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This article presents a practical approach to engineering a robot to effectively navigate in
an urban environment. Inherent in this approach is the use of relatively simple sensors,
actuators, and processors to generate robot vision, intelligence, and planning. Sensor data
are fused from multiple low-cost, two-dimensional laser scanners with an innovative ro-
tational mount to provide three-dimensional coverage with image processing using both
range and intensity data. Information is combined with Doppler radar returns to yield a
world view processed by a context-based reasoning control system to yield tactical mis-
sion commands forwarded to traditional proportional-integral-derivative (PID) control
loops. As an example of simplicity and robustness, steering control successfully utilized a
relatively simple follow-the-carrot guidance approach that has been successfully demon-
strated at speeds of 60 mph (97 km/h). The approach yielded a robot that reached the
finals of the Urban Challenge and completed approximately 2 h of the event before be-
ing forced to withdraw as a result of a global positioning system data failure. © 2008 Wiley

Periodicals, Inc.
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1. INTRODUCTION

The Urban Challenge is the third in a series of compe-
titions launched by the Defense Advanced Research
Projects Agency (DARPA) with the goal of devel-
oping technology to keep warfighters off the battle-
field and out of harm’s way. The specific objective of
the Urban Challenge was to develop a robot capa-
ble of autonomously navigating a typical urban en-
vironment at speeds up to 30 mph (48 km/h). Urban
scenarios involved other manned vehicles as well as
robots traversing the same course at the same time
and resulted in robot-on-robot autonomous decision-
making challenges. The final event of the competition
took place in Victorville, California, on November 3,
2007, but this event was a culmination of 18 months of
work and numerous other formal qualification proce-
dures. TeamUCF and the Knight Rider robot success-
fully passed these qualification procedures to make it
to the finals of the Urban Challenge.

1.1. Urban Challenge Overview

The Urban Challenge program was announced in
May 2006, and proposals from interested teams
were solicited shortly thereafter. Successful propos-
als were divided into two categories: 11 Track A
teams received $1 million in supporting funding from
DARPA, and 78 Track B teams were on their own.
TeamUCF was a Track B team. Track A teams had
to meet several programmatic milestones, but any
team advancing in the competition had to submit a
comprehensive technical report and pass an on-site
visit by DARPA. Site visits were conducted in June
and July 2007, and 35 semifinalists were selected in
August. Semifinalists were eligible to participate in
the National Qualifying Event (NQE) in Victorville,
California (Figure 1), during the last 2 weeks of
October 2007. The NQE consisted of a series of rig-
orous vehicle tests from which 11 finalist teams were
selected. These finalists participated in the final event
on November 3, 2007, with the winner of the compe-
tition announced the following day.

The overall urban driving objective as defined by
DARPA was to demonstrate an autonomous robot’s
ability to complete a series of driving missions in traf-
fic, over the course of 6 h, while obeying California
driving rules, utilizing a moderate level of a priori
information associated with the road network, but
being expected to deduce any missing information.
Some key observations can be made with respect to
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this definition, some of which were clearly specified
in DARPA-provided rules, whereas others simply be-
came apparent over the stages leading up to the final
event:

® Robots were limited to street-legal motor ve-
hicles, modified for autonomous operation.

® Autonomous operation meant no real-time
interaction with the robot except for a remote
control safety (E-stop) system, which could
pause or completely disable the robot.

e Urban environment consisted of typical U.S.
streets with one-way and two-way single-
lane roads, multilane roads, traffic circles, in-
tersections with zero or more stop signs, and
parking lots (zones). No stop lights were en-
countered. Surprisingly, a modest amount of
off-road driving was required in the final
event.

® Traffic vehicles meant that following, passing,
avoidance, and stop sign precedence behavior
was required.

® A priori information consisted of a route net-
work definition file (RNDF) that defined road
segments/lanes, provided by a sparse, but ac-
curate, collection of latitude/longitude “way
points” and a way point-to-way point connec-
tivity graph (although connectivity was not
guaranteed because roads could be blocked
by design or by accident). The RNDF also
provided stop sign locations. Nominally, the
RNDF was provided a day or more before any
test.

® The driving mission was to traverse a certain
set of way points (i.e., checkpoints) in a given
order as defined in a mission definition file
(MDF). Nominally, the MDF was provided
minutes before a test.

1.2. TeamUCF

TeamUCF's Knight Rider robot was initially con-
ceived more than 3 years ago at the beginning of the
2005 DARPA Grand Challenge event. With the incep-
tion of the DARPA Urban Challenge, TeamUCF built
on the existing capabilities of the Knight Rider robot
(Harper et al., 2005), augmented as necessary to meet
the specific mission objectives of DARPA. The three-
member team that participated in the 2005 event was
expanded only slightly for the 2007 Urban Challenge
(five core team members) with the inclusion of an
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Figure 1.

industry partner, Coleman Technologies, Inc. (CTI).
CTI is a system engineering firm specializing in
real-time guidance, navigation, and control as well
as products associated with global positioning sys-
tem (GPS) measurements in urban environments.
CTI provided funding, technical support, and over-
all team leadership for TeamUCEF. TeamUCF was
kept small, partly by design but mainly as a natural
result of the team’s goal to reuse much of the 2005
robot hardware and a clearly stated objective to im-
plement only those systems necessary to meet stated
DARPA Urban Challenge objectives.

1.3. Overall Project Approach

TeamUCF's overall approach to this challenge was to
maximize its limited resources. The basic robot con-
trol hardware from the 2005 robot was reused. The
sensor suite was an enhanced version of the 2005
robot’s sensor suite, which had proved to be very ro-

NQE site in Victorville consisting of several test areas.

bust and which also turned out to be a sensor suite
used by many of the participating teams. Three ma-
jor weaknesses with the 2005 robot were specifically
addressed:

® A relatively poor GPS system was replaced
with a highly capable RT3000 GPS/inertial
navigation system (INS) from Oxford Tech-
nical Solutions. This decision was a key to
TeamUCF'’s initial success, but confidence in
the GPS/INS ultimately led to an unrecover-
able failure in the final event.

® A relatively poor simulation model was re-
placed with a real-time simulator running ac-
tual robot software and could operate with
full hardware-in-the-loop capability to allow
any system element to be real or simulated.

® A more focused preevent testing strategy was
employed that allowed the team to have a
clear understanding of the capabilities and

Journal of Field Robotics DOI 10.1002/rob
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limitations of the robot prior to participation
in the NQE. This level of knowledge allowed
the team to make software changes between
tests at the NQE and was perhaps the single
most important factor in the team'’s success.

Resource constraints limited the team’s ability to
invest in sophisticated three-dimensional (3-D) laser
scanners, so the team opted for an investment in an
innovative rotating laser scanner system designed by
one of the authors (Pillat). The limited reliance on so-
phisticated third-party systems, with capable but in-
herently unmodifiable software, proved to be a fun-
damental advantage for TeamUCF.

Simulation modeling allowed all major software
elements to be tested prior to robot integration,
but there was no substitute for actual robot testing,
and the team spent as many hours as possible test-
ing the robot hardware. Unfortunately, testing a full
autonomous automobile-sized robot at speed poses
numerous safety issues, and TeamUCF was forced
to settle on relatively small test areas whose access
could be controlled.

The system design approach could be considered
a cross between “requirements based” and “capa-
bilities based” in that overall Urban Challenge ob-
jectives flowed down to scenarios (Figure 2) and
subsequently to overall system-level capabilities, but
detailed subsystem performance requirements were
not derived from these. Rather, because subsystems
were effectively selected at the start of the project, the
challenge for TeamUCF became one of determining
“how” to meet a specific objective with a given sys-
tem, rather than what system would be best for meet-
ing a particular objective.

In approaching the software functional design,
the team followed these basic principles:

e Safety was of primary importance. The goal
was to provide a system that would pro-
tect the Knight Rider from collisions and
kinematic limits, protect other robots from
collision or perceived collision, and protect
obstacles.

e Mission completion was of secondary impor-
tance. The goal was to complete as much of
the provided mission as possible, potentially
skipping checkpoints if the robot determined
that they were not achievable.

® Legality was of tertiary importance, meaning
that the system’s software was allowed to vi-

Journal of Field Robotics DOI 10.1002/rob

olate rules if there was no other way to meet
an objective.

® Speed was of least importance. Despite its rel-
ative lack of importance, it turned out that the
Knight Rider was one of the quickest robots at
the NQE.

2. ROBOT VEHICLE

The Knight Rider robot is a 1996 Subaru Outback
Legacy (Figure 3) with minimal modifications. Key
performance parameters for this robot are provided
here:

4.8-m overall length with mounting brackets

2.0-m overall width with mounting brackets

2.6-m wheelbase

5.5-m turning radius

Speed: —2.2-13.5 m/s (—5-30 mph, DARPA

restricted)

® Axial acceleration: ~3.5 m/s? (practical limits
for comfortable driving)

e Lateral acceleration: ~2 m/s? (practical limits

for comfortable driving)

Adopting this vintage vehicle prevented the use
of drive-by-wire or other sophisticated integration
into an automobile control system. This limitation
turned out to be of no impact on robot performance.
Actuators were designed to control existing robot
hardware in a manner analogous to that of a human
operator. For example, the steering servo, mounted
along the robot centerline, controlled the steering
wheel with a belt system similar to the way a driver
would control that system. This system easily al-
lowed both robotic operation as well as driver oper-
ation. Because of safety concerns, most testing prior
to the NQE was conducted with a driver in the ve-
hicle. Servo torques and belt slippage were adjusted
to allow driver override even in the event of full
system failure. Throttle and brake actuators were
mounted under the passenger seat and similarly pro-
vide fail-safe operation. In particular, the brake ac-
tuator causes the vehicle brake to be depressed and
was in the “always on” position via a spring mecha-
nism. The brake was “released” via a pneumatic ac-
tuator that, should it fail, would cause the brake to
return to the depressed position. Turn signal inte-
gration was accomplished via the vehicle’s existing
wiring infrastructure.
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Figure 2. Basic driving scenarios (not all cases shown).

Own-state estimation (position, speed, and head-
ing as well as full robot attitude) was provided
by a differentially corrected RT3000 GPS/INS from
Oxford Technical Solutions. Previous experience indi-
cated that this was an area where commercial systems
outperformed developed software. The integrated
INS provides high-quality measurements, including
obscured-sky speed measurement, in environments
where the GPS alone struggles; lateral acceleration in
a horizontal direction without the need to zero the ac-
celerometer; and roll/pitch/yaw measurements that
are accurate during continuous turns. GPS/INS data
were available to other systems at a 100-Hz data rate,

although low-level control systems operated only at
20 Hz and the highest sensor data rate was 35 Hz.
SICK LMS291 laser scanners mounted on a for-
ward and rear mounting bracket and rotating laser
scanners mounted to the top rack provide range, an-
gle, and intensity information on obstacles as small
as traffic cones. The sensors provide information only
for the leading edge of obstacles, but after multi-
ple looks from varying angles, obstacle geometry is
refined. Scanner pointing direction and type were
selected to optimize forward sector coverage. This
approach also provided 100% overlap in coverage
directly in front of the robot, which proved to be

Journal of Field Robotics DOI 10.1002/rob
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Figure 3. Knight Rider robot before an early-morning test.

particularly valuable in the case in which a single
scanner would lose data principally because of look-
ing directly into the sun. TeamUCF saw no benefit
to mounting scanners in the “upside down” position
that some teams employed in an attempt to reduce
the effect of solar glare.

