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ABSTRACT

FINITE ELEMENT MODELING DRIVEN BY HEALTH CARE AND
AEROSPACE APPLICATIONS

Fotios Drakopoulos

Old Dominion University, 2017

Director: Dr. Nikos P. Chrisochoides

This thesis concerns the development, analysis, and computer implementation of mesh

generation algorithms encountered in finite element modeling in health care and aerospace.

The finite element method can reduce a continuous system to a discrete idealization that

can be solved in the same manner as a discrete system, provided the continuum is dis-

cretized into a finite number of simple geometric shapes (e.g., triangles in two dimensions

or tetrahedrons in three dimensions).

In health care, namely anatomic modeling, a discretization of the biological object is es-

sential to compute tissue deformation for physics-based simulations. This thesis proposes

an efficient procedure to convert 3-dimensional imaging data into adaptive lattice-based

discretizations of well-shaped tetrahedra or mixed elements (i.e., tetrahedra, pentahedra

and hexahedra). This method operates directly on segmented images, thus skipping a sur-

face reconstruction that is required by traditional Computer-Aided Design (CAD)-based

meshing techniques and is convoluted, especially in complex anatomic geometries. Our

approach utilizes proper mesh gradation and tissue-specific multi-resolution, without sac-

rificing the fidelity and while maintaining a smooth surface to reflect a certain degree of

visual reality.

Image-to-mesh conversion can facilitate accurate computational modeling for biomechan-

ical registration of Magnetic Resonance Imaging (MRI) in image-guided neurosurgery.

Neuronavigation with deformable registration of preoperative MRI to intraoperative MRI

allows the surgeon to view the location of surgical tools relative to the preoperative anatom-

ical (MRI) or functional data (DT-MRI, fMRI), thereby avoiding damage to eloquent areas

during tumor resection. This thesis presents a deformable registration framework that

utilizes multi-tissue mesh adaptation to map preoperative MRI to intraoperative MRI of

patients who have undergone a brain tumor resection. Our enhancements with mesh adap-

tation improve the accuracy of the registration by more than 5 times compared to rigid

and traditional physics-based non-rigid registration, and by more than 4 times compared



to publicly available B-Spline interpolation methods. The adaptive framework is paral-

lelized for shared memory multiprocessor architectures. Performance analysis shows that

this method could be applied, on average, in less than two minutes, achieving desirable

speed for use in a clinical setting.

The last part of this thesis focuses on finite element modeling of CAD data. This is an

integral part of the design and optimization of components and assemblies in industry.

We propose a new parallel mesh generator for efficient tetrahedralization of piecewise lin-

ear complex domains in aerospace. CAD-based meshing algorithms typically improve the

shape of the elements in a post-processing step due to high complexity and cost of the oper-

ations involved. On the contrary, our method optimizes the shape of the elements through-

out the generation process to obtain a maximum quality and utilizes high performance

computing to reduce the overheads and improve end-user productivity. The proposed

mesh generation technique is a combination of Advancing Front type point placement,

direct point insertion, and parallel multi-threaded connectivity optimization schemes. The

mesh optimization is based on a speculative (optimistic) approach that has been proven

to perform well on hardware-shared memory. The experimental evaluation indicates that

the high quality and performance attributes of this method see substantial improvement

over existing state-of-the-art unstructured grid technology currently incorporated in sev-

eral commercial systems. The proposed mesh generator will be part of an Extreme-Scale

Anisotropic Mesh Generation Environment to meet industries expectations and NASA’s

CFD vision for 2030.
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CHAPTER 1

INTRODUCTION

The Finite Element Method (FEM) [5, 192, 46] has found wide appeal in solving com-

plex physical problems in science and engineering in the last few decades. A physical

problem typically involves a continuous domain subjected to external loads. The ideal-

ization of the physical problem to a mathematical model requires certain assumptions that

together lead to partial differential equations (PDEs) governing the mathematical model.

Explicit closed-form solutions for PDEs are rarely available. Nevertheless, if the con-

tinuous domain is discretized into a finite number of simple geometric shapes (e.g., tri-

angles or quadrilaterals in 2-dimensions and tetrahedra, pentahedra, or hexahedra in 3-

dimensions) then together with the use of FEM [5] and the Principle of Virtual Work [15]

the continuous-system mathematical model can be reduced into a discrete idealization,

which can be solved as a discrete-system using numerical procedures. The collection of

those simple geometric shapes is called mesh or grid. A computer program that discretizes

a domain into simple geometric shapes is called a mesh generator or grid generator.

This thesis concerns the development, analysis, and computer implementation of mesh

generation algorithms encountered in finite element modeling. In general, a mesh gener-

ation method should satisfy two main requirements. First, it should discretize the domain

with well-shaped elements. The shape of the elements is critical for the accuracy and the

convergence of a finite element solution. For example, elements with large dihedral angles

tend to increase the discretization error in the solution [8]. On the other hand, elements

with small dihedral angles are bad for matrix conditioning but not for interpolation or dis-

cretization [74, 173]. Unstructured grids contain elements whose shape vary significantly.

The problem is more severe in 3-dimensions because tetrahedra can be distorted in more

ways compared to triangles in 2-dimensions (Figure 1).

Second, a mesh generation algorithm should satisfy the time constraints imposed by

the analysis. Mesh generation remains one of the most time consuming aspects of nu-

merical simulations of complex configurations [155, 156] (Figure 2). The cost can be

higher if validation and optimization of products and manufacturing require re-meshing.

For example, if solution accuracy criteria are not met, the numerical solution has to be

repeated with a refined mesh until a sufficient accuracy is reached. Besides, applications
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Figure 1: Cut of tetrahedral mesh of the flow field of two-booster launch vehicle with 100

M elements. Red signifies the badly-shaped elements with a dihedral angle smaller than

2◦ or larger than 178◦. As the vertices of a badly-shaped element approach coplanarity, the

finite element mapping [15] becomes unreliable, affecting the accuracy of the numerical

solution. This thesis presents a new mesh generator that incorporates parallel connectivity

optimization and other mechanisms to eliminate badly-shaped elements.

such as biomechanical deformable registration for image-guided neurosurgery [58, 57] and

interactive surgical simulations [59] impose hard time constraints in the mesh generation

process. Application of High Performance Computing (HPC) in the simulation workflow

will surely shorten time to obtain results. In some cases, this has an enabling effect as

certain kinds of calculations become achievable within timescales typical in commercial

engineering projects. Additionally, HPC opens a path towards automated optimization,

where alternative design variants can be tested with limited need for human intervention.

This dissertation focuses both on quality and high-performance mesh generation.

The developed algorithms are driven by applications in health care and aerospace.

In health care, namely anatomic modeling, image-to-mesh conversion algorithms are es-

sential in modeling tissue deformation using FEM. This has significant implications in

many areas, such as image-guided therapy [185, 4, 58], interactive surgery simulation
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Figure 2: Time required to perform the stages of a finite element simulation (courtesy

of forkedbranch SOFTWARE RESEARCHED). This thesis employs high performance

computing to reduce the cost of mesh generation without sacrificing well-shaped elements

critical for the accuracy of the numerical solution.

for training young clinicians [59], and endovascular flow diversion for aneurysm geome-

tries [53, 54, 101].

This thesis augments a previous meshing technique [65, 119] to accurately convert

3-dimensional imaging data into adaptive lattice-based discretizations of well-shaped ele-

ments. The proposed method operates directly on isosurface-based data (i.e., segmented

multi-labeled images), therefore skipping a surface reconstruction that is required by tradi-

tional Computer-Aided Design (CAD)-based meshing techniques. Surface reconstruction

can be time consuming, lacking robustness, and virtually intractable for complex anatomic

geometries, such as stented arterial segments [53] or brain Arteriovenous Malformations

(AVM) [59]. CAD-based meshing methods fail to exploit the fact that data surfaces are

not explicitly defined for 3-dimensional imaging data but rather implicitly as the surface

boundaries of a segmented volume of interest.

The present image-to-mesh conversion method utilizes proper mesh gradation and

tissue-specific multi-resolution, without sacrificing the fidelity and while maintaining a

smooth surface to reflect a certain degree of visual reality. Specifically, this method of-

fers several advantages compared to previous implementation [119]: (i) it improves the

accuracy of the geometric and topologic representation; (ii) it provides material-dependent

mesh resolution to reduce the element count; (iii) it controls element quality during mesh
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smoothing; (iv) it reduces memory and CPU requirements for the solver by introducing

mixed elements; (v) it reduces the running time using multi-cores; and (vi) it improves

the overall reliability and portability of the code as it builds upon the ITK open-source,

cross-platform system1. Chapter 2 presents the method along with evaluation results on

multi-tissue data, as well as a comparison with four other popular image-to-mesh conver-

sion techniques.

Image-to-mesh conversion can facilitate accurate computational modeling for FEM-

based registration of Magnetic Resonance Imaging (MRI) in image-guided neuro-

surgery [81]. During surgery the brain deforms due to several factors such as cerebrospinal

fluid leakage, intra-cranial pressure, gravity, tumor retraction, and resection [55, 134, 149].

Neuronavigation with non-rigid registration of preoperative MRI to intraoperative MRI al-

lows the surgeon to view the location of surgical tools relative to the preoperative anatom-

ical (MRI) or functional data (DT-MRI, fMRI), thus avoiding damage to eloquent areas

during tumor resection [4, 45, 57, 122, 139, 151].

This thesis presents a biomechanical non-rigid registration framework utilizing multi-

tissue mesh adaptation to automatically remove elements in the area of the resected tumor,

thereby automatically handling deformation in the presence of resection. The proposed

method augments a previous deformable registration method [120, 45]. The enhance-

ments with mesh adaptation improve the accuracy of the registration by more than 5 times

compared to rigid [98] and traditional physics-based deformable registration [120], and by

more than 4 times compared to publicly available B-Spline interpolation methods [98].

The adaptive framework is parallelized for shared memory multiprocessor architec-

tures. Acceptance in clinical practice requires that non-rigid registration be completed in

the time constraints imposed by neurosurgery (e.g., 2-3 minutes) and without the cost of

high-performance computing clusters. Therefore, we conduct performance analysis on a

readily-available 12-core desktop system. The analysis shows that our algorithm could be

applied, on average, in less than two minutes, achieving desirable speed for use in a clinical

setting. Chapter 3 presents the adaptive non-rigid registration framework along with ex-

tensive evaluation results on 3-dimensional MRI data from thirty patients who underwent

partial, total, and supra total glioma resection. Appendix A presents a customization of this

framework to quantify brain shift during deep brain stimulation surgery using preoperative

and intraoperative Computed Tomography (CT) scans.

1https://itk.org
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Chapter 4 focuses on the discretization of CAD data. Finite element modeling us-

ing CAD data is an integral part of the design process in mechanical, civil, aerospace,

and silicon engineering. For example, in aerospace, an unstructured mesh is necessary

in Computational Fluid Dynamics (CFD) where Navier-Stokes calculations are performed

to compute engine installation drag and lift loss due to an increased bypass ratio of tur-

bofan engines for reducing the fuel consumption and engine noise [25]. A major dif-

ference between CAD and imaging is that the former defines the boundary of the object

by means of constructive solid geometric primitives [144], or explicitly through a bound-

ary discretization as a collection of patches [140]. On the other hand, imaging defines

the boundary through an implicit function such that points in different regions of interest

evaluate the function differently. This thesis is about volume dicretization, so it is as-

sumed that the boundary of the domain is already meshed as a Piecewise Linear Complex

(PLC) [140, 175].

CAD-based meshing can be challenging because the shape of the boundary patches

(e.g., triangles) affects the shape of the volume elements (e.g., tetrahedra). Many appli-

cations require the preservation of a specific set of constraints (e.g., edges or faces) into

the grid. The constraints can represent boundaries of the domain, an interface of a mesh

partition, or other geometric features. Complex topologic modifications [73, 179, 97] and

additional (Steiner) points might be necessary in order to preserve the constraints. The op-

timal locations and minimum number of Steiner points is still an open problem [165, 31].

All these facts make CAD-based volume meshing even more challenging.

This dissertation proposes a parallel unstructured mesh generator for efficient dis-

cretization of PLC domains in CFD modeling. Mesh generation codes typically improve

the shape of the elements in a post-processing step called mesh optimization or mesh qual-

ity improvement [50, 71]. AFLR [132] is the only method we are aware of that optimizes

the grid connectivity both during and after mesh generation (in a post-processing step)

to obtain a maximum element quality. Our method not only optimizes the connectivity

throughout the procedure, but it also utilizes multi-cores to perform parallel optimization,

significantly improving execution time and end-user productivity without sacrificing ele-

ment quality.

The proposed mesh generation engine is essentially a combination of Advancing

Front type point placement [123, 127], direct element subdivision [132], and parallel
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multi-threaded connectivity optimization schemes [171, 201]. The connectivity opti-

mization is based on a speculative (optimistic) approach that has been proven to per-

form well on hardware-shared memory (i.e., single chip) [40, 70]. Topologic transfor-

mations [73, 179, 97] are employed to reconnect the grid. The parallel reconnection is

based on: (i) data over-decomposition; (ii) atomic operations to avoid data races; and (iii)

load-balancing to redistribute work-units among the threads.

Experimental evaluation on realistic aerospace configurations indicates that our code

is stable and robust in that both sequential and parallel implementations generate grids of

a comparable or higher element quality than state-of-the-art technology [132] currently

incorporated in several commercial systems (i.e., DoD CREATE-MG Capstone, Lock-

heed Martin/DoD ACAD, Boeing MADCAP, MSU SolidMesh, and Altair HyperMesh).

The proposed method improves end-user productivity, completing the mesh generation

process (without post-improvement) up to 2.5 and 10 times faster compared to state-of-

the-art code [132], when 1 and 12 hardware cores are utilized, respectively. Furthermore,

it exhibits near-linear scalability when 24 cores are utilized to discretize the flow domain

of a DLR-F6 Airbus aircraft (NASA’s Common Research Model2) with approximately

1.5 billion elements. In future efforts, this mesh generator will be part of an Extreme-

Scale Anisotropic Mesh Generation Environment [43] to meet industries expectations and

NASA’s CFD vision for 2030 [180].

2https://commonresearchmodel.larc.nasa.gov
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CHAPTER 2

IMAGE-TO-MESH CONVERSION FOR ANATOMIC MODELING

OF BIOMEDICAL APPLICATIONS

2.1 INTRODUCTION

Image-to-Mesh conversion algorithms are widely used for the quantitative analysis of

patient-specific images using the Finite Element (FE) method. This has significant impli-

cations in many areas, such as image-guided therapy [185, 4, 58], interactive surgery sim-

ulation for training young clinicians [59], and endovascular flow diversion for aneurysm

geometries [53, 54, 101]. The FE method is essential in modeling tissue deformation for

these applications. An intrinsic difficulty of generating meshes from isosurface-based data

(i.e. parametric surfaces/volumes, level-sets, segmented multi-labeled images) is the pro-

cessing and recovery of the object geometry. General-purpose mesh generators (for solid

and geometric modeling applications) expect that the object boundary is parameterized,

i.e., it is defined by means of constructive solid geometry primitives, or explicitly defined,

e.g., through the boundary discretization, as a collection of patches. In order to convert the

isosurface data into a tetrahedral mesh, one can either (i) recover the parametrized object

surface and follow up with a conventional mesh generation technique, or (ii) use a mesh

generation method, which operates directly on this type of data.

This chapter presents a framework (CBC3D) to directly convert segmented multi-

labeled image data into adaptive multi-tissue tetrahedral meshes that conform to the phys-

ical image boundaries. Image-to-Mesh conversion is an inherently difficult problem as it

has to balance trade-offs between several criteria: (i) minimize the mesh size and maximize

the element quality by utilizing proper mesh gradation and tissue-specific multi-resolution,

(ii) without sacrificing geometric and topologic fidelity, (iii) while maintaining a smooth

surface to reflect a certain degree of visual reality, and (iv) simultaneously, to allow the up-

stream numerical computations for collision detection and biomechanical Finite Element

analysis to complete within the time constraints imposed by a surgical simulation.

The present procedure focuses on these common requirements and offers several ad-

vantages compared to previous implementations [65, 119]: (i) it improves the accuracy of
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the geometric and topologic representation, (ii) it provides material-dependent mesh res-

olution to reduce the element count, (iii) it controls element quality during mesh smooth-

ing, (iv) it reduces memory and CPU requirements for the solver by introducing mixed

elements, (v) it reduces the running time using multi-cores, and (vi) it improves the overall

reliability and portability of the code as it builds upon the ITK open-source, cross-platform

system1.

2.2 BACKGROUND

There are various meshing methods that operate on isosurface data. Some methods are

based on a Delaunay refinement scheme [23, 159, 176], such as CGAL’s 3D Mesh Engine2.

The code prototype together with a first version of design and specifications is presented

in [163]. CGAL first constructs a boundary mesh from the image and then a volume mesh

given the surface mesh as an input. Before the refinement, a mechanism of protecting

balls is set up on 1-dimensional features, if any, to ensure a fair representation of those

features in the mesh. This mechanism also guarantees the termination of the refinement

process independently of the input geometry. The refinement process is driven by criteria

concerning either the size or shape of mesh cells and surface facets. It terminates when

there are no more mesh cells or surface facets violating the criteria. The refinement is

followed by a mesh optimization phase [33] to remove slivers and provide a good quality

mesh.

A parallel 3D Delaunay meshing method (PODM) has been previously developed by

our group [70]. PODM constructs the isosurface of the biological object with geometric

and topological guarantees while also providing good shape elements. PODM implements

a tightly-coupled, shared-memory, parallel speculative execution approach, using carefully

designed contention managers, load balancing, synchronization and optimization schemes.

The problem with the Delaunay refinement is that almost flat tetrahedra, called slivers, can

survive. There are a number of optimization techniques to eliminate slivers [23, 33, 39],

and some of them have been shown to produce very good dihedral angles in practice.

A large number of meshing methods are based on lattice space-tree (e.g., octree in

3D) decomposition, which provide adaptively-sized, high-quality elements for a number

of medical applications [112, 26]. Usually, the mesh is tessellated by a regular background

1https://itk.org
2http://doc.cgal.org/latest/Mesh 3
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mesh and the surface is recovered by finding the points where the mesh intersects the sur-

face of the object. Then the mesh vertices are warped onto the model surface, or new

vertices are inserted on the surface, and the mesh is locally modified. The achieved mesh

quality depends on thresholds used for deciding whether to warp or insert a vertex. In

some cases, a mesh decimation step is applied to an octree-based mesh to improve the el-

ement shape and/or modify the mesh size [38, 202]. In other cases, the element quality is

improved in a post-processing step, by optimizing an objective function based on tetrahe-

dral shape measures [72]. In [203] an efficient octree Dual Contouring (DC) method was

presented to resolve topological ambiguity for multiple-material domains by analyzing a

hybrid octree with both cubic and tetrahedral leaf cells.

Other approaches first generate an adaptive Body Centred Cubic (BCC) background

lattice and then warp the surfaces of the lattice to the boundaries of the object using

either a mass spring system, a finite element constitutive model, or an optimization

scheme [143, 119]. In [75], an adaptive BCC lattice is created, the vertices outside the

object are projected to the boundary, the Delaunay approach is used to tessellate the ob-

ject, and a smoothing optimization step is applied. The method uses the lattice vertices

only for estimating the initial positions of the mesh vertices. In [161], an advancing front

technique generates the volumetric mesh using the vertices of a Face-Centred Cubic (FCC)

lattice.

Previous work [65, 119] extended [143] to fairly regular multi-material geometries,

and employing a physics-based mesh deformation scheme to warp the surfaces of a BCC

mesh to the physical image boundaries. The deformation scheme took fidelity, smoothing,

and quality into account. The advantage of using a physically based deformation scheme is

that it can forecast how the mesh is likely to respond to the deformations it will experience

during a simulation. Additional improvements for the reliable and faithful representation

of multiple materials and their corresponding resolutions were presented in [59].

This thesis improves the accuracy of the geometric and topologic representation of

the methods presented in [65, 119]. Lattice subdivision is performed using an Euclidian

Distance Transform (EDT) [135] instead of a segmented image. In that way, smoother re-

finement is achieved within a threshold from the segmented image boundaries. To provide

a more accurate topologic representation, the non-manifold voxel connectivities in the seg-

mented image are eliminated. When the lattice subdivision is completed, the disconnected

mesh regions or non-manifold mesh connectivities are detected, and the lattice is further

subdivided (locally or globally) to resolve the image features.
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The proposed method provides a material-dependent lattice subdivision to focus only

on materials of interest, thus reducing the number of generated elements. Alternatively,

global subdivision criteria can be specified. The badly shaped elements during a physics-

based smoothing scheme are eliminated with heuristics and quality criteria such as a min-

imum dihedral angle or a scaled Jacobian metric. The trade-off between mesh fidelity

and smoothing time is balanced with the extraction of different amounts of image features

needed for smoothing. To reduce the number of vertices in the adaptive tetrahedral mesh,

mixed elements (tetrahedra, pentahedra, and hexahedra) are introduced. The evaulation

shows that a mixed mesh can reduce the number of vertices up to 30% without com-

promising the fidelity or smoothness of the tetrahedral mesh. Finally, this work utilizes

parallel computing to improve the overall performance of the image-to-mesh conversion,

allowing the processing of big data (e.g. Micro-CT Imaging of stents).

We compared our new CDC3D algorithm to four common image-to-mesh conver-

sion methods: CGAL’s 3D Mesh Engine3 (v4.5.2), CLEAVER [26] (v1.5.4), Lattice-

Derefinement (LD) [38], and PODM [70]. A single-material version of the CBC3D is

available within 3D Slicer4 package for visualization and image analysis. A previous

multi-material version of the CBC3D is integrated within an interactive simulator for neu-

rosurgical procedures involving brain Arteriovenous Malformations (AVM) developed in

SOFA5; a framework for real-time medical simulations.

2.3 METHOD

CBC3D uses a segmented multi-labeled image as input and creates an adaptive tetra-

hedral or mixed element mesh as an output. Subsection 2.3.1 describes the segmentation

algorithm used to obtain the labeled image. Subsection 2.3.2 describes pre-processing al-

gorithms used to improve the quality of the input image. Subsection 2.3.3 describes the

generation of the adaptive BCC lattice. Subsection 2.3.4 describes the conversion of the

adaptive tetrahedral mesh into a mixed element mesh. Subsection 2.3.5 describes mesh

smoothing.

3http://doc.cgal.org/latest/Mesh 3
4https://www.slicer.org
5https://www.sofa-framework.org
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2.3.1 SEGMENTATION

Before segmenting the vessels from the MR Imaging, a skull-stripping algorithm is ap-

plied to remove the skull bone from the image, using the Brain Extraction Tool (BET) [95].

The level set segmentation algorithm for the vessels structures uses the Vascular Modeling

Toolkit (VMTK) [3]. Level sets are a kind of deformable model in which the deformable

surface is represented by a 3D function whose contour at level zero is the surface in ques-

tion. In order to extract the surface from the image, the output image is run through

Marching Cubes [128] with level zero. A fast marching initialization is used, consisting of

placing a set of seeds and a set of targets in the image. A front is then propagated from the

seeds until the first target is met, at which point the region covered by the front is the initial

deformable model. This type of initialization is effective when it is necessary to segment

round objects such as aneurysms (e.g. by simply placing one seed at the center, and one

target on the wall, the volume will be initialized). The output segmented image contains

labels, each one representing a single tissue (Figure 3).

Materialise Mimics6 software is used to perform image segmentation on the micro-

CT data of commercially available neurovascular stents [53]. Two different labels are

tagged on to the lumen of the sidewall aneurysm model and the flow diverter. During

segmentation, the device is cropped to only retain the portion providing neck coverage of

the aneurysm (Figure 4).

(a) (b) (c)

Figure 3: Brain MRI slice with AVM after skull stripping [59] (a) and after segmenta-

tion (b). (c) depicts a volume rendering of the segmented AVM. The segmented image has

a spacing of 0.7× 0.7× 1.6 mm3 and a size of 320× 320× 100 voxels3.

6http://www.materialise.com/en/medical/software/mimics
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(a) (b) (c) (d)

Figure 4: Raw micro-CT slice (b) for pipeline stent model [54] (a) and after segmentation

with the device wires cropped (c). (d) depicts a volume rendering of the segmented stent.

The segmented image has a spacing of 0.012 × 0.012 × 0.024 mm3 and a size of 1001 ×
1001× 4421 voxels3.

2.3.2 IMAGE PRE-PROCESSING

The previous work [65, 119] re-samples the segmented image to an isotropic unit spac-

ing image to avoid the transformation of index to physical coordinates and vice versa. This

approach is sufficient for fairly regular geometries and improves the speed of the mesh

generation. However, in the case of complex data (e.g. AVM), image down-sampling can

deteriorate the quality of the segmentation and may result in disconnected image regions

or non-manifold connectivity (i.e., voxels that are connected to each other via an edge

or a vertex). Figure 5 illustrates such an example. The current implementation does not

perform image down-sampling.

Relabeling noisy voxels

A semi-automatic or manual segmentation of poor quality may contain isolated voxels

that do not correspond to an anatomical image feature. CBC3D identifies two types of such

voxels and relabels them based on their neighbors. The first type has a zero label (back-

ground), and all its neighbors have a non-zero label (Figure 6(a)). The second type has a

non-zero label, and all its neighbors have a different label (Figure 6(b)). Not all neighbors

necessarily have the same label. The neighbors are checked using a 26-neighborhood re-

gion (Figure 6(c)). After the noisy voxels are identified, they are relabeled to one of its

neighbors’ label. Either the first, the second, or both types are relabeled.
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(a) Before down-sampling (spacing: 0.879×0.879×
0.879 mm3)

(b) After down-sampling (spacing: 1× 1× 1 mm3)

Figure 5: Brain Arteriovenous Malformation (AVM) segmentation, before and after down-

sampling. The red circles indicate the problematic regions after down-sampling (i.e., dis-

connected voxels or non-manifold voxel connectivity).

Relabeling disconnected regions

CBC3D controls the level of refinement in each material by using a global or a material-

specific fidelity (subsection 2.3.3). Complex segmentations (i.e, tangled bundles of abnor-

mal and arbitrary thin blood vessels connecting arteries and veins in the brain) may contain

materials with multiple disconnected regions. CBC3D implements a relabeling algorithm

to handle each of those regions as a different material. Therefore, the present method

allows a more localized refinement which leads to a lower element count.

An ITK connected threshold image filter is employed to detect the disconnected regions

in each material. A seed is first computed based on the label of the material, and then small

regions on the image with the same label are merged iteratively to compute a connected

region. A face connectivity is used for merging. Assume that Si is the set of voxels

in material i, and the filter computes a set of voxels Sij in a region j of material i. If

|Si| = |Sij | (where | ∗ | is the number of voxels in ∗), then material i is a single region.

Otherwise, material i consists of disconnected regions. If
|Si|−|Sij|

|Si|
< stol then region j

is too small compared to region i, hence it is relabeled to zero (background). Otherwise,

region j is relabeled to a new label. A tolerance stol = 10−4 is used to detect the small

disconnected regions. Figure 7 depicts an example before and after the relabeling process.
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(a) (b) (c)

Figure 6: Candidate isolated voxels for relabeling (a)-(b) and 26-neighborhood region (c).

(a) Before relabeling (b) After relabeling

Figure 7: Relabeling an AVM segmented image with disconnected vessels. Before pro-

cessing, the image contains one material (yellow) with five disconnected regions (a). After

processing, the image contains three materials (red, cyan, and brown) but each of those is

a single region (a). Two small disconnected regions are relabeled to a background value.

