2014

Modelling Follow up Time at a Single-Lane Roundabout

Xiaobo Qu

Jin Zhang

Shuaian Wang

Old Dominion University

Zhiyuan Liu

Follow this and additional works at: https://digitalcommons.odu.edu/publicservice_pubs

Part of the Transportation Commons

Repository Citation
Qu, Xiaobo; Zhang, Jin; Wang, Shuaian; and Liu, Zhiyuan, "Modelling Follow up Time at a Single-Lane Roundabout" (2014). School of Public Service Faculty Publications. 25.
https://digitalcommons.odu.edu/publicservice_pubs/25

Original Publication Citation

This Article is brought to you for free and open access by the School of Public Service at ODU Digital Commons. It has been accepted for inclusion in School of Public Service Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Modelling follow up time at a single-lane roundabout

Xiaobo Qu¹,°, Jin Zhang¹, Shuaian Wang², Zhiyuan Liu³

¹Griffith School of Engineering, Griffith University, Gold Coast Campus, QLD, Australia
²College of Business and Public Administration, Old Dominion University, Norfolk, Virginia, USA
³Institute of Transport Studies, Department of Civil Engineering, Monash University, Clayton, Victoria, Australia

Abstract: The follow up time is an important parameter for estimating the entry capacity of roundabouts. However, its variability and contributing factors have long been ignored in the literatures. In this study, 171 follow up samples and contributing factors (traffic volume, vehicle position, waiting vehicles behind, vehicle type, and drivers' gender) are collected at a roundabout in Pacific Pines, Australia. It is found that the follow up time is indeed significantly affected by traffic volume, waiting vehicles behind, vehicle type, and drivers' gender. In order to establish the relationship between the follow up time and its contributing factors, an inverse Gaussian regression model is further developed. This relationship could be applied to estimate the entry capacities by taking into account the variability of follow up samples. According to the model, the traffic volume and vehicle types are the most important contributing factors.

Key words: roundabout capacity; critical gap; follow up time

1 Introduction

Urban roads are becoming more and more congested due to the increase of car ownership. A number of management tools, such as pricing, signal control, dedicated lanes have been applied to alleviate road congestion (Liu and Meng 2014; Liu et al. 2013a; Liu et al. 2014; Meng and Liu 2011; Meng et al. 2012; Wang et al. 2013). At the same time, there are some roads that are less controlled such as unsignalized intersections. A roundabout is a type of circular intersection or junction in which road traffic is slowed and flows almost continuously in one direction around a central island to several exits onto the various intersecting roads (Tenekeci et al. 2010; Xu and Tian 2008; Qu et al. 2014). As pointed out by Bie et al. (2008), unlike a signalized intersection, wherein traffic streams are controlled by the traffic signal, vehicles must follow the give way rules to enter a roundabout. The direction of traffic flow is either clockwise for left-side driving or anticlockwise for right-side driving. Since all vehicles are regulated to travel

* Corresponding author: Xiaobo Qu, PhD, Lecturer.
E-mail: bob.x.qu@gmail.com.
along with the same direction, number of conflicting points is significantly reduced (Wong et al. 2012). Further, the drivers usually slow down the vehicles’ speed thanks to the impact of “give way” rules and the roundabout curves (Al-Masaeid 1999). The roundabout is therefore considered as a safer intersection type compared to signalized intersections, in terms of both frequency and severity of accidents (Vasconcelos et al. 2012). A roundabout can also reduce the delay (for low traffic conditions) and thus decrease pollutant emissions (Hoglund 1994). Accordingly, the roundabout becomes an increasingly popular intersection type, especially for suburbia with relatively low traffic volume.

The entry capacity of a roundabout is usually estimated on the basis of gap acceptance theory. The fundamental parameters for this theory are the critical gap and follow up time. The critical gap is the minimum time gap between successive circulating conflicting traffics that allow vehicles queued in an approach to enter the roundabout. The follow up time is defined as the time difference between two vehicles queued in an approach entering the roundabout during the same gap in the circulating traffic (Özüysal et al. 2009). It has been well recognized that both parameters are highly affected by drivers’ behaviours, traffic conditions, geometric parameters, and vehicle types. The variability of critical gap and its affecting factors have been well analyzed in the literatures (e.g. Bottom and Ashworth 1978; Polus et al. 2003; Tian et al. 1999). By contrast, the other important contributing factor, follow up time, has been unfortunately out of the focus in the literatures. Akcelik (2005) mentioned that the follow-up time was reduced with increasing circulating traffic. Dahl and Lee (2012) pointed out that the follow up time varies with the vehicle types of the two entering vehicles in a queue. The above-mentioned two articles are, to the best of our knowledge, the only references that analyze the contributing factors of follow up time using real data. More importantly, this is the first attempt to establish the relationship between follow up time and its contributing factors using a generalized linear nature. This result could be applied to estimate the roundabout capacity by incorporating the impact of these contributing factors.

