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INTRODUCTION

For many seabirds, including Adélie penguins off the
western Antarctic Peninsula (wAP), survival and
recruitment of chicks is positively correlated with
fledging mass, the mass of chicks immediately prior to
permanently leaving the nest site (Hunt et al. 1986).
Presumably, heavier chicks are more likely to recruit
because they have larger energy reserves with which

to survive the energetic stresses associated with learn-
ing to find and capture prey and surviving the Antarc-
tic winter. Fledging mass has also been positively cor-
related with trends in Adélie penguin colony size off
the wAP (Hinke et al. 2007), suggesting that alteration
of chick growth processes may be closely linked to
population trajectory for this species. Thus, improving
our understanding of Adélie penguin chick growth
processes may provide insight into mechanisms that
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underlie recruitment and, ultimately, population
dynamics for this species. The present study uses an
individual-based bioenergetics modeling framework
to explore the link between environmental conditions
and chick growth, fledging mass, and recruitment for
Adélie penguins off the wAP, where penguin popula-
tions have been changing presumably in response to
changes in environmental conditions, including cli-
mate warming (Ducklow et al. 2007).

The most important factors that affect seabird chick
growth and fledging mass are prey quality (Davoren &
Montevecchi 2003), prey abundance and distribution
(which influence prey availability and the rate at which
parents can provide food to chicks) (Croxall et al.
1999), and metabolic losses experienced at the nest
(Taylor 1985). Additional factors that may influence
provisioning rate and chick growth (by influencing
prey distribution and abundance) include top-down
processes (Ainley et al. 2007, 2009), including intra-
specific competition indexed by colony size (Ainley et
al. 1998, Hipfner et al. 2007) and inter-specific compe-
tition with whales (Ainley et al. 2006). Although long-
term trends in whale abundance are not well docu-
mented, there is some evidence that several whale
species, most notably humpback whales Megaptera
novaeangliae (Branch 2006), are increasing off the
wAP, causing greater competition between penguins
and whales for food in this region.

Climate variability can influence chick growth pro-
cesses by altering physical–biological connections in
the ecosystem that determine the species, age-class,
quality, and availability of prey and by altering condi-
tions at nests. Over the past 50 yr, the wAP region has
experienced dramatic climate warming which has
been associated with alteration of the region’s physical
environment (Turner et al. 2005a, Stammerjohn et al.
2008) and, consequently, the wAP marine ecosystem.
One result of these environmental changes appears to
be a shift in abundance and distribution of mid-trophic
level prey species that mediate the transfer of energy
from primary production to Adélie penguins (Clarke et
al. 2007, Ducklow et al. 2007). For example, Antarctic
krill Euphausia superba, the primary prey item for
wAP Adélie penguins off the mid- to northern wAP
(Fraser & Trivelpiece 1996, Hinke et al. 2007), has
experienced a reduction in abundance while popula-
tions of salps (dominated by Salpa thompsoni), a group
of species that is not known to be eaten by Adélie pen-
guins, has increased (Atkinson et al. 2004). In addition,
Antarctic silverfish Pleuragramma antarcticum, a spe-
cies that was present historically in wAP Adélie pen-
guin diets (Emslie & Patterson 2007), is not currently a
diet component at some locations off the wAP, includ-
ing colonies near Anvers Island (W. R. Fraser unpubl.
data). This suggests a change in Antarctic silverfish

distribution and, therefore, their availability to forag-
ing Adélie penguins (and hence to their chicks) in this
region (Emslie & Patterson 2007).

Changes occurring in Adélie penguin colonies off
the wAP may also be influencing chick growth. The
wAP has experienced increased precipitation as a
result of climate warming (Turner et al. 2005b), which
potentially enhances the role of terrestrial effects on
Adélie penguin chick growth through increased expo-
sure to water from rainfall or snow-melt (Patterson et
al. 2003). While increased temperatures can slightly
reduce the thermoregulatory costs of chicks, increased
melt-water in the colonies causes wetting of chicks
which can amplify thermoregulatory costs (i.e. the wet-
ting effect) (Lustick & Adams 1977, Wilson et al. 2004)
and reduce growth.

Models are an accepted way of organizing hypothe-
ses about processes in complex systems and exploring
consequences of potential changes. Chapman et al.
(2009) used a model to understand how Adélie pen-
guin chick growth and recruitment may be affected by
changes in diet quality due to variability in Antarctic
krill spawning schedule, krill sex ratios and/or matu-
rity stage composition. This model was developed in
the tradition of mechanistically rich, process-oriented,
individual-based models (DeAngelis & Mooij 2005,
Grimm & Railsback 2005) that seek to capture the most
important processes within a system while parameter-
izing components using data wherever possible. This
modeling approach provides insight into the phenome-
non of interest when many parameters are not well
understood and/or when data collection is limited or
logistically problematic (such as in the Antarctic). In
these circumstances, models of this type are useful
ways of exploring mechanistic interactions and poten-
tial outcomes within specific scenarios and are effec-
tive in developing new hypotheses and guiding future
modeling and field-based research. For example, sim-
ulations presented in Chapman et al. (2009) were used
to develop hypotheses that have driven field research
within at least 1 Antarctic research program (the US
Palmer Long Term Ecological Research Program).

Here, we use the modeling approach employed by
Chapman et al. (2009) to understand how Adélie pen-
guin chick growth, fledging mass, and recruitment off
the wAP may be influenced by (1) alterations in diet
composition (specifically through the addition of fish
to an Antarctic krill diet), (2) altered provisioning rate
resulting from a change in prey availability, and
(3) increased thermoregulatory costs due to chick wet-
ting caused by snow-melt water in colonies. Overall,
the simulations are designed to provide insight into
factors linked to climate change off the wAP that influ-
ence Adélie penguin chick growth, while identifying
areas for future field studies.
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METHODS

Approach. To assess the effect of diet complexity on
Adélie penguin Pygoscelis adeliae chick growth, a
model that has been developed to represent current
breeding conditions near Anvers Island off the wAP
(Chapman et al. 2009) was modified and run through a
set of simulations. The provisioning schedule and
Antarctic krill Euphausia superba energy density ob-
tained from the Adélie penguin chick growth simula-
tions (Chapman et al. 2009) provided the basis for ref-
erence simulations in the present study. We evaluated
the simulation results by comparing simulated fledge
mass with the re-sighted fledge mass (RFM, 3.15 ±
0.352 kg, n = 152) and the not re-sighted fledge mass
(NRFM, 3.03 ± 0.258 kg, n = 2030). The difference be-
tween these 2 means, 0.117 kg, is small, but statistically
significant (t-test, p < 0.001). RFM is the mean mass of
fledging chicks that recruited into the population, and
the NRFM is the mean mass of fledging chicks that did
not recruit, based on a chick-banding study near An-
vers Island (Chapman et al. 2009). The RFM and
NRFM provide criteria for determining conditions that
are more or less likely to produce a chick that will
eventually recruit to the breeding population (i.e. a vi-
able chick). For example, conditions that reduce the
chick fledging mass from the RFM to the NRFM are

considered sufficient to significantly reduce the proba-
bility of recruitment for a chick. We assume that if this
represents a change in mean fledging mass for a given
population, the modeled change would have important
implications for the fate of that population.