Eliminating non-manifold voxel connectivity

A segmentation with poor resolution may contain non-background voxels which, are

connected through a single edge or a vertex (Figure 9(a)). This type of connectivity can

lead to a non-manifold mesh (i.e., tetrahedra which are connected through a mesh edge or a

mesh vertex), especially when refinement is inadequate to resolve the small image features.

A non-manifold mesh deteriorates the solution accuracy in blood flow simulations within

stented arterial segments or AVM surgical simulations (Figures 3-4).
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CBC3D incorporates relabeling operations with specific templates in order to elimi-

nate the non-manifold voxel connectivities. First, all vertex-to-vertex connectivities are

detected (Figure 8(a)), and eliminated by randomly selecting one of the six templates (Fig-

ures 8(b)-8(g)). All templates result in a face-to-face connectivity; however, each template

relabels different voxels. When all vertex-to-vertex connectivities are eliminated, the edge-

to-edge connectivities are detected (Figure 8(h)) and eliminated by randomly selecting one

of the two templates in Figures 8(i)-8(j). Similarly, the two templates relabel different vox-

els. The two steps repeat until all non-manifold connectivities are eliminated. Randomness

is introduced in the selection of those templates to achieve convergence in the case of rela-

beling neighbor clusters. Figure 9 depicts an example of an AVM segmented image before

and after elimination.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j)

Figure 8: Templates to eliminate a vertex-to-vertex connectivity (a) or an edge-to edge

connectivity (h) in a segmented labeled image. In the case of a vertex-to-vertex connectiv-

ity, one of the six templates is randomly selected to relabel two voxels within a cluster of

eight voxels (b)-(g). In the case of an edge-to-edge connectivity, one of the two templates

is randomly selected to relabel a single voxel within a cluster of four voxels (i)-(j). The

arrows illustrate the path of the transformation via face connected voxels after relabeling.

2.3.3 ADAPTIVE LATTICE REFINEMENT

BCC lattice construction

Initially the image is discretized with a regular Body Centred Cubic (BCC) lattice.

This structured lattice is generated as a result of two interlaced lattices (Figure 10). The

first lattice is created by setting its vertices with an input-defined distance between them

(BCC size parameter in Table 3), then the edges connecting those vertices are added,
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(a) Before relabeling (b) After relabeling

Figure 9: AVM anisotropic segmented image (0.7 × 0.7 × 1.6 mm3) before (a) and af-

ter (b) relabeling to eliminate the non-manifold voxel connectivity. The voxels which are

connected via an edge or a vertex are depicted with red color.

consequently creating the tetrahedral elements. The elements of the second lattice are cre-

ated with consideration to the first lattice so that their vertices correspond to the centroids

of the initial lattice cells. As a final step, the tetrahedra located completely outside of the

object are discarded. The resulting elements are of the best quality possible (the minimum

dihedral angle is 60◦) with the regular space tiling [75].

Adaptive refinement

With the purpose of subdividing the elements, a metric has to be considered. The cur-

rent implementation uses an Euclidean Distance Transform (EDT) to decide whether an

element needs to be subdivided (Figure 11). An EDT provides more information com-

pared to a segmented image, and thus it conducts a smoother refinement nearby the ma-

terial boundaries. In the presence of n materials, n EDTs will be calculated in order to

exclusively subdivide the elements within each material. ITK’s Signed Maurer Distance

Map Image Filter [135] is employed to compute the EDT in parallel and reduce the running

time.

The lattice is refined using red (regular) - green (irregular) templates (Figure 12). An

element is subdivided if the EDT in which the centroid of the element belongs to changes

sign in at least one of the four element vertices. Initially, all tetrahedra are marked as red. A

red tetrahedron is always subdivided into eight children (1:8 regular refinement), and each

child is marked red, as shown in Figure 12(a). There are three choices for the internal edge

of the red tetrahedron. If the shortest one is selected, the resulting eight child tetrahedra
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(a) Cut section (b) Lattice detail

Figure 10: Uniform Body-Centered Cubic (BCC) lattice. The green edges lace the two

lattices together. Each vertex is surrounded by 14 edges and 24 tetrahedra.

are exactly the same as the parent except the size is one half of the parent’s size. The red

subdivision will lead to T-junctions at the newly created edge midpoints where neighboring

tetrahedra are not refined to the same level. To remove the T-junctions, a green (irregular)

subdivision which, includes the three cases depicted in Figures 12(b)-12(d), is performed.

To quantitatively evaluate the similarity between a mesh that corresponds to a single

material (sub-mesh) and the image region of this material (sub-region), S1 is defined as the

set of all voxels in the sub-mesh, S2 as the set of all voxels in the sub-region, and S1 ∩ S2

as the point-set shared by the sub-mesh and the sub-region (common region). Ratio F1 =
|S1∩S2|
|S1|

corresponds to the similarity between the common region and the sub-mesh, and

ratio F2 = |S1∩S2|
|S2|

corresponds to the similarity between the common region and the sub-

region. The refinement criterion is defined as: Refine the sub-mesh if F > F1 or F >

F2, where F ∈ (0, 1] is a global input fidelity or a material-specific fidelity (Table 3).

The higher the input fidelity the finer the mesh nearby the boundaries. The advantage of

a material-specific fidelity compared to a global fidelity is that the former allows a more

localized refinement in the materials of interest, thereby reducing total element count.

Candidate mesh selection

Looking forward into the future steps of the algorithm, for a surface to be suitable

for smoothing, each non-background element is allowed to be connected via at most one
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(a) Segmented image (b) EDT of (a)

Figure 11: Euclidean Distance Transform (EDT) computed from a labeled image. The

EDT calculates the minimum distance of a voxel in the image from its closest material

boundary. Voxels inside a material have a positive distance value, voxels outside a material

have a negative distance value and voxels on the boundary have a zero distance value.

(a) 1 : 8 (b) 1 : 2 (c) 1 : 4 (d) 1 : 4

Figure 12: Red-Green templates for lattice subdivision. 8, 2, and 4 is the number of

tetrahedra after subdivision.

face with a background element. Otherwise the elements on the surface can be easily dis-

torted or inverted during smoothing. To avoid this type of connectivity, the labels of those

problematic surface elements and of the surrounding elements are redistributed. Every

tetrahedron is examined by observing the labels of its four adjacent tetrahedra. If at least

three of the adjacent tetrahedra have the same label as the examined tetrahedron, then there

is no need for relabeling. However, if there is more than one adjacent tetrahedron with a

different label, then the examined tetrahedron needs to be relabeled to one of its neighbor-

ing labels. Between these labels, the one chosen for relabeling the tetrahedron depends

on whether a considered label has been already examined and finalized in the previous

examinations. So, if a neighboring label has not been fully inspected yet, the tetrahedron
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is relabeled to this one. At the end of the relabeling process, the background elements are

discarded and the final mesh is obtained. Figure 13 depicts the basic steps of the adaptive

mesh genaration.

(a) Uniform lattice (b) Uniform lattice after removals (c) Adaptive lattice

(d) Adaptive lattice after redistri-

bution

(e) Final lattice

Figure 13: Pipeline of the BCC lattice construction and adaptive refinement.

Mesh topological checks

The goal is to obtain a manifold topology, meaning that every tetrahedron must be

connected to one another through a face. After the lattice subdivision is completed (i.e.,

all input fidelities are satified) and the candidate mesh is selected, the mesh topology is

examined to ensure the absence of non-manifold (i.e. connected via an edge or a vertex)

tetrahedral connections or disconnected tetrahedra in each sub-mesh.

A mesh connected threshold filter is developed to detect the non-manifold topology

or the disconnected tetrahedral regions in each sub-mesh. An arbitrary seed tetrahedron

is first computed based on the label of each sub-mesh, and then neighbor tetrahedra are

merged iteratively to compute a connected mesh region. A vertex connectivity is used for
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merging. The non-manifold edges and the non-manifold vertices are identified by checking

the labels of the neighbor elements before merging.

When the connected threshold filter is completed, the number of tetrahedra in the con-

nected mesh region is compared with the number of tetrahedra in the sub-mesh. If they

are equal, the sub-mesh is a single connected region. However, if non-manifold topologies

exist, then the tetrahedra surrounding all non-manifold vertices and all non-manifold edges

are marked and they are locally subdivided in the next refinement iteration. Otherwise, the

refinement of the sub-mesh is completed.

If the number of tetrahedra in the connected mesh region is not equal to the number

of tetrahedra in the sub-mesh, then the sub-mesh contains disconnected regions. In this

case, all disconnected regions are first checked for relabeling. A disconnected region is

relabeled if its volume is too small (< 1%) compared to the volume of the sub-mesh.

Relabeling is performed using a label of a neighbor region (background or not). Relabeling

is cancelled if it produces a non-valid manifold connectivity. If all disconnected regions

are eliminated and all connectivities are manifold, then the refinement of this sub-mesh is

completed. If disconnected regions exist, then the whole sub-mesh is globally refined in

the next iteration. Finally, if non-manifold topologies exist, then the tetrahedra surrounding

the non-manifold vertices and the non-manifold edges are marked and locally subdivided

in the next refinement iteration.

The mesh topological checks should be performed only if the non-manifold voxel con-

nectivities have been previously eliminated (subsubsection 2.3.2). Also, mesh topological

checks can be time consuming. Therefore, they should employed only when the applica-

tion requires a manifold mesh or when the image contains small features which are harder

to resolve (e.g., vessels or stents).

2.3.4 MIXED ELEMENT MESH

A mixed mesh typically contains tetrahedra, pentahedra, and hexahedra. Experimental

evaluation in this study showed that a mixed mesh may contain up to 30% fewer ver-

tices compared to a tetrahedral mesh of the same input, without compromising the fidelity.

Therefore, it can reduce the subsequent memory and CPU requirements for the solver

without any loss of accuracy.

CBC3D generates a mixed mesh from an adaptive tetrahedral lattice by merging clus-

ters of tetrahedra into hexahedra. A valid transition between the tetrahedra and the hexahe-

dra is guaranteed with the use of prismatic elements (i.e., pyramids). Merging is performed
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only within the homogeneous regions where the lattice is uniform. Therefore, the topology

of the generated surfaces or interfaces between materials is preserved.

In the BCC lattice, the cardinality of a vertex in a uniform region is always 14, meaning

that each vertex has 14 edges to check in the process of merging (Figure 10(b)). Beginning

from the generated adaptive BCC mesh, the inner tetrahedral vertices are located to start

the transformations. For every vertex, its adjacent tetrahedra constitute a polyhedron. To

transform each one of these polyhedra to hexahedra, their inner tetrahedra must be red,

according to the red-green refinement and their labels need to be the same. If indeed all

the tetrahedra of the polyhedron are of the same label and none of them is a green one, then

for each adjacent orthogonal edge of the vertex (Figure 10(b)), its four attached tetrahedra

are computed. Their four orthogonal edges form the quadrilateral face of the hexahedron.

However, if an attached tetrahedron between these four is green or has a different label than

the others, then a transition pyramid is created. This element has its base perpendicular on

the orthogonal edge and by being adjacent to the hexahedral face, its vertices and edges

are calculated. After creating each hexahedron, the tetrahedra inside the hexahedron are

removed and the mesh topology is updated. Figure 14 compares qualitatively a tetrahedral

and a mixed mesh of the same input. The smoothing algorithm takes place with respect to

three different element types: the tetrahedron, the hexahedron, and the pyramid.

(a) Tetrahedral mesh (b) Mixed element mesh

Figure 14: Adaptive BCC lattice before (a) and after (b) it is converted into a mixed ele-

ment mesh.

2.3.5 MESH SMOOTHING

Red-green templates guarantee the high quality of the adaptive mesh. Indeed, the worse

minimum dihedral angle is 30◦ and the worse maximum dihedral angle is 116.5◦. The

surface of this mesh can be relatively bumpy, so it may not be suitable for applications such

as AVM surgical simulations or CFD modeling of brain aneurysms/stents for endovascular
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flow diversion. For example, a surgical simulation requires a smooth surface so that the

mesh will reflect a certain degree of visual reality. Bumpy surface can deteriorate the

accuracy of a CFD solution. The accuracy of the CFD solutions may be improved further

by incorporating a boundary layer mesh [61].

A smoothing approach that deforms the mesh surfaces to their corresponding image

boundaries by minimizing an energy function was presented in [119]. The present study

improves [119] in several ways. First, the new implementation is built upon the ITK

toolkit, therefore improving the overall reliability and portability of the software. Second,

it employs heuristics and quality control to eliminate the highly distorted elements during

deformation. Third, it allows meshes with mixed elements to be smoothed. Fourth, it

controls the trade-off between smoothing time and mesh fidelity. Finally, it reduces the

smoothing time using parallel computing.

This study formulates the smoothing problem as an energy minimization problem rep-

resented by the objective function

W = UTKU + (HU −D)T (HU −D) (1)

U is the unknown mesh displacement vector, K is the mesh stiffness matrix, H is a lin-

ear interpolation matrix, and D is the vector of correspondences computed between two

point-sets: a source and a traget point set. The source point-set contains the coordinates

of the surface/interface vertices of the mesh to be smoothed. The target point-set contains

the coordinates of the voxels on the surface/interface of the materials in the image. The

K matrix depends on the element type and the mechanical properties of the brain model.

First, the stiffness matrix of each element (e.g., tetrahedron, pyramid, hexahedron) is cal-

culated in each integration point using Gaussian quadrature. The global matrix K is then

assembled from the individual stiffness matrices [15].

To minimize (1), the gradient with respect to U must be zero, leading to a linear system

of equations:

(K +HTH)U = HTD (2)

An iterative solver is employed [107] to solve the system. A linear assumption is made for

the materials and the displacements of the biomechanical model. Once U has been found,

the mesh is updated by adding the computed displacements to the current coordinates of

the vertices, and the procedure is repeated until the iterations reach the maximum number.

Figure 15 illustrates an example of the procedure.
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(a) HD0 = 1.79 mm (b) HD3 = 1.31 mm (c) HD7 = 0.96 mm (d) HD10 = 0.91 mm

Figure 15: Nidus mesh during smoothing with 10 iterations. The figure on the top depicts

the extracted source (green) and target (red) points used for smoothing. Each column

depicts the smoothened mesh and an intersection between the mesh surface and the image

plane at iterations i = 0, 3, 7, 10 (from left to right). HDi denotes the mesh fidelity in terms

of a Hausdorff Distance metric, at iteration i. The smaller the HD value, the higher the

fidelity. As the number of iterations advances, the mesh exhibits a smoother surface.

Extraction of source and target points using multi-cores

The source and the target points are extracted from the mesh to be smoothed and the

segmented image, respectively. The source points are the vertices on the mesh surface or a

the interface between sub-meshes of different materials. The target points are the physical

centers of the voxels on the segmented image boundaries.

The extraction is performed before smoothing is started. For the extraction of the

source points, the mesh is first decomposed into k sub-meshes so that the number of el-

ements in each sub-mesh is approximately the same (k is the number of threads). Each

thread extracts points from a single sub-mesh. The labels of the elements surrounding

each source point are stored in a label-set. This is because the smoothing essentially reg-

isters pairs of source and target points with same label-sets. For the extraction of the

target points, the segmented image is first partitioned into a number of k sub-regions using
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an ITK threaded image region partitioner filter. Points are extracted from the segmented

boundaries of each sub-region with the help of EDT’s (EDT’s are previously calculated

at the refinement step). Additionally, the labels within a 26-neighborhood region (Fig-

ure 6(c)) around the target point are stored. Figure 15 depicts the extracted source and

target points from a Nidus tetrahedral mesh and image, respectively.

Quality control

For each source point, an average displacement vector is calculated from the corre-

sponding target points within a 3D region around the source point [119]. To improve

element quality after each deformation iteration, the size of this 3D region is limited by

a local element size, i.e., the average length of the element edges surrounding the source

point. Then vector D is assembled from the calculated displacement vector of each source

point. After each deformation iteration, a quality metric (i.e., minimum dihedral angle

for tetrahedra or scaled Jacobian for hexahedra and pyramids [110]) is computed for each

element. The elements that do not satisfy a minimum quality (e.g., 5◦ for dihedral angle

or 0.2 for scaled Jacobian) are marked, and the displacement vectors of the source points

surrounded by at least one marked element are scaled with a factor of 0.2. D is assembled

again and the system in (2) is solved. If the quality metric is not satisfied after three con-

secutive attempts, the smoothing stops and the procedure recovers the mesh coordinates of

the previous deformation iteration.

Adjustable number of target points

The number of source points is fixed during smoothing because the mesh remains topo-

logically the same; however, the number of target points can be adjusted to improve the

accuracy of the displacement vector of a source point. Connectivity patterns are used to

control the number of extracted target points. The connectivity patterns prohibit the se-

lection of points that are too close to each other. A “vertex” (26-connectivity), an “edge”

(18-connectivity), or a “face” (6-connectivity) pattern avoids the selection of neighboring

voxels connected via a “vertex”, an “edge” or a “face”, respectively. The “no” option dis-

ables the connectivity patterns, hence maximizing the number of selected points. Figure 16

depicts the extracted target points using the available patterns. Table 1 presents qualitative

results on mesh smoothing using those patterns. The higher the number of target points,

the more accurate but slower the computation. For the experiments in this study, a “face”

pattern is employed to balance the trade-off between accuracy and speed.
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(a) Segmentation (b) “Vertex” (c) “Edge” (d) “Face” (e) “No”

Figure 16: Extracted target points from a brain-nidus segmented image using the available

connectivity patterns. Each pattern results to a different number of points. The number of

points for “Vertex”, “Edge”, “Face”, and “No” pattern is 21510, 26387, 47306, and 91906,

respectively. For simplicity, the points in one volumetric slice are depicted.

Table 1: Performance of smoothing of a nidus geometry (Figure 15) using the available

non-connectivity patterns. HD is a Hausdorff Distance metric. HD10 corresponds to the

mesh fidelity after a deformation step of 10 iterations. HD0 = 1.79 mm is the mesh fidelity

before the deformation. The smaller the HD value, the higher the fidelity. The experiment

conducted on a machine with an Intel i7-2600@3.40 GHz CPU, and 16 GB of RAM.
Pattern #Target Points HD10 (mm) Time (sec)

“Vertex” 2770 0.97 21.01
“Edge” 3498 0.91 22.57
“Face” 6213 0.88 26.19
“No” 11755 0.84 35.27

2.4 SOFTWARE IMPLEMENTATION

The CBC3D software is available as: (i) a stand-alone ITK library (multi-tissue ver-

sion), (ii) a 3D Slicer extension (single-tissue version), or (iii) a SOFA plugin within an

interactive simulator (multi-tissue version with limited features).

2.4.1 3D SLICER EXTENSION

3D Slicer is a free, open-source C++ software application widely used in the medical

computing research community. It builds upon VTK and ITK for visualization and image

processing, respectively. Slicer facilitates the clinical translation of medical computing

research ideas by providing developers with an easy-to-use framework for image analysis
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(a) Mesh generation panel (b) Mesh deformation panel

(c) Mesh before deformation (d) Mesh after deformation

Figure 17: CBC3D extension in 3D Slicer. (a), (b) depict the extension’s GUI. (c), (d)

depict a ventricle mesh generated with the extension.

and visualization. It also provides a template framework that allows for the creation of

customized and sophisticated user interfaces. The CBC3D meshing method is available

as an extension in 3D Slicer (Figure 17). Slicer supports different types of extensions that

can be built outside of the source tree and bundle together one or more modules.

2.4.2 SOFA-BASED INTERACTIVE SIMULATOR

One of the purposes of the CBC3D software is to be used to generate anatomically

correct AVM models for surgical simulations. Interactive simulations involving deforming

solids are widely used in physically-based simulations. In particular, accurate and effi-

cient simulation tools are critical for the design and development of surgical simulations

due to the real-time computation requirements and physics fidelity. However, because of

the complexity of the problem, these simulations are computationally intensive, making

interactive and real-time constraints a very difficult problem. Broadly, the main compo-

nents for most interactive medical simulators require knowledge in the following areas:

bio-mechanical and anatomical modeling, collision detection, haptics and visualization. A
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virtual anatomical model constitutes a precise computerized description of a human or-

gan that is commonly generated from medical images, like MRI or CT. In this case, it

describes an AVM pathology containing draining vessels, feeding arteries, and the nidus

of vessels bundles as well as surrounding structures. The brain matter interacts with ves-

sels, fluid, and possibly other rigid objects, so a very important aspect of the simulator is

the ability to provide anatomically correct models of the structures involved in the virtual

surgical procedure. At the same time, the anatomical model should contain the minimal

amount of elements needed to accurately describe the small vessel features. In this study,

an interactive simulator for neurosurgical procedures is developed involving brain vascu-

lature. The simulator builds upon the SOFA open-source framework for real-time medical

simulation [64]. The simulator’s development framework consists of FEM biomechanical

anatomical modeling and volumetric meshing of vascular structures, coupling collision

detection and response with haptic feedback, with GPU-based implementations enabling

real-time simulation.

SOFA Plugin. The CBC3D method is also available as a plugin in SOFA. The simulator

uses this plugin to generate a tetrahedral mesh of the AVM pathology. The visual or

collision model is created by mapping a surface triangle topology to the surface of the

tetrahedral mesh. The plugin mechanism exposes SOFA’s API and allows us to use all

the necessary features and data structures without the need to tightly integrate the CBC3D

with the rest of the SOFA library.

Collision Detection. SOFA’s current capabilities in terms of reliable collision detection

and response computation are limited. It only performs discrete collision, i.e., it checks

for collisions between the mesh at fixed time steps. Furthermore, it has limited capabilities

detecting self intersections. This study employs a continuous collision detection method

(Self-CCD) developed in Gamma Lab at the University of North Carolina. This algorithm

performs inter and intra objects queries using various culling techniques (i.e. representa-

tive triangles [49], connectivity [188], and other non-penetration filters [187]) to speed up

computation and robustness.

FEM Simulator. Tissue response is handled by a corotational tetrahedral FEM for-

mulation [66]. In future efforts, a hybrid FEM approach will be integrated to increase

performance (Figure 18). The hybrid FEM increases the performance of the tissue re-

sponse calculation by utilizing two formulations on a single mesh: a linear formulation

for fast computation, albeit less accurate, and a non-linear formulation for more realistic

simulations near the interaction area. It then couples these two formulations seamlessly
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Figure 18: Conceptual depiction of the hybrid FEM method.

by updating the feedback forces at the interface of the two formulations [6]. With AVM

surgery simulation involving various tissues with different physical properties, the hybrid

FEM promises improvements in performance on the physics engine by up to 50%. Figure

19 shows preliminary results of the interactive simulator.

2.5 EVALUATION RESULTS

The CBC3D software is evaluated on four segmented images. Table 2 lists the image

data. Cases 1 and 4 are obtained from the Neurosurgery Department at Stony Brook Uni-

versity. Cases 2 and 3 are obtained from Kitware7. In case 4, the volume image is obtained

after combining 4182 bitmap slices using an ITK Tile Image Filter.

Table 2: Segmented imaging data for experimental evaluation.
Case Type Materials Image Spacing (mm3) Image Size (voxels3)
1 Isotropic Aneurysm 1.00× 1.00× 1.00 512× 512× 508
2 Anisotropic Brain-Tumor 0.48× 0.48× 1.00 384× 512× 176
3 Anisotropic Brain-AVM 0.70× 0.70× 1.60 320× 320× 100
4 Anisotropic Lumen-LVIS Stent 0.012× 0.012× 0.024 1001× 1001× 4182

CBC3D is compared with four image-to-mesh conversion codes: CGAL’s 3D

Mesh Engine8 (v4.5.2), CLEAVER [26] (v1.5.4), Lattice-Derefinement (LD) [38], and

7https://www.kitware.com
8http://doc.cgal.org/latest/Mesh 3
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(a) AVM pathology (b) AVM model

(c) Cautery tool (d) Collision detection-interaction

Figure 19: Interactive simulator for neurosurgical procedures involving brain vasculature,

in SOFA. The simulator uses a CBC3D plugin to generate a volumetric mesh of the vas-

cular structures.

PODM [70]. CGAL, and CLEAVER are open-source codes. LD and PODM are de-

veloped by CRTC9. CBC3D, CLEAVER, and LD are lattice-based methods. CGAL and

PODM are Delaunay-based methods.

CGAL’s 3D Mesh Engine is based on a Delaunay refinement scheme [176]. CGAL

first constructs a boundary mesh from the image and then a volume mesh given the surface

mesh as an input. The refinement is followed by a mesh optimization phase [33] to remove

slivers and provide a good quality mesh.

PODM is a parallel, Delaunay-based, image-to-mesh conversion algorithm with qual-

ity and fidelity guarantees achieved by dynamic point insertions and removals [70]. PODM

implements a tightly-coupled, shared-memory, parallel speculative execution approach. It

employs carefully designed contention managers, load balancing, synchronization and op-

timizations schemes. Parameter δ > 0 specifies the size of the mesh (Table 3). The smaller

the δ, the higher the element count.

9https://crtc.cs.odu.edu
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Cleaver is a multi-material lattice-based meshing method [26]. Initially, it constructs

a high-quality BCC lattice that covers the input image. Next, it locally warps or cuts the

lattice so it will conform to multi-material arbitrary surfaces. The violation parameters

αshort, αlong decide the trade-off between snapping/warping and stencil cleaving; there-

fore, they implicitly control the size of the mesh. In this evaluation, the default violation

parameters are used (Table 3), thus a worse case minimum dihedral angle of 2.76◦ and

worst case maximum dihedral angle of 175.42◦ is achieved.

LD is an image-to-mesh conversion that allows for guaranteed bounds on the smallest

dihedral angle and on the distance between the boundaries of the mesh and the boundaries

of the materials [38]. The number of tetrahedra in the mesh is as small as possible provided

that the quality, and the distance requirements are satisfied. LD initially constructs a vox-

elized mesh with very high quality and fidelity. A postprocessing decimation step follows

to coarsen the mesh to a much lower number of elements while at all times maintaining

the required fidelity and quality bounds. The highest possible fidelity and a minimum di-

hedral angle of 15◦ is specified for all the experiments. Table 3 lists the parameters for the

evaluation.

Table 3: Input parameters for experimental evaluation.
Method Parameter Value Description

CBC3D

latticesp
10 mm (Cases 1-3)

lattice spacing
0.15 mm (Case 4)

F 0.95 fidelity

connectivity “no” pattern for target point extraction

Niter
5 (Cases 1-3)

number of smoothing iterations
7 (Case 4)

CGAL

facet angle 30◦ lower angle bound for surface facets

facet size 2 radii upper-bound for Delaunay balls

facet distance 2 face distance upper bound

cell radius edge ratio 1.5 radius-edge ratio upper bound

cell size
2.5 (Cases 1-2)

circumradii upper-bound1.5 (Case 3)

0.2 (Case 4)

CLEAVER
αshort 0.357 diagonal edge threshold for edge-cuts

αlong 0.203 axis-aligned threshold for edge-cuts

LD

i2m 0 image-to-mesh distance

m2i 0 mesh-to-image distance

angle 15◦ minimum dihedral angle

PODM δ
1.2 (Cases 1-2)

element size0.6 (Case 3)

0.02 (Case 4)
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Figures 20 and 21 depict cuts of the generated meshes. Cleaver exhibits the most rapid

element gradation among all the methods. CGAL, CLEAVER, and LD fail to generate a

mesh for Lumen-LVIS stent (Table 2). CGAL’s image reader cannot read the input image.

CLEAVER terminates the program with a message: ”Cleaver Tet Mesher terminated with

an unknown exception”. LD throws an instance of std::bad alloc because it exceeds the

physical memory of the system (757 GB). For comparison purposes, CBC3D and PODM

allocate 354 GB and 141 GB, respectively.

