
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Electrical & Computer Engineering Theses & 
Dissertations Electrical & Computer Engineering 

Fall 2017 

Computational Modeling for Abnormal Brain Tissue Computational Modeling for Abnormal Brain Tissue 

Segmentation, Brain Tumor Tracking, and Grading Segmentation, Brain Tumor Tracking, and Grading 

Syed Mohammad Shamin Reza 
Old Dominion University, sreza002@odu.edu 

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds 

 Part of the Bioimaging and Biomedical Optics Commons, Computer Sciences Commons, and the 

Pathology Commons 

Recommended Citation Recommended Citation 
Reza, Syed M.. "Computational Modeling for Abnormal Brain Tissue Segmentation, Brain Tumor Tracking, 
and Grading" (2017). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old 
Dominion University, DOI: 10.25777/a851-j625 
https://digitalcommons.odu.edu/ece_etds/27 

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU 
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations 
by an authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/232?utm_source=digitalcommons.odu.edu%2Fece_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fece_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/699?utm_source=digitalcommons.odu.edu%2Fece_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/27?utm_source=digitalcommons.odu.edu%2Fece_etds%2F27&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


COMPUTATIONAL MODELING FOR ABNORMAL BRAIN
TISSUE SEGMENTATION, BRAIN TUMOR TRACKING,

AND GRADING

by

Syed Mohammad Shamim Reza
B.Sc. June 2007, Bangladesh University of Engineering and Technology, Bangladesh

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
December 2017

Approved by:

Khan M. Iftekharuddin (Director)

Dean Krusienski (Member)

Jiang Li (Member)

Yaohang Li (Member)



ABSTRACT

COMPUTATIONAL MODELING FOR ABNORMAL BRAIN TISSUE
SEGMENTATION, BRAIN TUMOR TRACKING, AND GRADING

Syed M. S. Reza
Old Dominion University, 2017

Director: Dr. Khan M. Iftekharuddin

This dissertation proposes novel texture feature-based computational models for quanti-
tative analysis of abnormal tissues in two neurological disorders: brain tumor and stroke. Brain
tumors are the cells with uncontrolled growth in the brain tissues and one of the major causes
of death due to cancer. On the other hand, brain strokes occur due to the sudden interruption
of the blood supply which damages the normal brain tissues and frequently causes death or
persistent disability. Clinical management of these brain tumors and stroke lesions critically
depends on robust quantitative analysis using different imaging modalities including Magnetic
Resonance (MR) and Digital Pathology (DP) images. Due to uncontrolled growth and infiltration
into the surrounding tissues, the tumor regions appear with a significant texture variation in
the static MRI volume and also in the longitudinal imaging study. Consequently, this study
developed computational models using novel texture features to segment abnormal brain tissues
(tumor, and stroke lesions), tracking the change of tumor volume in longitudinal images, and
tumor grading in MR images. Manual delineation and analysis of these abnormal tissues in
large scale is tedious, error-prone, and often suffers from inter-observer variability. Therefore,
efficient computational models for robust segmentation of different abnormal tissues is required
to support the diagnosis and analysis processes. In this study, brain tissues are characterized
with novel computational modeling of multi-fractal texture features for multi-class brain tumor
tissue segmentation (BTS) and extend the method for ischemic stroke lesions in MRI. The
robustness of the proposed segmentation methods is evaluated using a huge amount of private
and public domain clinical data that offers competitive performance when compared with that of
the state-of-the-art methods. Further, I analyze the dynamic texture behavior of tumor volume
in longitudinal imaging and develop post-processing frame-work using three-dimensional (3D)
texture features. These post-processing methods are shown to reduce the false positives in the
BTS results and improve the overall segmentation result in longitudinal imaging. Furthermore,
using this improved segmentation results the change of tumor volume has been quantified in
three types such as stable, progress, and shrinkage as observed by the volumetric changes of
different tumor tissues in longitudinal images. This study also investigates a novel non-invasive
glioma grading, for the first time in literature, that uses structural MRI only. Such non-invasive
glioma grading may be useful before an invasive biopsy is recommended. This study further
developed an automatic glioma grading scheme using the invasive cell nuclei morphology in DP
images for cross-validation with the same patients. In summary, the texture-based computational
models proposed in this study are expected to facilitate the clinical management of patients with
the brain tumors and strokes by automating large scale imaging data analysis, reducing human
error, inter-observer variability, and producing repeatable brain tumor quantitation and grading.
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CHAPTER 1

INTRODUCTION

Despite incredible advancements in medical imaging, diagnosis and the knowledge of human
physiology, the prevalence of cancer in the brain or other central nervous system (CNS) is
consistent over the last few decades. According to National Cancer Institute (NCI) [1], the
number of new cases of brain and other CNS cancer is 6.4, and the number of deaths is 4.3 per
100,000 men and women per year during 2010-2014. Based on 2012-2014 data, approximately
0.6 percent of men and women are to be diagnosed with brain and other nervous systems at
some point during their lifetime. In 2017, an average 23,800 estimated new cases are going to be
added while 16,700 is the number of estimated deaths in the United States. Figure 1 shows the
statistics of cancer in the brain and other CNS.

Figure 1: Statistics on tumor in brain and other central nervous system from the fact sheet
of National Cancer Institute [1].

The above statistics on cancer in the brain and other CNS tumors clearly indicates that robust
and efficient computational models are desired to improve the diagnosis and analysis processes.
According to National Stroke Association [2], another life threatening incident is brain stroke
that occurs due to sudden interruption or reduction of the blood supply to part of the brain
or bleeding into or around the brain. As a consequence, the brain cells die or damage severely
for receiving a lack of enough oxygen and nutrients. There are two forms of stroke; ischemic
- blockage of a blood vessel supplying the brain, and hemorrhagic - bleeding into or around
the brain. Brain stroke is one of the major causes of frequent death and persistent disability
in the industrial countries [3]. Patients with cancer or experienced disability due to stroke are
associated with high socioeconomic costs for their continuous treatments and cares. In regular
clinical settings, different imaging modalities such as MR, DP, computerized tomography (CT),
ultrasound etc. are used to diagnose the tumor, whereas MR is mostly common for brain tumor
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imaging. Processing and analyzing the large set of images require efficient computer aided
diagnosis techniques. Precise detection and segmentation of brain abnormal tissues (tumor,
stroke) and different tumor tissues such as necrosis, edema, active tumor, cysts etc. in the
MR images is the precondition for a reliable diagnosis. Further analysis using the segmented
tumor volume provides essential information about the current stage, grade, and progress of
the tumor, which in turn helps to determine the treatment procedure. There are two basic
kinds of brain tumors – primary and metastatic [4]. Primary brain tumors originate and grow
in the brain locally whereas the metastatic tumor originate in another part of the body but
drift to spread in the brain. Disregarding their origination, all type brain tumors grow with
an unpredictable and complex appearance in shape, size, and location. Due to the infiltration
through different tissues, variation in intensities in the images, automatic tumor segmentation
becomes a challenging task in the area of medical image analysis. Many different automatic brain
tumor segmentation techniques proposed in the literature are based on either features, or atlas-
dependent registration, or a combination of both. Feature-based segmentation methods extract
and analyze different features extracted from the images whereas atlas-based method perform
registration patient images with a template (atlas) image. The critical factor for atlas-based
method is that it needs a sophisticated and careful registration of the images. The argument is
that the complex structure of brain tumor in MRI may be more amenable to multi-resolution
texture analysis. The success of multi-resolution texture-based brain tumor segmentation works
[5][6][7] drive the motivation to extend the texture based method for ischemic stroke lesion
segmentation. The extensions of BTS lie in using the diffusion weighted images and extracting
structure tensor based local gradient information as a feature. Among all the primary brain
tumors, gliomas are most frequent in adults which originate in the glial cells and show a wide
range of aggressive infiltration [8] among the surrounding tissues. While the slower growing
(grade I and II) astrocytomas or oligodendrogliomas have several years of survival period, the
more aggressive (grade IV) glioblastoma multiforme (GBM) has less than a two year survival
period. In the context of glioma analysis, it is very common to have multiple images of the same
patient over time (longitudinal images). Specifically for GBM, it is important to monitor tumor
progression over time and determine the treatment procedure and dose medication accordingly
or to monitor whether the tumor has recurred. Despite considerable advances in tumor research,
the use of their temporal information from longitudinal images is very rare. But it is intuitive
that leveraging this temporal information can improve the segmentation accuracy by helping
detect the potential tumor candidates from a high false positive (FP) outcomes. Therefore, this
study focuses on using this temporal information by modeling the temporal texture behavior of
the tumor to reduce the false positives from our original BTS outcomes. Another important
diagnosis process is grading of the tumor, usually is an invasive process that relies almost
entirely on the visual assessment of the tumor specimen under a microscope. However, the usual
tumor grading procedure raises the concern of subjectivity and inter-observer variability; and
clearly demands an efficient non-invasive method. Since gliomas are the most common forms
of life-threatening tumors in the CNS, it is important to stratify these gliomas into two major
groups GBM versus low-grade (LG) or high-grade (HG) versus LG to better understanding the
disease progression, life expectancy, and eventually to facilitate plans for treatment. Depending
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on the aggressiveness in cell reproduction rate and infiltration into the surrounding tissues the
World Health Organization’s (WHO) grading scale [9] defines four grades (I-IV) of gliomas. The
LG gliomas (grade I & II), such as low-grade astrocytomas and oligodendrogliomas that account
for 10% [10] of primary brain tumors, are usually slow growing and involve the least malignancy.
The HG gliomas (grade III and IV) show more abnormal cell reproduction rate and account for
approximately 60-75 % [10] of the glioma cohorts. Specifically, the GBM (grade IV) is the most
malignant and rapidly growing tumor in the adult brain. However, in regular clinical practice
grading is an invasive process and relies on the visual observation of microscopy tissue slide
images. This work proposes a novel non-invasive glioma grading using structural MR images
that may be useful before an invasive biopsy is recommended. The proposed method suggests
that grading of glioma tumors is possible using novel radiomic texture features in MRI. This
dissertation also proposes a computationally efficient cell nuclei morphologic feature analysis
technique for grading brain gliomas into GBM versus LG in tissue slide DP images.

1.1 PROBLEM STATEMENT AND DISSERTATION GOALS

The above discussions demand highly efficient automatic computational models being evaluated
with a large scale multi-center dataset. Automatic processes are well known for their fast
and accurate reproducibility. In the case of handling large scale data and finding the intrinsic
properties from those big data, a fully automatic process is the ultimate choice. However,
automatic computation of brain abnormal tissues is always challenging due to their unpredictable
appearance with a wide range of variation in size, shape, location, and number. Figure 2 shows
example images having the tumor with different size and shapes.

Figure 2: Variation in shape, size and location of different abnormal tissues in brain.
Tumor core (red) and edema (green).

Especially, in the case of ischemic stroke lesion (sub-acute), the strong diversity emphasizes
the difficulty of the segmentation task. Table 1 shows the characteristics diversity of sub-acute
ischemic stroke lesions present in 64 patients used in the ISLES-2015 challenge [3].
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Table 1: Diversity in location, size and number of stroke lesions that represents the
difficulties involved in the lesion segmentation task. Lesions diversity is summarized for
64 sub-acute ischemic stroke lesion cases in the ISLES-2015 challenge dataset. The strong
diversity represents the difficulties involved in the lesion segmentation task. µ denotes the
mean value, [min, max] is the interval and the total number of lesion counted in the dataset,
anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery
(PCA) and basilar artery (BA).

The presence of MR imaging artifacts such as intensity inhomogeneity and the bias of the
magnetic field makes the automatic computation more challenging. Furthermore, noise in the
images, patient movement at the time of acquisition makes the automatic processing challenging.
Uneven contrast enhancement and different settings of acquisition parameters across the multi-
center datasets further complicates the computational modeling for a consistent performance
over the whole dataset. Consequently, state-of-the-art automatic segmentation and classification
methods suffer from false positives and inconsistency even in the follow-up images. This study
proposes computational models for automatic segmentation, tracking, and grading of brain
lesions. Several experiments are performed and validated with large-scale dataset related to
few of the above challenges. The first goal of this dissertation is to obtain a robust automatic
segmentation method for abnormal brain tissues. The detail multi-resolution analysis of multi-
fractal Brownian motion (mBm) [5] enables to capture the randomly varying spatial tumor
texture at different scales. In this work, using these sophisticated texture features such as fractal
piece-wise triangular prism surface area (PTPSA) [11] and mBm along with intensity is used for
characterizing the different abnormal brain tissues such as tumor and lesions.
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The second goal of this dissertation is designed to reduce the FPs from the outcomes of the
automatic segmentation method proposed in the first goal. A complete post-processing scheme
has been developed using the temporal behavior of texture variation in longitudinal images.
Despite considerable advances in tumor research, the use of temporal information from the
longitudinal image is very infrequent. However, it is intuitive that leveraging this temporal
information can improve tissue segmentation accuracy by helping to detect the potential tumor
candidates with high false positive values. The improved segmentation method is then used
for longitudinal tumor volume assessment which requires consistent segmentation performance
among the follow-up images. In the third goal, 3D texture feature-based novel non-invasive
glioma grading using only structural MR images is proposed in order to provide a useful grading
tool that may be useful before an invasive biopsy is recommended. A combination of novel
radiomic texture features in MRI are developed to characterize tumor texture. Tumor grading
from microscopy tissue slide images is an invasive diagnosis process to assess tumor progression,
proliferation, and invasion. Many automatic cyto-/histological image analysis methods have
been reported in the literature for classification of breast cancers, follicular lymphoma, bone
marrow, and brain tumors. The goals of this dissertation are summarized in Table 2.

Table 2: Proposed goals in this dissertation.

Dissertation
Goals

Description Proposed Methods

Multi-tissue BTS
and lesion

segmentation

Multiclass abnormal tissue
(edema, necrosis, enhanced

and non-enhanced)
segmentation.

Novel texture features (mBm,
PTPSA). Random Forest (RF) as

classifier.

Ischemic stroke lesion
(sub-acute) segmentation.

Structure tensor based local gradient,
mBm, and PTPSA texture features.

RF as classifier.
Improved BTS

using 3D texture
features for tumor
volume tracking

Improved BTS in
longitudinal MRIs

Original BTS with longitudinal
information, False positive reduction

using Spin image, RIFT, LBP
feature. Relevance Vector Machine

(RVM) and RF as classifier.
Tracking the Tumor volume

as stable, progress or
shrinkage.

Ratio of the tumor volumes in the
follow-up images.

Tumor grading
using texture

radiomics and its
validation using

histopathology data

Non-invasive grading using
only structural (T1c, T2,

Flair) MR images.

Dynamic texture, MFDFA, and
mBm features. Support Vector
Machine (SVM) as classifier.

Invasive grading in
histopathology images.

