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Parametric instability of supersonic shear layers induced by periodic 
Mach waves 

Fang Q. Hu 
Department oj.Mathemaiics and Statistics, Old Dominion University, Norjblk, Virginia 23529 

Christopher K. W. Tam 
Department of Mathematics, Florida State University, Tallahassee, Floridti 323063027 

(Received 27 June 1990; accepted 7 February 1991) 

It is suggested that parametric instability can be induced in a confined supersonic shear layer 
by the use of a periodic Mach Gave system generated by a wavy wall. The existence of such an 
instability solution is demonstrated computationally by solving the Floquet system of 
equations. The solution is constructed by means of a Fourier-Chebyshev expansion. Numerical 
convergence is assured by using a very large number of Fourier and Chebyshev basis functions. 
The computed growth rate of the induced flow instability is found to vary linearly with the 
amplitude of the math waves when the amplitude is not excessively large. This ensures that the 
instability is, indeed, tied to the presence of the Mach waves. It is proposed that enhanced 
mixing of supersonic shear layers may be achieved by the use of such a periodic Mach wave 
system through the inducement of parametric instabilities in the flow. 

1. INTRODUCTION 

Recent experiments on high-speed mixing layers by 
Ikawa and Kubota,’ Papamoschou and Roshko,‘v3 and 
Chinzei et aL4 revealed that the mixing or spreading rate of 
these flows decreased rapidly as Mach number became su- 
personic. In addition, Papamoschou and Roshko found that 
the normalized mixing rate as a function of convective math 
number correlated extremely well with the normalized max- 
imum growth rate of the instability waves of these flows. 
This strongly suggests that flow instability is responsible for 
the mixing of high-speed shear layers. Further, the decrease 
in mixing rate with increase in-Mach number is due to the 
fact that, at higher Mach numbers, the instability waves of 
these flows have a much reduced spatial growth rate. Since 
the pioneering work of Papamoschou and Roshko, a number 
of papers have appeared aiming to improve the calculated 
growth rates of the flow instabilities and their correlation 
with the measured spreading rate. This includes the use of 
the spatial rather than the temporal growth rates.5-s The 
importante of wall reflections is pointed out9-” and the in- 
clusion of the wall effects further improves the agreement 
between the calculated results and measurements.” It is now 
generally accepted that flow instability is, indeed, the pri- 
mary mechanism of fluid mixing in supersonic shear layers. 
To enhance mixing, an obvious necessity is to enhance flow 
instabilities. 

bility. It is possible to show that, by choosing properly the 
wavelength of the Mach waves, the infer-action of one acous- 
tic wave mode with the Mach wave system produces a forc- 
ing on the other mode and vice versa. In this way, the two 
acoustic modes force each other simultaneously leading to 
growth and instability. Second, is-through parametric insta- 
bility, which is akin to the secondary instabilities of low- 
speed boundary layers and shear layers studied extensively 
by Herbert” and Orszag and Patera.16 In the presence of a 
periodic Mach wave system, the mean flow is spatially peri- 
odic in the flow direction. This periodic mean Aow can sup- 
port new parametric instability waves. It is the objective of 
this paper to show this computationally. For this purpose, 
consideration will be confined to temporal instability only. 
In order to demonstrate that the presence of a periodic Mach 
wave system can induce new instability waves, it is necessary 
to show such waves exist. This is done here by expanding the 
instability wave solution according to Floquet theory in a 
Fourier series in the flow direction and in Chebyshev poly- 
nomials in the transverse direction. The number of Fourier 
and Chebyshev terms are increased until satisfactory nu- 
merical convergence is assured. Furthermore, it ‘Will be 
shown that the growth rate of the new instability wave de- 
pends linearly on the amplitude of the Mach wave system 
when the amplitude is not very large. This ensures that the 
new instability wave is, indeed, tied to the presence of the 
periodic Mach waves. 