Chick growth model. We modified the Adélie
 penguin chick growth model developed by Salihoglu
et al. (2001) and revised by Chapman et al. (2009); a
summary of the model structure can be found in
Appendix 1. The model was designed to represent cur-
rent chick growth conditions off Anvers Island, wAP.
The modeling described in the present study involves
parameters (Table 1) required to represent processes
that affect chick growth during a typical nesting period
at Anvers Island (19 December to 10 February). The
governing equation for the model assumes that chick
growth, expressed as the change in mass over time,
can be calculated as the difference between assimi-
lated energy and that lost to metabolic costs scaled by
the chick wet mass energy density. The energetic costs
experienced by the chick are determined by the mean
metabolic rate and the cost associated with tissue mat-
uration (the energy density of chick tissue increases
with chick age, in part because new material is pro-
duced that replaces water in the chick tissue). Mean
metabolic rate, water content, chick dry mass energy
density, and assimilation efficiency vary with chick age
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Parameter     Value (range)      Unit                Definition

Lipmax                 0.43                                               Maximum proportion lipid for Antarctic silverfish Pleuragramma antarcticum
Lipmin            0.12                                               Minimum proportion lipid for Antarctic silverfish
klip50              50                          mm                 Fish length at which Antarctic silverfish lipid content is 50% of maximum value

klip                 0.1                        mm–1                       Factor controlling the rate of increase in Antarctic silverfish lipid content with 
                                                                           fish length

Ls∞                 256.9                     mm                 Antarctic silverfish maximum length

ts0                   –1.49                       yr                  Moves Antarctic silverfish growth curve along time axis to avoid length ≤0 at
                                                                           hatching

ks                   0.06                       yr–1                         Factor controlling the Antarctic silverfish rate of growth
σ                    5.67 × 10–8       W m–2 K–4                 Stefan-Boltzmann constant
Tb                           305                          K                   Temperature at chick’s skin
ε                     0.8                      Unitless             Emissivity of keratin
nmm                       1.0 layer              mm–1               Density of down insulating layers
CH                          1.1 × 10–2           Unitless             Stanton number
cp                            1.032                 J g–1 K–1             Specific heat of water
dx                  8–27                      mm                 Depth of chick down
kwater                    6.13 × 10–1       W m–2 K–1            Conductivity of water
kair                 2.6 × 10–2         W m–2 K–1            Conductivity of air
D                   1.5 × 10–3           Unitless             Diffusion coefficient (Dalton’s number)
Hevap              2.26 × 103           (W g–1)              Latent heat of evaporation

um                          0.4 (0.1–1.0)       Unitless             Modification of wind speed due to microclimate selection and physical barrier 
                                                                           of plumage

wetmod                0.5 (0.05–0.90)  Unitless             Modification of down depth resulting from exposure to water
pwater                    5.0 (0.1–20.0)         %                  Percent of down complex that is water
Pwet                       5 (1–25)                  %                  Percent of chick that is wet

Table 1. Symbols, values, and definitions for parameters used in the present study
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and size. The daily amount of food provisioned to a
chick (provisioning rate) was assumed to slowly
increase initially, then increase rapidly as the chick’s
energy demands increase, and to reach a plateau prior
to fledging. Provisioning rate was constrained by the
adults’ ability to provide food and the chick’s capacity
to ingest food and was sufficient to produce chicks that
grew according to measured Adélie penguin chick
growth rates. Adult Adélie penguins generally stop
provisioning their chicks during a starvation period
between 3 and 7 d prior to fledging, so adults no longer
provision food to chicks in the model after Day 50 of
the nestling period. During this period, chicks lose
mass until they leave the colony at their fledging mass
to begin foraging for themselves.

Fish simulations. Prey wet mass energy density for
the Antarctic krill diet is estimated as described in
Chapman et al. (2009) and is a function of lipid content
which varies with krill sex and/or maturity stage distri-
bution and season (Clarke 1980, Virtue et al. 1996,
Hagen et al. 2001). We modified the model to calculate
prey wet mass for diets when fish are included.

Fish can be an important component of the Adélie
penguin diet. The proportion of fish in the diet can vary

over the nestling period, and our model allows the pro-
portion of fish in the chick diet to increase as the chick
ages over the chick growth period, as was seen by Ain-
ley et al. (2003) (Fig. 1A). The proportion of fish in the
diet of breeding Adélie penguins can be higher than
was used in the present study (mean of 0.17) (Ainley et
al. 2003). However, the values used here are within the
lower range of observations and provide a test of the
effects on Adélie penguin chick growth of a small, but
realistic increase of fish in the chick diet.

Ropert-Coudert et al. (2002) found no difference in
Adélie penguins foraging when feeding on fish or krill,
though Ainley et al. (2006) found somewhat longer for-
aging trips when foraging on fish. Due to this uncer-
tainty, this model does not account for changes in chick
feeding rate related to differences in adult foraging
behavior when feeding on either krill or fish.

For the fish simulations, a reference scenario where
an all-krill diet produced a 3.09 kg fledgling (mean of
the RFM and NRFM) was used to allow the model
results to be sensitive to either positive or negative
effects of adding fish for chick growth.

Antarctic silverfish energy density. Antarctic silver-
fish energy density as a function of fish length (Fig. 1B)
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Fig. 1. (A) Change in proportion of fish in the Adélie penguin
Pygoscelis adeliae chick diet over the chick growth period,
based on Ainley et al. (2003). (B) Lipid content (% dry mass)
measured for Antarctic silverfish Pleuragramma antarcticum
by (s) Hubold & Hagen (1997) and (e) Hagen et al. (2000).
The estimated relationship between fish length and energy
density used to calculate modeled energy density for each
age-class of Antarctic silverfish is also shown. (C) The rela-
tionship (solid curve) between length and energy density (wm
= wet mass) for Antarctic silverfish used to obtain energy
 density for age-classes (AC) 0 to 4 yr. Energy densities for
the mean length of AC0 through AC4 fish are indicated by
filled circles. In Panels B and C, the segment of the modeled
lipid content and energy density relationship to fish length
that extends beyond  the available data is also indicated 

(dotted curve)
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was developed from measurements (Hubold & Hagen
1997, Wöhrmann et al. 1997, Hagen et al. 2000) that
relate lipid content and fish length (L) as:

(1)

where Lipmax is the maximum lipid content (propor-
tion dry mass = 0.43), Lipmin is the minimum lipid con-
tent (proportion dry mass = 0.12), klip (0.1 mm–1) con-
trols the rate of increase in lipid content with
increasing L (mm), and klip50 (50 mm) is the L at which
the lipid content is 50% of its maximum value. No
data are available for lipid content of Antarctic silver-
fish longer than around 74 mm. However, lipid con-
tent as a function of size was estimated just beyond
the available data.