Cell nuclei morphology with k-mean
clustering. SVM as classifier.
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This dissertation proposes several texture-based computational models for analyzing brain
tumors. First a texture-based computational model is proposed for effective segmentation of
brain abnormal tissues (tumor, stroke lesion) in multi-modal MR images. The proposed texture
based method has been improved with a complete post-processing using three dimensional
hierarchical texture features in longitudinal MRIs. The volumetric ratios of the tumor tissues in
the longitudinal images are used to propose a method for tracking the change of tumor volume
in longitudinal images. The consistency of the improved segmentation result in the follow-up
images is the key for such tumor tracking. Finally, texture based non-invasive grading method
has been proposed and validated with an invasive grading scheme. The contributions of this
dissertation can be summarized as follows:

An efficient multi-class tumor tissue and ischemic stroke lesion segmentation method

While the previous works [12] [5] studied the effectiveness of the multi-resolution texture for
segmenting posterior-fossa tumor in [12] and different types of tumor such as medulloblastoma,
astrocytoma and low-grade gliomas [5], this study extends texture feature-based technique for
multiclass tumor tissue (necrosis, edema, enhances, and non-enhanced) segmentation. In the
prior work [5], SVM is exploited as weak classifier with a novel modified Adaboost algorithm
for two-class (e.g. tumor and rest of the brain) tissue segmentation. In contrast, this work
involves Random Forest [13] as the classifier for its excellent multiclass handling capability.
Furthermore, the method has been successfully extended for ischemic stroke lesion segmentation.
The extensions lie in the MR image intensity inhomogeneity correction, adding new features and
feature ranking. In this work, the brain abnormal tissues (tumor, lesion) are characterized using
local texture features; PTPSA, mBm, structure tensor based local gradient with global features
like regular intensities, and intensity differences of MRI modalities. Finally, extensive state-of-art
comparison by participating multiple global tissue segmentation challenges is performed to
ascertain the effectiveness of the proposed technique.

The first method uses three dimensional hierarchical texture features to improve tumor
segmentation

This study focuses on using the temporal information from longitudinal images. Due to their
uncontrolled growth and infiltration into the surrounding tissues, the tumor regions appear with
a significant texture variation in longitudinal imaging while the texture of non-tumor regions
remains fairly same. Analyzing this temporal behavior using specific 3D texture features such as
spin image [14][15], rotation invariant feature transform (RIFT) [15] and local binary profile
(LBP) [16] may be useful to discriminate the original tumor volumes from the pool of non-tumors.
While these features are widely used in computer vision algorithms for different types of object
recognition, this work uses these texture features in tumor analysis for possibly the first time.
We extend the 2D spin image and RIFT features into 3D, and added the LBP of three orthogonal
planes (LBP-TOP) [17] features and develop an effective post-processing method to reduce the
false positives. In addition, the method quantifies the pattern of tumor volume change as stable,
progressing, and shrinking using the volumetric ratios of different tumor tissues.
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Non-invasive grading method using only structural MR images

This study proposes a non-invasive glioma grading method using commonly available structural
MRI. Although few non-invasive methods using advanced MRI modalities (perfusion, spec-
troscopy etc.) with structural images are found in the literature, this is the first method that
uses structural MRI only. The proposed method is further validated using DP images. This
work proposes novel non-invasive glioma grading using structural MR images that may be useful
before an invasive biopsy is recommended. The proposed method suggests that grading of glioma
tumors is possible using novel radiomic texture features in MRI. Tumor texture is characterized
by employing a combination of dynamic texture (DT) analysis [18], Multi-fractal Detrended
Fluctuation Analysis (MFDFA) [19], and mBm. For the first time in the literature, DT has been
used in medical MR image analysis and MFDFA in brain tumor analysis through this work.

A novel technique to analyze the cell nuclei morphological features for glioma grading in
DP images

In this work, a novel glioma grading technique using cell nuclei morphology in DP image
is also proposed. The contribution of the method is in extracting representative features by
k-mean clustering of nuclei morphologic features including area, perimeter, eccentricity, and
major axis length. This clustering based representative feature extraction avoids shortcomings of
extensive tile [20][21] and nuclear score [22] based methods for brain glioma grading in pathology
images.

Validation of proposed non-invasive grading in MR with the invasive method in DP images
using the corresponding dataset of common patients

As discussed above, few non-invasive grading methods are found in the literature using the
advanced MRI modalities (e.g., perfusion, spectroscopy) which are not commonly practiced in
regular clinical settings. Moreover, none of their performances are validated with the regular
invasive grading results using DP images. In this work, performance of the proposed non-invasive
grading is validated with that of the proposed invasive one.

1.2 ORGANIZATION OF THE DISSERTATION

The rest of the dissertation is organized as follows. Chapter 2 provides a background review
on automatic segmentation of multi-class tumor tissues, stroke lesions, quantification of tumor
growth in longitudinal images and non-invasive glioma grading in multimodal MR images.
Chapter 3 proposes novel texture feature-based brain abnormal tissue and ischemic stroke
lesion segmentation in multimodal MR images. State-of-the-art comparison, ranking and results
in multiple global tissue segmentation challenges of the proposed segmentation methods are
also provided in Chapter 3. Chapter 4 investigates the efficacy of the proposed 3D texture
feature-based post-processing method to reduce the FPs from BTS outcome. Computational
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models for tumor growth estimation using the different tumor tissues volumetric ratio is also
proposed in this chapter. The study of non-invasive glioma grading using specific radiomic
features is provided in Chapter 5 with the experimental results of HG versus LG and GBM
versus LG. The automatic glioma grading using cell nuclei morphological features for GBM
versus LG in DP images is provided. The validation of the non-invasive grading performance
with that of the invasive method is also provided in Chapter 5. The dissertation concludes with
future plans in Chapter 6.
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CHAPTER 2

BACKGROUND REVIEW

This chapter reviews the relevant previous work on tumor segmentation, tracking, and grading
in MR images.

2.1 RELATED WORK IN ABNORMAL TISSUE SEGMENTATION

2.1.1 AUTOMATIC TUMOR SEGMENTATION

Over the last decade, clinical studies related to brain tumor quantification in medical images
have increased significantly. About one fourth of these studies involve automatic segmentation
of tumors. Numerous algorithms for automatic, semi-automatic, and interactive segmentation of
brain tumors are found in the literature. Due to the unpredictable and complex appearance of
the brain tumors, researchers have been studying both generative and discriminative approaches
to address this challenging segmentation task [4]. Generative methods usually combine domain-
specific prior knowledge with the tissue anatomy and appearance of the brain to obtain automated
segmentations. Atlas-dependent registration is one of the generative methods that register the
tumor image with the brain atlas, where the atlas is composed of healthy or diseased developing
or adult human brain. Although generative methods often offer good generalization to unseen
images, encoding prior knowledge is difficult. On the other hand, discriminative approaches
directly learn from the image intensities and its corresponding segmentation labels without any
prior knowledge. In addition to the image intensities, useful features are also incorporated in
the discriminative methods. Since the developed texture-based tumor segmentation method is a
feature-based method, briefly a literature review on recent-feature based techniques is provided.
Among the recent feature-based techniques, Lee et al. [23] propose support vector machine
(SVM) based discriminative random fields with a set of multi-scale image and spatial alignment
driven features, spatial probabilities of normal tissues (white matter, gray matter, cerebrospinal
fluid), spatial expected intensity maps, and a left-to-right symmetry characteristics. However, the
method does not allow training and inter-patient testing across the different patients. Corso et
al. [24] use the conditional random field (CRF) in modeling a cascade of boosted discriminative
classifier. Popuri et al. [25] study Dirichlet-priors, Gabor-like texton [26], and level-set features
to build a statistical model for brain tissues. However, level-set techniques are very sensitive to
initialization and tend to suffer from boundary leaking problems. Zikic et al. [27] use spatial
non-local features and initial probabilities with the classification forest (CF) to segment the
brain tumor. Bauer et al. [28] integrate random forest (RF) classification with hierarchical CRF
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regularization in an energy minimization scheme. In [29], Geremia et al. introduce a symmetry
feature and use discriminative random decision forest for voxel-wise classification of tumor voxels.
Tustison et al. [30] use Gaussian mixture model (GMM) and maximum a priori estimation using
Markov random fields (MAP-MRF) to generate connected component based geometric features
for brain tumor classification. Meier et al. in [31] extend the discriminative model [32], to a
generative-discriminative hybrid model which generates initial tissue probabilities for enhancing
the classification and spatial regularization. The authors extract 44 features including first-order
texture, gradient information, symmetry features and 7 voxel-wise tissue probabilities for brain
tumor segmentation. Other important texture-based techniques are also found in the literature.
Ghoneim et al. [33] have proposed a 3D co-occurrence matrix-based texture analysis to classify
gliomas. However, they use a manually segmented volume for the region of interest. Pachai et
al. [34] have shown a multi-resolution pyramid algorithm to segment multiple sclerosis lesions in
brain MR image. Pitiot et al. [35] present a texture-based MR image segmentation approach
with a novel combination of two–stage hybrid neural classifier. However, none of the above
features capture the multi-resolution spatially varying properties of the brain tissues. This study
argues that the complex structure of brain tumor in MRI may be more amenable to multi-scale
spatially variable texture analysis such as PTPSA [11] and mBm [5]. The detail multi-resolution
analysis of fractal feature such as mBm [16] enables capturing the randomly varying spatial
tumor texture at different scales. In our prior work [12], we study the effectiveness of these
features and feature selection methods for segmenting posterior-fossa tumor. In [5], we show that
fractal feature based technique is also efficient in segmenting different types of tumor such as
medulloblastoma, astrocytoma and LG gliomas. In [6], [7], these sophisticated texture features;
fractal PTPSA and mBm along with intensity and intensity differences among the modalities
are used to analyze multimodal MRI for characterizing the different abnormal and normal brain
tissue.

2.1.2 ISCHEMIC STROKE LESION SEGMENTATION

In recent years, quantification of stroke lesions has gained increasing attention. However, efficient
automatic segmentation is still required. Stroke lesion segmentation is very challenging not only
for their diverse characteristic (Table 1) but also their acquisition time-dependent appearance in
MR images. A collection of recent studies for stroke lesion segmentation is found at the ischemic
stroke lesion segmentation challenges (ISLES-2015) [3]. Among the automatic algorithms, both
generative probabilistic (Derntl et al. [36], Menze et al. [4], Forbes et al. [37], Kabir et al.
[38], Martel et al. [39]) and discriminative in a pattern classification frame-work (Maier et al.
[40],[41]) are found. However, due to the strong diversity of the used dataset, state-of-the-art
comparison with their advantages and disadvantages are tough to explain. This study also
extends the proposed BTS method by adding local gradient features and diffusion-weighted
imaging (DWI) for sub-acute ischemic stroke lesion segmentation.
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2.2 LONGITUDINAL TUMOR SEGMENTATION

In the context of glioma analysis, it is very common to have multiple images of the same
patient over time (longitudinal images). Specifically for GBM, it is important to monitor tumor
progression over time and determine the treatment procedure and dose medication accordingly
or monitor whether the tumor has recurred. Detailed segmentation of brain tumor and its
different tissues (necrosis, edema, enhanced active, cyst etc.) is the precondition for a reliable
diagnosis such as growth monitoring, dose determination, and estimating drug and therapy
response. A number of state-of-the-art segmentation methods of brain tumors, as well as
classification of different tumor tissues, have been found in the literature, whereas many of
them have been reported at the annual workshop on Multimodal Brain Tumor Segmentation
(BRATS) challenges [4]. However, most of these methods are designed to take input MR scans
in a time-independent framework without accounting for the longitudinal information. Moreover,
most of the post-processing techniques mentioned in these studies are not clearly outlined
and thus suffer a lack of reproducibility. It is intuitive that over the time the texture of the
tumor region changes due to uncontrolled growth while the non-tumor regions remain the fairly
same. Specific features that quantify this temporal information may be useful in modeling a
generalized post-processing technique to discriminate the tumor volumes from the non-tumor
volumes. Recently, quantification of longitudinal changes in brain MRI has been investigated in
few studies. Chitphakdithai et al. [42] performed registration among the follow-up MR scans
and analyze the label changes between the two consecutive scans for metastatic tumor tracking.
However, due to irregular appearance and fast evolution of GBM, registration methods are
not well suited. Elliott et al. [43] propose a Bayesian framework using the subtraction of two
consecutive scans to estimate the progress of multiple sclerosis (MS). However, MS lesions do not
deform normal brain tissues and thus retain the spatial correspondence among the longitudinal
scans, which allow the method to use subtraction. In the case of GBM, the tumor grows fast
and deformations take place in the tumor locality as well as in the surrounding normal tissues,
hence simple subtraction is not effective. Angelini et al. [44] address the nonlinear contrast
change between the two follow-up scans with normalization via midway histogram equalization to
predict the growth of LG tumors. While the method [44] is effective for slow growing LG tumors,
its performance is not justified of more aggressive GBM. A semi-automatic segmentation method
is also proposed by Weizman et al. in [45] use the change of gray levels in longitudinal scans that
start with the prior information of the first MR scan for LG tumors. However, the method’s
performance highly relies on the segmentation accuracy of the first scan. Bauer et al. [46]
propose a conditional random field(CRF) based method to integrate the four-dimensional (4D)
spatio-temporal cliques for longitudinal tumor segmentation. Alberts et al. [47] use a graphical
method in a CRF for tumor segmentation. However, parameter learning of CRF methods for
higher order cliques in a multi-class scenario is challenging. The temporal variation of tumor
can be quantified effectively by some specific hierarchical texture features such as Spin image,
rotation invariant feature transform and local binary profile. This study is greatly inspired by
[48], in which Karimaghaloo et al. first use two-dimensional hierarchical feature to reduce the
false positives in detecting small gadolinium-enhanced lesions in longitudinal images. In general,
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MS lesion enhancement by gadolinium agent slowly diminishes over 6 months period whereas
non-lesional tissue enhancement remains same. However, the method is limitedly applicable
on the dataset that consists of longitudinal scans with at least six months apart so that the
lesion’s enhancement at time t appears non-enhanced at time t′. This study used brain tumor
images that are always scanned with gadolinium agents and differs from MS lesions which have
enhancement at time t and non-enhancement at time t′. Moreover, GBM grows rapidly, as a
result, significant spatial deformations occur in the follow up scans. In order to use the temporal
information, it is important to relate the corresponding points or locality in the follow-up images.
Therefore, in the cases of large deformations spatial correspondence considerably reduced among
the follow-up images for tumor and non-tumor tissues. This study argues that 3D texture
analysis is more suitable than 2D texture to capture the temporal variation of the detected
pathology. In this study, the proposed method quantifies the temporal variation using specific
3D texture features; spin image, RIFT and LBP to reduce the false positives from segmentation
outcomes. Although these features are widely used in computer vision algorithms for different
types of object recognition their efficacy is not investigated in medical image analysis.

2.3 GLIOMA GRADING

2.3.1 NON-INVASIVE GLIOMA GRADING

In the literature, several non-invasive computer aided techniques are proposed. Among recent
work, Weber et al. [49] capture the inherent heterogeneity properties of brain neoplasms from
spectroscopy and perfusion MR images. In [50], Wang et al. classify malignant and benign brain
neoplasm using the spectroscopy and conventional MR images. Zacharaki et al. [51] extract
shape and Gabor-like texton [26] features from perfusion and conventional MRIs for tumor
grading. However, none of the above methods employ only structural MRI, that is the most
routinely available imaging modalities. Devising a texture-based non-invasive structural MRI
method for tumor grading is useful. This study proposes a novel non-invasive brain tumor type
classification using MFDFA [18], DT [19], mBm in structural MR images. In this study, the
efficacy of texture feature in classifying (grading) brain tumors as HG versus LG and GBM
versus LG is investigated. As the aggressiveness of different glioma grades differs significantly,
the texture in structural MR images may be a useful feature to discriminate them.

