
Old Dominion University
ODU Digital Commons

Computer Science Faculty Publications Computer Science

1993

Intel NX to PVM 3.2 Message Passing Conversion
Library
Trey Arthur

Michael L. Nelson
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/computerscience_fac_pubs

Part of the Digital Communications and Networking Commons, and the Programming
Languages and Compilers Commons

This Report is brought to you for free and open access by the Computer Science at ODU Digital Commons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Arthur, Trey and Nelson, Michael L., "Intel NX to PVM 3.2 Message Passing Conversion Library" (1993). Computer Science Faculty
Publications. 17.
https://digitalcommons.odu.edu/computerscience_fac_pubs/17

Original Publication Citation
Arthur, T., & Nelson, M. L. (1993). Intel NX to PVM 3.2 message passing conversion library. NASA Technical Memorandum: 109038.
Hampton, VA: NASA Langley Research Center.

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/computerscience_fac_pubs/17?utm_source=digitalcommons.odu.edu%2Fcomputerscience_fac_pubs%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

NASA Technical Memorandum 109038

Intel NX to PVM3.2
Message Passing Conversion Library

Trey Arthur

Computer Sciences Corporation

Hampton, Virginia

and

Michael Nelson

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia

October 1993

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virgina 23681-0001

Intel NX to PVM3.2

Message Passing Conversion Library

Version 2.0�

T. Arthur (j.j.arthur@larc.nasa.gov)y

M. Nelson (m.l.nelson@larc.nasa.gov)z

October 14, 1993

Abstract

NASA Langley Research Center has developed a library that allows Intel NX mes-

sage passing codes to be executed under the more popular and widely supported Parallel

Virtual Machine (PVM) message passing library. PVM was developed at Oak Ridge Na-

tional Labs and has become the defacto standard for message passing. This library will

allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon

in a Single Program Multiple Data (SPMD) design to be ported to the numerous ar-

chitectures that PVM (version 3.2) supports. Also, the library adds global operations

capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.

1. Introduction

At NASA Langley Research Center (LaRC), the center's vector supercomputers have

become heavily saturated with users' jobs. Alternatives are being considered to o� load

some of these jobs to other systems. Among the alternatives considered is the transition
of some applications from the vector supercomputers to parallel machines and workstations

clusters. With the proliferation of high powered workstations, workstation clustering, in
both batch and parallel use, o�ers an attractive solution to supercomputer saturation.

At NASA LaRC, the Parallel Virtual Machine (PVM) software provides the most popular
parallel programming environment. PVM was developed at Oak Ridge National Laboratory

�This work was performed under NASA contract NAS1-19038
yMember of the Technical Sta�, Computer Sciences Corporation, Hampton, VA
zNASA Langley Research Center, Hampton, VA

1

and has become a defacto standard for message passing (ref. 4) . But before PVM had

reached this level of popularity, many parallel applications had been developed on the Intel

iPSC/860. There was a need to transition these Intel NX message passing (ref. 3) codes to

PVM.

This document describes the Intel to PVM, version 3.2 (PVM3) libraries. A familiar-

ity with Intel NX and PVM message passing is assumed. The libraries, libi2pvm3.a and

lib�2pvm3.a, are written in C and contain wrappers for several Intel functions and routines.

The executable, pvmexec, is a C program which starts the PVM daemons, runs the user

application, waits for completion of the slaves, and terminates the PVM daemon processes.

If pvmexec is run in the Distributed Queing System (DQS) environment (ref. 5), then the

PVM daemons will not be started or stopped by pvmexec. pvmexec is able to detect if it is

being run in DQS and will relinquish PVM daemon control to DQS.

The main purpose of the libraries is to allow the user with a code written for a Intel

Message Passing Supercomputer in C or FORTRAN to quickly port the code to a worksta-
tion cluster using PVM3. To use the libraries in conjunction with the executable pvmexec
(pvmexec is analogous to cubeexec1), the user must add two subroutine calls and convert
asynchronous message passing calls (e.g., isend and irecv) to synchronous calls (e.g., csend
and crecv).

Another use of the libraries is to give the PVM3 user access to many of the global libraries

which are absent in the standard PVM distribution. To use the global routines without using
pvmexec, the user should make a call to the pvmsetup routine (see section 4). After the
task ids and number of slave processes are known, the pvmsetup routine is called so that
the global routines can be used.

