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ABSTRACT 

FORAGING BEHAVIOR OF SPRING BEES AND THEIR AGRICULTURAL IMPLICATIONS 

Michael D. Gregory 

Old Dominion University, 2017 

Director: Dr. Lisa Horth 

 

 

  

Colony Collapse Disorder has greatly reduced honey bee populations in the last decade. 

Native bees have been largely neglected in research, and their floral preferences may have 

agricultural implications because native bees ameliorate the demand to rely solely on non-

native bees. In this work, pollinator visitation to flowers with manipulated ultraviolet floral 

patterns was monitored. Populations of wild showy golden-eye in Colorado, plus cultivar 

populations of black-eyed Susan and lawn populations of buttercups in Virginia were monitored 

for pollinator landings to compare preference for unmanipulated ultraviolet-absorptive floral 

guide preferences.  Anther number, a proxy for pollen load, was manipulated on strawberry 

flowers to determine whether this treatment affected mason bee visitation frequency. Three 

mason bee densities (three, six and nine bees in ≈2.33 m2) were compared in three 

greenhouses, each stocked with 10 strawberry plants. Bee visitations were monitored and berry 

size and symmetry were measured. Mason bee emergence rates were compared in two 

environments (natural conditions and temperature-controlled conditions) for cocoons.  Field 

surveys was conducted to evaluate which native pollinators naturally recruited to field 

blackberries. Higher visitation rates were found for flowers with larger ultraviolet-absorptive 



 
 

floral guides and stamen manipulations. Mason bees did visit flowers but did not demonstrate 

any preference for flowers with more stamen. Bee density did not affect berry weight or berry 

symmetry. High emergence rates were observed in both natural and controlled environments 

and more bees emerged in the controlled environment.  Sweat bees and bumble bees were the 

major visitors to blackberry flowers but honey bees were not present.  This work builds upon 

earlier findings that pollinators prefer larger ultraviolet patterns and supports a more 

generalizable phenomenon.  This study further suggests that mason bees may be commercially 

valuable given their peak of in mid-summer, coinciding with the pollination period of fruiting 

crops.  Native pollinators may play an important role in blackberry pollination because of their 

relatively high abundance relative to honey bees.  
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CHAPTER 1 

NATIVE MASON BEES (OSMIA LIGNARIA SAY) ARE EFFECTIVE BERRY POLLINATORS IN THE 

FIELD AND IN GREENHOUSES 

INTRODUCTION 

Native bee pollination of crops has become the focus of many applied ecological 

research studies since Colony Collapse Disorder (CCD) was discovered in honey bees (Apis 

mellifera Say) (Patten, Shanks & Mayer 1993; Pisanty & Mandelik 2015).  Apiculture, or A. 

mellifera husbandry, increased in economic value in the USA between the years 2000 and 2009 

from 14 billion USD to more than 15.12 billion USD (Morse & Calderone 2000; Calderone 2012).  

Apis mellifera is responsible for nearly one-third of the food supply in the United States (USA; 

Buchman & Nabhan 1996) and 35% of the food supply worldwide (Klein et al. 2007).  Globally, 

approximately 90% of commercial pollination results from A. mellifera colonies, but the 

agricultural demands are swiftly exceeding the pollination capacity of this species (Aizen & 

Harder 2009).  The annual overwinter mortality of A. mellifera colonies in the USA was 

estimated at ~30% for the period from 2006 until 2015 (vanEngelsdorp et al., 2007, 2008, 2010, 

2011, 2012; Spleen et al. 2013; Steinhauer et al. 2014; Lee et al. 2015; Seitz et al. 2015). The 

most recent estimate for annual colony losses in 2015 was even greater, at ~44.1% (Steinhauer 

et al. 2016).  Prior to 1985, A. mellifera colony losses did not show any specific pattern of 

decline across European countries. However, between 1985 and 2005, there was a net 

decrease of ~16% of A. mellifera colonies across Europe (Potts et al. 2010). Colony Collapse 

Disorder drives these drastic declines, and involves the mass disappearance of the worker bee 

population, with only the immature brood and the queen remaining at the hive (vanEngelsdorp 
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et al. 2009).  Such grave colony losses create a dire need for rapid assessment of native 

pollinators and the ability of alternative species’ to successfully pollinate commercial crops.  

Reduced reliance on A. mellifera release the agricultural industry from the catastrophic events 

associated with the sudden loss of large numbers of pollinators at unpredictable times.  

Apis mellifera is traditionally considered the primary pollinators of many fruits, including 

strawberries (Fragaria X ananassa Duch.) and blackberries (Rubus fruticosus L.) (Free 1968; Nye 

& Anderson 1974; Goodman & Oldroyd 1988).  Fragaria X ananassa naturally produce blooms 

from late-March through early-May in temperate climates (Hancock & Simpson 1995), and 

Rubus spp. naturally produce blooms from April through August in temperate climates (Taylor 

2005).  Both crops have blooming periods that overlap with the emergence times of blue 

orchard mason bees (Osmia lignara Say), which naturally emerge when their cocoons are 

warmed to 13.89°C (Bosch & Kemp 2000).  Neither of these crops have had O. lignaria 

considered as a potential pollinator, and, in this study, O. lignaria is investigated for its use in 

the pollination of strawberry (F. X ananassa) flowers in greenhouses and blackberry (R. 

fruticosus) crops.  With the advent of CCD, expanding the scope of native bee pollinator 

services has become of increasing interest (Watanabe 1994; Steffan-Dewenter, Potts & Packer 

2005). 

The first attempt to determine whether Megachlidae could be used for commercial 

pollination in orchards occurred with hornfaced bees (Osmia cornifrons Radoszkowski) in Japan 

(Maeta & Kitamura 1964), demonstrating that Osmia spp. can successfully pollinate apples 

(Pyrus malus Mill.) and may even provide better quality fruit than pollination by A. mellifera 
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(Maeta & Kitamura 1964). Since then, Osmia spp. have been widely used throughout Japan and 

the USA for pollination services in apple orchards (Kuhn & Ambrose 1984; Sekita & Yamada 

1993; Sekita 2001; Adamson et al. 2012). Interest in Osmia spp. has also grown in other 

countries and successful pollination services have now been provided in almond [Prunus dulcis 

(Mill.) D. A. Webb] groves in Spain (Bosch 1994) and the USA (Bosch & Kemp 2000), as well as 

on blueberry (Vaccinium ssp.) farms, (Stubbs, Drummond & Osgood 1994), plum orchards 

(Prunus domestica L.; Torchio 1976), and alfalfa fields (Medicago sativa L.) in the USA (Bosch & 

Kemp 2001).  Despite several native European species of Osmia, the genus has not been 

adequately managed in most of Europe (Krunic & Stanisavljevic 2006).  Native pollinators have 

shown strong promise with respect to their economic value (Parker 1981, 1982; Bosch & Kemp 

2001), in field pollination studies, but native pollinator use in greenhouse agriculture is still very 

limited.       

Prior to, and during the 1980’s, most pollination of commercial produce in greenhouses 

was performed either by hand or machine a practice that proved time consuming and costly 

(Rasmussen 1985). However, the standard species of choice for commercial pollination, A. 

mellifera, demonstrated foraging patterns that rendered them ineffective in greenhouses 

(Visscher & Seeley, 1982). In contrast, another largely social genus, Bombus, in the same Family 

(Apidae) as honeybees, has been used successfully in greenhouse pollination for a few decades 

(Fisher & Pomeroy 1989; Shipp et al. 1994; van der Eijnde 1990). The services provided by the 

buff-tailed bumble bee (Bombus terrestris L.) and the common eastern bumble bee (Bombus 

impatiens Cresson) were shown to increase the quality of several fruits and vegetables, 

including musk melons (Cucumis melo L.; Fisher & Pomeroy 1989), sweet peppers (Capsicum 
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anuum L.; Shipp et al. 1994) and tomatoes (Solanum lycopersicum L.; van der Eijnde 1990). 

Presently, there are some concerns regarding the escape of greenhouse Bombus (Dafni et al. 

2010) and transmission of parasites, such as mites (Goka, Okabe, & Yoneda, 2006) and fungi 

(Nosema spp.; Winter et al. 2006), from them to wild bees. 