An actuated Doppler radar (Stalker Radar Speed
Sensor) mounted at the front of the robot augmented
laser scanner data specifically in long-range moving
obstacle detection scenarios. This particular sensor
employed by TeamUCF provided no effective range
or angle information but rather was limited to return
intensity and (signed) speed information. This rela-
tively primitive information, however, proved to be
a significant advantage in developing the overall sys-
tem design because it greatly simplified the decision-
making logic. Effectively any large object moving suf-
ficiently quickly toward the robot was an obstacle to
be avoided.

A Sony HDR-HC3 digital camcorder was
mounted on top of the robot and provided a reason-
able sensor for lane detection in certain scenarios.
Unfortunately, early testing at the NQE showed that

Journal of Field Robotics DOI 10.1002/rob

solar glare due to early-morning and late-evening
operation, coupled with DARPA’s decision to use
large concrete k-rail barriers as lane markers in
many cases, made this video system redundant. For
the NQE, the vision system’s principal duty was
providing a video record of robot performance.

Processing was provided by three core-duo com-
puters (mixed Linux and Windows XP) located in a
shock-mounted frame in the passenger’s seat. Intel-
ligence functions were performed on one computer
and vision functions on a second, and the third com-
puter provided real-time system control including
autopilot and navigation functions. Computers com-
municated over a local Ethernet network, and var-
ious processes established connection with one an-
other, in a broadcast/subscribe manner, independent
of their actual physical processor location. Commu-
nication utilized the Internet communications engine
(ICE) framework, which is a simplified derivative of
the CORBA architecture.

One principal benefit of the relatively simple
system architecture and small number of comput-
ers was the relatively low power consumption of
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Figure 4. Overall system block diagram.

the robot. Power consumption was ~600 W, which
included all sensors and processors. No special al-
ternator was used, and by choice of mounting lo-
cation, cooling could be provided directly by the
robot’s air-conditioning system. Computer and sen-
sor power was provided by four deep-cycle marine
batteries, which were trickle charged by the alter-
nator. dc—dc converters provided appropriate power
levels to various sensors. This system provided stable
and clean power and repeatedly demonstrated oper-
ation of more than 8 h. Although never required, it
was fairly clear that by simply upgrading the alterna-
tor, even longer durations could be obtained.
Decomposition of the core software elements is
illustrated in Figure 4. For clarity, the detailed inter-
faces associated with health and status monitoring el-
ements and E-stop are not shown. Clearly visible are
overall mission inputs provided by the RNDF (pro-
viding an initial seed of the system’s environmental

model) and the MDF (defining the overall mission
objectives in terms of checkpoints and speed con-
straints). Viewed as a control system, the elements
can be considered as follows: 1) intelligence devel-
ops a mission as a set of tactical goals to be achieved,
2) path planning efficiently plans a legal and driv-
able path to meet those tactical goals, 3) the autopi-
lot maintains the robot on path and within perfor-
mance limits, and 4) proportional-integral-derivative
(PID) controllers command various actuators to meet
autopilot commands. Although difficult to see in
the diagram, feedback effectively consists of four
nested loops. The innermost loop consists of PID
controller feedback (actuator position, etc.). The next
loop consists of navigation information (position,
speed, heading, etc.) used by the autopilot to de-
velop control commands to maintain the robot on
course. Beyond this is a path planning loop that ef-
fectively manages the tactical path based on tactical

Journal of Field Robotics DOI 10.1002/rob
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goals, bounds, and obstacles. At the outermost level
is the overall intelligence loop that monitors whether
the robot has met its tactical and strategic objectives.
This outer loop is closed through vision as well as
navigation.

System operation is straightforward. After the
robot boots up and runs an internal self-test, it sits in
a wait state ready to accept an RNDF and correspond-
ing MDE. Once files are loaded and successfully
processed, the robot remains waiting until released to
execute the mission. The detailed mission plan is gen-
erated dynamically as the operational environment is
discovered. Data logging is performed, allowing mis-
sion playback for analysis. Upon mission completion,
the robot stops.

2.1.

The robot’s actuator system was composed of four
modules, each controlling an existing automotive
system. The design of the actuator systems was
driven by two overarching principles: to allow for hu-
man intervention in any situation and fail-safe oper-
ation when no safety driver was present. The ability
of a human operator to take full control of the robot
at any point is indispensable in extensive testing, and
during most testing prior to the NQE, a safety driver
was present in the vehicle. To ease the process of
relocating and positioning the robot, the actuators
were mounted to not interfere with the robot’s exist-
ing hardware when powered off, allowing a human
driver to drive the robot like a normal car. In case the
robot is operating fully autonomously with no safety
driver, the actuators are constructed to bring the car
to a complete stop in the event of a power failure.

The steering controller consisted of a three-phase
brushless motor driving a large pulley attached to
the existing steering wheel. A six-splined v-belt trans-
ferred the torque from the servo motor through a 12:1
mechanical advantage. This small ratio, coupled with
the possibility of slip provided by the v-belt, allowed
a human safety driver to easily overcome the mo-
tor during an emergency situation. The belt design
also allowed some compliance to help absorb wheel
shock due to potholes and other sudden lateral forces
imposed on the front tires. The brushless motor was
driven by a 12-A control line from an Elmo 12/60
Harmonica digital servo controller.

Although our design of the steering system al-
lows the belt around the steering wheel to slip, we
never encountered any appreciable slip in testing or

Actuators
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operation. This was first and foremost a safety fea-
ture, allowing a human driver to either overpower a
servo motor or slip the belt. Small slippages are com-
pensated by the PID steering controller. For these rea-
sons we did not mount an encoder on the steering
column to keep track of the actual steering angle.

The throttle controller consisted of a Bowden ca-
ble attached at one end to the original cruise control
throttle body linkage. The other end was driven by
a magnetic linear motor by Linmot. This type of lin-
ear motor was chosen because of its natural ability to
release when the dc power was removed. This impor-
tant safety feature allows the existing throttle return
spring to force the throttle closed in the event of an
emergency stop or other type of power loss.

The brake controller was a two-part redundant
system that allowed control using a linear motor for
normal actuation and a separate pneumatic/spring
arrangement for emergency stop situations. The lin-
ear motor was a larger version of the throttle mo-
tor, also by Linmot. The force was transmitted to the
brake pedal from behind the firewall using a Bowden
cable routed to the actuator located under the passen-
ger seat. The second half of the braking system was
used only in emergency situations when either there
was a power loss or a disable E-stop had occurred.
It consisted of a large spring that, in its natural posi-
tion, constantly applies force to the brake pedal. Dur-
ing normal operation, a pneumatic cylinder provides
a countering force that overcomes this spring and al-
lows the brake to be completely controlled by the lin-
ear motor. In the event of an emergency, an electric
valve opens to release the pneumatic cylinder, forc-
ing the pedal to be depressed by the spring. An air-
release valve controls the rate at which the pneumatic
cylinder releases, which in turn controls the stopping
distance.

The emergency braking system was specifically
designed for the case of a power loss. The elec-
tric valve is a three-way solenoid valve that controls
the CO, flow to and from the pneumatic cylinder
that provides a countering force for the mechanical
spring. If power is applied to the valve, CO, from
a reservoir enters the pneumatic cylinder and over-
comes this spring so that the brake can be completely
controlled by a linear motor. In case of a power fail-
ure, the solenoid valve releases the CO, from the
pneumatic cylinder through its third port, allowing
the brake pedal to be depressed by the spring.

The gear shift mechanism utilized yet another
linear actuator to provide control over the shifter
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position. All of the standard gears (P, N, R, 1, 2, D)
could be reached, although normal operation in-
volved only P, R, and D. The existing shift safety in-
terlock was circumvented in this application.

A separate single-board computer running the
real-time QNX operating system managed each actu-
ator through either 0-10-V control voltages or, in the
case of the steering controller, through a serial port.

2020

Sensor system design was driven by available hard-
ware and proven capabilities, especially from expe-
rience gained in the 2005 Grand Challenge. The key
requirement of navigation in the Urban Challenge
was a safe course traversal in diverse traffic situa-
tions. Most scenarios required detection of static or
near-static obstacles while the robot was either static
or moving slowly (i.e., stop sign scenarios, parking,
etc.), but the sensors needed to able to detect and dis-
tinguish obstacles at different height levels as well as
negative obstacles (potholes). The types of obstacles
ranged in size from traffic cones and low curbs to
cars, trucks, and major road blockages. As demon-
strated by DARPA at the NQE, obstacles were not
required to have ground contact with driving lanes.
These reflections led TeamUCF to employ laser scan-
ners as the main means of acquiring sensory informa-
tion. These sensors work very well at moderate range
(<50 m) and for the classes of obstacles encountered
in an urban environment.

Perhaps the most challenging scenario in the
Urban Challenge was the requirement to merge into
high-speed (13.5 m/s, ~30 mph) traffic. Consider-
ing car axial acceleration capabilities, safe following
considerations, and decision timelines, this required
detection ranges of almost 100 m (135 m if a true
10-s gap is to be detected). Range constraints of the
laser scanners available to TeamUCF forced the use of
a longer range alternative, and TeamUCF employed
a Doppler radar to provide the extended range be-
cause long-range scenarios involved only high-speed
obstacles.

Sensors

2.2.1.

A laser scanner employs emitted laser light and
the time-of-flight principle to deduce distances very
accurately. Two-dimensional (2-D) laser scanners
(LADARSs) that use a rotating mirror to provide an-
gular distance measurements in a plane are relatively
inexpensive and widely available, especially through

2-D Laser Scanners

the German manufacturer SICK. The biggest disad-
vantage of those 2-D laser scanners is that they pro-
vide distance information in only one scanning plane
and hence output only sparse information about
the environment. The usable range of distance mea-
surements is 0.5-50 m, with measurement accuracy
in the centimeter range.

The disadvantage of just one scanning plane can
be partially relieved by mounting several 2-D laser
scanners in different orientations. This approach was
successfully employed by Stanford’s winning robot
in the Grand Challenge 2005 (Thrun et al., 2006).
TeamUCF decided to place four SICK LMS291-505
scanners tactically around the car to allow for a near-
360-deg field of view (Figure 5). This enabled the de-
tection of static and dynamic obstacles in many pos-
sible locations relative to the car. Individually these
scanners provide a 180-deg scanning range. They
provide complete scans at 70 Hz with 1-deg angu-
lar resolution and scans at 35 Hz with 0.5-deg angu-
lar resolution. (Both frame rates were used at various
times, although NQE testing utilized 35-Hz frame
rates.)

For most scenarios the laser scanners in the front
of the car provide sufficient sensory information to
navigate an urban course. The side scanners in the
front are mounted on height levels different from that
of the central front scanner. Additionally, they are at-
tached in a slightly rolled position, so that the scan-
ning planes of the three frontal laser scanners overlap
in front of the car. These crossing planes focus the at-
tention of the sensors on the area right in front of the
car.

Additionally, one scanner is mounted centrally
on the roof. With a slight tilt downward, this scanner
detects curbs and lane markings approximately 10 m
in front of the car (Figure 6).

2.2.2. 3-D Laser Scanners

Despite the design considerations presented, the abil-
ity to detect a robust set of obstacles necessitates
the use of scanners that perform significantly out-
side of a single plane (i.e., 3-D laser scanners). Com-
mercial 3-D laser scanner systems are very expen-
sive. TeamUCF chose to emulate 3-D scanning by
combining a 2-D laser scanner with a servo motor,
such that the scanning plane can be rotated along a
chosen rotation axis (e.g., in Surmann, Nuechter, &
Hertzberg, 2003, and Wulf & Wagner, 2003). In collab-
oration with the Mechanical Engineering Department
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Figure 5. Mounting points of the 2-D laser scanners, plan view.

