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ABSTRACT: The computational efficiency and energy-to-solution
of several applications using the GAMESS quantum chemistry suite
of codes is evaluated for 32-bit and 64-bit ARM-based computers,
and compared to an x86 machine. The x86 system completes all
benchmark computations more quickly than either ARM system and
is the best choice to minimize time to solution. The ARM64 and
ARM32 computational performances are similar to each other for
Hartree−Fock and density functional theory energy calculations.
However, for memory-intensive second-order perturbation theory
energy and gradient computations the lower ARM32 read/write
memory bandwidth results in computation times as much as 86%
longer than on the ARM64 system. The ARM32 system is more energy efficient than the x86 and ARM64 CPUs for all
benchmarked methods, while the ARM64 CPU is more energy efficient than the x86 CPU for some core counts and molecular
sizes.

1. INTRODUCTION

It is widely recognized that energy usage is a major bottleneck
in the pursuit of improving computational performance. This
reflects in part the demise of Dennard scaling1,2 but also
fundamental limitations on the energy that can be provided to
a single chip regardless of the transistor count. Consequently,
computational application developers and users will increas-
ingly need to consider both speed and energy and the
interplay between these two metrics. Clear evidence of this
trend is seen in the rapid rise of energy-optimized accelerators
and co-processors and in the availability of advanced power
management facilities on modern processors.
In the pursuit of new energy-efficient hardware designs,

low-power mobile computing driven by ARM-based system-
on-chip (SoC) processors has aroused significant interest
within the high performance computing (HPC) community.
These systems are designed with energy efficiency in mind,
typically utilizing 32-bit CPUs that are optimized for 32-bit
arithmetic. This may be adequate for mobile applications, but
for quantum chemistry applications large memory and double
precision floating point arithmetic is usually required. And
while ARM-based devices are now being used in servers, it is
not yet clear whether either 32-bit ARM-based SoC
computers or more recent 64-bit ARM CPUs are viable for
HPC workloads.
The popular GAMESS3 quantum chemistry package is used

on a wide range of HPC architectures and is therefore a

useful test bed for assessing the performance of novel
architectures. The present work focuses on measuring
performance and energy-to-solution of GAMESS workloads
on two ARM-based systems, a 32-bit NVIDIA Jetson TK1
and a 64-bit APM Xgene1 X-C1. The two ARM systems are
also compared to a 64-bit Haswell x86 Intel Xeon-E5
processor. A set of commonly used computational chemistry
techniques are evaluated, namely, Hartree−Fock (HF) self-
consistent field (SCF),4 density functional theory (DFT),5−7

and second-order Møller−Plesset (MP2)8,9 energy and
gradient calculations.

2. COMPUTATIONAL DETAILS

The GAMESS performance evaluations used a benchmark set
of molecules that contains 99−509 basis functions when using
the 6-31G(d)10−12 basis set. Power measurements were
obtained for DFT, HF SCF, MP2 energy, and MP2 gradient
calculations. The PBE0 functional13−15 was used in all DFT
calculations. All parallel computations were performed by the
creation of compute and data server processes for each
physical CPU core via the distributed data interface16−18

(DDI) in GAMESS. In all benchmarks, two-electron integrals
were calculated at each (direct) SCF step.
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The molecules used for benchmarking are listed in Table 1.
The molecular geometries used for all benchmark calculations

were obtained by HF/cc-PVDZ19,20 optimizations. The
coordinates and the total wall times are provided in the
Supporting Information.
2.1. Hardware. The 32-bit ARM machine is an NVIDIA

Jetson TK1, configured with a quad-core 2.35 GHz ARM
Cortex-A15 CPU (ARMv7-A architecture) paired with 2 GB
of LP-DDR3 RAM. The 64-bit ARM machine is an
AppliedMicro (APM) X-Gene X-C1 with an 8-core 2.4 Ghz
APM883208-X1 CPU (ARMv8-A architecture) and 16 GB of