Leafcutter bees (Megachilidae) are solitary bees and they can be used as native 

pollinators in many different regions.  The alfalfa leafcutter bee (Megachile rotundata F.) is 

native to Eurasia, but has also been introduced outside of its native range and proven valuable 

for agriculture. For example, M. rotundata increase seed production in alfalfa grown in fields 

(Pitts-Singer & Cane, 2011). M. rotundata has also been studied for its effectiveness in 

greenhouse pollination and produces better seed set for sweet peppers than three other 

pollination methods, including manual, machine, and crop self-pollination (Rasmussen 1985). 

Mason bees (Osmia sp.) are also members of the same family (Megachilidae) of bees, so the 

study of their value in greenhouses is clearly warranted. Indeed, it has been proposed that the 

red mason bee (Osmia rufa L.) would thrive in greenhouses because of its readiness to settle in 

artificial nests and forage on available plants (Holm 1974). In China, Osmia cornifrons has been 

shown to successfully pollinate watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai) and 

nectarines (Prunus persica (L.) Batsch) in greenhouses. In fact, watermelon flowers pollinated 

by O. cornifrons yielded more marketable fruit than artificially pollinated, or selfed flowers (Ma 

et al. 2012).   

Osmia lignaria is a broadly distributed, native North American bee, that has not been 

assessed for effectiveness in greenhouse pollination. Like apples, Fragaria and Rubus are 
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members of the Rosaceae. Because O. lignaria successfully pollinates apples, by extension, it 

may be capable of providing pollination services to related crops, as well. One benefit of the 

commercial use of a native over non-native species (in the USA, O. lignaria are native but O. 

cornifrons and O. rufa, also called O. bicornis L., are not) is that if escape occurs, at least the 

species is not invasive. Solitary bees may also be less likely to spread devastating diseases that 

kill entire colonies of honeybees or other native bees, because, for example, they are not 

susceptible to CCD. Moreover, O. lignaria are immune to Varroa mites (Varroa destructor; 

Anderson & Truman 2000), which are currently considered possible contributors to CCD, but 

they do harbor parasitic mites of their own (Chaetodactylus nipponicus Kurosa) that cause 

minimal problems to O. lignaria health (Kuwahara et al. 1995). Osmia spp. have shown promise 

in greenhouse agriculture, but identifying an effective foraging density of these bees to produce 

commercial fruit has not been determined. To my knowledge, there is are no published data 

addressing the ability of any Megachilidae to pollinate strawberries in greenhouses. 

In nature, O. lignaria pupae metamorphose into adults in Late-Summer.  To ensure bee 

survival, cold stratification must occur (Bosch & Kemp 2000).  Increasing temperatures 

following a wintering period leads to bee emergence within about five days (Bosch & Kemp 

2003).  A substantive amount of research has been conducted on rearing O. lignaria cocoons so 

that adult bees will emerge from them earlier than is natural, for apple and almond pollination 

(Torchio 1976, 1979, 1985; Bosch & Kemp 1999; Bosch & Kemp 2003). There is, however, a lack 

of published data addressing the ability to delay emergence of bees, which could increase their 

ability to pollinate summer crops, including some berries.  
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There is global supply and demand for F. X ananassa fruit with Egypt, Korea, Mexico, 

Poland, Spain, Turkey, and the USA utilizing F. X ananassa production for substantial revenue 

(Wu, Guan & Whidden 2012).  The USA is the global leader in F. X ananassa production, where 

this fruit commodity is valued at over $2.8 billion USD, annually [United States Department of 

Agriculture (USDA) 2015]. Many small farms, which are often family owned, rely heavily on the 

economic value of F. X ananassa (USDA 2015). These fruits are now commonly grown in tunnels 

and greenhouses in the USA during the natural strawberry off-season. Greenhouse production 

of strawberries has a global value of $231 million USD annually (Jensen 1999; Takeda 1999).  

Commercial F. X ananassa and R. fruticosus can self-pollinate and produce fruit from selfing, 

but if self-pollinated fruits develop, they are usually more malformed and smaller than insect-

pollinated fruits. These traits make selfed berries less preferable to consumers (Knight & 

Winters 1963; Nye & Anderson 1974; Klatt et al. 2014).   

Blackberries (Rubus fruticosus) are worth $50.1 million USD annually (USDA 2015). 

Blackberries, however, require insect pollination to produce larger and more marketable fruit 

(Free 1993).  Apis mellifera are conventionally rented for R. fruticosus pollination, but 

alternative pollinators for this crop are presently limited to rented Bombus and wild sweat bees 

(Halictidae) (Cane 2005).  Berry bees (Osmia aglaia Sandhouse) have been investigated for their 

ability to pollinate R. fruticosus and proved more successful than A. mellifera. In fact, fewer O. 

aglaia individuals were needed to produce bigger, more marketable berries than A. mellifera 

(Cane 2005).  Determining which native pollinators visit and collect pollen from R. fruticosus 

could improve our ability to provide berry crop pollination services. 
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Angiosperms compete intra- and interspecifically for pollinators to transport pollen and 

increase the likelihood of effective reproduction (Waser 1983, 1986; Caruso 2000).  To attract 

pollinators, flowers have many pigments and display colorful patterns, usually indicating a 

reward (Waser 1983). Ultraviolet (UV) absorptive “bulls-eye” patterns, often found on asters 

(Horovitz & Cohen 1972; Guldberg & Atsatt 1975; Lunau 1992) result from the production of 

flavonol glucosides (Thompson et al. 1972; Gronquist et al. 2001; Schlangen et al. 2009).  UV 

“bulls-eye” patterns, more prevalent near the equator, are posited to have evolved because 

they lessen UV-radiation damage to pollen after dehiscence; this beneficial trait increases 

pollen viability (Zhang, Yang & Duan 2014; Koski & Ashman 2015). Evidence indicates that UV 

patterns, sometimes called nectar or floral guides, are used by pollinators in recruitment and 

resource orientation (Manning 1956; Johnson & Dafni 1998; Dinkel & Lunau 2001; Horth, 

Campbell & Bray 2014). 

The function and value of UV floral signals has been a longstanding interest in 

pollination biology (McCrea & Levy 1983; Koski & Ashman 2014; Koski & Ashman 2015). 

Silverweed flowers (Argentina anserina L.) were manipulated to evaluate if bees would 

preferentially visit the completely UV-reflective “bulls-eye” pattern, normal “bulls-eye” pattern, 

or inverse “bulls-eye” pattern flowers in nature, and results indicated that “bulls-eye” patterns 

enhanced the distance perception of the flowers by bees (Koski & Ashman 2014).  Black-eyed 

susan (Rudbeckia hirta L.) flower manipulations, which increased and decreased the sizes of the 

“bulls-eye” patterns on the flowers, led to more pollinators on the enhanced “bulls-eye” 

pattern (Horth, Campbell & Bray 2014).  These UV patterns aid in pollinator recruitment. 

However, the association between UV floral pattern and floral reward is currently unknown. 
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However, pollen is believed to be the most ancient form of insect attractant in flowers (van der 

Pijl 1960) and bee pollinated flowers often emit an attractive aroma from the oily coating of 

pollen grains, to signal when pollen is available (Willmer 2011).  These UV patterns are found in 

North American and European native flora, and they can be used to gauge pollinator 

preferences (Horth, Campbell & Bray 2014).  

Many angiosperms have UV absorbent “bulls-eye” patterns. Three species, the showy 

goldeneye (Heliomeris multiflora Nutt.; Asteraceae), bulbous buttercup (Ranunculus bulbosus 

L.; Ranunculaceae), and black eyed susan (Rudbeckia hirta; Asteraceae) were selected as study 

systems for this work because they could be empirically manipulated to evaluate pollinator 

preferences.  Asteraceae produce composite flower heads, which are composed of multiple 

ligulate flowers on the periphery of the head and disk flowers in the center of the head 

(Weakley, Ludwig & Townsend 2012). Rudbeckia hirta and H. multiflora ligules (petals) have a 

longitudinal surface with a UV absorbance: reflectance ratio (Fig 1) that varies somewhat 

(Horth, Campbell & Bray 2014).  Artificially manipulating this ratio, biasing toward more UV 

absorbance, encourages a higher rate of pollinator visitation (Horth, Campbell & Bray 2014). 

