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A numerical study sf wave propagation in a confined mixing layer 
by eigenfunction expansions 

Fang Q. Hu 
Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529 
(Received 14 October 1992; accepted 17 February 1993) 

It is well known that the growth rate of instability waves of a two-dimensional free shear layer 
is reduced greatly at supersonic convective Mach numbers. In previous works, it has been shown 
that new wave modes exist when the shear layers are bounded by a channel due to the coupling 
effect between the acoustic wave modes and the motion of the mixing layer. The present work 
studies the simultaneous propagation of multiple stability waves using numerical simulation. It 
is shown here that the coexistence of two wave modes in the flow field can lead to an oscillatory 
growth of disturbance energy with each individual wave mode propagating linearly. This is 
particularly important when the growth rates of the unstable waves are small. It is also shown 
here that the propagation of two neutrally stable wave modes can lead to a stationary periodic 
structure of rms fluctuations. In the numerical simulations presented here the forced wave 
modes are propagating at same frequency, but with different phase velocities. In order to track 
the growth of each wave mode as it propagates downstream, a numerical method that can 
effectively detect and separate the contribution of the individual wave is given. It is 
demonstrated that by a least square fitting of the disturbance field with eigenfunctions the 
amplitude of each wave mode can be found. Satisfactory results as compared to linear theory are 
obtained. 

1. INTRODUCTION 

In this paper we present results of numerical simula- 
tions of a confined supersonic mixing layer (Fig. 1). It is 
well known that at high supersonic convective Mach num- 
bers (Mach number in the reference frame of the large- 
scale structure), the familiar Kelvin-Helmholtz instability 
wave of a free mixing layer becomes stabilized due to the 
increased compressibility of the flow. It was found in re- 
cent experiments, iv3 as well as in numerical simulations,G 
that the spreading rate of a mixing layer at a supersonic 
convective Mach number is a factor of 4 or 5 smaller than 
at a low subsonic convective Mach number. As a result, 
large-scale rollups of the vorticity layer, a standard feature 
of low-speed free shear layers, are absent and the mixing of 
the two streams is inefficient. In efforts to explain these 
observations, a number of recent studies on the stability of 
the free shear layer using inviscid quasiparallel linear the- 
ory have been carried out7** These studies showed that the 
intrinsic instability wave of the shear layers has a much 
reduced growth rate when the convective Mach number 
becomes supersonic. It was suggested that this reduction of 
the unstable wave growth is directly responsible for the 
small spreading rate of the supersonic mixing layers ob- 
served in the experiments and direct numerical simula- 
tions. 

At the same time, it was also found that a bounded free 
shear layer behaves differently from an unbounded one at 
high supersonic convective Mach numbers.g-l * These stud- 
ies revealed that the same shear layer, when bounded by a 
channel consisting of flat walls at the top and bottom, sup- 
ports new instabilities due to the coupling between the 
acoustic wave modes of the channel and the motion of the 
shear layer. A thorough treatment of normal modes asso- 

ciated with a bounded shear layer was given by Tam and 
Hug Systematic calculations of normal mode solutions 
showed that four families of waves exist. In their naming 
convention, class A and class B modes are the unstable 
waves. Class ii waves are related to the wave reflections 
from the lower wall and class B waves are related to the 
reflections from the upper wall. In addition, there are two 
families of neutrally stable waves. They were called class C 
and class D acoustic waves since they are related to the 
acoustic reflection off both walls. Typical dispersion rela- 
tions of the four waves and the growth rates of A and B 
waves are given in Fig. 2, where the calculations have been 
made for two-dimensional waves at A&, (Mach number of 
the upper stream) =3.5, iw, (Mach number of the lower 
stream) = 1.2, and the sound speeds ratio of the two 
streams at/a,= 1.2. In Fig. 2 a subscript has been used to 
indicate the corresponding mode number. It is to be noted 
that although the D waves have negative phase velocities, 
all waves have positive group velocities and hence are 
downstream propagating waves. 