The dry mass proportion of protein (0.85), carbohy-
drate (0.01), and skeletal ash (0.14) (biochemical com-
position) in the non-lipid portion of Antarctic silverfish
was assumed to be similar to that of Electrona antarc-
tica (Donnelly et al. 1990). The percent water composi-
tion of Antarctic silverfish decreases from 90 to 78% as
L increases to its maximum value (Torres unpubl.
data). The lipid content, the non-lipid biochemical
composition, and the percent water composition were
then used to calculate wet mass biochemical composi-
tion as a function of Antarctic silverfish length. Finally,
the energy density of each biochemical component
(lipid = 0.0395 kJ g–1, protein = 0.0236 kJ g–1, carbohy-
drate = 0.0172 kJ g–1, ash = 0.0 kJ g–1) was used to cal-
culate wet mass energy density as a function of Antarc-
tic silverfish length (Fig. 1C).

Antarctic silverfish L was then related to specific
age-classes (AC) using growth parameters determined
for von Bertalanffy growth (Eq. 2) from studies done in
the Weddell Sea (Hubold & Tomo 1989) and the wAP
(Radtke et al. 1993). The von Bertalanffy growth equa-
tion is:

(2)

where Ls∞ is the maximum length of the fish (256.9
mm), ty is fish age in years, ts0 (–1.49 yr) moves the
growth curve along the age axis and allows for non-
zero length at hatching (L at time = 0 yr), and ks (0.06
yr–1) controls the rate of length increase (Hubold &
Tomo 1989, Radtke et al. 1993). We do not estimate the
lipid content for fish beyond the range of available data
for this relationship (Fig. 1B), so only age-classes up to
AC4 were included as part of the chick diet. These
lengths were then used to obtain energy density values
for each age-class based on Eq. (1) and the estimated
fish biochemical composition (Fig. 1C).

Provisioning schedule simulations. We tested for the
influence on fledging mass of increasing the starvation
period from 1 to 3 d and decreasing the daily provision-

ing rate by up to 10%. These simulations were con-
ducted for an all-krill diet and for a diet that included
both Antarctic krill and AC3 Antarctic silverfish.

For the variable provisioning rate, we expected sim-
ulations to produce smaller chicks, and a reference
scenario that produced a chick with a fledging mass of
3.15 kg, the RFM, was used. Thus, simulation condi-
tions that reduced fledging mass from the RFM to the
NRFM were interpreted as sufficient to negatively
affect a chick’s probability of recruitment.

Chick wetting simulations. Parameterization of the
wetting effect: While the fish simulations and provi-
sioning simulations involved mainly processes that
have been included in several published chick growth
models (Salihoglu et al. 2001, Chapman et al. 2009),
this is the first attempt, that we are aware of, to model
the wetting effect on chick growth. Several new com-
ponents were developed for these simulations that are
novel, considerably more complex, and involve many
processes and parameters that are not well studied. As
a result, sensitivity simulations were designed for this
portion of the study, and results should be interpreted
accordingly.

The presence of water in a chick’s down influences
all modes of heat transfer through the skin/feather
complex. Heat transfer, or the conductance of heat
through the insulation provided by skin and feathers,
was calculated as (Chappell & Souza 1988)

(3)

where C is the dry thermal conductance (W kg–1 K–1),
Mheat (W kg–1) is the net metabolic heat production or
the total metabolic rate minus evaporative heat loss
from respiration, Tb (K) is the body temperature of the
chick immediately beneath the skin, and Te (K) is the
chick’s operative temperature (the effective tempera-
ture experienced by a particular object, in this case a
penguin chick). Although there may be some addi-
tional heat loss due to transcutaneous evaporation, the
contribution to total heat flux was assumed to be negli-
gible for birds and was not included in the model. For
simulations, body temperature is assumed to be con-
stant. Chappell et al. (1990) provide a relationship to
obtain the operative temperature of the form:

(4)
where Ta is air temperature (K), Qsol is incident solar
radiation (W m–2), and u is wind speed (m s–1) at chick
height. Although the presence of water in and around
the chick may influence operative temperature, a sim-
ple adjustment is not available to account for this influ-
ence and the same operative temperature is used for
wet and dry chicks.
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Dry thermal conductance is the sum of all modes of
heat loss through the skin/feather complex of the
chick. Air and keratin, the protein in feather tissue, are
the insulating materials that are influenced by the
presence of water in a chick’s down. The introduction
of water to a chick’s feathers causes mechanical dis-
ruption of the insulating structure of the feathers
(removal of air space) and adds water to the down,
increasing the rate of thermal conductance through the
skin/feather complex and adding evaporative heat loss
to the total heat flux from the chick. Evaporative heat
loss from respiration is assumed to not change signifi-
cantly when a chick is wet. Therefore, any proportional
change in the loss of heat from the bird due to wetting
results in an increase in total metabolic rate of the
same proportion. While this assumption does not
account for the chick’s ability to account for some of the
additional heat loss through alternative mechanisms
(e.g. cutaneous vasoconstriction, postural adjust-
ments), it captures the main processes responsible for
increased metabolism caused by the wetting of chick
down. With this assumption, the effect of wet chick
down on metabolic costs is proportional to the increase
in total heat loss through the skin/feather complex
caused by the wetting. Therefore, to estimate the cost
of wetting, the total heat loss for a dry and a wet chick
is calculated. Unlike the fish and provisioning schedule
simulations, the calculations for the wetting effect sim-
ulations require detailed information on the weather
conditions experienced by the chick, and the following
calculations were made only for the wetting effect sim-
ulations. The total heat loss for a chick is the sum of
radiative, convective, conductive heat transfer (Cena &
Monteith 1975a,b,c, Dawson et al. 1999), and the
latent heat of evaporation (Cena & Monteith 1975c)
through a chick’s skin/feather complex.

Radiative heat loss: It is assumed that chick down
has similar structural properties to the downy adult
after-feather which provides most of the insulating
properties for an adult penguin (Dawson et al. 1999).
Therefore, we used the approach of Dawson et al.
(1999) for calculating net radiant heat flux through
adult feathers. Dawson et al. (1999) calculated that the
downy portion of the penguin feather created a cell of
insulating air for each millimeter of its length as bar-
bules from the feather latched onto those of neighbor-
ing feathers. Each layer was assumed to absorb radi-
ated heat from the surface closer to the bird and
radiate that heat in all directions, thereby reducing
radiative heat loss by half at each layer. With these
assumptions, radiative heat transfer (Qr, W m–2) was
calculated as:

(5)

where σ is the Stefan-Boltzmann constant (W m–2 K–4),
Ts (K) and Te (K) are the skin and operative tempera-
tures, respectively, n is the number of insulating lay-
ers of air, and ε is the emissivity of keratin. The value
for Te varies daily and is calculated using Eq. (1). The
value for n is a function of the depth of the chick down
and the number of insulating layers per millimeter of
down (nmm) which is assumed to be 1.0 (Dawson et al.
1999).

