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Figure 7: Foraging locations determined by a Bayesian state-space model. A) Satellite tracks in 

Cluster 1 segmented based on behavioral states. The gray points represent migratory movements 

and the red points represent foraging activity. B) Satellite tracks in Cluster 2 segmented based on 

behavioral states. The gray points represent migratory movements and the blue points represent 

foraging activity. 
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RESULTS 

 

 

STABLE ISOTOPE RATIOS AND SATELLITE TELEMETRY  

 All 149 epidermis tissue samples from the nesting females were subject to EA-IRMS and 

δ13C values ranged from -19.8% to -14.5% (Figure 8A) and δ15N values from 9.1% to 13.7% 

(Figure 8B).  The average CCL of the sampled turtles was 70.4 cm (± 3.2, n=148, min=60, 

max=79).  

The mean tracking duration for the 38 satellite-tracked female olive ridley turtles was 

103.2 days (±72, min= 4, max= 312). Eleven tracking datasets were excluded from the foraging 

location analysis as they had inadequate data for the SSM, either the track duration was too short 

or there were gaps in the transmitted data, and therefore the model could not differentiate 

between behavioral states. This resulted in a total sample of 26 tracked turtles but the excluded 

turtles were still included in the non-tracked nesting female data set for the remaining analyses. 

Thirty one sea turtles migrated south towards Angola (Figure 6), initially described in Pikesley et 

al. (2013) [of which this reports uses 9 turtles], 2 turtles migrated North towards Cameroon, and 

5 turtles remained in Gabon. Turtles that remained in Gabon provided short tracking durations 

(21-61 days), except for turtle X, whose track was 197 days. Of the 26 tracks with viable 

foraging locations, the average straight-line offshore foraging distance was 181.7 km (±142.3, 

min= 4.9, max=534.7). 
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Figure 8: Isotope Density Histograms A) Density Histogram of the Carbon 

isotope ratios for the nesting olive ridley sea turtles. B) Density Histogram of the 

Nitrogen isotope ratios for the nesting olive ridley sea turtles.  
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CLUSTER ANALYSIS 

 The results of the Bayesian Information Criteria model in the cluster analysis selected a 

multivariate mixture vector with a spherical shape and unequal volume (Model VII).  The model 

therefore produced two unequal sized clusters (Figure 9); cluster 1 contained 31 turtles, 8 of 

which were satellite tagged, and cluster 2 contained 118 turtles, 30 of which were satellite tagged 

(Figure 6, Table 1). Cluster 1 had an average δ15N value of 10.86% (±0.98%) and range of 

9.12% to 13.34%, an average δ13C value of -17.77% (±0.97%) and a range of -19.80% to -

15.60% (Table 2). Cluster 2 had an average δ15N value of 11.98% (±0.57%) and range of 

10.41% to 13.66%, an average δ13C value of -16.04% (±0.58%) and a range of -17.23% to -

14.51% (Table 2). Based on the predictive capabilities of the DFA, which removes one point 

from the data at a time and re-assigns it to a cluster using the remaining data as a training set, the 

model was 95.3% accurate at re-assigning turtles, 75.8% accurate for cluster 1 and 100% 

accurate for cluster 2.  

 

Figure 9: Scatter plot of δ15N and δ13C for the 149 olive ridley sea turtles sampled from the 

nesting beaches of Gabon, Africa. Cluster 1 is denoted by blue circles and cluster 2 by red 

squares.  The filled shapes represent satellite tagged individuals.  
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Table 2: Cluster values. Data includes the mean δ15N, δ13C, Curved Carapace Length (CCL), and 

straight-line foraging distance from the coast for each cluster.  

 
δ15N δ13C CCL (cm) 

Offshore Foraging 

Dist. (km) 

Cluster 1 10.86% (±0.98%) -17.77% (±0.97%) 70.6 cm (± 3.8) 283.9 km (±155.6) 

Cluster 2 11.98% (±0.57%) -16.04% (±0.58%) 70.3 cm (± 3.0) 159.9.9 km (±126.1)  

 

 

 To determine if clusters differed in biological or ecological traits, a GLM was used to   

investigate isotopic signatures, nesting beach where the turtles were sampled, and sampling year.  