Table 4 reports quantitative results on element count and element quality. The lattice-

based methods (CBC3D, CLEAVER, LD) result in larger meshes compared to Delaunay-

based methods (CGAL, PODM) mainly because the templates impose stricter rules at

element subdivision. Nevertheless, the largest mesh in this study is generated by PODM

(15.85 M) because a small element size (δ = 0.02) is specified to resolve the LVIS stent.

Figure 22 compares the meshes of the LVIS stent. PODM does not adequately resolve the

features of the stent, hence the mesh appears to be disconnected (Figure 22(b)).

CLEAVER and LD generate meshes with high quality elements, although no exper-

imental results are available for case 4 (Table 4). LD imposes a quality bound in the

generated mesh, i.e., minimum dihedral angle of 15◦ by adjusting the element count ap-

propriately. CBC3D produces meshes of well shaped elements. Smoothing does not sig-

nificantly affect case 3, hence the angle extrema are similar to those in the adaptive lattice.

The Delaunay-based methods generate meshes of reasonably well shaped elements.

Table 4: Evaluation results on element count and element quality. The minimum and

maximum dihedral angles are reported in degrees ∈ (0◦, 180◦). The larger the minimum

angle and the smaller the maximum angle, the higher the quality.
Case

#Tetrahedra Dihedral angle (min, max)

CBC3D CGAL CLEAVER LD PODM CBC3D CGAL CLEAVER LD PODM

1 272K 300K 4.33M 776K 370K (5.07◦, 171.73◦) (12.04◦, 162.23◦) (25.06◦, 126.94◦) (15.00◦, 171.05◦) (4.54◦, 170.13◦)
2 578K 517K 3.20M 2.54M 244K (8.89◦, 166.67◦) (12.00◦, 162.73◦) (11.34◦, 153.15◦) (15.00◦, 171.86◦) (4.90◦, 170.26◦)
3 5.05M 1.68M 3.59M 1.48M 1.03M (29.94◦, 116.67◦) (1.41◦, 176.76◦) (5.81◦, 157.66◦) (15.00◦, 170.55◦) (4.40◦, 170.24◦)
4 12.98M - - - 15.85M (4.95◦, 173.10◦) - - - (2.23◦, 176.44◦)

Figures 23-26 illustrate the element angle distribution of the meshes. The Delaunay-

based methods exhibit a Gaussian distribution of dihedral angles. The lattice-based meth-

ods exhibit a different distribution due to a more structured connectivity. For example, in

CLEAVER, about about 41% of the dihedral angles are between 60◦−65◦, and about 26%

are 90◦ − 95◦. In CBC3D, about 50% of the dihedral angles are between 55◦ − 65◦, and

about 20% are between 85◦ − 95◦. In LD, about 15% of the angles are between 45◦ − 50◦,

and about 20% are between 90◦ − 95◦.

The mesh fidelity is qualitatively evaluated on AVM data (case 3). For this purpose,
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(a) CBC3D (b) CGAL (c) CLEAVER (d) LD (e) PODM

Figure 20: Cuts of the generated tetrahedral meshes. The top, middle, and bottom row

correspond to cases 1, 2, and 3, respectively. Each column depicts meshes which are

generated with a single method. Identical cut section planes are used for all the meshes in

a single case. The growth from small to large elements varies among the methods. The

quality of these meshes is evaluated using a min/max dihedral angle metric and an element

angle distribution in 5-deg increments.

the AVM mesh is first extracted from the multi-material mesh and then superimposed on

the AVM segmentation (Figure 27). The closer the mesh surface to the boundary of the

segmented AVM image, the higher the fidelity. The LD method achieves a high fidelity

because it completely resolves the vessels (it creates a voxelized mesh surface). Neverthe-

less, Figure 27(e) indicates a small shift in the output mesh in relation to the input image,

most likely due to image resampling. CLEAVER resolves most of the vessel structures,

but the generated mesh is noticeably shifted (Figure 27(d)). CBC3D achieves a satisfac-

tory fidelity. CBC3D’s mesh topological checks are turned off to avoid further red-green

subdivisions, keeping the element count low.

Quantitative evaluation on mesh fidelity is performed using a two-sided Hausdorff Dis-

tance metric: HD = max{HDI→M,HDM→I}, where HDI→M is the value of the metric from

the image to the mesh, and HDM→I is the value of the metric from the mesh to the image.

The lower the HD error, the higher the fidelity. HD is computed between two point sets.

The first point set contains the coordinates of the vertices located on the mesh surface. The

second point set contains the coordinates of the voxels located on the boundaries of the
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(a) CBC3D (b) PODM

Figure 21: Cuts of the generated tetrahedral meshes of the Lumen-LVIS Stent.

(a) CBC3D (b) PODM

Figure 22: Extracted mesh of the LVIS stent.

segmented material (i.e., where the EDT value is zero). HD is computed for each material

and the maximum value is reported. An open-source implementation is employed to cal-

culate the HD metric [47]. Table 5 reports the HD values and the end-to-end running time

for mesh generation. PODM is a parallel multi-threaded code. CBC3D is sequential but

computes the EDTs, the source and the target points in parallel. The rest of the codes are

sequential. Figure 28 depicts plots of the results.

It should be noted that the error in Table 5 is relative to the image spacing. An error

approximately 3-4 times the spacing may be satisfactory, depending on the application.

LD achieves the highest fidelity among all the methods, but no experimental results are
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Figure 23: Element angle distribution (in 5-deg increments) of Cavernous Aneurysm

meshes. The min/max dihedral angles and the element count are reported for each method.

Figure 24: Element angle distribution (in 5-deg increments) of Brain-Tumor meshes. The

min/max dihedral angles and the element count are reported for each method.
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Figure 25: Element angle distribution (in 5-deg increments) of Brain-AVM meshes. The

min/max dihedral angles and the element count are reported for each method.

Figure 26: Element angle distribution (in 5-deg increments) of Lumen-LVIS stent meshes.

The min/max dihedral angles and the element count are reported for each method.
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(a) AVM image (b) CBC3D (c) CGAL

(d) CLEAVER (e) LD (f) PODM

Figure 27: Qualitative evaluation on fidelity of AVM mesh. Figures (b)-(f) depict the AVM

mesh (red) superimposed on the AVM segmentation (blue). The closer the mesh surface

to the boundary of the segmented material, the higher the fidelity.

available for case 4. PODM and CBC3D exhibit a reasonably good fidelity.

A fine mesh that accurately conforms to a segmented image typically has a voxelized

appearance. However, the voxelized segmentation is itself inaccurate. The true surface

is smooth and a binary segmentation does not capture this fact. On the other hand, a

smooth surface mesh is easier to obtain with a lower fidelity. Therefore, fidelity must be

compromised in favour of a more realistic appereance. Applications such as interactive

surgical simulations, require volume meshes with smooth surfaces. Additionally, a bumpy

surface can deteriorate the accuracy of a CFD solution.

Figure 29 compares the surface meshes of a Cavernous Aneurysm. CBC3D exhibits

the smoothest surface among all the methods. CGAL creates a relatively smooth surface

as it follows a two-step approach; it first reconstructs the surface and then generates a vol-

ume mesh given the surface as an input. CLEAVER and LD generate voxelized surfaces.

PODM generates a bumpy surface (Figure 29).

CBC3D’s tetrahedral meshes are converted to mixed meshes. Figures 30 and 31 depict

the results. A mixed mesh reduces the number of mesh vertices, as well as the subsequent
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Table 5: Results on mesh fidelity and end-to-end running time. Fidelity is calculated using

a two sided Hausdorff Distance metric. The lower the HD value, the higher the fidelity. The

experiments for cases 1-2 are performed on a DELL workstation with 8 hardware cores

Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz, and 16 GB RAM. The experiments for

cases 3-4 are performed on a DELL workstation with 24 hardware cores Intel(R) Xeon(R)

CPU E5-2697v2@2.70 GHz, and 757 GB RAM. The time for writing the mesh is not

included.

Case
HD (mm) Mesh Generation Time (seconds)

CBC3D CGAL CLEAVER LD PODM CBC3D CGAL CLEAVER LD PODM

1 4.51 3.26 5.56 1.73 2.42 68.24 (8T) 12.33 470.22 68.44 7.86 (8T)
2 4.59 2.51 5.03 1.41 3.87 101.03 (8T) 14.92 173.85 97.76 7.93 (8T)
3 3.91 18.09 6.14 2.19 3.65 384.86 (24T) 51.59 59.13 40.19 10.98 (24T)
4 0.34 - - - 0.33 3932.98 (24T) - - - 750.02 (24T)

(a) HD metric (b) Mesh generation time

Figure 28: Plots of the results in Table 5. (b) does not include case 4 (3932.98, and 750.02
seconds for CBC3D and PODM, respectively).

memory and CPU requirements for the solver without any loss of accuracy. The num-

ber of vertices is reduced by 2.35%, 22.28%, 23.40%, and 30.22% for cases 1, 2, 3, and

4, respectively. The mixed meshes exhibit similar qualities, and smooth surfaces to the

adaptive tetrahedral meshes.

2.6 CONCLUSIONS AND FUTURE WORK

An adaptive, image-to-mesh conversion method is presented. This method initially dis-

cretizes a segmented labeled image with a uniform BCC lattice of high quality tetrahedra.

Then, it employs red-green templates to subdive the lattice near the segmented boundaries,

therefore improving mesh conformity. Finally, the generated surfaces are deformed to their
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(a) CBC3D (b) CGAL (c) CLEAVER (d) LD (e) PODM

Figure 29: Comparison between the surface meshes of case 1 (Cavernous Aneurysm).

Each column corresponds to a single method. The bottom row depicts a closer view of the

surface. Among the methods, only CBC3D approximates the voxelized segmentation with

a smooth surface that reflects a certain degree of visual reality.

corresponding tissue boundaries to improve smoothness, while taking into account quality

and performance aspects.

The present method offers several advantages compared to previous implementa-

tions [65, 119]: (i) it improves the accuracy of the geometric and topologic representation,

(ii) it provides material-dependent mesh resolution to reduce the element count, (iii) it con-

trols the element quality during mesh smoothing, (iv) it reduces the subsequent memory

and CPU requirements for the solver by introducing mixed elements, (v) it reduces the run-

ning time using multi-cores, and (vi) it improves the overall reliability and portability of the

code as it builds upon the ITK open-source, cross-platform system. A multi-tissue version

of the CBC3D is integrated within an interactive simulator for neurosurgical procedures

involving brain Arteriovenous Malformations (AVM) developed in SOFA; a framework

for real-time medical simulation [64].

The present method is compared with four other image-to-mesh conversion codes:
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(a) #(pts, tets): (63.6, 272.2) K; αmin: 5.07◦ (b) #(pts, tets, pyrs, hexs): (62.1, 246.7, 4.0, 1.4) K;

αmin: 5.31◦; Jmin: 0.47

(c) #(pts, tets): (101.4, 578.3) K; αmin:

8.89◦
(d) #(pts, tets, pyrs, hexs): (78.8, 226.8,

40.2, 22.5) K; αmin: 5.19◦; Jmin: 0.55

(e) #(pts, tets): (887.0, 5059.9) K; αmin:

29.94◦
(f) #(pts, tets, pyrs, hexs): (679.4, 1839.1,

364.9, 207.5) K; αmin: 29.18◦; Jmin: 0.98

Figure 30: Comparison between adaptive terahedral meshes and their corresponding mixed

meshes. All meshes generated with CBC3D. The top, middle, and bottom row correspond

to cases 1, 2, and 3, respectively. αmin ∈ [0, 180]: minimum dihedral angle (for tetrahe-

dra); Jmin ∈ [0, 1]: minimum scaled Jacobian (for pyramids and hexahedra).



40

(a) #(pts, tets): (2.25, 12.98) M; αmin: 4.95◦ (b) #(pts, tets, pyrs, hexs): (1.57, 3.54, 0.65,

0.67) M; αmin: 5.04◦; Jmin: 0.40

Figure 31: Comparison between adaptive terahedral mesh and its corresponding mixed

mesh for case 4 (Lumen-LVIS Stent). The meshes generated with CBC3D. αmin ∈
[0, 180]: minimum dihedral angle (for tetrahedra); Jmin ∈ [0, 1]: minimum scaled Ja-

cobian (for pyramids and hexahedra).

CGAL’s 3D Mesh Engine (v4.5.2), CLEAVER [26] (v1.5.4), Lattice-Derefinement

(LD) [38], and PODM [70]. The evaluation results indicate that the CBC3D meshes:

(i) balance the trade-off between mesh conformity and smoothness, (ii) keep the element

count reasonably low, and (iii) exhibit a good element quality. In summary, from previous

work on lattice-based meshing, it is shown that quality, fidelity, and size criteria are in

conflict [38].

Currently, the smoothness of the surface meshes generated from data with small fea-

tures (e.g. Micro-CT Imaging of stents) is not satisfactory (Figure 22(a)). The smoothness

can be improved by incorporating a semi-analytic technique and by using a priori knowl-

edge of the radii of the stent wires. Also, the mechanical properties (i.e, Young’s modu-

lus, Poisson ratio) of the materials adjacent on the mesh interfaces can be appropriately

adjusted to improve smoothness. The accuracy of CFD simulations to study localized al-

terations in hemodynamics due to different stent devices may be improved further with

boundary layer meshes [61]. Finally, a Structured Adaptive Mesh Refinement (SAMR)

scheme [9] can improve the performance and the gradation of the CBC3D method. SAMR,

initially discretizes the image domain with a uniform mesh, and then it generates finer

sub-meshes (components) near the areas where the physics are “changing”. SAMR uses

an independent PDE solver in each of the mesh components and accesses the validity of

the numerical results. If the numerical solution satisfies the analysis requirements, then

the refinement stops; otherwise, SAMR discretizes the mesh with a finer resolution until it
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obtains an acceptable solution. Each mesh component has its own solution vector, which

is computed independently from the solution of the other mesh components. This is im-

portant for the parallelization of the SAMR, where each mesh component is associated to

a single core/node, and the under-utilized cores/nodes (e.g. those that compute the PDE

solution in smaller number of cells or mesh points) can request automatically additional

work from the rest of the cores/nodes.
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CHAPTER 3

ADAPTIVE PHYSICS-BASED NON-RIGID REGISTRATION FOR

MODELING BRAIN DEFORMATION DURING GLIOMA

RESECTION USING PREOPERATIVE AND INTRAOPERATIVE

MRI

3.1 OVERVIEW

In image-guided neurosurgery, co-registered preoperative anatomical, functional, and

diffusion tensor imaging can be used to facilitate a maximally safe resection of brain tu-

mors in eloquent areas of the brain. However, because the brain can deform significantly

during surgery, particularly in the presence of tumor resection, non-rigid registration of

the preoperative image data to the patient is required. Using clinical data, this chapter re-

ports the results of a comparison of the accuracy and performance among four open-source

non-rigid registration methods for handling brain deformation in the presence of tumor re-

section, including a new adaptive method that automatically removes mesh elements in the

area of the resected tumor, thereby automatically handling deformation in the presence of

resection.

This study focuses on thirty glioma surgeries performed at two different hospitals,

many of which involved the resection of significant tumor volumes. An adaptive physics-

based registration method (Adaptive-PBNRR) registers preoperative and intraoperative

MRI for each patient, and the results are compared with three other readily available regis-

tration methods: a rigid registration implemented in 3D Slicer v4.4.0; a B-Spline non-rigid

registration implemented in 3D Slicer v4.4.0; and a physics-based non-rigid registration

(PBNRR) implemented in ITKv4.7.0, upon which Adaptive-PBNRR was based. Three

measures aid in assessing the accuracy of the registration methods: (i) visual assessment,

(ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using anatom-

ical points identified by a neurosurgeon.



43

The Adaptive-PBNNR using multi-tissue mesh adaptation improved the accuracy of

deformable registration by more than 5 times compared to rigid and traditional physics

based non-rigid registration, and by more than 4 times compared to B-Spline interpolation

methods that are part of ITK and 3D Slicer. Performance analysis showed that Adaptive-

PBNRR could be applied, on average, in less than two minutes, achieving desirable speed

for use in a clinical setting.

3.2 INTRODUCTION

Malignant gliomas are the most common primary and metastatic brain tumors, ac-

counting for approximately 70% of the 22,500 new cases of primary brain tumors diag-

nosed annually in adults in the United States [129, 169]. Treatment typically includes

surgical removal followed by radiotherapy or chemotherapy. Tumor removal provides a

tissue diagnosis, relieves mass effect and intracranial pressure that may be causing pain or

other neurological symptoms, and improves prognosis. However, gross total resection is

difficult to achieve because of the infiltrative nature of gliomas and because critical func-

tional brain tissue often surrounds tumors. Oncologic outcomes clearly depend on the

extent of tumor resection, yet functional preservation is critical for quality of life and sur-

vival, so tumor surgery is a delicate balance between removing as much tumor as possible

and preserving important functional areas of the brain [103, 136, 172].

During the past two decades, developments in image-guided therapy [85] have allowed

surgeons to use preoperative imaging and neuronavigation to facilitate a maximally safe

resection of gliomas in eloquent areas of the brain. Preoperative anatomical Magnetic

Resonance Imaging (MRI) can be combined with functional MRI (fMRI) to map out areas

of the brain near the tumor that are vital to important function such as vision, speech and

language, or motor control [92, 80, 93, 111, 153, 197]. Diffusion Tensor Imaging (DTI)

can be used to map out white matter tracts that connect to these important regions and run

near or through the tumor [17, 16, 82, 63, 99, 150, 186].

Tracking the position of medical tools in patients brain during surgery is possible with

neuronavigation using registration of preoperative image data to patient coordinates. The

surgeon can then view the location of tools relative to the preoperative anatomical and

functional image data, thereby avoiding damage to eloquent areas during tumor resec-

tion [4, 45, 57, 113, 122, 139, 151, 148, 32]. Commercial neuronavigation systems (e.g.,

Stealth by Medtronic and VectorVision by BrainLAB) generally use a rigid transformation

to map preoperative image data to patient coordinates. Rigid registration is sufficient when
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mapping between rigid objects (e.g., between the skull in the preoperative image data and

the patient’s skull in the operating room). During surgery, however, the brain deforms due

to several factors such as cerebrospinal fluid leakage, intra-cranial pressure, gravity, the

administration of osmotic diuretics, and the procedure itself (e.g., tumor retraction and re-

section) [55, 134, 149]. A rigid transformation will not accurately map preoperative image

data to the patients brain during surgery, particularly as the resection proceeds, with the

greatest uncertainty at the most critical portions of the surgery (Figure 32).

(a) (b)

Figure 32: Discrepancies between preoperative and intraoperative MR Imaging before and

during neurosurgery. (a): preoperative MRI; (b): intraoperative MRI acquired after a part

of the tumor is removed. The yellow outline indicates the preoperative brain outline after

a rigid rotation. The large dark cavity is the tumor resection.

The adoption of intraoperative MRI (iMRI) has provided a means for monitoring brain

deformation during surgery. Over the past decade, the number of hospitals offering iMRI

has grown from a handful of research centers to a couple of hundreds clinical sites across

the world [19]. Currently, access to iMRI remains limited by high costs, siting chal-

lenges, personnel requirements, and disruption of the operative workflow. Several re-

searchers are investigating methods that combine other imaging modalities, such as 3D

ultrasound [142, 115, 130, 96] and surface imaging combined with deformation model-

ing [7, 138, 145], to compensate for brain deformation. However, iMRI remains the gold

standard for measuring intraoperative brain deformation and for monitoring tumor resec-

tion.

Given an intraoperative anatomical MRI image registered to patient coordinates, pre-

operative fMRI and DTI image data can be mapped to the intraoperative image and then to
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patient coordinates to provide updated guidance for the surgeon. This mapping is usually

performed by first registering the fMRI and DTI images to the preoperative anatomical

MRI using a rigid transformation, and then registering the preoperative anatomical MRI

to the intraoperative MRI image, which is pre-registered to patient coordinates. Because

of brain deformation during surgery, registering from preoperative to intraoperative MRI

requires a non-rigid registration.

There are several approaches for estimating the non-rigid registration between two or

more images, as outlined in prior research [182, 84, 48, 89, 116]. Ranging from control-

point registration with spline interpolation to mass-spring models using displacements of

anatomical landmarks as force vectors, to physics-based finite element models, many tech-

niques have been applied to non-rigid registration between brain data sets, both for brain

mapping [108, 191, 181] and for modeling brain shift [4, 7, 45, 67, 68, 88, 90, 184, 122,

133, 138, 139, 145, 199]. However, most of these methods were not designed to model

tissue retraction or resection.

The aim of this study is to evaluate the accuracy and performance of a recently intro-

duced Adaptive-PBNRR for modeling brain deformation in the presence of tumor resec-

tion. Appendix A describes a customized Adaptive-PBNRR method to quantify brain shift

during Deep Brain Stimulation (DBS) surgery using preoperative and intraoperative CT

imaging. The results of a study on 30 glioma cases from two different hospitals are pre-

sented, many of which involved the resection of significant tumor volumes. An Adaptive-

PBNRR is used to register preoperative and intraoperative MRI for each patient and the

results are compared with three methods that are readily available to researchers and clin-

icians: a rigid registration implemented in 3D Slicer v4.4.0 [98]; a B-Spline non-rigid

registration implemented in 3D Slicer v4.4.0 [98]; and a physics-based non-rigid registra-

tion (PBNRR) implemented in ITKv4.7.0 [120] upon which Adaptive-PBNRR was based.

The accuracy of the registration methods is assessed using three metrics: (i) visual assess-

ment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using

anatomical points identified by a neurosurgeon. Acceptance in clinical practice requires

that non-rigid registration be completed in the time constraints imposed by neurosurgery

(e.g., 2-3 minutes) and without the cost of high-performance computing clusters. Thus,

we compare processing speeds on a readily-available 12-core desktop system.

3.3 PATIENT POPULATION AND IMAGING PROTOCOLS

This study includes thirty patients from two Hospitals:
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1. Brigham and Women’s Hospital (BWH). Ten patients (six male, four female)

with an age range of 28-62 years and a mean age of 45.2 years, underwent surgery

for supratentorial gliomas between April 2005 and January 2006 in Brigham and

Women’s Magnetic Resonance Therapy (MRT) facility. In some cases, the lesions

were in or adjacent to eloquent brain areas, including the precentral gyrus and cor-

ticospinal tract for motor function, as well as Broca’s and Wernicke’s areas for lan-

guage function.

(a) Pre-operative imaging. The patients underwent the following imaging proto-

col on a General Electric (Milwaukee,WI) 3T Signa scanner:

i. Whole brain sagittal 3D spoiled-gradient-echo (SPGR) imaging (slice

thickness, 1.3 mm; time of repetition (TR), 6 ms; time of echo (TE), 35 ms;

flip angle (FA), 75◦; field of view (FOV), 24 cm; matrix size, 256× 256).

ii. Axial T2-weighted fast-spin-echo (FSE) imaging (slice thickness, 5 mm;

TE, 100 ms; TR, 3000 ms; FOV, 22 cm; matrix size, 512× 512).

(b) Intra-operative imaging. The patients underwent the following imaging pro-

tocol on a 0.5T iMR imaging unit (SignaSP; GE Medical Systems, Milwaukee,

WI):

i. Transverse, sagittal, and coronal T1-weighted FSE imaging (TR, 700 ms;

TE, 29 ms; FOV, 22 cm; matrix size, 256× 256; section thickness, 3 mm,

intersection gap, 1mm).

ii. Transverse T2-weighted FSE imaging (TR, 5000 ms; TE, 99 ms; FOV, 22

cm; matrix size, 256 × 256; section thickness, 3 mm; intersection gap, 1

mm).

iii. Transverse 3D SPGR imaging (TR, 15.5 ms; TE, 5.2 ms; FA, 45◦; FOV,

22 cm; matrix size, 256×256; section thickness, 2.5 mm; intersection gap,

0 mm).

2. Huashan Hospital (HSH). Twenty patients (eleven male, nine female) with an age

range of 19-75 years underwent surgery on single, unilateral, and supratentorial pri-

mary gliomas from September 2010 to August 2013. The lesions involved the Pyra-

mid Tracts (PTs) or were in cortical regions in the motor or somatosensory areas,

cortical regions adjacent to the central gyrus, subcortical regions with an infiltrative

progression along the PTs, and/or deep temporal or insular regions in relation to the

internal capsule.
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(a) Pre-operative imaging. Pre-operative brain images were obtained in the di-

agnostic room of an iMRI-integrated neurosurgical suite (IMRIS, Winnipeg,

Manitoba, Canada) using a ceiling-mounted movable 3.0 T MAGNETOM Ve-

rio scanner (Siemens AG, Erlangen, Germany) with a 70 cm working aperture:

i. For suspected high-grade glioma, which showed obvious enhancement

after contrast, contrast magnetization-prepared rapid gradient echo (MP-

RAGE) was used as the anatomic base for the anisotropic color map and

the tumor anatomic feature analysis. T1 contrast images were acquired

with a 3D MP-RAGE sequence (TR, 1900 ms; TE, 2.93 ms; inversion

time, 900 ms; FA, 9◦, FOV, 250 × 250 mm2; matrix size, 256 × 256),

after intravenous contrast administration (gadolinium diethylenetriamine

penta-acetic acid).

ii. For suspected low-grade gliomas, which showed no obvious enhancement

after contrast, a fluid-attenuated inversion-recovery (FLAIR) sequence

was used as the anatomic base. T1 contrast images were acquired with

FLAIR sequence, with an axial turbo spin echo pulse sequence(TR, 7600

ms; TE, 96 ms; inversion time, 900 ms; FA, 9◦; slices, 60; slice thickness,

2 mm; matrix size, 256× 180; field of view, 240× 240 mm2).

(b) Intra-operative imaging. The same scanner as with preoperative imaging was

used:

i. T1 contrast images were acquired with a 3D MP-RAGE sequence (TR,

1900 ms; TE, 2.93 ms; FA, 9◦, FOV, 250 × 250 mm2; matrix size, 256 ×

215; slice thickness, 1 mm).

ii. T1 contrast images were acquired with FLAIR sequence (TR, 9000 ms;

TE, 96 ms; FA, 150◦; slice thickness, 2 mm; FOV, 250× 250 mm2; matrix

size, 256× 160).