2.3.2 AUTOMATIC GLIOMA GRADING IN DP IMAGES

In regular a clinical setting, tumor grading is an invasive process that performed by the visual
observation in the microscopy tissue slide images. Many automatic cyto-/histological image
analysis methods have been reported in the literature for classification of breast cancers, follicular
lymphoma, bone marrow, and brain tumors. Among the recent automatic tumor classification
works, Kong et al. [22] use a computationally extensive nuclear score(NS) based quantification of
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oligodendroglioma component(OC) population to classify GBM subtypes. Barker et al. [20] use
local textures in a tile-based framework, which is also computationally extensive and needs a more
sophisticated image matching algorithm. Apart from the aforementioned feature-based method,
Xu et al. [21] use the deep convolution activation features to classify GBM and LG. However,
the method needs an extremely large number of training data for effective feature extraction.
This work proposes a computationally efficient feature analysis and classification method using
the morphological features of cell nuclei for tumor grading. The proposed classification method
simply uses the k-mean clusters centroids of the morphologic features to avoid NS calculation
and searching of a suitable candidate tile.
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CHAPTER 3

MULTI-RESOLUTION TEXTURE FEATURE FOR
AUTOMATIC SEGMENTATION OF BRAIN ABNORMAL

TISSUES

3.1 CHAPTER OVERVIEW

Different techniques mentioned in the previous section clearly indicate that extracting effective
feature is one of the key factors for successful segmentation. Fractal-based spatially varying
textures can be one of the effective features for the segmentation of abnormal brain tissues in
MRI. This chapter discusses multi-fractal texture estimation and characterization of abnormal
brain lesions (necrosis, edema, enhanced tumor, non-enhanced tumor etc.) and ischemic stroke
lesions in magnetic resonance (MR) images. This work formulates the complex abnormal tumor
texture in MR images using a stochastic model known as multi-fractional Brownian motion
(mBm). Mathematical derivations of the mBm model and corresponding algorithm to extract
the spatially-varying multi-fractal texture feature are discussed. Extracted multi-fractal texture
features are fused with other effective features to enhance the tissue characteristics. Segmentation
of the tissues is performed by using a feature based classification method. The efficacy of the
mBm texture feature in segmenting different abnormal tissues is demonstrated using a large-scale
publicly available clinical dataset. Experimental results and performance of the methods confirm
the efficacy of the proposed technique in an automatic segmentation of abnormal tissues in
multimodal (T1, T2, Flair and T1contrast) brain MRIs.

3.2 METHODOLOGY

This section describes the developed pipeline for abnormal brain tissue segmentation from the
3D MRI volume images (T1, T2, T1c and Flair). Figure 3 shows the steps in the pipeline, which
is the proposed method in the previous work [7]. The process starts with linear co-registration
among the modalities, which reduces the alignment, rotation, and scaling mismatches. Then 2D
MRI slices are obtained from the 3D volume for subsequent processing. A brief discussion on
each of the steps in Figure 3, is given below.
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Figure 3: Multi-tissue brain abnormal tissue segmentation pipeline [7].

3.2.1 PRE-PROCESSING

The preprocessing step involves aligning and co-registration among the channels, resampling,
skull stripping, a MR bias field, and intensity inhomogeneity correction. Co-registration is
performed to correct the miss-alignment among the modalities and can be done with several
tools such as SPM, ITK, and Slicer3D. A MR bias field signal is a low-frequency and very
smooth signal that blurs an image and reduces the high-frequency components from the images.
Therefore, it is very important to reduce the MR bias field and thus several techniques are
found in the literature. This work performs MRI bias correction with a N4ITK [52] MRI
bias correction tool of slicer3D. In order to minimize the intensity inhomogeneity of the MR
image, intensity normalization is performed. The intensity normalization for MR images is very
important because the intensity of the same tissue type can vary from patient to patient and
even slice to slice of the same patient. Several MR intensity inhomogeneity correction techniques
[53][54] are available in the literature. The intensity inhomogeneity correction method in [53]
is a two-step normalization method, where the image histograms are modified such that the
histograms match a mean histogram obtained using the training data. After inhomogeneity
correction, the intensity values for the same tissue in different MR images fall into a single range
of the scale. The method in [54] also comprises two steps. In the first step, 10 point histogram
matching is performed, where the reference images of four modalities are arbitrary set from
a single patient data. Intensity values below the mean of the input volume are considered as
the background pixel and excluded from the histogram matching process. The next step is
normalizing all the intensity values around the mean intensity value of cerebrospinal fluid (CSF).
In [54], two class classification (CSF vs. Rest) is performed using the random forest to separate
the CSF from the other tissues. It is noticed that simply threshold the intensity differences
among the modalities gives a fair output to get the CSF mask. The method takes the histogram
matched images, inhomogeneity corrected images, and this CSF mask as the features. Figure 4
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T1c T2 FLAIR

Figure 4: Example images of standard MRI preprocessing. This involves aligning and
co-registration among the channels, resampling, skull stripping, MR bias field and intensity
inhomogeneity correction. Figure shows the original images (top row) and preprocessed
images (bottom row). After preprocessing the images are skull-stripped, aligned to the
intra-modalities, and channel-wise intensities are normalized.

shows example images of original and preprocessed images.

3.2.2 FEATURE EXTRACTION, FUSION, RANKING AND SELECTION

For each slice of the input images, the method extracts two primary sets of features such as
non-local and spatial/texture.

3.2.2.1 FEATURE TYPE-1 (NON-LOCAL FEATURE)

The non-local features are the pixel intensities of four MRI modalities and corresponding
differences of pixel intensities among the modalities. These features do not depend on the local
texture patterns and thus are named as non-local features. The proposed method uses the
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intensities (IT1 , IT2 , IF l, IT1c)and the intensity differences (d1 = IT1 − IT2 , d2 = IT2 − IF l, d3 =
IF l − IT1c) to capture the global characteristics of different tissues. This difference features
(d1, d2, d3) describe the amount of intensity variation at each pixel among the MR modalities. It is
instinctive that different tissues (WM, GM, CSF, Tumor-core, Necrosis, and Edema) may display
a different amount of intensity variation among the modalities. A similar type of difference
features is also used in [27].

3.2.2.2 FEATURE TYPE-2 (SPATIAL/TEXTURE FEATURE)

The spatial or texture features are those features that depend on the local texture pattern of an
area. As the tumor is the uncontrolled growth of the tissues, it infiltrates into the surroundings
and takes a different texture pattern which is expected to be different from the non-tumor
region. In order to characterize the tumor surface variation, the method employs novel fractal
texture features such as fractal PTPSA, mBm. It also uses regular Gabor-like texton since
these features have an important association for image segmentation. The texton features
are useful to decompose an image into its constituent components and reduce the redundant
information. In general, total 48 filters including 3-scales, 6-orientations, 2-phases, 8 Laplacian
of Gaussian (LOG), and 4 Gaussian filters are used in the texton feature extraction process.
Instead of using all 48 texton filter outputs, manually few filters are selected which show visually
significant differences among the abnormal and normal tissue regions. The extensions of tumor
segmentation for ischemic stroke lesion lie in replacing T1c with new MR modality DWI and
adding new feature, structure tensor based local gradient information from all four modalities
(T1, T2, Flair and DWI). As in tumor segmentation, the rest of the features and procedure
remain the same. While more details on fractal texture features can be found in [11] and [55],
this section briefly describes the PTPSA, mBm and structure tensor based local gradient feature
extraction process.

FRACTAL (PTPSA) TEXTURE FEATURE EXTRACTION
Fractal is an irregular geometric object with infinite nesting of a self-similar structure at multiple
scales. The concept of the fractal is first proposed by Mandelbrot [56] to describe the geometry
of the natural objects. The fractal dimension (FD) feature is a non-integer real number that
characterizes the texture of objects. In a prior work [11], statistically the effectiveness of
PTPSA feature is investigated for brain tumor detection. In PTPSA, the image is divided
into several equal sub-images. For each sub-image as shown in Figure 5, the intensities of
the four corners (I1, I2, I3, I4) and their average (Ic) at the center pixel form four triangles
(ABE,ADE,BCE,DCE). The FD is calculated by the slope of the log-log plot of the total
surface areas of the four triangles vs. sub-image size.



18

Figure 5: Illustration of fractal PTPSA feature extraction for a sub-image [12].

MULTI-RESOLUTION TEXTURE FEATURE
The mBm is a non-stationary zero-mean Gaussian random process that corresponds to the
generalization of fractional Brownian motion (fBm). The fBm is a part of the set (1/f) process
and is considered to be homogeneous or mono-fractal. The Hurst index (Holder exponent),
H in fBm process is same at all-time instances. The value of H(0 < H < 1) determines the
randomness of the fBm process. For example, if H = 0.01 the signal is very smooth, while for
H = 0.99, the signal is very rough. Figure 6 shows an example of a simulated 1-D fBm process
vs. time plots for different H values.

(a) (b) (c)

Figure 6: Simulation of fBm process using different Hurst, H index, which determines
the variation of signal roughness. (a) H = 0.01, (b) H = 0.50, and (c) H = 0.99.
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Figure 6 confirms variation of signal roughness with the variation of values. However, like many
other natural signals the roughness of the tumor texture varies in space, therefore tumor texture
is more amenable to the multi-fractal structure. Consequently, this work attempts to estimate
tumor texture using the mBm process. In mBm process the Hurst index, H is a time varying
parameter, which effectively captures the spatially varying heterogeneous texture of brain tissues.
The mBm process is defined as, x(at) = aH(t)H(t), where x(t) is the mBm process with the
scaling factor, a and the time varying Hurst index, H(t). The covariance function of a 2-D mBm
process is given as

E(z(−→u )z(−→v )) =
σ2−→u
2 [|−→u |2H(−→u ) + |−→v |2H(−→v ) − |−→u −−→v |2H(−→u )]; (1)

where, z(−→u ) is the mBm process, −→u denotes the vector position (ux, uy) of a point in the process,
σ2−→u is the variance and H(−→u ) is the Hurst index for a 2-D signal. After a series of mathematical
derivations, the expectation of the squared magnitude of wavelet coefficients E{|Wz(−→b , a)|2} is
given by

E{|Wz(−→b , a)|2} = 1
M +N

N−1∑
x=0

M−1∑
y=0
|Wz(−→b , a)|2, (2)

Here, a is the scaling factor and −→b is the 2-D translation vector of the wavelet basis. Also, N
and M are the dimensions of the image. The Hurst index for 2-D image is calculated as follows

2H(−→u ) = lim
a→0+

log(( 1
M+N ) ∑N−1

x=0
∑M−1

y=0 |Wz(−→b , a)|2)
log a . (3)

Finally, the fractal dimension (FD) is obtained as

FD = E + 1−H(u), (4)

where, E is the Euclidean dimension (E = 2 for 2-D images). For a given image, the method
first divides the image into non-overlapping blocks or sub-images and calculate the FD for
that corresponding sub-image. The process is repeated for all the sub-images. The simplified
algorithm for mBm texture feature extraction is shown in Figure 7. The detail mathematical
derivations of mBm and the description of the above algorithm shown in Figure 7 for mBm
texture feature can be found in [5].
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Input: image, wavelet, level
// image : N ×M MRI image
Output: MultiFD
a. for a in 1 to level do

i. compute the wavelet coefficients at scale a as shown in (2)
ii. compute E{|Wz(~b, a)|2}

end
b. Compute H(~u) using log(E{|Wz(~b, a)|2})

versus log(a) as shown in (3)
c. Compute FD = 2 + 1−H(~u)
return FD

Figure 7: Algorithm for tissue texture extraction using the mBm process.

STRUCTURE TENSOR BASED LOCAL GRADIENT FEATURE Eigen value de-
composition of the 2D structure tensor matrix [57] is performed to capture the local gradient
information. From all four modalities, Eigen values (λ1, λ2) are used as new features which allow
a more precise description of the local gradient characteristics.

3.2.3 FEATURE FUSION

After feature extraction from each corresponding slices, the method performs a feature domain
fusion. Each row of resulting in a fused feature matrix represents all the feature values for a
corresponding pixel location of the brain. To illustrate this fusion, let us consider each of the
input image volumes is of sizeV (= X × Y × Z), where X,Y, Z indicates the number of row,
column, and slices of an input image respectively. For Nf number of features extracted, the
3D-fused feature matrix will be of size (Nr ×Nf ×Z), where Nr(= X ×Y )is the number of rows
in the feature matrix, Nf is the number of columns, and Z is the number of slices as usual.

3.2.4 FEATURE RANKING AND SELECTION

All the features are not equally important and redundancy among the features degrades the
classifier’s performance. To identify the most useful features from the whole feature set, different
feature ranking and selection methods are used. From the recent techniques, the method
uses a mutual information based implementation of minimum redundancy maximum relevance
(mRMR) [58] feature ranking technique. The method works in two steps. In the first step,
it uses mutual information to search the maximum relevance between the individual feature
and the class label. However, the features selected with the maximum relevance could have
high redundancy among them, and it is intuitive that combination of these redundant features
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may have poor class-discriminating power. Therefore, in the second step, the method uses the
minimal redundancy to select the mutually exclusive features. In this work, the method performs
the feature ranking on the whole feature set and then heuristically select 19 top ranked features
out of 38 features. Among all the features, it is noticed that the intensity, intensity differences,
and the mBm features are in the top ranking list. This confirms the effectiveness of novel texture
features (mBm and PTPSA) in segmenting posterior-fossa brain tumor in the previous works
[5][12].

3.2.5 CLASSIFICATION WITH RANDOM FOREST

Because of fast and efficient multiclass handling capability, RF [13] is used for the tissue
classification. In the prediction level as shown in Figure 3, the RF classifier assigns a label for
each point of the test data. The method assigns the predicted labels (0, 1, 2, 3, 4) to represent
different tissues as non-tumor, necrosis, edema, non-enhanced, and enhanced tumor respectively
in the final segmented image. The RF [13] is an ensemble learning algorithm that generates
many classification trees. Each tree offers a classification that is known as votes for that class.
The forest chooses the classification having the most votes over all trees in the forest. The
additional layer of randomness to bagging and the randomly selected subset of predictors [59]
helps RF to perform better classification compared to other classifiers such as support vector
machines and neural networks. The classical random forests algorithm for both classification
and regression can be described as follows [59].

• Draw Ntree bootstrap samples from training dataset. Ntree is the number of trees necessary
for good predictions suggested by a subset of data samples. The best way to select Ntree

is the overall performance comparison for different settings.

• For each bootstrap data sample, grow a classification tree where at each node, randomly
sample mtry predictors and choose the best split from the chosen predictors.

• Predict new data using the collective predictions of Ntree number of classification trees.