Figure 6. Placement of the laser scanners around the car
and on top of the roof.

of the University of Central Florida, we developed an
actuated mount that rotates a 2-D scanner to generate
3-D samples, using a single rotational axis and rela-
tively low rotation rate (Figure 7).

In the design of the actuated mount, TeamUCF
was guided by three main design paradigms:

e Adjustability: A slotted design allows rapid
adjustment of most angles.

e Robustness: Anodized aluminum mount with
stainless-steel fasteners for continuous out-
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door application. Sealed radial ball bearings
resist encroachment of debris and retain lu-
bricant. Teflon plain bearings serve as thrust
bearings on either of the front bearing carri-
ers. Rubber bump stops are incorporated to
minimize impulse to components should any
failure lead to overtravel of the sensor. The ca-
ble harness is routed to minimize strain from
the repetitive motion and ruggedized with
braided sleeving and plastic conduit. All elec-
trical components meet IP65 specification.

® Maintainability: All fasteners, bearings, and
electrical parts are off-the-shelf products that
are widely available.

TeamUCF considered different motion patterns.
The advantage of a continuous 360-deg motion is that
the scanners are moved with a constant velocity and
hence the interpolation of roll positions is simplified.
Unfortunately, challenges are involved when the elec-
trical and data connections have to made through
that rotating assembly (e.g., with slip rings). In our
testing we achieved a sufficient coverage (e.g., see
Figure 8) with a cyclic movement of +20 deg. No
special connection for the power or data is necessary,
and the roll movement of the shaft is closely tracked
by an optical encoder. The main reason we chose a
cyclic over a continuous movement was the ease of
mechanical implementation coupled with a sufficient



538 « Journal of Field Robotics—2008

Shaft / Axis of Rotation
for LADAR Roll

z 2D LADAR

| 16-bit absolute encoder

' Mjuslﬁ'tent for
LADAR Pitch

1 Adjusuﬁent for
LADAR Yaw

Figure 7. Computer-aided design drawing of the actuated laser scanner mount.

scanning coverage. On the basis of simulations of sev-
eral configurations and movement patterns, we used
two rotating laser scanners that have a yaw angle of
+22 deg and a pitch angle of —11 deg relative to the
sensor roll axis. This configuration yields a high scan-
ning point density in front of the robot, where most
on-road obstacles are expected.

Each scanner is continuously rotating around the
y axis (roll) with a motion radius of £20 deg. The
most current roll position is determined by an abso-
lute 16-bit optical encoder that is directly attached to
the rotating shaft. Because each mount has a separate
encoder, no roll movement synchronization between
the two mounts is necessary.

The point density that is achieved on the ground
plane after a 2-s scan is shown in Figure 8. Clearly,
the highest point density is achieved in front of the
robot. Moderate point densities toward the far frontal
left and the far frontal right of the robot favor the de-
tection of robots in intersection and merging scenar-
ios. Notice that the blind spot of one sensor is cov-
ered by scan lines of the other laser scanner. Although
the point density is low in these areas, the two scan-
ners complement each other in achieving a complete
coverage.

2.2.3. Cameras

During early development, TeamUCF used video
cameras for lane detection and long-range obstacle

recognition. These systems proved to be problem-
atic in testing, being particularly susceptible to vari-
able lighting conditions, ubiquitous shadows, and
nonuniform street texture. The basic failure mode in
the presence of these conditions was a temporary loss
of valid lane data. Promising results in road-marking
detection and long-range recognition of oncoming
vehicles could not be extended to a robust frame-
work that worked in diverse situations. Further, the
performance of the top 2-D laser scanner in detect-
ing lane markings had proved to be at least as ro-
bust as vision approaches and could be substantially
better in some scenarios. The problems with vision
were exacerbated when TeamUCEF arrived at the NQE
and observed the lighting conditions during expected
test windows, the actual quality of road markings,
and the extent to which nontraditional road markers
(specifically concrete k-rails) were used to designate
lane boundaries. TeamUCF made a real-time decision
at the NQE and abandoned the idea of using cameras
and relied on the laser scanners as the main source of
sensor information.

2.2.4. Doppler Radar

The laser scanners employed by TeamUCF were un-
able to detect obstacles beyond 50 m, but high-speed
merge scenarios dictated longer range. To overcome
this range limitation, an actuated Doppler radar sen-
sor was mounted in the front of the robot. The
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Figure 8. Point density achieved after a 2-s scan.

Stalker Radar Speed Sensor returns the speed of the
strongest moving object in its measuring cone (3-dB
beamwidth of 12 deg) and has an advertised range of
3 km (ideal for speed traps). In practice, it proved to
be a disadvantage to have that extensive range, be-
cause the Urban Challenge scenarios effectively limit
required range to 100 m. Because the sensor outputs
the speed of only the strongest moving target and its
direction of movement (incoming or outgoing) but
not its distance, a distance-based filtering is not pos-
sible. This problem is resolved by simply pitching the
radar, so that the maximum detection range is deter-
mined by the 3-dB beamwidth (Figure 9). Given the
known values of height #, 3-dB beamwidth 8, and the
desired range d, we can calculate the pitch angle « by

o = —tan"'(h/d) — B/2.

To account for a diverse range of intersection
geometries, the radar was mounted on an outdoor

Journal of Field Robotics DOI 10.1002/rob

Figure 9. Doppler radar pitched to achieve a desired de-
tection range.

pan-tilt unit PTU-D47 manufactured by Directed Per-
ception (Figure 10). With a maximum yaw speed of
300 deg/s and a maximum pitch speed of 60 deg/s,
the radar could view all pockets of the intersection
sequentially within a couple of seconds.
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Figure 10. Front rack of Knight Rider with three laser scanners and an actuated Doppler radar.

2.3. GPS/INS

Knight Rider navigation fuses a number of sensors
to provide an accurate determination of the current
robot state, which includes position, heading, speed,
and attitude. Attitude information is used specifi-
cally by sensor subsystems to transform sensor rel-
ative geometry measurements into a world frame
for inclusion in the environmental model. The vehi-
cle’s existing antilock braking system (ABS) sensors
could be used to provide the current speed of all four
wheels, and this information augments states main-
tained in the Oxford GPS/INS. Differential correc-
tions are provided to the GPS/INS. UCF had investi-
gated dual-antenna performance to augment attitude
information, but performance was insufficiently dif-
ferent from that of the single-antenna system now
employed to warrant the complexity and idiosyn-
crasies of such a system. Position accuracy of the
operational system was «10 cm, and angular accu-
racy was approximately 0.3 deg. GPS/INS data were
made available to all processes at a 100-Hz data rate.

3. SOFTWARE ARCHITECTURE

Because of the relatively small development team, lit-
tle was to be gained by extensive software partition-

ing. Software was effectively divided into six areas:
laser data processing, vision data processing, sen-
sor fusion, intelligence, planning, and control. Each
area was owned by one team member (one member
owned two areas), who had overall software respon-
sibility, but all team members contributed to all areas
of the architecture. A common interface specification
allowed seamless data exchange.

3.1. Laser Data Processing and Sensor Fusion

The data from the laser scanners are transmitted
over a serial data line with a nonstandard baud rate
of 500 kbaud. The serial data are read by a Moxa
UC-7110 embedded computer that was modified to
support the unusual baud rate. Each embedded com-
puter is capable of receiving data from two laser scan-
ners simultaneously, assigning a time stamp to each
scan, and publishing it over a user datagram protocol
(UDP) unicast to a central receiver module. Through
the middleware infrastructure, the sensor data are
made available to the robot’s computer network. Sev-
eral subscriber software modules receive the pub-
lished data and extract road features and obstacles.
Effectively, sensor processing algorithms have access
to time-stamped range and intensity data as a func-
tion of scan angle, which can be transformed into
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world coordinates through an appropriate transfor-
mation involving sensor mounting angles and real-
time measurements from the GPS/INS.

3.1.1.

DARPA provided a collection of way points that were
moderately dense (<100-m spacing) but not quite
sufficiently dense to rely on way point definitions
alone to accurately describe road geometry. Segments
with sparse way points were part of the tested road
network, and sensory road-following techniques
were essential for a safe traversal. Furthermore, even
with INS-aided GPS, an intermittent GPS outage and
the resulting deteriorating position estimate could
have led to inaccuracies in navigation (although
TeamUCF never observed this type of GPS failure).
The reflectance of painted road markings is in
most cases enhanced by additives such as reflective
glass beads. This property facilitates the detection
of those markings by a laser scanner. In addition
to the range measurement, the SICK laser scan-
ners employed by TeamUCF outputs the intensity of
the reflected beam. Range and intensity variations
(Figure 11) can be used to define road boundaries.
The road detection strategy employed by
TeamUCF was twofold: first, detect the curb discon-
tinuity in the laser range scan (using the top scanner)
and then detect the lane marking discontinuity in the
intensity scan. Both detections were accomplished in
the native polar space of the laser scanner output. By

Lane and Curb Detection

Journal of Field Robotics DOI 10.1002/rob

16 - = = : ol
[ Cartesian y| —— Intensity|
15 | 135
fl n
b f ) I ||| 130
I ll | I ! | L||J|
- | | { (AR -
E 13 U - [_n' VT 125 E
$ || | 5
§ 12 b 2
g k=
& | 1 g
T 44 \ J 115
@ o =
I Pl
10 i U 10
E / \
. A f,._,f.- 5
'\_r.,..,‘_‘.

% 4 2 o0 2 4 & 8 18
Cartesian x (m)

Left: Notional laser scan line. Right: Range (lower curve) and intensity (upper curve) observed on actual road

calculating a simplistic range-normalized operator,

Faor = Tiv1 — rifl’
Tig1 +riz1

and thresholding the results, the discontinuities can
be easily identified. Data association was relatively
simplistic but adequate for the challenges presented.
On each measurement, all right-most curb bound-
aries within 1/2 lane width were associated with the
right curb, and all left-most curb boundaries within
1/, lane width were associated with the left curb.

The detected road/lane boundaries are then
tracked by a second-order Kalman filter, which en-
sures that broken curbs or broken lane markings do
not seriously impact the estimated boundary points.
Because the RNDF input format guarantees that way
points, when present, are accurate and that lane
widths, when present, reasonably represent the lane,
the only point of interest for the environmental model
is the world coordinate of the center point for the cur-
rent lane of travel. This point is used by the environ-
mental model if the spacing between known points
is larger than a threshold and essentially became an
additional, lower confidence, waypoint. (TeamUCF
sought a way point spacing of 10 m.)

3.1.2. Obstacle Detection with 2-D Laser Scanners

To detect and extract obstacles, laser scanner points
were transformed into world coordinates and fed into
a probabilistic occupancy grid originally developed
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by Moravec (1988) and excellently treated in Thrun,
Burgard, and Fox (2005). The occupancy grid is prob-
abilistic in the sense that it represents the map as
a field of random variables, arranged in an evenly
spaced grid. Each grid cell is either occupied or not,
and hence the random variable is binary. An occu-
pancy grid-mapping algorithm implements an ap-
proximate posterior estimation of those random vari-
ables. TeamUCF utilized a grid cell size of 0.5 x 0.5 m.
If a scan point is within the grid cell, the cell counter is
incremented and compared to an occupancy thresh-
old. The line between the laser’s origin and the scan
point is traced, and the counter of traversed grid cells
is decremented.