When disturbances are initiated upstream, it is ex- 
pected that the wave with the largest growth rate domi- 
nates downstream. Observation of the spatial growth rates 
of the A and B waves indicate that at certain frequencies 
the A waves are dominant, while at other frequencies the B 
waves are the dominant waves. Yet the A and B waves 
have comparable growth rates. In numerical simulations, 
unless the upstream perturbation is an eigenfunction of a 
single wave mode, it is likely that both the A and B unsta- 
ble waves as well as the neutrally stable waves are excited 
and propagate downstream. Consequently, simulations of a 
bounded mixing layer could be significantly different from 
the unbounded counterpart in two respects. First, since the 
A and B waves have a comparable growth rate, both waves 
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are important in downstream propagation. Second, because 
the growth rates of the unstable A and B waves are gener- 
ally small at high convective Mach numbers, no large scale 
vorticity roll-ups are present, and, as a result, the excited 
neutrally stable waves may also constitute an important 
part in the downstream flow field. 

The present work is concerned with the cases when 
multiple waves are forced at the same frequency. One ob- 
jective of this paper is to show that the coexistence of 
multiple propagating waves can lead to an appearance of 
oscillatory growth of the disturbance flow field, even 
though the waves are growing linearly. A second objective 
of this paper is to construct a numerical method that can 
detect the growth of individual waves as they propagate. 

In many experimental and computational studies it is 
essential to know the growth or decay rate of the propa- 
gating waves. For example, in the studies of turbulent tran- 
sitions of plane mixing layers,‘2P13 the spatial evolutions of 
the fundamental and subharmonic waves are monitored as 
the waves propagate downstream. The interplay of the fun- 
damental and subharmonic waves is studied by their 
growth and saturation as they propagate. Usually the 
waves are identified by their frequencies using time series 
spectrum analysis of the disturbances at chosen down- 
stream locations. The assumption is that, for plane mixing 
layers, the only dominant growing (unstable) wave mode 
is the Kelvin-Helmholtz (KH) wave. Thus the frequency 
spectrum naturally indicates the strength of the KH wave 
at any given frequency. For this reason, the local wave 
number of the disturbances can also be estimated from the 
phase difference of simultaneous measurements of the time 
series at two nearby points in space.13 In this way the 
dispersion relationship can be established experimentally. 
However, when multiple wave modes of comparable 
strength are propagating at the same frequency but with 
different phase velocities, the growth or decay of each in- 
dividual wave mode cannot be distinguished from an ex- 
amination of the frequency spectrum alone. One method of 
tracking each wave is to use a cross-bispectrum analysis.13 
In this paper a method based on the eigenfunction expan- 
sion is proposed. It is shown numerically that by an ex- 
pansion of the disturbances in the form of eigenfunctions it 
is possible to track and separate the growth of each indi- 
vidual mode. 

In Sec. II we give the formulation of the problem and 
a description of the numerical methods. The method of 
eigenfunction expansion for detecting wave amplitudes is 
also described. In Sec. III results of numerical simulations 
and eigenfunction expansions are presented. Two cases are 
considered and discussed. Section IV contains the conclu- 
sions. 

II. FORMULATION 

A. Governing equations and numerical simulation 

We consider a two-dimensional mixing layer formed 
between two streams of uniform parallel flow confined in- 
side a channel (Fig. 1) . The coordinate system is such that 
x is in the direction of the flow and y is in the direction 
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FIG. 1. Schematic drawing of a bounded shear layer. 

perpendicular to X. The governing equations for an invis- 
cid, compressible flow, in conservative form, can be written 
as 

JU c3E aF 
~+~+ay=O’ 

where 

U= ’ E= 
0 PV ’ 

Pet 

(1) 

PU 

pu2+--P7 
“/Ml 

PUV 
Y--f 

pm,+- 
Y p” 