A neurosurgeon estimated the volume of resected tumor for each patient by performing a

volumetric analysis on the preoperative and intraoperative MRI. Based on this volumetric

analysis, the data were categorized as: (i) brain shift (with no resection), (ii) partial re-

section, (iii) total resection, and (iv) supra total resection. Table 6 summarizes the clinical

data. The data collections were carried out with Institutional Review Board (IRB) approval

from both hospitals.
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Table 6: Clinical MRI data. BWH: Brigham and Women’s Hospital; HSH: Huashan Hos-

pital; BS: brain shift; PR: Partial Resection; TR: Total Resection; STR: Supra Total Re-

section.
Case Hospital Genre Tumor location Type

Image Size Image Spacing (mm)

Pre-operative Intra-operative Pre-operative Intra-operative

1 BWH M Left Perisylvian BS 256× 256× 124 256× 256× 60 0.937× 0.937× 1.30 0.859× 0.859× 2.50
2 BWH F Right Occipital BS 256× 256× 124 256× 256× 60 0.937× 0.937× 1.30 0.859× 0.859× 2.50
3 BWH M Right Frontal BS 256× 256× 124 256× 256× 60 0.937× 0.937× 1.30 0.859× 0.859× 2.50

4 BWH F
Left Posterior

BS 256× 256× 124 286× 286× 90 0.937× 0.937× 1.30 0.859× 0.859× 2.50
Temporal

5 BWH M Left Frontal BS 512× 512× 176 256× 256× 60 0.500× 0.500× 1.00 0.859× 0.859× 2.50
6 BWH M Right Frontal BS 256× 256× 124 256× 256× 60 0.937× 0.937× 1.30 0.859× 0.859× 2.50
7 BWH M Right Occipital BS 512× 512× 176 256× 256× 60 0.500× 0.500× 1.00 0.859× 0.859× 2.50
8 BWH F Left Frontal PR 512× 512× 176 256× 256× 60 0.500× 0.500× 1.00 0.859× 0.859× 2.50
9 HSH M Left Frontal PR 448× 512× 176 448× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
10 HSH M Left Parietal PR 448× 512× 176 512× 448× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
11 HSH M Right Frontal PR 448× 512× 80 512× 456× 66 0.468× 0.468× 2.00 0.468× 0.468× 2.00

12 HSH M
Left Parietal

PR 448× 512× 176 512× 448× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
Occipital (deep)

13 BWH M Fronto Temporal TR 286× 286× 90 286× 286× 90 0.859× 0.859× 2.50 0.859× 0.859× 2.50
14 BWH F Right Frontal TR 256× 256× 124 256× 256× 60 0.937× 0.937× 1.30 0.859× 0.859× 2.50
15 HSH M Right Temporal TR 512× 448× 176 512× 448× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00

16 HSH F
Left Posterior

TR 484× 484× 58 484× 484× 58 0.496× 0.496× 1.62 0.496× 0.496× 1.62
temporal

17 HSH F Left Frontal TR 448× 512× 176 448× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
18 HSH F Left Frontal TR 448× 512× 176 448× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
19 HSH F Left Frontal TR 448× 512× 160 448× 512× 160 0.488× 0.488× 1.00 0.488× 0.488× 1.00
20 HSH M Right Frontal TR 448× 512× 88 456× 512× 66 0.468× 0.468× 2.00 0.468× 0.468× 2.00
21 HSH M Left Frontal TR 384× 512× 176 512× 384× 144 0.488× 0.488× 1.00 0.488× 0.488× 1.00
22 HSH F Left Frontal TR 448× 512× 176 448× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
23 HSH F Left Frontal TR 384× 512× 176 384× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
24 HSH M Left Occipital TR 448× 512× 176 384× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00

25 HSH M
Right Frontal

TR 448× 512× 176 384× 512× 144 0.488× 0.488× 1.00 0.488× 0.488× 1.00
Lobe (deep)

26 HSH M Right Frontal STR 448× 512× 144 448× 512× 144 0.488× 0.488× 1.00 0.488× 0.488× 1.00
27 HSH F Left Frontal STR 384× 512× 176 448× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
28 HSH F Right Frontal STR 512× 456× 66 456× 512× 66 0.468× 0.468× 2.00 0.468× 0.468× 2.00
29 HSH F Right Parietal STR 512× 456× 66 512× 456× 68 0.468× 0.468× 2.00 0.468× 0.468× 2.00

30 HSH M
Right Temporal

STR 448× 512× 176 448× 512× 176 0.488× 0.488× 1.00 0.488× 0.488× 1.00
Insular (deep)

3.4 SEGMENTATION

Non-rigid registration is performed using a patient-specific brain model derived by

segmenting the preoperative anatomical image into brain, tumor, and non-brain regions.

Segmentation performance is not critical because preoperative imaging is typically per-

formed a couple of days before surgery. Segmentation was performed with a combination

of manual and automatic tools. First, the skull and outer tissues were removed using the

open-source Brain Extraction Tool [181]. Further segmentation of the brain surface was

performed using a combination of automatic operators implemented in 3D Slicer software

(i.e., region growing and level-set filters) [3] and a slice-by-slice manual segmentation

correction. While future work will include an evaluation of how segmentation accuracy

affects registration accuracy, such analysis is beyond the scope of this thesis.
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3.5 MESH GENERATION

The segmentation is used to generate a patient-specific finite element mesh for physics-

based non-rigid registration methods. The quality of the tetrahedral mesh influences the

numerical accuracy of the solution and the correctness of the estimated transformation.

The higher the quality of the elements (i.e., the larger the minimum dihedral angle), the bet-

ter the convergence of the linear solver. A parallel Delaunay meshing method is employed

to tessellate the segmented brain with high quality tetrahedral elements and to model the

brain surface with geometric and topological guarantees [70]. Both single-tissue (i.e.,

brain parenchyma) and multi-tissue (i.e., brain parenchyma and tumor) meshes are gener-

ated. Figure 33 depicts one of the multi-tissue meshes. Parameter δ (Table 11) determines

the size of the mesh, where a smaller δ > 0 generates a larger mesh.

Figure 33: A multi-tissue (brain parenchyma, tumor) finite element mesh used for non-

rigid registration (number of tetrahedral elements: 160179; minimum dihedral angle:

4.41◦). Top row: the mesh superimposed on a volume rendering of the MRI data. Cyan and

red represent the brain parenchyma and tumor meshes, respectively. Bottom row: mesh

fidelity illustrated on an axial, sagittal, and coronal slice. Each slice depicts a 2D cross-

section of the mesh surface (cyan and red lines) and the segmented volume (green and

yellow regions). The closer the mesh surface is to the segmented boundaries, the higher

the mesh fidelity.
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3.6 RIGID REGISTRATION

Patients in this study first underwent an intraoperative scan after their head was posi-

tioned and fixed for the craniotomy but before the skull was opened. Assuming minimal

brain shift at this point, an initial rigid registration was performed to estimate a rigid trans-

formation from the preoperative to intraoperative image data. This rigid transformation

was used to initialize non-rigid registration methods. The rigid registration was performed

using the BRAINSFit module integrated in 3D Slicer v4.4.0 [98]. BRAINSFit’s rigid

registration relies on histogram bins and spatial samples to estimate a Mattes Mutual In-

formation cost metric (Table 7). The larger the number of samples, the slower and more

precise the fit. The default values for the number of histogram levels and sampling per-

centage is 50 and 0.2%, respectively. 100 histogram levels and a 5% sampling percentage

were selected to achieve higher accuracy (Table 7). Default values were used for the rest

of the parameters.

Table 7: Parameters used in this study for rigid registration (RR) and B-Spline non-

rigid registration methods implemented in 3D Slicer. MMI: Mattes Mutual Information;

VR3DT: Versor Rigid 3D Transform; LBFGSB: Limited memory Broyden Fletcher Gold-

farb Shannon minimization with Simple Bounds.

Parameter
Value

Description
RR BSPLINE

Cost metric MMI Mattes Mutual Information

Interpolation mode Linear -

Sampling percentage 5% Percentage of image voxels sampled for MMI

Histogram bins 100 Number of histogram levels

Optimizer type VR3DT LBFGSB -

Max number of iterations 1500 Maximum number of optimizing iterations

Grid size - 15× 15× 15 Number of grid subdivisions

Min step length 10−3 Min threshold step for optimizer

Projected gradient tolerance - 10−5 Used by LBFGSB

3.7 NON-RIGID REGISTRATION

As surgery proceeds, the initial rigid preoperative to intraoperative registration be-

comes increasingly less valid. To make the best use of preoperative image data for surgical

guidance (including the use of fMRI and DTI to inform the surgeon of critical structures

near the tumor), the preoperative image data must be transformed to the patient’s coordi-

nate system using non-rigid registration.
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Recent efforts have aimed to model intraoperative brain deformation during tissue re-

traction and tumor resection. [137] introduced a method for modeling retraction and re-

section using a multi-step procedure, which allows arbitrary placement and movement of a

retractor and removal of tissue. Tissue resection is modeled by manually deleting model el-

ements identified as tumor in the preoperative image. [164] proposed a registration frame-

work based on the bijective Demons algorithm which can handle retraction and resection.

Retraction is detected at areas of the deformation field with high internal strain and the esti-

mated retraction boundary is integrated as a diffusion boundary in an anisotropic smoother.

Resection is detected by a level set method evolving in the space where image intensities

disagree. [67] tracked brain deformation due to tumor resection over multiple intraoper-

ative MRI acquisitions. After each scan, the brain surface is segmented, and a surface-

matching algorithm is used to drive the deformation of a finite element model of the brain.

[194] modeled retraction by segmenting the brain surface from two sequential intraoper-

ative MRI image volumes and identifying landmarks on these surfaces. Displacements

of the landmarks between the two surfaces are used to drive deformation using a finite

element modeling technique that allows discontinuities at the resection boundary. We re-

cently introduced [58, 57, 60] an adaptive form of a Physics-Based Non-Rigid Registration

(PBNRR) method originally described by [45] and updated and implemented in ITK by

Liu [120, 122]. This Adaptive-PBNRR was specifically developed to model tumor resec-

tion in intraoperative images without manual intervention. Unlike other methods [67, 194]

it uses image-based registration and thereby does not require segmentation of the intraop-

erative MRI image, which is time-consuming and may require manual intervention. The

algorithm is parallelized to ensure that it is fast enough to be useful in a clinical setting.

As a standard for comparison, both the rigid and the non-rigid registration methods

were implemented in the open-source BRAINSFit module of a 3D Slicer. The non-

rigid registration method is based on a B-spline interpolation scheme, which uses a 3-

dimensional cubic control grid to optimize the registration [98]. Table 7 lists the param-

eters for the B-Spline deformable registration method. To facilitate performance compar-

isons, all three non-rigid registration methods are parallelized for shared memory multi-

processor architectures.

3.7.1 PHYSICS-BASED NON-RIGID REGISTRATION (PBNRR)

PBNRR has been shown to accurately capture brain shift (i.e., volumetric deformations

of the brain) during image-guided neurosurgery [45]. An open-source implementation of
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this method, which exploits the GPU and multi-core accelerators to improve performance

is presented in [120]. PBNRR uses the finite element method (FEM) to model deforma-

tions and estimate a sparse displacement vector associated with selected features located in

the cranial cavity of the preoperative image. The sparse vector is used (as boundary condi-

tions) to drive the deformation of a patient-specific, single-tissue (i.e., brain parenchyma),

finite element mesh. PBNRR includes three modules: Feature Selection, Block Matching,

and the FEM Solver.

Feature Selection

PBNRR identifies image features algorithmically by analyzing voxel intensity varia-

tion across the intra-cranial cavity. For each feature candidate, it computes the variance

within a block of size Bs (Table 11). It then selects Fs features with the highest variance.

Experimental evaluation has shown that when Bs = 3, or Bs = 5 and Fs ∈ [0.03, 0.10],

a sufficient number of image blocks (> 3 × 105) can be selected. The method also uses

a connectivity pattern (Table 11) to avoid selecting blocks that are too close to each other,

thereby influencing the distribution of selected blocks in the image. Three simplex-patterns

are available: “vertex” (i.e., zero-order simplex implies 26 connectivity), “edge” (i.e., first-

order simplex implies 18 connectivity), and “face” (i.e., second-order simplex implies 6

connectivity). The higher the order of the simplex-pattern the higher the density of the

selected blocks. Figure 34 depicts feature selection results using the three patterns. Since

the “face” pattern results in a higher density of blocks near the boundaries/interfaces of

anatomical structures, features are expected to be most persistent between preoperative

and intraoperative image acquisitions, which is suitable for this application.

Block Matching

Given a block in the preoperative image and a block matching window W of size Ws

in the intraoperative image, this module searches for a block in W that maximizes the

similarity between the block in the preoperative image and the block in W . Displacements

between corresponding blocks in the preoperative and intraoperative images are used to

drive the FEM solver. Ws was chosen empirically after visual inspection of the preopera-

tive and intraoperative images. Larger windows were chosen for complete and extensive

tumor resections, and smaller windows were chosen for brain shift and partial resections

(Table 11). Note that Ws may be different in the axial, coronal, and sagittal directions due

to anisotropic image data.
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Figure 34: Selected blocks from an MRI volume using various connectivity patterns.

Blocks are depicted on ten consecutive sagittal slices. From top to bottom row: sagittal

slice (left) and volumetric MRI rendering (right); selected blocks with a “vertex” pattern;

selected blocks with an “edge” pattern; selected blocks with a “face” pattern. Number of

selected blocks for all patterns: 322060.

FEM Solver

This module assembles an N×N global stiffness matrix Kg = Km+Kb for the biome-

chanical brain model, where N = 3×n is the number of degrees of freedom in the model,

n is the number of mesh vertices, and Km, Kb are the stiffness matrices of the mesh and the

Fs selected blocks, respectively. The stiffness matrix depends on the geometry/quality of

the mesh, the interpolation polynomial-order (e.g., linear), and the mechanical properties

(Eb, vb) of the underlying materials (Table 11). Matrix Km is assembled from the indi-

vidual stiffness matrices of mesh elements [15]. Matrix Kb represents the stiffness of the

blocks. After associating each block with an element, a 3× 3 stiffness tensor is computed

by interpolating the element stiffness at the block position [45]. Matrix Kb is assembled

from the individual 3× 3 block tensors.

The FEM solver constrains the mesh model by applying displacements determined
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during block matching, represented by external force vector F , to the associated mesh ele-

ments. The displacements U of unconstrained mesh vertices are then estimated by solving

an N×N linear system of equationsF = Kg×U . The FEM solver uses ITPACK structures

for matrix representation and a Jacobi Conjugate Gradient (JCG) iterative solver [107] to

compute U . Mesh deformations are estimated using an approximation of an interpolation

based formulation which rejects feature outliers (i.e., blocks with the largest error between

U and the block matching displacements). In each outlier rejection step, (Nb × Fr)/Nrej

outliers are removed, where Nb is the number of selected blocks, Fr is the fraction of the

rejected blocks, and Nrej is the number of outlier rejection iterations (Table 11). Previ-

ous experiments have shown that Fr = 25% is sufficient to reject all significant outliers

without rejecting relevant matches. Deformation at each image voxel can be estimated by

interpolating the final solution U across mesh elements.

3.7.2 ADAPTIVE PHYSICS-BASED NON-RIGID REGISTRATION (ADAPTIVE-

PBNRR)

Adaptive-PBNRR [57] augments PBNRR [120] to accommodate soft-tissue deforma-

tion caused by tumor resection. Figure 35 illustrates the adaptive framework. This iterative

method adaptively modifies a heterogeneous finite element model to optimize non-rigid

registration in the presence of tissue resection. Using the segmented tumor and the regis-

tration error at each iteration, Adaptive-PBNRR gradually excludes the resection volume

from the model. During each iteration, registration is performed, the registration error is

estimated, the mesh is deformed to a predicted resection volume, and the brain model (mi-

nus the predicted resection volume) is re-tessellated. Re-tessellation is required to ensure

high quality mesh elements. The following paragraphs describe the major improvements

of Adaptive-PBNRR over PBNRR.

Adaptivity

An adaptive, iterative process allows Adaptive-PBNRR to gradually change the preop-

erative model geometry to accommodate resection. Figure 36 illustrates five iterations of

Adaptive-PBNRR on a brain with a significant resection volume. The mesh in the begin-

ning of iteration i is denoted by Mi. Initially, a multi-material mesh is generated from the

input segmentation. After the completion of iteration i, the displacements are computed

on the vertices of Mi, which yields the deformed mesh M ′
i . M ′

i is not used for the next
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Figure 35: The Adaptive-PBNRR framework. Green, cyan, and gray represent the input,

the output, and the modules of the framework, respectively. The modules are built on the

ITK open-source system and are parallelized with the POSIX thread library for shared

memory multi-core machines. The red arrows show the execution order of the different

modules in the loop. The loop breaks when the number of blocks with zero displace-

ments (Nb0) is less than a minimum (Nb0,min), or when the maximum number of iterations

(Niter,max) has been reached.

loop because it contains distorted elements. Instead, a corrected warped image segmen-

tation is used in the next iteration as the input for the mesher. The mesher generates in

parallel a new global tesselation Mi+1 with good shaped elements. Parameter δ (Table 11)

determines the size of the mesh (δ > 0). The smaller the δ, the larger the mesh. Table 8

illustrates how the remeshing eliminates the elements with small and large dihedral angles

for an example of four adaptive iterations. “Before” corresponds to the deformed mesh at

i − 1, and the “After” to the new generated mesh at i. The #Tets refers to the number of

tetrahedral elements in the new generated mesh at i. Generally, the higher the quality of

the elements, the better the conditioning of the stiffness matrices and thus the convergence

of the linear solver.

Heterogeneity

Whereas PBNRR can only be applied to a homogenous (single-tissue) brain model,

Adaptive-PBNRR can accommodate a heterogeneous (multi-tissue) model. This study

involved two-tissue models (brain parenchyma and tumor), but the method can accommo-

date any number of tissues. Figure 33 depicts a heterogeneous brain model, and Table 11
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i = 1 i = 2 i = 3 i = 4 i = 5

Figure 36: Non-rigid registration using 5 iterations of Adaptive-PBNRR reflects the

changes in brain morphology caused by tumor resection. Each column depicts a brain

mesh model (top row) and an axial slice of the preoperative image after the non-rigid

registration (bottom row) at iteration i.

Table 8: The minimum and maximum dihedral angles α, before and after the Parallel Mesh

Generation (δ = 5).

Iteration i #Tets
αmin αmax

Before After Before After

1 14278 - 5.00◦ - 169.68◦

2 13482 0.34◦ 5.24◦ 179.28◦ 169.92◦

3 13497 0.14◦ 4.91◦ 179.79◦ 169.71◦

4 12957 0.10◦ 5.01◦ 179.80◦ 171.32◦

lists the mechanical tissue properties of this study.

Enhanced Block Matching (PBM+PCBM)

In tumor resection, the problem of blocks with a missing correspondence may com-

promise the accuracy of the non-rigid registration. A large window size cannot solve the

problem because: (i) it is opposed to the assumption that a complex non-rigid transfor-

mation can be approximated by point-wise translations of small image regions, (ii) it may

lead to unrealistic matches that deteriorate the quality of the transformation, and (iii) it

imposes performance overheads due to an exhaustive search on a large number of blocks.
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The Adaptive-PBNRR introduces a heuristic two-step block matching algorithm to

eliminate the blocks with missing correspondence. First, a Parallel Block Matching (PBM)

algorithm maximizes the similarity between blocks in the preoperative image and blocks

in W [120]. Next, a Parallel Closest Block Matching (PCBM) algorithm pairs the blocks

with a missing correspondence with their closest point on the surface S of the brain in

the intraoperative image (Figure 37). For each block i with displacement ‖di‖ = 0 its

minimum Euclidean distance to S is computed; that is ‖di,S‖ where ‖ ∗ ‖ is the Euclidian

norm. The maximum displacement due to window W is:

‖dmax‖ =

√

(

sx

⌊

Ws,x

2

⌋)2

+

(

sy

⌊

Ws,y

2

⌋)2

+

(

sz

⌊

Ws,z

2

⌋)2

(3)

where s is the image spacing (Table 6) and Ws the window size (Table 11). The block

displacement vector di is scaled:

di ≤
‖dmax‖

‖di,S‖
· di,S (4)

where ‖dmax‖/‖di,S‖ < 1 and ‖di,S‖ 6= 0. In practice, the upper bound in (4) is chosen.

Figure 37 depicts a block displacement vector before and after scaling.

Parameter Nb0,min (Figure 35, Table 11) controls the minimum allowed number of

blocks with a missing correspondence. Based on the experimental evaluation in this study,

Nb0,min = 1% · Nb results to high registration accuracy within a few adaptive iterations

(Nb is the number of selected blocks from feature selection). PCBM computes the block

displacements in parallel after distributing ⌊Nb0/k⌋ blocks among k−1 threads and Nb0 −

(k − 1) · ⌊Nb0/k⌋ blocks to the last thread.

Similarity measures in registration include Mean Square Difference of intensity

(MSD), Mutual Information (MI), and Cross Correlation (CC) [27]. Adaptive-PBNRR

enhances the PBM module [120] with a Normalized Mutual Information (NMI ∈ [0, 1])

metric [183]. A value close to one indicates that two blocks are very similar. A value close

to zero indicates that the blocks are very different. NMI is computed by the following

equation [183]:

NMI(Bpre, Bintra) = 1−
H(Bpre, Bintra)

H(Bpre) +H(Bintra)
(5)

where H(Bpre) and H(Bintra) are the marginal entropies of a block in the preoperative

and the intraoperative image, respectively. H(Bpre, Bintra) is the joint entropy of the two

blocks. The maximization of (5) seeks a transformation where joint entropy is minimized
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with respect to the marginal entropies. NMI is suitable in multi-modal registration, where

the affine hypothesis between the intensity distributions of the two images is hardly valid.

This study concerns images of the same modality, thus the NCC metric is used. In future

work, the NMI metric will be used for the non-rigid registration of MRI to CT scans.

A A

Figure 37: PCBM module on a pair of brain MRIs. Left: preoperative MRI; right: intrao-

prative MRI. The white points on the top right of the left figure indicate blocks without a

correspondence. A is one of those blocks. S is the set of points extracted from the brain

surface in the intraoperative image. di,S (blue) is the Euclidian distance vector from the

center of the block to its closest point on S. di (green) is the scaled Euclidian distance

vector.

Higher Parallelization

Adaptive-PBNRR uses a parallel framework that can target shared memory multi-core

machines. A previous study [57] showed that Adaptive-PBNRR exploits additional par-

allelism over PBNRR with corresponding performance improvements so that, even with

multiple iterations, Adaptive-PBNRR requires on average less than two minutes to per-

form non-rigid registration. The following paragraphs present details of the new parallel

modules in the non-rigid registration procedure.

Parallel Feature Selection (PFS)

Adaptive-PBNRR identifies the image features in parallel. Initially, the input image is

partitioned into k sub-regions (k is the number of threads). Each thread computes a pair
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of a variance value and an image index for all the feature blocks inside its sub-region. The

computed pairs are sorted in parallel according their variance values and merged into a

global vector. The size of the global vector is equal to the total number of image blocks

Nb,tot. Next, ⌊0.5+Nb,tot ·Fs⌋ feature blocks are selected from the global vector in parallel.

It should be noted that the parallel algorithm selects feature blocks from the global

vector with a different order compared to the sequential algorithm. Also, a prohibited

connectivity is used [120] to avoid overlaps between selected blocks (Figure 34). After a

block is selected, its neighboring blocks are not candidates for selection. For these reasons,

the output blocks of the parallel procedure are in general different from the output blocks

of the sequential procedure.

The global vector is first partitioned into sub-vectors to concurrently select features

from the global vector using k threads. The number of partitions can be adjusted with

parameter npar. The larger the npar, the smaller the size of each sub-vector and the more

similar the selected features of the parallel and the sequential algorithm. However, very

large values for npar increase the execution time of the parallel implementation because

thread synchronization is more frequent.

For an average 3D brain MRI with Nb,tot ≈ 106, the experimental evaluation indi-

cated that a good balance between the speed of the selection and the similarity between

the output blocks in the parallel and the sequential implementation can be achieved with

npar ∈ [100, 200]. For the experimental evaluation in this study, a value of npar = 100

was used.

Parallel FEM Solver (PFEMS)

The FEM Solver estimates the deformation U on the mesh vertices using a hybrid

approach: from an approximation to an interpolation-based formulation [45]. In [118]

the FEM Solver was parallelized using ParMETIS1 for a balanced parallel partitioning of

the tetrahedral mesh among the processing cores, and PETSc [11] to assemble and solve

the linear system of equations. In [120] the FEM Solver was integrated in ITK using

ITPACK’s matrix structures [107]. The Adaptive-PBNRR:

1. Parallelizes components of the FEM Solver [120].

2. Incorporates the iterative solvers Jacobi Conjugate Gradient (JCG) [107],

1http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
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LSQR [154], and BICGSTAB [13], and a direct solver based on Lower-Upper de-

composition with forward elimination and back substitution [104], to solve the linear

system F = Kg × U .

3. Incorporates the isoparametric linear/quadratic, tetrahedron/hexahedron element,

and the hexahedron element with Extra Shape Functions (ESF); those elements are

widely used in commercial FEM software packages (e.g., Ansys2 and Abaqus3).

Table 9 summarizes the capabilities of the FEM Solver within PBNRR, and Adaptive-

PBNRR.

Table 9: Comparison of the features of FEM Solver integrated within PBNRR and

Adaptive-PBNRR. JCG: Jacobi Conjugate Gradient [107]; LSQR: Least Squares [154];

BICGSTAB: Biconjugate Gradient Stabilized [13]; LU: Lower-Upper decomposition with

forward elimination and back substitution [104]; Tet: Tetrahedron; Hex: Hexahedron;

ESF: Extra Shape Functions.

Method Parallel

Storage Linear Solver Element Type

ITPACK VNL JCG LSQR BICGSTAB LU
Tet Hex Hex+ESF

4-node 10-node 8-node 20-node 8-node 20-node

PBNRR X X X X X X

A-PBNRR X X X X X X X X X X X X X

PFEMS includes the initialization, the assembly, the outlier rejection, and the interpo-

lation step. The initialization step computes in parallel an image interpolation grid and the

block tensors. The image interpolation grid is useful for the calculation of the output de-

formation field. The block tensor provides a 3-dimensional measure of the smoothness of

the intensity distribution in a block [45]. Each voxel in the interpolation grid is associated

with its containing element. A voxel is contained within an element if all areal coordi-

nates of the geometric center of the voxel are less than one. For the parallel computation,

⌊Ne/k⌋ elements are distributed among k− 1 threads and the rest Ne− (k− 1) · ⌊Ne/k⌋

elements are assigned to the last thread. Then each thread computes the contained voxels

within its elements in parallel. The block tensors are computed in the same manner, but

instead of mesh elements, Nb blocks are distributed among the threads.

To assemble the stiffness matrix Kb of Nb selected blocks, first ⌊Nb/k⌋ blocks are

distributed among k − 1 threads and Nb − (k − 1) · ⌊Nb/k⌋ blocks are assigned to the

last thread. Each thread assembles a stiffness matrix Kbi (i = 1, 2, . . . , k). The matrices

Kbi are recursively added using a maximum ⌊k/2⌋ threads. In the first recursion ⌊k/2⌋

2http://www.ansys.com/
3http://www.3ds.com/products-services/simulia/products/abaqus/
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threads are used. The first thread adds Kb1 and Kb2 and stores the result to Kb12 ; the

second thread adds Kb3 and Kb4 and stores the result to Kb34 ; . . .; thread ⌊k/2⌋ adds Kbk−1

and Kbk and stores the result to Kb(k−1)k
. In the second recursion, ⌊k/4⌋ threads are used.

The first thread adds Kb12 and Kb34 ; the second thread adds Kb56 and Kb78 ; . . .; thread

⌊k/4⌋ adds Kb(k−3)(k−2)
and Kb(k−1)k

. For the last recursion one thread is used. The matrix

Kb12...k/2 is added to the matrix Kb(k/2+1)(k/2+2)...k
and the result is stored into the matrix

Kb. A similar approach is employed to assemble the mesh stiffness matrix Km, but mesh

elements are distributed among the threads instead of blocks. The matrices Kb and Km are

added sequentially to compute the stiffness matrix Kg of the biomechanical brain model.

In each outlier rejection step, (Nb ·Fr)/Nrej blocks with the highest error are removed,

where Nb is the number of selected blocks, Fr is the fraction of the rejected blocks, and

Nrej is the number of outlier rejection iterations (Table 11). PFEMS computes the outliers

with the highest error in parallel, i.e., Nb−j ·(Nb · Fr/Nappr) blocks are distributed among

the threads, and each thread calculates the error for its own blocks. The nth element func-

tion of the GNU libstdc++ library is used to sort in parallel the outliers based on their

error. Because outlier blocks are rejected in each approximation iteration, their contribu-

tion should be also removed from matrix Kb. Kb is modified in parallel after distributing

Nb · Fr/Nappr outliers among k threads. Each thread builds a block outlier matrix K ′
bi

,

(i = 1, 2 . . . k), and K ′
bi

is recursively subtracted from Kb. The result is stored within ma-

trix Kb. Finally, the matrices Kb and Km are added sequentially to compute the updated

stiffness matrix Kg of the biomechanical model.