Ranunculaceae also exhibit a UV pattern, which is strongly influenced by stamens (Fig 2).  If 

similar pollination patterns occur between these two families (Asteraceae and Ranunculaceae) 

of angiosperms, a generalizable phenomenon will be uncovered in this work. The cosmopolitan 

distribution and ease of manipulation make these three taxa ideal for UV pattern research. 
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Many insects see these UV patterns quite well. Based on the spectral sensitivities of the 

compound eyes of 43 hymenopteran species, three major absorptive peaks occur in the 

compound eyes of these species at the light wavelengths ~340 nm, 430 nm, and 535 nm 

(Peitsch et al. 1992). These three peaks vary somewhat in specific absorptive maxima across 

species, but largely coincide with three receptor type cone-cells (UV, blue, and green) found in 

the compound eyes of hymenoptera (Menzel & Blakers 1976). UV light ranges from ~200 nm to 

400 nm wavelengths in the electromagnetic spectrum, blue light ranges from 450 nm to 495 nm 

wavelengths, and green, from 495 nm to 570 nm. The UV receptor is found in combination with 

one of the other two receptors (Kevan 1978, 1979).  These receptors combine to allow bees to 

perceive bee-specific colors when bees see certain pigments in flowers, which affects pollinator 

recruitment, but resources, such as pollen, are the reason why bees visit flowers.  

Figure 1: Photographs of Heliomeris multiflora in color and UV: A: The color image of H. 
multifora is what humans see. B: The UV image of H. multiflora is what bees see, This 
pattern varies across individual flowers, and a linkage between this pattern and reward 
are unknown.  R. hirta have similar UV-absorptive patterns to H. multiflora; both UV-
absorptive patterns create a “bulls-eye” pattern.  

A. B. 
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Halictus spp.predominantly use pollen to provision larvae (Linsley 1958; Stephen, Bohart 

& Torchio 1969). Some solitary bees depend on pollen for protein, which is essential to their 

diet (Stephen et al. 1969), important for development (Stephen, Bohart & Torchio 1969; 

Dodson 1987) and may influence foraging choices (Dodson 1987). Sweat bees (e.g. Halictus 

farinosus Smith) and mason bees (Osmia spp.) carry more pollen between flowers (e.g. 

sunflower, Helianthus annuus L.) and pollinate more flowers more evenly, relative to A. 

mellifera (Parker 1981).  Halictus farinosus are better pollinators of onion (Allium cepa L.) 

flowers than A. mellifera, which results in a higher seed set (Parker 1982).  Halictus spp. may 

have agricultural applications because of their uses in H. annuus and A. cepa production (Parker 

1981; Parker 1982) and high abundance in agricultural systems; they have also been observed 

pollinating native flora, such as R. hirta (Horth, Campbell & Bray 2014). The pollination 

preferences of Halictidae and Megachilidae, which may differ among different native bee 

families, are currently unknown. 

Figure 2: Photographs of Ranunculus bulbosus in Color and UV:  A: The color image is 
what humans see when looking at this flower.  It has oils on its petals that make UV 
photography difficult.  B: The UV image shows that the stamens make up most the UV 
absorbent portion of the flower.  The stamens play a large part in the UV absorptive 
pattern for this flower, unlike H. multiflora and R. hirta. 

A. B. 
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The goal of this work was to determine whether 1) O. lignaria could successfully be used 

as greenhouse pollinators of strawberry plants (F. X ananassa), 2) the density of these bees 

would affect berry size, 3) O. lignaria pollination resulted in larger, more symmetrical berries 

than selfing of berry flowers, 4) O. lignaria would preferentially alight on flowers with greater 

pollen load, 5) O. lignaria could be used as potential pollinators of mid-summer crops (not just 

early spring crops), 6) native pollinator taxa pollinate R. fruticosus, and 7) UV patterns of 

flowers similarly affect pollinator visitations across plant families. 

MATERIALS AND METHODS 

Bee emergence station 

A station was created to allow adult bees to emerge from cocoons. A small plastic box 

(11.50 cm x 8 cm x 6 cm) was placed inside a ≈38 L aquarium. The top of the aquarium was 

covered with a mesh-screen lid and sealed around the edges with tape to prevent escape of 

emerging bees. A layer of sand was provided on the bottom of the tank and it was stocked with 

damp paper towels to maintain a relatively constant humidity for the bees. Whenever a bee 

emerged from a cocoon (~24 hrs after being placed in the aquarium), it remained in this 

emergence station until used in a trial. Three fresh strawberry and clover (Trifolium repens L.) 

flowers were placed inside the station as bee forage every three days. The station was 

monitored every 24 hrs for emergent bees, which were relocated to an experimental 

greenhouse, as needed.  Bees that expired in the station were discarded within a 24 hr 

timeframe.  
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Pollen load preference experimental study: This experiment took place from 16April2016 to 

23April2016 between the hours of ~10:00 am and 2:00 pm (EST) to allow for consistent light 

exposure across all trials.  All trials were performed at the Oceanography and Physics building 

fisheries lab at Old Dominion University (Lat 36.884544/Long -76.307507).    To initiate this 

study, 30 O. lignaria cocoons were placed in the emergence station. A large, hard-plastic 

greenhouse (Palram Nature Series Hybrid Hobby Greenhouse, PALRAM Applications Ltd, 

Kutztown, PA), 254 cm x 249 cm x 260 cm in size, was used for all trials. Two metal shelving 

racks (78 cm x 39 cm x 3 cm), ~115 cm above the ground, were placed in the greenhouse. Six 

total F. X ananassa plants, each with one single bloom, and contained in individual, small plastic 

pots (5 cm x 5 cm x 8.5 cm) were placed on two parallel shelves, one shelf per rack (three plants 

per shelf).  

As a proxy for pollen load, flower stamen number was manipulated with clean metal 

forceps such that three flowers each had five stamen and the other three flowers had 15 

stamen (to create low and high pollen load, respectively). The plants were arranged such that 

no two plants of the same stamen density were adjacent to one another. Each experimental 

flower was given a unique identification number and used in the experimental greenhouse on 

only the second or third day after flower opening to ensure that nectar content was similar 

across flowers based upon stage of development (Gottsberger, Arnold & Linskins 1990).  

At the inception of each trial, three O. lignaria were placed in the greenhouse and 

allowed the opportunity to pollinate flowers for a 10 min period. Each bee landing, along with 

the total time spent on the flower, was recorded.  Activity was low in most trials, so it was 
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possible to monitor visually individual landings relatively easily (a camera was available for back 

up). All three bees and six plants were removed from the greenhouse after 10 min, when the 

trial ended. Six total trials were conducted with a total of 30 F. X ananassa flowers.  Noseeum 

mesh (10.16 cm x 12.07 cm) jewelry pouches (Mudderonline, Seattle, WA) were very gently 

placed over each experimental flower at the end of each trial so that no further pollination 

events could occur.  Each bag was labeled using a black marker with either a three, six or nine, 

which corresponded to a greenhouse bee density and the flower number. All experimental 

bagged flowers were placed in a second greenhouse to allow them to produce fruit without 

further disruption or movement.  After 26 days (standard time to ripen), all fruit from 

experimental plants were weighed and assessed for symmetry (Nye & Anderson 1974). Both 

greenhouses were contained inside a bright, spacious aquatics facility at Old Dominion 

University with floor to ceiling plexiglass windows that allowed natural light in, while also 

allowing for a controlled habitat (the absence of wind and insect pollinators).   