In this case, the method gradually increases Ntree and mtryeach at a time and observed the overall
classification performance. After extensive investigation, Ntree = 150 and mtry = 4 are set for
this work. RF for classification is also known as Classification Forests (CFs). The Classification
Forests are ensembles of binary classification trees [7]. At each node, n classification tree
randomly takes a subset of training samples, Xn and predicts a class Pn

t (Ωi|x), where Pt is the
probability of the sample x in class Ωi [7]. There are five classes; Ω = {Ω0,Ω1,Ω2,Ω3, and Ω4}
as non-tumor, necrosis, edema, non-enhanced, and enhanced tumor. Depending on the feature
dimension, CF continually chooses a random dimension to split the training samples at every
node and assigns the partitions XL and XR to the left/right nodes. Tree growing continues up
to a certain tree depth, DT . In the testing phase, data points to be classified are pushed through
each tree t, with the learned split functions. The leaf node probability is directly used as the
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tree probability i.e.

pt(Ωi|x) = pl
t(Ωi|x) (5)

where, pl
t denotes the probability of sample x at leaf node l in class Ωi.

The overall probability is calculated by the following equation,

p(Ωi|x) = 1

T

T∑
t=1

pt(Ωi|x) (6)

where, p(Ωi|x) is the average probability of sample x in class Ωi and T is the total number of
trees. Finally, the class with the highest probability is estimated Ω̂i as the actual class

Ω̂i = argmaxΩi p(Ωi|x) (7)

More details about CF can be found in [60].

3.3 RESULTS

This section reports the segmentation results obtained from the predicted pixel labels of the RF
classifier. These 2D abnormal tissue segments are then stacked to generate volume image.

3.3.1 MULTI-CLASS TUMOR TISSUE SEGMENTATION

Figure 8 and 9 show example tissue segments using three slices taken from randomly chosen
patients of training and test cases respectively.
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Example 1 Example 2 Example 3

Figure 8: Example images of multi-tissue (Edema, Necrosis, Enhanced and non-Enhanced
active tumor) segmentation in training dataset. Each column represents an example set of
multimodality MRI slices. Row (1-5) T2, Flair, T1c segmented image and ground-truth.
Labels in the ground-truth: 1-necrosis, 2-edema, 3-non-enhancing tumor, 4-enhancing tumor,
0-everything else. (Note: Although all four modalities; T1, T2, Flair, T1c, are used by the
method for the sake of clear view T1 modality is dropped in the figure).
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Example 1 Example 2 Example 3

Figure 9: Example images of multi-tissue (Edema, Necrosis, Enhanced and non-Enhanced
active tumor) segmentation in test dataset. Each column represents an example set of
multimodality MRI slices. Row (1-4) T2, Flair, T1contrast, and segmented image.
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3.3.1.1 EVALUATION

The following similarity coefficients are exploited to evaluate any of our segmentation performance.

1. Dice = 2TP
2TP + (FP + FN)

2. Sensitivity = TP

TP + FN

where TP= True positive, FP=False positive and FN= False negative. Three different categories
such as the complete tumor, tumor core, and other tissues are considered for the evaluation.
The details on these three categories are as follows: Complete Tumor: (1-necrosis, 2-Edema,
3-non-enhancing tumor, 4-enhance tumor); Tumor Core: (3-non-enhance tumor, 4-enhance
tumor); and other tissues.

3.3.1.2 QUANTITATIVE EVALUATION

In this work, the preliminary abnormal tissue segmentation results are evaluated using the
BRATS-2013 [61] and BRATS-2014 [62] clinical dataset. BRATS-2013 dataset consists of multi-
contrast MR scans from 65 glioma patients with LG (astrocytoma or oligoastrocytomas) and HG
(anaplastic astrocytoma and glioblastoma multiforme) tumors. Similarly, BRATS-2014 dataset
consists of MR images of around 350 patients. The method performs a 3-fold within patient
cross-validation on 213 training patients of the BRATS-2014 dataset, the average scores using
the proposed method are shown in Table 3. The segmentation rate using 3-fold cross-validation
varies 73% to 87% using Dice overlap metric for tumor core and complete tumor respectively.
Low standard deviation, 8% - 24% indicates that the proposed method offers consistent results
for different abnormal tissue segmentation.

Table 3: Average quantitative scores (Dice, Sensitivity) of multi-class tumor tissue seg-
mentation (3-fold) in training dataset. Results of 213 patients (BRATS-2014) using the
proposed method [63].
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Mean 0.42 0.76 0.13 0.74 0.73 0.87 0.72 0.80 0.09 0.84 0.72 0.89
Std. 0.30 0.13 0.13 0.23 0.24 0.08 0.34 0.15 0.11 0.21 0.26 0.09

The patient-wise cross-validation results using the proposed algorithm in Table 3 suggest that one
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may obtain reasonably good results for any representative patient dataset. In order to measure
the robustness of the method, the trained RF classifier with BRATS-2013 data is applied on
the BRATS-2014 dataset. Quantitative scores of 213 training patients of BRATS-2014 with the
proposed method (Figure 3) are shown in Table 4.

Table 4: Average quantitative scores (Dice, Sensitivity) of multi-class tumor tissue segmen-
tation using 213 patients as test dataset. RF classifier is trained with 20 HG patients of
BRATS-2013 [63] and tested on 213 patients of BRATS-2014 dataset.

Dice Sensitivity
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Mean 0.31 0.62 0.03 0.63 0.63 0.76 0.49 0.59 0.02 0.85 0.62 0.71
Std. 0.27 0.17 0.05 0.28 0.22 0.15 0.31 0.18 0.03 0.18 0.23 0.18

Results in Table 4 shows that the Dice score varies from 63% to 76% using the proposed method,

which is very promising.

3.3.1.3 STATE-OF-THE-ART COMPARISON

Having participated in multiple global tissue segmentation challenge, the method ranked 3rd out
of 7 in BRATS-2013 (in Japan) [61], 4th out of 15 in BRATS 2014 (in Boston) [62] organized
by NCI and MICCAI. Table 5 shows the final ranking of the participants in the BRATS-2013
challenge.
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Table 5: Final ranking of multimodal brain tumor segmentation (BRATS) 2013. The
proposed method ranked 3rd in BRATS-2013 (Japan) on the final challenge [61].

3.3.1.4 DISCUSSION ON TUMOR SEGMENTATION RESULT

In summary, the results in Tables 3, 4, and 5 show that the proposed method is effective in
segmenting different tissues of glioma tumors. From the tissue-wise results, it is noticed that
the texture-based method performs comparatively better for larger lesion size while for smaller
lesions the performance is compromised. It is also realized that the interpolation method in
the texture feature extraction process penalizes the detail of the smaller lesions and thus the
classification performance is less than satisfactory. Again from the patient-wise results, it is
noticed that the proposed algorithm usually performs better for High grade (HG) tumors than
Low grade (LG). Therefore, the observation suggests that the MRI containing HG tumor surface
may contain higher randomness in texture.

3.4 ISCHEMIC STROKE LESION SEGMENTATION

This section describes the extended study of BTS for lesion segmentation.

3.4.1 MODIFIED BTS FOR LESION SEGMENTATION

The overall flow diagram of the proposed approach is shown in Figure 10.
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Figure 10: Generalized flow diagram for ischemic stroke lesion segmentation. An extension
of the multi-tissue tumor tissue segmentation method [64].

The detail description of the above method is similar to the previous BTS method.

3.4.1.1 THE LESION DATA

The method is evaluated on the images of 28 patients having sub-acute ischemic stroke lesions
collected from the training dataset of ISLES2015 challenge [3]. The detail of this work can also
be found in [64].

3.4.1.2 RESULTS OF LESION SEGMENTATION

The 2D segmented tissues are obtained using the predicted pixel labels from RF. These 2D
segments are then stacked to generate volume image. Example images of lesion segmentation of
two random patients are shown in Figure 11 [64].

3.4.1.3 QUANTITATIVE EVALUATION

The preliminary lesion segmentation results are evaluated using of the ISLES-2015 SISS training
dataset having images of 28 patients. The efficiency of the method is investigated by cross-patient
cross-validation, where odd patients are used in training to test the even patients and vice versa.
On an average, the 59 % Dice score overlaps with 23% standard deviation are obtained from the
cross-patient cross-validation. Moreover, comparatively higher scores are noticed for lesions with
bigger size than the smaller ones. A summary of the quantitative scores are presented in Table 6
[64].
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(a) (b) (c) (d) (e) (f)

Figure 11: Example images of segmented lesions for two random patients. Each row
represents an example set of multimodality MRI slices. Input: (a) T1, (b) T2, (c) Flair
(d) DWI. (e) Segmented lesion (f) ground-truth. Labels in the ground-truth: 1-lesion,
0-background.

Table 6: Patient-wise quantitative (Dice) scores of ischemic stroke (sub-acute) lesion
segmentation results. The scores are obtained using 28 patients data. The RF classifier is
trained with the odd numbered cases to test the even numbered cases and vice versa.

Pat
01

Pat
02

Pat
03

Pat
04

Pat
05

Pat
06

Pat
07

Pat
08

Pat
09

Pat
10

Pat
11

Pat
12

Pat
13

Pat
14

A
ve

ra
ge

0.
59

,
St

d.
0.

23
0.89 0.75 0.35 0.75 0.81 0.89 0.81 0.77 0.83 0.53 0.60 0.65 0.13 0.80

Pat
15

Pat
16

Pat
17

Pat
18

Pat
19

Pat
20

Pat
21

Pat
22

Pat
23

Pat
24

Pat
25

Pat
26

Pat
27

Pat
28
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3.4.1.4 STATE-OF-THE-ART COMPARISON

The method ranked 4th out of 14 in Ischemic Stroke Lesion (ISLES-2015) challenge [3] organized
by NCI/MICCAI in Germany. The results of the challenge are shown in Table 7. The results in
Tables 6 and 7 show that the proposed method is effective in segmenting sub-acute ischemic
stroke lesions. However, the overall performance of the reported method are far from the manual
outline and need further improvement.
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3.4.1.5 DISCUSSION ON LESION SEGMENTATION

In this work, an automatic lesion segmentation method is proposed and investigated the efficacy
of texture-based segmentation technique. Experimental results with clinical patient data confirm
the efficacy of the method for sub-acute ischemic stroke lesion segmentation. The training
results show comparable performance when compared to other state-of-the-art works posted
on the VSD website [65]. However, a lot of false positives are noticed in the detections that
compromise the overall results. More investigation for the smaller sized lesions is required. Also
presence of holes in the segmented lesion area are noticed. The method reduces most of the
holes by a morphological filtering. Future study can be conducted with more effective features
and sophisticated feature selection technique. It is also in future plan to deploy convolution
neural network (CNN) based segmentation technique to develop a generalized method for both
sub-acute and acute ischemic lesion segmentation.

Table 7: Ranking of ISLES-2015 Sub-acute stroke lesion segmentation challenge. The
method ranked 4th out of 14 participants [3].
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CHAPTER 4

LONGITUDINAL BRAIN TUMOR VOLUME

SEGMENTATION AND TRACKING USING 3D

TEMPORAL HIERARCHICAL TEXTURE FEATURES IN

MRI

4.1 CHAPTER OVERVIEW

Automatic segmentation and longitudinal tracking of brain tumors in MRI is an active research
area. Even though state-of-the-art tumor segmentation methods often show high sensitivity,
their performances are compromised due to the substantial presence of FP. Due to uncontrolled
growth and infiltration into the surrounding tissues, the tumor regions usually show significant
texture variation in longitudinal imaging while the texture of non-tumor regions remains fairly
same. Analyzing this temporal behavior using specific 3D texture features such as spin image,
RIFT and LBP may be useful to discriminate the tumor volumes from non-tumors. This study
develops an effective post-processing method by employing a combination of 3D temporal texture
features to reduce the false positives and thus improve the original segmentation. The proposed
method is evaluated using 96 longitudinal MRI scans from 19 patients in a multi-center dataset.
On an average 62% of FP are reduced and the average dice score for tumor segmentation has
been improved from 52% to 57% compared to the original segmentation results. In addition, the
proposed method quantifies the pattern of tumor volume change into three categories such as
stable, progressing, and shrinking using the volumetric changes of different tumor tissues.

4.2 THREE-DIMENSIONAL TEXTURE ANALYSIS

As discussed in Chapter 2, GBM grows rapidly, as a result, significant spatial deformations
occur in the follow-up scans. In order to use the temporal information, it is important to relate
the corresponding points or locality in the follow-up images. Therefore, in the case of large
deformations spatial correspondence considerably reduces among the follow-up images for tumor
and non-tumor tissues. For the comparison of deformations by GBM with that of the MS lesions,
Figure 12 shows example images of GBM tumors and MS lesions at two different time points.
In Figure 12, GBM tumors show significant deformations while MS lesion has no noticeable
deformations.
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(a) (b) (c) (d)

Figure 12: Example images at two time points for GBM tumors and MS lesions. The
difference of spatial deformation and enhancement in tumors tumors (a)-(c) and MS lesion
(d) are easily identifiable at time, t and t′.

This study argues that unlike 2D texture analysis of MS lesions shown in [48], 3D texture analysis
is more suitable for GBM tumor. The study also quantifies the temporal variation using specific
3D texture features; spin image, RIFT, and LBP to reduce the false positives from segmentation
outcomes. Although these features are widely used in computer vision algorithms for different
types of object recognition their efficacy is not investigated in medical image analysis. The
primary goals of this work are to modeling a post-processing step to reduce the false positives in
the results of an automatic BTS method in longitudinal MRIs, and assessing the tumor volume
change over time using the improved segmentation output. Therefore, this study employed
the previously proposed BTS [7] for the voxel-wise classification to demonstrate the proposed
method for post-processing and tracking the change of tumor volume. In this study, the goal is
two-fold: 1) model effective post-processing steps to reduce the false positives in the results of
BTS methods in longitudinal MRIs, and 2) assess the tumor volume change over time using
the improved segmentation output. As discussed above, due to the large-scale deformation of
the tumor, the 3D texture is more amenable to relate the spatial correspondence among the
follow-up images. This section provides brief discussions on the 3D hierarchical texture features
that are used in this study.

4.2.0.1 SPIN IMAGE FEATURE

The spin image feature first introduced in [14] to match the range data and later used as a
feature in [15] for texture classification. The spin image is a 2D histogram that encodes the
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intensity pattern along some concentric rings centered on a reference point. The two axes of the
spin image histogram are the distance of the concentric spherical rings from the center and the
normalized intensity values. Intuitively, this 2D histogram consists of a series of lD histograms
each corresponding to the intensity values of the voxels located at a fixed distance from the center.
It should be noted that since these lD intensity histograms are considered within a spherical
region around the center, the spin image feature is rotation invariant. Rotation invariance is a
desired property for modeling the textures of the tumor volume as they do not have a specific
shape. Prior to computing the spin image feature, the intensity inhomogeneity correction and
normalization to the [0, 1] range. In this work, a soft implementation as in (8) is chosen for the
2D histogram. The process allows every voxel in the detected volume to contribute at all the
bins according to its location and intensity. The contribution of a voxel p with the intensity of I
to the location (r, i) in the histogram is given by

exp(−(||p− p0|| − r)2

2α2 − (I − i)2

2β2 ); (8)

where, p0 is the reference/center point of the circular patch, r is the distance of the concentric
rings from the center point, and the parameters α and β are the smoothness factors along the
two dimensions of the histogram. Figure 13 demonstrates the extraction process of spin image
feature. Figure 14 shows the algorithm for the spin image feature extraction process.