TeamUCF modified the standard concept of an
occupancy grid to specifically suit mapping of an
urban driving environment. In particular,

® TeamUCF utilized a 2-D occupancy grid. It
is not important to know at which particular
height an object resides but that it exists in a
height bracket above (or below) the road level
that poses a danger for the robot. Points out-
side this band (either too high or too low) are
discounted from consideration in the grid.

® TeamUCF used a dynamic moving map in
order to minimize memory and computa-
tion expense. Intelligence and planning sys-
tems are concerned about detailed obstacles
only within the vicinity of the robot. (Obsta-
cles outside this range are likely to change.)
TeamUCEF used a robot-centered 120 x 120 m
occupancy grid that was moved whenever
the robot moved 10 m. This ensured that all
obstacles in at least a radius of 50 m around
the car (effectively the maximum range of the
laser scanners) were mapped.

® TeamUCF required data for each grid cell to
be refreshed repeatedly or lost over time. This
reduced the impact of potentially outdated
data from cells not effectively resampled by
the laser scanner within 2 s (due to robot mo-
tion or more likely orientation). This “fading”
of occupied cells was implemented with time
stamps.

® TeamUCF used a dynamically generated lane
mask to further eliminate obstacles outside
the road network. The lane mask was main-

tained by the environmental model and re-
flected the best estimate of the road network.
Cells sufficiently far from the road network
were simply ignored. The mask was commu-
nicated as a collection of potentially overlap-
ping polygons. The vehicle relies on accu-
rate GPS data, and masks were selected based
on nominal GPS drift of <1 m. Masks were
“realigned” only to the extent that roadway
control points (initially RNDF points) were
updated as the vehicle traversed the path.
In fact, this roadway update was a far more
significant source of path changes than GPS
drift, often adjusting the roadway by many
meters.

The point transformation and occupancy grid
mapping was executed separately for each of the four
statically mounted laser scanners at a rate of 20 Hz. At
the end of each iteration, the resulting occupied cells
of all four grids were published to the sensor fusion
module.

3.1.3. Obstacle Detection with Rotating 3-D
Laser Scanners

An important observation from the process of curb
detection is the apparent smoothness of the road sur-
face. In fact, all obstacles that have to be avoided by
the robot distinguish themselves as a discontinuity in
respect to their spatial surroundings. The simplified
operator used in the curb detection process is insuffi-
cient in cases in which the laser beam hits the scanned
surface at an extremely acute angle, because larger
changes in the measured ranges can be expected even
if the observed surface is smooth.

One key advantage of using a rotating 2-D laser
scanner to emulate a 3-D scanner is the preservation
of spatially continuous scan lines. That is, each pair
of adjacent scan points in a given scan line is in most
cases spatially close in the observed environment, so
that an evaluation of surface smoothness along the
scan line is possible. Ideally, an operator on the scan-
ning data returns gradient changes independently of
incidence angle of the laser beam and scanning loca-
tion relative to the environmental feature.

As elaborated in Adams (2001), the change in gra-
dient from two scan points A, B to the new scan point
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Figure 12. Three sequential scan points A, B, and C.

C can be described by

dx,

xs=B

(didi+1 + diy1divo2 — 2d;d; 45 cos o) sina

=0
diiy

— d;d; 41 cos o — di41di o cos o + did; 4 cos(2a)’
where o denotes the angular resolution of the laser
scanner and d;, d;+1, and d; 4, the observed range mea-
surements to points A, B, and C, respectively. The
key here is the definition of a local coordinate system
(x5, ys) in the sensor space once the first two points are
scanned, where the x, axis is joining the two points A
and B, as illustrated in Figure 12. The computed gra-
dient is then the gradient in any chosen coordinate
system, no matter from which side the environmen-
tal feature is scanned.

Thresholding the resulting gradient changes in
a given scan line yields the points that describe the
sought-for spatial discontinuities in the environment.
Appropriately choosing the threshold allows detec-
tion of objects as diverse as road curbs and cars. The
resulting points are transformed into world coordi-
nates similar to the transformation for the static laser
scanners, with the added degree of freedom for the
roll motion. An interpolation of the roll angles for
each point of a scan line accounts for the continuous
movement of the scanners. An example point cloud
before and after the described processing is shown
in Figure 13. All the remaining 3-D scan points were
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inserted into a separate occupancy grid, as was de-
scribed for the 2-D scanners.

The scan line gradient processing, transformation
of the remaining points to world coordinates, and oc-
cupancy grid mapping are performed data driven at
the full laser scan rate of approximately 35 Hz.

3.2. Sensor Fusion

The sensor fusion module receives five occupancy
grids from the laser processing modules, four from
the static 2-D scanners and one from the 3-D laser
scanners. Each of these grids represents a probabilis-
tic “best guess” about obstacle locations from the par-
ticular sensor’s point of view, suggesting to merge
the grids disjunctively. The resulting disjunctive oc-
cupancy grid contains all known obstacle cells in a
perimeter around the robot (Figure 14).

From experiments it became clear that the occu-
pancy grids from the 2-D scanners were more likely
to contain false positives due to unusual road geom-
etry or rapid elevation changes in the environment.
In contrast, obstacle cells extracted by the 3-D laser
scanners proved to be more reliable indicators of real
obstacles. To avoid deadlocks due to false-positive
obstacles, obstacle cells from the 2-D laser scanners
that are nonexistent in the grid of the 3-D scanners
were deleted after a predefined deadlock time. This
mechanism is essential and formed the basis of our
approach to driving on hilly terrain.

Separate obstacles were extracted by a connected
component analysis, and subsequently their polygo-
nal outline and centroid were determined. The grid-
based representation of the world allows for a natural
quantization of the coordinates of polygon vertices.
Based on position and velocity from the previous
sensor fusion iteration, expected obstacle locations
were extrapolated and current obstacles were as-
signed consistent IDs based on minimum Euclidean
distance to the expected locations. If no correspon-
dences for previous objects could be found in a cer-
tain radius, their ID was deleted. Conversely, if new
objects appeared that could not be matched, a novel
unique ID was assigned to them.

Accurate tracking of obstacle velocity cannot
be achieved on the grid level due to the coarseness
of the occupancy grid. Fortunately, there is a good
chance that the object is directly visible in at least
one of the laser scanners, whose distance measure-
ments are accurate to within 4 cm. By transforming
the obstacle centroid from world coordinates to laser
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Figure 13. Top: Typical 3-D point cloud. Bottom: Processed points prior to occupancy extraction.
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Figure 14. Snapshot of an occupancy grid fragment, 2-D
(darker) and 3-D (lighter) cells.

coordinates, it is determined whether it is within the
line of sight of any of the scanners. If a correspond-
ing scan point can be found at the expected obstacle
range, its transformed world coordinates can be used
to track velocity through sensor fusion iterations. The
resulting velocity assigned to a specific object ID is
stabilized by an exponential moving average filter. If
an obstacle’s velocity is below 1 m/s, it is assigned a
static flag and an associated time it has been observed
not to be moving,.

Another task for the sensor fusion module was
to estimate the geometry of the travel lane by storing
and extrapolating the lane center points extracted by
the curb/lane detection. The center points received
within the last 20 m of travel were approximated by a
second-order least-squares fit parameterized to work
directly on UTM world coordinates. Specified points
in front of the car at distances of 5, 10, 15, and 20 m
along the second-order curve were extracted.

All the sensor fusion processing is performed at
a rate of 5 Hz. A full list of known obstacles with ID,
velocity, static flag, and static time, as well as a list of
lane center points in front of the car, is published to
the artificial intelligence (AI).

The calibration of the positions and static angles
of the laser scanners with respect to the car coordi-
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nate frame was performed in testing prior to arrival at
the NQE. The calibration approach was practical. We
scanned previously known features (such as a corner
of building) that showed up in multiple laser scan-
ners and found yaw/pitch/roll and translation with
respect to the car with a 3-D iterative closest point
(ICP) algorithm. The changing roll angle of the ro-
tating scanners was very closely tracked by the op-
tical encoders mounted on the moving shaft. Time-
stamping the car state information, received laser
data and encoder data, allowed interpolation of car
state and laser state for each scanning point. This ap-
proach worked very reliably, although it relies heav-
ily on the accuracy of the GPS/INS system.

3.3. Al Intelligence

The Al module was responsible for the high-
level planning and tactical-level decision making for
Knight Rider. In designing the AI module, heavy
emphasis was placed on existing research in driver
modeling approaches. Development of driver mod-
els is integral to the quest for a better understand-
ing of how humans drive, which in turn supports ef-
fective in-vehicle interfaces, better collision warning
and avoidance technologies, and improved driver-
related human factors. Driver models used for sim-
ulating traffic in immersive driving simulators are
particularly appealing because of the requirement for
realistic-looking behaviors that extend all the way
to faithfully reproducing motion trajectories. The Al
module used in Knight Rider was based on a driver
model derived from prior work in driving simula-
tion (Cremer, Kearney, & Papelis, 1995; Papelis &
Ahmad, 2001), but with several extensions and en-
hancements to address incomplete awareness of the
driving environment and rules and requirements of
the competition.

Competition-specific issues aside, the driver
model was structured according to Michon’s three-
level hierarchy (Michon, 1985) that breaks the driv-
ing task into strategic, tactical, and operational lev-
els. The strategic level is concerned with high-level
goals such as navigation. The strategic level mapped
these goals into a series of subgoals, which remain
unchanged unless affected by external factors. The
tactical level was responsible for generating sequen-
tial tasks to implement a given subgoal. The opera-
tional level was responsible for low-level guidance
of the robot. The three-level hierarchy provided an
effective cognitive model and is consistent with the
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Figure 15. Behavioral model block diagram.

view that driving is a compromise between achiev-
ing goals and addressing ongoing constraints (Boer
& Hoedemaeker, 1998). Through a temporal process
of selection of alternatives, the driver model pursues
goals in a top-down fashion, starting at the strategic
and ending at the operational. Constraints flow the
opposite way, starting at either a tactical or the oper-
ational level and reaching the strategic level, which in
turn adapts accordingly.

3.3.1. Al Architecture

Figure 15 depicts the decomposition of the driver
model into the three behavioral levels and associated
flow of tasks, from top to bottom, and constraints,
from bottom to top. The road network information
was read from the RNDF and converted into an in-
dexed data structure that better supports robot nav-
igation. This step also created several needed associ-
ations that are not explicitly provided in the RNDEF,
for example, lane adjacency and direction informa-
tion. The MDF was read and used to plan a mission,
which in turn was used by the mission planning logic
to create a list of tasks. These tasks were implemented
within the core AI module, which used sensor data
and a priori knowledge to execute the specific tasks.
Low-level motion requirements in the form of a series
of geometrical points to drive along was passed to
the path planner, which interacted with the low-level
control mechanism to ensure proper robot motion.

3.3.2. Strategic Level

For the strategic level, establishment of the goals and
the associated optimization functions was done by in-
terpreting the competition rules. Materials provided
before the competition provided specific operational
boundaries, but no quantitative scoring information
was given. As a result, the strategic level is focused
almost exclusively on route/mission planning and
dynamic replanning upon discovery of road block-
ages. The output of mission planning was a list of
tasks, each of which corresponds to a tactical oper-
ation, such as driving and parking.