Table 10 compares the accuracy and the speed of the integrated solvers using dif-

ferent fractions Fs. When a sufficient fraction of blocks is selected (Fs = 5%), all

solvers converge to the same ‖U‖. JCG and BICGSTAB converge rapidly, hence they

are more suitable for time critical applications. However, when the fraction is too small

(Fs = 0.1%) the JCG iterative solver fails to converge. Some conditions affecting the

convergence of JCG may be positive diagonal elements, diagonal dominance, and sym-

metry of the system [107]. Figure 38 illustrates the assembled stiffness matrices Km, Kb,

and Kg = Km + Kb for the experiment in Table 10. BICGSTAB is the default solver in

Adaptive-PBNRR.

Parallel Deformation Field Update (PDFU)

The deformation field is a transformation that maps each point in the intraoperative

image to its corresponding point in the preoperative image. Each voxel in the deformation
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Table 10: Accuracy and timing performance of the integrated solvers in A-PBNRR. A

sparse 8391×8391 linear system F = Kg×U was solved. Fs: % selected blocks from the

total number of blocks; r: residual norm; ‖U‖: ℓ2 norm of the solution vector; JCG: Jacobi

Conjugate Gradient; LSQR: Least Squares; BICGSTAB: Biconjugate Gradient Stabilized;

LU: Lower-Upper decomposition with forward elimination and back substitution. The

experiments performed on a workstation with Intel Xeon X5690@3.47 GHz CPU and 96

GB of RAM.
Fs Linear solver r ‖U‖ Time (sec)

5%

JCG 4.90 · 10−6 45.530 0.12
LSQR 1.02 · 10−12 45.530 24.03

BICGSTAB 8.49 · 10−6 45.530 0.12
LU n/a 45.530 213.50

0.1%

JCG 6.95 · 10−2 101.871 0.18
LSQR 4.86 · 10−5 43.134 46.12

BICGSTAB 9.89 · 10−6 43.108 0.12
LU n/a 43.136 207.52

field has a constant value, i.e., a displacement vector. The Adaptive-PBNRR method uses

an additive deformation field for image warping. Therefore, only the preoperative image

is interpolated, independently of the number of adaptive iterations. The additive field at

the adaptive iteration i is computed from the additive field at previous iteration i − 1 and

the output field at iteration i:

DF ′
i = DF ′

i−1 +DF i (6)

DF ′
i, and DF ′

i−1 is the additive image deformation field at iteration i and i − 1, respec-

tively. DF i is the output deformation field at iteration i > 0. The calculation of DF i

and the addition in (6) are performed in parallel. First, the deformed mesh is decomposed

into k sub-meshes, where k is the number of the threads. Next, the displacements at the

geometric centers of voxels contained within an element in a sub-mesh are computed. The

displacement vectors at images DF ′
i−1 and DFi are added in parallel after the images are

partitioned into k sub-images.

Parallel Image Warping (PIW) - Parallel Warped pre-op Segmentation Correction

(PWSC) - Parallel Deformation Field Correction (PDFC)

ITK’s multi-threaded filter is employed for image warping. An image is warped by

using the additive deformation field in (6) and an ITK interpolator to estimate the image
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(a) Km (b) Kb (Fs = 0.1%) (c) Kb (Fs = 5%)

(d) Kg (Fs = 0.1%) (e) Kg (Fs = 5%)

Figure 38: Sparse stiffness matrices of the experiment in Table 10. Km: mesh stiffness

matrix; Kb: blocks stiffness matrix; Kg = Km +Kb: biomechanical stiffness matrix; Fs:

% selected blocks from the total number of blocks.

values at the non-integer pixel positions. A linear interpolator and a nearest neighbor

interpolator is used to warp the preoperative MRI and the preoperative segmented image,

respectively.

The PWSC module accounts for the resected tissue in the segmented image with

heuristics. The warped segmented image at iteration i and a mask of the intraoperative

image are overlapped, and the portion of the tumor that falls into the mask background is

relabeled (Figure 39). To parallelize PWSC module, the segmented image is partitioned

into k pieces, and the overlapping/relabelling is performed concurrently with k threads.

The PDFC module modifies the additive deformation field DF ′
i at (6) to take into account

the changes due to relabelling. For this purpose, the displacement vectors of the voxels

contained within the relabeled region are initialized to zero. PDFC is performed in parallel

after the partition of the image field DF ′
i into k pieces.

3.8 RESULTS

An evaluation of four registration methods is performed using imaging data from thirty
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(a) (b) (c) (d)

Figure 39: The correction of a warped segmented image at adaptive iteration i. Gray and

white represent the brain parenchyma and the tumor, respectively. Blue signifies the mask

of the intraoperative image. (a): warped segmentation, (b): intraoperative mask, (c): (a)

and (b) overlapped, (d): warped segmentation after relabelling.

patients who underwent partial, total, and supra total glioma resection. Visual inspection,

a Hausdorff Distance-based error metric, and a landmark-based error measured by Dr.

Chengjun Yao were utilized to assess accuracy. The four registration methods were:

1. Rigid registration implemented in 3D Slicer v4.4.0 [98].

2. B-Spline non-rigid registration implemented in 3D Slicer v4.4.0 [98].

3. Physics-based non-rigid registration (PBNRR) implemented in ITKv4.7.0 [120].

4. A modification of PBNRR than handles tumor resections (Adaptive-PBNRR) [57].

Tables 7, 11 list the input parameters used for the registration methods

3.8.1 VISUAL ASSESSMENT

In most applications, careful visual inspection remains the primary validation check.

Figures 40-41 present the registration results for thirteen representative tumor resection

cases (three partial, seven total, and three supra total resections). For each patient, Fig-

ures 40-41 show a 2D section from the intraoperative MRI, the corresponding registered

preoperative MRI, and the difference between the intraoperative and registered preoper-

ative MRIs. Smaller differences indicate a more precise alignment. As Figures 40-41

illustrate, Adaptive-PBNRR provides the most accurate registration and preserves brain

morphology in the presence of resection, specifically near tumor margins. Registration

accuracy is not significantly affected by whether the resection was partial, total, or supra

total. In contrast, the other registration methods fail to capture the complex soft-tissue de-

formation near the tumor resection. These results were confirmed by a neurosurgeon who
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Table 11: Parameters used for PBNRR and Adaptive-PBNRR. BS: brain shift; PR: Partial

Resection; TR: Total Resection; STR: Supra Total Resection.
Parameter Value Description

Initialization
Rigid Rigid transformation to initialize the non-rigid registration

transform

Connectivity pattern “face” Pattern for the selection of blocks

Fs 5% % selected blocks from total number of blocks

Bs,x × Bs,y ×Bs,z 3× 3× 3 Block size (in voxels)

Ws,x ×Ws,y ×Ws,z

7× 7× 3 (BS)

9× 9× 3 (PR) Block matching window size (in voxels)

13× 13× 3 (TR, STR)

δ 5 Mesh size

Eb 2.1 KPA Young’s modulus for brain parenchyma

Et 21 KPA Young’s modulus for tumor (A-PBNRR)

vb 0.45 Poisson ratio for brain parenchyma

vt 0.45 Poisson ratio for tumor (A-PBNRR)

Fr 25% % of rejected outlier blocks

Nrej 10 Number of outlier rejection steps

Niter,max 10 Max number of adaptive iterations (A-PBNRR)

Nb0,min
1‰× number

Min number of blocks with zero correspondence (A-PBNRR)
of selected blocks

inspected the full registered volumes.

3.8.2 QUANTITATIVE ASSESSMENT USING HAUSDORFF DISTANCE (HD)

An objective and automatic method [76] was employed to quantitatively evaluate the

registration accuracy. This method uses Canny edge detection [29] to detect two point sets.

The first point set is extracted from the preoperative volume Figure 42(a) and transformed

(using the deformation field computed by each registration method) from preoperative to

intraoperative space. Figure 42(b) depicts a transformed point set. The second point set

is extracted from the intraoperative volume in Figure 42(c). Then, a Hausdorff Distance

(HD) metric [47] is employed as the measurement of the degree of displacement between

the two point sets.

Table 12 presents the results of this quantitative evaluation. A smaller HD value indi-

cates better registration (HD ≥ 0), so perfect registration would have an HD of 0. The

ratio = HDX/HDA-PBNRR indicates the degree to which the error of the A-PBNRR is lower

than the error of the X method, where X ∈ {RR,B-Spline, PBNRR}. Adaptive-PBNRR

achieved the smallest error in each individual case and the smallest average error (3.63

mm) among all four methods. In thirty test cases, Adaptive-PBNRR is 5.47, 4.34, and

5.06 times more accurate in the presence of resection than RR, B-Spline, and PBNRR,
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Figure 40: Qualitative results. Each row represents the same slice of a 3D volume for the

case numbered on the left. Cases 10, 11, and 12 are partial tumor resections. Cases 15, 16,

17, and 20 are total tumor resections. From left to right: intraop MRI (a); deformed preop

MRI after (b) rigid registration, (c) B-Spline, (d) PBNRR, and (e) A-PBNRR; difference

between intraop MRI and (f) B-Spline, (g) PBNRR, and (h) A-PBNRR.
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Figure 41: Qualitative results. Each row represents the same slice of a 3D volume for the

case numbered on the left. Cases 21, 22, and 25 are total tumor resections. Cases 26, 27,

and 29 are supra total tumor resections. From left to right: intraop MRI (a); deformed

preop MRI after (b) rigid registration, (c) B-Spline, (d) PBNRR, and (e) A-PBNRR; dif-

ference between intraop MRI and (f) B-Spline, (g) PBNRR, and (h) A-PBNRR.
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respectively. Note that this study utilized a 100% HD metric unlike our previous work [4],

which featured a 95% HD metric. Figure 43 plots the HD error of data in Table 12.

(a) (b) (c)

Figure 42: Extracted Canny points in a single slice for quantitative evaluation of registra-

tion accuracy using the HD metric. (a): Points extracted from the preoperative MRI; (b):

Points of (a) after transformation to the intraoperative space; (c): Points extracted from the

intraoperative MRI. The HD metric is computed between point sets (b) and (c). Note that

the Canny points are generally different from feature points used for registration.

3.8.3 QUANTITATIVE ASSESSMENT VIA ANATOMICAL LANDMARKS

Registration accuracy was quantitatively evaluated using anatomical landmarks se-

lected by a neurosurgeon, as suggested in [87] (Figure 44). The neurosurgeon located

six landmarks in each registered preoperative image volume and corresponding intraop-

erative image volume. Landmarks A and B were selected in the cortex near the tumor;

C and D were selected at the anterior horn and the triangular part of the lateral ventricle,

respectively; E and F were selected at the junction between the pons and mid-brain and at

the roof of the fourth ventricle, respectively. For each landmark, the error was calculated

as the distance between the landmark location in the registered preoperative image and

the corresponding intraoperative image. Table 13 presents the minimum, maximum, and

mean errors for each case. The assessment confirms that the Adaptive-PBNRR provides

the most accurate registration, with an average minimum error of 1.03 mm and average

mean error of 3.22 mm. In summary, Tables 12 and 13 suggest that independently of the

evaluation method the Adaptive-PBNRR outperforms all three registration methods used

in this evaluation. These quantitative results are consistent with the quality data presented

in Figures 40-41 above.
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Table 12: Quantitative registration results using the HD metric. HDRR, HDBSPLINE,

HDPBNRR and HDA-PBNRR are alignment errors after Rigid Registration (RR), B-Spline,

PBNRR, and A-PBNRR registration, respectively. HD are in mm. The number in paren-

thesis denotes the number of adaptive iterations for A-PBNRR. BS: Brain Shift; PR: Partial

Resection; TR: Total Resection; STR: Supra Total Resection.

Case Type HDRR HDBSPLINE HDPBNRR HDA-PBNRR
HDRR

HDA-PBNRR

HDBSPLINE

HDA-PBNRR

HDPBNRR

HDA-PBNRR

1 BS 11.07 9.30 7.63 3.48(2) 3.18 2.67 2.19
2 BS 24.64 24.51 21.39 2.77(5) 8.90 8.85 7.72
3 BS 10.49 7.75 10.53 5.88(3) 1.78 1.32 1.79
4 BS 6.59 6.51 4.97 2.64(2) 2.50 2.47 1.88
5 BS 7.68 5.28 5.73 2.65(2) 2.90 1.99 2.16
6 BS 8.54 8.54 5.55 3.48(2) 2.45 2.45 1.59
7 BS 8.99 8.99 7.36 4.33(3) 2.08 2.08 1.70
8 PR 17.00 17.00 16.49 5.69(4) 2.99 2.99 2.90
9 PR 10.59 5.28 10.76 2.30(3) 4.60 2.30 4.68
10 PR 16.15 13.78 15.12 4.60(7) 3.51 3.00 3.29
11 PR 26.89 15.86 26.89 4.00(6) 6.72 3.97 6.72
12 PR 29.93 21.34 27.76 2.83(7) 10.58 7.54 9.81
13 TR 25.51 25.18 22.50 4.97(4) 5.13 5.07 4.53
14 TR 5.59 5.59 3.43 3.09(1) 1.81 1.81 1.11
15 TR 17.90 16.94 15.56 4.11(9) 4.36 4.12 3.79
16 TR 18.85 17.49 17.38 3.57(3) 5.28 4.90 4.87
17 TR 17.14 7.48 15.41 4.25(2) 4.03 1.76 3.63
18 TR 25.72 25.72 23.90 3.42(6) 7.52 7.52 6.99
19 TR 25.43 17.63 25.22 3.30(9) 7.71 5.34 7.64
20 TR 23.61 21.42 22.89 3.66(4) 6.45 5.85 6.25
21 TR 19.24 14.61 19.89 2.40(6) 8.02 6.09 8.29
22 TR 30.37 21.39 28.96 3.13(7) 9.70 6.83 9.25
23 TR 15.16 11.89 13.96 3.15(4) 4.81 3.77 4.43
24 TR 13.47 8.90 13.66 3.28(4) 4.11 2.71 4.16
25 TR 23.22 14.99 21.44 3.08(9) 7.54 4.87 6.96
26 STR 17.59 17.12 16.63 4.19(5) 4.20 4.09 3.97
27 STR 35.72 27.77 33.57 3.71(8) 9.63 7.49 9.05
28 STR 32.32 29.43 30.13 3.45(6) 9.37 8.53 8.73
29 STR 18.48 13.30 18.15 3.97(4) 4.65 3.35 4.57
30 STR 27.07 15.55 24.91 3.54(7) 7.65 4.39 7.04
Average 19.03 15.22 17.59 3.63 5.47 4.34 5.06
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Figure 43: Plot of Hausdorff Distance (HD) errors of Table 12. Brain shift: cases 1-7;

partial resection: cases 8-12; total resection: cases 13-25; supra total resection: cases

26-30.

3.8.4 PERFORMANCE

All methods were parallelized for shared memory multiprocessor architectures. Fig-

ure 45 presents the end-to-end execution time for the registration of preoperative to intra-

operative images for all thirty cases. Rigid registration, B-Spline, PBNRR, and A-PBNRR

required on average 0.84, 8.98, 0.83, and 1.42 minutes, respectively (including I/O). Note

that the B-Spline method is the most computationally intensive, requiring more than 8

minutes in 17 out of 30 cases. A different set of B-Spline parameters, such as a smaller

sampling percentage, a smaller number of histogram bins, or a coarser grid, could poten-

tially improve performance at the cost of accuracy. Although A-PBNRR is slower than RR

and PBNRR, it has significantly better accuracy in the presence of resection than the other
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Figure 44: Anatomical landmarks (A-F) used for quantitative evaluation of registration

accuracy. A neurosurgeon located the landmarks. A, B: cortex near tumor; C: anterior

horn of lateral ventricle; D: triangular part of lateral ventricle; E: junction between pons

and mid-brain; F: roof of fourth ventricle.

Table 13: Quantitative registration results using six anatomical landmarks (A-F). The val-

ues are the average minimum, maximum, and mean errors computed over thirty cases for

Rigid Registration (RR), B-Spline, PBNRR, and A-PBNRR registration.

Method
Average min error Average max error Average mean error

(mm) (mm) (mm)

RR 3.19 8.90 5.60
BSPLINE 2.15 8.29 4.40
PBNRR 1.11 6.81 3.47

A-PBNRR 1.03 6.59 3.22

methods, and it is fast enough to satisfy the constraints of image-guided neurosurgery,

where registration times of less than two to three minutes are desired.

Figure 46 presents scalability results for the registration of preoperative to intraopera-

tive images for all thirty cases. The speedup was computed as the ratio of the time taken

by the sequential implementation to the time taken by the parallel implementation using

12 hardware cores. PBNRR exhibits poor scalability because it includes only one parallel

module (block matching). A-PBNRR demonstrates good scalability (up to 6.12) due to a

much higher parallelization fraction.

3.9 DISCUSSION AND FUTURE WORK

Recent advances in neuroimaging such as fMRI and DTI allow neurosurgeons to plan

tumor resections that minimize damage to eloquent cortical regions and white matter

tracts [200, 17, 102, 153, 189]. A number of commercial systems (e.g., Brainlab Curve

Image-Guided Therapy system) can register fMRI and DTI to preoperative anatomical
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Figure 45: End-to-end execution times for registration from preoperative to intraoperative

images. All registration methods were run in parallel on 12 hardware cores on a DELL

workstation with 12 Intel Xeon X5690@3.47 GHz CPU cores and 96 GB of RAM. Exe-

cution times include I/O. The mesh generation time is excluded from the PBNRR (preop-

erative step) but is included in the A-PBNRR (intraoperative step).

MRI images and then map this data to the patient intraoperatively using rigid registration.

However, significant deformation of the brain is possible during surgery, especially in the

presence of tumor resection, making rigid registration insufficient and surgical plans made

with preoperative data invalid [149].

Intraoperative MRI can be used to observe the deformed brain during surgery. While it

is impractical to acquire fMRI and DTI intraoperatively, the preoperative MRI image can

be registered to an intraoperative MRI image using non-rigid registration. The resultant

registration can then be applied to the preoperative fMRI, DTI, and the surgical plan, pro-

viding more accurate, updated guidance to the neurosurgeon [4]. Figure 47 depicts such a
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Figure 46: Scalability for registration from preoperative to intraoperative images using a

DELL workstation with 12 Intel Xeon X5690@3.47 GHz CPU cores and 96 GB of RAM.

Execution times include I/O.

visualization.

Non-rigid registration algorithms remain computationally expensive and have proven

to be impractical for use in clinical settings in the past. Thus, one of the goals of this

research has been to employ parallel and distributed computing architecture to provide

faster and more effective registration for image-guided neurosurgery [41, 4].

In this study, four methods for registering preoperative to intraoperative MRI images

were compared among thirty glioma cases from two different hospitals; a rigid registra-

tion implemented in 3D Slicer v4.4.0 [98], a B-Spline non-rigid registration implemented

in 3D Slicer v4.4.0 [98], a physics-based non-rigid registration (PBNRR) implemented in

ITKv4.7.0 [120], and a modification of PBNRR that handles tumor resections (Adaptive-

PBNRR) [57]. Many of these cases involved the resection of significant tumor volumes.
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(a)

(b)

Figure 47: Rigid (a) and non-rigid (b) alignment of preoperative DTI tractography (the

motor pathway volume is exported to DICOM format) with intraoperative T1 FLAIR vol-

ume from patient 20 (male, 36 years old, grade II glioma). The DTI tractography is shown

together with a tumor model (red) during the neurosurgical resection. Part of the tumor has

been resected. Visualizing the tumor model and DTI tractography in the surgical context

helps the neurosurgeon to achieve an appropriate volumetric resection.
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Three methods were employed in assessing the registration accuracy: (i) visual assess-

ment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using

anatomical points identified by a neurosurgeon. The processing speeds of these methods

were also compared.

The experimental results confirm that, of the four methods, Adaptive-PBNRR provides

the most accurate registration, with an average error of 3.2 to 3.6 mm for landmark-based

and Hausdorff Distance-based metrics, respectively, for anisotropic image spacing (e.g.,

0.488×0.488×1.0mm3, Table 6). The extent of the resection (partial, total, or supra total)

does not significantly affect this accuracy (Figures 40-41 and 43, Table 12). Performance

analysis shows that Adaptive-PBNRR is sufficiently fast to be useful in a clinical setting.

The ultimate goal is to provide accurate, high-quality data to neurosurgeons intraop-

eratively to allow them to make the best possible decisions during tumor resection. This

work has shown through the study of thirty patients that we can map preoperative image

data to the patient with an average error of a few millimeters and with computation times

that are acceptable in a clinical environment. Future efforts will continue this focus on im-

proving registration accuracy and decreasing computation times, using Cloud computing

and Machine Learning. Preliminary results for the PBNRR method suggest a reduction in

the registration error in the order of 30% to 50% [141]. Decreasing computation times will

require exploring ways to improve parallelization of registration methods. Improving ac-

curacy will require an investigation into higher order finite element modeling to study the

impact on accuracy and performance. Additionally, the effect of segmentation and model

construction on the registration accuracy remains a potential area of future study. Specif-

ically, an investigation into the effect of higher quality segmentation of the brain surface

and structures that constrain brain deformation, such as the skull cavity, the falx cerebri,

and the tentorium cerebelli, would reveal the impact of incorporating more tissues, includ-

ing blood vessels and the ventricles, into the brain model. Finally, because intraoperative

MRI is not available in many neurosurgical suites, further investigation incorporating the

use of intraoperative ultrasound to track brain deformation during surgery would extend

these registration methods to map preoperative image data to intraoperative ultrasound.

3.10 CONCLUSION

This study compared four methods for registering preoperative image data to intraoper-

ative MRI images in the presence of significant brain deformation during glioma resection

in thirty patients. The Adaptive Physics-Based Non-Rigid Registration method developed
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in this thesis extends earlier work on physics-based finite element methods by using real-

time multi-tissue mesh adaptation to automatically remove elements in the area of the

resected tumor, thereby automatically handling deformation in the presence of resection.

The proposed algorithm exploits additional parallelism over existing physics-based meth-

ods with corresponding performance improvements so that, even with multiple iterations,

it requires on average less than two minutes to perform non-rigid registration. Both the

registration accuracy and performance were found to be of clinical value in the operating

room.
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CHAPTER 4

HIGH QUALITY PARALLEL UNSTRUCTURED GRID

GENERATION FOR FINITE ELEMENT SIMULATIONS

4.1 INTRODUCTION

This chapter presents a new parallel unstructured grid generator for efficient discretiza-

tion of piecewise linear complex domains in Computational Fluid Dynamics (CFD) mod-

eling using Finite Elements (FE). FE procedures [15] are useful to analyze the robustness

and performance of components and assemblies in engineering and to validate and opti-

mize products and manufacturing in industry.

To the best of our knowledge, this is the first method that optimizes the grid con-

nectivity in parallel throughout the generation procedure, including a post-improvement

step. The connectivity optimization is based on a speculative (optimistic) approach that

has been proven to perform well on hardware-shared memory (i.e., single chip) [40, 70].

Our new speculative paradigm repetitively reconnects the grid using tightly-coupled topo-

logical transformations. Simple hill-climbing is employed to maximize the quality of

the worst local element. The local reconnection scheme is based on: (i) data over-

decomposition, (ii) atomic operations to avoid data races and maintain a valid grid through-

out the procedure, and (iii) load-balancing to redistribute work-units among the threads.

The grid generation engine is essentially a combination of Advancing Front type point

placement [123, 127], direct point insertion [132], and parallel multi-threaded connectiv-

ity optimization schemes [171, 201].

The framework developed in this thesis is a complete end-to-end solution that focuses

on improving both the quality and the performance. Therefore, it can be used for academic

or industrial purposes. The design and implementation of this framework fulfills to a high

degree the requirements of an ideal grid generator:

1. Stability. The quality of the grid generated in parallel must be comparable to that

of a grid generated sequentially. The quality is defined in terms of the shape of the

elements (using a chosen space-dependent metric) and the number of the elements

(fewer is better for the same shape constraint).
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2. Robustness. The ability of the software to correctly and efficiently process any input

data and to consistently generate high quality elements. Operator intervention into a

parallel computation is not only highly expensive, but most likely infeasible due to

the large number of concurrently processed sub-problems.

3. End-User Productivity. The ability of the software to process the input data faster

compared to state-of-the-art codes. Scalability is defined as the ratio of the time

taken by the best sequential implementation to the time taken by the parallel imple-

mentation. The speedup is always limited by the inverse of the sequential fraction

of the software, and therefore all non-trivial stages of the computation must be par-

allelized to leverage the current multi-core architectures.

4. Code Re-Use. A modular design of the parallel software, such that it can be replaced

and/or updated with minimal effort. Due to the complexity of grid generation codes,

this is the only practical approach for keeping up with the ever-evolving algorithms

and computer architectures.

Given a boundary surface grid of the domain to be discretized, the proposed method

first constructs an initial volume grid that conforms to the input boundary grid. The ini-

tial grid might contain few points in the volume due to the fact that a tetrahedralization

of an arbitrary polyhedron without interior points is not always possible [165, 31]. New

points are created with an Advancing Front type point placement. Points are inserted into

the grid by directly subdividing the tetrahedra that contain them. The connectivity is then

optimized using parallel speculative local-reconnection. The generation procedure stops

when a desired point distribution function is satisfied. The remaining bad shape elements

are eliminated in a post-processing step that utilizes various mechanisms, including a par-

allel speculative local-reconnection. The shape of the elements is critical for the accuracy

and the convergence of a finite element solution. For example, elements with large dihe-

dral angles tend to increase the discretization error in the finite element solution [8]. On

the other hand, elements with small dihedral angles are bad for matrix conditioning but not

for interpolation or discretization [74, 173]. Figure 48 depicts a volume grid generated by

the proposed method.

4.2 RELATED WORK

Two approaches are typically used to generate a tetrahedral grid from an input surface

grid: Delaunay or Advancing Front [190]. Delaunay methods can handle constrained



79

(a) Input surface grid

(b) Cut of the output volume grid (≈ 200 M tetrahedra)

Figure 48: Cut of unstructured tetrahedral grid of flow field of a rocket. The grid is gener-

ated with the parallel optimistic algorithm developed in this thesis. The point Distribution

Function (DF) varies between the domain boundaries. The input surface grid obtained

from Center of Advanced Vehicular Systems in MSU.
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polyhedral domains of arbitrary complexity with the use of heuristic mesh modification

techniques [79, 10]. Other Delaunay approaches provide mathematically guarantees on

the grid quality but do not preserve the boundary triangulation [177, 146].

The first efforts on the parallelization of existing sequential Delaunay grid generation

algorithms are reported in [44, 152]. These methods are based on the parallelization of

a Bowyer-Watson kernel [24, 195]. A tightly-coupled distributed parallel Delaunay re-

finement algorithm for simple polyhedral domains whose constituent bounding edges and

surfaces are separated by angles between 90◦ to 270◦ is presented [147]. This algorithm,

can create and place large meshes up to 6 times faster than the traditional approach (i.e.,

sequentially generate a sufficiently dense mesh, partition the mesh into submeshes, dis-

tribute the submeshes to the processors, and sequentially refine the mesh) to generating

and refining a distributed mesh.