(a) (b) (c)

Figure 13: Illustration of three dimensional spin image feature extraction. a) Original
image with the region of interest (ROI) in red box. Though the actual ROI is a 3D volume
for the sake of clear view 2D images are shown, b) actual 3D concentric spherical rings are
shown as 2D circles, and c) spin image feature extracted from a 3D volume image.
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Input: 3D volume image
// image of size : L×N ×M
Output: 2D histogram image
R = 0 : 0.2 : 1.0
I = 0 : 0.2 : 1.0
for each value of R do

for each value of I do
for each voxel do

Find the contribution by Eqn.(8)
Add the contribition to the 2D histogram at bin (I,R)

end
end

end
Normalize the histrogram
return 2D histrogram image

Figure 14: Algorithm for the 3D Spin image feature extraction.

4.2.1 ROTATION INVARIANT FEATURE TRANSFORM

The Rotation Invariant Feature Transform (RIFT) [11] is the rotation invariant version of the
powerful Scale Invariant Feature Transform (SIFT) [12]. It is a 2D histogram that encodes the
gradient information of a sub-image. In 3D, the sub-image is actually a 3D volume image. The
two dimensions of the histogram are intensity gradients of the volume image and distance of the
voxels from the center of the original volume. The gradient information is collected commonly
along eleven orientations of a voxel location. Similar to the spin image feature, concentric rings
are used as to distance locator from the center point of the original image. Accordingly, the
RIFT feature is constructed by dividing the 3D region into concentric spherical rings with equal
distances from each other and computing the histogram of gradient orientations on each ring.
The gradient orientation at each point is measured relative to the outward direction of the radial
line passing through that point. Similar to the spin image feature, each voxel inside the region
contributes to all histogram bins according to the equation (2). Note that in computing the
orientation of the gradient, this implementation always picks the smaller angle between the two
lines, resulting in an angle in [0 π].

exp(−(||p− p0|| − d)2

2α2 − (θ)2

2β2 ); (9)

where, p0 is the reference/center point of the circular patch, d is the distance from the center
point, and the parameters α and β are the smoothness factors along the two dimensions of the
histogram. The RIFT feature extraction process and algorithm are shown in Figure 15 and 16,
respectively.
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(a) (b) (c)

Figure 15: Illustration of three dimensional RIFT feature extraction process. a) Original
image with the region of interest (ROI) in red box. Though the actual ROI is a 3D volume
for the sake of clear visualization 2D images are shown, b) actual 3D concentric spherical
rings are shown as 2D circles, and c) extracted RIFT feature.

Input: 3D volume image
// image of size : L×N ×M
Output: 2D histogram image
D = 0 : 0.2 : 1.0
Θ = 0 : 0.2π : π
for each value of D do

for each value of Θ do
for each voxel do

Find the gradient direction
Compute the angle, θ as shown in Fig. 15
Compute the contribution by Eqn.(9)
Add the contribition to the 2D histogram at bin (Θ, D)

end
end

end
Normalize the histrogram
return 2D histrogram image

Figure 16: Algorithm for the 3D RIFT texture feature extraction.

4.2.2 Local Binary Pattern

The Local Binary Pattern (LBP) feature extracts the local binary patterns for a point from its
surrounding neighborhoods. By thresholding with its own intensity, a label [0 or 1] is assigned
to every neighbor points in the image. These assigned labels are then sequentially collected to
construct a binary number. The descriptor is a 1D histogram of the labels of all the points inside



36

the volume [16]. This study used the three dimensional LBP proposed in [17] that concatenates
LBP on three orthogonal planes (LBP-TOP) of the center voxel. Figure 17 demonstrates the
LBP-TOP feature extraction process while Figure 18 shows the algorithm.

(a) (b) (c) (d)

(e)

Figure 17: Three dimensional LBP-TOP feature extraction process. a) Three orthogonal
planes of a center voxel, b) a particular plane with the region of interest, c) the 3×3 sub-image
for LBP feature extraction, d) intensity thresholding with the center pixel and the resulting
binary code, and e) the LBP-TOP descriptor, concatenated histograms of three orthogonal
planes.

In this work, the histogram of each plane is constructed using an operator called “uniform
patterns” [67]. The uniformity of a pattern is defined by the number of bitwise transitions from
0 to 1 or vice versa considering the bit pattern as circular. All the binary patterns with at
most two bitwise transitions are uniform and else are non-uniform. For example, the patterns
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11111111 (0 transitions), 00011000 (2 transitions) and 10001111 (2 transitions) are uniform

Input: 3D volume image
// image of size : L×N ×M
Output: 1−D histogram
for each voxel do

Find the three orthogonal planes, XY, YZ, ZX
for each plane do

Extract the 3× 3 image patch centering the voxel
Perform threshold to get the binary profile as in Fig. 17
Map the binary code to the histogram bin
using “Uniform pattern”
Increase the counter of corresponding bin

end
Normalize the histrogram

end
Concatenate the 3 histograms
return Concatenated 1−D histrogram

Figure 18: The LBP-TOP texture extraction process.

whereas the patterns 10011001 (4 transitions) and 01001001 (6 transitions) are non-uniform. In
uniform LBP coding, each uniform pattern has a separate bin in the histogram while all the
non-uniform patterns are assigned to a single bin. Accordingly, for eight neighbor points, there
are 59 histogram bins. Therefore, for three orthogonal planes total 177 bins are seen in the
concatenated histogram in Figure 17. In this study, Uniform Patterns is chosen for two reasons;
i) most of the local binary patterns in natural images are uniform, and ii) it is statistically robust
being less prone to noise. For the sake of simplicity, LBP-TOP is referred as LBP in the rest of
this dissertation.

4.3 METHODOLOGY

The method starts with voxel-wise classification using our previously proposed automatic BTS
[7]. Details about the parameter setting of the random forest classifier for this multiclass
segmentation can be found in [7]. The simplified flow diagram of the proposed method to
improve the segmentation and assess the tumor volume change is shown in Figure 19.
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(a)

(b)

Figure 19: Simplified flow diagram of the proposed method for improving the brain tumor
segmentation in longitudinal images. a) Improving the segmentation, and b) assessing the
change of volume in longitudinal images.

A brief description of the above methods is given below.

4.3.1 CANDIDATE VOLUME GENERATION USING BTS

The method starts with the multiclass voxel-wise classification of brain abnormal tissues at
time t. Any automatic segmentation method with high sensitivity and moderate FP can be
employed for this task. In this study, BTS [7] method is used to classify the brain abnormal
tissues as necrosis, edema, enhanced, and non-enhanced tumors. The efficacy of BTS method
is statistically validated using BRATS-2013/2014 challenge [61][62] dataset. Despite excellent
ranking in the challenges, significant false positives outside of the tumor regions appeared to
have compromised the overall performance of the method. This work aims to reduce the false
positives from the BTS outcome. These detected volumes are referred as candidate volumes.
Prior to the feature extraction, each candidate volume is labeled (yvol) with 1 if it contains any
tumor voxels, else the label is 0.
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4.3.2 HIERARCHICAL TEXTURE FEATURE EXTRACTION

In the second step, the original input image regions inside the bounding box of the candidate
volumes are considered as the region of interest (ROI) for feature extraction. The aforementioned
3D textures features (spin image, RIFT and LBP) are defined in two categories; stationary tex-
ture features (Hvtε{spint, RIFT t, LBP t}) and temporal texture (H

vt
′ ε{spint

′
, RIFT t

′
, LBP t

′
})

features. The features are called stationary texture when it is extracted from the images at time
t and temporal textures when the images are at time t′ . Both stationary and temporal textures
are extracted using the same bounding boxes which is derived from the candidate volumes at
time t. Figure 20 demonstrates about the ROIs for the stationary and temporal texture feature
extraction with 2D slice images. It should be noted that the 3D texture (spin image, RIFT,
LBP) for both stationary and temporal cases are extracted from the four MR image modalities:
T1, T1c, T2, and Flair.

(a) (b) (c) (d)

Figure 20: Demonstration of ROI for hierarchical feature extraction. The regions are
extracted from the original detection of BTS for both stationary and temporal features. a)
Image T1c at time t, b) the detected tumor with the bounding boxes for the image at time ,
although four modalities (T1, T1c, T2 and Flair) are used but for the sake of clear view
we show only T1c, c) stationary feature are extracted from the image at time t using its
bounding box, and d) temporal features are extracted from the image at time t′.

4.3.3 CANDIDATE VOLUME CLASSIFICATION AS TUMOR/ NON-TUMOR

After the hierarchical (stationary and temporal) texture feature extraction, the next step is
to classify each candidate volume as tumor or non-tumor. For the above two types of texture
features ‘stationary’ and ‘temporal’ two separate classifiers ‘stationary classifier’ and ‘temporal
classifier’ are obtained respectively. The goal of the ‘stationary classifier’ is to find the probability
p(yvol|Hvt) of the candidate volumes where p(yvol|Hvt) determines whether the stationary texture
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(Hvt) of a candidate volume is more similar to a texture of a tumor volume or to that of a
non-tumor. Therefore, from all the candidate volumes at time t in the training data, a randomly
Ns number of volumes with an equal number of tumor and non-tumor labels are selected as a
static set (CS) and fixed for the rest of the steps. The stationary feature of a new candidate
volume is compared with the features of each member of the static set (Cs). Instead of comparing
the features directly, a histogram-based distance metric named as earth movers distance (EMD)
[68] is used to measure the distance between Hvt and CsHvt , where Hvt is the stationary textures
of a candidate volume and CsHvt ε{Hvt

1
, Hvt

2
...... Hvt

Ns
} is stationary features of the static set.

The EMD is calculated for each texture features (spin image, RIFT, LBP) and three separate
relevance vector machine (RVM) [69][70] classifiers are used to find the desired probabilities.
Similarly, the remaining NT candidate volumes of the training set is named as the temporal
set (CT ). From the temporal set, both stationary Hvt and temporal H

vt
′ features extracted.

The temporal classifier uses the EMD [71] distance between Hvt and H
vt
′ , which finds the

probability p(yvol|Hvt , H
vt
′ . Where p(yvol|Hvt , H

vt
′ determines whether the temporal behavior

in the follow-up images of a candidate volume are more similar to a tumor or to that of a
non-tumor. The random forest (RF) [60] is used as the temporal classifier to classify all three
texture (spin, RIFT, LBP) features of all four modalities. In short, the stationary feature of a
test volume is compared with 1) the stationary features of the static set, and 2) its own temporal
features.

4.3.4 FINAL PREDICTION ABOUT THE CANDIDATE VOLUMES

Finally, the probabilities provided by the classifiers (RVM, RF) are averaged and threshold
to get the binary decision of the test volume. The test volumes with zero labels are removed
from the original detection and thus output is the improved segmentation result with less false
positives. As part of this goal for tumor volume tracking, we quantify the tumor changes in
longitudinal images.

4.3.5 CORE AND ACTIVE TUMOR VOLUME CALCULATION

The changes of tumor core (sum of necrosis, enhanced, non-enhanced) and active tumor (enhanced
and non-enhanced) volumes are measured in terms of the cubic millimeter (mm3).

4.3.6 QUANTIFICATION OF CHANGES

The ratio of the volumes (V t
′
/V t) of both tumor core and active tumor (enhanced) are used

and identified the change of tumor volume as ’progressing’, ’stable’, or ’shrinking’.
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4.4 EXPERIMENTS AND RESULTS

This section provides the tumor segmentation and growth assessment in longitudinal MRIs.

4.4.1 DATASET

For this study, total 96 longitudinal MR images of 19 patients are collected from BRATS-2015
[72] multi-center datasets. Additional MRI images of 30 patients in BRATS-2013 training
dataset are used for training the classifier used for automatic segmentation of the candidate
volumes. In this study, four MR modalities: T1, T1c, T2 and Flair images are used. Since MR
images in BRATS dataset are already skull-stripped and co-registered, the method performs
intensity inhomogeneity correction through channel-wise histogram matching with the images of
a randomly selected patient as the reference.

4.4.2 AUTOMATIC SEGMENTATION OF BRAIN TUMOR

For candidate volume segmentation, the BTS method is trained with MR images of 30 patients
in the BRATS-2013 training dataset and tested on 96 longitudinal scans of BRATS-2015. Details
about the parameter setting of the random forest classifier for this multiclass segmentation can
be found in [6], in which we develop an automatic brain tumor segmentation (BTS) method and
statistically validated [7][4] its efficacy using BRATS-2013/2014 dataset. Despite excellent ranking
of our BTS method in the challenges, significant false positives outside of the tumor regions
appeared to have compromised the overall performance. Based on 26 connected components
all 3D objects less than 50 voxels are removed from the BTS outcome and the remaining 3D
objects are considered as candidate volumes. In this work, it is assumed that tumor volumes
are above 50 voxels. In addition, the method carefully applies a morphological operation that
fills the small holes in the detected regions either with a necrosis or an enhanced label which
is decided by the neighbors’ majority labels. Figure 21 shows two example images with BTS
outcome and the radiologist’s outline.
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(a) (b) (c) (d)

Figure 21: Example images of BTS outcomes with the appearance of significant false
positives. Input images a) T1c & b) Flair, c) output of the BTS method, all the candidate
volumes are marked with boxes, and d) radiologists’ manual outline (ground-truth). Actually,
four modalities (T1, T1c, T2 and Flair) are used but for the sake of a clear view only T1c
and Flair are shown in figure. The red box indicates false positives outside of the tumor
regions and the green box is the actual tumor region.

In Figure 21, MR slice images are shown for two arbitrary patients. The red boxes are the
non-tumor detection (FP) and the green boxes are the tumor detection (TP) in the BTS outcome.
For a clear understanding about the TP and FP in the segmentation outcome, 3D view is given
in Figure 22. The FPs in the original segmentations are easily seen in Figure 22. However, the
image in Figure 22(a) is slightly rotated and scaled to show all the FPs.
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(a) (b)

Figure 22: Three dimensional view of the false positives in BTS outcomes and the ground-
truth. (a) BTS outcome and (b) ground-truth. The false positives in the original detections
are easily seen in (a).

4.4.3 STATIC AND TEMPORAL FEATURE EXTRACTION

Prior to feature extraction, the 96 MRI scans of 19 patients are redistributed in such a way
that each MR scan has a pair with its closest follow-up scan. For example, if a patient has five
time-scan data at time t1, t2 . . . t5, then they are distributed in three pairs t1 − t2, t3 − t4, and
t4 − t5 for the temporal analysis. In this dissertation, the first time point of each pair is denoted
as t and second time point as t′ , respectively. Pairing the images with their follow-up scans
results in 51 possible pairs for the whole dataset. As mentioned in the methodology section,
static and temporal texture features are then extracted at time t and t

′ respectively.