Early performance testing using the hardware
employed in the robot indicated that a straightfor-
ward implementation of Dijkstra’s algorithm per-
formed almost instantaneously on graphs with hun-
dreds of nodes. At that point, work was underway
on generating a graph from an RNDEFE but even un-
der the worst-case assumptions, Dijkstra’s O(N?) al-
gorithm performed adequately, so the decision was
made to utilize this approach for determining the
route from one checkpoint to the next. A simple al-
gorithm was designed that starts by finding the best
route from the current position of the robot to the
first checkpoint, then augmenting that route by the
best route from the first checkpoint to the second,
and continuing until all checkpoints have been ex-
hausted. To successfully utilize this approach, two
specific issues had to be addressed: first, develop-
ment of an algorithm that would convert an RNDF
into a graph amenable to min-path search, and sec-
ond, developing a mapping between a route and a
series of tasks that could be delivered to the tactical
level for execution.

3.3.3. Graph Generation and Task Mapping

The traditional min-path algorithm finds an optimal
route between two nodes on a graph. Optimality is
defined in terms of the route cost, which is the cu-
mulative sum of the cost of traversing each node and
edge of a given route. In generating a graph from an
RNDE it is important to capture all navigation possi-
bilities inherent in the topology as well as to capture
a rational cost function that can be used to com-
pute node traversal cost. The graph generation algo-
rithm developed to address these issues involves two
phases. The first phase was responsible for creating
the graph nodes, and the second phase was responsi-
ble for generating appropriate edges. The algorithm
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built a graph at the beginning of the mission and re-
built the graph as needed during the mission.

To generate nodes, the algorithm considered all
way points and included as unique nodes any way
points that were

an exit originating on a lane

an exit originating on a zone

an exit target, on either a lane or a zone

the first or last way point of a lane

a parking spot that was a checkpoint of the
current mission

Edges were generated from each node under the
following conditions:

e If the node represented an exit from a seg-
ment or from a zone, edges were created to
all destination nodes.

e If the node was not an exit on a segment, a
single edge was created to the nearest node
located downstream on the same lane.

e If the node represented an entry zone way
point, edges were created to all parking spot
nodes in the same zone and to all exits in the
zone.

e If the node represented a parking spot, edges
were created to all nodes representing zone
exits.

¢ To represent lane changes, edges were added
between nodes on the same road that were
on different lanes and downstream from each
other. Such edges were added only when the
RNDEF topology allowed a lane change, that
is, when a dashed white lane separates the
lanes.

e For roads with two lanes of opposite direc-
tion, and for which a corridor allowing a
U-turn did not exit, an edge was added be-
tween the last node of a lane and the first node
on the adjacent lane. This edge allowed the
routing algorithm to schedule U-turns at the
dead end of two-lane roads.

Figure 16 gives an example of the graph generation
process.

Once edge generation was completed, a classifier
was used to assign each edge to a tactical-level be-
havior that could handle the narrow problem of nav-
igating the robot so that it traversed from one node of
the graph to the next. Associated with each tactical-
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level behavior was a cost function that produced an
estimate of the cost associated with navigating this
edge. Once costs were associated with the edges, the
min-path algorithm was applied to generate a linked
list of edges. The list defined the anticipated series of
tactical-level behaviors that were invoked during the
mission. A final step allowed reaching checkpoints
by performing midroad U-turns. During this step, the
min-path search was performed four times, once with
no U-turns, once with a U-turn from the current loca-
tion and straight arrival to the checkpoint, once with
a straight departure but arrival to the checkpoint after
a U-turn, and once starting and ending with a U-turn.
The minimum cost path was selected.

It is important to note that consideration of
midroad U-turns was incorporated in the algorithm
even though such U-turns were considered illegal.
The rationale for this decision was simple. Without
knowing the relative cost of time performance versus
illegal moves, it was unclear whether the penalty of
the illegal U-turn would be offset by the time gain.
Incorporating the midroad U-turns in the algorithm
provided more options than not having this capabil-
ity at all.

Modifications to the weight function can be used
to bias the behavior of the robot. For example, the cost
of U-turns affects the choice between driving down a
dead-end road and performing a U-turn versus driv-
ing around a larger loop that involves no U-turn. Dur-
ing testing and during the competition, experience
and improved rule understanding yielded several
calibrations of the weight functions that proved to be
critical in the success of TeamUCF during the NQE.

One example of such a calibration was elimina-
tion of midroad U-turns. During the NQE, it became
clear that the time it took to complete any one of the
courses had little weight when compared to safely
finishing the course. The decision was made to elim-
inate midroad U-turns, which was achieved by mod-
ifying the weight function so that it assigned a very
large cost to such a maneuver.

3.3.4. Tactical Level

The tactical level was focused on implementing the
list of tasks produced by the strategic level. The tac-
tical level was also responsible for road discovery.
Road discovery is the process by which existing lanes
are augmented with sensor data that provide a fuller
centerline description than was originally available.
To support road discovery, a confidence value was
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Figure 16. Example of route generation.

associated with each way point. Initially, all known
way points receive a confidence of 0.9, to indicate full
knowledge of the (x, y) coordinate but incomplete
knowledge of the heading. As the robot traveled over
a way point, the heading was updated and the confi-
dence reached the maximum value of 1.0. At the same
time, when way point density was below a threshold,
guidance was provided by tracking the lane center-
line ahead. This information was used to add way
points into a lane, but with a lower confidence than
the points specified in the RNDF, which were con-
sidered ground truth. The confidence of new points
was passed from the sensor module. This process al-
lowed the incremental increase in the confidence of
newly inserted way points when repeated traversals
over the same road segment occurred.

The tactical-level implementation framework
was a hybrid model that borrowed elements
of context-based reasoning and state machines.
Context-based reasoning allows a functional decom-
position of the problem space into subspaces that are

easier to handle. Each context is responsible for ob-
serving the current situation and “offering” to solve
the problem at hand. Even though the context-based
formulation does not directly address concurrency, it
does allow nonorthogonal activities to exist in mul-
tiple contexts, and in practice this is simply imple-
mented by cleverly designing reusable behavior ob-
jects. A fixed-priority assignment was used to pick
the context that takes control, if more than one con-
text was willing to do so.

Even though the context-based approach has sev-
eral advantages, it also presents some disadvantages.
In particular, it does not lend itself to implementing
procedural, step-by-step actions that are typically en-
countered in driving. A state machine approach is
much better suited to this type of behavior. To facili-
tate modularity, a hierarchical state machine (HSM)
model was used within each context to implement
the appropriate behavior.

Figure 17 depicts the hybrid model of a context.
The enable function is used to indicate whether the

Journal of Field Robotics DOI 10.1002/rob
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Figure 17. Internal structure of a context.

context is willing to handle the situation. If the re-
sult is affirmative, the entry function executes to pro-
vide consistent initialization activities. The HSM then
takes over while the context is active, and upon exit, a
termination function provides a consistent point that
performs context-specific cleanup activities.

The full execution semantics are illustrated in
Figure 18. At start, the enable function of each context
was executed and the first one that returned true ac-
tivated the context and the associated entry function.
The HSM code then executed periodically. If a higher
priority context took over, the exit function was called
and the selection process repeated.

A common problem associated with context-
based behavioral modeling is maintaining continuity

Figure 18. Context execution.
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of behaviors during context changes. The localization
achieved by using contexts is inherently incompatible
with the need to maintain smooth transitions during
context changes. For example, consider a context re-
sponsible for driving along a lane on a road with the
speed limit set to 30 mph (48 km/h). Let us further
assume that the road leads into a stop sign, which is
handled by a different context. The context respon-
sible for driving is not aware of which context fol-
lows; that would violate the locality inherent in the
framework. As a result, the driving context maintains
the maximum speed and depending on where the
transition occurs, the context dealing with the stop
sign can receive control so near the threshold that
stopping is not physically possible. To address this
problem, each context was structured so that it com-
posed the control inputs passed to the lower levels
through an overloaded method that accumulated tra-
jectory way points using the best available informa-
tion at any time. It was thus possible for a context
to recursively call the trajectory augmentation rou-
tine of subsequent contexts without explicit knowl-
edge of which context followed. By maintaining a
minimum length of trajectory specification, the path
planner could anticipate speed as well as direction
changes and plan accordingly. Using an overloaded
method maintained the context independence while
satisfying the need to plan ahead.

This loop executed in periodic fashion in soft
real-time mode. The tactical-level thread was the pri-
mary thread within the Al process, with the strate-
gic and operational levels implemented as separate
threads that executed when triggered by the tactical
level. In the actual robot, the execution rate was set
to 10 Hz, leaving 100 ms per iteration. Use of asyn-
chronous threads facilitated development and decou-
pled the tactical control of the robot from the vari-
able execution performance associated with the other
threads.

Figure 19 illustrates the specific context design
used in the Knight Rider. The prioritization order
was designed to arbitrate between overlapping do-
mains. For example, handling an intersection with
stop signs had higher precedence than a regular inter-
section. The lowest priority context (default) served
several purposes. During development, it acted as a
self-check mechanism that pointed out gaps in the
system. During autonomous navigation, it served as
the central place in which a last effort could be pur-
sued to handle an unexpected situation.
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Figure 19. Context design.

3.34.1. Back-Up

The intention of this context was to drive the robot in
reverse when doing so would allow meeting a check-
point located behind the robot. This context did not
directly map to an activity produced by the route
planner but as the highest priority, context had the
opportunity of checking for this situation. The con-
text consisted of a single state that attempted to back
up only when the next checkpoint was located within
three robot lengths and there were no obstacles in the
way.

3.3.4.2. Stop Sign

This context was activated when the robot must cross
an intersection from a lane that was controlled by a
stop sign. The structure of this context is straightfor-
ward, as illustrated in Figure 20. Note that substates
used to implement timeouts are not shown.

Upon activation, the robot approached the
threshold and came to a stop. Information about the
intersection geometry was utilized to create a set of
pockets, each representing other lanes into the same
intersection. Pockets were classified as peer or high
priority. Peer pockets were ones controlled by a stop
sign, whereas high pockets had no signage. The op-
eration of the stopped state differs between the cases
when all other pockets are peer versus having at least
one high-priority pocket, but in both cases, the robot

Reach
Threshold

Approach

Figure 21. Tllustration of pockets.

remained in the threshold as long as an object was in-
side the intersection. Figure 21 illustrates an example
intersection. The robot is approaching from the south.
In this case, pocket P1 is peer and pockets P2 and P3
are high priority.

When all pockets were peer, the presence and ve-
locity of objects in the pockets was used to determine
right of way. Empty pockets or pockets with mov-
ing objects were ignored; pockets with a stopped ob-
ject were assigned right of way. Once an object in
a right-of-way pocket moved, the pocket was elim-
inated. This ensured that the robot waited only for
the lead object when multiple objects were queued
on a peer pocket. This logic brings up an important
observation. The Knight Rider robot assumed that
other vehicles (robots or cars) would behave accord-
ing to the rules of the road, and only as a final re-
sort (object all the way in the intersection) did the
Knight Rider stop. During testing it became apparent
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just how many subtle cues human operators obtain
from other drivers’ behavior and from the drivers
themselves, cues that were not available to the Knight
Rider.

When high-priority pockets were present, the
stopped state did not transition as long as other ob-
jects in these pockets were in conflict. The velocity
of the oncoming traffic was used along with their
distance from the respective thresholds to determine
whether a conflict existed. When conflicts and right-
of-way rules had been resolved, the robot transi-
tioned into the moving state, which lasted while it
was inside the intersection. Traffic entering the in-
tersection forced a transition to the yield state, dur-
ing which the robot stopped. Upon clearing or after a
time-out period, the robot proceeded.

Time-outs were used in all waiting states to
prevent live lock, which could be caused by other
robots that intentionally or unintentionally violated
the rules or by phantom objects due to sensor arti-
facts. Such time-outs were set at such a high value
that they would never interfere with typical inter-
actions. Further, TeamUCF made a calculated deci-
sion to prevent initiation of a passing maneuver when
near an intersection, but once a pass maneuver was
initiated it would be completed, even if that meant
passing while approaching a stop sign.