A Delaunay method that allows for safe insertion of points independently without syn-

chronization is presented [37]. This method, based on a carefully constructed octree, splits

the worklist of the candidate points up into smaller lists such that the available sequential

codes can be used without modifications to process the sublists. The drawback is that the

amount of work assigned to different processors can vary significantly. However, by us-

ing over-decomposition in a combination with runtime software system for dynamic load

balancing [12], the work among the nodes can be redistributed.

In some cases (e.g., high-aspect ratio viscous grids or three-dimensional grids with

sliver elements formed from four nearly coplanar points) the Delaunay criterion may not

be the most suitable. For this reason, other approaches to improve the quality over that of

a Delaunay grid by using topological transformations have been introduced [14, 114, 97,

178].

Advancing Front methods offer the advantages of a high quality grid due to optimal

point placement and boundary integrity [127, 123]. Its main drawbacks are complexity and

lower element quality when fronts collide in 3-dimensions. An Advancing Front grid gen-

erator for shared memory architectures is presented in [124]. The domain to be gridded is

first subdivided spatially using a coarse octree, and then the boxes are gridded in parallel.

In [94], a coarse tetrahedral mesh is generated first to provide the basis of block interfaces

and then partitioned into a number of subdomains using METIS [100] partitioning algo-

rithms. A volume grid is generated on each subdomain in parallel using an Advancing

Front method, and all subdomains are later combined to create a single grid. To remove

the artifacts in the interfaces between subdomains, an angle-based node smoothing was



81

used, but no topological changes (i.e., local reconnections) are introduced.

Grid generation codes typically improve the shape of the elements in a post-processing

step, called grid optimization or grid quality improvement [50, 71]. On the contrary, the

proposed method optimizes the connectivity throughout the generation procedure (includ-

ing a post-improvement step) to obtain a maximum quality. A combined quality criterion

is utilized to optimize the connectivity: Delaunay in-sphere [51] and Min-Max type [14].

The shape of the elements is not always improved if the combined criterion is used only

on the final grid as a post-processing step.

Commonly, a grid optimization algorithm incorporates three mechanisms: (i) vertex

relocation (smoothing) [28, 71, 132, 109], (ii) local reconnection with topological trans-

formations [73, 178, 109, 50, 97, 132, 179], and (iii) point insertion/deletion to localy re-

fine/coarsen the grid [50, 109, 132, 179]. This thesis implements efficiently all these mech-

anisms. Topological transformations are fundamental operations in local reconnection. A

topological transformation removes elements and replaces them with a different set of el-

ements that occupy the same space. Transformations can be computationally expensive

and time-consuming, mainly for two reasons: (i) a transformation does not always pro-

duce a geometrically valid connectivity, hence the orientation of the new elements needs

to be verified, and (ii) a quality metric needs to be computed to decide whether the new

connectivity is locally optimal or not. For those reasons, this thesis implements a paral-

lel speculative local reconnection approach, therefore significantly reducing the execution

time. Experimental evaluation of our method indicates that a sequential optimization with

local reconnection accounts for at least 70% of the grid generation time (without post-

improvement).

Many parallel Delaunay or Advancing Front algorithms have been proposed [42, 70,

162, 37, 147, 166, 125, 124]. However, few parallel local reconnection algorithms have

been presented in the literature. In [126] a parallel distributed Advancing Front grid gen-

eration method with quality improvement is presented. Quality improvement includes a

combination of several algorithms, i.e., diagonal swapping, removal of bad elements, node

smoothing, and selective grid movement. In the first pass of quality improvement, each

subgrid is reconnected by swapping edges in its interior, so the inter-processor boundary

remains unchanged. In the second pass, a new partition is created by adding 1-2 extra

layers of elements to each subdomain from the neighboring domains, the sub-grids are

redistributed among processors, and grid improvement operations are performed again.

However, it is unclear how the work load is balanced after re-partitioning.
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A multi-threaded local reconnection and smoothing algorithm for grid improvement

is presented [171]. The parallelization of smoothing operations is based on an existing

data-decomposition technique [73], which colors the dual graph of the grid to subdivide

the points into a few independent sets. The parallelization of local reconnection opera-

tion is based on a new data-decomposition technique, which defines a feature point in the

interior of each local reconnection operation and sorts the feature points along a Hilbert

curve [22, 179]. The decomposition of this Hilbert curve results in an initial load-balanced

distribution of local operations, i.e., edge removals from those low quality tetrahedra.

A two-step thread-parallel edge and face swapping algorithm is presented [201]. In

the first step, a vertex locking strategy is introduced to select a maximal conflict-free set of

edges and faces for swapping. In the second step, edge and face migration between threads

is performed to balance the work-load in each thread, and then parallel edge and face

swaps are applied without any interference. However, the evaluation of the 3-dimensional

algorithm is limited.

Other approaches suggest a combination of smoothing and untangling operations [18,

106]. A log-barrier interior point method is developed to solve a smooth constrained opti-

mization problem and untangle a mesh with inverted elements, improving its quality [168].

This method is parallelized for distributed memory machines using an edge-based color-

ing communication synchronization technique in which edges corresponding to a graph of

communicating processes are colored to synchronize the communication [167].

A parallel optimization technique that smoothens independent sets of vertices simul-

taneously is developed in [71]. This technique performs local vertex movement using a

vertex-coloring scheme to avoid conflicting updates to vertex positions. The method is im-

plemented for a parallel random access machine (PRAM) model and distributed memory

architectures.

An optimization-based smoothing algorithm for anisotropic mesh adaptivity is pre-

sented in [83]. The smoothing kernel solves a non-linear optimization problem by differ-

entiating the local mesh quality with respect to mesh vertex position and employing hill-

climbing to maximize the quality of the worst local element. The method is parallelized

for hybrid OpenMP/MPI using standard coloring techniques.

Previous work on 3-dimensional Delaunay refinement [70] indicates that a speculative

approach performs well on hardware-shared memory. Similarly to a Delaunay reconnec-

tion, roll-backs are possible during speculative reconnection with topological transforma-

tions, due to intersections of polyhedra that are attempted to transform concurrently. The
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proposed scheme employs atomic operations to avoid such intersections, thus maintain-

ing a valid connectivity throughout the procedure. To exploit additional parallelism, our

method implements a load-balancer to migrate work-units (buckets) from busy threads to

threads without work. The granularity of the decomposition (i.e., size of work-units) and

the amounts of data for migration can be adjusted to achieve an optimum performance.

The number of cores to emerging chips and for High Performance Computing (HPC)

nodes is expected to be in the order of hundreds. Therefore, in future efforts, a Parallel

Data Refinement (PDR) layer [34, 35, 37] will be implemented on top of the proposed

speculative approach to improve the scalability by at least a factor of O(102). Our ultimate

goal is to implement a telescopic approach for current and emerging parallel architectures

with several layers in network and memory hierarchy, therefore achieving extreme-scale

adaptive simulations on the complex, heterogeneous HPC architectures that will be in-

creasingly prevalent through 2030 [180, 43] (Figure 49).

Figure 49: Telescopic Approach for Extreme-Scale Parallel Mesh Generation [43]

The proposed algorithm is capable of efficiently generating billions of elements for re-

alistic aerospace configurations. It exhibits “ultimate” robustness1 on recovering boundary

surfaces with bad shape or high aspect-ratio anisotropic triangles. Both the sequential and

the parallel implementation of this code generates grids of a comparable element quality

1this term was first used in [78]
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with state-of-the-art technology [132], currently incorporated in several commercial sys-

tems (i.e., DoD CREATE-MG Capstone, Lockheed Martin/DoD ACAD, Boeing MAD-

CAP, MSU SolidMesh, and Altair HyperMesh). Experimental evaluation results in this

thesis indicate that our method completes the grid refinement up to 2.5 and 10 times faster

compared to state-of-the-art code [132], when 1 and 12 hardware cores are utilized, re-

spectively. The parallel speculative connectivity optimization scheme exhibits near-linear

scalability when 24 cores are utilized to discretize the flow domain of a DLR-F6 Airbus

aircraft with approximately 1.5 billion elements.

Details of the proposed algorithm are presented in the following sections along with

an extensive evaluation on quality and scalability aspects of the code for 3-dimensional

aerospace configurations.

4.3 GRID GENERATION STEPS

The developed grid generation software is called CDT3D. It takes as an input a Piece-

wise Linear Complex (PLC) [140, 175] of the domain to be discretized. Typically, the PLC

is a boundary surface triangulation of the domain. The output is a boundary-conforming

isotropic tetrahedral grid with an element size that is defined by a point distribution func-

tion. The end-to-end procedure includes three basic steps and a final post-improvement

step:

1. Delaunay Tetrahedralization. A initial grid of 6 tetrahedra is created that encloses

the input boundary points. The input points are consecutively inserted into the grid.

After each insertion the grid is reconnected using a Delaunay empty sphere criterion.

2. Boundary Recovery. The Delaunay grid is modified to contain all the entities

(edges and faces) of the input surface triangulation. The missing entities are recov-

ered with topological transformations and edge/face partitioning. Additional points

(called Steiner points) might be necessary to recover the input surface.

3. Refinement. New points are inserted into the grid until a desired point distribution

function is satisfied. New points are created with an Advancing Front type point

placement. Points are inserted into the grid by directly subdividing the tetrahedra

that contain them. The connectivity is optimized in parallel with a combination of

topological transformations. The refinement stops when no new points are created

or accepted.
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4. Quality Improvement. The grid is improved by vertex smoothing, parallel connec-

tivity optimization, and point insertion with heuristics to remove isolated bad shape

elements.

Details of these steps in the procedure are presented in the following sections.

4.4 DELAUNAY TETRAHEDRALIZATION

A Delaunay triangulation of a d-dimensional point set P is a d-dimensional simpli-

cial complex D such that every simplex in D has the empty sphere property [51]. In

3-dimensions, each tetrahedron has a circumscribed sphere that contains no other point of

P , and the underlying space |D| is the convex hull of P . If no d + 2 vertices of P share

a common sphere, then the set of all Delaunay simplices uniquely forms the Delaunay

triangulation of P .

Two well-known algorithms for constructing Delaunay tetrahedralizations are the

Bowyer-Watson algorithm [24, 195] and the incremental flip algorithm [62]. Parallel

tightly-coupled methods for Delaunay insertion and refinement [147, 70], as well as a

partially-coupled and a decoupled method for distributed-memory systems based on Me-

dial Axis decomposition [117, 36], were also developed. We implement a sequential

Bowyer-Watson algorithm since this step is used only for the insertion of the input bound-

ary points. The evaluation results indicate that this step accounts for less than 1% of the

total grid generation time (Table 18) if the points are pre-sorted before insertion [179].

Note that the grids generated in this study contain a number of surface points which is

approximately equal to the number of volume points to the 2/3 power.

Prior to the insertion of the input points P , an initial Delaunay grid enclosing P is

constructed. The initial grid contains five tetrahedra and eight vertices. Before a point p is

inserted into the grid a search is necessary to find the containing element. This operation

is called point location. CDT3D implements a stochastic walk algorithm [52, 179] to

locate p, and robust geometric predicates with dynamic filters for orientation and in-sphere

tests [174]. After p is located, a cavity C(p) is computed, consisting of the elements whose

circumsphere contains p. These elements are deleted (because they violate the Delaunay

property), and p is connected to the vertices on the boundary of C(p).

Point location can be the bottleneck of the performance of an incremental Bowyer-

Watson algorithm [121]. CDT3D improves the speed by: (i) pre-sorting P such that points

geometrically close in space are likely close in their insertion order, and (ii) starting the

search for the containing element from the latest created element. The same approach with
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TetGen [179] is followed to pre-sort point set P . At first, the points are grouped using a

Biased Randomized Insertion Order (BRIO) [2] and then ordered within each group along

a Hilbert curve [22].

4.4.1 EXAMPLES ON DELAUNAY TETRAHEDRALIZATION

The performance of the Delaunay Tetrahedralization is evaluated on three geometries

(Figure 50). CDT3D is compared to TetGen [179], a publicly available software for gen-

erating high quality tetrahedral meshes aimed to support numerical methods and scientific

computing. Table 14 reports the results. CDT3D is approximately 15% slower than Tet-

Gen. This is because TetGen’s data structures are highly optimized for sequential opera-

tions. On the other hand, CDT3D’s data structures are designed to address both sequential

and parallel operations. Small differences at the sorting timings occur for the same reason.

In future efforts, this step can be parallelized using a tightly-coupled approach [70].

Table 14: Performance of the Delaunay tetrahedralization. CDT3D is compared with state-

of-the-art open-source software TetGen v1.5.0 [179]. I/O time is not included in the results.

The generation time without element sorting is reported in parenthesis. The experiments

performed on a Linux machine with Intel Core i7-2600 CPU@3.40GHz, and 16 GB RAM.

Geometry #Points #Tets

Time (sec)

Sorting Tetrahedralization

TetGen CDT3D TetGen CDT3D

Oil-pump 3420144 3961092 0.94 0.99 7.32 8.29 (31.41)
Filigree 3086568 3515676 0.80 0.77 7.58 8.63 (20.80)

Flow Diverter 6103404 11544940 2.05 1.98 16.81 19.69 (55.43)

4.5 TOPOLOGICAL TRANSFORMATIONS

Topological transformations are necessary in the majority of grid generation algo-

rithms [73, 132, 97, 50, 77, 178, 109]. Flips or swaps are alternative terms often used

in computational geometry literature [62].

A transformation modifies the grid connectivity by removing elements and replacing

them with a different set of elements that occupy the same space. Some types of transfor-

mations facilitate a point insertion or a point removal operation. A transformation is local

if it involves a small number of elements. Topological transformations are typically used

in conjunction with an objective function to optimize the grid. Typical objective functions
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(a) oil-pump (b) filigree (c) flow diverter

Figure 50: Geometries to evaluate the performance of the Delaunay tetrahedralization.

The input surface grids (cyan) are shown together with their convex hull (gray). (a) and

(b) obtained from AIM@SHAPE Repository (http://shapes.aim-at-shape.net). (c) obtained

from the Neurosurgery Department at Stony Brook University.

are the average quality of the elements or the quality of the worst element. CDT3D im-

plements various objective functions such as: (i) Delaunay empty sphere property [51],

(ii) maximization of the minimum Laplacian edge weight [14], (iii) minimization of the

maximum dihedral angle, and (iv) maximization of the minimum dihedral angle. Trans-

formations are also used to enforce a specific connectivity into the grid without taking into

account quality aspects. Such an example is the boundary recovery algorithm (section 4.6).

Most types of transformations require orientation checks to ensure the geometric validity

of the new elements. Robust orientation checks in this study are guaranteed by using exact

geometric predicates [174].

4.5.1 ELEMENTARY FLIPS

Given five noncoplanar points in R
3, there are four elementary flips [160]: 1-4, 4-1,

2-3, and 3-2 (Figure 51). The first number indicates the number of tetrahedra before the

flip and the second number indicates the number of tetrahedra after the flip. Flips 1-4 and

4-1 are used to insert a point into the grid and to remove a point from the grid, respectively

(Figure 51(a)). Flips 2-3 and 3-2 are used to reconnect five noncoplanar points. A 2-3 flip

removes a face from the grid, while a 3-2 flip removes an edge (Figure 51(b)). Flips 2-3,

and 3-2 are special cases in Lawson’s theorem [114] for 3-dimensions. Lawson’s theorem

states that no more than two connectivities are possible for k+2 points in k dimensions.
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Figure 51: Elementary flips in 3-dimensions. A 1-4 flip inserts a point (p) into the grid

subdividing a tetrahedron into four tetrahedrons. The inverse operation removes a point

(p) from the grid. 1-4, and 4-1 flip are performed only if p is inside the tetrahedron. A 2-3

flip removes a face (abc) from the grid, creating a new edge (de). Flip 2-3 is geometrically

valid if the edge de intersects face abc in the interior. The inverse operation removes an

edge (de) from the grid, creating a new face (abc).

4.5.2 OTHER FLIPS

CDT3D implements a 2-6 flip and a n-2n flip (n is the number of tetrahedra surround-

ing an edge). A 2-6 flip inserts a point on a face (Figure 52(a)). A n-2n flip inserts a

point on an edge (Figure 52(b)). The inverse operations remove a point from a face or

an edge (Figure 52). A 2-2 flip reconnects five points, four of which are coplanar points

(Figure 52(c)).

4.5.3 COMBINATIONS OF FLIPS

A 4-4 flip interchanges two edges in a set of four tetrahedra surrounding an edge (Fig-

ure 53). It is essentially a combination of a 2-3 flip (that inserts a new edge) and a 3-2

flip (that removes an old edge). The first 2-3 flip may temporarily create a flat tetrahedron

which will be removed by the followed 3-2 flip. Two candidate configurations are com-

puted in advance for a 4-4 flip (Figure 53). The configuration that optimizes an objective

function is then selected. The 4-4 flip is implemented both as an independent operation

and within a general n-m flip [178, 77, 78].

The n-m flip (n ≥ 3, m = 2n − 4) is essentially a combination of (n − 3) 2-3 flips

followed by a final 3-2 flip, where n, m is the number of tetrahedra before and after the

flip, respectively. The n-m flip has proven very effective for edge removal. However,
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(b) n-2n, 2n-n flip (n = 3)
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(c) 2-2 flip

Figure 52: Other flips in 3-dimensions. 2-6 flip inserts a point (p) on a face (abc), subdivid-

ing the face into three sub-faces. n-2n flip inserts a point (p) on an edge (ed), subdividing

the edge into two sub-edges. 6-2 flip removes a point (p) from a face (abc), recovering the

face. 2n-n flip removes a point (p) from an edge (ed), recovering the edge. 2-2 flip recovers

an edge (ed) when four points (a, b, e, d) are coplanar and located on the boundary.

n-m flips can significantly deteriorate the performance of the grid generation. Indeed,

[77] shows that the number of candidate tetrahedralizations for n tetrahedra surrounding

an edge increases exponentially in n, thus the cost to exhibit these tetrahedralizations is

a priori non-polynomial. Specifically, the number of candidate solutions is given by the

Catalan number (Figure 54):

Cn =
(2n− 2)!

n(n− 1)!
(7)

with (n ≥ 3). Table 15 gives the number of candidate solutions as a function of n.

Figure 55 illustrates the possible tetrahedralizations for n = 5 elements. Figure 56

illustrates the transformations required to obtain a tetrahedralization for n = 5, m = 6.

It is not always possible to remove an edge using a n-m flip, because a face incident on

this edge might not be flippable (Figure 57). To alleviate this problem, a recursive n-m flip

is implemented [179]. In the recursive n-m flip, if a face incident on edge ab cannot be
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Figure 53: 4-4 flip. Left: Initial configuration with four tetrahedra (abcd, abde, abef ,

abfc) surrounding an edge (ab). Middle: first alternative configuration with edge ab being

replaced by edge ce. The new tetrahedra are: ceda, cfea, cdeb, cefb. Right: second

alternative configuration with edge ab being replaced by edge df . The new tetrahedra are:

dcfa, dfea, dfcb, defb.

Figure 54: The Catalan number Cn as a function of n.
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Table 15: Number of candidate tetrahedralizations Cn for n tetrahedra surrounding an

edge. m is the number of tetrahedra after reconnection.

n 3 4 5 6 7 8 9 10
m = 2n− 4 2 4 6 8 10 12 14 16

Cn 1 2 5 14 42 132 429 1430

flipped, then the algorithm tries to remove another edge that contains one of the endpoints

of ab (Figure 57). If the other edge is flipped, then the algorithm continues to reduce the

cardinality of ab. Otherwise ab cannot be flipped.

intersection

(a) (b) (c) (d) (e) (f)

(g)

Figure 55: Possible tetrahedralizations for n = 5 elements surrounding edge KP . (g)

depicts the possible triangulations of the polygon J1J2J3J4J5.

This work adopts recursive n-m flips (n ≤ 10) to recover the boundary domain. For

performance reasons, the refinement and improvement modules reconnect clusters of up to

n = 4 tetrahedra. When n = 4, the two candidate configurations are computed in advance

and the one that maximizes the objective function is selected. In future work, higher order

flips (n > 4) will be incorporated, and their impact on the performance and the quality of

the procedure will be investigated.
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Figure 56: n-m flip (n = 5, m = 6). This example illustrates a sequence of 2-3 flips and

a final 3-2 flip to reconnect five tetrahedra surrounding an edge (ab). The result tetrahe-

dralization is one out of five possible tetrahedralizations. From left to right: Initial con-

figuration with five tetrahedra (abcd, abde, abef , abfg, abgc) surrounding an edge (ab);
connectivity after a 2-3 flip between abcd, acbg (face abc is removed and edge dg is cre-

ated); connectivity after a 2-3 flip between aebd, abef ( face abe is removed and edge df is

created); final connectivity after a 3-2 flip between abdf , abfg, abgd (edge ab is removed).

a

b

c

d

e

fg

Figure 57: Non-flippable edge ab surrounded by n = 5 tetrahedra. Face abc cannot be

removed because a 2-3 flip generates intersected tetrahedra. A recursive n-m flip attempts

to remove either edge ac or bc, thus increasing the chances to flip ab.
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4.6 BOUNDARY RECOVERY

Many applications require the preservation of a set of constraints (i.e., edges and faces)

into the grid. The constraints can represent boundaries of the domain, an interface of a

mesh partition, or other geometric features. Unfortunately, in R
3, given a set of constrained

points and faces and a corresponding triangulation obtained from a Delaunay tetrahedral-

ization of those points, there is no guarantee that the constrained edges or faces will be

contained within the Delaunay grid. Additional (Steiner) points may be necessary in or-

der to recover the constraints. The optimal locations and (minimum) number of Steiner

points is still an open problem. In general, proving the existence of a tetrahedral grid of

an arbitrary polyhedron is reported to have a non-polynomial complexity [165, 31]. Two

popular examples of polyhedra with no tetrahedralization without Steiner points are the

Schönhardt polyhedron [170] and the Chazelle’s polyhedron [30]. All the above facts

make the boundary recovery a challenging problem.

This thesis implements a boundary recovery algorithm which is inspired by state-of-

the-art software [78, 196, 179]. Our work does not provide any theoretical guarantees

for the minimum number of Steiner points. However, our boundary recovery algorithm

exhibits “ultimate” robustness; it is capable to recover closed manifold surfaces with ex-

tremely low quality or high aspect-ratio triangles, by using only few Steiner points or

without any Steiner points (Table 16).

The boundary recovery procedure includes three steps:

1. Recovery of the constrained edges (by means of edge partitioning).

2. Recovery of the constrained faces (by means of face partitioning).

3. Partition elimination.

4.6.1 RECOVERY OF THE CONSTRAINED EDGES AND FACES

This step first recovers the constrained edges and then the constrained faces. The miss-

ing constrained entities (edges/faces) are recovered in two sub-steps. In the first sub-step,

the edges/faces intersecting a constrained entity are identified. For this purpose, robust in-

tersection checks between mesh entities (i.e., edge-to-edge, face-to-face, and edge-to-face)

are implemented based on exact geometric predicates [174].

In the first sub-step, the algorithm attempts to remove as many intersecting edges/faces

as possible by using recursive n-m flips (Figure 56). In the second sub-step, the constrained
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entities that could not be recovered from the first sub-step are subdivided. A constrained

edge is subdivided with a n-2n flip (Figure 52(b)). A constrained face is subdivided with a

2-6 flip (Figure 52(a)).

The unrecovered edge or face partitions are then used as an input for the next iteration,

and the two sub-steps repeat until all constraints or their partitions are recovered. After

the completion of this step the tetrahedra located outside the recovered (partitioned or not)

boundaries are discarded.

This study balances the running time for recursive n-m flips and the number of added

points to enforce partitioning by limiting the depth of the recursion and by checking con-

figurations with a limited n (number of tetrahedra surrounding an edge). Experimental

evaluation showed that when depth = 5 and n = 10 then only few Steiner points are

inserted on the boundary within a reasonable amount of time (depending on the size and

the quality of the boundary triangulation). The algorithm can also adjust progressively

the depth and n based on the number of missing entities in each iteration. Figure 58 de-

picts an example during edge recovery. Figure 59 depicts an example after edge recovery

and face recovery is completed. Edge partitioning does not guarantee a valid initial face

partitioning. For this reason, the initial sub-faces are constructed before the face recov-

ery. A 2-dimensional triangulator for convex polygons is implemented to construct those

sub-faces (Figure 60).

4.6.2 PARTITION ELIMINATION

The edge/face partitions are removed from the boundary with the following operations:

1. For each Steiner point on the boundary:

(a) Identify the polygon formed by all the boundary faces surrounding the point.

(b) Identify the set of tetrahedra surrounding the point (ball).

(c) Remove the point and the tetrahedra in the ball.

(d) Triangulate the polygon to enforce the initial boundary edges/faces or their

partitions.

(e) Tetrahedralize the empty ball by inserting a new Steiner point inside the ball.

2. For each Steiner point in the volume:

(a) Collect all the edges surrounding the point.
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(a) i = 0 (1691) (b) i = 1 (397)

(c) i = 2 (161) (d) i = 3 (119)

(e) i = 10 (75) (f) i = 14 (9)

Figure 58: Edge recovery with 14 iterations. (a) depicts the missing edges

(red) before edge recovery. (b)-(f) depict the missing edges during edge recov-

ery. The number in the parenthesis denotes the number of missing edges at it-

eration i. The input triangulation (mohne) obtained from INRIA’s mesh database

(https://www.rocq.inria.fr/gamma/gamma/download/download.php).
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(a) (b)

Figure 59: Comparison between the input constrained triangulation (a), and the

recovered triangulation after edge/face partitioning (b). Number of input con-

strained points (green): 1261. Number of additional Steiner points (red):

181. The Steiner points will be suppressed in a subsequent partition elimination

step. The input triangulation (Mech-shell) obtained from INRIA’s mesh database

(https://www.rocq.inria.fr/gamma/gamma/download/download.php).

(a) (b)

Figure 60: Construction of an initial face partition for face recovery. (a) depicts a polygon

formed by edge partitioning. The polygon has 3 constrained vertices (red) and 3 Steiner

vertices (green). (b) depicts a valid triangulation of the polygon with 4 sub-faces.
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(b) Try to remove each edge with a n-m flip.

(c) If four edges remain after collapsing then use a 4-1 flip to remove the point.

Figure 61 depicts a ball. Figure 62 depicts an example with partition elimination.

Special care is required when a Steiner point is inserted on an edge and the edge is common

to two initial faces not in the same plane. In this case, two sub-polygons are re-triangulated,

one for each plane. Figure 62(a) depicts such a case. This work assumes a manifold surface

triangulation, so the maximum number of planes is two.

After the completion of the partition elimination, all the introduced Steiner points are

relocated inside the volume and the boundary triangulation is identical with the input

boundary triangulation. Most relocated Steiner points can be removed after collapsing

the edges surrounding a point. In practice, only a few Steiner points may remain inside the

volume.

Figure 61: A ball of tetrahedra (green) surrounding a Steiner point (red) on the boundary.

The point will be relocated inside the ball and the ball will be re-tetrahedralized. The

original faces will be enforced on the boundary.

4.6.3 EXAMPLES WITH BOUNDARY RECOVERY

The boundary recovery algorithm is evaluated on six challenging manifold triangula-

tions (Figure 63). Triangulations (a)-(d) simulate badly discretized domains as they con-

tain a high number of triangles with large and small angles. Triangulations (e)-(f) simulate

surfaces that intersect a boundary layer region as they contain high-aspect ratio triangles.

Figure 64 depicts a closer view and quality statistics for two input triangulations. In all

examples, a Delaunay tetrahedral grid is initially generated by inserting the points of the

triangulation. The boundary is then recovered.
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(a) (b)

(c) (d)

Figure 62: Partition elimination procedure. (a) depicts the boundary edge/face partitions

before elimination. Red reperesents the added Steiner points. (b)-(c) depict the boundary

edge/face partitions during elimination. (d) depict the recovered boundary after elimina-

tion.