 Control plants for pollen load study: During the experimental time-frame, mesh bags 

were also placed on 25 additional flowers (not used in trials) and grown under the same 

conditions as experimental plants. These control plants each had one flower in bloom and were 

at the same stage of development as the experimental flowers. Control flowers were not 

pollinated by insects and were assumed not to be self-pollinated by wind or other elements 

because they were also held in the second greenhouse with the used experimental plants. After 

26 days, fruit from the control plants were weighed and assessed for symmetry, and these data 

were compared to experimental flower data (below). 
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Symmetry methodology: Comparing left and right side-symmetry is a proxy for 

analyzing a three-dimensional (3-d) object’s actual true 3-d symmetry measurement.  To 

evaluate left-right side symmetry, a photograph (Samsung Galaxy Note7/12-megapixel rear-

facing camera) of each berry was taken in a standardized format: berries were placed on their 

side on a weighing scale and a ruler (mm) was placed in each image as a size scale. The camera 

was rested on a glass plate 20 cm above the berry to establish uniform distance from berry to 

camera across all images. After each photograph was taken, subsequent analysis for symmetry 

was conducted. Individual image files were opened in ImageJ software (1.47v, National 

Institutes of Health, USA) and then the berry perimeter was traced using the “Freehand 

Selections” tool. The berry centroid coordinates were then calculated using the “Centroid” 

measurement found under “Set Measurements”.  After ImageJ identified the x- and y-

coordinates for the centroid, the centroid was marked manually with a point on the image 

using these coordinates. A line was then drawn from the center of the stem of the berry 

through the berry centroid using the “Straight, segmented or freehand line” tool. This 

separated the berry into two halves. Each half of the berry was traced completely using the 

“Freehand Selections” tool (Fig 3). ‘Side-symmetry’ was assessed quantitatively by calculating 

the absolute value of the difference in total pixel number for the two berry halves.  Perfect 

symmetry would be reflected as a zero measurement and increasing asymmetry would be 

reflected as a greater absolute value difference.  
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Pollen load preference experimental study statistics:  A Pearson chi-square test was 

used to compare whether there was a difference in total number of bee landings (N=18 bees) 

for larger (N=15) versus smaller (N=15) stamen load (IBM SPSS Statistics software, Version 21.0, 

2012, Chicago, IL).  A Pearson chi-square test was used in place of a paired t-test because of 

violated assumptions.  The dependent variable was pollinator visitations, and the independent 

variable was the stamen number. Control plants were not considered in this analysis because 

Figure 3: ImageJ protocol: A. A strawberry picture, before any screenshots, with its entire 
area encircled.  B. Strawberry image with a centroid marked.  A blue circle encloses the 
centroid point to enable better viewing. C. The cropped screenshot of a strawberry with a 
separating line.  The line runs from the stem, through the centroid, and to bottom of the 
berry.  D. The left half of the berry is traced and its area is quantified.  E. The right half of the 
berry is traced and its area is quantified. 

D. 

A. B. C. 

E. 
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they received no pollinator visitations.  For each trial, the mean visitation number for plants in 

each treatment group (i.e. five stamen and 15 stamen) was compared. The null hypothesis was 

that there would be no difference in pollinator visitation rate for the low (five stamen) versus 

high (15 stamen) stamen number. 

A Wilcoxon signed rank test was used to compare the weights of 18 berries (i.e. 

dependent variable) from the two treatments (low stamen, N=8 berries and high stamen, N=10 

berries).  The null hypothesis was that there would be no difference in berry weights between 

treatments.  A Wilcoxon signed rank test was also used to compare the symmetry of these 

same 18 berries across two treatments.  The null hypothesis was that there would be no 

difference in berry symmetry between treatments.    

Effect of bee density on berry size in greenhouse pollination study 

This experiment took place from 21April2016 to 10May2016 between 9:00 am and 

12:00 pm (EST) for a total of 18 observation trials.  All trials were performed at the 

Oceanography and Physics building fisheries lab at Old Dominion University.   Three 

greenhouses (Palram Nature Series Hybrid 6 x 4 Green Greenhouse, PALRAM Applications Ltd, 

Kutztown, PA), L 126 cm x W 185 cm x H 209 cm in size, were established. Each greenhouse 

contained a treatment: one of three bees (O. lignaria) densities: three, six or nine bees. An 

upside down ≈19 L aquarium was placed in each greenhouse, which had a shallow lip allowing 

for a small pool of water to be held for bee hydration. Additionally, a single bee nest home, 

made from non-treated pine lumber, with 10 drilled holes, 7.94 mm in size, was placed in each 

greenhouse for possible use by adult bees laying eggs. A small plastic box (12 cm x 8.5 cm x 5 
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cm) with clay-based soil collected from Henley’s Farm in Pungo, VA, USA (Lat 36.699986/Long -

75.993002) was also provided to allow bees to cap off nests, if constructed.  

Daily, 30 min monitoring trials occurred to record pollinator visitation events and 

duration of visits for each treatment (video cameras were available for back up recording of 

observations). Thirty F. X ananassa plants were distributed equally among the three 

greenhouses (10 plants per house). Plants were placed in two rows of five individuals, on metal 

shelves (78 cm x 39 cm x 3 cm) ~ 20 cm above the ground. Shelves were positioned on top of 

four cinderblocks. Plants were placed equidistant from each other to standardize light 

availability. One flower was present on each plant throughout the experiment.  After six days of 

behavior observations, all experimental plants were moved to a second greenhouse and held, 

until berry formation, in the manner described previously.  After 26 days, each berry was 

removed and all berry weights (mg) were recorded and symmetry (mm) was assessed as 

described above. Some berries aborted, so the number of aborted berries for each treatment 

was also recorded. The aborted berry data were used to determine if bee densities influenced 

fruit set.  Bee densities remained constant for the duration of the experiment: if a bee died, it 

was replaced with a new bee from the stock.   

Effect of bee density on berry size in greenhouse pollination study statistics:  Berry 

data from the different treatments (i.e. bee density) could not be statistically analyzed due to 

confounding factors.  Berry data is strictly observational. 

A Kruskal-Wallis test was used to compare the effect of bee density (i.e. independent 

variable) on visitation frequencies (i.e. dependent variable).  The null hypothesis was that there 
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would be no difference in the number of pollinator visitations on flowers for any of the differing 

bee densities.  A Kruskal-Wallis test was used in place of an ANOVA because data could not be 

transformed to meet the ANOVA assumptions. 

A Kruskal-Wallis test was used to compare the effect of bee density on (i.e. independent 

variable) on pollination duration (i.e. dependent variable).  The null hypothesis was that there 

would be no difference in the number of pollinator visitations on flowers for any of the differing 

bee densities.  Pollination durations were summed for each greenhouse for every trial. 

Mid-Summer Emergence of O. lignaria in Controlled and Natural Environments 

 A comparison of bee emergence rates was conducted for greenhouse and farm 

emergence of adults from cocoons. This work occurred from 20June2016 to 04July2016 

between the hours of 9:00 am and 12:00 pm (EST), and cocoons were counted once every 

seven days to determine bee emergence rates.  An indoor treatment group and a farm 

treatment group were observed concurrently.   

Indoor Treatment Group: One-hundred cocoons were placed in a plastic holding 

container (15 cm x11 cm x10 cm) with a plastic lid with venting holes, and held in the 

temperature-controlled facility (Oceanography and Physics building at ODU) at 18.33°C.   Damp 

paper towels were placed in the experimental container with the cocoons to ensure proper 

humidity.   

One week after placing cocoons in the holding container, all bees were counted as 

emerged or not emerged. Paper towels were re-moistened after counting, and un-emerged 
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cocoons were maintained in the holding container until the next counting period. The second 

counting period occurred one week after the first counting period.  After the second counting 

period, the cocoons were retained in the experimental container. Observations ceased after the 

second observation period because cocoons began to shrivel, which is indicative of bee death.  

On average, O. lignaria take two to three days to emerge at temperatures above 14.2°C, and 

emergence probability was drastically decreased after eight days of the same temperature 

(Bosch & Kemp 2000). 

Farm Treatment Group: Four bee homes, which were constructed of pine blocks, were 

placed on a commercial blackberry patch at Henley Farm in Pungo, VA, USA on 20June2016 

(EST).  Each bee house was composed of three blocks of untreated pine with 10 holes that were 

15.24 cm deep and 9.52 mm in diameter. Foam was attached to the bottom of each house to 

prevent water saturation during heavy rains. One-hundred cocoons were placed in the homes: 

three bee houses held one cocoon per hole and 30 total cocoons, and the last house held the 

remaining 10 cocoons. Houses were placed along the soil mounds where a row of R. fructicosus 

plants were planted.  During the first field counting period, empty cocoons, from which adult 

bees had departed, were tallied as “emerged”. Cocoons that had not been chewed through by 

an emerging bee were tallied as “non-emerged.”  If the cocoons were not in the drilled holes, 

the grass was searched below the berry bushes for them.  Any non-emerged cocoons in the 

grass were placed in a bee house hole, and any emerged cocoons were tallied as emerged.  Bee 

houses were removed after the second observation period.  All the bees did not emerge from 

their cocoons, however the remaining cocoons were beginning to shrivel and crumble, which 

suggested non-viability.   
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Mid-Summer Emergence of O. lignaria in Controlled and Natural Environments 

statistics:  A 2x2 contingency table was used to compare whether there was a difference in the 

bee emergence rate (i.e. dependent variable) in a controlled or natural environment (i.e. 

independent variable). The null hypothesis was that there would be no difference in bee 

emergence between controlled and natural environments.     