DDR3 memory. The Haswell x86 machine utilizes an 18-core
Intel Xeon E5-2699 v3 CPU clocked to the maximum turbo
frequency of 3.6 GhZ with hyperthreading disabled and 32
GB of DDR4 memory.
To consider the impact on computational performance due

to the different system memory types used in each machine,
the DRAM read and write bandwidths were measured with
the LMBench21 performance analysis suite. For small memory
transactions, 1.05MB in size, the read/write bandwidth is
18.0/12.6 GB/s for the x86 system, 5.9/9.5 GB/s for the
ARM64 system, and 4.3/9.2 GB/s for the ARM32 system.
For larger memory transactions, 67.11 MB in size, the read/
write bandwidth is 10.6/7.6 GB/s for the x86 system, 5.1/9.3
GB/s for the ARM64 system, and 1.2/3.2 GB/s for the
ARM32 system. The 32-bit x86 4 GB physical memory
capacity limitation is expanded to 1 TB for the 32-bit ARMv7-
A architecture via 40-bit physical memory address space
support. Also, note that on the 32-bit ARM system double
precision numbers are moved between the CPU registers and
system memory locations in two 4-byte segments, while on
the 64-bit CPUs the entire 8-byte number can be moved to
memory with a single instruction.

Table 1. Benchmark Molecule Specifications

molecule chemical formula
number of basis

functions

pentane C5H12 99
asparagine C4H8N2O3 151
nicotine C10H14N2 208
trinitrotoluene (TNT) C7H5N3O6 250
indigo C16H10N2O2 320
tetrahydrocannabinol (THC) C21H30O2 405
adenosine triphosphate (ATP) C10H16N5O13P3 509

Figure 1. Computation times per basis function for (A) DFT energy, (B) HF SCF energy, (C) MP2 energy, and (D) MP2 gradient benchmark
calculations.
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2.2. Software. GAMESS was compiled for the x86 and
ARM32 systems with GCC v4.8 and with GCC v5.1 on the
ARM64 system (v5.1 is the first version with compiler tuning
capabilities for the X-Gene1 CPU). BLAS routines were
provided by the ATLAS v3.11 math library,22 natively built for
each machine to take advantage of automatic tuning of BLAS
routines for each hardware type. The Red Hat GNU/Linux
operating system was used on the x86 system with kernel
version 3.10.0. The Ubuntu GNU/Linux operating system was
used for both ARM systems. The kernel versions were 3.13.0
for the ARM64 system and 3.10.40 for the ARM32 system.
2.3. Energy/Power Measurements. High-accuracy en-

ergy measurements were obtained by uniquely adapting the
measurement method for each system. The running average
power limit (RAPL)23 software interface which reads energy
consumption information from model-specific registers on an
x86 CPU was used to measure the DC power consumption of
the 18-core Haswell CPU. RAPL measurements were reported
every 0.2 s.
The DC power consumption of the 64-bit ARM CPU was

measured by placing a Fluke i1010 AC/DC current clamp
around the wire from the power supply unit (PSU) that
supplies power to the CPU. The current clamp was connected
to a multimeter which stored current measurements every 0.5
s on a remote server.
The current used by the ARM32 Jetson system was

measured using a uCurrent Gold high-precision current
measurement tool and an mbed LPC1768 microcontroller
with a 12-bit analog-to-digital (ADC) converter, ranging from
0 to 3.3 V. To measure the current, a 0 V supply line for the
system was routed through the current side of the uCurrent
Gold. The ADC was then connected across the voltage output
pins of the uCurrent Gold. Serial connections were used to
send start and stop signals from the Jetson to the measuring
device and to send the measurements from the measuring
device to the measuring computer.
The power measurements reported for both the x86

Haswell and ARM64 systems are only for the CPU. The
RAPL interface used for measurements of the x86 system
provides energy consumption information for the isolated
CPU socket. The current clamp used for ARM64 measure-
ments probes the +12 V wire from the ATX power supply
unit that powers the CPU only. The ARM32 Jetson uses an
AC adapter that has a single power supply output. ARM32
energy measurements are for the entire system and include
power consumption for components such as the fan and
memory in addition to the CPU.

3. RESULTS AND DISCUSSION
3.1. Computational Efficiency. For performance com-

parisons of different computer systems, the same number of
cores is used on each system. The CPU wall clock times for
the various methods on the different platforms are shown in
Figure 1 normalized according to the number of basis
functions in each molecule. [A set of figures that provide an
alternative view of the same data is presented in the
Supporting Information.] For all methods employed there is
an increase in computational time per basis function as the
system size increases. This reflects the worse-than-linear
scaling of all methods.
For the DFT energy computations in Figure 1A, the x86

single-core performance is consistently better by a factor of
∼3 than both ARM CPUs, with little change in the ratio as

the system size increases. The x86 performance relative to
ARM64 decreases to a factor of ∼2.8 when 8 cores are used.
The performance of the ARM32 and ARM64 CPUs are
within ±10% of each other.
The results for the HF SCF energy shown in Figure 1B are

similar to those for the DFT energy. That is, on average the
ARM32 computation is 3.3% slower than the ARM64
computation while the ARM64 system takes on average
3.17×/3.16×/2.90×/2.69× longer than the x86 system for HF
calculation execution time with 1/2/4/8 cores.
For the MP2 energy and gradient calculations, memory

requirements limit the calculations on the ARM32 system to
four molecules that contain 99−250 basis functions, while
other restrictions due to the DDI implementation limit the
calculations to six molecules in the range of 99−405 basis
functions on the ARM64 and x86 systems.
The computation times for the MP2 energy calculations