Table 16 reports the results. CDT3D exhibits “ultimate” robustness on recovering the

boundary triangulation. In most of the cases, it successfully recovers the boundary only

with only a few Steiner points inserted in the volume. At Mech-shell case, TetGen fails

to remove one Steiner point from the boundary. At Submesh1 case, TetGen terminates

the program with segmentation fault. In practice, the input surface contains triangles with

better shape than in those six examples, although layered anisotropic triangles or few tri-

angles with small and large planar angles might still exist. In all those configurations, our

implemented algorithm recovers the boundary surface either without any additional points

or with only a few (volume) points.
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(a) Mohne (b) Anc101

(c) Thru-maze (d) Mech-shell

(e) Submesh1 (f) Nozzle

Figure 63: Triangulations for boundary recovery. (a)-(d) obtained from INRIA’s mesh

database (https://www.rocq.inria.fr/gamma/gamma/download/download.php). (e)-(f) ob-

tained from the CAVS Sims Center at MSU.
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(a) Badly shaped triangles (Mech-shell) (b) Quality histogram (Mech-shell)

(c) Layered anistropic triangles (Nozzle) (d) Quality histogram (Nozzle)

Figure 64: Detail views and planar angle histograms (in 5-deg increments) of Mech-shell

and Nozzle triangulations. The planar angle extrema are reported in each histogram.

Table 16: Evaluation results on boundary recovery. CDT3D is compared with state-of-

the-art open-source technology TetGen v1.5.0 [179]. #Stpts is the number of Steiner

points. The experiments performed on a Linux desktop machine with Intel Core i7-2600

CPU@3.40GHz, and 16 GB RAM.
Triangulation Mohne Anc101 Thru-maze Mech-shell Submesh1 Nozzle

#points 2760 1378 2781 1261 3860 9644
#edges 8340 4158 8433 3921 11574 28926
#faces 5560 2772 5622 2614 7716 19284

Software TetGen CDT3D TetGen CDT3D TetGen CDT3D TetGen CDT3D TetGen CDT3D TetGen CDT3D

#Stpts
0 0 0 0 0 0 1 0 - 0 0 0

(boundary)

#Stpts
7 2 0 0 8 5 59 28 - 0 0 0

(volume)

Time (sec) 0.18 0.29 0.08 0.11 0.11 0.09 0.18 2.6 - 0.36 0.02 0.20
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4.7 REFINEMENT

The proposed refinement algorithm is essentially a combination of Advancing Front

type point placement, direct element subdivision, and parallel multi-threaded connectivity

optimization schemes. CDT3D is inspired from state-of-the-art unstructured grid technol-

ogy AFLR (Advancing Front-Local Reconnection) [132, 131]. AFLR is directly incorpo-

rated in several systems, including: DoD CREATE-MG Capstone, Lockheed Martin/DoD

ACAD, Boeing MADCAP, MSU SolidMesh, and Altair HyperMesh.

The contributions of the proposed refinement scheme are:

1. Rapid local reconnection using parallel multi-theaded topological transformations.

Up to 2.5 and 10 times faster refinement compared to state-of-the-art software [132],

with 1 and 12 hardware cores, respectively.

2. Element quality comparable with state-of-the-art code [132]. Very low number of

slivers (typically < 0.005%, Table 18).

Details of the refinement procedure are presented in the following subsection.

4.7.1 PROCEDURE

During the refinement, new points are introduced into the grid until the grid satisfies a

desired point distribution function. New points are created with an Advancing Front type

point placement. Points are inserted by directly subdividing the tetrahedra that contain

them. Finally, the grid is reconnected in parallel with a combination of topological trans-

formations. The above operations are repeated until a complete field grid is generated with

a desired point distribution. Two objective functions are used to optimize the connectivity:

(i) Delaunay empty sphere criterion [51], and (ii) Maximization of the minimum Laplacian

edge weight [14].

Given a tetrahedral grid that contains all the surface edges/faces, the basic steps of the

procedure are outlined as follows:

1. Compute distribution function for each point on the boundary.

2. Make all tetrahedra active (i.e., eligible for reconnection).

3. While new field points are accepted:

(a) Deactivate tetrahedra that satisfy the point distribution function.
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(b) Create new field points.

(c) Insert field points.

(d) Optimize connectivity.

The details of each step are presented in the following paragraphs.

Initialize distribution function on the boundary

The average of the boundary edge lengths surrounding a point is used for the initial

distribution function. The point distribution is used to control the field point spacing.

The final field point spacing is compatible with the boundary and varies smoothly between

boundaries. The growth of field spacing is controlled with the distribution function weight-

ing factor cdfm ∈ [0, 1]. A value cdfm > 0 reduces the growth of element size from small

to larger elements and increases the total number of grid points generated. Examples of

grids generated for varied cdfm are presented in the next section.

Element activation

A set of faces, called front, is maintained throughout the grid generation process. The

front may contain boundary faces of active tetrahedra and faces between active and inactive

tetrahedra. Initially all tetrahedra are marked as active, hence the front is the boundary

triangulation.

Element deactivation

An element becomes inactive if: (i) the length of each edge is less than cdff ∈ [1.1, 3]

times the average distribution function of the edge points, and (ii) its maximum dihe-

dral angle is less than angmax ∈ [120, 179.99]. The default values are cdff = 1.5 and

angmax = 150.

Point creation

New candidate field points are created by advancing from selected faces of the front

(Figure 65). A new candidate point is created by advancing in a direction normal to the

selected face a distance that would produce an equilateral element based on an appropriate

length scale. The average of the point distribution function on the face points is used as

a length scale. To improve the grid quality, the length scale is limited to be less than
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cdfr ∈ [1, 3] times the average length of the face edges. The default value is cdfr =

1.1. Candidate points advancing from two selected faces of the front can be averaged to

improve element quality in regions near boundary discontinuities. A new candidate point

is rejected if at least one criterion from the following is true:

1. The candidate point is outside the boundary or on the boundary.

2. The candidate point is too close to the boundary.

3. The candidate point is too close to the containing tetrahedron points.

4. The candidate point is too close to an other candidate point in the containing tetra-

hedron or an other candidate point in the tetrahedra immediately attached to the

containing tetrahedron.

CDT3D implements a stochastic walk algorithm [52] with robust geometric predi-

cates [174] to locate the candidate point. If the candidate point is located on a face, then the

containing tetrahedron is the set of two tetrahedra sharing this face. If the candidate point

is located on an edge, then the containing tetrahedron is the set of all tetrahedra sharing

this edge. Once the containing element is found, the point distribution function is linearly

interpolated from the distribution function at the containing tetrahedron points.

The distance between candidate points or between a candidate point and an existing

point is not allowed to be less than cdfn ∈ (0.1, 2] times the larger of the distribution

function for the candidate point or for the other point being checked. The default value is

cdfn = 0.7 The distance between a candidate point and its projection to the closest bound-

ary face is not allowed to be less than cdfn times the larger of the distribution function for

the candidate point or for the average distribution function of the points on the boundary

face being checked. The grid refinement completes when no new candidate field points

are created or accepted. Figure 66 depicts an example of accepted candidate points at the

first refinement pass.

Point insertion

Points are inserted into the grid by directly subdividing the tetrahedra that contain them

(Figure 67). Points located inside a tetrahedron are inserted into the grid using a 1-4 flip

(Figure 51(a)). Points located on an interior face are inserted into the grid using a 2-6 flip

(Figure 52(a)). Points located on an interior edge are inserted into the grid using a n-2n

flip (Figure 52(b)).
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front

Figure 65: Advancing Front type point placement. Candidate points advancing from two

selected faces of the front can be averaged to improve element quality.

Figure 66: Accepted candidate points (red) generated at the first refinement pass with an

Advancing Front type point placement.
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After each insertion, the containing element is subdivided, hence the next candidate

point needs to locate again. Finding a suitable tetrahedron to start the search for point

location can be time-consuming. Similar to the Delaunay point insertion (subsection 4.4),

locality is guaranteed during the insertion of the field points, and the running time is sig-

nificantly reduced. Specifically, each tetrahedron stores a list of all the accepted candidate

points contained in it. The points in each list are inserted consecutively into the grid, and

the most recently created tetrahedron is selected to be used as the starting element for the

next point location. If during insertion a point is located on a face or on an edge, then two

or more lists are merged, respectively (Figure 67).

This insertion process is suitable for parallelization. The list of points can be inserted

concurrently without synchronization between threads given that lists belonging to adja-

cent tetrahedra do not contain points located on a face or an edge of the grid.

If the inserted point is located too close to an interior edge or an interior face, then the

point may be inserted as it was located exactly on the edge or the face, respectively, in

order to improve the quality of the new elements.
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Figure 67: Direct point insertion. acbd contains the blue generated points, and abce con-

tains the red generated points (two red points are located on face abc). (a) depicts the grid

connectivity before the points are inserted. (b) depicts the grid connectivity after inserting

point f using a 1-4 flip (abce is replaced by afcb, efab, cfeb, aecf ). The last created

tetrahedron (aecf) is used as start tetrahedron to locate the next inserted point. (c) depicts

the grid connectivity after inserting point g. g is located on a face thus a 2-6 flip is used

(abcd, and afcb are replaced by six new tetrahedra). After inserting g, the blue and the red

point sets are merged (green).
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Connectivity optimization

Obviously the connectivity created with direct element subdivision is not acceptable.

Our procedure uses combinations of local topological transformations to improve the grid

connectivity. The topological transformations are applied repetitively in order to produce

a global effect. Two quality criteria are used to improve the connectivity: (i) Delaunay

type (Figure 68(a)) [51] and (ii) Min-Max type (maximization of the minimum Laplacian

edge weight, Figure 68(b)) [14].

a

b

c

d

e

(a) In-sphere test

aaa

bbb

ccc

ddd

eee

fff

nbcd

nadc

WA WB WC

(b) Maximization of the minimum Laplacian edge weight

Figure 68: Quality criteria for reconnection. The grid is reconnected with a Delau-

nay type criterion (a) followed by a Min-Max type criterion (b). In (a), five points

are reconnected (using a 2-3 flip) only if d is inside the circumsphere of acbe. In

(b), six points are reconnected with a configuration that maximizes a Laplacian edge

weight W = max(WA,WB,WC). The laplacian weight is obtained for a given tetra-

hedron edge from the negative value of the inner product of the two area vectors com-

mon to the opposite edge divided by the volume [14]. For edge ab is: WA = Wab =

−
(

nbcd·nadc

Vabcd
+ nbde·naed

Vabde
+

nbef ·nafe

Vabef
+

nacf ·nbfc

Vabfc

)

In each refinement iteration, the grid is optimized in two passes. In each pass, tetra-

hedra are reconnected until no new reconnections are possible. In the first pass the grid

is reconnected with a Delaunay type criterion. In the second pass, the grid is reconnected

with a Min-Max type criterion. The combined criterion eliminates most field sliver ele-

ments and produces a grid with quality superior to that of a grid generated using only a

Delaunay criterion. The grid is reconnected throughout the entire generation process to

obtain a maximum quality [132].

Figure 69 depicts the reconnection scheme. Active tetrahedra are eligible to reconnect

with a neighbor. The neighbor can be either active or inactive. After reconnection, new
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(a) 2-3 flip. Face abd is removed and edge cg is created.
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(b) 3-2 flip. Edge ab is removed and face cfd is created.
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(c) 4-4 flip. Edge ab is replaced by edge fd or cg.

Figure 69: Local reconnection scheme. In (a) and (b), the left figure depicts the topology

before reconnection, and the right figure depicts the topology after reconnection. In (c),

the left figure depicts the topology before reconnection, and the middle and right figures

depict the two candidate topologies after reconnection. Initially, the active element (left

with grey) is attempted to reconnect with a neighbor by using a 2-3 flip (a). If a 2-3 flip is

not possible, then the tetrahedra surrounding an edge on the shared face between the active

element and the neighbor are checked for reconnection. Three tetrahedra are reconnected

using a 3-2 flip (b). Four tetrahedra are reconnected using a 4-4 flip (c). New tetrahedra

are made active after reconnection. Red indicates an edge which is removed or a newly

created edge.
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tetrahedra are activated and then considered for reconnection during the next traversal of

the element list.

4.8 PARALLEL CONNECTIVITY OPTIMIZATION

Local reconnection with topological transformations has proven very effective for grid

optimization [132, 73, 77, 97, 178]. Nevertheless, it can be the bottleneck for the perfor-

mance of the grid generation. The experimental evaluation of this study indicates that the

proposed sequential reconnection scheme accounts for about 80% of the total refinement

time. For this reason, this thesis implements a new parallel optimistic approach to signif-

icantly reduce the overheads. To the best of our knowledge, CDT3D is the first software

that optimizes the connectivity using parallel tightly-coupled topological transformations

throughout the grid generation (including a post-improvement step).

4.8.1 PARALLEL PROCEDURE

The connectivity is optimized using tightly-coupled topological transformations. The

parallelization is based on:

1. Over-decomposition.

2. Thread safe operations.

3. Load balancing.

Details of the procedure are presented in the following paragraphs.

Over-decomposition

Before the reconnection, the active elements are decomposed into work-units (buckets).

The granularity (grain size) of the decomposition is adjusted with parameter nbuckets ∈

[nthreads, nactelem], where nthreads and nactelem are the number of threads and the

number of active elements, respectively. After decomposition, each bucket contains ap-

proximately the same number of elements (nactelem/nbuckets), and each thread owns

approximately the same number of buckets (nbuckets/nthreads).

Optionally, the active elements are pre-sorted for an initial load-balanced distibution

of local operations [171]. Figure 70 depicts a decomposition of a tetrahedral grid of a

nozzle with and without element pre-sorting. Element pre-sorting potentially reduces the
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conflicts between polyhedra whose vertices are attempting to reconnect concurrently. Nev-

ertheless, pre-sorting is not sufficient for balancing the work load throughout the parallel

procedure because: (i) the number of geometrically valid transformations (i.e., those pro-

ducing non-intersecting elements), and (ii) the number of optimum transformations (i.e.,

those optimizing the objective function), are not known a priori and may vary significantly

among the threads. This thesis implements a customized load balancer to migrate work-

units from a busy thread to threads without work (waiting threads), thereby exploiting

more parallelism. Subsection 4.10.5 reports results on the performance of the parallel re-

connection for varied granularities. Subsection 4.10.7 reports results on the performance

of the parallel reconnection with and without element sorting.

(a) With element pre-sorting (b) Without element pre-sorting

Figure 70: Decomposition of a tetrahedral grid of a nozzle into 4 buckets with and without

element pre-sorting. The centroids of the elements are sorted using a Biased Randomized

Insertion Order (BRIO) [2] and a Hilbert curve [22]. Pre-sorting can potentially speedup

the reconnection because it reduces the conflicts between polyhedra whose vertices are

attempting to reconnect concurrently.

Thread safe operations

Each thread maintains a unique list of buckets throughout the reconnection. Each

thread processes the buckets in a consecutive manner. The elements within each bucket

are repetitively reconnected until no new reconnections are possible. Atomic operations

are employed to avoid data races when more than one threads attempt to reconnect con-

currently the same set of elements. The value of the atomic object (i.e., a vertex id) re-

mains unchanged throughout the topological transformation (i.e., orientation test, quality

test, and element creations or removals). If a reconnection is not possible because of
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conflicts with other threads, the operation is cancelled and the next available neighbor of

the active element is checked for reconnection. If reconnection is not possible without

any conflicts (i.e., the reconnection produces invalid elements or the objective function is

not optimized), then the neighbor is marked to avoid re-checking. GCC’s atomic built-in

functions are utilized for synchronization since they perform faster than the conventional

pthread try locks [70].

To avoid communication when elements are inserted in a bucket, the newly created

elements are inserted into the bucket of the thread that performs the reconnection. The old

elements are removed from a bucket only if this bucket belongs to the thread that performs

the reconnection; otherwise the element is marked as invalid, and the thread that owns the

bucket removes it in a later step.

Load balancing

This study implements a customized load balancer based on work-stealing [21]. The

load balancer migrates work units between the threads. When a thread Ti has finished

processing its own list of buckets, it pushes its id into a global list (Waiting List) that tracks

down threads without work. Then Ti waits for other threads to advance without blocking

and can be awakened by an other thread Tj right after Tj gives some work to Ti. Every time

a running thread Tj completes the processing of one bucket, it checks if the Waiting List

contains any threads. If Waiting List is empty, then Tj continues to the processing of the

next bucket. If Waiting List contains threads, then Tj transfers a fraction of its unprocessed

buckets to those threads. Parameter frbtransf ∈ (0, 1] adjusts the fraction of work to

be transferred. A typical value is 30% but different values can be used for more or less

aggressive behaviour. Subsection 4.10.5 reports results on the performance of the parallel

reconnection for varied fractions. The work to be transferred between a pair of threads

Ti, and Tj can be reduced after each transfer with the coefficient cbtransf ∈ (0, 1]. The

default value is 1.

The amount of work (i.e., number of buckets) to be transferred from Ti to Tj is:

WTi→Tj
=

(

cbtransfTi→Tj

)countTi→Tj · frbtransf ·WTi,free (8)

where countTi→Tj
is the number of transfers from Ti to Tj and WTi,free the unprocessed

number of buckets in Ti. Figure 71 illustrates an example with load balancing.

4.9 QUALITY IMPROVEMENT
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1 2 3 4 5 6 7 8

T1 T2 T3

Figure 71: Load balancing with three running threads in eight time steps. Gray indicates

the work-units (buckets) currently processed in each time step. White indicates the work-

units that have not been processed yet, in each time step. Solid red indicates the work-units

to be transferred from a busy thread. Stroke red indicates the work-units to be received by

a waiting thread. At step 1, each thread owns seven work-units and T2 is on a waiting state.

At step 2, T2 is awakened by T1 after T1 transfers two work-units to T2. At step 3, T3 is on

a waiting state. At step 4, one work-unit is transferred from T1 to T3. At step 5, all threads

are busy. At step 6, one work-unit is transferred again from T1 to T3. At step 7, all threads

are busy. At step 8, all threads have completed the processing of all work-units.

Unstructured grids contain elements whose shape vary significantly. The problem is

more severe in 3-dimensions because tetrahedra can be distorted in more ways compared

to triangles in 2-dimensions. The shape of the elements is critical for the accuracy and the

convergence of a finite element solution. For example, elements with large dihedral angles

tend to increase the discretization error in the solution [8]. On the other hand, elements

with small dihedral angles are bad for matrix conditioning but not for interpolation or

discretization [74, 173].

Grid generation is followed by a quality improvement step to ensure that the shape of

the elements meets the requirements of a specific application. For example, a structural

analysis typically requires isotropic elements with shape as close as possible to the regular,

i.e., without too small or too large dihedral angles (Figure 72(a)). On the other hand,

a computational fluid dynamics analysis for viscous flow requires anisotropic elements

stretched in a direction normal to viscous surfaces [14, 131] (Figure 72(b)). This thesis is

concerned with isotropic grid generation, thus the grid is improved so that the shape of the

elements is as close as possible to regular (Figure 72(a)).
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A flat tetrahedron whose vertices are almost coplanar is not suitable for some finite

element applications. This tetrahedron is called sliver (Figure 72(c)). A sliver may have

good planar angles, but it has four small and two large dihedral angles. Figures 72(d)-

72(f) depict other types of badly shaped tetrahedra [33]. The wedge has one small dihedral

angle, the spade has two small and two large dihedral angles, and the cap has three small

and three large dihedral angles. Figure 73 depicts the badly shaped elements within a

isotropic tetrahedral grid without quality improvement.

(a) Good isotropic (b) Anistropic (c) Sliver

(d) Wedge (e) Spade (f) Cap

Figure 72: Few possible shapes of a tetrahedron element. (b)-(f) depict tetrahedra with a

small or a large dihedral angle.

4.9.1 PROCEDURE

The proposed procedure improves the grid by using:

1. Parallel connectivity optimization with combination of topological transformations.

2. Centroid average or optimal point placement smoothing.

3. Removal of isolated slivers with heuristics.

The grid is improved in nqual ∈ [1, 10] passes. The default value is nqual = 3. Before

the first pass, all elements are made active. In each pass, the three operations above are

performed. At the beggining of each pass, elements that satisfy a maximum dihedral angle

bound angqual ∈ [70◦, 180◦] are deactivated. The default bound is angqual = 120◦.
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(a) (b)

Figure 73: Tetrahedral grid of a sphere without quality improvement. The grid contains

352 bad shape elements (shown in red) (a). Each bad shape element has a dihedral angle

smaller than 2◦ or larger than 178◦. (b) depicts the element dihedral angle distribution (in

5-deg increments) of the grid and the angle extrema. CDT3D incorporates effective quality

improvement techniques that remove the bad shape elements.

Reconnection is attempted only on those elements that do not satisfy the angle bound. The

parallel reconnection is presented in subsection 4.8. The smoothing and the removal of

isolated slivers is presented in the following paragraphs.

4.9.2 SMOOTHING

Two approaches are implemented to relocate the vertices of the grid: (i) Laplacian-

type [69, 132], and (ii) Optimal point placement [1, 132]. Optimal point placement is the

default method.

Laplacian-type

The Laplacian-type smoothing repositions each point to an average centroid computed

from the tetrahedra surrounding the point (Figure 74(a)):

P ′ = P + c

[∑n

i=1
(Ei − P )

n

]

(9)

where P and P ′ is the point coordinate vector before and after reposition, respectively, c

is the smoothing coefficient, n is the number of elements surrounding P , and Ei is the

centroid coordinate vector of an element incident on P . A smoothing coefficient of 0.5
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is used for all interior points, 0.25 for all points adjacent to boundaries, and zero for all

boundary points.

a

b

c

d

e

f
g

(a) Centroid average

P

n

a

b

c

d

e

f
g

Ebfe

P ′

(b) Optimal placement

Figure 74: Point smoothing. P and P ′ are the point coordinate vectors before and after

reposition, respectively. P ′ is the average of the centroids of the tetrahedrons surround-

ing P (a), or the average of the optimal placements advancing from the boundary faces

of a polyhedron formed by the tetrahedrons surrounding P (b). All boundary faces of

the polyhedron are visible from P because the point is interior and a valid grid is main-

tained throughout the grid generation. For simplicity, (b) depicts one optimal position Ebfe

advancing from face bfe.

Optimal point placement

This approach repositions each point to the average of n optimal positions, where n

is the number of boundary faces of a polyhedron formed by the tetrahedra surrounding

the point (Figure 74(b)). P ′ is calculated from (9), where Ei is the coordinate vector

of an optimal position advancing from boundary face i. The coordinate vector Ebfe in

Figure 74(b) is:

Ebfe = Cbfe +

√

2

3
·
~n

|~n|
·
1

3

(

| ~bf |+ | ~fe|+ |~eb|
)

(10)

where Cbfe and ~n is the centroid and the normal of face bfe, respectively.
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Two iterations are performed for the selected smoothing method. If smoothing creates

inverted elements, the coefficient c is scaled with 0.5 and smoothing is attempted again.

4.9.3 SLIVER REMOVAL WITH HEURISTICS

Direct sliver removal

Isolated sliver elements with two faces on the boundary surface are directly removed

(Figure 75). The sliver should have at least one dihedral angle greater than angdbs ∈

[120◦, 180◦]. The default value is angdbs = 160◦. Direct removal does not preserve the

boundary connectivity, thus it is not suitable for applications which require fixed bound-

aries. This option is activated with the boundary sliver deletion flag mdbs.

(a) Before removal (b) After removal

Figure 75: Direct removal of an isolated sliver element with two boundary faces.

Sliver removal by point insertion and local reconnection

This approach inserts a new point inside a polyhedron near the sliver and locally recon-

nects the polyhedron to form high quality elements (Figure 76). An element is considered

as a field sliver if it has at least one dihedral angle greater than angdfs ∈ [120◦, 180◦].

The default value is angdfs = 165◦. This option is activated with the quality field sliver

deletion flag mdfs.

If all the faces of the sliver are interior (Figure 76(a)), the method computes three candi-

date configurations (Figures 76(b)-76(d)). Otherwise the method computes one candidate

configuration. The configuration that minimizes the maximum dihedral angle is selected.

The polyhedron in the 1st and 2nd configuration contains all the tetrahedra surrounding

an edge of the sliver with a dihedral angle larger than angdfs (Figures 76(b),76(c)). The

polyhedron in the 3rd configuration is the union of the polyhedrons of the other two con-

figurations (Figure 76(d)).
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A new point is inserted at the centroid of the polyhedron. The point is connected with

the points on the boundary of the polyhedron. If the reconnection is not geometrically

valid, then the point is inserted at the centroid of the sliver. If the reconnection is still

not geometrically valid, then the operation is postponed until the next quality improve-

ment pass. If reconnection is geometrically valid but creates new slivers (tetrahedra with

dihedral angle greater than angdfs), the point coordinates are smoothed using the meth-

ods described in subsection 4.9.2. If smoothing does not satisfy the quality bounds, the

insertion is postponed until the next improvement pass. In general, the removal of a sliver

element cannot be guaranteed. In practice, given a surface grid of a reasonable good shape

triangles, the combination of smoothing, local reconnection, and point insertion eliminates

all slivers within three improvement passes.

(a) Sliver (b) 1st configuration

(c) 2nd configuration (d) 3rd configuration

Figure 76: Configurations to remove isolated slivers with point insertion and local recon-

nection. (a) depicts a sliver inside the domain. The 1st and the 2nd configuration contain

the tetrahedra (including the sliver) surrounding an edge of the sliver with a dihedral angle

larger than angdfs. The 3rd configuration is the union of the 1st and the 2nd configuration.

The configuration which maximizes the quality after point insertion and reconnection is

selected. The new point is attempted to insert at the centroid of the polyhedron and recon-

nect with the boundary points of the polyhedron. Alternatively, the point can be inserted

at the centroid of the sliver or it can be smoothened to satisfy quality bounds.
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4.10 EVALUATION RESULTS

This thesis conducts an extensive evaluation on quality, execution time and scalabil-

ity of the proposed algorithm. The evaluation is performed on geometries pertinent to

aerospace applications.

4.10.1 FIELD POINT SPACING

CDT3D adopts a distribution function weighting factor cdfm to control the field point

spacing [132]. Increasing cdfm above zero will generally reduce the growth of spacing

from small to larger tetrahedra and increase the total number of grid points generated.

Two experiments are conducted with various weighting factors to demonstrate the element

growth rate. The first experiment is conducted on a sphere (Figure 77) and the second on

two blades with merging wakes and symmetry plane inside a field (Figure 78). Note that

the wake region in Figure 78(a) is used only to control the field point spacing. The input

surface grids obtained from the CAVS Sims Center at MSU. Figures 79 and 80 depict the

quality histograms of the volume grids. All tetrahedral grids are of high quality.