Assessment of the Native Pollinators of R. fructicosus  

This experiment took place from 08June2016 to 24June2016 between the hours of 9:00 

am and 12:00 pm (EST).  Five trips were taken to Henley Farm on 08June2016, 10June2016, 

14June2016, 20June2016, and 24June2016, and bees were collected directly from R. fructicosus 

flowers.  Aspirators and butterfly nets were used throughout the collection period to capture all 

bees observed on the flowers. Bees were stored in 50 mL date-labelled aspirator vials that were 

frozen after bee collection, and netted bees were placed in individual aspirator vials. Bees were 

identified using Discover Life (discoverlife.org).  Discover Life is an interactive identification 

guide that was compiled and maintained by experts of native bee identification, and it is the 

most reliable identification guide to date (Pickering 2010).    

RESULTS  

Effect of bee behavior on berry size in greenhouse pollination study 

Osmia lignaria landed on F. X ananassa flowers and some of these flowers produced 

fruit, demonstrating that O. lignaria can be used successfully for greenhouse berry pollination. 

Bees did not prefer to pollinate flowers with smaller or larger stamen loads ( pollinator visits: X
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five stamen plants =3.62 (standard deviation +/- 1.07), 15 stamen=3.2 (+/- 1.99); Table 1; Χ2
(.05, 

1) = 0.148, P= 0.701).   

Table 1: Stamen manipulated berry data, showing mean +/- standard deviation. 

 Number of 
Viable 
Berries 

Mean 
Berry 
Weight (g) 

Mean 
Berry 
Symmetry 
(mm) 

Mean 
Number of 
Landings 

Mean 
Pollination 
Times (sec) 

Mean 
Number of 
Aborted 
Berries 

5 stamen 8 

 

1.39 (+/-
1.07) 

0.89 (+/-
1.00) 

3.62 (+/-
1.07) 

86.06 (+/-
68.49) 

8 

15 stamen 10 3.23 (+/-
1.99) 

0.80 (+/-
0.53) 

3.2 (+/-
1.99) 

176.38 (+/-
240.16) 

6 

Mean or 
Totals 

18 2.41 (+/-
1.86) 

0.95 (+/-
0.73) 

1.91 (+/-
1.35) 

129.22 (+/-
180.20) 

14 

 

 Stamen number, a proxy for pollen load, had no significant effect on berry weight (

berry weight (g): five stamen= 1.39 (+/-1.07), 15 stamen= 3.23 (+/-1.99); Table 1; W(.05,8) = 

7.000, P> 0.05).   

 Stamen load did not influence berry symmetry ( berry symmetry (mm) five stamen= 

0.89 (+/-1.00), 15 stamen= 0.80 (+/-0.53); Table 1; W 
(.05,6) = 9.000, P>0.05). 

Effect of bee density on berry size in the greenhouse pollination study  

  Berry data from the different treatments (i.e. bee density) is strictly observation due to 

confounding factors.  Observationally, the berries were larger in greenhouses with higher bee 

densities, and berries became less symmetrical with increasing bee densities (Table 2). 

 

X

X
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Table 2: Average berry data for bee density greenhouses, showing mean +/- standard 
deviation.  

Bee Density 0 3 6 9 

Number of Viable 
Berries 

13 13 19 17 

Mean Berry Weight 
(g) 

0.81 (+/-0.57) 0.604 (+/- 0.447)  2.34 (+/- 3.08) 1.98 (+/- 1.71) 

Mean Berry 
Symmetry (cm) 

0.78 (+/-0.85) 0.95 (+/-0.74) 1.09 (+/-0.95) 1.13 (+/-1.19) 

Mean Number of 
Landings 

0 1.24 (+/- 1.82) 1.74 (+/- 2.15) 3.65 (+/- 3.26) 

Mean Pollination 
Times (sec)  

0 64.50 (+/- 
105.24) 

103.47 (+/- 
140.74) 

135.12 (+/- 
167.45) 

Number of Aborted 
Berries 

12 17  11  13  

 

Bee density had a significant effect on pollinator visitations ( visitations: three bee= 

1.24 +/- 1.82, six bee= 1.74 +/- 2.15, nine bee= 3.65 +/-3.26; Table 2; Χ2 
(05,2) =8.302, p=0.016).  

Larger bee densities led to more pollination events. 

 Osmia lignaria were observed vectoring pollen between strawberry blooms 

inside greenhouses and pollen was clearly visible adhering to the underside, amongst the scopal 

hairs (Fig 4).  Because these bees were exposed to F. X ananassa pollen through the entirety of 

their adult life, this pollen is not from any other plant species.  

 

 

 

X
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Figure 4: Osmia lignaria with Fragaria X ananassa pollen: O. lignaria were found actively 
collecting and transporting F. X ananassa pollen between flowers.  This is F X ananassa pollen 
because these bees were only given access to F X ananassa flowers.  A. Fragaria X ananassa 
with an abundance of pollen. B. Osmia lignaria foraging on F. X ananassa flowers. C. Osmia 
lignaria with pollen adhering to scopal hairs.  D. Magnification of pollen on scopal hairs. 

 

Mid-Summer Emergence of O. lignaria in Controlled and Natural Environments 

Significantly more bees emerged in a controlled environment than a natural 

environment (Χ2 
(05, 1) =6.125, p=0.0208).      

Seventy-three percent of the O. lignaria held in natural, mid-summer conditions on a 

commercial blackberry farm emerged within the first seven days.   Eighty-seven percent of the 

O. lignaria held in a controlled environment emerged within the first seven days.  Overall, more 

bees emerged in the controlled environment over the natural environment.  

A. B.

. 

C. 

D

. 

C

. 
D. 
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Osmia lignaria were observed visiting R. fructicosus flowers near the deployed nest 

boxes (Fig 5).  Rubus fructicosus flowers did have an abundance of pollen, and it is possible that 

O. lignaria could have been transporting pollen between flowers.   

 

Figure 5: Osmia lignaria visiting Rubus fruticosus flowers. 

 

Assessment of the Native Pollinators of Rubus fructicosus 

 The dominant genus of commercial R. fructicosus pollinators identified on Henley Farm 

was Halictus.  There were 88 Halictus sp. individuals collected on R. fructicosus flowers, with 

Halictus confusus Smith the most abundant taxon (82 of 88 individuals). Halictus confusus was 

found with an abundance of pollen on its entire body (Fig. 6).  Bombus was the second most 

abundant genus on R. fructicosus with nine of 12 individuals identified as B. impatiens.  Other 

Bombus individuals that were found were the two-spotted bumble bee (Bombus bimaculatus 

Cresson) (N=2) and the brown-belted bumble bee (Bombus griseocolus De Geer) (N=1).  A single 

carpenter mimic leafcutter bee (Megachile xylocopoides Smith) was collected from the R. 

fruticosus flowers, and this bee had an abundance of pollen found on its scopal hairs (Fig. 6).  
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One Maine blueberry bee (Osmia atriventris Cresson), which is a relative of O. lignaria, was also 

found on the R. fruticosus flowers (Table 3). 

 

 

 

 

 

 

Table 3: Suite of native pollinators collected from R. fruticosus. 

Genus Species Number of Individuals 

Bombus B. bimaculatus 2 

B. impatiens 

 

9 

B. griseocolus 1 

Osmia O. atriventris 1 

Halictus H. ligatus 6 

H. confusus 82 

Megachile M. xylocopoides 1 

 

 

 

B. A. 

Figure 6: Pollen adherence on native bees:  Pollen on the scopae of M. xylocopoides is 
depicted in the image on the left.  Pollen on the body of H. confusus is depicted on the image 
on the right.   
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DISCUSSION 

Overall, this study demonstrated that native O. lignaria individuals can serve as 

greenhouse pollinators for F. X ananassa crops. This work has important agricultural 

applications because these native bees do not experience CCD.  