(Figure 1C) show the largest difference in performance
between ARM32 and ARM64 among all analyzed computa-
tion types. Furthermore, the performance degradation of the
ARM32 CPU relative to ARM64 worsens with increasing
system size and the number of cores used. For example, the
MP2 energy computation time for the smallest system,
pentane, is 8.6%/13.6%/20.7% greater on 1/2/4 ARM32
cores compared to the same number of ARM64 cores, and
10.0%/22.8%/44.1% greater on 1/2/4 ARM32 cores than the
same number of ARM64 cores for the largest molecule that
can be run on ARM32 (TNT). By contrast no such
correlation is found between the system size or the number
of active cores and the relative computational performance
when comparing the x86 system to the ARM64 system. On
average, the MP2 energy calculations take 3.27×/3.37×/
3.32×/3.25× more execution time on the ARM64 system
than the x86 system for the 1/2/4/8 cores.
For the MP2 gradient (Figure 1D), there is a weak

correlation between the number of CPU cores used and the
relative system performance for ARM64 vs ARM32, but no
such correlation is observed for molecule size. On average, the
ARM64 system executes MP2 gradient calculations in 8.5%/
10.3%/10.4% less time than the ARM32 system for 1/2/4
cores. The performance benefits of the x86 system relative to
the ARM64 system decrease when the number of cores used
for the computation is increased. With the exception of the
largest molecule (THC; 405 basis functions) the MP2
gradient calculation using the x86 system is on average
2.95×/2.89×/2.80×/2.67× faster than the ARM64 system
with 1/2/4/8 cores. No consistent correlation between system
size and relative performance of x86 vs ARM64 is observed,
but the relative advantage in computational speed for the x86
machine relative to the ARM64 system for the MP2 gradient
calculation is greatest for the largest molecule: 3.54×/3.90×/
3.61×/3.65× with 1/2/4/8 cores. In general, the ARM32
system performance is worse than the ARM64 system
performance for MP2 calculations in contrast to the similar
performance observed for the less memory-intensive HF SCF
and DFT energy calculations. This degradation in perform-
ance may be due to the relatively low read and write
bandwidths which were measured for the LPDDR3 RAM of
the ARM32 device.

3.2. Energy Consumption. Figure 2 shows the energy
consumption per basis function for (A) the DFT energy, (B)
the HF SCF energy, (C) the MP2 energy, and (D) the MP2
gradient calculations measured for the x86, ARM64, and
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ARM32 systems. For the DFT calculations averaged over all
molecules the ARM32 system requires 31.8%/36.5%/44.3% of
the energy consumed by the x86 CPU for 1/2/4 core jobs,
while the ARM64 CPU requires 116.2%/102.9%/89.5%/
79.5% of the x86 CPU energy for calculations on 1/2/4/8
cores. The HF SCF energy calculations (Figure 2B) exhibit
similar trends for the x86 and ARM64 CPUs for all core
counts; that is, the x86 calculation is always slightly more
energy efficient for all benchmark molecules on 1 core and
always less efficient than the ARM64 CPU on 4 and 8 cores.
The ARM32 system consumes an average of 31.1% of the x86
CPU energy for 1 core, 36.3% for 2 cores, and 48.6% for 4
cores.
The MP2 energy efficiency results are shown in Figure 1C.

The ARM64 calculations on average and using 1/2 cores
consumes 29.1%/11.1% more energy than 1/2 x86 cores;
when using 4 or 8 cores the x86 machine falls within ±3% of
the analogous results obtained on the ARM64 machine. The
ARM32 system is the most energy efficient, but this energy
efficiency rapidly diminishes when increasing the number of
cores. On 1/2/4 cores the MP2 energy calculations on the
ARM32 system and averaged over all molecules uses 36.5%/
48.4%/71.8% of the energy required for the equivalent
calculations on the x86 system.