4.4.4 TRAINING AND TESTING OF THE CLASSIFIERS

The method is evaluated with a 10 fold cross validation using the paired dataset, which means
in a single fold around 45 pairs are used for training and 5 pairs are in testing. All the candidate
volumes in the training dataset are randomized and further divided into two sets (S1&S2) with
70:30 ratio. In this work, the dataset S2 is used as a validation set. From S1, randomly 50
candidate voxels are selected with an equal number of tumor and non-tumor candidates as the
static set, Cs. The remaining candidate volumes in S1 are considered as the temporal set, CT .
Figure 23 demonstrates the dataset distribution for a single fold.
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Figure 23: Data distribution for training, validation, and test for hierarchical texture
feature extraction. In figure data distribution is shown for a single fold.

Three RVM classifiers are trained using the EMD-L1 [68][73] distances between the stationary
texture features of set Cs and CT . Similarly, the single RF classifier is trained using the EMD-L1
distances between the stationary and temporal texture features of the set, CT . The trained
classifiers are then applied on both validation (S2) and the original test datasets. Figure 24
shows the receivers operating characteristics curve (ROC) of the four classifiers for the validation
dataset of a randomly selected fold.
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(a)

Figure 24: Classifiers performance using the hierarchical texture features. Candidate
volumes are classified as tumor and non-tumor. The four classifiers (3 RVM and a single
RF) are used. The three stationary texture features are classified separately by RVM; a)
Spin image, b) RIFT, c) LBP, and d) all three temporal features are classified using a single
RF classifier.
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(b)

Figure 24. (continued)
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(c)

Figure 24. (continued)
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(d)

Figure 24. (continued)

The obtained AUCs of these classifiers varies from 83% to 87%, which indicates that the
defined classifiers are effective in discriminating the tumor volumes from non-tumors. However,
observation of this study suggests that averaging the scores of the four classifiers yield consistent
performance over all the folds. Therefore, the final probability p(yvol) of each candidate volume is
obtained by averaging the weighted scores of the four classifiers. The weights are the ratio of the
volume of that candidate to the total volumes of all the candidates for a corresponding patient.
The final probability p(yvol) is thresholded to obtain a binary decision for each candidate volume.
The optimal threshold value is obtained using the weighted average scores of the validation
dataset. MATLAB performance curve analysis [74] function “perfcurve” is employed to obtain
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the optimal operating point for the ROC curve which uses the slope, m given by equation (10)

m =
Cost( P

N )− Cost(N
N )

Cost(N
P )− Cost(P

P )
× N

P
; (10)

where, Cost(N |P ) is the cost of misclassifying a positive class as a negative class and Cost(P |N)
is the cost of misclassifying a negative class as a positive class, P and N are the total instance
counts in the positive and negative class, respectively. Finally a straight line with slope, m is
moved from the upper left corner to the bottom right corner of the ROC plot, until it intersects
the ROC curve. The threshold value corresponding to that intersecting point is found to be
optimal. Figure 25 demonstrates the procedure of finding the optimal threshold from a ROC
curve. Note that due to our small sample size, the ROC curve of the validation dataset is very
discrete. In order to find the suitable threshold value, we use a polynomial fit of degree two and
then apply the above procedure. The obtained threshold value is shown by the cross mark on
the fitted curve.

Figure 25: Demonstration of finding optimal threshold. Cost and slope of the ROC curve
are used by the MATLAB performance curve analysis function, “perfcurve” [74].
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4.4.5 IMPROVED SEGMENTATION RESULT

In order to obtain improved segmentation result, the optimal threshold value identified using
the validation set is applied on the final probabilities of the test dataset. Probabilities below the
threshold value are labeled as ′0′ and the corresponding candidate volumes are removed from
the original detection. Figure 26 shows example images of the segmentation results. Note that
the tumor segmentation is done in 3D, however, for visualization purposed only 2D image are
shown in Figure 26.

(a) (b) (c) (d)

Figure 26: Improved segmentation outcomes using hierarchical texture-based post-
processing method. Example images of improved segmentation outcomes for two arbitrary
MR slices, a) T1c input image, b) original segmentation by BTS, c) improved segmentation
outcome by the proposed method, and d) manual outline. The reduced false positives are
seen in the refined result (c).

Figure 27 shows the original segmented tumor using BTS, the improved segmentation with
reduced FPs, and the manual outline.
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(a) (b) (c)

Figure 27: Three dimensional visualization of the improved segmentation result. Example
images are shown for a) original BTS outcome, b) improved segmentation outcome by
the proposed method, and c) manual outline. The reduced false positives are seen in the
improved result (b).

Quantitative evaluation: The proposed method is evaluated using 96 longitudinal MRI scans of
19 patients using BRATS-2015 clinical dataset. Three different categories such as the complete
tumor, tumor core, and other tissues are considered for the evaluation. The details on these
three categories are as follows: Complete Tumor: (1-necrosis, 2-Edema, 3-non-enhancing tumor,
4-enhance tumor); Tumor Core: (3-non-enhance tumor, 4-enhance tumor); and other tissues.
The performance of the proposed method is evaluated by following four metrics: percentage
of reduced false positive (PRFP), positive predictive value (PPV), Dice, and sensitivity. The
metrics are defined as follows;

PRFP = (∑FP )before − (∑FP )after

(∑FP )before
, PPV =

∑
TP∑(TP + FP ) ,

Dice = 2TP
2TP + (FP + FN) , and Sensitivity =

∑
TP∑(TP + FN) (11)

where TP, FP and FN are the true positive, false positive and false negative, respectively.
The PRFP, PPV, Dice overlap, and sensitivity are plotted using the original segmentation by
BTS and the refined segmentation in Figure 28.
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Figure 28: Plots of the quantitative scores of the improved segmentation results using the
proposed. Plots are shown for the 96 time scan data of 19 patients. a) PRFP, b) PPV,
c) Dice coefficient, and d) Sensitivity. Dashed line indicates the scores obtained using the
improved segmentation result and the solid line using the original BTS outcomes.
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Plots in Figure 28 (a) show that significant amount of FPs are reduced in all three categories,
specifically for the complete tumor. Note the FPs in the original detections appear as edema
which are included in the complete tumor category, and hence reductions of these falsely detected
edema tissues greatly improves the complete tumor. Few other candidate volumes are also
detected as other tissue types, which improves the core and enhanced category. On an average
62%, 40%, and 30% of FPs are reduced from the original detections for complete, core, and
enhanced tumors, respectively. Following Equation (11), PPV has a strong relation to the FPs
and thus PPV score is also improved significantly. Similarly, the Dice score is also improved
by an average 5% for the complete tumor. However, the total volume of the FPs are very low
compared to the tumor volumes, hence reducing the FPs even by 62% has marginal effects on
the Dice score. Although sensitivity is not related to the FP, an improvement in this score is
also noticed due to the morphological operation. Note that in the first step of this preprocessing
step, we carefully apply a morphological operation that fills the small holes and thus improved
the sensitivity. In Table 8, all the quantitative scores are shown using the original segmentation
and improved segmentation. The overall performance for this dataset is compromised by the
imaging artifacts in the MRI, as shown in Figure 29.

Table 8: Comparison of the quantitative scores for the original BTS segmentation and the
improved result using the proposed 3D texture-based post-processing method.

Scores
PRFP PPV Dice Sensitivity

C
om

plete

C
ore

Enhanced

C
om

plete

C
ore

Enhanced

C
om

plete

C
ore

Enhanced

C
om

plete

C
ore

Enhanced

Original
BTS

Avg.
0.62
±

0.26

0.40
±

0.26

0.30
±

0.25

0.88 0.71 0.62 0.52 0.44 0.54 0.39 0.34 0.59

Std. 0.16 0.28 0.33 0.19 0.23 0.28 0.18 0.21 0.26

Improved
BTS

Avg. 0.95 0.77 0.64 0.57 0.46 0.57 0.43 0.36 0.63

Std. 0.07 0.24 0.32 0.18 0.23 0.28 0.18 0.21 0.25
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Figure 29: Example of some problematic images (imaging artifacts) in BRATS-2015
dataset. These images limits the classifiers performance and thus compromised the overall
segmentation output of the proposed method.

Moreover, this study uses MR images of 30 patients in training dataset of BRATS-2013, which
may not be enough to train the BTS automatic segmentation classifier.

4.5 TRACKING THE CHANGE OF TUMOR VOLUME

In order to assess the tumor volume change in longitudinal images,the method quantifies the
changes (V t

′
/V t) of both core and active part of the tumor. In this analysis, images of 13

patients those have more than 3 follow-up scans are used. However, as the data size is too
low to train any machine learning algorithm, tumor volume change is assessed with the visual
observation. Figure 30 shows plots of the volumetric changes for four example patients.
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(a) Case-1

(b) Case-2

Figure 30: Plots of the volumetric changes in the longitudinal images. a) Stable after
resection, b) decreasing after resection, c) progressing after sudden change, and d) stable.
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(c) Case-3

(d) Case-4

Figure 30. (continued)
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To validate the proposed quantification in tracking the tumor volume using the volumetric
plots, the original tumor volumes are also observed in longitudinal images (Figure 31) for a
randomly selected patient, in this regard (Case-3 ) in Figure 30. The original tumor volumes of
this particular patient indicates that after resection the tumor re-appeared later at time, Tp6.
Similar conclusion can be drawn from the volumetric plots and thus confirms the findings of our
proposed volumetric quantification in tracking the change of tumor volume.

(a) Tumor volume at time, Tp1

(b) Tumor volume at time, Tp2

Figure 31: Original tumor volumes in longitudinal images of a patient. Confirmation of the
possibility for volumetric ratio based tracking the change of tumor volume. The longitudinal
images are shown for the patient that corresponds to Case-3 in Figure 30.
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(c) Tumor volume at time, Tp3

(d) Tumor volume at time, Tp4

Figure 31. (continued)
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(e) Tumor volume at time, Tp5

(f) Tumor volume at time, Tp6

Figure 31. (continued)

4.6 DISCUSSION

In this work, a BTS method with complete post-processing steps is proposed to reduce the
FPs. These FP reduction steps may be used in any tissue segmentation method that offers
high sensitivity with moderate FP. The results are shown in Table 8 and Figure 26, 27, and 28
suggest that the proposed 3D texture features are effective in reducing FPs and thus improve
the segmentation result. Scores in Table 8 shows that the method improves the overall tissue
segmentation performance for all three defined tumor categories. The volumetric ratios shown in
Figure 30 confirms the quantification of tracking the change of tumor volume using the proposed
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method, which in turn evaluates the consistency of our proposed method in segmenting brain
tumors in longitudinal images. In future, the overall performance can be further improved by
training the BTS with more training data. Also, the future study plans to conduct several
experiments; i) devise the original BTS method to consider inputs from both time scans (It, It′ ),
where I stands for input features, ii) generalize the proposed method so that single time scan
data can also be tested by simply dropping the temporal classifier, and iii) apply the method
with small size lesion.
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CHAPTER 5

TEXTURE-BASED RADIOMICS FOR GLIOMA GRADING

AND VALIDATION USING HISTOPATHOLOGY IMAGES

5.1 CHAPTER OVERVIEW

This work proposes novel non-invasive glioma grading using structural MR images that may be
useful before an invasive biopsy is recommended. The proposed method suggests that grading
of glioma tumors is possible using novel radiomic texture features in MRI. Tumor texture is
characterized by employing a combination of DT analysis, MFDFA, and mBm. The efficacy of
the proposed method is investigated using MRIs of 235 patients collected from two separate multi-
center datasets. The proposed method is evaluated in two grading tasks such as HG versus LG
glioma, and GBM versus LG glioma. In the first task, the evaluation of the method is obtained
using MRIs from 168 HG and LG glioma patients in 2015 Brain Tumor Segmentation (BRATS)
challenge. The results show that the mean area under the receiver operating characteristic
curve (AUC) is 80% for HG versus LG tumor classification. In the second task, the proposed
non-invasive tumor grading performance is evaluated using MRIs from 67 GBM and LG glioma
patients obtained from NIH TCIA repository [75]. For validation, the method’s performance is
compared with an invasive grading in DP images for the same 67 patients obtained from NIH
TCGA repository [76]. The AUCs are found to be 88% and 90% for classifying tumor grades
using MR and DP images, respectively. The overall MR grading performance in both tasks
confirms the efficacy of the proposed non-invasive radiomics method for glioma grading.

5.2 NON-INVASIVE GLIOMA GRADING METHOD

This section discusses the proposed non-invasive glioma grading using structural MR images.
The overall flow diagram of the proposed method is shown in Figure 32. The method uses
three commonly available MR modalities: T1c, T2, and Flair. Following standard MR image
pre-processing, an automatic segmentation (BTS) method is employed to segment the tumors.
The proposed features are then extracted from MR image slices of the segmented tumor region.
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Figure 32: Overall flow diagram of the proposed method for automatic segmentation and
classification of tumor grades in MR images.

A detailed description of each step in Figure 32 is given below.

5.2.1 AUTOMATIC TUMOR SEGMENTATION

In the first step, the method employs a texture feature-based automatic brain tumor segmentation
(BTS) technique [7] which has demonstrated excellent performance in multiple global tissue
segmentation challenges (e.g., ranked 3rd in BRATS-2013 [61], ranked 4th in both BRATS-2014
[62] and ISLES-2015 [3] competitions, respectively). In this work, the proposed method performs
a multiclass (necrosis, edema, active tumor and non-tumor) abnormal tissue segmentation task.
The segmented 3D tumor volume is considered as the region of interest (ROI) for extracting the
proposed grading features.

5.2.2 FEATURE EXTRACTION FOR TUMOR GRADING

Several texture features including mBm, novel MFDFA, and 3D dynamic texture features are
extracted from the 3D tumor region. The underlying mathematical model and algorithm for
extracting these texture features are described below.
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5.2.2.1 MULTI-RESOLUTION MBM TEXTURE FEATURE EXTRACTION

The multi-resolution fractal features are derived from the analysis of mBm process and have
been effectively used in detection and segmentation of brain lesions [3][61][62]. However, in this
grading task, the algorithm is customized to take the whole image instead of a sub-image as
input for the classification task. Figure 33 represents algorithm to extract texture feature using
the mBm process for the classification.

Input: image, wavelet, level
// image : N ×MMRI image
Output: MultiFD
a. for a in 1 to level do

i. compute the wavelet coefficients at scale a as shown in (2)
ii. compute E{|Wz(~b, a)|2}

end
b. Compute H(~u) using log(E{|Wz(~b, a)|2})

versus log(a) as shown in (3)
c. Compute FD = 2 + 1−H(~u)
return FD

Figure 33: Modified algorithm for texture extraction to classify brain gliomas using mBm process.

5.2.2.2 MFDFA FEATURE EXTRACTION

The MFDFA is a multi-fractal process that is used to investigate the long-range dependency in
a random sequence or image. The method is successfully used in the time-series analysis [77], in
predicting gold price fluctuations [78] and in detecting micro-calcification in [19] mammogram
images. MFDFA is the multi-fractal process of the detrended fluctuation analysis (DFA).

