9.0 5.0 yes 1.
 B 1 5.0 14.0 5.0 2.0 yes 3.
 C 1 4.0 15.0 5.0 3.0 no 7.
 D 1 8.0 18.0 6.0 3.0 yes 2.
 E 1 4.0 12.0 4.0 2.0 yes 5.
 F 1 5.0 16.0 6.0 3.0 no 4.
 G 3 4.0 24.0 8.0 5.0 yes 12.
 H 2 4.0 20.0 7.0 3.0 yes 8.
 I 1 7.0 15.0 5.0 3.0 no 6.
 J 2 4.0 9.0 3.0 2.0 yes 9.
 K 1 5.0 8.0 3.0 2.0 no 11.
 L 1 7.0 15.0 5.0 3.0 no 10.
 M 2 5.0 13.0 5.0 2.0 yes 13.
 N 3 2.0 13.0 5.0 3.0 yes 14.

 Threshold >= Consumption
Resource Type 1: 236.00 218.00
Resource Type 2: 83.00 76.00
Resource Type 3: 41.00 41.00

 38

Table 4.15: Weekly Resource Needs of R1

Activity A B C D E F G H I J K L M N SUM
Week 1 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Week 2 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Week 3 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Week 4 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Week 5 5.2 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.0
Week 6 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2
Week 7 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2
Week 8 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2
Week 9 0.0 0.0 3.8 2.3 3.0 3.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12.2
Week 10 0.0 0.0 0.0 2.3 0.0 3.2 0.0 5.0 2.1 0.0 0.0 0.0 0.0 0.0 12.6
Week 11 0.0 0.0 0.0 2.3 0.0 0.0 0.0 5.0 2.1 0.0 0.0 2.1 0.0 0.0 11.5
Week 12 0.0 0.0 0.0 2.3 0.0 0.0 0.0 5.0 2.1 0.0 0.0 2.1 0.0 0.0 11.5
Week 13 0.0 0.0 0.0 2.3 0.0 0.0 0.0 5.0 2.1 0.0 0.0 2.1 0.0 0.0 11.5
Week 14 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 2.1 2.3 0.0 2.1 0.0 0.0 12.5
Week 15 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 2.1 2.3 0.0 2.1 0.0 0.0 12.5
Week 16 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 2.1 2.3 0.0 2.1 0.0 0.0 12.5
Week 17 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 2.3 1.6 2.1 0.0 0.0 12.0
Week 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2
Week 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2
Week 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2
Week 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 2.6 0.0 4.2
Week 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.6 0.0 2.6
Week 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 6.5
Week 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.5 6.5

 39

Table 4.16: Weekly Resource Needs of R2

Activity A B C D E F G H I J K L M N SUM
Week 1 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8
Week 2 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8
Week 3 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8
Week 4 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8
Week 5 1.8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8
Week 6 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2
Week 7 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2
Week 8 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2
Week 9 0.0 0.0 1.3 0.8 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.2
Week 10 0.0 0.0 0.0 0.8 0.0 1.2 0.0 1.8 0.7 0.0 0.0 0.0 0.0 0.0 4.4
Week 11 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.8 0.7 0.0 0.0 0.7 0.0 0.0 3.9
Week 12 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.8 0.7 0.0 0.0 0.7 0.0 0.0 3.9
Week 13 0.0 0.0 0.0 0.8 0.0 0.0 0.0 1.8 0.7 0.0 0.0 0.7 0.0 0.0 3.9
Week 14 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.7 0.8 0.0 0.7 0.0 0.0 4.2
Week 15 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.7 0.8 0.0 0.7 0.0 0.0 4.2
Week 16 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.7 0.8 0.0 0.7 0.0 0.0 4.2
Week 17 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.8 0.6 0.7 0.0 0.0 4.1
Week 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6
Week 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6
Week 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6
Week 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 1.6
Week 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0
Week 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.5
Week 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 2.5

 40

Table 4.17: Weekly Resource Needs of R3

Activity A B C D E F G H I J K L M N SUM
Week 1 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
Week 2 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
Week 3 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
Week 4 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
Week 5 1.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
Week 6 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2
Week 7 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2
Week 8 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2
Week 9 0.0 0.0 0.8 0.4 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.2
Week 10 0.0 0.0 0.0 0.4 0.0 0.6 0.0 0.8 0.4 0.0 0.0 0.0 0.0 0.0 2.2
Week 11 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.8 0.4 0.0 0.0 0.4 0.0 0.0 2.0
Week 12 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.8 0.4 0.0 0.0 0.4 0.0 0.0 2.0
Week 13 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.8 0.4 0.0 0.0 0.4 0.0 0.0 2.0
Week 14 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.4 0.5 0.0 0.4 0.0 0.0 2.6
Week 15 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.4 0.5 0.0 0.4 0.0 0.0 2.6
Week 16 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.4 0.5 0.0 0.4 0.0 0.0 2.6
Week 17 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.5 0.4 0.4 0.0 0.0 2.6
Week 18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8
Week 19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8
Week 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8
Week 21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.8
Week 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.4
Week 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 1.5

Each task for each resource through out the weeks should add up to its total values.

For example:

Task A (R1 resource): 5.2/week for five weeks which is 5.2 * 5 = 26

The following figures show the weekly consumption of R1, R2 and R3 resources along with

the corresponding threshold levels. It can be seen that all weekly contraints are satisfied. The

Weekly Threshold >= Consumption (weekly maximum)

Resource R1: 15.00 12.59

Resource R2: 5.00 4.41

Resource R3: 3.00 2.61

 41

Figure 4.9: Weekly Resource Consumption of Optimal Solution of R1

Figure 4.10: Weekly Resource Consumption of Optimal Solution of R2

 42

Figure 4.11: Weekly Resource Consumption of Optimal Solution of R3

Figure 4.9, 4.10, 4.11 show the total weekly consumption for the optimal solution

(TPTt = 24 weeks) along with the threshold levels. It can be seen that between the 5-15th

week, the consumption was the highest but still not over the limit; thus, the optimal solution

is indeed feasible.

 43

4.6 Cost and Time Contingencies for Multi Mode Single Non Renewable (MMSNR)

Resource Constrained Project Scheduling Problem

The same network in Figure 4.1 and the same resource requirements in Table 4.1 are

applied here. In the initial DEA optimization after 1500 generations the optimal TPT= 20

week using 236 threshold level using Table 4.1. Assuming in the 9th week (vertical red

dashed line) the budget drops by approximatly 10%. This means that task1 (A), task2 (B),

task3 (C), task5 (E) and task6 (F) is already finished. Tasks D, H, I are in progress. The red

boxes are the critical tasks, the green boxes are the non-ciritcal tasks scheduled “as early as

possible”. After the 9th week a new DEA optimizes the remaining network (without tasks

A,B,C,E,F) to minimizes the additional delay due to budget drop.