I PU 
PU v 

F= 

andp=pT, et=(l/y)T+[(y-1)/2]M:(u’+v’). 
In the above equations, u and v are the velocities in the 

streamwise (x) and cross-stream (y) directions, respec- 
tively, p is the density, T is the temperature, p is the pres- 
sure, y is the specific heats ratio, and M, is the upper 
stream Mach number. The equations have been nondimen- 
sionalized with respect to the mean velocity, temperature, 
and pressure of the upper stream. The height of the chan- 
nel is 1. The flat walls are located at y= -0.5 and y=OS, 
respectively. Boundary conditions at the walls are that v 
and normal derivatives of u, T, and p are zero. 

For the purpose of this paper, an explicit second-order 
MacCormack schemei is used to solve the above nonlinear 
Euler equations. Numerical solutions are advanced from 
time t to t+ht by the two-step predictor-corrector-type 
algorithm. 

Numerical simulation starts with an initially parallel 
flow, namely, 

u(x,y)=fl(y)=O.S[l+U,+(l-UU2)tanh(y/S,)], 
(2) 

d&Y) =o, (3) 
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Thy) = i”(Y) 

( 
l-0 tLu, = -- 

TZl-u2+ I-U, 

+Y- 1 
,-M:(l-D)(U-U,) , 

1 

P(X,Y) =p(Y) =-1 
T(Y) ’ 

(4) 

(5) 

where 6, is the vorticity thickness of the mean velocity 
a(y). The temperature T(y) is obtained by using the Cor- 
roco’s relation across the stream. Here U2 and T2 are the 
velocity and temperature of the lower stream, respectively. 

To initiate the disturbances, perturbations of u, u, T, 
and p are superimposed on the mean flow at the inflow. 
For the computations reported here, perturbations in the 
form of eigenfunctions were forced. Thus the boundary 
values at x=0 are 

where u^, , cn, f,, fin, and jn are the normalized eigenfunc- 
tions of the wave modes. The normalizations are such that 
jti,(y,w)I,,,=l. HereN is the number of modes used in 
the forcing, E, is the forcing amplitude, and w is the forcing 
frequency. Computations of the eigenfunctions will be 
briefly discussed below. 

B. Eigenfuction expansion 

For small perturbations forced at the inflow, the initial 
spatial growth is linear and is governed by the linearized 
Euler equations. By invoking local parallelism of the mean 
flow and substituting perturbations of the form 
u^(Yb GX+X) for u and similar forms for other variables 
into the linearized version of ( 1 ), an eigenvalue problem 
for the normal modes is derived. In particular, it is found 
convenient to form the eigenvalue problem in the pressure 
perturbation. It is straightforward to determine that the 
equation for the pressure eigenfunction is 

+ 
(o-k~)2M;-k, 

T (7) 

with boundary conditions dp/dy=O at y=-0.5 and 
~=0.5.~ For the spatial problem considered here the fre- 
quency o is given and the wave number k is sought from 
(7) as the eigenvalue. For a closed domain, the eigenvalues 
form a discrete set for any given o. A typical dispersion 
relation of the eigenvalues is shown in Fig. 2. The corre- 
sponding G(y), r?(y), f(y), and ii(y) can be easily ob- 
tained from J(y) by using the linearized Euler equations. 

FIG. 2. Dispersion relation of the normal modes associated with a 
bounded supersonic shear layer. -, unstable modes, -, neutral modes. 
The mode number is denoted by subscripts. Here w is the frequency, and 
k, and ki are the real and imaginary parts of the wave number, respec- 
tively. In addition, M,=3.5, M2=1.2, and a/a,= 1.2. 

It is expected that the normal modes form a complete 
spectrum of small-amplitude waves. Indeed, for bounded 
flows, it was shown that eigenfunctions of hydrodynamic 
instability problems form a complete basis in the functional 
space. I5 This fact has been exploited in several recent stud- 
ies, where eigenfunction expansions are used in improving 
numerical calculations16 or in representing nonlinear tur- 
bulent flows.i7 Our aim here is to reconstruct the flow field 
obtained from the results of direct numerical simulations 
as a’ summation of eigenmodes. By doing so, the spatial 
development of each individual mode imposed at the in- 
flow will be established. 