Convective heat loss: Convective heat loss can occur
as a result of free (transferred due to buoyancy of
heated air) and forced (transferred by wind) convec-
tion. Dawson et al. (1999) showed that free and forced
convection are not significant through dry adult pen-
guin feathers. Because adult feathers (provided by the
downy after-feather) and chick down have similar
insulating properties, we assume that free and forced
convection are not likely important factors in heat loss
for dry Adélie penguin chicks. This is supported by
other studies (Taylor 1986, Chappell et al. 1989) that
found a minimal influence of wind on the metabolic
rates of adults and chicks outside of extremely cold and
windy conditions.

While there have been some studies suggesting a
thermoregulatory cost for wetting (Lustick & Adams
1977, McCafferty et al. 1997, Wilson et al. 2004), to
date, there have been no observational or theoretical
studies of the influence of wind and the consequent
forced convective heat loss on wet chicks. Mechanical
disruption of the chick’s down by water is likely to
increase convective heat loss. Forced convective heat
loss was calculated using a relationship (Gill 1982) that
relates sensible heat loss (Qs, W m–2) to wind speed (u,
m s–1) as:

(6)

where CH is the dimensionless Stanton number, ρa is
the density of air (g m–3), and cp is the specific heat of
water (J g–1 K–1). The wind speed was modified to
reflect the chick’s ability to select an optimal habitat to
minimize the effect of wind as:

(7)

where umeasured is wind speed at chick height and um is
a factor that reduces the wind speed experienced by
the chick due to micro-habitat selection.

Conductive heat loss: When a chick is sufficiently
wet, the structural insulating properties of the feathers
are significantly reduced and the conductance of the
down is influenced by the relatively high thermal con-
ductivity of water. Conductive heat loss under wet con-
ditions was estimated from the relationship drawn
from Incropera & DeWitt (1985):

(8)
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where Qx is the rate of heat flow through the penguin’s
feathers (W m–2), kdown is the thermal conductivity of
down (W m–1 K–1), and dx is the thickness of the insu-
lating down layer (m).

The down depth (dx) is modified by the presence of
water as:

(9)

where dxdry is the dry down depth, and wetmod is the
modification of dry depth by the presence of water (a
dry chick would have a wetmod = 1.0). Chick down
depth increases with age (Taylor 1986). In the present
study, down depth increases from 8 to 27 mm for chicks
between the ages of 10 and 40 d (Fig. 2A).

Down thermal conductivity (kdown) is the sum of the
conductivity of water (kwater, W m–2 K–1) and air (kair, W
m–2 K–1) and is calculated as:

(10)

where pwater (unitless) is the percentage of the down
that is saturated with water.

Evaporative heat loss: The extent to which a chick
continues to become wet through contact with water
(or additional precipitation) determines the potential
for evaporative heat loss. Evaporative heat loss as a
function of wind speed (Gill 1982) is:

(11)

where Qe is the evaporative heat loss rate (W m–2), ρa is
the density of air (g m–3), D is the diffusion coefficient
(unitless), qs and qa are the specific humidity (unitless)
values at the skin of the chick (assuming saturation at
the skin temperature) and in the ambient air, re -
spectively, and Hevap is the latent heat of evaporation
(W g–1).

Calculation of thermoregulatory cost of wetting.
The thermoregulatory cost of wetting is calculated by
first determining the ratio (W) of heat conducted
through the skin/feather complex of a wet chick to that
of a dry chick:

(12)

The wetting effect (Weffect) is then calculated as:

(13)

where Pwet is the percent of the chick that is wet, Wm is
a wetting effect modification provided by a guarding
adult or the chick’s waterproof fledgling down, and W
scales these effects. The wetting effect modification
varies between 0 and 1 (Fig. 2B). The reduction of the
wetting effect by the guarding adult decreases after
Day 14 when the adult can no longer insulate the chick
from increased metabolic costs due to the wetting
effect. The benefit from the guarding adult is gone at
Day 21 when the chick enters the crèche stage and is
no longer guarded by adults at the nest. The chick
regains protection from wetting between Days 35 and
50 as fledgling plumage develops. Thus, chicks are
most vulnerable to wetting between ages 17 and 40 d
(Fig. 2B). There is some evidence that chicks huddle
during cold weather, perhaps to reduce their ther-
moregulatory costs (Lawless et al. 2001). Although the
metabolic benefits of huddling has been demonstrated
broadly among endotherms (Gilbert et al. 2010), hud-
dling is of uncertain importance to penguin thermoreg-
ulation and is likely to have little benefit in smaller
colonies where the potential for huddling is limited.
The thermoregulatory benefit of huddling among pen-
guin chicks deserves future research, but for now it has
been left out of this model.

The wetting effect obtained from Eq. (13) modifies
the field metabolic rate (FMR) experienced by the
chick as:

(14)

where FMRwet is the increase in the total metabolic cost
caused by wetting. The value for FMRwet is then added
to FMR to calculate the total metabolic costs of the
chick.

Summary of meteorological data (see Appendix 2
for sources). Meteorological data used in the calcula-
tions include air temperature, wind speed, humidity,
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Fig. 2. Pygoscelis adeliae. (A) Change in chick down depth
with increasing age (Taylor 1986) and (B) changes in the chick
wetting effect modification factor that occurs as the chick ages
because of decreased guarding by the parent (dashed line)
and as the chick develops fledgling down (dotted line). A
chick with a chick wetting modification of 1.0 (solid line,
between Days 20 and 30) feels the full wetting effect and is

most vulnerable to this thermo-dynamic process
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and solar radiation. A relatively large number of days
with high winds during the nestling period occurred
during 1995, 1998, 1999, and 2001 (Table 2). During
the period when chicks were most vulnerable to the
wetting effect (chicks aged 17 to 40 d), a relatively
large number of days with high winds occurred in
1998, 1999, and 2001 (Table 2). Low temperatures were
experienced during the nestling period for a relatively
large number of days during 1999, 2001, and 2004
(Table 2). A larger than average number of cold days
occurred during 1999 and 2004 at a time when the
chicks were most vulnerable to the wetting effect
(Table 2).

The 1995 weather conditions are an example of typi-
cal intra-nestling period variability in wind and tem-
perature variability. The modified wind data from 1995
(Fig. 3A) show 6 wind events (consisting of consecutive
days with high winds) which lasted a total of 10 d
and occurred during the 54 d chick growth period
(Table 2). Two of these wind events occurred during
the period when chicks were most vulnerable to the
wetting effect (chicks aged 17 to 40 d). The ambient
temperature averaged 1.0°C during the chick growth
period, ranging between –1.8 and 3.3°C (Fig. 3B). Rel-
ative humidity averaged 95% and ranged between 77
and 100% (Fig. 3C).