The purpose of this paper is to draw attention to the It is worthwhile to point out that although the paramet- 
possibility of enhancing flow instability of confined super- ric instability analyzed here is in many ways similar to the 
sonic mixing layers by the use of a periodic Mach wave sys- secondary instabilities of subsonic boundary layers, there are 
tem generated by a wavy wall as shown in Fig. 1. An advan- yet major differences. First of all, the boundary-layer sec- 
tage of this scheme is that no intrusive objects need be placed ondary instabilities are induced by the vorticity of the pri- 
inside the flow. Such objects would inevitably produce shock mary Tollmien-Schlichting waves. In the case of supersonic 
waves and dissipation. A periodic Mach wave system can shear layers penetrated by periodic Mach waves, the mecha- 
induce flow instability in two ways. First, is through reso- nism of parametric instability is not completely clear at this 
nantinstability’3p’4 by- which two acoustic modes of the time. Most likely it is driven by pressure or acoustic reso- 
ducted shear layer flow are driven into resonance and insta- nance. In any case, vorticity plays very little or no role at all. 

1645 Phys. Fluids A 3 (6), June 1991 0899-8213/91 /061645-i 2$02.00 @I 1991 American Institute of Physics 1645 



I- x, -1 
FIG, 1. Schematic diagram showing a periodic Mach wave system generated by-wavy wdls superimposing on a supersonic-shear layer. 

In Herbert’s analysis of the secondary instabilities, only one 
or two Fourier terms are all that is necessary to provide an 
adequate instability wave solution. In the present case, how- 
ever, a much larger number of Fourier terms are needed to 
insure convergence in the eigenvalue and eigenfunction. 
Twenty-eight Fourier terms are retained in the example to be 
discussed in Sec. V. 

The scope of the present study is limited. It is focussed 
exclusively on the existence of parametric or Floquet msta- 
bility waves in a supersonic shear layer induced by the pres- 
ence of a periodic Mach wave system. No parametric study 
of the most unstable configuration will be carried out. 

II. PERIODIC MACH WAVES 

Consider a supersonic shear layer confined within two 
wavy parallel walls as shown in Fig. I. It will be assumed that 
the Mach waves are generated by the lower wall. Once gener- 
ated, the Mach waves propagate up passing through the 
shear layer and eventually reach the top wail. For simplicity, . . 

that this is not themost practical Mach wave configuration 
for applications where the flow conditions may vary. How- 
ever, it can be implemented for a single shear flow (design) 
condition. Here, this nonreflecting upper wall condition is 
chosen strictly for the purpose of simplifying the analysis 

Let the equations of the wavy walls be, 

Y =~ - H, + A, sin(k,x) (bottom wall), 

y = .I;r, + Ba sin(k, + $1 (top wall). 

The strength of the Mach waves depends on the ratio of the 
amplitude A, of the bottom wavy wall to the wavelength 
--Ll( = &r/k,,, ) .” This dimensionless ratio will be denoted 
by t; i.e., 

E = A,,‘&,, = A,k,/h 

Throughout this work, E will be taken to be no more than 
2%. For small c; a linear Mach wave solution will suffice. 

Now-suppose the shear layer isconfined within the re- . _.- the amplitude and phase of the top wavy wall will be adjusted .‘- gion - SGZJK$. Outside this region the flow is uniform so 
so that no reflection will occur. That is, no reflected wave that the- pressure perturbation associated with the Mach 
will emanate from the top to the bottom wall. It is recognized waves can readily be found” as 

J 

~~,~:~~~~/~~:~-l~‘“]cos[k,x-k,(~~-l)”2(y-~,~~~~,~~~~~~~,, 
[P;L&h-d(M: - l)‘/T]cos[k,x-k,(M; - l)*“@+~~)] 