To implement the expansion in eigenmodes, we first 
record the time series on a mesh of selected points (Xf,yj). 
For convenience of discussion, let the time series of the 
normal velocity at (Xf,yj) be v’(x,,Yj,t,). Here the prime 
denotes the fluctuation over its mean value and t,, is the 
discretized time. Using a discrete FFT, the time series is 
transformed into the frequency spectrum, v^‘(Xi,Yj,O). We 
expect 0’ (Xi,Yj ,w) to be a summation of eigenfunctions for 
fixed Xi and W, i.e., 

(8) 
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where O,,(y,w) are the eigenfunctions at frequency o. The 
coefficients a,1 in (8) are found by requiring that the quan- 
tity 

2 

E= 2 ~O’(X~,JQ, a> - C a,Ai,Yj,@) 
i n 

be minimum. That is, the calculated time series spectrum 
as a function of y is fitted in the least square sense by a 
summation of normal mode eigenfunctions. Clearly the 
{a,} represents the wave amplitude of the corresponding 
mode and varies with x. It gives a measure of the strength 
of the wave as it propagates. For the results reported here, 
eigenfunction expansions are performed at the forcing fre- 
quency. 

ill. RESULTS AND DISCUSSIONS 

To demonstrate the effects of multiple propagating 
wave modes and the method of eigenfunction expansion, 
we study two cases here. In the first case, a class B unstable 
wave and a class C neutrally stable wave are forced at the 
inflow boundary. In the second case, two neutrally stable 
waves, the C and D modes, are forced. In all the calcula- 
tions shown here a 101 X 201 uniform mesh have been used 
for the MacCormack scheme. The computational domain 
extends over eight channel heights in x. The vorticity 
thickness of the initial flow is 0.02. The Mach number of 
the upper and lower stream are M, =3.5 and M2= 1.2, 
respectively. The lower stream has initial velocity 
U,=O.29 and temperature T2=0.91. The two streams 
have a speeds of sound ratio al/a2= 1.2. The specific heats 
ratio y= 1.4 for both streams. The dispersion relations of 
the normal modes are those given in Fig. 2. 

A. Case I: Simulation of B, and C, modes 

The forcing modes chosen here are the B, and C, 
modes. The forcing amplitude is 0.015 and forcing fre- 
quency is U= 1 for each mode. From linear stability cal- 
culations, the B1 mode has a wave number of 2.13 and 
spatial growth rate of 0.313. The C2 mode is’ a neutrally 
stable wave with wave number 3.93. The eigenfunctions of 
the two modes are shown in Fig. 3, where the velocity 
components u^ and v^ are plotted as functions of y. 

Figure 4 shows the time series and frequency spectrum 
of the streamwise velocity fluctuations at selected center- 
line locations. At the chosen forcing level, nonlinear effects 
are not developed within the computational domain. A 
FIT was performed for the time series after t=40, when 
the initial perturbation has been “washed” out of the do- 
main. The spectrum shows a clear peak at the forcing fre- 
quency, o= 1. In Fig. 5 plots of the root-mean-square vari- 
ations of velocity fluctuations across the stream are given 
for selected downstream locations. It is seen that the 
streamwise velocity has a peak in the centerline, where the 
shear layer is formed. However, no such peak is found in 
the normal velocity components. A comparison of rms 
fluctuations with the eigenfunctions given in Fig. 3 seems 
to suggest that the u components show more apparent 

6, mode 0.4 0.4 

0.2 0.2 

h 0.0 --- 

kL 

0.0 

-0.2 -0.2 

-0.4 -0.4 

0.0 0.4 0.8 0.00 0.10 0.20 0.30 

0.4 0.4 C, mode 

0.2 0.2 

h 0.0 00 

-- 
0.0 0.4 0.8 1.2 0.00 0.10 0.20 0.30 

laY)l F(Y)1 

FIG. 3. Eigenfunctions of the B1 and C, modes for w=l. The velocity 
components are shown. 

modal differences than the u components. For this reason 
the normal velocity fluctuations are used for the eigenfunc- 
tion expansion below. 