2 Data description

The field data analyzed in this paper was collected from a roundabout at the junction of Smith Street and Pitaaim Way, Pacific Pines, Queensland (Fig. 1). Traffic videos were recorded during distinct time periods (8 × 30 minutes each) at a roundabout in Pacific Pines of Queensland, Australia. 171 samples of follow up times and the contributing factors (including vehicle type, waiting position in a queue, queuing vehicles behind, traffic volume, and driver’s gender) are measured and/or identified from the videos. Then, one way analysis of variance (ANOVA) is applied to examine whether a contributing factor has a statistically significant impact on follow up time. Finally, a generalized linear regression model is developed to establish the relationship between follow up time and its contributing factors.
vehicles behind, traffic volume, and driver's gender. According to the field survey, the utes are usually associated with a shorter follow up times, while the follow up times of vans and trucks are generally longer. In this study, we categorize the vehicles into three types: utes, cars (sedan, coupe, hatchback, and wagon), and heavy vehicles (van, bus, and trucks). It is also found that the follow up times of first queuing vehicles (i.e., 2nd vehicle in the approaching queue) are usually shorter. This is perhaps because these drivers are better prepared to follow up. Further, the vehicles with waiting ones behind might have a shorter follow up time. We use the binary variable to represent the vehicle positions in a queue (‘0’, first queuing vehicle; ‘1’, others). Similarly, the binary variables are used to represent the drivers’ gender (‘0’, female; ‘1’, male) and whether there are waiting vehicles behind (‘0’, no; ‘1’, yes). Drivers’ age could also be a contributing factor. However, as this study is an observational one, it is thus difficult to assess the age of participants. Therefore, the impact of age is not considered in this research.

3 Significance analysis

One way analysis of variance (ANOVA) is a well-recognized method in transportation data analysis (Qu et al. 2012; 2014; Jin et al. 2011; Liu et al. 2013b). We apply this method to evaluate whether the contributing factors have significant impact on follow up times at the level of 0.05. Tabs. 1-5 show the results of significance analysis. As can be seen in the tables, vehicle type, waiting vehicles, traffic volume, and gender do have significant effects on the follow up times. It is found that the heavy vehicles have significantly longer (p-value = 0.000) follow up times because their start-ups need more time and accelerations are relatively smaller. Interestingly, the drivers with waiting vehicles behind have the tendency to hurry up perhaps because of the moral pressure imposed from the queuing ones (p-value = 0.046). Under low to mid traffic conditions, the traffic volume has a positive relationship with the follow up time (p-value = 0.000). This might be because the drivers are more cautious under relatively high volumes. This result shows there are significant differences between female drivers and male drivers. It seems that female drivers are more conservative (p-value = 0.022). According to the observation, the first queuing vehicles (the 2nd vehicle in the queue) are usually associated with a shorter follow up time. This might be because this type of vehicles pre-examine the circulating flows before following up the lead vehicle. According to the data analysis, there is a difference between the means of the two groups (first queuing vehicle or not): 2.741 seconds vs. 2.775 seconds. However, based on the ANOVA, this difference is not significant (p-value = 0.736).

![Fig. 1 Roundabout](image-url)
Tab. 3 Results of significance analysis (waiting vehicles)

<table>
<thead>
<tr>
<th></th>
<th>Sum of squares</th>
<th>Degree of freedom</th>
<th>Mean square</th>
<th>F</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>1.530</td>
<td>1</td>
<td>1.530</td>
<td>4.029</td>
<td>0.046</td>
</tr>
<tr>
<td>Within groups</td>
<td>64.196</td>
<td>169</td>
<td>0.380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65.726</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 4 Results of significance analysis (traffic volume)

<table>
<thead>
<tr>
<th></th>
<th>Sum of squares</th>
<th>Degree of freedom</th>
<th>Mean square</th>
<th>F</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>26.446</td>
<td>7</td>
<td>3.778</td>
<td>15.678</td>
<td>0.000</td>
</tr>
<tr>
<td>Within groups</td>
<td>39.279</td>
<td>163</td>
<td>0.241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65.726</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 5 Results of significance analysis (gender)

<table>
<thead>
<tr>
<th></th>
<th>Sum of squares</th>
<th>Degree of freedom</th>
<th>Mean square</th>
<th>F</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between groups</td>
<td>2.003</td>
<td>1</td>
<td>2.003</td>
<td>5.311</td>
<td>0.022</td>
</tr>
<tr>
<td>Within groups</td>
<td>63.723</td>
<td>169</td>
<td>0.377</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>65.726</td>
<td>170</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Calibration of follow up times

4.1 Statistical analysis for follow up samples

A data analysis procedure is proposed in order to obtain the best-fitted follow up distributions. Seven commonly used continuous distributions are examined in this study: Inverse Gaussian, Exponential, Normal, Lognormal, Gamma, Weibull, and Erlang. Kolmogorov-Smirnov (K-S) test, a nonparametric test, has been widely applied to compare a sample with a reference probability distribution in transportation studies (Meng and Qu 2012; 2013; Qu et al. 2013; 2014; Qu and Meng 2014). The K-S statistic quantifies a distance between the empirical distribution function of the sample and the cumulative distribution function of the reference distribution. In this study, a distribution with the lowest K-S test statistic is regarded as the best-fitted distribution. According to the K-S test, the Inverse Gaussian distribution is the best fitted one. Fig. 2 presents the empirical cumulative distribution functions (CDF) with the best fitted distributions. As can be seen in the figure, the Inverse Gaussian distribution fits the data very well.