   Osmia lignaria did not pollinate F. X ananassa flowers with large stamen loads 

preferentially over smaller ones, which suggesting that differences in stamen load alone may 

not present any detectable cue for O. lignaria.  Other floral cues, such as nectar load, scent or 

color, may be detectable signals that O. lignaria use to preferentially pollinate flowers.  More 

research needs to be conducted to determine which signals, if any, serve as an honest indicator 

of reward, or if O. lignaria have any pollinator preferences.  The berry weight (power=0.536) 

and symmetry (power=0.116) for this study should be interpreted with caution because of low 

power. 

As pollinator density increases, the total number of visitations to flowers increased, and 

thus possibility for cross-fertilization increased.  One factor to consider for future work includes 

artificial lighting. Cloudy weather, which occurred for the duration of this experiment, may have 

affected final berry weights, so artificial lighting may have resulted in better berry growth.  A 

previous study using grapes (Vitis vinifera L.) demonstrated that berries in no light in their early 

developmental stages delayed ripening and resulted in a reduction of berry size, and when 

lighting was increased in later developmental stages, the normal development of the berry was 

not resumed (Dookozlian & Kliewer 1996).  Fruit set may have been affected by the weather in 

my study, and, even though this work suggests that bees did not play a major role in fruit set in 
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F. X ananassa, future studies with supplemental lighting may yield different results.  This work 

demonstrates that O. lignaria can play an important role in greenhouse production, and even 

though the six bee treatments produced the largest berries, the greenhouse used for this study 

were only a fraction of the size of commercial greenhouses.  It is likely that larger plant 

densities would require larger bee densities to produce similar effects. And, likewise, it would 

be useful to see if greater bee densities result in the production of bigger berries with higher 

experimental replication with a larger number of plants.  Results should be interpreted with 

caution for the bee density experiment berry weight (power=0.556) and symmetry 

(power=0.091) because of low power. 

The high emergence rates of O. lignaria both indoors and outdoors in mid-summer 

suggests that these pollinators may have valuable commercial applications for mid- and late-

summer crops, such as C. melo (Fisher & Pomeroy 1989) and C. anuum (Shipp, Whitfield & 

Papadopoulos 1994).  In Virginia, local farmers grow R. fructicosus after F. X ananassa, and O. 

lignaria could be a potential pollinator of R. fruticosus when O. lignaria emergence is delayed.  

More O. lignaria emerged from cocoons in controlled conditions than in natural conditions, so 

allowing bees to emerge indoors would be a fruitful technique for farmers wishing to establish 

O. lignaria populations.  The experiment in April2016 had excessively high mortality rates 

among emerging bees, which may have been the result of sudden cold weather, but this later 

emergence yielded much higher O. lignaria emergence.  Farmers using O. lignaria as pollinators 

could, therefore, deploy bees in increments throughout spring and summer to enable a 

consistent pollinator population across many flowering crops’ blooming periods.  Osmia lignaria 

have had their emergence successfully delayed, and O. lignaria was observed on R. fructicosus 
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flowers.  Rubus fructicosus flowers did have an abundance of pollen, and it is possible that O. 

lignaria could have been transporting pollen between flowers.   

Rubus fructicosus has traditionally been pollinated by A. mellifera (Cane 2005), and 

native pollinators are thought to only provide supplementary pollination.  Interestingly, no A. 

mellifera were observed on the R. fructicosus flowers in this study even though other native 

pollinators such as H. confusus were abundant.  This paradox suggests that native bees may 

have more of an effect on R. fructicosus fruit formation than previously thought.  Moreover, 

native solitary bees are not thought to be adequate pollinators of R. fructicosus because of their 

low abundance (MacKenzie & Winston 1984), but my study contradicts.  Pollen was found in 

abundance on several bees in this study, but it is unknown whether such pollen came from R. 

fructicosus.  Native bees were clearly vectoring R. fructicosus pollen between flowers, which is 

precisely how cross-fertilization and better berry formation occur.  A native mason bee species, 

Osmia atriventris, was observed pollinating R. fructicosus flowers, which suggests that a 

congener such as O. lignaria may pollinate R. fructicosus as well.  

 

 

 

 

 

 



29 
 

CHAPTER 2 

ASSESSING THE EFFECT OF ULTRAVIOLET ABSORPTIVE FLORAL PATTERN SIZE ON POLLINATOR 

VISITATION RATE 

MATERIALS AND METHODS 

UV floral pattern influence on native pollinators in a natural landscape 

This experiment took place in July2012 between the hours of 10 am and 2 pm (MST) in 

Colorado (Lat. 38.808688/ Long. -106.884531).  Twenty-eight pairs of Heliomeris multiflora 

were used as a sample.  All data was collected by Dr. Lisa Horth and analyzed by Michael 

Gregory. 

A field of hundreds of H. multiflora flowers, which was far from major human 

settlements, was observed for pollinator visitations.  Once a landing occurred, the flower that 

was visited was marked, using a marker, with a (+) for landing, and the nearest neighbor to the 

pollinated flower was marked with a (-) for no landing.  This pair of flowers were near each 

other, and nothing about their UV patterns was known at the time of selection.  Color and UV 

images were taken with a Baader U-filter, that transmits UV wavelengths 325 to 369 nm 

(Savazzi 2011; Horth, Campbell & Bray 2014), and the filter was used in conjunction with an AF 

Micro Nikkor 60 mm lens, several mounts and a Nikon D70 DSLR digital camera (Horth, 

Campbell & Bray 2014). 

The UV photographs were analyzed using ImageJ software (1.47v, National Institutes of 

Health, USA).  The flower image was uploaded to ImageJ, and three petals were haphazardly 

chosen on each flower.  Each petal was traced fully with the “Freehand Selections” tool to 
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obtain its area, and then the UV absorbent portion of the petal was traced in the same manner.  

The percentage of UV absorbent area on the flower, which corresponds to the size of the 

“bulls-eye” pattern, was calculated for each flower using the three petal-area measurements.   

UV floral pattern influence on native pollinators in a wild landscape statistics: A Pearson chi-

square test was used to compare if native pollinators landed on H. multiflora flowers with 

larger or smaller UV absorptive patterns.  The null hypothesis stated that there would be no 

difference in native pollinator landings between flowers with larger or smaller UV absorptive 

patterns.   

Pollinator preferences in a managed, urban landscape with unknown UV pattern size 

 The experiment took place on 31March2012 between the hours of 10 am and 2 pm 

(EST) and was conducted on the grounds of the Virginia Zoo (Lat 36.876307/Long -76.278286).  

Sixty wild R. bulbosus plants were collected from grounds surrounding Old Dominion University 

(Lat 36.885552/ Long -76.307768). A pair of flowers from the same plant was placed in a single 

clear glass bottle (GT Kombucha 16 oz, Beverly Hills, CA) with 473 mL of water.  There was a 

total of 30 pairs monitored for pollinator landings. UV images were taken of each flower for UV 

pattern measurement using the previously mentioned setup.  Flower pairs were arranged in a 

line after UV images were taken.  No knowledge of the UV pattern was known prior to 

placement of the flowers.  After being arranged in the line, each flower pair was about 1.5m 

from the next.  All insects were captured with mesh nets upon landing so no single bee could 

pollinate more than once. Multiple landings occurred on some flowers, and all landings were 

tallied for each flower. Five volunteers aided in monitoring the flowers and capturing the 
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pollinators.  The experiment ended after four hours of observing pollinator behavior.  UV 

patterns were measured using ImageJ software as previously described.   

Pollinator preferences in a managed, urban landscape with unknown UV pattern size 

statistics: A Pearson correlation was used to determine if the variance in pollinator visitations 

of R. bulbosus was attributed to UV pattern size.  Assumptions were checked and met prior to 

performing the test.  The null hypothesis was that there would be no relationship between UV 

cue size and pollinator visitation rate.   

Pollinator preferences in a managed, urban landscape with known UV pattern size 

 The experiment took place on 12May2012 between the hours of 10 am and 2 pm (EST).  