As a measure of disturbance energy, we evaluate the 
following integral along the downstream direction: 

s 

0.5 
E- ( u:,s2 + ~:ms2) dy, (9) 

-0.5 
where z& and v:,, are the rms variations over the mean 
values. In Fig. 6(a), this energy integral is plotted as a 
function of downstream distance x. It is seen that initially 
the energy decreases. Farther downstream oscillatory 
growth is found with a period of about 3.3 channel heights. 
We point out that plots of maximum u&, or v:,, exhibited 
similar trends. In Fig. 6(b), the amplitudes of B, and C2 
wave modes, obtained using the least square eigenfunction 
expansion described in Sec. II, are shown. (For the results 
given, time series at 5 1 evenly spaced y locations across the 
stream have been used for the least square fitting.) It is 
found that the growth of the B1 wave over the downstream 
distance fits extremely well with a line of linear growth rate 
0.3 13. The amplitude of the C2 wave is shown staying more 
or less the same in the downstream direction. The slight 
variations of the C2 amplitude are due to the accuracy 
limitation of the least square fitting. Figure 6(b) indicates 
that, although the disturbance energy in rms measure- 
ments shows oscillatory growth, each wave initiated up- 
stream is still propagating linearly. Clearly the coexistence 
of the two waves leads to periodic cancellation and rein- 
forcement, which results in the appearance of oscillatory 
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FIG. 4. The time series and spectrum at indicated centerline locations. 
PIotted are the streamwise velocity fluctuations. Here the B, and C, 
modes are forced at the inflow. 

x 

FIG. 6. (a) Energy integral (9) as a function of downstream distance x, 
showing oscillatory growth. Vertical dotted lines have a separation dis- 
tance of 3.3. (b) Amplitudes of Bi and C, modes calculated using the 
least square fitting with eigenfunctions. The solid straight line represents 
an exponential growth rate of 0.313. 

growth of the energy. Similar calculations for class A waves 
and neutral waves have also been carried out. However, 
since the A waves have larger growth rates, the oscillatory 

-0.2 -0.2 -0.E -0.2 -0.2 behavior is not as pronounced as that shown in Fig. 6. 
As pointed out in the Introduction, multiple wave 

-04 -0.4 -0.4 -0.4 -0.4 modes are excited unless the disturbance at the inflow is 
000 0.04 0.00 0.04 000 0.04 0.00 0.04 0 00 0.04 exactly that of the eigenfunction of the chosen wave mode. 
Ukm* at x=0.0 x-1.2 x=3.2 .X=4.4 X--6.4 The later condition is usually difficult to meet in experi- 

ments and sometimes not always imposed in numerical 
simulations. For example, Lu and Wu4 used only the pres- 

04 04 0.4 0.4 0.1 

0.2 02 0.2 0.0 0.2 

x 0.0 1 

-0.2 

I1_c~Ic~ 

sure perturbation in the inflow in their simulations. Often 
in experiments, the initial disturbances are excited by ran- 
dom fluctuations’3 or “v-component-producing” element.” 