The main difficulty here is building up a second project network, which is considered

to be started just right after the budget drop appeared by preserving the very last „states” of

the original network. This means, that already finished tasks has to be eliminated and the

durations of the activities in progress have to be decreased by the „already finsihed amount of

job”. These „in-progress” actvities are connected with a NEW Start mode and once the new

network is completed the DEA algorithm can be invoked. The algorithm can be done by the

following steps (Appendix E):

1) Acquire current completion of the project by the result of the first DEA

2) Find “in-progress” and “already-finsihed” activities. The latter nodes should be

eliminated.

3) Insert a new START node

4) Since some nodes might have been eliminated, hence renumber the new project.

5) Update the following: edge list of the network (G), TimeTable.

6) Compute resource consumed until budget drop and subtract it from the threshold.

7) Finally, update the remaining ResourceTable according to the new network.

 44

Figure 4.12: Initial DEA with Showing 9th Week Completed and Uncompleted Tasks

The cost of 236 is needed to finish in 20 weeks. At the 9th week approximately 113.5

was the consumption already. The remaining budget is then 236 - 113.5 = 122.5

approximately. This 122.5 is needed to finish every task according to the first plan. However,

if the budget 122.5 is dropped (lowered) by 10 units of the 9th week budget it will actually be

10/122.5 = 8.16% budget drop.

The 112.5 cost falls between the pure mode 1 and mode 2 completion time (17 and 14

weeks respectively). Still, the re-optimized network can produce 13 weeks (with 112.5 cost)

for the remaining tasks. Thus, the total project time due to budget drop would be 9 + 13 = 22

weeks, which is 2 weeks more than the original 20 weeks.

By using MC simulation we can investigate the overall delay in function of the budget drop.

Noticing that almost all activities became critical.

 45

Finding Optimal Solution for the Remaining Network After 9th Week:

Mode Cost TPT
 1 106.5 17.0
 2 117.5 14.0
 3 127.5 11.0

New cost threshold: 112.5

DEA optimization

Progress: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Optimal solution

Cost threshold = 112.5
Total project cost = 112.5
Total project time = 13.0
Penalty = 0.00

Activity Mode Time Cost Critical

 D 3 1.0 4.6 yes
 G 1 6.0 20.0 yes
 H 3 2.0 16.0 yes
 I 2 6.0 12.9 yes
 J 1 5.0 8.0 yes
 K 1 5.0 8.0 yes
 L 1 7.0 15.0 no
 M 3 4.0 15.0 yes
 N 3 2.0 13.0 yes

 Figure 4.13: Evolution of Feasible Optimal Solution

 46

Figure 4.14: DEA for Remaining Network

Table 4.18: Cost of Resources Each Week

Activity Cost of Regular Cost of Fast Cost of Extreme

D 18/8= 2.25 22/6= 3.66 23/5= 4.6

G 20/6= 3.33 22/5= 4.4 24/4= 6

H 15/6= 2.5 20/4= 5 24/3= 8

I 15/7= 2.14 19/5= 3.8 21/4= 5.25

J 8/5= 1.6 9/4= 2.25 11/3= 3.66

K 8/5= 1.6 9/4= 2.25 10/3= 3.33

L 15/7= 2.14 19/5= 3.8 21/4= 5.25

M 12/6= 2 13/5= 2.6 15/4= 3.75

N 10/4= 2.5 12/3= 4 13/2= 6.5

D Task4 (1 week) mode3 cost = 4.6 * 1 week = 4.6

G Task7 (6 week) mode1 cost = 3.33 * 6 week = 20

H Task8 (2 week) mode3 cost = 8 * 2 week = 16

I Task9 (6 week) mode2 cost = 3.8 * 6 week = 12.9

J Task10 (5 week) mode1 cost = 1.6 * 5 week = 8

K Task11 (5 week) mode1 cost = 1.6 * 5 week = 8

13 weeks

 47

L Task12 (7 week) mode1 cost = 2.14 * 7 week = 15

M Task13 (4 week) mode3 cost = 3.75 * 4 week = 15

N Task14 (2 week) mode3 cost = 6.5 * 2 week = 13

Total cost = 4.6 +20 +16 +12.9 + 8 + 8 + 15 + 15 + 13 = 112.5

TPT = 9 + 13 weeks = 22 weeks in total

 48

4.7 Cost and Time Contingencies for Multi Mode Multiple Non Renewable (MMMNR)

Resource Constrained Project Scheduling Problem

The same network in Figure 4.1 and same resource requirements in Table 4.12 are

applied here. In the initial DEA optimization after 1500 generations the optimal TPT= 24

week using threshold levels of [236, 83, 41] for R1, R2 and R3, respectively (second

scenario).

Finding Optimal Solution Before Budget Drop:

Total Project Time = 24.00
Penalty = 0.00
Fitness = 24.00

Activity Mode Time R1 R2 R3 Critical Sequence

 A 3 5.0 26.0 9.0 5.0 no 1.
 B 1 5.0 14.0 5.0 2.0 yes 2.
 C 1 4.0 15.0 5.0 3.0 no 4.
 D 2 6.0 22.0 8.0 4.0 no 5.
 E 1 4.0 12.0 4.0 2.0 yes 3.
 F 1 5.0 16.0 6.0 3.0 no 7.
 G 2 5.0 22.0 8.0 4.0 no 6.
 H 2 4.0 20.0 7.0 3.0 yes 9.
 I 2 5.0 19.0 7.0 3.0 no 11.
 J 2 4.0 9.0 3.0 2.0 yes 10.
 K 1 5.0 8.0 3.0 2.0 no 8.
 L 2 5.0 19.0 7.0 3.0 no 14.
 M 2 5.0 13.0 5.0 2.0 yes 12.
 N 3 2.0 13.0 5.0 3.0 yes 13.

 Threshold >= Consumption
Resource Type 1: 236.00 228.00
Resource Type 2: 83.00 82.00
Resource Type 3: 41.00 41.00

Assuming in the 9th week (vertical red dashed line) the budget drops by approximately

10%. This means that task1 (A), task2 (B), task3 (C), and task5 (E) are already finished.

Task D and Task F are in progress. The red boxes are the critical tasks, the green boxes are

the non-ciritcal tasks scheduled “as early as possible”.

 49

Figure 4.15: Initial DEA with Showing 9th Week Completed and Uncompleted Tasks

After the 9th week a new DEA optimizes the remaining network (without tasks

A,B,C,E) to minimizes the additional delay due to budget drop.

The main difficulty here is building up a second project network, which is considered to be

started just right after the budget drop appeared by preserving the very last „states” of the

original network. This means, that already finished tasks has to be eliminated and the

durations of the activities in progress have to be decreased by the „already finsihed amount of

job”. These „in-progress” actvities are connected with a NEW Start mode and once the new

network is completed the DEA algorithm can be invoked. The algorithm can be done by the

following steps (Appendix F):

1) Acquire current completion of the project by the result of the first DEA

2) Find “in-progress” and “already-finsihed” activities. The latter nodes should be

eliminated.

 50

3) Insert a new START node

4) Since some nodes might have been eliminated, hence renumber the new project.

5) Update the following: edge list of the network (G), TimeTable.

6) Compute resource consumed until budget drop and subtract it from the threshold.