Only δ15N (F= 77.76, p < 0.0005) and δ13C (F=175.13, p < 0.0005) were significantly different   

between the two clusters, indicating nesting beach and sampling year were not adequate predicto

rs for cluster assignment. Additionally, there was no significant difference in average offshore fo

raging distance between cluster (GLM, Z = -0.775, p = 0.438). When 111 of the turtle samples (

without satellite tags) were used as the training set, the predictive model correctly assigned all sat

ellite tagged turtles (n=38) to their respective clusters. When the reverse was done, using the 38 s

atellite tagged turtles as the training set, the predicative model initially placed 4 of the satellite ta

gged turtles in the wrong cluster (89% accurate assignment), due to the satellite tagged turtles ha

ving a less encompassing range of isotope values. When 74 of the turtles were randomly selected 

to be in the training set and predict the assignments of the remaining 75, the model correctly assi

gned 36 of 37 turtles, incorrectly assigning a single individual.  

 

 

 

 



33 
 

DISCUSSION 

 

 This is the first study to use δ15N and δ13C stable isotopes analysis to supplement satellite 

telemetry data for this East Atlantic olive ridley sea turtle population. The satellite tracks of the 

nesting female olive ridley sea turtles were indicative of the commonly observed “looping 

pattern”, where they do not necessarily feed in one concentrated area but instead move in loop 

like patterns until they find places to forage (Figure 6, Pikesley et al., 2013). This may also be 

representative of opportunistic feeding, which is observed in this species (Beavers & Cassano, 

1996, Peavey et al., In Review). Both the looping and opportunistic feeding behavior did not 

allow for the turtles to be grouped based on coastal or oceanic foraging or any other spatial 

segregation based on the tracks.   

 Even though two significant clusters were derived from the δ15N and δ13C ratios, the 

mixture of turtles in each cluster complement the opportunistic feeding behavior. The lower δ15N 

and δ13C values in cluster 1 indicate less enriched waters potentially influenced by nitrogen 

fixing producers, and lower nutrient levels demonstrated by being overall further offshore. 

Similarly, the higher δ15N and δ13C of cluster 2 represent higher enrichment potentially from de-

nitrification via producers and nutrient rich in-shore waters (Peterson & Fry 1987, Graham et al., 

2010, Newsome et al., 2010). Also, seasonal and interannual variation in subsurface water 

temperature and nutrient fluxes occur within the South Atlantic near the olive ridley turtle’s 

foraging areas (Doi et al., 2007).  An oceanographic feature, known as the Angola Dome sits off 

the coast of West Africa. The Angola Dome is made up of two domes, a weaker one at 6°S, 1°E 

offshore from Gabon and a stronger one at 16.5°S, 10.5°E closer to the Angolan coastline (Doi et 

al., 2007). Seasonal temperature variation occurs in the upper 120m and though the domes exist 

throughout the year they have the coldest waters due to increased upwelling from May to 

September, coincidentally during the olive ridley foraging season. Interannual variation 

associated with the Atlantic Niño introduces warm water from the Angola Current into waters 

near the Angola-Namibia border. This influx changes the size of available upwelling zones and 

olive ridley turtles have been shown to rely on upwelling zones for foraging (Pikesley et al 

2013). The interannual variability may mean that some years ideal foraging grounds may span 

the coast of Angola (~1000+ km North-South, ~ 500km East-West) and in others they may be 
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limited to smaller coastal regions (~500-1000 km North-South, ~300 km East-West, Doi et al., 

2007). Interannual changes in upwelling areas could explain the mixing of wider versus more 

constrained looping demonstrated by the olive ridley turtles tagged in different years. The 

inconsistent foraging locations and nutrient levels in the water could clarify the lack of 

differentiation in the satellite tracks within clusters. Nutrient level variations could also influence 

the baseline values for the area and therefore influence both δ15N and δ13C in the olive ridley 

turtles.      