0.0 0.0 0.0 0.0 In those studies, however, the growth rate of the unstable 
wave is relatively large. Because of this, the component of 

-0.2 -0.2 -0,s -0z the unstable wave grows quickly and becomes dominant 
over other wave components within a short distance. As a 

-0.4 -0.4 -0.9 -0.4 -04 result, a linear growth rate in disturbance energy is ob- 
0.000 0.008 0.000 0.006 0.000 o.oor3 0.000 o.ocm 0.000 O.cm8 served. However, as shown in the present calculations, 
“;m, at x=0.0 x=1.2 x=3.2 x-4.4 x=6,4 when the growth rate of the linear instability wave is rel- 

FIG. 5. Root-mean-square variations across the stream at indicated 
downstream locations. The velocity components are shown. Here the B, 
and C2 modes are forced at the inflow. 

atively small, the other excited waves can play a part in the 
flow field and lead ‘to an appearance of oscillatory growth 
of the disturbance energy. 
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(b) 

FIG. 7. (a) Energy integral (9) as a function of downstream distance x. 
The C, and D3 modes were forced. Vertical dotted lines have separation 
distance of 1.19. (b) Amplitudes of the C, and D3 modes calculated using 
least square fitting with eigenfunctions. 

B. Case II: simulation of C, and D3 modes 

Here we study the case when two neutral modes are 
excited. The forcing modes are the C’ and D3 modes. The 
forcing frequency w=O.25. The wave numbers of the C, 
and 03 modes are 2.76 and -2.53, respectively. The forc- 
ing amplitudes are 0.02 for the C, mode and 0.01 for the 
D3 mode. 

In Fig. 7(a) the resulting energy integral (9) as a 
function of downstream distance x is given. Using the least 
square eigenfunction expansion, the amplitude of each 
wave is calculated and given in Fig. 7(b). Figure 7 dem- 
onstrates that, although the energy of the perturbation field 
has a spatial periodicity, the amplitude of each wave still 
remains the same as they propagate downstream. Again, 
this is not too surprising because the two waves are trav- 
eling at different phase velocities and amplitude modula- 
tion is expected. However, it is important to note that the 
periodic structure of disturbance energy variation is time 
independent. This point is made clearer in Fig. 8, where the 
rms variation across the stream for u’ and v’ are plotted 
along the downstream distance. It shows that, when aver- 
aged in time, the coexistence of the C, and D, waves pro- 
duces a spatially periodic and stationary structure. 

The period of the structure can be estimated as below. 
Without the loss of generality, let two waves be 

“! cc> 
0 

x 

w 
4: I 

, I 0 1.3 I I 2.6 
3.9 5.2 6.5 

X 

FIG. 8. Root-mean-square fluctuation as a function of x and y. (a) 
Streamwise velocity component; (b) normal velocity component; (c) 
contours of the normal velocity component shown in (b). 

Ccos(k,+-tit) and Dcos(kfl-at), where kc, k, rep- 
resent the wave numbers and C, D are the amplitudes. 
Then the mean square variation produced by the two 
waves is (the overbar denotes time averaging) 

[Ccos(kcx-ot) + Dcos(k+--wt)12 

=C2 cos2(kcx-tit) 

+2CD cos(kcx-mt)cos(kdc-at) 

+ D2 co&kg--t) 

=~~-l-f~~+CD~~s[(k~-k~)x]. (10) 

It is seen that a streamwise modulation is resulted with a 
spatial period of ~QT/( kc-- k,) . This expression gives a 
period of 1.19 for the present case, which is the same as 
that observed in Figs. 7 and 8. In case I, the expression 
gives a period of 3.49 by substituting D by B, in ( 10). 
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IV. CONCLUSION 

One difference between the numerical simulation of 
bounded and unbounded shear layers is that the former 
permits multiple propagating wave modes. This becomes 
important when the growth rates of the unstable waves are 
small. It was shown here that two forced modes can pro- 
duce oscillatory growth in disturbance energy, even though 
each individual mode is propagating linearly. In particular, 
it was shown that two excited neutral modes with different 
phase velocities can lead to a stationary and periodicstruc- 
ture of the rms fluctuations. Moreover, a method of effec- 
tively detecting and separating the growth of each individ- 
ual wave mode is given. Finally, it was shown numerically 
that, by fitting the disturbance field as a summation of 
eigenfunctions, the amplitude of each mode can be accu- 
rately monitored. 
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