5 Ccos[k,x+ k,W’i: - l,““y+/q, - ~,.<~g -4, 
(1) 

I 

where iv, and M2 are the Mach numbers on the two sides of %a cz _ (&j.&)-“~p,, 
the shear layer. The second term in the region 
- &QK - 6 represents a weak reflected wave off the 

urn = (M; ~- l)l~(@J -‘p,, 

shear layer with amplitude C and phase /?. Here, C is nu- 
merically small but is retained in the stability analysis. The 

where subscript i in the above expression is equal to 1 for 
&Q<H, and 2 for _ EQ<y< - 6.~ 

reflected wave wiil again be reflected off the bottom wall. 
This secondary reAected wave will be neglected. The corre- 

Inside the shear layer, the pressure associated with the 

sponding velocity perturbations of the Mach waves are 
Mach waves~is governed by the time-independent linearized 
equation of motion for a compressible flow. Since the solu- 
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tion is periodic in x, it can be represented in the form 

pm = Re If(y)eik”‘x], - Sgy<S, (2) 

where Re [ ] = the real part of Eq. (2). From the governing 
equation forp,, , it is easily found that the functionf(y) must 
satisfy the equation 

z+ (E+Ecm)g+& Lx+(+-+)g 
I d2U’ + d2U’ + a2zd 

-7 - - ( - ax2 ay2 az2 > 
ail 

+E m u’ + 
( 

z+E di2, ()I 
dX ay > 

(5) 

z-($$+$$-)$+(f-l)ky=O, ~+(8+cir,)~+~,.~+(~-~)~ 

(3) 1 / d2v’ a?’ d2v’ \ 

-5- L 
-+- - 
ax2 ay2 + a2 ) 

where G(y), p(y), and Z(y) are the mean velocity, density, 
and speed of sound distribution in the channel. In this work, 
Z will be approximated by the hyperbolic tangent velocity 
profile used in Ref. 10, i.e., E =OS[ii, + ii, f (ii1 -I&> 
x tanh (2y/S, ) 1, where 6, is the vorticity thickness of the 
shear layer. The mean density and speed of sound are calcu- 
lated by Crocco’s relation17 and constant static pressure. 
The expressions of Eq. ( 1) may be casted in the same form as 
(2) by replacing the cosine function by its equivalent in the 
form of the sum of two exponential functions. They provide 
the initial conditions for integrating (3). With these initial 
conditions, (3) may be integrated numerically from y = S to 
y = 0 and from y = - 6 toy = 0. The requirements of conti- 
nuity off and its derivative at y = 0 then determine the four 
unknowns a, 4, C, and p. In this way, the periodic Mach 
wave field is calculated. For the case M, = 3.5, M2 = 1.2, 
H, = H2 = 0.5H, S, = O.lH, A,,, = 0.38H, and equal total 
temperature in the two streams, the numerical values of 
these parameters are found to be a = 0.766, qh = 1.29, 
/? = 0.475, and C = O.O115e,,, 2:. Under these conditions 
the pressure amplitude, 2%& Iii:e/(M 1 - I).“‘, ‘associated 
with the Mach waves incident on the shear layer [see Eq. 
( 1) ] is equal to 1.1 lp, iif E. This is much larger than the 
amplitude of the waves reflected off the shear layer. 

III. FORMULATION 
Now consider small amplitude disturbances superim- 

posed on the mean flow and the periodic Mach waves. The 
flow variables may be decomposed into three parts as, 

= [mean flow] + [Mach waves1 
+ [perturbation]. (4) 

The disturbance variables must satisfy the linearized equa- 
tions of motion. On including the effect of viscosity and heat 
conductivity, the momentum and energy equations are 

ao dD 
+’ ax 

E @t?l , --!E.‘+~L!LU’-~- 

ay ” I awF( y pi’;5 (6) 
%+ (U+Ecb)g+EDm --+ y-* 

i a2w’ 
( 

+a2w’+a3f 
-7 - - 

- =o, 
a2 ay2 a2 > (7) 

w w at+ GiEii,)~f4 A!JL + y@ + E,$,, ) ay 
x 

( 
ad f ad f awl 
ax ay az > 

azji + a2p’ + a2pl K y- i 
( 

--- 
c, ji a2 a-y2 a2 > 

a;, ai, ai- ai2 
+c----- - 

ax u’+e av u’ + Ey ( 
-2+-A!.. 