7) Finally, update the remaining ResourceTable according to the new network by using

an universal Summary Table which contains every cost details for each task and for

each time instance.

R1 <= 236, R2 <= 83, R3 <= 41 are needed to finish in 24 weeks.

At the 9th week the consumption was already:

Table 4.19: Resources After Budget Drop (Until 9th Week)

Task Completion Opt. Mode R1 cost R2 cost R3 cost

A 5/5=100% 3 26*100%=26 9*100%=9 5*100%=5

B 5/5=100% 1 14*100%=14 5*100%=5 2*100%=2

C 4/4=100% 1 15*100%=15 5*100%=5 3*100%=3

D 4/6=66.67% 2 22*66.67%=14.67 8*66.67%=5.33 4*66.67%=2.67

E 4/4=100% 1 12*100%=12 4*100%=4 2*100%=2

F 4/5=80% 1 16*80%=12.8 6*80%=4.8 3*80%=2.4

 ∑ = 94.47 ∑ = 33.13 ∑ = 17.07

Therefore, the remaining resources at the 9th week a:

R= the assumed resource thereshold – the consumed resource

R1 = 236 – 94.47 = 141.53

R2 = 83 – 33.13 = 49.87

R3 = 41 – 17.07 = 23.93

These [141.53,49.87,23.93] resources are needed to finish every task according to the first

plan. However, after a 10% budget drop, the new resources become

141.53*0.9 = 127.38 approximately 128

 51

49.87*0.9 = 44.88 approximately 45

23.93*0.9 = 21.54 approximately 22

The pre-calculations show that 128 (R1) resource falls between the pure mode 1 and

mode 2 completion time (21 and 17 weeks respectively). 45 (R2) resource falls between the

pure mode 1 and mode 2 completion time (21 and 17 weeks respectively). 22 (R3) resource

falls between the pure mode 1 and mode 2 completion time (21 and 17 weeks respectively).

Pre-Calculations:

Mode R1 R2 R3 TPT
 1 113.5 39.9 21.9 21.0
 2 133.5 47.9 22.9 17.0
 3 149.5 51.9 32.9 12.0

Example of R2 (mode 2)= (8*33.33%) + (6*20%) + 8 + 7 + 7 + 3 + 3 + 7 + 5 + 4 = 47.9

Finding Optimal Solution for the Remaining Network After 9th Week:

Pre-Calculations:

Mode R1 R2 R3 TPT
 1 113.5 39.9 21.9 21.0
 2 133.5 47.9 22.9 16.0
 3 149.5 51.9 32.9 12.0

New R1 threshold = 128.0
New R2 threshold = 45.0
New R3 threshold = 22.0

DEA optimization:

Progress: 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Optimal solution:

Total Project Time = 16.00
Penalty = 0.00
Fitness = 16.00

Activity Mode Time R1 R2 R3 Critical Sequence

 D 3 2.0 7.3 2.7 1.3 yes 6.
 F 1 1.0 3.2 1.2 0.6 no 2.
 G 1 6.0 20.0 7.0 3.0 yes 1.
 H 2 4.0 20.0 7.0 3.0 yes 5.
 I 1 7.0 15.0 5.0 3.0 no 10.
 J 2 4.0 9.0 3.0 2.0 yes 7.

 52

 K 1 5.0 8.0 3.0 2.0 no 9.
 L 1 7.0 15.0 5.0 3.0 no 8.
 M 2 5.0 13.0 5.0 2.0 yes 3.
 N 2 3.0 12.0 4.0 2.0 yes 4.

 Threshold >= Consumption
Resource Type 1: 128.00 122.53
Resource Type 2: 45.00 42.87
Resource Type 3: 22.00 21.93

Still, the re-optimized network can produce 16 weeks with [122.53, 42.87, 21.93] cost

for the remaining tasks. Thus, the total project time due to budget drop would be 9 + 16 = 25

weeks, which is only 1 week more than the original optimal 24 weeks.

 Figure 4.16: Evolution of Feasible Optimal Solution after Budget Drop

 53

Figure 4.17: DEA for Remaining Network (after Budget Drop)

Table 4.20: Resources After Budget Drop (After 9th Week)

Task Completion Optimal Mode R1 cost R2 cost R3 cost
D 2/6=33.3% 3* 22×33.3%=7.33 8×33.3%=2.67 4×33.3%=1.33
F 1/5=20% 1* 16×20%=3.2 6×20%=1.2 3×20%=0.6
G 6/6 1 20 7 3
H 4/4 2 20 7 3
I 7/7 1 15 5 3
J 4/4 2 9 3 2
K 5/5 1 8 3 2
L 7/7 1 15 5 3
M 5/5 2 13 5 2
N 3/3 2 12 4 2
 ∑ = 122.53 ∑ = 42.87 ∑ = 21.93

Task D and Task F were already completed by 66.67% and 80% until the 9th week, so

only 33.33% and 20% remain. In Table 4.20, although Task D follows mode 3 after the

16 weeks

 54

budget drop, it is still calculated with mode 2 as indicated in the DEA before the budget drop.

It is assumed that if a task is running at the time of the drop, its mode cannot be altered after

the drop. The task has to finish in its original mode.

For example, if the task is to produce 4 specific materials in the automotive industry,

and already the aluminium panels have been cut, the robots programmed, the workers

assigned, etc. these numbers cannot be altered. They can only be changed after everything is

finished.

Total resource consumption is:

R1 = 94.47 (before 9th week) + 122.53 (after 9th week) = 217

R2 = 33.13 (before 9th week) + 42.87 (after 9th week) = 76

R3 = 17.07 (before 9th week) + 21.93 (after 9th week) = 39

More Generally:

Completion of Task i at time T

= 0	𝑖𝑓	𝐹" 	> 𝑇
1	𝑖𝑓	𝐹" 	≤ 𝑇

_f7g
hgf7g

 if 𝐹" 	> 𝑇

Example:

Task D (𝑆j = 5, 𝐹j = 11)

T= g when budget drop

Completion Time of Task D=
_f7g
hgf7g

 = kfl
aafl

 = 5
b
 = 66.7%

 55

CHAPTER 5

BENCHMARK RESULTS & PARETO FRONTIER

5.1 Benchmark Results

The effectiveness of the DEA algorithm is compared to a bechmark problem given in

paper Ant Colony Optimization for Multimode Resource-Constrained Project Scheduling by

Hong Zhang (Journal of Management in Engineering, vol 2., issue 2, pp 150-159, 2012).

The benchmark network is from page 155. The actvities are identified as A, B, C, D, E, F, G,

H, I, J instead of 1-10 from now on.

Figure 5.1: Benchmark Network

This benchmark problem uses a single RENEWABLE resource with three modes.

NOTE that up to this point only stronger constraints (as NON-RENEWABLE) are imposed

on the project networks. Renewable constraints are easier to handle. The resource needs and

the corresponding durations are shown in Table 5.1. Notice that activities 4, 6 and 7 (or D, F

and G) can only be executed in mode 1 and 2.