Wetting effect simulations. Three sets of simulations
were used to examine the wetting effect. First, a simu-
lation using the 1995 chick rearing period was used to
examine the wetting effect in detail. Next, the effect on
fledging mass of inter-annual variability in weather
was investigated by running simulations using meteo-
rological data during the nestling period between 1995

and 2004. Finally, simulations were done as a sensitiv-
ity analysis to examine the effect on chick fledging
mass of variability among a subset of poorly under-
stood wetting effect parameters (Table 1). While the
influence of variability in each parameter was tested,
all other parameters were held constant at base levels
(Table 1). Because chicks that become wet from pud-
dles of snow-melt are often continually wet, the pro-
portion of the down that is wet and the proportion of
the chick that is wet remain constant within each sim-
ulation. As with the altered provisioning schedule sim-
ulations, a base provisioning rate for all krill that pro-
duced a chick large enough to recruit (RFM) was used
for the chick wetting simulations.

Processes not included in the model. Model struc-
ture was developed to include the essential informa-
tion required to model chick growth. Some processes
were not included because there was insufficient
information to parameterize them, or they were
deemed unnecessary for the purposes of the present
study. For example, Antarctic fish lipid content, and
therefore energy density, may vary seasonally as is
observed with Antarctic krill (see references in Chap-
man et al. 2009). However, seasonality in fish lipid
content has not been studied and was not included in
this model. Nevertheless, seasonal variability in lipid
content among fish populations, and differences in
this seasonality with respect to that of Antarctic krill,
may have important implications for chick growth.
For example, fish may be a relatively high-quality
prey item following krill spawning (often during the
nestling period off the wAP; Spiridonov 1995) when
mature female Antarctic krill lose 54% of their lipid
(Clarke 1980).

Heat stress is an additional process not included in
the model, that may influence chick growth and fledg-
ing mass. Adélie penguin chicks are vulnerable to
even short periods during which temperatures exceed
20 to 25°C (Chappell et al. 1990). While Adélie pen-
guins at Anvers Island rarely experience these temper-
atures (Chappell et al. 1990), even short periods of ele-
vated temperatures cause increased metabolic costs
due to panting and other behavioral mechanisms for
increasing the flux of heat away from the chick.
Although the increase in warming off the wAP is
largely due to increases in winter temperatures
(Turner et al. 2005a), it is likely that these periods of
elevated temperatures during penguin chick-rearing
are increasing with the warming of the wAP climate.
The influence of warming temperatures on heat stress
processes that could result in reduced growth, or even
chick death, has not been studied. Including heat
stress in the model would introduce too much uncer-
tainty, so it was omitted. Future work on the frequency
and metabolic cost of heat stress among Adélie pen-
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Year Days with high winds Days with low temp.
NP CVP NP CVP

1995 10 3 11 3
1996 5 3 11 4
1997 2 0 11 4
1998 10 7 7 4
1999 14 6 29 16
2000 1 0 1 0
2001 17 5 13 3
2002 2 1 1 0
2003 8 3 5 2
2004 7 1 25 12

Table 2. Total days with high winds (mean > 6 m s–1) and low
ambient temperatures (mean < 0°C) during the 54 d
Pygoscelis adeliae nestling period (NP, 19 December to 10
February) and when chicks are most vulnerable to the meta-
bolic costs associated with the wetting effect (chick vulnera-
bility period [CVP], chicks aged 17 to 40 d, 4 to 17 January).
Mean daily wind speed and temperatures were ob tained from
records collected at Faraday/Vernadsky Research station 

from 1995 to 2004
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guin chicks would enable modeling of this process
within a chick growth model. Warming is also likely to
have some beneficial thermoregulatory impacts that
are not modeled here, though this benefit is likely to be
small given that the absolute rise in temperatures off
the wAP has been small (0.56°C decade–1; Turner et al.
2005a).

The influence of water on operative temperature,
variability in chick body temperature, and potential
compensatory mechanisms for poor chick growth by
the adult (e.g. increased provisioning rate) were not
considered and may have some influence on model
results. The model also does not account for some
physiological processes that are important for chick
growth and survival, such as chick nutrient- or water-
balance. Also, a detailed comparison of the insulating
structures and properties of chick down would
improve estimations in this model that were based on
the downy after-feather of an adult feather. Finally, dif-
ferences in the amount of wetting effect heat loss

caused by what part of the chick is wet were also not
considered.

RESULTS

Fish simulations

Adélie penguin Pygoscelis adeliae chicks raised on a
fish/krill mixed diet consisting of AC0 or AC1 Antarctic
silverfish Pleuragramma antarcticum and Antarctic krill
Euphausia superba reach a simulated fledging mass of
(AC0) 2.76 and (AC1) 2.90 kg (Fig. 4A). These fledging
masses are less than the NRFM for chicks fed a krill-only
diet. Chicks reared on AC2 Antarctic silverfish
combined with Antarctic krill reached a simulated
fledging mass equivalent to that obtained for a krill-only
diet (Fig. 4A). Adding AC3 and AC4 Antarctic silverfish
to an all-krill diet increased fledging mass by 5 and 6%,
respectively, to a mass above the RFM (Fig. 4A).

Fig. 3. Pygoscelis adeliae. Time series measured in 1995 at Faraday (UK)/Vernadsky (Ukraine) meteorological station during the
chick nestling period of: (A) wind speed (solid line, m s–1) and wind speed adjusted for chick height (dot-dashed line), (B) ambient
air temperature (solid line) and operative temperature (dot-dashed line, Te,°C), (C) relative humidity (unitless), and (D) the cal -
culated wet effect, or the ratio between wet and dry thermal conductance (W, unitless). The shading indicates 2 high-wind
events (daily wind speed > 6 m s–1) during the nestling period, when chicks were most vulnerable to the wetting effect (chicks 

aged 17 to 40 d)
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Provisioning schedule simulations

Increased chick starvation period

For the krill-only diet, increased duration of the star-
vation period resulted in a significant decrease in chick
fledging mass (Fig. 4B). Lengthening the starvation
period to 3 d reduced the krill delivered to the chick by
2.52 kg. Increasing the starvation period by >1 d
decreased the simulated fledging mass sufficiently to
reduce the chick’s probability for recruitment. For the
diet including Antarctic silverfish, increasing the dura-
tion of the starvation period to 3 d decreased the simu-
lated fledging mass from 3.30 kg to below the NRFM
(Fig. 4B).

Reduced chick provisioning rate

Simulated fledging mass decreased proportionally
from the RFM to 2.90 kg as the reduction in provision-
ing rate increased from 0 to 10% (Fig. 4C). With a

reduction of >4% of the reference provisioning rate,
the simulated fledging mass fell below the NRFM. For
the diet including Antarctic silverfish, fledging mass
decreased from 3.30 to 3.00 kg as the percentage
reduction in provisioning rate increased from 0 to 10%
(Fig. 4C). The simulated fledging mass fell below the
NRFM when the diet was reduced by >8%.