3.3.4.3. Intersection

This context was responsible for controlling the robot
through intersections for which there was no stop
sign (Figure 22). The most obvious situation is a
left turn that crosses opposite-lane traffic. Because
California driving rules dictate a full stop before
crossing a yellow line, the design was similar to
the stop context, but with two key differences. Be-
cause there was no intersection area, once a go de-
cision was made the robot proceeded without moni-
toring for side obstacles. (It was assumed that those
moving obstacles would stop.) In addition, there was
no consideration for incident lanes controlled by stop
signs as they had lower priority.

Reach turn Clear

point
Approach Stopped

Figure 22. HSM for intersection context.
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Figure 23. HSM for U-turn.

3.34.4. U-Turn

This context was responsible for implementing
U-turns. The context activated in two situations. The
first case was planned when the next activity in the
route list explicitly called for a U-turn. The second
case was when a blocked road was encountered. The
only difference between these two cases was that
the latter case also triggered a rerouting operation at
the strategic level, which generated a route starting
at the lane that was the destination of the U-turn. In
both cases, the context terminated upon completion
of the maneuver.

To ensure that the reroute operation would not
create a route that traverses the same blocked road,
the edge representing the blocked road was tagged
with a marker indicating the location of the block.
According to competition rules, blockages were not
persistent and the block marker was removed after
the robot crossed a corridor, in effect forgetting the
blockage

Despite the relatively complex sequence of oper-
ations necessary to implement a U-turn, the behav-
ioral complexity of this context is trivial, as shown in
Figure 23.

The first state commanded the maneuver and
monitored progress. Once the maneuver was com-
pleted, the state transitioned into the end state. In
case of a collision threat, the stop state waited for the
obstacles to clear. Under certain conditions, for exam-
ple, when an obstacle was detected during the last
back-up maneuver, it was possible to transition di-
rectly to the end state (i.e., the U-turn had completed
sufficiently to resume operation).

3.34.5. Zone

The zone context was responsible for guiding the
robot during entry into, exit out of, and driving
while within zones. The controlling HSM is shown in
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Figure 24. HSM for the zone context.

Figure 24, with hierarchical states shown inside each
other. The entry state took over immediately upon
reaching the way point that led into the zone. The
drive state was designed to move the robot from the
current location to any point in the zone, while avoid-
ing other stationary and moving obstacles. When a
parking task was necessary, the drive state moved the
robot to a preparking spot, located adjacent to or on
the extended centerline of a parking slot, then transi-
tioned to the park state. When a parking task was not
necessary, the drive state moved the robot to the zone
exit and transitioned to the exit state.

While inside a zone the maximum speed was set
to 5 mph (8 km/h), independent of the guidance pro-
vided in the MDEFE. All objects were set to avoid and
all parking spots, except the target of the parking
maneuver, were treated as obstacles, thus ensuring
that the robot would not drive over them in accor-
dance with California driving rules and DARPA in-
structions.

Even though the path planner could resolve the
vast majority of situations it encountered, there are
pathological cases during which the robot could
“paint itself in a corner” (although this situation was
never encountered at the NQE). The purpose of the
back-off state was to perform a back-up maneuver
that allowed the robot to get out of that situation.
To compute the appropriate back-up maneuver, sev-
eral geometrical approaches were tested in simula-
tion. The most straightforward yet effective approach
was to develop a set of deterministic back-up maneu-

vers and pick the one to use at random. If the new
position did not allow progress, the system cycled
through the stop and back-off states and a different
maneuver was attempted. An illustration of the ap-
proach is shown in Figure 25. In this example, the
maneuver is to back up 1!/, robot lengths and turn
30 deg to the left of the centerline.

When a parking maneuver was necessary, the
drive state moved the robot to the prepark posi-
tion and the system transitioned into the park state.
A straightforward sequence of state changes within
park guided the robot into and out of the parking
spot.

This design was tested extensively on various
parking lots on the UCF campus, and TeamUCF was
pleasantly surprised at the robot’s ability to navigate
and park in very constrained parking lots that were
filled with islands, obstacles, and parked vehicles,
significantly more complex than even the challenging
scenarios presented in the NQE.

3.34.6. Road

This context was responsible for guiding the robot
from one way point on a lane to a subsequent way
point on the same lane. Because the mechanics of gen-
erating and tracking the trajectory were handled else-
where, this context was behaviorally simple. The up-
per level of the associated HSM is shown in Figure 26.
Lacking any significant interaction with other objects,
the drive state moves the robot along. If needed, road
discovery was handled within the drive state.
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Figure 25. Example of back-off operation.

Figure 26. HSM for the road context.

Given an object, the robot must decide whether
the object is something to follow or something to
avoid. The approach utilized in Knight Rider was
heavily biased by the characteristics of the data pro-
vided by the sensors. The approach utilized, illus-
trated in Figure 27, performed adequately given the
competition rules. The top-level states represent ob-
ject classification states and are not directly related to
the behavioral states of the HSM. The states on the
bottom reflect object disposition.

The initial condition is driving with no objects in
sight and is shown by the left-most state. Once a new
object appears it is classified as follow. An object that
interrupts the baseline trajectory of the robot and is
classified as follow will cause the robot to stop at a
safe distance behind the lead object. If the robot stops
for a certain period, the disposition of the lead object
changes to avoid-abort, causing the path planner to
plan around the object. As the robot goes around
the object, one of two things can happen. The object
can move, in which case its disposition reverts to
follow, or the robot will travel past the object (Knight
Rider used committed once the front of the robot
reached the rear of the object), in which case the
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object’s disposition is set to avoid-commit. Once an
object becomes avoid-commit it cannot revert back to
follow. Once behind the robot, its disposition is set to
ignore, which eliminates it from consideration. After
at least one object has been classified avoid-commit,
any new object is automatically classified as avoid-
commit (i.e., once the Knight Rider started passing,
it continued to pass until it returned to the lane of
travel). As objects were passed, they were labeled
ignore, and once all objects were labeled ignore,
the system reverted back to the start state with no
objects. Figure 28 illustrates a series of four snapshots
showing operation of this approach.

The first snapshot, located on the upper left, de-
picts the situation in which the object is set to fol-
low, causing the robot to stop. After a brief pause, the
object is set to avoid-abort, causing the passing ma-
neuver. In the third snapshot, on the upper right, the
object switches to avoid-commit. The final snapshot
illustrates how a new object appearing at that point is
automatically set to avoid-commit, providing a con-
tinuous passing maneuver.

3.34.7. Lane Change

The lane change context was responsible for guid-
ing the robot while performing a lane change. Lane
changes are planned during route generation and
were defined with an approximate start and end lo-
cation. Because of the a priori planning, lane changes
were behaviorally rather simple, blending seamlessly
between two drive contexts.

3.4. Path Planning

The path planner (PP) acted as the bridge between the
tactical missions defined by AI and commands that
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Figure 28. Example object disposition sequence.

could be executed by the autopilot. It performed this
operation by effectively acting as a function call for
the Al that would generate a dense list of way points
from a sparse set of way points provided by Al It
ensured that the path generated by that dense list
of points (0.5-m spacing) was kinematically feasible,
met the explicit driving rules imposed by DARPA,
and did not violate any constraints imposed by Al
(such as speed limits or roadway boundaries). In ad-
dition to providing a dense path, the PP provided
path length, estimated time to complete path, and
avoidance information associated with every obsta-
cle encountered on the path. By effectively acting as
a function call, Al could explore different scenarios
with the PP and select one to be forwarded to Al Exe-
cution times were short enough that several scenarios
could be explored in 100 ms.

The nominal problem for the PP was to cre-
ate an in-bounds, kinematically feasible path from

point Py to P,, passing through intermediate points
P; (Figure 29). Feasibility includes speed and accel-
eration limits as well as boundary constraints. Ini-
tial work followed a unique analytical approach (Qu,
Wang, & Plaisted, 2004; Yang, Daoui, Qu, Wang,
& Hull, 2005) but was modified significantly as it
was realized that assuming flexible objectives yielded
substantially better performance in many scenarios.
Specifically, the PP could explicitly violate objectives
in the following manner:

® Any speed could be changed as long as the
overall speed limits on segments were not vi-
olated and kinematic limits of the robot were
not violated.

® Heading at a way point, if provided, was a
suggestion and could be violated if required
to keep a path in bounds. Direction of travel
(forward or reverse) at a way point could not.

® Obstacles were classified as to be followed or
to be avoided. If the desired path crossed a
to-be-followed obstacle, the path was short-
ened based on the obstacle speed and type of
area the obstacle was in (zone, road, near a
stop sign, etc.). Basically, if a stopped obsta-
cle was likely in a certain scenario, the robot
could get closer to the obstacle than if it was
unexpected.

® Intermediate way points could be moved per-
pendicular to the direction of travel if re-
quired to do so to avoid an obstacle.
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Figure 29. Dense path generation from sparse goals.

® The final way point could be moved along the
direction of travel if required to do so because
of an obstacle.

® Obstacles to be avoided are to be avoided by
at least 1 m if possible, but if not possible a
path as close as 0.25 m is acceptable.

The approach taken was one of iteratively gen-
erating piecewise, continuous first-derivative, cubic
splines with updated control points as necessary to
avoid obstacles and keep paths within bounds. Con-
straints were gradually relaxed if no solution was
found. The use of splines generated smooth curves
(although not necessarily optimum time of traversal
paths), which could easily be evaluated for axial and
lateral acceleration constraints.

PP operation when driving on a road or navigat-
ing a zone was fundamentally the same. Dense path
information provided the path to follow until such
time as goals, constraints, or obstacles changed. It
also provided a convenient way for multiple systems
to know where the robot was with respect to meeting
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its tactical objectives (namely, by associating the robot
with the closest dense path point). Although the PP
generated paths that could be driven by the vehicle,
it was the autopilot’s responsibility to follow the path
generated by the PP.

3.5. Control Systems

The purpose of the low-level control system/
autopilot (AP) was to physically actuate the plan put
forth by the PP. The overall operational inputs to the
system were a list of dense way points with 0.5-m
spacing and the current navigation status. Each of
these way points had an associated position, heading,
and velocity, each of which should be physically real-
izable based on the robot dynamics. The overall re-
quirements on the AP control systems were not near
the vehicle or actuator limits, nor were their specific
scoring parameters based on how precisely speed or
steering was followed. Because of this, no optimal
control system design was performed and only rudi-
mentary modeling of actual subsystems (i.e., second-
order response characteristics, rate and magnitude
limits, etc.) was performed. Control system parame-
ters were selected to mimic human drivers operating
in similar circumstances. Whereas no formal compar-
ison to multiple human drivers was performed, there
is clearly significant diversity in driver performance.
The team selected control system parameters based
on one particular driver that we collectively judged
to operate the vehicle in the most reasonable manner.

All control systems ran on a single-processor
QNX using the real-time scheduling and interprocess
communication systems of the operating system in
order to minimize data latency and maximize pre-
dictability associated with operation.

3.5.1.

Steering control (Figure 30) was provided by a
follow-the-carrot controller (Barton, 2001) coupled
with a state machine to handle three specific driv-
ing modes (normal, stopped, and three-point turn). In
the latter case, tighter control of vehicle steering is es-
sential to meet turn requirements. By passing a mul-
tipoint dense path between the PP and AP, the two
systems did not need to maintain tight timing cou-
pling and in fact the PP could operate significantly
slower (e.g., 1 Hz demonstrated in testing) than the
AP (20 Hz) during periods when the environment or
obstacle mix was not rapidly changing.