> 
pl = 0. 

ax 8~ 
(8) 

The boundary conditions are 

dp’ u’=u’~w’~-~O at y=H,, -H,. 
& 

The density p’ will be determined by means of the locally 
isentropic approximation i.e. p’ = (ii + I&, ) - ‘p’. In the 
above, p, K, and y are the shear viscosity coefficient, thermal 
conductivity, and specific heat ratio, respectively. Here, ,u 
and K are temperature dependent. At high-flow Mach num- 
ber, and especially in the presence of large temperature gra- 
dients, such dependence must be taken into account. In this 
work, the principal objective is to demonstrate the existence 
of parametric instabilities induced by a periodic Mach wave 
system. For this purpose, a simpler, although less accurate, 
physical model in which,u and K are constants will be adopt- 
ed. Such an approximate model offers great simplicity in the 
analysis and should be adequate for the limited objective of 
this paper. It is to be noted that, in the momentum equations 
above, the viscous terms involving the second derivatives in 
x are found to be numerically insignificant at high Reynolds 
number. They may be neglected without incurring notice- 
able numerical errors. It is easy to find that the coefficients of 
(5)-( 8) are periodic in x and independent of t and z. On 
following the Floquet theory (see Herbert”), the paramet- 
ric instability wave solution may be expressed in the form, 
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* 
- &3z- otleivx 

4 

%(Y) 

f=. - m W,(Y) 

t PI(Y) 1 
%nx e . (9) 

In (9), v is a characteristicexponent. When Y = ;km, 
(9) givesthe subharmonic solutions. When Y = 0, (9) gives 
the fundamental solutions. When Y# 0 or &km, the solution is 
detuned. Since Y and Y -t- Zk, yield identical expressions for 
any integer I, it is sufficient to assume that O~Y < k, . For 
temporal instabilities that are considered in this paper, the 
value of Y is given, 

Uporrsubstituting (9) into (5)-(S) and equating terms 
of the same periods in x, an infinite system of ordinary differ- 
ential equations in y for the amplitude functions of expansion 
(9) is found. The exact form is given in Appendix A. For 
computational purposes, the system will be truncated. Sup- 
pose the terms in (9) with I= --- L,, - L, + l,..., L, are to 
be retained, then the finite order ordinary differential equa- 
tion system can be written in the following matrix form: 

Ed2G+FdG -+CG- (iw)G=O, 
dy2 4 

where 

s W 
g2 (Y) 

E 

I: 

f 
: ‘ 

ikT(Y) 

The boundary con&ions for G are 

u Au I f efJJ =?%o i dy - ’ 
Y= --Hz, H, 

fort= - L,, - L, + l,.,, L,. 
It is easy to see that Eq. (lo> and boundary conditions 

( 11) form an eigenvalue problem. For temporal instabilities; 
the value of Y is given and w and G are to-be solved as eigen- 
values and eigenfunctions. 

IV. CDMPUTATION METHODS 
A. Spectral-co,lIocatlon method 

To solve ( lo), the spectral-collocation method” will be 
used. This methodconverts the differential eigenvalue prob- 
lem into an algebraic one. 

Let G he approximated by polynomial expansions in the 
form 

$ gygiyj cy) 
n=O 

1 

. 

-&t&$$g 0) 

Cl21 

. I  

Here, the basis polynomials $“‘(yj are chosen such that 
boundary conditions ( 11 f are satisfied automatically. The 
exact forms ofr,~$~‘(yj, in terms of Chebyshev polynomials,. 
and the collocation points are given in Appendix B. The 
coefficients of-the expansions $%re the unknowns. To en- 
sure an adequate distribution of collocation points in the 
nondimensionalized physical space [ .- 1, + 11 (H/2 is the 
length scaIe), it is mapped into a computationa space [ - 1, 
f 1 J by a mapping function. This aspect is discussed in Ap- 

pendix B. Now, upon substituting the spectral expansion 
( 12) into the ordinary differential equation (IO) and de- 
manding that (10) be satisfied exactly at the collocation 
pointsaty - )jk, k = 0,1,2 ,..., IV, arialgebraic system ofequa- 
rions for the coefficients gj”’ is founds 

(131 

for i= 1 q ,& ,..., Mx, k=O,1,2 ,..., N, where-e,, &, and cij are 
the elements of-matrices E, F, and C of ( 10). 