 56

Table 5.1: Information About the Three Modes

Activity

Mode 1 Mode 2 Mode 3

Resource
Requiremement (R1)

Duration

(day)

Resource

Requiremement (R1)

Duration

(day)

Resource

Requiremement (R1)

Duration

(day)

 A 4 2 3 3 2 5

 B 4 2 2 4 1 6
 C 3 2 2 3 1 4

 D 3 1 1 3 _ _
 E 3 2 2 3 1 4

 F 2 1 1 2 _ _

 G 2 3 1 5 _ _
 H 4 2 3 3 2 4

 I 4 3 3 4 2 5

 J 4 3 3 4 2 5

The basic DEA code is modified to accept renewable resources by computing the

resource consumption of each week similar to the (Weekly constraints) scenario. This means

that for any time instance the total resource consumption should not exceed the given

threshold level.

For example, let’s start with Activity A at day 0. It needs 4 constant resources in mode

1 for 2 days. Now, if Activity B (in mode 1) was started in day 1, it would need 4 additional

resources until day 3 (2 days duration). Thus, the resource consumption would be 4, 8 and 4

between days 0-1, 1-2 and 2-3 respectively. If the given resource threshold level was below 8,

this scheduling would clearly violate the constraints.

Thus, for every day (time instance) the total resource consumption has to be computed and

compared to the threshold level. If AT LEAST one of them violates the threshold limit then

penalty is produced. This value is proportional to the maximum of the violations (Appendix

G).

÷
ø
ö

ç
è
æ -×¶= 0,1

 LevelThreshold Resoure
nConsumptio Daily of MaximummaxPenalty

 57

First, the network was used to compare DEA with ACO only with threshold R1=6,

according to the paper (Zhang, 2012). The results for R1 threshold of 6 are produced by the

DEA algorithm as below.

DEA optimization started... (Single RENEWABLE Resource with 3 Modes)

Generations:
100
…
#1500
Elapsed time is 14.833308 seconds.

Optimal solution:

Total Project Time = 12.00
Penalty = 0.00
Fitness = 12.00

Activity Mode Time R1 Critical Sequence

 A 1 2.0 4.0 yes 1.
 B 2 4.0 2.0 yes 2.
 C 3 4.0 1.0 yes 5.
 D 1 1.0 3.0 no 3.
 E 1 2.0 3.0 yes 4.
 F 1 1.0 2.0 yes 6.
 G 2 5.0 1.0 no 7.
 H 2 3.0 3.0 yes 8.
 I 3 5.0 2.0 yes 10.
 J 1 3.0 4.0 yes 9.

 Threshold >= Consumption
Resource Type 1: 6.00 6.00

The evolution of the feasible optimal solution in the function of the generation

number (Figure 5.2) and the corresponding Gantt-chart (Figure 5.3) can be seen below. The

obtained optimal project time is TPT=12, the same as given in the paper.

 58

Figure 5.2: Evolution of Feasible Optimal Solution

Figure 5.3: Gantt Charts

 59

Figure 5.4: Optimal Network Structure

Now, the network is used for comparison by tightening the resource threshold level to

R1= 5. This leads to increased difficulty of the problem. In the paper the authors used 100

outer and 20 inner maximum iterations (Genetic Algorithm, Ant Colony Opt., Particle Swarm

Opt.) which corresponds to 20*100 = 2000 iterations of the DEA algorithm. The population

number was 10 and a total of 40 runs was made. All the other parameters cannot be directly

matched with the parameters of the DEA algorithm. The code producing the results is

presented in (Appendix H).

Output:

OPT 1/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 2/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 3/ 40: tpt = 15, succ = 1, et = 13.4 s
OPT 4/ 40: tpt = 15, succ = 1, et = 13.0 s
OPT 5/ 40: tpt = 15, succ = 1, et = 13.5 s
OPT 6/ 40: tpt = 15, succ = 1, et = 13.3 s
OPT 7/ 40: tpt = 14, succ = 1, et = 13.3 s
OPT 8/ 40: tpt = NaN, succ = 0, et = 13.2 s
OPT 9/ 40: tpt = 15, succ = 1, et = 13.6 s
OPT 10/ 40: tpt = 15, succ = 1, et = 13.3 s
OPT 11/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 12/ 40: tpt = 14, succ = 1, et = 12.5 s
OPT 13/ 40: tpt = 15, succ = 1, et = 13.6 s

 60

OPT 14/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 15/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 16/ 40: tpt = 14, succ = 1, et = 13.3 s
OPT 17/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 18/ 40: tpt = NaN, succ = 0, et = 13.1 s
OPT 19/ 40: tpt = 15, succ = 1, et = 12.5 s
OPT 20/ 40: tpt = 14, succ = 1, et = 13.1 s
OPT 21/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 22/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 23/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 24/ 40: tpt = 15, succ = 1, et = 12.5 s
OPT 25/ 40: tpt = 15, succ = 1, et = 13.2 s
OPT 26/ 40: tpt = 15, succ = 1, et = 13.2 s
OPT 27/ 40: tpt = 15, succ = 1, et = 13.3 s
OPT 28/ 40: tpt = 17, succ = 1, et = 13.5 s
OPT 29/ 40: tpt = 14, succ = 1, et = 13.1 s
OPT 30/ 40: tpt = 15, succ = 1, et = 13.2 s
OPT 31/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 32/ 40: tpt = 15, succ = 1, et = 12.4 s
OPT 33/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 34/ 40: tpt = NaN, succ = 0, et = 13.2 s
OPT 35/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 36/ 40: tpt = 14, succ = 1, et = 13.1 s
OPT 37/ 40: tpt = 15, succ = 1, et = 13.2 s
OPT 38/ 40: tpt = 15, succ = 1, et = 13.1 s
OPT 39/ 40: tpt = 15, succ = 1, et = 13.0 s
OPT 40/ 40: tpt = 15, succ = 1, et = 13.0 s

At some runs DEA was not able to find any (local) optimal solution (in orange). It

found the global optimum at runs indicated in red. At the blue runs the algorithm was stuck at

a relatively high makespan; however, all the other solutions showed 15 days.

Table 5.2 shows the results. Minimum and Average TPT is the minimum and average

makespan achieved in the 40 runs. Success rate is if the algorithm produces a feasible (local)

optimum solution but not necessarily the global solution. Computation Time is the average

time needed for 1 run.

 61

Table 5.2: Benchmark Results

Methods Minimum TPT Average TPT Success Rate Comp. Time

GA 14 15.4 75 % 18.3

PSO 14 14.7 75 % 17.2

ACO 14 14.4 81 % 18.0

DEA 14 14.89 92.50 % 13.11

It can be seen that DEA is better than GA and worse than ACO and PSO. Note that

the fine tuning of the DEA parameters (such as setting 𝜕, 𝐶#, 𝐴, #	𝑜𝑓	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠..) might

improve the results. DEA has almost always found a feasible solution by comparing to the

other methods and found the global optimum six times (6/40 = 15% of the runs).

This low value can be explained by the difficulty of the problem, which DEA seems to be

unable to handle. The computational time cannot be compared to the other methods because

the simulations were performed on a different (and latest) computer.