![Fig. 2 Empirical CDF of follow up samples](image.jpg)

4.2 Inverse Gaussian regression model

As the samples follow the inverse Gaussian distribution well, an Inverse Gaussian regression model is developed to establish the relationship between the follow up time and its contributing factors. To formulate
an Inverse Gaussian regression model, set \(y_i, i = 1, 2, \ldots, n, \) be \(n \) independent observations (follow up samples) distributed as \(IG(\mu_i, \lambda) \), in which sample mean (\(\mu_i \)) has a linear relationship with these contributing factors, namely:

\[
\mu_i = \beta_0 + \beta_1 x_1 + \cdots + \beta_j x_j + \cdots + \beta_n x_n
\]

where \(x_j \) denotes the contributing factor \(j \); and \(\beta_j \) is the regression coefficient. This model could be solved by IBM SPSS 20.0. The results are presented in Tab. 6.

Tab. 6 Parameter estimates of inverse Gaussian model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(\beta)</th>
<th>Std. error</th>
<th>95% Wald confidence interval</th>
<th>Wald chi-square</th>
<th>Degree of freedom</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.411</td>
<td>0.2459</td>
<td>0.929 to 1.893</td>
<td>32.953</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Traffic volume</td>
<td>0.005</td>
<td>0.0005</td>
<td>0.004 to 0.006</td>
<td>92.350</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Vehicle type = 0</td>
<td>-0.569</td>
<td>0.1525</td>
<td>-0.868 to -0.270</td>
<td>13.924</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Vehicle type = 1</td>
<td>-0.982</td>
<td>0.1773</td>
<td>-1.330 to -0.635</td>
<td>30.707</td>
<td>1</td>
<td>0.000</td>
</tr>
<tr>
<td>Vehicle type = 2</td>
<td>0*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No waiting vehicles</td>
<td>0.089</td>
<td>0.0628</td>
<td>-0.034 to 0.212</td>
<td>2.015</td>
<td>1</td>
<td>0.156</td>
</tr>
<tr>
<td>Waiting vehicles</td>
<td>0*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>0.150</td>
<td>0.0680</td>
<td>0.016 to 0.283</td>
<td>4.851</td>
<td>1</td>
<td>0.028</td>
</tr>
<tr>
<td>Male</td>
<td>0*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Scale)</td>
<td>0.009(^b)</td>
<td>0.0009</td>
<td>0.007 to 0.011</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: dependent variable: follow up time; model: (intercept), volume, vehicle type, waiting vehicles behind, and gender; *set to zero because this parameter is redundant; \(^b\)maximum likelihood estimate.

The follow up time with respect to distinct traffic volume, vehicle type, waiting vehicles, and drivers’ gender could be represented by an Inverse Gaussian distributed random variable with parameter \(\mu \) and \(\lambda \), where \(\mu \) is a function of these contributing factors, and \(\lambda \) is 0.009 according to Tab. 6.

4 Conclusions

The follow up time is an important parameter for estimating the entry capacity of roundabouts. However, its variability and contributing factors have long been ignored in the literatures. In this study, 171 follow up samples and contributing factors (traffic volume, vehicle position, waiting vehicles behind, vehicle type, and drivers’ gender) are collected at a roundabout in Pacific Pines, Australia. According to ANOVA, the follow up time is indeed significantly affected by traffic volume, waiting vehicles behind, vehicle type, and drivers’ gender. In order to establish the relationship between follow up time and its contributing factors, an Inverse Gaussian regression model is further developed. This relationship could be applied to estimate the entry capacities by taking into account the variability of follow up samples. According to the model, traffic volume and vehicle types are the most significant contributing parameters.

Acknowledgments

This study was jointly supported by CIEM Seed Fund Scheme and GU NRG/ITF Scheme. The authors are indebted to two anonymous reviewers whose comments significantly improve this work.

References

- Jin, S., Qu, X., Wang, D., 2011. Assessment of expressway traffic...
safety using Gaussian mixture model based on time to collision. International Journal of Computational Intelligence Systems, 4 (6); 1122-1130.

Meng, Q., Qu, X., 2012. Estimation of rear-end vehicle crash frequencies in urban road tunnels. Accident Analysis and Prevention, 48; 254-263.