For a given sub-image of size s-by-s , the DFA is defined by the equation below,

F (v, w, s) =

√√√√ 1
s2

s∑
k1

s∑
k2

(Uv,w(i, j)− Ũv,w(i, j))2, (12)

where, F (v, u, w) is the detrended fluctuation of the sub-image that is indexed by (v, w) of
the original image. Uv,w(i, j) denotes the cumulative sum and Ũv,w(i, j) is the fitted surface of
the cumulative sum and 1 6 (i, j) 6 s. The qth order fluctuation of each sub-image is given
by Equation (13) and is determined for values of q = (−6,−4,−2, 2, 4, 6). According to the L
Hospital’s rule, Eq. (14) is used for q = 0. The sum of all fluctuations is averaged over total
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number of sub-images as follows

Fq(s) = 1
T
{
∑

y

∑
x

[F (v, w, s)]q}
1
q (13)

and,

F0(s) = exp{ 1
T

∑
y

∑
x

ln [F (v, w, s)]q} (14)

where T is the total number of sub-images. The Hurst index, h(q) is given by the slope of the
log-log plot of Fq(s) versus s in Eq. (15). An image has self-similarity, if the log-log plot of Fq(s)
versus s indicates the power law scaling with a linear relation.

Fq(s) ∼ sh(q) (15)

The dependence of τ(q) on the scaling exponents q and h(q) in Eq. (16) is the necessary condition
for multi-fractal images.

τ(q) = q × h(q)− E; (16)

where, E = 2 , is the Euclidean dimension of 2-D image. The Hölder exponent,α = τ́(q), is used
to find the singularity spectrum, and f(α) is defined as the Hölder function as below,

f(α) = qα− τ(q). (17)

In this work, the MFDFA process measures the fluctuations (roughness of the surface) in an
image at multiple ranges (scales) to estimate the Hurst index at different resolutions. Finally, the
maximum and minimum values of the Hurst index, h(q), maximum of Hölder function f(α) and
the corresponding α values are used as the features following the above analysis. Figure 34 and
35 show the algorithm for feature extraction and the selected features within the corresponding
plots, respectively.
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Input: image, scale(s), order(q)
Output: max H(q),min H(q),max F (α), αm

for each value of s do
i. calculate Uv,w(i, j) and

Ũv,w(i, j)
ii. calculate F (u,w, s) using (12)
for each q do

calculate Fq(s) and F0(s) as in (13) and (14)
end

end
Find h(q) from the log-log plot of Fq(s) versus s
Calculate τ(q) using equation (16)
Plot f(α) w.r.t α
Find maximum of f(α) and corresponding αm

return max H(q),min H(q),max F (α), αm

Figure 34: Algorithm of feature extraction using Multifractal detrended fluctuation analysis(MFDFA).

(a) Plot of h(q) vs q (b) Plot of f(α) vs α

Figure 35: Plots of significant features for grading brain gliomas in MR images using
MFDFA.

5.2.2.3 DYNAMIC TEXTURE FEATURE EXTRACTION

The dynamic texture, also known as the temporal texture, can be viewed as a continuously
varying stream of images, which has resemblance with a fountain with continuous gushing water,
a flickering fire, and a chimney with slowly puffing smoke. Recently, the analysis and synthesis
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of dynamic texture have become active areas of research in computer vision and computer
graphics and are gradually penetrating in the field of dynamic texture editing [79], pattern
recognition [80], segmentation [18] and image registration [81]. In the proposed model for tumor
grading, it is considered that the MR sequence of images in the tumor volume or ROI inherits
continuously varying images and thus can be defined as a dynamic texture. Since tumors of
different grade vary in their aggressiveness, the rate of continuously varying characteristics of
MR image sequences may exhibit different values for different tumor grades. We adopt the linear
dynamic system (LDS) method [82][83] by using state-space equations where the parameters of
state equations are used as the dynamic texture descriptor. Figure 36 shows the DT analysis
method adopting an open loop LDS system used in [82][83].

Figure 36: Framework for dynamic texture analysis using linear dynamic system.

To illustrate the DT analysis method, the mean value of the sequence of input images {It}Nt=1

are subtracted and concatenated to column vectors as observation vectors, yt. The SVD analysis
is performed to map the estimated observation vectors {ŷt}Nt=1 to the truncated hidden states,
{x̂}N/2

t=1 following Eq. (11). These truncated hidden states are actually the most significant
principal components of the observation vectors. This study heuristically determined that first
half of the most significant principal components yields promising results, so the last half columns
of the original hidden states, xt are truncated to obtain the estimated hidden state, x̂t.

[U, S, V ] = svd(yt − ȳt);

xt = S × V ′; (18)

x̂t ← xt;

C = U ;

where the observation matrix yt is of size m × n and U , S, V are of size m × n, m × m ,
and n × n, respectively. Since principal components can be ranked in descending order, a
dimensionality reduction is performed by discarding some columns corresponding to the least
important components and, hence the mapping function is given by ŷt = Cx̂t. These reduced
hidden states are used to fit a linear dynamic system and identify the parameters of the system
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using Eq. (17). The state equation is described as below:

x̂ti = Ax̂ti−1 + vt; where vt ∼ N(0, σv) (19)

Eq. (18) suggests that a hidden vector corresponding to the hidden states can be mapped
linearly to its next hidden vector if the system is a dynamic process. The state parameter, A, is
found through the following way,

A = x̂ti × x̂ti−1 . (20)

The Eigen values λ of matrix A describes the pole location of the dynamic system and, hence,
gives an estimate about the system stability. The pole locations of λ values are the discriminating
features for tumor grading. Figure 37 shows the algorithm to extract DT features using the
open loop LDS.

Input: 2-D image sequences
Output: λmax

Find yt from the input images
Perform yt ← yt − ỹt

Perform SVD analysis as in (18)
ŷt = Cx̂t;
Set the LDS as in (19)
Find the state parameter, A as in (20)
Find the Eigen values λ of A
Sort the λs and find the λmax

return λmax

Figure 37: Algorithm for dynamic texture analysis to extract useful feature.

5.2.3 FEATURE SELECTION AND CLASSIFICATION

A feature selection step is proposed to achieve two goals. First, the performance of tumor
grading classification is improved by eliminating the effect of curse-of-dimensionality. Second, an
optimal set of features is obtained that yield the most accurate classification of tumor grading.
Standard variable selection algorithms such as sequential feature search, yield a suboptimal
solution, whereas an exhaustive search algorithm guarantees to find the optimal features required
for a classification task [84]. The machine learning pipeline for exhaustive feature search in this
work is shown in Figure 38.
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Input: n#offeatures
Output: mean AUC, std AUC of best feature combination
for r = 1, 2, 3...n do

Generatle all combinations t = nCr

for Each combination of t do
i. Evaluate k fold cross-validation
ii. Measure the mean and std. of AUC

end
Rank feature combinations based of mean AUC
Return mean and std of AUC of the top rank

end
return mean AUC, std AUC

Figure 38: Algorithm for exhaustive feature search.

The exhaustive feature search algorithm evaluates all possible combinations of features, which is
often prohibitive due to heavy computational cost. However, the exhaustive search is computa-
tionally feasible with the sample size and variable dimension (14-16) and it is worth learning the
optimal features than presenting sub-optimal results using other feature selection algorithms.
All possible combinations of features are evaluated using the linear support vector machine
(linear-SVM) classifier model. The linear SVM is not only faster and efficient, it does not suffer
from overfitting like other non-linear classifier models due to undersampling of the data [85].
The linear-SVM model trains the linear coefficients of features that simultaneously provide a
parametric formulation of the decision boundary and importance of features [86]. The mean
AUC, obtained over ten-fold cross-validation using linear-SVM model, is used to evaluate the
classification performance of each combination of features. The goal of the exhaustive feature
search is to find the optimal combination of features that yield the most accurate classification
of the tumor grading.

5.3 AUTOMATIC GRADING USING DIGITAL PATHOLOGY IMAGES

The method outlined in [87] is used for automatic glioma grading using digital pathology
images. However, instead of using a single image per patient as used in [87], this study uses
the ROI outlined by a pathologist from all the available images of that patient. In the first
step, an automatic cell nuclei segmentation is performed through color inhomogeneity correction,
optical density estimation, color deconvolution for hematoxylin stain, contrast enhancement, and
hysteresis thresholding. The geometric feature including area, major axis length and perimeter
are subsequently extracted from each nucleus. These micro-anatomical features are important
to distinguish different glioma grades.
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Figure 39: The significant presence of elongated nuclei in GBM (bottom row) in compared
to LG (top row). This difference sets one of the grading characteristics between the two
types of gliomas.

The nuclei in LG are predominantly circular with smaller morphologic characteristics, whereas
nuclei in GBM are mostly elongated with irregular size. The prevalence of these irregular shaped
nuclei, as shown in Figure 39, are different in GBM (WHO grade IV) and LG (WHO grade I &
II) images and can be used as one of the grading characteristics. It is also noticed that similar
grading criteria can be applied for HG (WHO grade III & IV) and LG classification. Intuitively,
classifying HG vs LG is more challenging than GBM vs LG as grade-III (HG) and grade-II
(LG) often show quite similarity in images. In this work, all the features are collected from each
nucleus for individual patients and clustered them into five classes using the k-means algorithm.
The cluster centroids are sorted according to the Euclidean distance from the origin and are
used in the subsequent classification step. It is intuitive that some cluster centroids are similar
in both GBM and LG images while the rest are dissimilar and become the basis of classification.

5.3.1 METHODOLOGY

The proposed method consists of two main steps. In the first step, the nuclei are segmented
from the whole tissue slide images. In the second step, feature extraction and classification are
performed. The overall flow diagram of the proposed method is shown in Figure 40.
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(a) Simplied flow diagram of nuclei segmentation in Digital Pathology images.

(b) Classification/grading pipeline using nuclei morphology feature.

Figure 40: The overall flow diagram for grading brain gliomas in digital pathology images.

Brief descriptions for each step in the above flow diagram are given below.

5.3.1.1 DP IMAGE PRE-PROCESSING

All the images are stained with hematoxylin and eosin. As the images are scanned with multi-
resolution varies from 20X to 40X, we sample all images to 20X with bi-cubic interpolation.
Automatic contrast enhancement is applied to bring all the images with uniform color contrast.

5.3.1.2 FINDING THE OPTICAL DENSITY IMAGE

As the image intensities are of 8-bit depth, the maximum intensity, Imax is 256. The light
absorbance of each pixel can be found by Beer-Lambert’s law [88], where, I is the image intensity.

A = −log10( I

Imax
) (21)
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5.3.1.3 COLOR DE-CONVOLUTION

Since the optical density is proportionate to the stain’s concentration, color de-convolution
process is applied on the optical density image. In this implementation the de-convolution
matrix, M is defined as

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 =


0.550 0.398 0.754

0.758 0.634 0.077

0.351 0.600 0.652

 (22)

where each row in matrix M indicates a specific stain and the columns represent the optical
densities for the red, green and blue channels respectively. The color de-convolution is then
performed with the following equation.

Ĉ = M−1Y (23)

where Y denotes the optical density vector, Ĉ is the de-convoluted vector. The hematoxylin
stain is the first channel of the de-convolved image.

5.3.1.4 HYSTERESIS THRESHOLDING

A contrast enhancement is done before the hysteresis thresholding. In this step, seeds are defined
with an upper threshold and connected component by the lower threshold. The threshold values
are in between 0 to 1. Cell nuclei are the connected component at the seed regions.

5.3.1.5 NUCLEI SEGMENTATION

The object pixels are removed at the concave boundary to separate the clustered nuclei [70].
Finally, the contour of the segmented nuclei is smoothed with linear interpolation of the boundary.
Figure 41 shows step-wise example images for nuclei segmentation.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 41: Example images of step by step nuclei segmentation in Digital Pathology images.
(a) Original image, (b) color normalized image, (c) Optical density image, (d) density of
hematoxylin component, (e) hysteresis thresholding, (f) boundary smoothing of segmented
nuclei (g) illustration of clustered nuclei separation; green (convex hull boundary), red
(concave boundary), blue (cutting line found in a single iteration), (h) final segmentation,
clustered nuclei are separated (marked by a red circle).

5.3.1.6 MORPHOLOGICAL FEATURE EXTRACTION AND CLUSTERING

Morphologic features like area, perimeter, and major-axis length are extracted from the segmented
nuclei. The above geometric features are clustered into 5 groups using k-mean clustering.
Euclidean distances from the origin of the centroids are considered to determine the ascending
order of the clusters. The centroids of the ordered clusters are used to characterize that individual
image.

5.4 EXPERIMENTS AND RESULTS

5.4.1 DATA

MR images are collected from two separate multi-center datasets: BRATS-2015 and TCIA
for HG/LG and GBM/LG grading respectively. Among these multicenter longitudinal MRI
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data, only the first time brain scans are used that results in a total of 235 patients wherein
67 patients are obtained from the TCIA dataset and the remaining 168 patients are obtained
from the BRATS-2015 training dataset. Histopathology images are collected from the TCGA
digital pathology database. Since MR images in BRATS dataset are already skull-stripped and
co-registered, we perform skull stripping, resampling and resizing only on the TCIA dataset. The
inhomogeneity in MR intensity is corrected through channel-wise histogram matching with the
images of a randomly selected patient as the reference. In this study, three MR modalities: T1c,
T2 and Flair images are used as they are commonly available in both datasets. Finally, additional
MRI images from another 30 patients in the BRATS-2013 dataset are used for training the
tumor ROI segmentation classifier. The grading labels (HG/LG) for the BRATS-2015 dataset
and (GBM/LG) for the TCIA dataset are already provided in these repositories, respectively.
These labels are used for training and evaluation of the classifiers in this study.

5.4.2 TUMOR ROI SEGMENTATION IN MRI

For tumor region segmentation, the BTS method is trained with the MRI from 30 patients in
BRATS-2013 training dataset and tested on both TCIA and BRATS-2015 datasets. Details
about the parameter setting of the random forest classifier for this multiclass segmentation can
be found in [7]. Since the core part of the tumor region (necrosis, enhanced and non-enhanced
tumor) retains the maximum clinical significance, the core region is considered and the edematous
region is disregarded in this study. The bounding box of the tumor core region is considered as
the ROI. Figure 42 shows example images of the segmented tumor and corresponding ROI of
two slices selected randomly from two patients. Note that the tumor segmentation is done in
3D, however, for visualization purpose only 2D images are shown in Figure 42.
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Figure 42: Example images of tumor segmentation using BTS with the ROI for dynamic
texture analysis. Each row shows the corresponding input MR channels (Flair, T2 and T1c)
and the segmented tumor with the ROI indicated in Red.