Chick wetting simulations

The modeled variability of the wetting effect during
the nestling period is illustrated by a simulation using
the 1995 conditions. For this year, the wetting effect
(W) in the model was 2.5 on average and peaked dur-
ing 4 high wind events to a value >3.5 (Fig. 3D). These
values are remarkably similar to the measured value
for W for wet gentoo penguin chick pelts (2.8; Kooy-
man et al. 1976), providing support for the methods
used to calculate the wetting effect in the present
study. The limited available research suggests that the
ratio of wet to dry thermal conductivity (W, here) for

Fig. 4. Pygoscelis adeliae. (A) Simulated fledging mass for a
chick raised on a mixed diet of krill and Antarctic silverfish
Pleuragramma antarcticum (solid curve) of age-classes (AC) 0
through 4. The simulated fledging mass for chicks raised on
an all-krill Euphausia superba diet is also indicated (horizon-
tal solid line). Simulated chick fledging mass obtained with:
(B) increasing length of the chick starvation period and (C)
variability in the chick provisioning rate. Simulated fledging
mass was obtained for an all-krill diet (solid line) and a com-
bined diet of Antarctic krill and AC3 Antarctic silverfish (dot-
dashed line). In all panels, mean fledging mass of tagged
chicks that recruited into the breeding population at Palmer
Station (re-sighted fledge mass, RFM) and the mean mass of
banded chicks that did not recruit (not re-sighted fledge mass, 

NRFM) are indicated (horizontal dotted lines)
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adult bird pelts is lower at 1.1 for barn owls Tyto alba
(McCafferty et al. 1997) and ranges between 1.1 and
1.8 for adult pygoscelid penguins (Kooyman et al.
1976). Thus, calculations here suggest that downy
chicks are more vulnerable to the wetting effect than
adults.

Two high-wind events occurred when chicks were
most vulnerable to the wetting effect (Fig. 3A,D). The
ratio of the modeled wet to dry thermal conductance
was most closely correlated with wind speeds (Spear-
man’s rank correlation, r2 = 0.70, p < 0.001), followed
by temperature experienced by the chick (Spearman’s
rank correlation, r2 = –0.31, p = 0.023); the ratio was not
related to specific humidity (Spearman’s rank correla-
tion, r2 = 0.17, p = 0.21).

Generally, the greatest chick heat loss, as modeled,
was from conductive heat flux, followed by convective,
latent, and then radiative heat flux (Fig. 5A). There
was a sharp decrease in the total metabolic costs
caused by wetting after the guard stage (chicks aged
~21 d) as the chick’s down grew deeper. Variability in
conductive heat loss was relatively high and appeared
to be more strongly correlated with the variability in

total wetting heat loss than other heat loss modes. Dur-
ing the 2 high wind events during the period when
chicks were most vulnerable to the wetting effect, the
heat flux due to convection surpassed that due to con-
ductive heat loss and became the mode of heat loss
most responsible for the wetting effect (Fig. 5A).

The modeled wetting effect in creased to about 0.12
on Day 26 during the 1995 simulation, as the adult pen-
guin provided less protection from the elements
(Fig. 5B). After the guard period ended and prior to the
development of fledgling plumage, the extent to which
wetting increased the chick’s metabolic costs was
determined to a large degree by local wind speed. For
example, the wetting effect reached 0.21 on Day 28 as
a result of the first high wind event (Fig. 5B). A subse-
quent increase in the wetting effect to 0.15 on Day 33
was associated with the second wind event (Fig. 5B).
Following these wind events, the wetting effect
returned to zero when the fledgling plumage was fully
developed. These short-term increases in the wetting
effect had a slight, but noticeable temporary effect on
chick growth, although these effects to not appear to
have had an important influence on chick mass at the
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Fig. 5. Pygoscelis adeliae. (A) Total increase in heat flux (W m–2) through the chick’s skin/feather complex because of wetting, and
the increase for each mode of heat flux for the 1995 nestling period. The increase in heat flux does not take into consideration
modification for a guarding parent and development of fledgling plumage. (B) Wetting effect (W) as a function of chick age
 calculated using the 1995 meteorological time series for the Adélie penguin breeding season. (C) Simulated chick fledging mass
obtained for 1995 meteorological conditions during the chick nestling period using base values for the wetting parameters
(Table 1). In all panels, the 2 wind events that occurred during the period when chicks were most vulnerable to the wetting effect 

(chicks aged 17 to 40 d) are labelled, or indicated by shading
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end of the nestling period (Fig. 5C). Growth slowed
from 101 to 77 g d–1 during Wind Event 1 and from 89
to 64 g d–1 during Wind Event 2, which contributed to
the overall reduction in fledging mass.

The simulated fledging mass obtained under equal
food supply and quality and variable environmental
conditions (driven by a time series of meteorological
conditions between 1995 to 2004 for Adélie penguin
chicks on Anvers Island) ranged from 3.07 (1999) to
3.09 kg (2004), with an overall mean of 3.08 kg (Fig. 6).
These years span a wide range of environmental condi-
tions (Table 2), yet there was little variability among
simulated fledging mass and none fell below the
NRFM. Inter-annual variability in simulated fledging
mass was most sensitive to the number of windy and
cold days during the period when chicks were most vul-
nerable to the wetting effect (Fig. 6). Specifically, simu-
lated fledging mass was lowest under 1999 weather
conditions (Fig. 6) when there were more days with
high wind speeds and low temperatures during the pe-
riod when chicks are most vulnerable to the thermoreg-
ulatory costs of wetting. Wind appears to be the more
important meteorological variable, however, as the sec-
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Fig. 6. Pygoscelis adeliae. Simulated fledging mass obtained
using the base case wetting parameters (Table 1) and the
1995 to 2004 meteorological time series for the chick nestling
periods. The 1995 fledging mass, which provides a reference
simulation, is circled. Mean fledging mass of tagged chicks
that recruited into the breeding population at Palmer Station
(re-sighted fledge mass, RFM) and mean mass of banded
chicks that did not recruit (not re-sighted fledge mass, NRFM) 

are indicated

Fig. 7. Pygoscelis adeliae. Simulated fledging mass obtained from variability in (A) the percent reduction in down depth by water,
(B) the percentage of the down structure that is composed of water, (C) the percentage of the chick that is wet, and (D) the percent
modification of wind speed to generate the effective wind speed acting on heat transfer away from the chick. Mean fledging mass
of tagged chicks that recruited into the breeding population at Palmer Station (re-sighted fledge mass, RFM) and mean mass of
chicks that did not recruit (not re-sighted fledge mass, NRFM) are indicated. Simulated fledging mass at the parameter value 

used for the reference simulation (1995 conditions) is indicated by a circle
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ond lowest simulated fledging mass occurred in 1998
(Fig. 6), when there were more windy days, but a mod-
erate number of days when temperatures were low
(Table 2). The highest simulated fledging mass oc -
curred in 2004 (Fig. 6), when there were few windy days
but many cold days during the period when chicks were
most vulnerable to wetting effects (Table 2).