2. Building the libraries

This library is available via anonymous ftp from

blearg.larc.nasa.gov:/pub/pvm/i2pvm3.shar.Z

Before unpacking i2pvm3.shar, the user should make the directory $HOME/pvm3. To unpack

the library, the following should be typed in the user's home directory:

% sh i2pvm3.shar

1
cubeexec was developed by William J. Nitzberg from the Numerical Aerodynamic Simulation (NAS)

Systems Division at NASA Ames Research Center to easily run executable code on the iPSC/860. cubeexec

is not an Intel supported utility.

2

The following should be typed to compile the library:

% cd pvm3/i2pvm3

% make

This will compile the libraries and pvmexec.c. The libraries are moved to

$PVM ROOT/lib/$PVM ARCH. The executable, pvmexec, is moved to

$PVM ROOT/bin/$PVM ARCH. The include �les that the user will need are installed in

$PVM ROOT/include.

To compile a program to run in the PVM environment, the following libraries should be

linked in this order: (lib�2pvm3.a), libi2pvm3.a and libpvm3.a. The following is an example

compile line for a C and FORTRAN program, respectively:

% cc -O -o daria daria.c -L$PVM ROOT/lib/$PVM ARCH -li2pvm3 -lpvm3
% f77 -O -o daria daria.f -L$PVM ROOT/lib/$PVM ARCH -l�2pvm3 -li2pvm3 -lpvm3

3. Use of pvmexec

The libraries can be easily used in conjunction with the executable pvmexec. pvmexec
starts up the daemon processes, runs the application, waits for the application to �nish
then kills the PVM daemons. If pvmexec is run in the Distributed Queing System (DQS)
environment (ref. 5), then the PVM daemons will not be started or stopped by pvmexec.

pvmexec is able to detect if it is being run in DQS and will relinquish PVM daemon control
to DQS.

When using the library with pvmexec, the �rst executable line in the code should be a
call to pvminit(). This routine receives messages from pvmexec. The �nal call in the user's
program should be to pvmquit(). Failure to call these routines by ALL processes

will cause pvmexec to hang. Once the pvmquit() routine has been called by all processes,

pvmexec will kill the PVM daemons and exit. As noted before, the user must also convert

asynchronous routines to synchronous routines.

pvmexec recognizes the three options -t, -v, and -V. Option -t is used to specify the

number of processes to start, -v is verbose mode, and -V prints the version of pvmexec. An
example for running four processes of the executable node:

% pvmexec -v -t 4 node

pvmexec will start daemons on all of the hosts in host�le. host�le is a PVM host �le (ref. 1)

and is read from the directory in which pvmexec is executed. If host�le is not present,
pvmexec will run the all PVM processes on the current workstation.

3

4. Use of libraries without pvmexec

The libraries can be used without using pvmexec, however, it is the user's responsibility

to start and stop the PVM daemons (see (ref. 1) for more information). To use the libraries

without pvmexec, make a call to pvmsetup after the task ids and number of slave processes

are known. NOTE: if using pvmsetup, do NOT call pvminit or pvmquit. The following

code fragment is an example on how to use pvmsetup.

C example:

mytid = pvm_mytid();

tids[0] = pvm_parent();

if(tids[0] < 0){

tids[0] = mytid;

pvm_spawn("spmd", (char**)0, 0, "", NPROC-1, &tids[1]);

pvm_initsend(PvmDataDefault);

pvm_pkint(tids, NPROC, 1);

pvm_mcast(&tids[1], NPROC-1, 0);

}

else {

pvm_recv(tids[0], 0);

pvm_upkint(tids, NPROC, 1);

}

pvmsetup(tids,NPROC);

FORTRAN example:

call pvmfmytid(mytid)

call pvmfparent(tids(0))

if (tids(0) .lt. 0) then

tids(0) = mytid

call pvmfspawn('spmd', PVMDEFAULT, '*', NPROC-1, tids(1), numt)

call pvmfpack(INTEGER4, tids, NPROC, 1, info)

call pvmfmcast(NPROC-1, tids(1), 0, info)

else

call pvmfrecv(tids(0), 0, info)

call pvmfunpack(INTEGER4, tids, NPROC, 1, info)

end if

call pvmsetup(tids, NPROC)