 62

5.2 Principle of Pareto Frontier

 Pareto frontier is the result of a multi objective optimum design. It is the limit of

the feasible design space (Figure 5.5). Any point on this frontier is such that there is no other

feasible solution that reduces at least one objective function without increasing another one.

On the graph, point A is considered to be the optimal solution because it is located on the

pareto frontier. A1 is a better solution than A but unfeasible. A2 is a worse solution than A

but feasible.

Figure 5.5: Pareto Fronier Feasible Space

5.3 Pareto Frontier for MMSNR Scheduling Problem

 The basic definition of the Pareto frontier is that it consists of exactly those

alternatives that are not dominated by any other alternative. We say that an

alternative A dominates B if A outscores B regardless of the tradeoff between time and cost

that is, if A is both better and cheaper than B.

 A simple algorithm to find the other alternatives on the Pareto frontier is to first sort

the alternatives according to one of the objectives, cost. One then starts with the cheapest

alternative (which, as noted, always belongs in the Pareto frontier) and skips successive

* * *

Pareto Frontier

Cost

Makespan

A2 A A1

Unfeasible
Space

Feasible
Space

 63

alternatives in order of increasing cost until one finds one with a higher value. This

alternative is then added to the frontier and the search is restarted from it.

 A step-by-step description of the algorithm, assuming that A1,…,An are the

alternatives in increasing order of cost, goes like this:

1. Let A1,…, An be the alternatives sorted in order of increasing cost/time ratio. Let i:=1.

Let P:={∅}, where ∅ denotes the combination containing no alternatives.

2. For each combination C∈P, let C∗	:=C∪{Ai}. If C∗ is not dominated by any

combination already in P, add C∗ to P.

3. If i=n, stop. Otherwise increment i by one and repeat from step 2.

In algorithm B, we don't need to compare C∗ to every combination in P; it's enough to check

whether C∗ is dominated by the most expensive combination in P that is cheaper than C∗	

(Karonen, 2012).

In the following Figures 5.6 to 5.15, around 500 feasible solutions (in blue) (i.e.,

solutions which satisfy precedence constraints) according to the 14 tasks network presented

in Figure 4.1 were plotted according to the pareto frontier algorithm. The solutions (in red)

are the best solutions. The black curve is the pareto frontier that connects the best solutions.

Here are the results for 10 runs:

 64

Run #1:

Figure 5.6: Pareto Frontier (Run #1)

Pareto Set:

TPT Cost
21 238
22 236
23 226
24 222
25 219
26 215
27 213
28 209

Population number: 490

 65

Run #2:

Figure 5.7: Pareto Frontier (Run #2)

Pareto Set:
 TPT Cost
 21 245
 22 238
 23 230
 24 225
 25 220
 28 214
 29 208
 31 207

Population number: 494

 66

Run #3:

Figure 5.8: Pareto Frontier (Run #3)

Pareto Set:

 TPT Cost
 21 236
 22 234
 23 227
 24 224
 25 223
 26 218
 28 212
 31 211

Population number: 490

 67

Run #4:

Figure 5.9: Pareto Frontier (Run #4)

Pareto Set:

 TPT Cost
 20 259
 21 243
 22 231
 24 224
 25 218
 27 215
 29 214

Population number: 492

 68

Run #5:

Figure 5.10: Pareto Frontier (Run #5)

Pareto Set:

 TPT Cost
 21 241
 22 234
 23 227
 24 224
 25 220
 28 213
 29 209

Population number: 487

 69

Run #6:

Figure 5.11: Pareto Frontier (Run #6)

Pareto Set:

 TPT Cost
 21 246
 22 238
 23 229
 24 224
 25 221
 26 215
 28 214
 29 213
 31 209

Population number: 494

 70

Run #7:

Figure 5.12: Pareto Frontier (Run #7)

Pareto Set:

 TPT Cost
 21 243
 22 231
 23 230
 24 226
 25 222
 27 212

Population number: 493

 71

Run #8:

Figure 5.13: Pareto Frontier (Run #8)

Pareto Set:

 TPT Cost
 21 242
 22 235
 23 228
 24 222
 25 218
 26 214
 28 213
 29 208

Population number: 491

 72

Run #9:

Figure 5.14: Pareto Frontier (Run #9)

Pareto Set:

 TPT Cost
 21 241
 22 234
 23 228
 24 223
 25 220
 27 213
 28 211

Population number: 492

 73

Run #10:

Figure 5.15: Pareto Frontier (Run #10)

Pareto Set:

 TPT Cost
 20 249
 21 241
 22 230
 23 225
 24 222
 26 221
 27 216
 28 212
 30 211

Population number: 492

 74

CHAPTER 6

CONCLUSION

Finding an optimal schedule is often confounded not only by meeting existing

constraints but also by adapting to additional constraints and changes to the problem

structure. This dissertation attempts to provide optimum solutions to solving complicated

project scheduling problems due to resource constraints. The major methodology used in this

dissertation is the DEA, which mimics biological phenomena more than mathematical

formulation. So far, satisfactory results have been achieved. Future research is contemplated

to tackle more difficult situations such as probabilistic resource data, dual thresholds for

project cost and time and mulile budget drops.

Differential evolution was used to solve the project scheduling problem for a proposed

network that consists of 14 tasks in three different modes. Differential evolution consists of

four steps: population structure, mutation, crossover and selection (Figure 6.1). Previous

chapters explained the steps and showed how the best vector was selected for the follow-up

generation.

Figure 6.1: DEA Flowchart

 75

The Multi Mode Single Non Renewable (MMSNR) Resource Constrained Project

Scheduling Problem involves one resource (cost) in three modes. By using the differential

evolution algorithm, the optimal solution indicated the best mode for each activity to be

executed and determined the optimal total cost and total project time. The objective was to

find the minimium makespan without exceeding the limit of mode 2 duration which is 25

weeks (without optimization) while taking into consideration the precedense rule. The

optimal solution was determined to be 20 weeks to complete the project.

In the Multi Mode Multiple Non Renewable (MMMNR) Resource Constrained

Project Scheduling Problem the project scheduling problem involves three resources (cost,

work hours, material quantity) in three modes. Without optimization, the total duration would

have been 25 (using normal execution). Using DEA, the optimal solution was determined to

be 24 weeks.

Each of the MMSNR and MMMNR project scheduling problems experienced a

weekly constraint. The optimal solution was found by applying DEA. The weekly constraint

resulted in more total project time. Then each problem MMSNR and MMMNR faced a cost

and time contingency. The scenario assumed a budget drop during week 9, resulting in

applying DEA to the remaining tasks to find the optimal solution after the drop incident. In

addition, a benchmark problem was presented to compare DEA with Ant Colony

Optimization, Genetic Algorithm and Particle Swarm Optimization. DEA reached the same

minimum TPT and outperformed in computational time and success rate.

Finally, pareto frontier was investigated, calculating the optimal solutions for a multi

objective problem focusing on the tradeoff of the constrained set of parameters.