Sensitivity simulations found that increasing the
parameter for the percent modification of dry down
depth by water decreased simulated fledging mass
(Fig. 7A). Just over a 50% reduction in dry down depth
by water reduced simulated fledging mass to the
NRFM. As more water was retained in the chick’s
down (e.g. the chick becomes saturated), fledging
mass decreases (Fig. 7B). Wetting only 8 to 10% of the
chick was sufficient to reduce the fledging mass below
the NRFM (Fig. 7C). Variability in the wind modifica-
tion parameter had less of an effect on chick fledging
mass than did variability in the percent of the chick
that was wet (Fig. 7D). For all values of the wind mod-
ification parameter, chick fledging mass remained
between the RFM and the NRFM.

As with the provisioning schedule simulations, we
expected the wetting simulations to produce smaller
chicks, and a reference scenario that produced a chick
with a fledging mass of 3.15 kg, the RFM, was used.

Combined effect of adding fish and chick wetting

The mixed diet simulations showed that adding AC3
and older Antarctic silverfish to an all-krill diet in -
creases chick fledging mass. Therefore, diet is one fac-
tor that can potentially offset the effects of increased
thermoregulatory costs due to wetting of the chick. To
test the combined effect of diet and wetting on chick
growth, additional simulations were done in which the
percent of the chick that is wet (0 to 25%) and the per-
centage of the diet composed of AC3 Antarctic silver-
fish (0 to 50%) were varied (Fig. 8).

For chicks that are <10% wet, simulated fledging
mass that corresponded to chicks with a higher proba-
bility of survival (RFM, 3.15 kg) can be obtained with a
krill-only and mixed krill and Antarctic silverfish diet.
However, as wetting increased from 10%, an increas-
ing proportion of fish was needed in the diet to com-
pensate for thermoregulatory losses. Offsetting a 5%
increase in wetting required that a chick be provided
with a diet consisting of about 10% AC3 Antarctic sil-
verfish. A chick that was 15% wet needed a diet that
included almost 25% AC3 Antarctic silverfish to main-
tain a fledging mass of 3.15 kg (Fig. 8). Thus, switching
to a more Antarctic silverfish–based diet can poten-
tially mitigate thermoregulatory effects of increased
wetting on Adélie penguin chick growth.

DISCUSSION AND SUMMARY

Importance of fish in the chick diet

The models provide insights into several processes
that have implications for Adélie penguin Pygoscelis
adeliae reproductive energetics in light of future cli-
mate projections. Furthermore, our results point to sev-
eral areas where additional field research could move
our understanding forward regarding the influence of
climate on Adélie penguin reproductive success and
population trajectory.

Due to differences in energy density, given equal
provisioning rates, supplementing an Antarctic krill
Euphausia superba chick diet with Antarctic silverfish
Pleuragramma antarcticum of at least AC3 produces
simulated chicks that are heavier and more likely to
recruit than those fed an all-krill diet. A reduction in
the quality of available prey can have severe negative
implications for top-predator populations (Osterblom &
Olsson 2008). The absence of Antarctic silverfish from
Adélie penguin diets near Anvers Island and over the
entire mid- to northern wAP (Fraser & Trivelpiece
1996, Hinke et al. 2007) may have led to lower quality
(energy content) chick diets making it more difficult for
adult Adélie penguins to produce chicks that will
recruit.
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Fig. 8. Pygoscelis adeliae. Simulated chick fledging mass (kg)
resulting from variability in the percent of the chick that is wet
and the proportion of AC3 Antarctic silverfish Pleuragramma
antarcticum in the chick diet. The simulated chick fledging
mass that equals the mean mass of fledging chicks that are re-
sighted (re-sighted fledge mass, RFM, 3.15 kg) and not re-
sighted and presumably do not recruit into the breeding
 population (not re-sighted fledge mass, NRFM, 3.03 kg) are
indicated. Simulated fledging masses below the NRFM 

are shaded
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The extent to which this alternative prey source con-
tributes to chick growth is presumably determined by
environmental conditions that influence the fish’s dis-
tribution. Antarctic silverfish disappeared from Adélie
penguin diets about 200 yr ago in several regions of
the Antarctic, including some regions of the wAP
(Emslie & Patterson 2007). Antarctic silverfish from
95 to 117 mm in length were the most prominent fish
in Adélie penguin diets off the wAP >200 yr ago
(McDaniel & Emslie 2002); the length of these fish cor-
responds to the energy-rich AC4 and older Antarctic
silverfish. The cause for the loss of Antarctic silverfish
is unclear. It has been suggested that Antarctic silver-
fish declined in response to increased competition from
surging krill populations following removal of large
whales and seals at the turn of the century (Emslie &
Patterson 2007), though climate reconstructions sug-
gest a generally cooler than normal climate from 200 to
50 yr before the present (Schneider et al. 2006), which
may have favored Antarctic silverfish populations that
require ice for spawning (Kellermann 1987, Bottaro et
al. 2009). Regardless of the cause, the loss of Antarctic
silverfish from the wAP required some adjustment by
the Adélie penguin to a lower quality diet in order to
raise viable chicks. Possible adjustments include
increasing feeding rates or altering foraging behavior
to focus on high-energy density Antarctic krill (i.e.
gravid females). While breeding Adélie penguins may
have some capacity to adjust to the loss of Antarctic sil-
verfish from their diets, ultimately the loss of older age-
classes of this high-energy prey item likely leaves
these penguins less resilient to environmental change.

Overall, environmental conditions that alter sea ice
concentration and extent, combined with an increasing
population of fish- and krill-eating whale species
(Branch 2006), may potentially alter the availability of
2 of the primary prey resources that are needed to raise
Adélie penguin chicks.

Effect of an altered feeding schedule

Following breeding, adult Adélie penguins gain
weight (Ainley 2002) as they face the energetic cost of
molting followed by an extended period of reduced
(and/or patchier) prey availability and perhaps lower
prey quality during the winter. Therefore, factors that
cause a delay in the breeding schedule (e.g. delayed
laying date due to increased snowfall in colonies) may
require that adults switch their efforts prematurely
from chick provisioning to self-maintenance, increas-
ing the chick starvation period. The simulations in the
present study suggest that conditions that cause an
increase in the starvation period, even of just 1 d, can
change the amount of energy that a chick receives

from the adult and compromise chick growth suffi-
ciently to affect the probability of recruitment.