For dynamic texture feature extraction, the method considers all tumor bearing slices of the ROI
in a volume. Therefore, the number of hidden states in Equation (12) is set as the half of total
slices of the ROI. As the LDS analyzes system stability using the pole locations, only the absolute
of maximum Eigen values from all three modalities are considered and these Eigen values are
averaged to obtain the final dynamic feature for the grading task. Figure 43 shows that final
features, λmax avg of GBM tumors mostly lie outside of the unit circle as GBM tumors usually
represent significantly varying textures in MRI slices than that of the LG tumors. Similarly, the
MFDFA and mBm features are extracted for each MRI slices in the ROI and only the maximum
of the extracted feature values is selected as the final feature for grading. A total of 16 features
are extracted from three MRI modalities as follows: (1×3) mBm, (4×3) MFDFA, and the DT
feature (λmax avg). These features are then taken to the SVM classifier for tumor grading as
discussed below.
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Figure 43: Pole locations (λmax avg) of GBM and LG patients. The locations indicates
that the rate of signal variation through the MRI slices caused by the different types of
tumor are different.

5.4.3 MICRO-ANATOMICAL FEATURE EXTRACTION IN DP IMAGES

In this study, another important goal is to validate the proposed MR-based non-invasive tumor
grading. Therefore, the study also obtains automatic tumor grading using DP images for the same
patients. The proposed method is cross-validated using DP images in TCIA dataset for GBM/LG
classification and not in BRATS dataset for GBM/LG classification due to unavailability of the
histopathology images in the BRATS. Figure 44 shows example image of the segmented nuclei
and the five cluster centroids used as features for tumor grade classification.
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Figure 44: K-mean cluster centroids that used as a final features for grading in pathology
images. Example images of the segmented nuclei and the five cluster centroids used as features
for grading in pathology images [11]. (a) The original pathology image and segmented nuclei,
and (b)-(f) five cluster centroids in descending order of the two tumor grades; GBM(red) and
LG(green). Although the ROI outlined in the whole slide images are used in this study, only
a small part, as shown in (a), is cropped from the original image for better visualization.
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5.4.4 SELECTING OPTIMAL SUBSET OF FEATURES

For selecting the optimal subset of the features, a ten-fold cross-validation is proposed to evaluate
all feature combinations using the linear-SVM classifier. Experimental results show that for both
GBM/LG and HG/LG MR grading a combination of six features that include the DT along
with MFDFA and mBm features mostly from the T1c modalities yield the best classification
performance. Figure 45(a) shows mean AUC along with the standard deviation versus the
different number of feature combinations for GBM/LG grading in MR images while Figure 45(b)
shows decision boundary between these two tumor grades defined by two features (mBm of T1c
and DT) among the selected six optimal features. The decision boundary also indicates that the
extracted radiomic features are effective and easily separable even with a linear SVM kernel.

(a) (b)

Figure 45: Classification performance of the optimal feature combinations using exhaustive
feature search for classifying GBM/LG in MR images: a) mean AUC versus feature dimension
b) decision boundary between two grades defined by a combination of two optimal features.

The same procedure is repeated for feature selection of DP-based grading of tumors. Figure
46(a) shows that combination of two features offers the highest mean AUC area for the different
number of feature combinations. However, the high standard deviation is noticed as for a low
sample size, miss-classification of few samples has a big impact on the overall performance. From
the combination of optimal features, we observed that perimeter of 1st and area of 5th cluster
provides best classification performance, which is also evident from the cluster centroids plots in
Figure 44, as these two features in the above-mentioned clusters offer better separation between
the grades. Figure 46(b) shows the decision boundary of the two HG/LG grades (classes) in 2D
feature space.
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(a) (b)

Figure 46: Classification performance of the optimal feature combinations using exhaustive
feature search for classifying GBM/LG in DP images: a) mean AUC versus feature dimension
b) decision boundary between two grades defined by a combination of two optimal features.

5.4.5 HG/LG GRADING USING BRATS IMAGES

Using the selected features in the previous step, the LOO cross-validation offers an average
80% AUC for HG/LG classification. Figure 47 shows the ROC curve obtained from the LOO
cross-validation using MR images of 168 patients in BRATS dataset. Quantitative scores such
as sensitivity, specificity, F-measure are presented in the first row of Table 9. The quantitative
scores in Table 9, shows that the imbalance of the BRATS data may have compromised the
overall performance. Moreover, the BRATS MR images are highly re-sampled to yield isotropic
MRI (1 mm ×1mm× 1mm) and, thus, may severely compromise the quality of extracted texture
features.
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Figure 47: Corresponding ROC curve of LOO cross validation of proposed GBM/LG
grading. Linear SVM is used for the HG/LG classification.

5.4.6 GBM/LG GRADING IN MR AND VALIDATION WITH DP GRADING

Similarly, the LOO cross-validation for GBM/LG classification is performed using the corre-
sponding images of 67 patients. On an average 88%, and 90% AUC are obtained for MR, and
DP grading, respectively. Figure 48 shows the ROC curves following the LOO classifications.
All other quantitative scores such as accuracy, sensitivity, specificity, precision, recall, and F-
measure are shown in the second and third rows of Table 9 for MR and DP grading, respectively.
The results in Figure 48 and Table 9 indicates that the performance of proposed MR-feature
based non-invasive glioma grading framework is comparable with that of the invasive DP-based
classification of GBM versus LG tumors.
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(a)

(b)

Figure 48: Corresponding ROC curve of LOO cross validation of proposed GBM/LG
grading. Linear SVM is used for both GBM/LG classification in a) MR, b) DP images.
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Table 9: Quantitative scores, subjects and designs for grading. Results are shown for two
different types of grading HG vs LG and GBM vs LG.

Dataset No. of AUC Accuracy Sensitivity Specificity Precision Recall F-measure

patients

BRATS HG (124), 0.80 0.80 0.96 0.36 0.79 0.98 0.87

LG (44)

TCIA GBM (33), 0.88 0.82 0.85 0.79 0.80 0.85 0.82

LG (34)

TCGA 0.90 0.82 0.82 0.82 0.82 0.82 0.82

5.5 DISCUSSION

In this study, an efficient non-invasive glioma grading method is proposed using texture features
extracted from structural MRI only. The method is evaluated using multicenter patient images
and shows effectiveness in classifying HG/LG and GBM/LG. In the first classification task, it is
observed that the performance for glioma grading is somewhat compromised due to possible
MRI dataset imbalance and excessive interpolation in the pre-processing steps of BRATS MRI
dataset. In the second classification task for GBM/LG grading, the proposed MRI-based method
offers good cross-validation performance using that of histopathology images. In summary,
while the first classification task is not validated with the non-invasive grading method due to
unavailability of the DP images, the overall MR grading performance in both tasks confirms
the efficacy of the proposed non-invasive radiomics-based glioma grading. Further study with
a balanced dataset and MRIs with less pre-processing artifacts may be needed for improved
MRI-based HG/LG tumor grading performance.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 CONCLUSION

This dissertation proposes computational models and experiments for robust segmentation of
brain abnormal tissues (tumor and lesions), tracking the change of tumor volume in longitudinal
images and grading of brain gliomas using novel texture features in MRIs. Robust segmentation
of brain tumor and its different tissues (necrosis, edema, enhanced active, cyst etc.) is one of the
requirements for reliable diagnosis and treatment planning to include tumor growth monitoring,
dose determination, drug and therapy response monitoring and neuro-surgery. Multiple texture
features, both in 2D and 3D, are developed and used to demonstrate the efficacy of BTS and
tumor grading in large-scale clinical dataset. The performances of these methods are also
compared and cross-validated with state-of-the-art methods. The texture-based computational
models proposed in this study are expected to facilitate the clinical management of patients with
the brain tumor by automating large scale imaging data analysis, reducing the human error and
inter-observer variability and producing repeatable brain tumor quantitation and grading. In
Chapter 3, experimental results using a huge multi-center clinical dataset indicate the robustness
of the automatic segmentation process for multiclass abnormal tissue segmentation of brain tumor
and stroke lesions. The segmentation performances of the proposed methods are competitive
with that of state-of-the-art methods as demonstrated by the excellent ranking of our methods
in multiple global tissue segmentation Challenges. One of the major contributions of this work is
shown in [4], that is, no single segmentation method in the challenge has the best performance
in all tissue categories and, hence, fusing the top ranking results may offer superior performance,
even close to the manual segmentation. Although the multi-fractal texture-based method shows
excellent performance in multi-class tumor tissues [3], further investigation is required to improve
performance for lesion segmentation. From findings of the lesion segmentation challenge [89],
we observe that multi-center data or changes in acquisition parameters poses serious challenges
even for the best performing methods and the performance of these automated methods is still
far from that of the manual ratings. From the patient-wise result in [87], it is noticed that
the proposed method performs comparatively better for the lesions with a larger size. The
overall performance is also compromised by the substantial presence of false positives and this
needs further improvement. In order to improve the BTS performance, this study proposes a
post-processing method in Chapter 4 using the variation of the tumor texture in the follow-up
scans. The study shows that a combination of specific 3D texture features (spin image, RIFT
and LBP) can effectively differentiate the tumor volumes from the non-tumors. Experimental
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results show that the method is effective in reducing the FPs and may be applicable as a
post-processing step for any segmentation method that offers high sensitivity with moderate
FP. Scores in Table 8 shows that the method improves the overall performance for all three
tumor categories such as core, complete, and enhanced active tumor. One of the purposes of
improved tumor segmentation and outlining different tumor tissues (necrosis, edema, active
enhanced tumor) is to provide a precise tumor location within its internal tissue compartments
for advance diagnosis processes such as tumor growth monitoring in the longitudinal images. In
Chapter 4, the volumetric ratios obtained using our method consistently matches with that of
manual segmentation over the longitudinal scans. This consistent segmentation performance in
longitudinal scans suggests that assessment the pattern of tumor volume changes is possible
with the segmented tumor by the proposed method. In Chapter 5, an efficient non-invasive
glioma grading method is proposed using texture features extracted from structural MRI only.
The method is evaluated using multicenter patient images and shows effectiveness in classifying
HG/LG and GBM/LG. In the first classification task, it is observed that the performance for
glioma grading is somewhat compromised due to possible MRI dataset imbalance and excessive
interpolation in the pre-processing steps of BRATS MRI dataset. In the second classification task
for GBM/LG grading, the proposed MRI-based method offers good cross-validation performance
using that of histopathology images. In summary, while the first classification task is not
validated with the non-invasive grading method due to unavailability of the DP images, the
overall MR grading performance in both tasks confirms the efficacy of the proposed non-invasive
glioma grading. The overall contributions of this dissertation are summarized in Table 10 below.

6.2 FUTURE WORKS

In this dissertation, the analyses of the brain tumors and stroke lesions show complementary and
competitive results in segmentation, tracking and grading when compared to state-of-the-art
methods. However, few limitations of the work done in this dissertation are also noticed. Future
studies are necessary to address these limitations to improve the performance and future clinical
applicability of the proposed methods. Future studies are necessary for the following areas.

6.2.1 IMPROVEMENT OF THE BTS METHOD

Despite excellent results as demonstrated by the ranking of our methods in competitive challenges,
the proposed BTS method offers comparatively higher dice overlap score for larger size tumors
in comparison with smaller ones. Furthermore, the presence of substantial false positives outside
of the tumor region and anomaly labeling in the tumor core area compromised the overall
performance. More investigation for the tumors and stroke lesions with smaller size is required.
Therefore, future work includes the study of more effective features and sophisticated feature
selection technique.It is also noticed that intensity of the necrosis tissues in the core region are
usually below the mean value of the whole image and have a tendency of being misclassified as
non-tumor. A sophisticated intensity inhomogeneity correction preferable to address the issue.
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Table 10: Summary of the research findings related to the proposed methods.

Cha-

pter

Disserta-
tion

Goals

Description Proposed Methods Outcomes

3
Multi-

tissue BTS
and lesion
segmen-
tation

Multiclass
abnormal tissue
(edema, necrosis,

enhanced and
non-enhanced)
segmentation.

Novel texture features
(mBm, PTPSA).

Random Forest (RF)
as classifier.

Competitive results
when compared with
the state-of-the-art

methods as
demonstrated by results

from multiple
Challenges

[4][5][6][7][63][90].
Ischemic stroke

lesion (sub-acute)
segmentation.

Structure tensor
based local gradient,
mBm, and PTPSA

texture features. RF
as classifier.

Competitive
performance but the

overall accuracy needs
further improvement as
demonstrated by results

in the Challenge
[64][89].

4
Improved
BTS using
3D texture
features for
tumor
volume
tracking

Improved BTS in
longitudinal MRIs.

Original BTS with
longitudinal

information, False
positive reduction
using Spin image,

RIFT, LBP feature.
Relevance Vector

Machine (RVM) and
RF as classifier.

Improved tumor
segmentation

performance in
longitudinal images[91].

Tracking the
tumor volume as

stable, progress or
shrinkage.

Volumetric ratio of
different tumor

tissues.

Effective tumor growth
tracking with consistent
tumor segmentation in
follow-up images [91].

5
Tumor
grading
using
texture
radiomics
and its
validation
using
histopathol-
ogy data

Non-invasive
grading using only

structural (T1c,
T2, Flair) MR

images.

Dynamic texture,
MFDFA, and mBm
features. Support
Vector Machine

(SVM) as classifier.

Non-invasive glioma
grading as HG/LG and
GBM/LG are possible

using proposed radiomic
features [92][93][94].

Invasive grading
in histopathology

images.

Cell nuclei
morphology with
k-mean clustering.
SVM as classifier.

Computationally
inexpensive and highly
efficient glioma grading

as GBM//LG in DP
images [87][93].
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6.2.2 EXTEND THE POST-PROCESSING TECHNIQUE

The study shows a complete post-processing method to reduce the FPs for any segmentation
method that offers high sensitivity with moderate FP. However, the developed method is designed
only for longitudinal MR scans. In future, several extensions of the method can be conduct to
include: i) devise the original BTS method to take inputs from both time scans (It, It′ ), where
It stands for input features, ii) generalize the proposed method so that single time scan data
can also be tested by simply dropping the temporal classifier, and iii) apply the method with
small sized stroke or multiple sclerosis lesions.

6.2.3 FULL-SCALE STUDY OF TRACKING THE CHANGE OF TUMOR VOL-
UME

The volumetric ratios obtained using the proposed method shows a good match with that of
manual segmentation over the longitudinal scans. This consistent segmentation performance
over the longitudinal scans suggests that the change of tumor volume assessment is possible
with the segmented tumor by the proposed method. However, one of the major limitations
of the proposed pilot study is the smaller sample size. In the experiment, there are only 13
patient samples which are too low to train any machine learning algorithm. Future study can be
conducted using more samples for using machine learning schemes.

6.2.4 GRADING IN LONGITUDINAL IMAGES

In this study, the developed non-invasive grading method uses the single time point data.
However, tumor progress in longitudinal images always offers more insight about the tumor
nature. Future study can be conducted using the follow-up scans with 3D texture features such
as Spin image, RIFT, and LBP that are already proven effective in tumor versus non-tumor
classification in Chapter 4.

6.2.5 ADVANCED MICROSCOPIC FEATURES FOR GRADING IN DP IMAGES

The proposed grading scheme in DP images uses only the morphological features of cell nuclei.
Although the experimental results show high efficiency and competitive performance with the
state-of-the-art methods, there are other microscopic features that offer useful information too.
In the future, I plan to include some important features such as the prevalence and divisional
stage of mitotic cells, and the spread of necrosis in the tumor region for tumor grading in a more
clinical fashion.
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