4

5. Supported routines

Routine Usage Description

Sending

csend() csend(msgtype, buf, len, node, pid); send a message
csendsi() csendsi(msgtype, buf, len, node, pid); send short integer message

csendi() csendi(msgtype, buf, len, node, pid); send an integer message
csendr() csendr(msgtype, buf, len, node, pid); send a real message

csendd() csendd(msgtype, buf, len, node, pid); send a double precision message

Receiving

crecv() crecv(msgtype, buf, len); receive a message
crecvsi() crecvsi(msgtype, buf, len); receive short integer message

crecvi() crecvi(msgtype, buf, len); receive an integer message
crecvr() crecvr(msgtype, buf, len); receive a real message

crecvd() crecvd(msgtype, buf, len); receive a double precision message

Global

gdhigh() gdhigh(buf,num,work); global double precision MAX

gdlow() gdlow(buf,num,work); global double precision MIN
gdprod() gdprod(buf,num,work); global double precision MULTIPLY
gdsum() gdsum(buf,num,work); global double precision SUM
gihigh() gihigh(buf,num,work); global integer MAX

gilow() gilow(buf,num,work); global integer MIN
giprod() giprod(buf,num,work); global integer MULTIPLY
gisum() gisum(buf,num,work); global integer SUM
gshigh() gshigh(buf,num,work); global real MAX
gslow() gslow(buf,num,work); global real MIN

gsprod() gsprod(buf,num,work); global real MULTIPLY

gssum() gssum(buf,num,work); global real SUM
gsync() gsync(); synchronization

Other

pvminit() pvminit(); call when using pvmexec
pvmsetup() pvmsetup(tids,nproc); call when NOT using pvmexec

pvmquit() pvmquit(); send quit signal to pvmexec
mynode() int mynode(); returns logical process number

numnodes() int numnodes(); returns number of processes

cprobe() cprobe(msgtype); wait for a message to arrive
infocount() int infocount(); length of message in bytes

infonode() int infonode(); node id for sending process
dclock() double dclock(); returns wall clock in seconds

Table 1: Supported C routines

5

Routine Usage Description

Sending

csend() call csend(msgtype, buf, len, node, pid) send a message

csendsi() call csendsi(msgtype, buf, len, node, pid) send short integer message

csendi() call csendi(msgtype, buf, len, node, pid) send an integer message
csendr() call csendr(msgtype, buf, len, node, pid) send a real message

csendd() call csendd(msgtype, buf, len, node, pid) send a double precision message

Receiving

crecv() call crecv(msgtype, buf, len) receive a message
crecvsi() call crecvsi(msgtype, buf, len) receive short integer message

crecvi() call crecvi(msgtype, buf, len) receive an integer message

crecvr() call crecvr(msgtype, buf, len) receive a real message

crecvd() call crecvd(msgtype, buf, len) receive a double precision message

Global

gdhigh() call gdhigh(buf,num,work) global double precision MAX
gdlow() call gdlow(buf,num,work) global double precision MIN

gdprod() call gdprod(buf,num,work) global double precision MULTIPLY
gdsum() call gdsum(buf,num,work) global double precision SUM
gihigh() call gihigh(buf,num,work) global integer MAX
gilow() call gilow(buf,num,work) global integer MIN

giprod() call giprod(buf,num,work) global integer MULTIPLY

gisum() call gisum(buf,num,work) global integer SUM
gshigh() call gshigh(buf,num,work) global real MAX

gslow() call gslow(buf,num,work) global real MIN
gsprod() call gsprod(buf,num,work) global real MULTIPLY
gssum() call gssum(buf,num,work) global real SUM
gsync() call gsync() synchronization

Other

pvminit() call pvminit() call when using pvmexec
pvmsetup() call pvmsetup(tids,nproc) call when NOT using pvmexec

pvmquit() call pvmquit() send quit signal to pvmexec

mynode() integer mynode() returns logical process number
numnodes() integer numnodes() returns number of processes
cprobe() call cprobe(msgtype) wait for a message to arrive

infocount() integer infocount() length of message in bytes

infonode() integer infonode() node id for sending process

dclock() double precision dclock() returns wall clock in seconds

Table 2: Supported FORTRAN routines

If the PVM environment has machines with di�erent byte ordering conventions, some
additional code changes will be needed. This is because message passing on the Intel is

based on sending messages in bytes. If the PVM environment has machines with di�erent

byte ordering conventions, the user will need to use a di�erent set of communication routines.