Steering Control
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Figure 30. Typical steering controller performance.

At a 20-Hz update rate, the steering controller
would 1) compute the closest dense path point to
the current vehicle location, 2) look ahead on the
path a fixed look-ahead “time” of 1.5 s, and 3) de-
termine the effective carrot point. Using the carrot
point, a heading was calculated between the current
position of the robot and the position of the carrot
point. This heading was then compared to the physi-
cal heading of the robot. The difference in these head-
ings becomes the error for a proportional-integral (PI)
controller, which feeds the steering wheel actuator.
Steering command limits, steering rate limits, and in-
tegrator limits were included. In addition, integration
was performed only during periods of the path when
the path curvature was below a threshold. Special
end-of-path logic (effectively linearly extending the
path based on the last heading) avoided any steer-
ing discontinuities should path lengths become small
or the vehicle be commanded to a stop. The objective
here clearly is to keep the robot generally on the path
without undue precision (10-cm error is tolerable).

The steering angle calculated through the follow-
the-carrot method was passed to the Elmo motor
controller. Through the actuation system, the desired
steering angle is converted to an absolute encoder po-
sition, and the Elmo’s internal PID controller phys-
ically maintained steering for any quick impulses
or external stimulus feedback through the steering
wheel from the environment. Stop-to-stop perfor-
mance of the steering wheel took approximately 1.5s.

Other path following schemes such as pure pur-
suit (Coulter, 1992) and the hybrid controller em-
ployed by Stanford in 2005 (Thrun et al., 2006) were

explored, but the simplicity of follow the carrot cou-
pled with its robustness and accuracy led to its
selection.

3.5.2. Speed Control

Whereas the steering controller looked forward into
the planned path to obtain a steering command, the
speed controller used a linearly interpolated value of
the current desired speed as an effective cruise con-
trol set point. Again, special end-of-path logic forced
commanded speed to be zero at the end of a path
and further forced a speed ramp down if the robot
ever got so close to the end of a path it could not
stop without violating acceleration constraints. Of
course, PP logic should prevent this, but this strat-
egy of hierarchical checking for basic system perfor-
mance constraints proved to be critical during vehicle
testing.

The subtle challenge associated with cruise con-
trol set points is determining when to brake and
when to coast. TeamUCEF utilized dual PI controllers,
one for throttle and one for the brake, with a hystere-
sis crossover. The PI controller would have two in-
ternal states: throttle and brake. If the controller was
in the throttle state, a positive value from the con-
troller would be interpreted as a voltage to feed the
throttle actuator. A negative value from the controller
would represent cruising, which means that no throt-
tle and no brake would be applied. A large enough
negative value caused the system to transition to the
brake state. In the brake state, a separate PI controller
controlled the brake actuator. In this way the vehicle
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Figure 31. Speed repeatability over two laps of NQE test area A.

effectively operated in four states: 1) accelerating, 2)
coasting throttle, 3) braking, and 4) coasting brake.

The performance and repeatability of the speed
controller for subsequent runs over the same course
can be seen in Figure 31. All elements of the system
from the Al to the PP to the speed controllers were in-
credibly repeatable. This ability led to predictable be-
havior and simplified tasks for other systems. In the
figure, the commanded volts curve illustrates throt-
tle being applied (+ volts), brake applied (- volts),
and coasting (0 volts). The performance here is typi-
cal, showing the vehicle operating within ~60% of its
capability (10-V peak).

3.5.3. Drive State Control

Because the underlying robot vehicle was an auto-
matic, no shifting was required; however, the system
still needed to be brought into the proper gear (park,
forward, or reverse). The main function of the shift
controller was to ensure that there was enough time
between shifting and further timing operation for the
robot to be safe. For example, if the robot was cur-
rently moving 1 m/s and in the forward gear and was
just commanded a —1 m/s speed, the state would
switch from forward to prereverse. Prereverse would
smoothly stop the robot and wait until the speed was
0 m/s for a second. The brake would then be fully
applied, and the state would switch to shift-reverse.
In shift-reverse, the controller would send the voltage
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to physically actuate the robot to reverse and wait for
another second to ensure that the shift finished. At
the end of that time, the system would then switch to
the reverse state and reset the dual Pl integrator error.

3.5.4. E-Stop Pause

The pause system also consisted of a series of state
changes. The digital output line of the DARPA E-stop
device was read on an I/O pin and debounced to en-
sure that a false reading was unlikely. Upon receiving
a pause command, the vehicle would be brought to a
stop and the appropriate combination of sirens and
lights activated. Further, once in pause, a run com-
mand would cause the robot to wait 5 s before actu-
ally beginning operation.

3.6. ICE

The main communication system used throughout
the robot was provided by the ICE by ZeroC. This
highly efficient middleware package allowed the
robot’s software to be distributed over a heteroge-
neous network of machines. Data types were han-
dled though ICE’s mechanisms that allowed data to
be shared to multiple destinations regardless of op-
erating system or programming language. TeamUCF
utilized the publish-and-subscribe model in which
multiple programs would be able either to request
the most recent information by name or execute
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when new information was available. This frame-
work worked well for the distributed architecture
used, and ICE overhead was never a factor even
when publishing large sensor data structures.

Perhaps most important, the module indepen-
dence provided by ICE provided the ability to test
the robot offline through simulation. Simulated mod-
ules that would take the same robot actuation signals
over ICE and implement them on the actual robot
were gathered and run through a dynamic physics
simulation. Intelligence, planning, control system
algorithms, and sensor processing algorithms could
receive simulated or real data while still providing
outputs in real time. In this way there was only one
version of production and test code.

4. PROJECT PROCESS

TeamUCF participated in the original proposal sub-
mission but failed to gain track A status. Undeterred,
the team executed on a capabilities-driven implemen-
tation approach. At each stage of this approach, the
key capabilities to be demonstrated next were deter-
mined. These capabilities were occasionally defined
by DARPA (as in the case of a site visit) but were
more likely to be defined by TeamUCF leadership. All
systems were developed in parallel and to the level
necessary to demonstrate the capability. In this way,
incremental testing of the robot was performed for
many months prior to the NQE. The downside of the
approach is, of course, that full operational capability
was invariably ready only just prior to the NQE.

4.1. Simulation and Modeling

Simulation was critical to the overall success of the
project. The ability to test the robot in a multitude of
scenarios, virtually, allowed different team members
to test changes quickly on their own computers or
over a network of computers. Furthermore, with a
small team effectively responsible for both software
development and robot testing and a limited window
for testing, there were simply not enough hours in
the day to conduct all the desired tests without
simulation.

Coupling the simulation environment with a
source management tool, in this case subversion
(SVN), allowed problems that were detected on the
real robot to be checked in as data files, sent to dis-
tributed team members, replicated in simulation, and
resolved. That error could then be corrected in simu-

lation, the source code checked in, and operation cor-
rected on the robot, typically the same day. TeamUCF
maintained no software laboratory or significant fa-
cility for any development activity.

The key to this ability was a product of the ICE
middleware distribution and the modular nature of
the software design. The ICE architecture allowed the
real robot code to be used with virtual sensors. This
software-in-the-loop scheme of sensor replacement
was implemented by creating a package of threads,
each tasked with publishing realistic data. Each of the
threads then published to the middleware level for
use by the other modules.

The synthetic sensor fusion module had the abil-
ity to inject moving obstacles with complex obstacle
behaviors into the virtual world in the same fashion
as the postprocessed data that the actual sensor fu-
sion would develop from the laser scans and Doppler
data. All synthetic data generation had the ability to
be perfect ground truth, to contain random fluctu-
ations consistent with the noise levels measured in
sensor systems, or, perhaps most important, to play
back an actual vehicle log of the same data.

The synthetic E-stop module reflected the
DARPA E-stop unit that could send the different
pause and disable commands. On the basis of expe-
riences in 2005, TeamUCEF felt it was essential to test
the operational effects of these commands on the rest
of the system. The pauses were known to be a factor
in the Urban Challenge due to the number of robots
on the course, and TeamUCF spent significant time
pausing and restarting the robot in as many different
scenarios as possible.

Synthetic kinematics was generated from a robot
dynamics model using Ackermann steering with
second-order response functions with rate and po-
sition limiters for all actuators. Synthetic navigation
was generated from this ground truth by adding ap-
propriate filtered white noise that closely matched
the performance of the actual sensor systems. Most
important, these navigation and control processes
contained appropriate process delays, modeled via
FIFOs, to account for transport-and-process delay ob-
served in the system. An early software error caused
an asynchronous clock skew that was debugged us-
ing this technique and resolved with a combination of
error correction and more fault-tolerant algorithms.

All of the data produced by these systems was
published to ICE. A graphical visualizer, Vevis, was
developed in OpenGL to display the robot and envi-
ronment in real time. The software developer could
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then view the entire process unfold and observe the
actions of the robot from movement to turn signals to
direction of the radar. This overview could then dis-
play the route planned by the AI, the dense points
created by the PP, and the movements produced by
the AP. Vevis allowed the team to zoom in on spe-
cific regions, load RNDF and MDF for simulations of
entire runs, or load the maps files on available tex-
tures to verify operation of the calculated road net-
work. Because Vevis requested all usable information
from ICE, this system was also used in real time on
the actual robot.

4.2. Testing Methodology

Although simulation was key to TeamUCF’s success,
the team spent an equal amount of time on the actual
robot. TeamUCF’s test site was unfortunately avail-
able only after hours, and therefore the majority of
tests were conducted in the evening, which of course
has added benefits when testing in the summer in
Florida.

The test philosophy dictated that the team would
run numerous shorter duration tests that could be
quickly validated via simulation. A typical testing
evening consisted of 6 h of tests, consistent with
the amount of time expected at the final event, but
the vehicle was never tested in a single 6-h mission.
Whereas the majority of the test runs were performed
at night (for safety and facility access reasons), exten-
sive test runs also occurred during the day. This in-
cluded the DARPA site visit. From daytime test runs
and through our experience from the DARPA Grand
Challenge 2005, we concluded that laser performance
(from dazzle) was impacted but did not significantly
degrade the obstacle detection capabilities of the al-
gorithms employed.

5. NQE AND RACE RESULTS

The NQE and final event were held at George Air
Force Base in Victorville, California. DARPA spent
considerable time and energy preparing the facility to
act as a safe but challenging test environment for the
robots. Thirty-five semifinalists were invited to par-
ticipate in the NQE, including teams from all over the
United States and several teams with a large interna-
tional contingency. TeamUCF had arguably spent the
smallest amount of money and had the smallest team
to make it to the finals and was possibly the smallest
team in the semifinals as well.

Journal of Field Robotics DOI 10.1002/rob

5.1. NQE

The details of the testing to be performed at the NQE
were unknown to the participants until they arrived
at the event. Shortly after arriving, teams learned that
the qualifying event would consist of a series of mis-
sions in three test areas, creatively named A, B and
C, which stressed different aspects of the robot. Each
team would have two chances to perform each test.
Test area A was visible to all team members, but the
details of test areas B and C were not. Teams were not
permitted to drive on any of the test areas or for that
matter much of the Air Force Base. TeamUCF was as-
signed the test areas in order B, C, A.