 76

REFERENCES

AgileCC for AdeptTracker (2008). AdeptTracker. Retrieved from

http://www.adepttracker.com/agilecc/index.html

Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the multi-mode resource-constrained

project scheduling problem with genetic algorithms. Journal of the Operational

Research Society, 54(6), 614-626.

Bouleimen, K. & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple mode version.

European Journal of Operational Research, 149(2), 268-281.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained

project scheduling: Notation, classification, models, and methods. European journal of

operational research, 112(1), 3-41.

CC- (M) Pulse. (2016). Soft 112. Retrieved from http://cc-m-pulse.soft112.com

Chen, T., & Zhou, G. (2013). Research on project scheduling problem with resource

constraints. Journal of Software, 8(8), 2058-2063.

Concerto Integrated Software Solutions (2016). Bellrock Group Company. Retrieved from

http://www.concerto.co.uk/about-concerto-integrated-software-solutions/

Damak, N., Jarboui, B., Siarry, P., & Loukil, T. (2009). Differential evolution for solving

multi-mode resource-constrained project scheduling problems. Computers & Operations

Research, 36(9), 2653-2659.

Ghoddousi, P., Eshtehardian, E., Jooybanpour, S., & Javanmardi, A. (2013). Multi-mode

resource-constrained discrete time–cost-resource optimization in project scheduling

using non-dominated sorting genetic algorithm. Automation in construction, 30, 216-

227.

Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of

 77

Operations Research, 102(1-4), 111-135.

Holland, J. H. (1975). Adaptation in natural and artificial systems. An introductory analysis

with application to biology, control, and artificial intelligence. Ann Arbor, MI:

University of Michigan Press.

Jarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm

optimization for solving multi-mode resource-constrained project scheduling problems.

Applied Mathematics and Computation, 195(1), 299-308.

Karonen, I. (2012). How to Compute the Pareto Frontier, Intuitively Speaking?. Mathematics.

Retrieved from http://math.stackexchange.com/questions/101125/how-to-compute-the-

pareto-frontier-intuitively-speaking

Kelley Jr, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. In Papers

presented at the December 1-3, 1959, eastern joint IRE-AIEE-ACM computer

conference (pp. 160-173). ACM.

Lancaster, J., & Ozbayrak, M. (2007). Evolutionary algorithms applied to project scheduling

problems—a survey of the state-of-the-art. International journal of production research,

45(2), 425-450.

Lewis, J. (2005). Project Planning, Scheduling & Control, 4E. McGraw-Hill Pub. Co.

Lewis, J. (2010). Project Planning, Scheduling, and Control: The Ultimate Hands-On Guide

to Bringing Projects in On Time and On Budget: The Ultimate Hands-On Guide to

Bringing Projects in On Time and On Budget. McGraw Hill Professional.

Mori, M., & Tseng, C. C. (1997). A genetic algorithm for multi-mode resource constrained

project scheduling problem. European Journal of Operational Research, 100(1), 134-

141.

Oracle’s Primavera P6 Professional Project Management. (2016). Oracle. Retrieved from

https://www.oracle.com/applications/primavera/products/project-management.html

 78

Payne, T., Roets, C., & Schlanderer, D. (2014). SAP. TechTarget. Retrieved from

http://searchsap.techtarget.com/definition/SAP

PD-Trak. (2016). Project Portfolio Management. Retrieved from https://pd-trak.com/about-

pd-trak/

ProChain Solutions Inc. (2016). Retrived from https://www.prochain.com/about/about.html

Project Management Software. (2016). Agile Factory. Retrieved from http://www.agile-

factory.com/software/ProjectManagement/projectmanagement.htm

Siemens PLM Software. (2016). Siemens. Retrieved from

https://www.plm.automation.siemens.com/en_us/plm/

Sprecher, A. (2012). Resource-constrained project scheduling: Exact methods for the multi-

mode case (Vol. 409). Springer Science & Business Media.

Sprecher, A., & Drexl, A. (1998). Solving multi-mode resource-constrained project

scheduling problems by a simple, general and powerful sequencing algorithm. European

Journal of Operational Research, 431-50.

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11(4), 341-

359.

Van Peteghem, V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and

non-preemptive multi-mode resource-constrained project scheduling problem. European

Journal of Operational Research, 201(2), 409-418.

Weglarz, J. (Ed.). (2012). Project scheduling: recent models, algorithms and applications

(Vol. 14). Springer Science & Business Media.

Zhou, J., Love, P. E., Wang, X., Teo, K. L., & Irani, Z. (2013). A review of methods and

algorithms for optimizing construction scheduling. Journal of the Operational Research

Society, 64(8), 1091-1105.

 79

Zhang, H. (2011). Ant colony optimization for multimode resource-constrained project

scheduling. Journal of Management in Engineering, 28(2), 150-159.

 80

Appendix A

Low-level main engine:

%% 1) Forward propagation: topological sort + distances	
preced = zeros(1,N);	
indeg = full(sum(A)); % A is full adjacency matrix with N nodes	
while 1,	
 ix = find(indeg == 0);	
 if ix == N,	
 break;	
 else	
 for i = 1:length(ix),	
 nbor = find(A(ix(i),:) == 1);	
 for j = 1:length(nbor),	
 if dist(ix(i)) + actt(nbor(j)) > dist(nbor(j)),	
 preced(1,nbor(j)) = ix(i);	
 end	
 dist(nbor(j)) = max(dist(nbor(j)),dist(ix(i)) + actt(nbor(j)));	
 indeg(nbor(j)) = indeg(nbor(j)) - 1;	
 end	
 indeg(ix(i)) = indeg(ix(i)) - 1;	
 end	
 end	
end	
 	
%% 2) Longest paths in DAG from source to all node	
longestPath = zeros(N+1,N);	
longestPath(1,1:N) = 1:N;	
for i = N:-1:1,	
 k = 1;	
 currNode = i;	
 while 1,	
 k = k + 1;	
 prevNode = preced(currNode);	
 if prevNode == 0,	
 break	
 else	
 longestPath(k,i) = prevNode;	
 currNode = prevNode;	
 end	
 end	
end	
 	
% Total project time	
tpt = dist(N);

%% 3) Back propagation for slack time calculation	
At = A';	
late = tpt*ones(size(actt));	
indeg = full(sum(At));	
while 1,	
 ix = find(indeg == 0);	
 if ix == 1, 	
 break	
 else	
 for i = 1:length(ix),	
 nbor = find(At(ix(i),:) == 1);	
 for j = 1:length(nbor),	
 late(nbor(j)) = min(late(nbor(j)),late(ix(i)) - actt(nbor(j)));	
 indeg(nbor(j)) = indeg(nbor(j)) - 1;	
 end	
 indeg(ix(i)) = indeg(ix(i)) - 1;	
 end	
 end	
end	
slack = late - dist + actt;	

 81

High-level main engine:

for i = 1:Ng, % for each generation

 % 1) Get parents and target vector
 % Random selection (Damak's)
 rix = randperm(Ni);
 rix = rix(1:4);
 PT = pop(rix);
 C0 = PT{1}; C1 = PT{2}; C2 = PT{3}; T = PT{4}; Tix = rix(4);