Equation ( 13) consists of MS x (N f 1 j homogeneous 
algebraic equations for ,M, x (N + 1 j coefficients gjn)= It 
can easily be casted in the form of a generalized eigenvalue 
problem 

Ag = (iwjBg, (i4j 
where g is a’vector containing the coefficients gjn’ forj =. 1, 
2 )..., M,, n = 0,1,2 ,... ,P?. 

EL The algebrak efgenvalue problem 
By carefully rearranging the rows and columns of ( 14) 

it ispossibIe to put matrices A and B into block tridiagonal 
and block diagonal forms. Furthermore, since the boundary 
conditions are satisfied automatically by the basis polynomi: 
als, B is nonsinguiar. The generalized eigenvalue problem 
may .be put into the form of a standard algebraic eigenvalue 
problem 

A!,~ A12 0 0 a** 0 
AZ, A,, A,, 0 -+* 0 
0 AJ2.m A,, ii,, -*I 0 

s l *. ‘** --. -*. .* 9==4& . 
: ‘*s -. 1 f --. ‘*. A' M- 1‘54 
0 . . . . . . 0 AMM= i 4~ 

cw 
where R = iw and M is the number of Fourier modes re- 
tained in the truncated expansion. 
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TABLE I. First 15 eigenvalues listed in the order ofdecreasing growth rate. TABLE III. Numerical results showing convergence of the new instability 
E=O.OOO,M=~,N=~O. wave solution, e = 0.003. 

No. Eigenvalue wH/ii 

1 4.4261 + 0.227 058i 
2 14.7788 + 0.171 145i 
3 13.9597 + 0.148 02Oi 
4 7.589 1 + 0.102 084i 
5 3.3474 + 0.088 174i 
6 15.7039 + 0.077 4351 
7 13.0052 + 0.059 5641’ 
8 3.923 1 + 0.052 460i 

Approximation 
sequence N M Eigenvalue wH/E, 

1 80 4 1.916 38 + 0.0585 2341’ 
2 80 8 1.917 91 + 0.0563 136i 
3 80 16 1.9 18 06 + 0.0564 042i 
4 100~ 16 1.918 03 + 0.0564 178i 

16.7104 $0.020 316i 
5.5544 + 0.019 343i 
9.4649 $ 0.006 9 13i 
6.6076 - 0.002 2741’ 
1.5515 - 0.002 300i 

12.0282 - 0.004 3921’ 
1.5169 - 0.005 152i 

matrix.” This technique allows the eigenvalue calculation to 
process with much larger size matrices. In this work, the QR 
algorithm is used as an initial search of the eigenvalues of a 
smaller truncated matrix of the Fourier-Chebyshev expan- 
sion. Then the inverse iteration scheme is employed to refine 
the eigenvalues one at a time. During the eigenvalue refine- 
ment process, higher-order Fourier and Chebyshev terms 
are included. 

In principle, the above algebraic eigenvalue problem can 
be solved by standard solvers (e.g., EISPACK) using the QR 
algorithm, by which all the eigenvalues and eigenvectors are 
determined simultaneously. The QR algorithm, however, 
uses full storage for the matrices. Because of the limitation of 
computer central memory (even for the ETA10 supercom- 
puter) the size of the matrix that can be handled by the QR 
algorithm is limited. For example, if the ETA10 supercom- 
puter is used, the maximum size of the matrix cannot exceed 
1000. Under these conditions, it is found that no more than 
six Fourier modes (each amplitude is approximated by 40 
Chebyshev polynomials) can be included in the truncated 
Floquet solutions of (9). This is too small a number of Four- 
ier modes to assure numerical convergence. To overcome 
this difficulty, the inverse iteration method” is used to refine 
an approximate eigenvalue found by the QR algorithm. The 
inverse iteration method is an iterative scheme that finds an 
eigenvalue of the matrix that is closest to a given initial guess 
value. This method can be implemented such that only the 
nonzero block matrices of ( 15 ) are stored instead of the full 