Figure 32 illustrates the layout of test area B and
also illustrates the simulation and visualization soft-
ware utilized by TeamUCEF. This is a screen display
from either inside the vehicle or the simulation: they
are identical. The baseball diamond near the center of
the figure gives some sense of scale. A series of k-rail
launch chutes at the upper left of the figure defined
the launch location. The vehicle immediately enters
a zone driving area with no specific way point in-
formation other than an exit goal at the bottom left
of the zone. Upon leaving the zone the vehicle must
traverse a narrow pathway bounded by k-rails and
negotiate a roundabout, eventually out into a double-
cloverleaf road network. At the center of each clover-
leaf is another zone area, with the bottom zone mod-
eling a parking lot and requiring a parking maneuver.
In the center of each zone, and not shown, are two
large circular barricades that were to be detected and
avoided. There were numerous other static obstacles
on the course to be avoided. There were no moving
obstacles. The mission wound through much of the
course with the robot required to return back to the
starting location, completing a course of about 6.5 km
in 30 min.

The challenges presented by test area B were ef-
fectively as follows:

¢ Navigate a zone with no way point informa-
tion

® Navigate over a relatively long distance and
relatively long time

* Navigate in the presence of sparse way points
(note upper right portion of the figure)

® Navigate through a complex field of static
obstacles

® Navigate narrow roads with barriers on either
side of the road



560 -« Journal of Field Robotics—2008

Figure 32. Test area B: Driving, parking, and obstacle avoidance.

* Navigate stop signs
Park with nearby parking spots occupied by
vehicles

TeamUCTF's first attempt at test area B resulted in
the robot making it through the majority of the course
(~5 km) in approximately 20 min after successfully
navigating the parking maneuver and a “gauntlet”
of parked cars. At about this time, the sensor fusion
algorithm failed due to a software bug in a polygon
clipping module. The vehicle effectively lost all
forward-looking sensors and crashed into one of the
barricades, resulting in minor damage to a cable.
TeamUCF was allowed to restart the vehicle from
here, but we did not complete the course. Our second
attempt at test area B was completed successfully in
just under 19 min, one of the fastest qualifying times.

Test area B was an amazing awakening event for
TeamUCEF as we watched the robot leave our sight to
enter into the heart of area B. We realized only then
that this was the first time, in all of our testing, we
had ever let the robot out of our sight.

Test area C (Figure 33) was designed to test stop
sign and rerouting behavior. The MDF for the robot
required a path be taken around the outer loop of the
“belt buckle.” Each time the robot reached a crossing
four-way stop, a different configuration of cars was
presented. The robot’s objective was to correctly de-
termine precedence and continue the mission in the
correct order. After completing a series of loops, the
course was adjusted, and a blockage inserted on
the bottom loop of the buckle. The robot needed
to reroute and determine a path to a checkpoint on
the other side of the blockage. This proved problem-
atic for many robots, including initially TeamUCF. A
strict interpretation of rules would imply that such
a point is unreachable in normal driving because it
would require a U-turn on the far side of the barri-
cade, but a U-turn is legal only on a blocked road,
so the robot would have to assume that the blockage
remained in place. DARPA rules (and in fact actions
on this course) indicated that blockages could not be
assumed to be static. Upon understanding these new
constraints, TeamUCF was able to redefine the rout-
ing behavior to make this checkpoint.
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Figure 33. Test area C: Stop sign and rerouting.

One of the more interesting things in this figure
is the misregistration between the ground truth way
point data and the imagery data provided by DARPA
to all participants. Although useful for determining
conceptually what a course looked like, the imagery
data were of poor enough quality to not be usable
for any type of premission planning or environmental
modeling. Note that data from several popular Web-
based mapping tools are similarly inaccurate.

Test area A (Figure 34) proved to be the most in-
teresting area, perhaps because it was fully visible
to spectators and perhaps because it was specifically
designed to promote robot-manned vehicle interac-
tion. The fundamental objective was to have the robot
complete as many loops of the right-hand side of the
course as possible in 30 min. Traffic crossed in front of
the robot at the top of the course, and the vehicle was
required to merge into traffic from the stop sign at
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the bottom center of the course. Traffic speed was rel-
atively modest at ~10 mph (16 km/h), but traffic con-
figurations were continually altered by the drivers,
and unless the robot was relatively aggressive none
of the maneuvers could be performed without some
close calls with the manned vehicles (Figure 35). Tea-
mUCF completed 17 transits of the course in under
30 min and terminated the run early in order to avoid
pushing “our luck.” This was among the most laps
performed.

5 020

By successfully completing all three test areas,
TeamUCEF earned a place in the finals of the Urban
Challenge along with 10 other competitors. DARPA
narrowed the field of finalists from the initially stated
goal of 20 to only 11 competitors.

Finals
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Figure 34. Test area A: Merging and crossing traffic.

The final event took place on November 3, 2007,
and was composed of a series of three missions cov-
ering a distance of 60 miles (97 km) through a com-
plex urban environment and driving time limited to
a total of 6 h. Test tracks A and B of the NQE were in-
corporated as subsets into the final road network, but
the network extended to other new areas with sig-
nificantly more elevation change than the relatively
flat NQE test areas. The three missions were designed
to demonstrate all of the scenarios previously tested,
although in a somewhat less stressing manner, plus
some novelties. In addition to some 50 human-driven
traffic vehicles, all finalist robots were on the track at
the same time, creating for TeamUCTF the never-tested
scenario of encountering live robot traffic. To add a
level of complexity, DARPA announced a day before
the final event that one section of the urban course
would be a steep unpaved road negotiating an eleva-
tion difference of 50 m. TeamUCF was surprised to
find off-road performance tested in a contest labeled
as “Urban.”

During the first 30 min of the race, Knight Rider
behaved as expected, mastering encounters with
other robots without any problems (Figure 36) and
driving road segments reliably and repeatably. At
9:11 a.m. the robot got stuck at a stop sign, not en-
tering the intersection even when all other pockets
were empty. Most likely a misreading by the sensors
produced a phantom obstacle in the intersection, es-
sentially deadlocking Knight Rider. The situation re-
solved itself after a few minutes when another vehicle
entered the pocket and cleared the obstacle. At 9:42
a.m. “Little Ben” from the University of Pennsylva-
nia came within a few centimeters of Knight Rider
when switching lanes after passing TeamUCF’s chase
vehicle.

After 19.8 km (~12.3 miles) and a running time
of 2 h, 7 min, and 20 s, the Knight Rider GPS/INS re-
turned a NaN (not a number) for the latitude and lon-
gitude of the robot. The manufacturer-provided com-
munication library used to read the UDP packages
from the GPS reported a nonsuspecting “data valid”
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Figure 35.

Figure 36. Knight Rider encountering MIT in the traffic
circle.

for these values. In the IEEE floating-point standard,
any arithmetic operation involving NaN always re-
sults in NaN, and any numerical comparison with it
fails. The invalid data cascaded through the system
but had the most detrimental impact on the steer-
ing controller. In the steering controller, the robot’s
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lustration of crossing traffic.

position is used to calculate the angle to the carrot
point as a set point for the PI controller. The integral
part of this controller preserved the value for subse-
quent iterations, essentially locking the value into the
system. Confronted with this, the digital servo drive
locked the steering wheel in the center position, lead-
ing the robot to deviate from the road, jumping a curb
and driving toward an abandoned house, eventually
stopping in front of a wall, where it stayed paused for
the next 6 h (Figure 37) before the team was allowed
to recover it. TeamUCF was officially retired from the
DARPA Urban Challenge at 10:38 a.m.

6. DISCUSSION

The experience gained during the Urban Chal-
lenge competition has been invaluable to advancing
TeamUCF's capabilities with autonomous robotic ve-
hicles operating in an urban environment. The per-
formance of a number of teams clearly indicates that
commercial autonomous vehicle operation is closer to
reality than many expect.

Whereas TeamUCF encountered a series of me-
chanical issues during the NQE, none of these issues
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Figure 37. Knight Rider paused at his final resting place right in front of a house.

severally hampered performance. The overall compe-
tition was not particularly stressful on the robots from
a mechanical point of view. Furthermore, all sen-
sors operated within expected performance bounds
throughout the competition. This was partially be-
cause adverse environmental conditions that could
have impacted sensor performance were reduced by
the choice of venue and the time of year of testing.
The use of relatively simple algorithms, robust sim-
ulation tools, and partitioning of the control system
in the manner used contributed to the ability to make
the few minor modifications that were necessary dur-
ing the NQE. In hindsight, the choice of the platform
for the robot, the choice of sensor systems, and the
overall control approach were good ones and ones
the team would use again.

In many ways the final event was easier than
the tests required to be passed to qualify for the
finals. The final event focused on a robot’s ability to
repeatedly perform a series of moderately challeng-
ing missions over the course of hours. Teams that
had significant experience with long-duration tests
fared better than those that did not. The criticality of
long-duration testing cannot be underestimated, but
the implications for preevent test area configuration
should be understood. The availability of a test area

where a vehicle can be driven more than 10 km and
for hours without fear of unintended interaction with
other vehicles was a deciding factor in determining
the outcome of this event. A small test area of-
fered the ability to investigate “scenarios” or demon-
strate the robot’s ability to meet virtually every
individual objective. Testing at a nearby parking lot
during evenings while at the NQE allowed specific
algorithms associated with test area A to be validated
and refined. Testing at an off-road site verified the
off-road capability of the robot prior to participation
in the final event. Several teams took advantage of
this scenario testing. Nevertheless, scenario testing
was woefully inadequate in verifying the robot’s
long-term performance. In hindsight, TeamUCF
might have fared better in the final event by veri-
fying that the robot could drive around a circular
course for 8 h straight rather than verifying off-road
performance.

The criticality of GPS or GPS/INS systems can-
not be underestimated. On the day prior to the final
event, finalists were asked to launch their robots from
the starting chutes and make a relatively simple loop
course ostensibly to verify starting procedures and
timing. A robot that had performed virtually flaw-
lessly in previous tests nearly collided with two other
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robots that were stopped behind the start line. The
team with the malfunctioning robot claimed that the
issue was traceable to a malfunctioning GPS. On the
day of the final event, the pole-setting team failed to
launch on time, again due to a stated GPS malfunc-
tion attributed to interference from a large TV screen
near the vehicle. TeamUCF's failure to complete the
final event is directly attributable to a GPS failure.
A significant GPS outage for any team would likely
have crippled that team.
Several other items are noteworthy:

e SICK laser scanners are highly reliable and
robust measurement devices, but with rel-
atively limited operational range. Certain
lighting conditions or obstacle types bring
those ranges well below 50 m, making these
sensors questionable for vehicle speeds much
above those demonstrated in this challenge.

¢ The Oxford RT3000 GPS/INS is highly capa-
ble and accurate; however, external data va-
lidity checking, separate from the software
tools provided by the vendor, must be per-
formed to ensure that the rare data error does
not have catastrophic consequences.

¢ TeamUCF struggled with camera-based vi-
sion systems primarily because of lighting
conditions and obstacle diversity, but other
systems made up for these deficiencies.

® ICE worked well for interprocess communi-
cations and effectively supported hardware-
in-the-loop capability. Coupled with SVN,
these open-source tools provide an incred-
ible software development environment for
robotic systems.

® A large-scale test site with essentially un-
limited access is essential for adequate
testing. Long-duration performance can be
adequately tested only at such a facility.
TeamUCF conducted the majority of its test-
ing on a large open parking deck, at night.

¢ TeamUCF and many other teams pursued
this effort as a competition, with the goal of
meeting the specific objectives of the competi-
tion. As such, many systems and approaches
were tailored to specifically follow the rules
as defined by DARPA.

® Money matters, but only if you use it to allow
robust vehicle testing.

® NaN fails every test.
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