For the MP2 gradient computations, the energy con-
sumption of the ARM64 CPU averaged over all molecules is
117%/102%/90%/86% of the x86 CPU energy used for the
same computations on 1/2/4/8 cores. On the ARM32 system
the 99−250 basis function computations consume on average
31.9%/40.0%/51.0% of the energy used by the x86 CPU for
1/2/4 cores, similar to the relative energy consumption for
the DFT energy and HF SCF computations.

3.3. Busy/Idle Core Energy Usage. When running a
calculation on less than the total number of CPU cores, the
unused cores consume energy in the idle state. To examine
the efficiency of running parallel versus multiple copies of
sequential code, and in order to estimate the energy
consumed by busy and idle cores, the energy usage was
measured for MP2 gradient calculations on TNT performed
using varying levels of CPU core saturation. The energies and
times used per basis function are shown in Table 2. The 1-
core values correspond to single 1-core computations while all
remaining cores are idle. The 8-core values correspond to 8
cores used for a single computation running in parallel. This
fully saturates the available ARM64 cores but leaves 10 idle
cores for the x86 CPU. Also shown is the energy usage for
running 8 × 1-core jobs simultaneously.
The 8 × 1-core parallel and 8-core schemes have similar

energy consumption and calculation times for all computation

Figure 2. Energy consumption per basis function for (A) DFT energy, (B) HF SCF energy, (C) MP2 energy, and (D) MP2 gradient benchmark
calculations.
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steps for both x86 and ARM64 CPUs with the exception of
the MP2 energy on the x86 system. That is, it is as efficient to
run 8 identical single-core calculations simultaneously as it is
to run one calculation in parallel using 8 cores, and then to
repeat that calculation 8 times. For the x86 MP2 energy there
is a slight difference: the 8 × 1-core parallel scheme consumes
9.2% more energy and takes 8.3% more execution time per
basis function compared to the 8-core computation. Overall
the results suggest that the HF SCF, MP2 energy, and MP2
gradient algorithms in GAMESS do not have significant
computational cost overhead for parallel task coordination.
Also, there is no significant off-chip memory or I/O
contention when running 8 compute processes in parallel.
To calculate the power consumption of individual busy and

idle cores, their energy usage is approximated using eqs 1 and
2, respectively. coremax is the number of physical cores per
CPU: 18 for x86 and 8 for ARM64. In eq 1, the “saturated”
subscript indicates the value for coremax jobs running
simultaneously, each using 1 core. This corresponds to the
“x86 18 × 1-core, parallel” and “ARM64 8 × 1-core, parallel”
values (Table 2). In eq 2, the “n-core” subscript indicates the
value for a single job running on n cores. The value n = 1 is
chosen for idle core calculations in this study and corresponds
to the “x86 1-core” and “ARM64 1-core” values in Table 2.

=busy core power
energy /time

core
saturated saturated

max (1)

=
− ×

−
‐ ‐ n

n

idle core power
(energy /time ) ( busy core power))

core
n ncore core

max
(2)

The calculated power consumption per busy core during the
HF SCF/MP2 energy/MP2 gradient calculations is 7.93 W/
7.65 W/6.74 W for the x86 CPU and 3.35 W/3.64 W/3.53 W

for the ARM64 CPU. The calculated power consumption per
idle core during the HF SCF/MP2 energy/MP2 gradient
calculations is 2.47 W/2.57 W/2.55 W for the x86 CPU and
2.62 W/2.21 W/2.10 W for the ARM64 CPU. Extrapolating
the average idle core power consumption during the three
calculation types to the coremax value, the calculated total
power consumption for an idle CPU is 45.57 W for the x86
CPU and 18.46 W for the ARM64 CPU.
For comparison power usage was measured experimentally

for both CPUs in the idle state over a period of 1 h. It was
found that while on the ARM64 the average measured value
of 19.10 W agreed well with the derived value of 18.46 W, the
measured value of 16.83 W on the x86 CPU is significantly
less than the derived value of 45.57 W. This 2.7× reduction in
power usage presumably reflects the fact that the Haswell x86
CPU includes the C7 sleep state feature to lower idle core
power consumption when the entire CPU is idle.
In terms of ideal energy efficiency for the quantum

chemistry algorithms analyzed, the results clearly demonstrate
that it is much more important to saturate all available cores
regardless of the number of cores per computation than it is
to choose between parallel and back-to-back serial computa-
tion executions. This is particularly true for the Haswell
architecture, which incurs a relatively large incremental energy
cost when left in the completely idle CPU state. This is not
observed for the ARM64 CPU.

