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INTRODUCTION
• An inverse problem is a problem in which

the goal is to determine the cause of an ob-
served effect by solving for an unknown in-
put given an output, rather than predicting
the effect given the cause.

• Nucleons consist of quarks and gluons,
which are basic particles that follow the
rules of quantum chromodynamics (QCD)
in terms of their interactions and behavior.

• Understanding the mysteries of QCD
requires analyzing its multi-dimensional
quantum correlation functions (QCFs).

• While the mapping of parameters-to-
observables in QCFs is a well-posed
problem with unique solutions, the inverse
problem at the event-level is a backward
mapping which is likely non-unique.

MISSION
To solve the inverse problem of femtoscale imag-
ing at the event level:

• We developed an ML-based surrogate event
generator framework, as generative adver-
sarial networks (GANs) based architecture
that effectively allows building a posterior
distribution sampler for the QCF parame-
ters.

• A dedicated ML-based discriminator that
is free of specific choices for the likelihood
function, and accurately predict the param-
eters and the cross sections for better gener-
alization on unseen parameters.

• The problem is to identify the parameters
along with their uncertainty that generated
the finite number of observed events. This
is formulated as an inverse problem: invert
the parameters based on limited observa-
tions.

METHODOLOGY & RESULTS

Figure 1: ML-based Surrogates and Emulators Archet-
icture

• We demonstrate the effectiveness of our
framework by applying it to the proxy ap-
plication for a toy 1D QCF analysis at the
event-level.

• As shown in Figure 2, our method is able
to correctly learn the mapping between the
observable space and the QCF space and
shows the cross sections σp and σn mimic
cross sections in DIS from protons and neu-
trons, respectively.

Our approach adopts the architecture of a genera-
tive adversarial network[1], consisting of:

• An inner GAN that maps the parameter
space to the observable space (proxy GAN).

• An outer GAN that maps from the observ-
able space back to the parameter space

• We incorporate a pre-trained neural network
into our framework in order to help the gen-
erator produce the correct parameters.

• The crucial element of this framework is the
use of a discriminator that is capable of up-
dating the parameter generator using event-
level information.

• The design of the ML-based surrogates and
emulators model focuses on learning to
mimic cross sections in DIS from protons
and neutrons.

Figure 2: Preliminary result of parameter distribution
for dataset C obtained by solving the GAN-based in-
verse problem. Parameters correspond to the ones in
(2).
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PROBLEM STATEMENT
In the toy problem, the proton and neutron cross-
sections become

σp(x) = 4u(x) + d(x), σn(x) = 4 d(x) + u(x).
(1)

Consider the following probability density func-
tion model for the up and down quarks

u(x) =Nux
au(1− x)bu

d(x) =Ndx
ad(1− x)bd

(2)

where x ∈ (0, 1) and parameter vector =
[Nu, au, bu, Nu, au, bu]

⊤ is uncertain. We observe
= [σo

p, σ
o
n]

⊤ events generated by the model(2) and
filtered through cross-sections defined in (1). We
assume we observe Mσp proton events and Mσn

neutron events.
The observed events are generated by sam-
pling from the two cross-sections with the
“true” parameter values T used in(2) T =
[2.1875,−0.5, 3, 1.09375,−0.5, 4]⊤.

DATA DESCRIPTIONS
• In order to train inner GAN, we generate

a dataset with 20,000,000 data samples for
both parameters and events (σo

p, σ
o
n). The

same dataset, which has been generated for
the inner GAN, is used to train the norm
neural network.

• Additionally, we generate three categories
of datasets with different sizes for outer
GAN to be trained and tested by using θT :
small, medium, and large.

• These sets include cases A, B, and C de-
scribed in Table (1). For case A, we use 1000
samples for σp and 500 samples for σn. In
case B, we use 10,000 samples for σp and
5,000 samples for σn. For case C, we use
100,000 samples for σp and 50,000 samples
for σn.

Case Mσp Mσn

Case A 1000 500
Case B 10000 5000
Case C 100000 50000

Table 1: Dataset