Sixty wild R. bulbosus flowers were collected from the grounds surrounding Old Dominion 

University. UV images were taken, and analyzed visually before flower placement. Thirty pairs 

of flowers, one with a relatively small UV absorbent cue and one with a larger cue, were paired 

and observed for pollinator visitation at the Virginia Zoo. Bottles were placed in one row about 

1.5m apart and about 3m in front of a various asters, such as R. hirta, and lavender (Lavandula 

spica L.). The number of visitations were tallied for each pair of flowers, with multiple landings 

on individual flowers possible.  Pollinators were captured after each landing. Five volunteers 

aided in monitoring the flowers and capturing the pollinators. UV patterns were quantified 

using ImageJ software, as previously mentioned.  

Pollinator preferences in a managed, urban landscape with known UV pattern size 

statistics: A Pearson chi-square test was used to compare whether pollinators preferred larger 

or smaller UV absorptive patterns among paired R. bulbosus in an urban, managed landscape.  
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The null hypothesis stated that there would be no difference in pollination events between 

flowers with larger or smaller UV absorptive patterns among R. bulbosus flowers.   

Pollen reduction influence on native pollinator in an urban landscape type  

The experiment took place on 15April2012. Thirty R. bulbosus flowers were divided into 

two sets. The first 15 natural, unmanipulated flowers were placed in clear bottles, ~1.5m apart 

at the Virginia Zoo, were arranged in a straight line and monitored for pollinator landings. The 

second set of 15 flowers had all anthers removed with forceps, which decreased the size of the 

UV absorbent pattern in these flowers, were arranged in a straight line and monitored for 

pollinator landings. One week later, a second trial was conducted.  UV images were taken, and 

the UV photos were analyzed as described previously.     

Pollen reduction influence on native pollinator in an urban landscape type statistics: A 

Pearson chi-square test was used to compare whether pollinators preferred pollen deficient 

flowers with smaller UV absorptive patterns or pollen retaining flowers with larger UV 

absorptive patterns.  The null hypothesis stated that the number of pollination events would 

not differ between pollen deficient flowers with smaller UV absorptive patterns or flowers with 

pollen and larger UV absorptive patterns. 

Manipulated UV patterns with standardized pollen loads 

 The experiment took place from 09August2016 through 24August2016 between the 

hours of 10 am and 2 pm (EST) at Old Dominion University’s Kaplan Orchid Conservatory (Lat 

36.884921/ Long -76.30667) in Norfolk, VA.  Rudbeckia hirta were selected for this experiment 

because its pollen does not have a noticeable effect on their UV absorptive patterns.  All 
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flowers were collected from Old Dominion University’s Kaufman Hall (Lat 35.885796/Long -

76.304963).  Sixty experimental flowers had manipulated UV-absorptive patterns using the 

“cut-and-paste” method (Andersson 1982; Horth, Campbell & Bray 2014).   

Many flowers were collected to supply petals for cutting and pasting.  The UV absorptive 

area of the ligulate flowers were glued over the UV reflective area of the experimental ligulate 

flowers to create an exaggerated UV pattern.  The UV reflective area of the ligulate flowers 

were glued over the UV absorptive area of the experimental ligulate flowers to create the 

diminished UV pattern.  Thirty flowers had UV-absorptive patterns manipulated to be ~60% of 

their total petal area, and another thirty flowers to ~ 20% (Fig 7).  

 

 

 

 

 

 

 

 

 Polyvinyl acetate-based glue (Elmer’s School Glue, High Point, NC) was used as an 

adhesive to attach the snipped petals to the flowers; it has been shown to have no effect on 

Figure 7: “Cut-and-Paste” Methods for Rudbeckia hirta Manipulations: The “cut-and-
paste” method was used to adhere reflective and absorptive sections of the petals of 
other Rudbeckia flowers to the experimental flowers; this process was used to 
exaggerate UV-absorptive patterns of some flowers and diminish the UV-absorptive 
patterns of others.  A: The manipulated flower with the 60% UV-aborptive pattern B: 
The manipulated flower with the 20% UV-absorptive pattern. 

A. B. 
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pollinator visitations (Horth, Campbell & Bray 2014).  Each manipulated flower had either five, 

10 or 15 dehisced stamens, which varied based on the experiment being conducted (Fig 8).  

Extra stamens were removed with forceps.  

 

 

 

 

 

 

 

 

 

 

Prior to the “cut-and-paste” method, Rudbeckia hirta flowers were chosen based on 

similarity in size and paired.  A pair of manipulated R. hirta flowers, one flower having 60% UV-

absorptive pattern with 10 stamen and the other flower having a 20% UV-absorptive pattern 

with 10 stamen.  The experimental flowers were in glass bottles (Perrier Sparkling Natural 

Mineral Water, 25.3 oz, Greenwich, CT) filled with 719 mL of water, bottles were approximately 

five cm apart.  The bottles were placed in grass outside the Kaplan Orchid Conservatory 

approximately 15 cm from the background flora, which consisted of several native asters, 

conspecifics and lavender.   

After a single landing, the bee was captured in a vial with an aspirator.  A sample size of 

30 native bees was collected for the experiment.  Each vial was labeled (date, flower treatment) 

A. B. 

Figure 8: Rudbeckia hirta Pollen Manipulations: A: An example of a flower with 15 fully-
dehisced stamens.  B: An example of a flower with five fully-dehisced stamens.  Stamens 
for this flower were UV-absorbent, which makes them undiscernible in UV images.  The 
stamens are small yellow dots found on the flower head.  The dots are marked with a 
large white arrow. 
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and stored in -80°C freezer until bees were identified to species.  Each trial was defined as a 

pair of manipulated flowers being observed for pollinator landings.  Each trial ceased once a 

landing occurred to prevent displacement of pollen.  After each trial, the pair of flowers was 

marked with a unique number using a sharpie, removed from the green bottle filled with water, 

and set in a beaker filled with water so that other flowers could be used in the green bottles.  

Color and UV photographs were taken of the flowers after the trial using methods described 

previously.  After completion of field work, bees were removed from the -80°C freezer, pinned 

and identified using Discover Life (discoverlife.org).   

 Manipulated UV patterns with standardized pollen loads statistics: A chi-square test 

was used to compare whether pollinators preferred larger UV absorptive patterns or smaller 

UV absorptive patterns when pollen was standardized.  The null hypothesis was that there 

would be no difference in pollinator landings between treatment flower types (larger or smaller 

UV absorptive patterns with pollen present).   

Manipulated UV patterns with manipulated pollen loads 

 The experiment took place from 25July2016 through 04August2016. The same 

experimental design from the previous experiment was used for this experiment.  Here, the 

flower with the 60% UV-absorptive pattern had five fully-dehisced stamens and the flower with 

20% UV-absorptive patterns had 15 fully-dehisced stamens.  A total of 30 native bees were 

collected for this experiments sample size. 

Manipulated UV patterns with manipulated pollen loads statistics:  A chi-square test 

was used to compare whether pollinators preferred larger UV absorptive patterns with less 
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pollen, or smaller UV absorptive patterns with more pollen.  The null hypothesis was that there 

would be no difference in pollinator landings between treatment flowers (larger UV absorptive 

patterns and smaller stamen loads versus smaller UV absorptive patterns and larger stamen 

loads). 

RESULTS 

UV floral pattern influence on native pollinators in a wild landscape 

 Pollinators preferred to pollinate flowers with the larger UV patterns in a natural 

environment (Χ2 
(.05,1) = 4.481, P=0.034).  A total of 19 landings were on flowers with naturally 

larger UV patterns ( =54.35% +/- 11.77%) and a total of eight landings were on flowers with 

naturally smaller UV patterns ( =48.41% +/- 8.57%) (Table 1).  All pollinators were Bombus 

spp.    

Table 4: Heliomeris multiflora landings and UV pattern percentage of flowers:  A (+) sign 
designates a pollinator landing and a (-) sign designates no landing.   
Mean UV Percentage (+) (-) 

54.35 +/- 11.77 48.41 +/- 8.57 
Pollinator Landings 20  8 
Pearson chi-square test (Χ2 

(.05,1) = 4.481, P=0.034).   