3.4. Energy Usage Trace. To explore whether energy
usage changes significantly during the course of the
calculations, Figure 3 shows a trace of the instantaneous
power consumption of the x86 and ARM64 CPUs and
ARM32 system during an MP2 gradient calculation on TNT
running on four CPU cores. The average idle energy
consumption over a 1 h measurement is plotted in Figure 3
for the x86, ARM64, and ARM32 systems, indicated by times
from −100 to 0 s.

Table 2. Energy Consumption and Computation Time Per Basis Function of x86 and ARM64 CPUs for TNT (250 Basis
Functions) MP2 Gradient Calculation Steps for 1-Core and 8-Core Calculations and for 8 and 18 1-Core Calculations in
Parallel

energy/basis function, J time/basis function, s

HF SCF energy x86 1-core 19.849 0.397
x86 8-core 5.658 0.062
x86 8 × 1-core, parallel 5.665 0.063
x86 18 × 1-core, parallel 4.139 0.029
ARM64 1-core, serial 21.676 1.144
ARM64 8-core 4.003 0.158
ARM64 8 × 1-core, parallel 4.155 0.155

MP2 energy x86 1-core 44.784 0.871
x86 8-core 13.362 0.145
x86 8 × 1-core, parallel 14.597 0.157
x86 18 × 1-core, parallel 13.352 0.097
ARM64 1-core 57.932 3.040
ARM64 8-core 13.435 0.480
ARM64 8 × 1-core, parallel 13.855 0.476

MP2 gradient x86 1-core 22.217 0.444
x86 8-core 6.190 0.069
x86 8 × 1-core, parallel 6.133 0.068
x86 18 × 1-core, parallel 3.884 0.032
ARM64 1-core 25.247 1.384
ARM64 8-core 5.132 0.188
ARM64 8 × 1-core, parallel 5.281 0.187
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The average x86 idle CPU power consumption of 16.83 W
is initially lower than the 19.10 W average of the ARM64
CPU, but within 1 s of the HF SCF calculation, power
consumption increases by 71.95 W for the x86 CPU, but only
to 23.12 W for the ARM64 CPU. The ARM32 system uses
less power than either ARM64 or x86, with an average idle
power consumption of 3.21 W which increases to 10.58 W
after 1.0 s has elapsed in the HF SCF calculation.
Table 3 shows the mean, standard, and relative standard

deviations of the x86, ARM64, and ARM32 systems during
the CPU power trace calculation. On all machines, once the
computation has begun, fluctuations in power usage are
relatively small. For the x86 and ARM64 CPUs, the mean
power consumption is highest for the MP2 energy calculation,
followed by the MP2 gradient and the HF SCF calculations.
The ARM32 MP2 gradient calculation consumes slightly more
power in the gradient step, followed by the HF SCF energy
and the MP2 energy calculation. The standard deviation of
CPU power consumption is highest for the x86 CPU for each
calculation step of the power trace at 1.57 W for the HF SCF
step, 2.17 W for the MP2 energy step, and 2.52 W for the
MP2 gradient step. The relative standard deviation, which
takes the magnitude of the average power consumption into
account, is lowest for the x86 CPU at 2.52% for the HF SCF
step, 2.17% for the MP2 energy step, and 1.57% for the MP2

gradient step. The ARM64 CPU power consumption is the
most consistent between calculation steps with a standard
deviation of 0.86 W for the HF SCF step, 0.98 W for the
MP2 energy step, and 0.81 W for the MP2 gradient step.

4. CONCLUSIONS

Supercomputers capable of exascale level computations will
greatly extend the complexity of feasibly solvable problems in
computational sciences. The most significant barrier to
exascale supercomputers is the relatively poor energy
efficiency of modern computer hardware. To reach the
exascale, it is therefore imperative that improvements in CPU
technology address both computational throughput and
energy efficiency. This work has explored these issues in the
context of a widely used quantum chemistry package running
on ARM32, ARM64, and x86 processors. For all methods and
molecules considered the x86 CPU is the clear choice in
terms of minimizing time to solution, in the order of x86 <
ARM64 < ARM32. Although the 32-bit architecture limits the
utility of the ARM32 system for quantum chemistry
calculations, it offers the best performance in terms of energy
efficiency with a general ordering of energy-to-solution of
ARM32 < x86 < ARM64. It appears that the transition from
ARM32 to ARM64 technology comes at a significant cost to
energy usage without a significant increase in performance.
Whether the latter is in part a reflection on the immaturity of
the ARM64 compiler and runtime remains to be seen.
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