V. NUfvlERlCAL RESULTS 

For the purpose of showing computationally that the 
presence of a period Mach wave can induce new parametric 
instability waves in a supersonic shear layer, the case 
M, = 2.0, M2 = 1.2, q/z?, = 3.0, y1 = 1/2 = 1.4, 
H,=H,=H/2, A,/H=O.4, S,/H=O.O5, B=O, 
v=:k,, where S, is the vorticity thickness of the mixing 
layer is considered. In addition, the Reynolds number 
(p, Ii1 S,/,LL) is taken to be 500 and the Prandtl number 
(C&K) is assumed to be unity. To start the search for new 
instabilities, a truncated system consisting of 80 Chebyshev 
polynomials in the y direction and four Fourier modes 
(I = - 2, - 1, 0, 1) in the x direction is used initially. This 
leads to an algebraic eigenvalue problem with a 972X972 
matrix. This matrix is solved twice by the QR algorithm of 
the EISPACK subroutines. In the first run, E is set equal to 
zero. This corresponds to the case with no Mach waves. The 
first 15 eigenvalues of this run are listed in the order of de- 
creasing growth rate in Table I. There are 11 unstable eigen- 
values. In the second run, E is set equal to 0.003 correspond- 
ing to the presence of a weak Mach wave system. The first 15 
eigenvalues are listed in Table II. There are now 12 unstable 

TABLE II. First 15 eigenvalues listed in the order of decreasing growth eigenvalues. By comparing the unstable eigenvalues of the 
rate. E = 0.003, M = 4, N = 80. two tables and accounting for some slight changes in the 

eigenvalues because of the interaction of the original insta- 
No. Eigenvalue co/H/ii No. in Table I bility waves with the Mach wave system, it is seen that eigen- 

1 4.4390 + 0.283 5321’ 1 
2 12.7804 + 0.172 7781 2 
3 7.6112 + 0.150 5441’ 4 
4 13.9579 + 0.147 166i 3 
5 15.7050 + 0.076 094i 6 
6 13.0062 + 0.060 194i 7 
7 1.9164 + 0.058 5231’ new 
8 3.8625 + 0.055 412i 8 
9 3.4488 + 0.052 3871’ 5 

10 5.5422 + 0.025 431i 10 
11 16.7130 + 0.020 519i 9 
12 9.4656 + 0.005 61Oi 11 
13 1.5512 - 0.002 4381’ 13 
14 6.6076 - 0.002 991i 12 
15 3.7456 - 0.003 059i 23 

TABLE IV. Numerical results showing convergence of the new instability 
wave solution, E = 0.01. 

Approximation 
sequence N M Eigenvalue wHfi, 

1 80 16 2.069 24 + 0.234 844i 
2 80 20 2.069 12 + 0.235 120; 
3 80 24 2.068 93 + 0.235 171i 
4 100 20 2.072 82 + 0.233 876i 
5 100 28 2.072 47 + 0.233 796i 
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FIG. Z Spatial distributions of different Fourier modes of the eigenfbnction f u component) of the new instability wave. I~= order of Fourier mode;---,real 
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value No. 7 in Table II is a possible candidate for new insta- 
bility waves. In order to be sure that it is, indeed, a new 
parametric instability wave, it is necessary to demonstrate 
numerical convergence both in eigenvalue and eigenfunction 
as the number of terms in the Fourier-Chebyshev expansion 
mcreases. 