Any factor that causes even a slight reduction in pro-
visioning rate could have a considerable impact on
fledging mass and recruitment. Factors such as adult
age/experience (Ainley 2002), adult body condition
(Tveraa et al. 1998), prey availability (Clarke et al. 2002),
increased foraging costs (Watanuki et al. 2002, Taka-
hashi et al. 2003), and the number of chicks in a brood
(Ainley & Schlatter 1972) affect the provisioning rate of
chicks by the adult. Adults may use complex foraging
strategies that alternate long- and short-duration forag-
ing trips to meet their own and their chick’s energy
requirements, respectively (Ropert-Coudert et al. 2004).
However, in general, adult Adélie penguins and other
long-lived seabirds preserve their own condition at the
cost of their chicks when environmental stress occurs
(Tveraa et al. 1998, Watanuki et al. 2002, Takahashi et
al. 2003). Therefore, under environmental stress affect-
ing penguin foraging success, an adult is likely to pro-
vide less energy to their chick(s). One such stress may
be reduced prey availability due to the added foraging
pressure of other top predators (e.g. whales, Branch
2006; seals, Siniff et al. 2008; chinstrap and gentoo pen-
guins, Ducklow et al. 2007) that have increased in abun-
dance at Anvers Island during the nestling period. Pre-
dation pressure on the mid-trophic level can reduce the
availability of fish and krill to breeding Adélie penguin
colonies (Ainley et al. 2006), which may have important
implications for provisioning rate and chick growth off
the wAP, but these effects are not well understood in this
region. However, the presence of older Antarctic silver-
fish as a prey item could compensate for environmental
stressors that cause a reduction in provisioning rate.

Effects of chick wetting at the nest

Adélie penguin chicks can maintain their body tem-
peratures within a broad range of environmental tem-
peratures and wind speeds (Taylor 1986, Chappell et al.
1989), but their ability to do so under wet conditions is
unknown. Simulations suggest that environmental con-
ditions that result in sustained or increased wetting of
chick down, such as extensive snow-melt or excessive
rain, may adversely affect chick growth and survivor-
ship, potentially leading to reduced recruitment and a
declining population. Given that precipitation is pro-
jected to increase off the wAP with regional warming
(Ainley et al. 2010) and that Adélie penguins are typi-
cally found in dry regions of the Antarctic (Ainley 2002),
these effects may become increasingly important. The
effects of wetting may be particularly detrimental in
smaller colonies, where the thermoregulatory benefit of
huddling behavior during the crèche stage (Lawless et
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al. 2001), when chicks are most vulnerable to this meta-
bolic cost, is limited. It is possible that under favorable
foraging conditions, adult penguins are able to compen-
sate for the wetting effect by increased provisioning to
wet chicks, although this has not been documented.
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The Adélie penguin Pygoscelis adeliae chick growth
model was designed to represent current chick growth
conditions off Anvers Island. The model focuses on pro-
cesses that occur during the chick growth period at this
location, which typically starts near 19 December and ends
around 10 February. These dates are based on average
hatch and fledge dates at Anvers Island. The governing
equation for the model assumes that chick growth,
expressed as the change in mass (M, kg) over time (t), can
be calculated as the difference between the energy avail-
able for production (Ep, kJ) and that lost to metabolic costs
(Ec, kJ), scaled by the chick wet mass energy density
(EDcwm, kJ kg–1):

(A1)

The energy available for production is given by the prod-
uct of the total mass of prey provisioned to the chick (Prov,
kg), the prey wet mass energy density (Preywm, kJ kg–1)
and the assimilation (digestive) efficiency (AE, 0.69 to 0.80
unitless) (Cooper 1977, Jackson 1986, Janes 1997) of the
chick:

(A2)

Prey wet mass energy density for the Antarctic krill
Euphausia superba diet is estimated as described in Chap-
man et al. (2009) and is a function of lipid content which
varies with krill sex and/or maturity stage distribution and
season (Clark 1980, Virtue et al. 1996, Hagen et al. 2001).
Prey wet mass for diets, including fish species, is calcu-
lated as described previously.
In the model, the amount of Antarctic krill provisioned to
the chick is adequate to produce simulated growth rates,
and fledging mass of either 3.09 kg (mean of the re-sighted
and not re-sighted fledge mass [RFM and NRFM, respec-
tively]) or 3.15 kg (RFM), which produces the 2 reference
simulations used in the present study. The energetic costs
experienced by the chick are determined by the mean
field metabolic rate (FMR) and amount of energy needed
to transform chick tissue into its new wet mass energy
density, which increases with chick age. Mean metabolic
rate, water content, chick dry mass energy density, and
assimilation efficiency vary with chick age and size. Addi-
tional details of the Adélie penguin chick growth model
used in the present paper are given in Chapman et al.
(2009).

d
d ED

p c

cwm

M
t

E E
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−

Ep wmProv Prey AE= ⋅ ⋅

Appendix 1. Chick growth model

Equations used to calculate the wetting effect require
daily mean values for wind speed, ambient temperature,
incident solar radiation (insolation), air density, and spe-
cific humidity. Daily means of hourly values for these
meteorological data during the Adélie penguin Pygoscelis
adeliae nestling period between 1995 and 2004 were
obtained from the British Antarctic Survey (www.antarc-
tica.ac.uk/met/metlog). These meteorological time series
were used in the simulations that explored the effect of
annual variability in weather conditions on chick fledging
mass.

Meteorological data were representative of conditions at
colonies off Anvers Island. With the exception of insola-
tion, data are from the Vernadsky (Ukraine) station, which
is 55 km south of Anvers Island (prior to 1996, this was
Faraday Station operated by the British Antarctic Survey).
Insolation data are from Rothera Station, which is 360 km
southwest of Anvers Island. This was the closest location
where insolation data were available between 1995 and
2004. Mean daily insolation data from Rothera Station
between 1995 and 2004 from the chick-rearing period
were only slightly higher than those measured by Chap-
pell et al. (1990) at Torgerson Island (just off Anvers Island)

during 1986 (204 W m–2 compared to 191 W m–2). Given
the limited contribution that insolation makes to the calcu-
lation of the operative temperature, the data from Rothera
were considered appropriate for use in the present study.
Wind speed was measured at 10 m, though the winds
experienced by chicks are at heights of <0.5 m. Therefore,
measured winds were attenuated based on an analysis of
concurrent data sets collected at 10 m and at 0.35 m (the
height of a large chick). Wind speeds measured at Fara-
day/Vernadsky Station in 1986 were compared with con-
current wind speeds measured at 0.35 m during the 1986
breeding season near Palmer Station off Anvers Island
(Chappell et al. 1990). Wind data were modified by a factor
of 0.67 in order to adjust for differences in wind speeds
measured at Faraday/Vernadsky and those measured at
chick height near Palmer Station. With this adjustment, the
mean wind measurement from both data sets (Palmer Sta-
tion data reported in Chappell et al. [1990] and the modi-
fied wind data from Faraday/Vernardsky from the same
time period) were the same (2.6 m s–1), and the proportion
of measurements >1 m s–1 (just over 0.80 reported in Chap-
pell et al. [1990] compared to 0.83 from Faraday/Vernad-
sky) were essentially equivalent.

Appendix 2. Meteorological data
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