 % 2) Mutation
 M = mutation(C0,C1,C2,A);

 % 3) Crossover (get solution vector)
 S = crossover(M,T,G,Cr,Cm,Nm);

 % 4) Fitness evaluation
 fC = fitness(T,G,TimeTable,ResourceTable,Nr,delta,Nm);
 fS = fitness(S,G,TimeTable,ResourceTable,Nr,delta,Nm);

 % 5) Selection
 if fS <= fC,
 pop{Tix} = S;
 end

end	

 82

Appendix B

% Get current resource consumptions FOR ALL resource types
% Nm = number of modes
% Nr = number of resources
for i = 1:length(Nr),
 for j = 1:length(modeVec),
 idxs = (i-1)*Nm + 1;
 idxf = (i-1)*Nm + Nm;
 rtTruncated = ResourceTable(idxs:idxf,:);
 R(i,j) = rtTruncated(modeVec(j),j);
 end
end

% Penalty function (SUM FOR ALL resource types)
Penalty = 0;
for i = 1:length(Nr),
 Penalty = Penalty + delta*max(0,sum(R(i,:))/Nr(i) - 1);
end	

 83

Appendix C

% Penalty function in fitness calculation
Penalty1 = delta*xpenalty(G,T,TimeTable,ResourceTable,wThres,modeVec);
Penalty2 = 0;
for i = 1:length(Nr),
 Penalty2 = Penalty2 + delta*max(0,sum(R(i,:))/Nr(i) - 1);
end

function p = xpenalty(G,TT,TimeTable,ResourceTable,wThres,modeVec)
%XPENALTY New Penalty Function

WeeklyRes = ResourceTable./TimeTable;
nt = max(max(G)) - 2;
[tpt,~,~,dist,actt] = cpm(G,TT);
GC = [dist-actt dist];
GC = GC(2:end-1,:);
SFmat = zeros(nt,tpt); % Start 2 Finish matrix (filled with ones)
for i = 1:nt,
 A = WeeklyRes(modeVec(i),i);
 SFmat(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1));
end
p = sum((sum(SFmat) <= wThres) == 0)/nt;

end	

 84

Appendix D

function p = xpenalty(G,TT,TimeTable,ResourceTable,wThres,modeVec)
%XPENALTY Summary of this function goes here
% Detailed explanation goes here

WeeklyRes(1:3,:) = ResourceTable(1:3,:)./TimeTable;
WeeklyRes(4:6,:) = ResourceTable(4:6,:)./TimeTable;
WeeklyRes(7:9,:) = ResourceTable(7:9,:)./TimeTable;

nt = max(max(G)) - 2;
[tpt,~,~,dist,actt] = cpm(G,TT);
GC = [dist-actt dist];
GC = GC(2:end-1,:);

% Summary Table 1
SFmat1 = zeros(nt,tpt); % Start 2 Finish matrix (filled with ones)
for i = 1:nt,
 A = WeeklyRes(modeVec(i),i);
 SFmat1(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1));
end
p1 = sum((sum(SFmat1) <= wThres(1)) == 0)/nt;

% Summary Table 2
SFmat2 = zeros(nt,tpt); % Start 2 Finish matrix (filled with ones)
for i = 1:nt,
 A = WeeklyRes(modeVec(i)+3,i);
 SFmat2(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1));
end
p2 = sum((sum(SFmat2) <= wThres(2)) == 0)/nt;

% Summary Table 3
SFmat3 = zeros(nt,tpt); % Start 2 Finish matrix (filled with ones)
for i = 1:nt,
 A = WeeklyRes(modeVec(i)+6,i);
 SFmat3(i,GC(i,1)+1:GC(i,2)) = A*ones(1,GC(i,2)-GC(i,1));
end
p3 = sum((sum(SFmat3) <= wThres(3)) == 0)/nt;

% Sum of Penalyties
p = p1 + p2 + p3;

end

 85

Appendix E

function [Gnew,Gnew2,TimeTable,ResourceTable,Rnew,Ropt,gci] = ...
 build2ndNetwork(G,bestInd,Tdrop,Rdrop,TimeTable,ResourceTable,Nr)
%BUILD2NDNETWORK
% Get durations and resource need from the optimal mode vector (1st DEA)
M = bestInd(2,:);
T = size(M);
RR = T;
for i = 1:length(M),
 T(i) = TimeTable(M(i),i);
 RR(i) = ResourceTable(M(i),i);
end
RR = [0 RR 0]';
Ropt = Nr;

% Calculate network with the optimal solution of the first DEA
[~,~,~,dist,actt] = cpm(G,T);

% Find cut-off nodes and the remaining nodes
ix_cut = find((dist-Tdrop) <= 0);
ix_okay = find((dist-Tdrop) > 0);

% Insert START node (create new network)
Gnew = G(ismember(G(:,1),ix_okay),:);
for i = 1:length(ix_cut),
 cutNode = ix_cut(i);
 nextNode = G(G(:,1) == cutNode,2);
 for j = 1:length(nextNode),
 if ismember(nextNode(j),ix_okay)
 Gnew(end+1,:) = [1 nextNode(j)];
 end
 end
end

% Re-number network
gci = unique(Gnew);
n = numel(gci);
lut = [(1:n)' gci];
GG = Gnew(:);
for i =1:length(GG),
 GG(i) = lut(lut(:,2) == GG(i),1);
end
Gnew(:) = GG;

% Sort in ascending order
[tmp,ix] = sort(Gnew(:,1));
Gnew = [tmp Gnew(ix,2)];
Gnew2 = Gnew(1:end-1,:)-1;

% Create new time vector
times = actt(ix_okay);
Tnew = [dist-actt dist];
tmp = Tnew(ix_okay,:) - Tdrop;
innx = find(tmp < 0);
times(innx) = times(innx) + tmp(innx,1);
Tnew = times(1:end-1);

% Time Table Update
TimeTable = [zeros(3,1) TimeTable zeros(3,1)];
TimeTable = TimeTable(:,ix_okay);
for i = 1:length(innx),
 TimeTable(:,innx(i)) = times(innx(i))*ones(size(TimeTable,1),1);
end
TimeTable = TimeTable(:,1:end-1);

% Calculate used resources until Tdrop

 86

R = sum(RR(ix_cut));
RR = RR(ix_okay);
times = actt(ix_okay);
R = R + sum(abs(tmp(innx,1))./times(innx).*RR(innx));

% New resource threshold
Rnew = (Ropt - R) - Rdrop;

% Resource Table Update
ResourceTable = [zeros(3,1) ResourceTable zeros(3,1)];
ResourceTable = ResourceTable(:,ix_okay);
for i = 1:length(innx),
 ccc = (1 - abs(tmp(innx(i),1))./times(innx(i))).*RR(innx(i));
 ResourceTable(:,innx(i)) = ccc*ones(size(ResourceTable,1),1);
end
ResourceTable = ResourceTable(:,1:end-1);

end

 87

Appendix F

function [Gnew,TimeTable,ResourceTable,Rnew,Ropt,gci] = ...
 build2ndNetwork(G,bestInd,Tdrop,Rdrop,TimeTable,ResourceTable,Nr)
%BUILD2NDNETWORK Build reduced network