The No. 7 eigenvalue in Table II is used as an initial 
guess value for eigenvalue refinement using the inverse iter- 
ationalgorithm.‘“20 In performing the inverse iteration pro; 
cess, the number of Fourier modes (M) and Chebyshev basis 
polynomials (N) are significantly increased.-Table III pro- 
vides the list of computed eigenvafues for different Mand iV. 
In each calculation, the previous converged value is used as 
the starting value. From this table it is clear that the eigen- 
value converges, at least, to four significant figures when 
N= 80, M== 16. 

The dependence ofthe growth rate of the new paramet- 
ric instability wave on the strength of the Mach wave system 
is given in Fig. 4. For E x 0.0 1, the dependence is nearly lin- 
ear. The fact that the growth rate increases monotonically 
with the strength of the Mach waves further indicates that 
the existence of this new, instability wave is tied to the pres- 
ence ofthe Mach wave system. At E_= 0.0 15, the growth rate 
of the new instability wave is larger than the maximum 
growth rate of the-instability waves of the supersonic shear 
layer without Rlach waves given in Table I. Thus it appears 
that the suggestion of inducing instability waves of signifi- 
cant growth rate by means of a periodic Mach wave system 
to enhance mixing in a supersonic shear layer may, indeed, 
be possible. 

ACKNOWLEDGEMENTS 
This work was supported in part by the Office of Naval 

Research under Grant No. NOOO14-87-J-1130 and also in 
part by the Florida State University through time granted on 
its ETA 10 and Cray VMP supercomputers. 

APPENDIX A: EQUATIONS FOR THE AMPLITUDE 
FUNCTIONS 

After having demonstrated numerical convergence for The system of ordinary differential equations for 
E = 0.003, the inverse iteration eigenvalue refinement proce- ztt, vi, wI, andp, obtained by substituting (9) into t5)-(8) 
dure is then applied to flows with successively stronger is~- 

Mach waves(i.e., larger E) using the previous eigenvalue as 
a starting value. Table IV shows the trend of convergence as 
rM and N increase for E = 0.01. Again, numerical conver- 
gence of the eigenvalue to four significant figures is realized 
at N = 100 and itl: = 28. Figure 2 shows the spatial distribu- 
tions of the various Fourier modes that make up the eigen- 
function. Clearly, the Fourier terms decrease in amplitude 
rapidly as the order increases, as those of a converged eigen- 
function should. Figure 3 shows plots of the coefficients of 
the Chebyshev expansion of each Fourier made. Again, the 
distributions of these coefficients are consistent with those of 
a converged eigenfimction. 
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APPENDIX B: BASIS AND MAPPING FUNCTIONS 
Chebyshev polynomials T,, (y) are used to form the ba- 

sis functions for the spectral expansion (9). In order to satis- 
fy the boundary conditions at the end points of the normal- 
ized interval [ - 1, 1 ] (using H/2 as the length scale), each 
polynomial is combined either with T,(y) or T, (y) depend- 
ing on whether n is even or odd to form the basis polynomi- 
als. 

(a) For velocity components u, v, and w, the following 
basis polynomials are used: 

q)(n) = 
( 

T,(Y) -T*+,(Y), n even, 

T, (Y> - T,+,(Y), n odd, 

+4’“‘( & 1) = 0. 
(b) For pressurep, the basis polynomials \II(,) are used: 

fl, n = 0, 

The collocation points are the zeros of TN+ , (y), i.e., 

y, = cos (2k + l>n 
> 

, h-=012 > , ,*.a, N. 
2N+2 

It is easy to see that the collocation points are dense around 
the end points of the interval [ - l,l]. In order to place 
more points in the center region where the mixing layer is, 
the following coordinate transformation (mapping) from 
y~[ - 1,1] to the computational coordinate YE[ - 1,1] is 
used: 

Y(")(y) = 2wY) -T,+,(Y), n even, 

(n + 212T, (Y) - T, + 2 (~1, n odd, 
x ln cosh[(lYl -0.3)/0.11 

cosh(0.3/0.1) 
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