6

These routines help PVM determine how to send the message. To use these calls, replace

csend with csendx where x is either si, i, r or d which stands for short integer, integer, real

or double precision, respectively. For example, to send the real variable y to logical node 2,

use this syntax: csendr(msgtype, y, 4, 2, 0). Note that the message length is still in bytes,

so the user only needs to add the appropriate appendix to csend. This message should be

received by using the corresponding receive routine: crecvr(msgtype, y, 4).

6. Unsupported routines

Many NX routines are absent from this library. The supported routines were chosen

based on experience in porting from the Intel/i860 to the PVM environment. Many of the

asynchronous routines are not supported because it is di�cult to emulate these routines in

PVM. The easiest solution to this problem is to have the user change asynchronous routines
(e.g., isend, irecv) to synchronous communication (e.g., csend, crecv).

7. C Example

Given the following Intel C program :

#include <stdio.h>

#include <cube.h>

main()

{

int iam, nproc;

float x;

iam = mynode();

nproc = numnodes();

if (!iam) {

x = 20.0;

csend(100, x, 4, -1, 0);

}

else {

crecv(100, x, 4);

}

gssum(x,1,work);

if (!iam) printf("check: x should equal %d\n",nproc*20.0);

printf("iam= %d, x= %f\n",iam,x);

}

7

To run this program in a PVM environment using the libi2pvm3.a library, the following code

changes would need to be made:

1) change the include �le \cube.h" to \nx2pvm.h"

2) change the �rst executable line to \pvminit();"

3) change the last executable line to \pvmquit();"

Below is the modi�ed C code:

#include <stdio.h>

#include <nx2pvm.h>

main()

{

int iam, nproc;

float x, work;

pvminit();

iam = mynode();

nproc = numnodes();

if (!iam) {

x = 20.0;

csend(100, x, 4, -1, 0);

}

else {

crecv(100, x, 4);

}

gssum(x,1,work);

if (!iam) printf("check: x should equal %d\n",nproc*20.0);

printf("iam= %d, x= %f\n",iam,x);

pvmquit();

}

8

The following is a make�le for compiling the program to run on a PVM environment:

#

INCLUDEDIR = $(PVM_ROOT)/include

PVMLIB = $(PVM_ROOT)/lib/$(PVM_ARCH)

BDIR = $(PVM_ROOT)/bin

XDIR = $(BDIR)/$(PVM_ARCH)

CLIBS = -li2pvm3 -lpvm3

CFLAGS = -g

beavis:

cc $(CFLAGS) -I$(INCLUDEDIR) -L$(PVMLIB) -o $@ beavis.c $(CLIBS)

mv beavis $(XDIR)

8. FORTRAN Example

Given the following Intel FORTRAN program :

program beavis

include 'fcube.h'

iam = mynode()

nproc = numnodes()

if(iam .eq. 0) then

x = 20.0

call csend(100, x, 4, -1, 0)

else

call crecv(100, x, 4)

endif

call gssum(x,1,work)

if(iam .eq. 0) write(*,*) 'check: x should equal ',nproc*20.0

write(*,*) 'iam = ',iam,', x= ',x

end

9

To run this program in a PVM environment using the lib�2pvm3.a library, the following

code changes would need to be made:

1) change the include �le \fcube.h" to \fnx2pvm.h"

2) change the �rst executable line to \call pvminit()"

3) change the last executable line to \call pvmquit()"

Below is the modi�ed FORTRAN code:

program beavis

include 'fnx2pvm.h'

call pvminit()

iam = mynode()

nproc = numnodes()

if(iam .eq. 0) then

x = 20.0

call csend(100, x, 4, -1, 0)

else

call crecv(100, x, 4)

endif

call gssum(x,1,work)

if(iam .eq. 0) write(*,*) 'check: x should equal ',nproc*20.0

write(*,*) 'iam = ',iam,', x= ',x

call pvmquit()

end

The following is a make�le for compiling the program to run on a PVM environment:

#

PVMLIB = $(PVM_ROOT)/lib/$(PVM_ARCH)

BDIR = $(PVM_ROOT)/bin

XDIR = $(BDIR)/$(PVM_ARCH)

FLIBS = -lfi2pvm3 -li2pvm3 -lpvm3

beavis:

cp $(PVM_ROOT)/include/fnx2pvm.h .

f77 $(FFLAGS) -L$(PVMLIB) -o $@ beavis.f $(FLIBS)

mv beavis $(XDIR)

10

9. Executing the examples

The program is compiled and linked by typing make. For compatibility with PVM, the

executable beavis is moved to $PVM ROOT/bin/$PVM ARCH. To execute beavis over four

machines, the �le host�le should be created with each machine name on a separate line

(see (ref. 1) for details on how to set up a host �le). To execute the code, the following

should be typed:

% cd $PVM ROOT/bin/$PVM ARCH

% pvmexec -v -t 4 beavis

Analogous to PVM, all output to the screen is redirected to the �le /tmp/pvml.< uid >. To

obtain the status of the job while it is running, in another window on any of the machines
running PVM, the following should be typed:

% pvm

pvm> ps -a

10. Summary

This report describes the use of the NASA Langley Research Center library for conversion

of Intel NX message passing codes to PVM3.2 message passing codes. If an application is a
candidate for conversion, it must be of SPMD design and any asynchronous sends and receives
must be converted to synchronous sends and receives. If the intended PVM environment is
heterogeneous, some additional code modi�cations may be necessary.

This library should enable users to quickly port codes developed on the Intel iPSC/860
or Intel Paragon to other environments. This includes workstations clusters or even other

parallel computers that provide PVM support. The use of pvmexec emulates the Intel NX

environment and should minimize porting di�culties. The use of this library also adds global
operations capability to PVM. Additions, modi�cations, or suggestions are welcome and can

be sent to the authors.

References

1. Geist, A.; Beguelin, A.; Dongarra, J.; Jiang, W.; Mancheck, R.; Sunderman, V.: PVM 3 Users'
Guide and Reference Manual. ORNL/TM-12187, Oak Ridge National Laboratory, Oak Ridge,
TN, May 1993.

11

2. Grant, B.K.; Skjellum, A.: The PVM Systems: An In- Depth Analysis and Documenting
Study - Concise Edition. Lawrence Livermore National Lab, Livermore, CA, 20 August 1992.

3. iPSC/2 and iPSC/860 User's Guide. Intel Corporation, Order Number 311532-007, April
1991.

4. Nelson, M.: PVM Provides Power in the Public Domain. Parallelogram: The International
Journal of High Performance Computing, May/June 1993, pp. 20-21.

5. Revor, L.: DQS Users Guide. Argonne National Lab, September 15, 1992.

12

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

October 1993 Technical Memorandum

4. TITLE AND SUBTITLE

Intel NX to PVM3.2 Message Passing Conversion Library

6. AUTHOR(S)

Trey Arthur
Michael L. Nelson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

5. FUNDING NUMBERS

WU 505-90-53-02

8. PERFORMING ORGANIZATION

REPORT NUMBER

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM-109038

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

NASA Langley Research Center has developed a library that allows Intel NX message passing codes to be executed
under the more popular and widely supported Parallel Virtual Machine (PVM) message passing library. PVM was
developed at Oak Ridge National Labs and has become the defacto standard for message passing. This library will
allow the many programs that were developed on the Intel iPSC/860 or Intel Paragon in a Single Program Multiple
Data (SPMD) design to be ported to the numerous architectures that PVM (version 3.2) supports. Also, the library
adds global operations capability to PVM. A familiarity with Intel NX and PVM message passing is assumed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Distributed Computing; Parallel Processing; PVM3; Intel NX Message Passing 13

16. PRICE CODE

AO3
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

NASA-Langley, 1992

	Old Dominion University
	ODU Digital Commons
	1993

	Intel NX to PVM 3.2 Message Passing Conversion Library
	Trey Arthur
	Michael L. Nelson
	Repository Citation
	Original Publication Citation

	tmp.1463079914.pdf.UJuOm