Nm = 3; % number of modes

% Get durations and resource need from the optimal mode vector (1st DEA)
M = bestInd(2,:);
T = NaN(size(M));
RR = NaN(length(Nr),size(M,2));
for i = 1:length(M),
 T(i) = TimeTable(M(i),i);
 RR(i) = ResourceTable(M(i),i);
end
for i = 1:length(Nr),
 for j = 1:length(M),
 idxs = (i-1)*Nm + 1;
 idxf = (i-1)*Nm + Nm;
 rtTruncated = ResourceTable(idxs:idxf,:);
 RR(i,j) = rtTruncated(M(j),j);
 end
end

% Threshold levels
Ropt = Nr;

% Calculate network with the optimal solution of the first DEA
[~,~,~,dist,actt] = cpm(G,T);

% Find cut-off nodes and the remaining nodes
ix_cut = find((dist-Tdrop) <= 0);
ix_okay = find((dist-Tdrop) > 0);

% Insert START node (create new network)
Gnew = G(ismember(G(:,1),ix_okay),:);
for i = 1:length(ix_cut),
 cutNode = ix_cut(i);
 nextNode = G(G(:,1) == cutNode,2);
 for j = 1:length(nextNode),
 if ismember(nextNode(j),ix_okay)
 Gnew(end+1,:) = [1 nextNode(j)];
 end
 end
end

% Re-number network
gci = unique(Gnew);
n = numel(gci);
lut = [(1:n)' gci];
GG = Gnew(:);
for i =1:length(GG),
 GG(i) = lut(lut(:,2) == GG(i),1);
end
Gnew(:) = GG;

% Sort in ascending order
[tmp,ix] = sort(Gnew(:,1));
Gnew = [tmp Gnew(ix,2)];

 88

% Create new time vector
times = actt(ix_okay);
Tnew = [dist-actt dist];
tmp = Tnew(ix_okay,:) - Tdrop;
innx = find(tmp < 0);
times(innx) = times(innx) + tmp(innx,1);
Tnew = times(1:end-1);

% Time Table Update
TimeTable = [zeros(3,1) TimeTable zeros(3,1)];
TimeTable = TimeTable(:,ix_okay);
for i = 1:length(innx),
 TimeTable(:,innx(i)) = times(innx(i))*ones(size(TimeTable,1),1);
end
TimeTable = TimeTable(:,1:end-1);

% Summary Table
GC = [dist-actt dist];
GC = GC(2:end-1,:);
Rused = NaN(size(Nr));
tmpTable = NaN(size(ResourceTable,1),length(ix_okay(1:end-1)-1));
for j = 1:length(Nr),
 Summary = zeros(length(M),max(max(GC)));
 for i = 1:length(M),
 Summary(i,GC(i,1)+1:GC(i,2)) = ones(1,length(GC(i,1)+1:GC(i,2)))*RR(j,i)/T(i);
 end
 ttt = [zeros(3,1) ResourceTable((j-1)*3+1:(j-1)*3+3,:) zeros(3,1)];
 ttt = ttt(:,ix_okay);
 ix_okay2 = ix_okay-1;
 for i = 1:length(innx),
 icc = ix_okay2(innx(i));
 mult = sum(Summary(icc,Tdrop+1:end) > 0);
 ttt(:,innx(i)) = RR(j,icc)/T(icc)*mult*ones(size(ttt,1),1);
 end
 tmpTable((j-1)*3+1:(j-1)*3+3,:) = ttt(:,1:end-1);
 Rused(1,j) = sum(sum(Summary(:,1:Tdrop)));

end

% New resource table
ResourceTable = tmpTable;

% New resource threshold (Rdrop)
Rnew = ceil((Ropt - Rused)*0.9);

 89

Appendix G

% Penalty function for RENEWABLE RESOURCE
GC = [dist-actt+1 dist];
GC = GC(2:end-1,:);
TCC1 = zeros(length(GC),Cmax);

for i = 1:length(GC),
 TCC1(i,GC(i,1):GC(i,2)) = R(1,i)*ones(1,T(i));
end

RNmax1 = max(sum(TCC1)); % maximum of daily/weekly resource consumption
Penalty = delta*max(0,RNmax1/Nr(1) - 1);	

 90

Appendix H

Ni = 40; % # of runs	
Ng = 2000; % # of generations	
Np = 10; % population size	
Nr = 5; % threshold of renewable resource	
 	
ET = NaN(1,Ni); SC = ET; TP = ET;	
for i = 1:Ni,	
 	
 [tp,sc,et] = funDEA(Nr,TimeTable,ResourceTable,G,Ng,Np);	
 ET(i) = et;	
 SC(i) = sc;	
 TP(i) = tp;	
 fprintf('OPT %3d/%3d: tpt = %3d, succ = %d, et = %2.1f s\n',i,Ni,tp,sc,et);	
 	
end	

 91

VITA

Faisal Manour Altarazi
Department of Mechanical and Aerospace Engineering

238 Kaufman Hall 
Norfolk, VA 23529-0247

Education

Old Dominion University, Norfolk, VA, United States Aug 2012 – May 2017
Degree: Doctor of Philosophy
Major: Mechanical Engineering Minor: Design and Manufacturing

Gannon University, Erie, PA, United States Jan 2009 - Dec 2010
Degree: Master of Science
Major: Engineering Management

Riyadh College of Technology, Riyadh, Saudi Arabia Jan 2001 - Aug 2004
Degree: Bachelor of Engineering Technology
Major: Mechanical Technology Minor: Production

College of Technology at Jeddah, Jeddah, Saudi Arabia Nov 1997 - Dec 1999
Degree: An Associate
Major: Mechanical Technology Minor: Production

Work Experience

Mechanical Design Engineer Sep 2006 - Apr 2008
Dallah Trans Arabia Co. contract with Saudi Aramco Co., Jeddah, Saudi Arabia

• Worked in the community services department in planning and technical support
• Prepared project packages (drawing, cost estimate, and scope of work)

Process Engineer Jan - Apr 2006
Al-Tuwairqi Holding Co. in Al-Ittefaq Steel Products Co., Jeddah, Saudi Arabia

• Worked in the production department and the roll shop department
• Worked on the industrial calculations to produce rebar and analyzed problems
• Used AutoCAD to draw mechanical parts and edited the layout of the factory

Training Engineer Sep - Dec 2005
Jeddah Cable Co., Jeddah, Saudi Arabia

• Supervised and registered new candidates and explained briefly the manufacturing cable
process to become machine operators

Conference Presentations

Altarazi, F. & Bao, H. (2015). Investigating the Impact of Buffer Size in Critical Chain
Management, The International Conference on Flexible Automation and Intelligent
Manufacturing (FAIM), University of Wolverhampton, Wolverhampton, UK

	Multi-Mode Resource Constrained Project Scheduling Using Differential Evolution Algorithm
	Recommended Citation

	Microsoft Word - Faisal Altarazi_Dissertation_FINAL.docx