 

Pollinator preferences in a managed, urban landscape with unknown UV pattern size 

 The variance in the number of visitations was likely explained by UV cue size in these R. 

bulbosus (r = 0.141, df=58, P< 0.05).  Out of the 70 total landings, more pollinators visited 

flowers with the larger UV patterns. All visitors were Halictidae.   

 

X

X
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Pollinator preferences in a managed, urban landscape with known UV pattern size 

 Pollinators preferentially chose the flowers with the larger UV absorptive pattern, and 

pollen load, when given a choice between larger and smaller UV absorptive patterns and pollen 

loads (Χ2 
(.05,1) =28.471, P< 0.05).  The mean number of visits to the larger cues of the pairs was 

1.86 (+/- = 0.265) and of the smaller cues, 0.41 (+/- = 0.105).  Out of the 68 total landings, 

visitors included Halictidae (66) and Megachilidae (2).     

Pollen reduction influence on native pollinator in a managed, urban landscape type  

Pollen may influence the likelihood of a bee choosing certain flowers (Χ2 
(.05,1) =11.333, 

P< 0.05).  Anther removal in treatment flowers decreased their UV absorbent cue size by about 

6% from their original size, so pollen and UV absorptive patterns in this species of plant may 

affect one another. Out of the 102 total pollinator visits, fewer bees ( = 2.26) visited the 

pollen-deficient plants with smaller UV absorbing cues than the untreated plants ( = 4.33). 

Visitors included Halictidae (98) and Apidae (3).   The mean UV absorbent cues size for plants 

with anthers was composed of 25% of the petal surface, and for plants without anthers, 17%. 

Determining the effect of UV patterns and pollen loads on pollination in Rudbeckia hirta 

Pollen, which does not affect the visual floral display for these flowers, presence does 

not seem to influence the bees’ choices to visit the flowers with the larger UV absorptive 

patterns (Χ2 
(.05,1) = 8.700, P=0.0082).  A total of 22 pollinators chose the 60% UV pattern, and a 

X

X
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total of 8 pollinators chose the 20% UV pattern.  Native pollinators preferred larger UV patterns 

over smaller UV patterns when pollen was standardized (Table 5).     

Table 5: Landing data for the Rudbeckia hirta experiments. 

 60% UV Pattern with 10 Stamen 20% UV Pattern with 10 Stamen 

Total Landings 22 8 

Χ2 
(.05,1) = 7.000, P<0.01 

 60% UV Pattern with 15 Stamen 20% UV Pattern with 5 Stamen 

Total Landings 20 10 

Χ2 
(.05,1) =3.452, P= 0.06 

 

Large differences in pollen load may have an influence on the bees’ choices to visit the 

flowers with larger UV patterns (Χ2
(.05,1) =3.452, P= 0.0632).  The null hypothesis is accepted; 

large differences in stamen loads may influence hymenopteran visitations.   A total of 20 

landings were on the flowers with the larger UV patterns, and a total of 10 landings were on the 

flowers with the smaller UV patterns (Table 5).   

Overall, Apidae (N=21) and Halictidae (N=28) were the most abundant families landing 

on the experimental flowers.  Apidae preferentially chose the flowers with the 60% UV 

absorptive pattern (N=16), which is approximately 76% of the total Apidae individuals collected, 

over the 20% UV absorptive pattern (N=5), regardless of stamen load.  Halictidae preferentially 

chose the flowers with the 60% UV absorptive pattern (N=20), which is approximately 77% of 

the total Halictidae individuals collected, over the 20% UV absorptive pattern (N=6), regardless 

of stamen loads.  Colletidae (N=2) and Megachilidae (N=6) were the other two families of bees 
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that landed on the experimental flowers.  No clear pattern could be discerned for the 

pollination preferences of Colletidae or Megachilidae.     

DISCUSSION 

Whether in a natural environment or an urban, manicured one, pollinators 

preferentially chose flowers with the larger, natural UV-absorptive patterns across plant 

families, but for what reason?  These UV absorptive patterns, which are nectar guides, help 

orient pollinators towards floral rewards in Fabaceae flowers (Jones & Buchmann 1974), and 

bees that land on flowers with UV absorptive patterns spend considerably less time on the 

flowers (Leonard, Dornhaus & Papaj 2011), which could lessen the amount of pollen wasted 

during pollination (Harder & Thompson 1989; Leonard, Dornhaus & Papaj 2011). 

  Like the word nectar guide suggests, these guides aid in the pollinators’ detection of 

nectar, but floral rewards, such as nectar and pollen, can vary between conspecific flowers.  

Some flowers have anther, or pollen, mimicking patterns in their nectar guides, that may 

increase pollinator visitations while providing pollinators with adequate reward (Lunau 2000).  

In artificial flowers, the presence of yellow dots, which mimic pollen, caused B. terrestris to not 

be able to distinguish between flowers with or without reward (Pohl, Watolla & Lunau 2008).  

In the absence of pollen, R. hirta with larger UV-absorptive patterns are preferentially 

pollinated by pollinators (Horth, Campbell & Bray 2014), and even though pollen was used in 

this experiment, the pollinator preference for visiting flowers with larger UV absorptive 

patterns was reinforced.  In R. bulbosus, the larger UV absorptive pattern was an honest 

indicator of more pollen reward, but R. hirta does not share this phenomenon.  Pollinators 
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preferentially pollinated the R. hirta flowers with the larger UV pattern, and pollen load did not 

seem to influence bee behavior nor floral display.  Nectar is UV absorbent when irradiated with 

UV light, and bees can use the absorbance of nectar to determine nectar quantities (Thorp et al. 

1975).  In R. hirta, pollinators are posited to be using the increased UV absorptive “bulls-eye” 

pattern as an indicator of increased nectar reward, but the relationship between UV absorptive 

pattern size and nectar quantity has not been evaluated in this plant species.  The larger UV 

absorptive patterns could be an honest indicator of reward, but this preferential pollination 

could also be the result of learned preferences (Makina & Sakai 2007).   

Research on the ability of non-Apis bees to learn is limited, but bees can learn which 

flowers yield the most reward.  Bumble bees have been shown to initially pollinate larger floral 

displays in artificial flowers, but, through experience, learn to pollinate flowers with the most 

nectar (Makino & Sakai 2007).  Half-black bumble bees (Bombus vagans Smith) also show a 

tendency to undergo floral constancy based on their sampling of the “reward spectrum.”  These 

bees learn which flowers yield the most nectar and preferentially pollinate them until those 

rewards become depleted, at which point the bees shift their pollination to the next highest 

nectar reward available (Heinrich 1979).  Halictidae (sweat bees), which are poorly studied, 

cosmopolitan pollinators frequently found in urban ecosystems (Dikmen 2007), preferentially 

chose flowers with larger UV absorptive patterns, regardless of pollen load.  These bees have 

been shown to assess large differences in nectar load (Ashman et al. 2000), like bumble bees 

(Thorp et al. 1975), but aside from their ability to remotely determine nectar quantities, 

knowledge of Halictidae preferences to UV absorptive patterns is minimal.  My study suggested 

that Halictidae do not pollinate flowers based on pollen loads, but they may have an interest in 
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larger UV absorptive patterns, which could be a learned preference from finding flowers with 

larger nectar loads. 

The preference of native bees (Apidae and Halictidae) to pollinate flowers with larger 

UV absorptive patterns has been shown across flowering plant families (Asteraceae and 

Ranunculaceae), which is highly suggestive of a generalizable phenomenon.  The preferences of 

Apidae and Halictidae are similar, but preferences of other native bee families (Colletidae and 

Megachilidae) are still unknown.  Determining if these floral preferences hold true among 

Colletidae and Megachilidae could suggest a generalizable phenomenon among all major 

hymenopteran families.   

CONCLUSIONS 

 Osmia lignaria have the potential to be used in the F. X ananassa greenhouse industry, 

and may have further applications in the R. fruticosus industry.  Osmia lignaria may be a 

versatile and fruitful pollinator in agricultural systems.  Native pollinators in this study chose the 

flowers with the larger UV pattern, regardless of pollen load, and this pollination preference 

appears to be a generalizable phenomenon across hymenopteran families.  The tendency for 

angiosperms to have varying UV pattern sizes, with the larger sizes being more preferentially 

pollinated, suggests a generalizable phenomenon across plant families. 
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