CONCLUSIONS 

In this study, we assumed that the sea turtles exhibit foraging site fidelity and repeated 

similar foraging behavior once in the area. While repeated tagging has not been done en mass, 

one turtle tagged in 2012 was retagged in 2015 and though tissue for stable isotopes were not 

collected this second year, it returned to the same foraging region off Angola and displayed 

“looping” behavior. The satellite tracks observed were collected after epidermic sampling and 

therefore the isotopic ratios represent the previous foraging season. If sea turtles do not return to 

similar foraging habitats or feed in the same way year to year, then isotopic discrimination may 

not be to useful to supplement tracking.  Additionally, satellite tracks are not all encompassing of 

the turtle’s movement, and could have missed later foraging locations as tags fail typically prior 

to females commencing their pre-breeding migrations to key areas. 

The lack of isotopic signature across a latitudinal gradient was unexpected because of the 

inclusion of turtles with mostly northward migrations (turtles R and KK, table 1) and those with 

southward migrations patterns. The small latitudinal change represented in the data set is either 

not sufficient to reveal a significant shift in patterns of nitrogen in coastal zones or both foraging 

areas have similar enrichment levels. Alternatively, foraging site fidelity may be low and these 

two northward migrating turtles may not have used northern foraging grounds in the year prior to 

tagging. Another potential issue is that the return migration from foraging grounds to nesting 

beaches might be too long compared to the turnover rate of the skin samples resulting in mixed 

samples.  Regardless, the satellite tracks highlighted that both costal and offshore waters of 

Angola are important foraging habitat for this olive ridley sea turtle population (Pikesley et al., 

2013), and SIA results reinforce the cosmopolitan nature of this species.  
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 The lack of a clear pattern in the isotopic data may also be a result of laboratory 

techniques. When working with epidermis samples of sea turtles, some studies have separated 

the hard keratinized epidermis layer from the softer skin tissue below to further insure isotope 

ratios correspond to foraging time (Seminoff et al., 2012).  For this study, both epidermis layers 

were used together in the samples due to the small size of the tissues taken and quantifying the 

effect of using individual layers on the isotopic ratios is not possible. However, the skin samples 

were not collected using biopsy punch which often results in the collection of deeper tissues 

(Reich et al., 2007, Vander Zanden et al., 2010), so both layers may have a similar turnover rate 

and subsequently similar isotopic values. 

While there are many successful examples of stable isotope analysis being used to 

supplement satellite tracking (loggerheads: Hatase et al., 2002, Zbinden et al., 2011, Ceriani et 

al., 2012, Pajuelo et al., 2012a, Pajuelo et al., 2012b, Tucker et al., 2014, Vander Zanden et al., 

2015; leatherbacks: Seminoff et al., 2012; greens: Hatase et al., 2006), this method did not 

distinguish further spatial separation in foraging sites for this specific population. The olive 

ridley turtle’s opportunistic feeding style, looping foraging pattern, and environmental 

fluctuations in δ13C and δ15N make it difficult to isolate distinct foraging groups or even foraging 

habitats. Their satellite tracks highlight movement in both coastal and offshore waters 

eliminating the ability to visually group the turtles and makes explaining cluster assignments in a 

spatial or ecological context unclear.  
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CONCLUSION 

 

 This research focuses on understanding the habitat use and conservation potential during 

two life stages of the female olive ridley sea turtles in the East Atlantic. First, females nesting in 

Pongara National Park, Gabon Africa face threats from the trawl fisheries and commercial 

shipping lanes in the waters surrounding the nesting beach. We found that during the internesting 

period, these females intensely use the Komo Estuary, which creates a high overlap between the 

turtle movement and the above mentioned anthropogenic threats. The concentrated movements 

within the estuary allow for implementation of marine protected area boundaries and seasonal 

fishing restrictions in the area, which are currently underway.  

 After the internesting period the female olive ridleys migrate to another critical habitat, 

the foraging grounds.  For this population, a major foraging location is off the coast of Angola, 

yet specific areas have not been determined. In an effort to study a larger subset of the population 

and determine distinct foraging habitats, we used stable isotope analysis to supplement satellite 

telemetry data.  Due to olive ridley turtles being opportunistic feeders, searching for prey sources 

in a “looping” pattern, and fluctuations in baseline nutrient levels we were not able to determine 

distinct foraging habitats. This led to the conclusion that the Angolan coast and shelf waters as a 

whole are a critical foraging habitat for this population.   
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