The distribution function is initially computed from the average of the boundary edge

lengths surrounding a boundary point. CDT3D employs a maximum distribution function

dfmax to limit the point spacing in the field [132]. If dfmax < 0 then the distribution

function is not limited. If dfmax = 0 then the distribution function is limited to the

maximum value determined from the boundary surface grid. If dfmax > 0 then the

distribution function is limited to dfmax. Figure 81 depicts volume grids generated for

varied dfmax. The surface grid obtained from the CAVS Sims Center at MSU. A limited

distribution function can produce a uniform fild point spacing (Figures 81(c) and 81(d)).
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(a) Input surface (b) cdfm : 0; #tets : 57K

(c) cdfm : 0.2; #tets : 58K (d) cdfm : 0.6; #tets : 129K

(e) cdfm : 0.8; #tets : 854K (f) cdfm : 0.9; #tets : 7.68M

Figure 77: Cuts of tetrahedral grids of a sphere generated for varied cdfm ∈ [0, 1]. Blue

corresponds to larger values of the distribution function. Red corresponds to smaller values

of the distribution function.
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(a) Input surface (b) Distribution function on the boundary

(c) cdfm : 0; #tets : 806K (d) cdfm : 0.1; #tets : 1.41M

(e) cdfm : 0.2; #tets : 4.97M (f) cdfm : 0.3; #tets : 16.54M

Figure 78: Cuts of tetrahedral grids of two blades with merging wakes and a symme-

try plane enclosed in an outer boundary generated for varied cdfm ∈ [0, 1] (shown in

(c)-(f)). The input surface is depicted in (a)-(b). The wake region is modeled as an embed-

ded/transparent delete surface.
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Figure 79: Element angle distribution (in 5-deg increments) of grids of sphere, for varied

cdfm. The dihedral angle extrema and the element count are reported for each grid.

Figure 80: Element angle distribution (in 5-deg increments) of grids of two blades with

merging wakes and a symmetry plane enclosed in an outer boundary, for varied cdfm. The

dihedral angle extrema and the element count are reported for each grid.
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(a) dfmax : 0; #tets : 75K (b) dfmax : 0.1; #tets : 59K

(c) dfmax : 0.05; #tets : 806K (d) dfmax : 0.03; #tets : 3.84M

Figure 81: Cuts of tetrahedral grids of a nozzle geometry (Figure 63(f)) generated for

varied dfmax ∈ [−1, 1e+ 19].

4.10.2 COMPARISON WITH AFLR

CDT3D is compared with state-of-the-art unstructured grid technology AFLR

v16.9 [132, 131]. AFLR is directly incorporated in several systems, including:

DoD CREATE-MG Capstone, Lockheed Martin/DoD ACAD, Boeing MADCAP, MSU

SolidMesh, and Altair HyperMesh. CDT3D and AFLR have a handful of options for qual-

ity grid generation and optimization. Only a few basic options of these codes are tested,

hence these comparisons are far from comprehensive. The comparison is performed on

three realistic aerospace configurations:
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1. An aircraft nacelle with engine inside a section of wind tunnel (Figure 82).

2. A rocket with engine, nozzle, and transparent internal data surfaces inside a flow

field (Figure 83).

3. A launch vehicle with solid boosters inside a flow field (Lv2b) (Figure 84).

The surface grids of the geometries obtained from CAVS Sims Center at MSU in .surf

format. Tetrahedral grids are attempted to generate using TetGen v1.5.0 [179] but TetGen

failed to preserve the input surfaces into the volume grids. Therefore, TetGen’s results are

omitted.

Figure 82: Surface grid of an aircraft nacelle with engine inside a section of wind tunnel.

#points: 27184; #triangles: 54360.

Figure 83: Surface grid of a rocket with engine, nozzle and transparent internal data sur-

faces inside flow field. #points: 20228; #triangles: 40448.

Table 17 lists the parameters for the evaluation. cdfm controls the growth of element

size from small to larger elements (it is adjusted so that the two codes will generate ap-

proximately the same number of elements); cdfn is the nearby point factor; mrecm is the

local-reconnection flag; mrecm : 2 uses a combined Delaunay and Min-Max type crite-

rion for local reconnection; nqual is the number of quality improvement passes; csmth

is the smoothing coefficient; msmth : 1 uses an optimal point placement for smoothing;

nsmth is the number of smoothing iterations; angdfs is the quality field sliver dihedral
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Figure 84: Surface grid of a launch vehicle with solid boosters inside flow field (Lv2b).

#points: 42020; #triangles: 84024.

angle threshold; angqual is the final quality dihedral element angle threshold; mdbs : 0

prevents the reconnection of boundary surface triangles during sliver deletion; nthreads

is the number of the threads for parallel reconnection (only CDT3D); nbuckets is the

granularity of the decomposition (only CDT3D); frbtransf is the fraction of work which

is transferred among threads to balance the work load (only CDT3D); cbtransf is a co-

efficient to reduce the amount of work which is transferred between two threads (only

CDT3D); mrecrbf : 0 turns off the reconnection of boundary surface faces to preserve the

boundary connectivity (only AFLR).

Table 17: Parameters for unstructured grid generation. Additional parameters only

for CDT3D: nthreads : 12 (parallel); nthreads : 1 (sequential); nbuckets : 240;

frbtransf : 0.3; cbtransf : 1.0. Additional parameters only for AFLR: mrecrbf : 0.

Appendix B.3 lists the CDT3D parameters.

Geometry Software
Refinement Improvement

cdfm cdfn mrecm nqual csmth msmth nsmth angdfs angqual mdbs

Nacelle
CDT3D 0.291

0.7 2 3 0.5 1 2 165◦ 120◦ 0

AFLR 0.50

Rocket
CDT3D 0.20
AFLR 0.60

Lv2b
CDT3D 0.234
AFLR 0.30

Table 18 presents the results. This study uses the dihedral angle as a metric to evaluate

the element quality. The dihedral angle is determined from the normalized inner product

of the two face area vectors for the two element faces with a common element edge. Both
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Table 18: Evaluation results on unstructured grid generation. CDT3D is compared with

state-of-the-art technology AFLR v16.9.19 [132]. CDT3D’s runs are performed with 1

and 12 hardware cores. AFLR is a sequential code. Table 17 lists the parameters of the

evaluation. The sliver elements have a dihedral angle smaller than 2◦ or larger than 178◦.
Initial grid includes Delaunay tetrahedralization and Boundary Recovery. The I/O time

is not included. The experiments performed on a DELL workstation with Linux Ubuntu

12.10, 12 cores Intel(R) Xeon(R) CPU X5690@3.47 GHz, and 96 GB RAM.

Case Software #Cores

%Slivers #Tets Min/Max Angle Time

(w/o improv.) (w/ improv.) (w/ improv.) Initial Grid Refinement Improvement Total

(×10−3) (M) (deg) (sec) (min) (min) (min)

Nacelle
CDT3D

1 3.74 43.65 13.57◦/153.44◦ 1.36 20.01 14.30 34.33
12 3.70 42.85 12.06◦/159.52◦ 1.36 5.02 18.59 23.64

AFLR 1 2.97 43.16 7.00◦/164.86◦ 5.63 22.59 6.40 29.09

Rocket
CDT3D

1 2.96 118.41 9.39◦/159.30◦ 1.58 52.85 64.56 117.44
12 2.95 119.06 9.21◦/158.33◦ 1.58 14.51 68.23 82.76

AFLR 1 3.05 123.13 5.58◦/164.75◦ 6.76 131.89 25.41 157.42

Lv2b
CDT3D

1 5.09 98.21 6.60◦/159.68◦ 5.45 41.57 94.63 136.29
12 4.69 113.99 8.24◦/158.59◦ 5.45 12.92 62.36 75.37

AFLR 1 3.49 104.10 6.84◦/164.88◦ 16.97 98.24 18.51 117.03

methods generate grids of good quality elements. CDT3D exhibits a higher quality com-

pared to AFLR in both the sequential and the parallel runs. CDT3D eliminates all elements

whose dihedral angles are smaller than 6.60◦ or larger than 159.68◦. The corresponding

values for AFLR are 5.58◦ and 164.86◦, respectively (Table 18).

Figures 85, 86, 87, and 88 depict cuts of the grids. Figures 89 and 90 depict the

element angle distribution. For a more comprehensive comparison, Figure 89 compares the

element angle distribution before and after a quality improvement step. At the completion

of the refinement a small percentage of sliver elements may survive (< 0.003%). CDT3D

incorporates effective quality improvement techniques to eliminate the sliver elements.

Figure 91 depicts the low quality elements after the completion of the refinement of the

aircraft nacelle.

CDT3D completes the end-to-end grid generation (including initial grid construction,

refinement, and improvement) up to 1.90 times faster than AFLR, when 12 hardware cores

are utilized (Table 18). Most notably, CDT3D refines the grids up to 2.5 and 10 times

faster compared to AFLR, when 1 and 12 hardware cores are utilized, respectively. On the

other hand, AFLR exhibits very good performance at the improvement step but the grids

are of a lower quality compared to CDT3D. Both methods complete the construction of the

initial grid (i.e., Delaunay tetrahedralization and boundary recovery) at a negligible cost

(less than 1% of the total generation time).
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Figures 92-93 depict the number of topological transformations for the sequential op-

timization of Lv2b grid using a combined criterion (Table 18). In each refinement pass,

the connectivity is optimized in two phases. In the first phase reconnection is performed

with a Delaunay in-sphere criterion (Figure 92). In the second phase reconnection is per-

formed with a Min-Max type criterion (Figure 93). The first phase requires higher iteration

counts compared to the second phase. This is because the Delaunay criterion improves dra-

matically the distribution of dihedral angles after direct point insertion, at the expense of

degrading the extremal angles. The Min-Max criterion follows to improve the extremal

angles.

(a) CDT3D: 42.85 M tetrahedra (b) AFLR: 39.64 M tetrahedra

Figure 85: Tetrahedral field cuts of the aircraft nacelle.

Figure 86: Detrail views of tetrahedral field cuts of aircraft nacelle generated with CDT3D.
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(a) CDT3D: 119.06 M tetrahedra (b) AFLR: 127.68 M tetrahedra

(c) Detail view of (a) (d) Detail view of (a)

Figure 87: Tetrahedral field cuts of the rocket.

(a) CDT3D: 110.01 M tetrahedra (b) AFLR: 100.92 M tetrahedra

(c) Detail view of (a) (d) Detail view of (a)

Figure 88: Tetrahedral field cuts of the Lv2b.
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(a) w/o improvement (b) w/ improvement

Figure 89: Element angle distribution (in 5-deg increments) of aircraft nacelle grids. The

dihedral angle extrema are reported for each method.

(a) Rocket (w/ improvement) (b) Lv2b (w/ improvement)

Figure 90: Element angle distribution (in 5-deg increments) after improvement of Rocket

and Lv2b grids. The dihedral angle extrema are reported for each method.

(a) CDT3D: 1590 slivers (0.0037%) out of total

42.91 M tetrahedra

(b) AFLR: 1287 slivers (0.0029%) out of total 43.23

M tetrahedra

Figure 91: Slivers after the completion of refinement of the aircraft nacelle. Red represents

elements whose minimum dihedral angle is smaller than 2◦ or larger than 178◦.
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(a) All refinement passes (162)

(b) Passes 1-40 (c) Passes 41-80

(d) Passes 81-120 (e) Passes 121-162

Figure 92: Number of topological transformations for connectivity optimization of Lv2b

grid (Table 18) using a Delaunay criterion. Each line illustrates a refinement pass. The

refinement completes in 162 passes.
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(a) All refinement passes (162)

(b) Passes 1-40 (c) Passes 41-80

(d) Passes 81-120 (e) Passes 120-162

Figure 93: Number of topological transformations for connectivity optimization of Lv2b

grid (Table 18) using a Min-Max type criterion that follows a Delaunay criterion. Each

line illustrates a refinement pass. The refinement completes in 162 passes.
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4.10.3 RESULTS FOR VARIED QUALITY CRITERIA AND TRANSFORMA-

TIONS

CDT3D optimizes the connectivity by using either a single quality criterion (i.e., De-

launay) or a combined quality criterion (i.e., Delaunay + Min-Max). In the former case, the

grid is repetitively reconnected in one pass using combinations of 2-3, and 3-2 flips. In the

latter case, the grid is repetitively reconnected in two passes using either combinations of

2-3 and 3-2 flips, or combinations of 2-3, 3-2, and 4-4 flips. The improvement step adopts

a combined criterion and combinations of 2-3, 3-2, and 4-4 flips to obtain a maximum

quality. Table 19 reports performance results for varied quality criteria and topological

transformations.

Table 19: Performance results for the grid generation of the Lv2b geometry, for varied

quality criteria and topological transformations. Delaunay: In-sphere criterion; Min-Max:

maximization of the minimum Laplacian edge weight. 2-3, 3-2, and 4-4 are flip types.

Parameters: cdfn : 0.7; nqual : 3; nsmth : 2; nthreads : 12; nbuckets : 240;

frbtransf : 0.3; cbtransf : 1.0. Parameters only for Delaunay (2-3, 3-2): cdfm : 0.23;

mrecm : 1. Parameters only for Delaunay (2-3, 3-2, 4-4): cdfm : 0.23; mrecm : 2. Pa-

rameters only for Delaunay + Min-Max (2-3, 3-2, 4-4): cdfm : 0.8; mrecm : 2; mrec4 : 1.

The experiments performed on a DELL workstation with Linux Ubuntu 12.10, 12 hard-

ware cores Intel(R) Xeon(R) CPU X5690@3.47 GHz, and 96 GB RAM

Criteria

Refinement Improvement Total

#Tets #Slivers Time #Tets #Slivers Min/Max Time Time

(M) (< 2◦ or > 178◦) (min) (M) (< 2◦ or > 178◦) Dihedral Angle (min) (min)

Delaunay
84.18 82138 16.15 79.47 106 2.2e-4◦/179.99◦ 149.70 165.85

(2-3, 3-2)

Delaunay+Min-Max
86.24 4236 9.62 86.12 0 4.74◦/163.17◦ 88.09 97.71

(2-3, 3-2)

Delaunay+Min-Max
78.97 62 20.19 78.95 0 12.78◦/161.90◦ 84.39 104.58

(2-3, 3-2, 4-4)

The combined criterion produces a grid with quality superior to that of a grid generated

using a single criterion. Specifically, a combined criterion with combinations of 2-3, 3-2,

and 4-4 flips produces 1324 times fewer slivers at the end of refinement (without improve-

ment) compared to a single criterion with combinations of 2-3 and 3-2 flips. The additional

timing cost to achieve this is about 25% (Table 19).

Figure 94 depicts the generated slivers after the completion of the refinement. The im-

prover takes longer to optimize the grid when a single criterion for refinement is employed,

and eventually 106 slivers survive (Table 19). The end-to-end generation time (including

improvement) reduces by about 37% and 41% when a combined criterion with 2-3, 3-2,

and 4-4 flips or 2-3 and 3-2 flips is used, respectively, compared to a single criterion. The
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(a) Delaunay (2-3, 3-2) (b) Del. + Min-Max (2-3, 3-2) (c) Del. + Min-Max (2-3, 3-2, 4-4)

Figure 94: Slivers after the completion of refinement for varied quality criteria and trans-

formations (Table 19). (a): 82138 slivers (0.097%) out of total 84.18 M tetrahedra; (b):

4236 slivers (0.0049%) out of total 86.24 M tetrahedra; (c): 62 slivers (7.8e-5%) out of

total 78.97 M tetrahedra. Red signifies the slivers with a dihedral angle smaller than 2◦ or

larger than 178◦.

reason is the higher cost for grid improvement in the latter case. Figure 95 compares the

quality histograms of the grids.

Figure 96 depicts a breakdown of the timing performance of the components at the

refinement and the improvement step. Parallel reconnection with a combined criterion and

combinations of 2-3, 3-2, and 4-4 flips takes 2.5 longer than reconnection with a single

criterion (Figure 96(a)). Point creation takes a considerable amount of time, which depends

on the number of grid generation passes. Smoothing time dominates the improvement step

as it accounts for 85 − 90% of the total improvement time (Figure 96(b)). On the other

hand, the overheads due to reconnection are low because the number of active elements

decreases rapidly.

(a) Before improvement (the number of slivers is re-

ported).

(b) After improvement (the min/max dihedral angles

are reported).

Figure 95: Element angle distribution (in 5-deg increments) of Lv2b grids generated with

varied quality criteria and transformations. Delaunay: In-sphere criterion; Min-Max: max-

imization of the minimum Laplacian edge weight. 2-3, 3-2, and 4-4 are flip types.
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(a) Refinement step (b) Improvement step

Figure 96: Breakdown of the total CDT3D time for grid generation with varied quality

criteria and transformations (Lv2b geometry). Delaunay: In-sphere criterion; Min-Max:

maximization of the minimum Laplacian edge weight. 2-3, 3-2, and 4-4 are flip types.

Parallel reconnection is performed using 12 cores. At refinement step a combined criterion

with 2-3, 3-2, and 4-4 flips is slower than the other configurations. On the other hand, an

improvement step that follows after refinement using a single criterion with 2-3 and 3-2

flips takes longer.
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4.10.4 GROUPED OR SHUFFLED ELEMENT LINK-LIST?

CDT3D stores the elements in a double link-list data structure. The link-list contains

both active and inactive elements. Some components (i.e., point creation, element deac-

tivation, over-decomposition, and parallel reconnection) do not require a traversal of the

inactive elements, therefore a separation between active and inactive elements can poten-

tially improve the performance (Figure 97).

(a) Element link-list with grouped elements.

(b) Element link-list with shuffled elements.

Figure 97: The two types of link-lists in CDT3D. Green represents the active elements.

Red represents the inactive elements. A grouped link-list can be employed either for re-

finement or improvement using parameters ordt and ordtq, respectively (Appendix B.3).

Table 20 reports performance results using the two types of link-lists. Figure 98 depicts

the quality histogram before and after quality improvement. The element quality is slightly

affected by the type of the link-list.

More important, a grouped link-list reduces threefold the refinement time compared to

a shuffled link-list. Figure 99(a) illustrates the improvements in more detail. On the other

hand, the timing performance in quality improvement is worse, when a grouped link-list

is employed; however, this is because other operations (i.e., smoothing, quality check, and

sliver removal) irrelevant with the type of the link-list, are take longer.

Table 20: Grid generation performance using a link-list with grouped and shuffled el-

ements (Lv2b geometry). The grouped link-list is activated using parameters ordt and

ordtq, for refinement and improvement, respectively (Appendix B.3). The rest of the pa-

rameters are the same as in Table 19 (Delaunay + Min-Max (2-3, 3-2, 4-4) criterion). The

experiments are performed on a DELL workstation with Linux Ubuntu 12.10, 12 hardware

cores Intel(R) Xeon(R) CPU X5690@3.47 GHz, and 96 GB RAM.

Link-list
Refinement Improvement Total

#Tets #Slivers Time #Tets #Slivers Min/Max Time Time

(M) (< 2◦ or > 178◦) (min) (M) (< 2◦ or > 178◦) Dihedral Angle (min) (min)

Grouped 78.97 62 20.19 78.95 0 12.78◦/161.90◦ 84.39 104.58
Shuffled 88.88 69 62.15 88.87 0 9.54◦/153.89◦ 48.43 110.58
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(a) Before improvement (the number of slivers is re-

ported).

(b) After improvement (the min/max dihedral angles

are reported).

Figure 98: Element angle distribution (in 5-deg increments) of Lv2b grids generated using

a grouped and a shuffled element link-list.

(a) Refinement (b) Improvement

Figure 99: Breakdown of the total CDT3D time for grid generation with a grouped and a

shuffled element link-list. Parallel reconnection is performed with 12 hardware cores.
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4.10.5 RESULTS WITH SPECULATIVE EXECUTION

A total of 61 runs are conducted to assess the performance of the CDT3D for var-

ied granularities for over-decomposition, and fractions for bucket-migration. Each run is

performed with 24 hardware cores. The granularity is adjusted with parameter nbuckets.

The higher the number of buckets, the finer the decomposition. The fraction for bucket-

migration is adjusted with parameter frbtransf . The higher the fraction, the higher the

number of buckets to be transferred between threads. The rest of the parameters are fixed

among the runs. The experiments are conducted on the Lv2b geomatry.

Figure 100 depicts the results. The element count ranges from 70M to 91M (Fig-

ure 100(a)). The tetrahedral grids are of a high quality. In the worst case scenario,

only 0.00017% of the elements have a dihedral angle smaller than 2◦ or larger than

178◦ (without improvement) (Figure 100(b)). Decompositions with nbuckets/24 > 20

increase the number of grid generation passes (Figure 100(c)). Finer decompositions

(nbuckets/24 > 40) raise the number of passes up to five times. The number of passes

remains relatively the same when no data-migration is performed, regardless of the level

of granularity.

The average reconnection time per iteration is computed to take into account the var-

ious number of grid generation passes. In general, finer decompositions result in faster

reconnection (Figure 100(d)). A small improvement in running time occurs even in the ab-

sence of data-migration because repetitive reconnection completes faster in buckets with

fewer elements.

The speedup is computed as the ratio of the time taken by one thread to the time taken

by 24 threads. The parallel algorithm exhibits very good scalability. The best speedup

obtained with 24 cores is 28.57 (Figure 100(f)). A super-linear speedup is achieved in

some configurations. Nevertheless, the speedup of the parallel reconnection deteriorates

on those configurations with a higher number of iterations (Figure 100(g)). In addition, the

overal speedup is limited by the inverse of the fraction of sequential operations, such as

point creation, point insertion, element deactivation, and decomposition (Figure 100(h)).

Overall, the speculative results show that CDT3D achieves a good trade-off between the

percentage of slivers, the number of grid generation iterations and the reconnection time,

when nbuckets/24 : 15− 20 and frbtransf : 0.2− 0.6.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 100: Performance results on parallel reconnection and refinement of Lv2b grid,

for varied granularities for over-decomposition (nbuckets/24), and fractions for bucket-

migration (frbtransf). Parameters: nthreads : 24; cdfn : 0.7; cdfm : 0.8 mrecm2;

mrec4 : 1; nqual : 0; cbtransf : 1. All runs performed using 24 threads on a DELL

workstation with Linux Red Hat Enterprise, 24 hardware cores Intel(R) Xeon(R) CPU

E5-2697v2@2.70 GHz, and 757 GB RAM.
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4.10.6 RESULTS WITH HIGHER CONFIDENCE

This set of experiments performs a statistical evaluation on the performance of the

grid generation. A total of 61 grids is generated for the nacelle geometry. The CDT3D

parameters are fixed among the runs except the number of cores which varies from 1 to

24 in increments of 4. For each number of cores, the minimum, maximum, and median

values of various results are reported, out of ten consecutive runs. The sequential run is

performed once since the output is deterministic. Table 21 reports the results. Figure 101

illustrates the results using box-and-whisker together with the 25% and 75% quantiles.

Table 21: Grid generation results with higher confidence (aircraft nacelle geometry). For

each number of cores, the minimum, maximum, and median values are reported out of

ten consecutive runs. The sequential run is performed once. Parameters: cdfn : 0.7;

cdfm : 0.3; frbtransf : 0.4; cbtransf : 1; mrecm : 2; mrec4 : 0; nqual : 3; nsmth : 2;

nbuckets : 15 · nthreads. Appendix B.3 lists the CDT3D parameters. The experiments

performed on a DELL workstation with Linux Red Hat Enterprise, 24 hardware cores

Intel(R) Xeon(R) CPU E5-2697v2@2.70 GHz, and 757 GB RAM.
nthreads

1 4 8 12 16 20 24
min max med min max med min max med min max med min max med min max med

Other
#Tets (M) 54.08 46.71 55.48 50.84 42.53 52.86 47.64 46.82 55.63 51.32 42.58 55.53 49.92 47.34 56.21 51.94 41.37 60.32 51.60
#Iterations 228 218 233 225 209 224 218 216 233 225 211 232 223 215 235 226 206 241 226

Quality

%Slivers(×10−2) 0.37 0.33 0.36 0.34 0.35 0.41 0.37 0.33 0.40 0.36 0.34 0.37 0.36 0.35 0.38 0.36 0.34 0.38 0.36
#Slivers 2032 1643 1945 1769 1633 2034 1791 1685 2044 1883 1596 2068 1801 1687 2112 1900 1578 2224 1886
Min Angle 11.28◦ 9e-06◦ 14.05◦ 9.17◦ 7.99◦ 15.87◦ 12.89◦ 0.001◦ 14.57◦ 11.21◦ 0.003◦ 14.74◦ 11.34◦ 0.51◦ 13.84◦ 8.89◦ 3.15◦ 14.71◦ 10.28◦

Max Angle 159.40◦ 149.52◦ 179.99◦ 160.61◦ 147.12◦ 159.57◦ 153.99◦ 151.63◦ 179.99◦ 158.56◦ 152.30◦ 179.99◦ 158.96◦ 151.26◦ 173.79◦ 159.19◦ 152.68◦ 170.38◦ 159.51◦

Time

Recon./Iter (sec) 5.61 1.65 1.89 1.76 0.82 0.98 0.89 0.62 0.71 0.66 0.44 0.54 0.49 0.39 0.44 0.41 0.29 0.39 0.35
Refinement (min) 25.81 9.99 12.10 10.98 6.36 8.13 7.29 6.10 7.55 6.86 5.07 6.70 6.02 5.20 6.36 5.88 4.39 6.74 5.60
Smoothing (min) 17.95 14.04 93.10 30.03 12.91 26.24 17.57 14.23 70.34 23.05 12.95 60.91 24.40 12.82 51.56 22.83 12.23 46.60 27.75
Improvement (min) 23.79 16.14 108.53 34.94 14.87 29.56 19.75 16.12 80.72 26.06 14.62 70.07 28.07 14.72 61.49 26.25 13.79 55.45 31.38
Total (min) 49.63 26.78 120.11 45.95 22.06 36.82 27.06 22.92 87.31 32.94 20.27 76.10 34.12 20.47 67.42 32.15 19.05 61.24 37.01

Speedup

Recon./Iter 1 2.96 3.39 3.17 5.69 6.81 6.25 7.88 8.97 8.38 10.32 12.74 11.26 12.67 14.31 13.47 14.12 18.93 16.07
Refinement 1 2.13 2.58 2.35 3.17 4.05 3.54 3.41 4.22 3.76 3.85 5.08 4.28 4.05 4.96 4.38 3.82 5.87 4.60
Improvement 1 0.22 1.47 0.68 0.80 1.59 1.20 0.29 1.47 0.91 0.34 1.62 0.84 0.38 1.61 0.90 0.43 1.72 0.75
Total 1 0.41 1.85 1.08 1.34 2.24 1.83 0.56 2.16 1.50 0.65 2.44 1.45 0.73 2.42 1.54 0.81 2.60 1.34

Parallelism influences all aspects of grid generation, such as quality before and after

improvement, running time, number of refinement passes, and element count. For exam-

ple, a minimum of 41.3 M tetrahedra and a maximum of 60.3 M tetrahedra are generated

at ten consecutive runs with 24 cores (Figure 101(a)). This range is equal to 36% of the

median value (51 M). For the same number of cores, the refinement concludes at a mini-

mum of 206 passes and at a maximum of 241 passes (Figure 101(b)). This range is equal

to 15.5% of the median value (226 passes).

Parallel reconnection affects the shape of the elements. Nevertheless, the number of

generated slivers (without improvement) is very low (Figure 101(c)-101(d)). Note that

the 4-4 flips are disabled in this set of experiments, hence a higher number of slivers

should be expected. Additionally, the element quality after the improvement is high. The

[min, max] values of the minimum and the maximum dihedral angle is [8.89◦, 12.89◦]

and [153.99◦, 160.61◦], respectively (median values). Few sliver elements may survive
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 101: Box-and-whisker charts of the results in Table 21. For each number of threads,

the minimum, maximum, median, 25% quantile, and 75% quantile values are depicted,

out of ten consecutive runs. The sequential run is performed once. The experiments con-

ducted on a DELL workstation with Linux Red Hat Enterprise, 24 hardware cores Intel(R)

Xeon(R) CPU E5-2697v2@2.70 GHz, and 757 GB RAM.
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(Figure 101(e)-101(f)). Those slivers can be eliminated by adjusting the parameters of

the improvement algorithm (e.g., number of improvement passes). The improvement al-

gorithm has a handful of options for quality grid generation and optimization, and these

experiments are far from comprehensive. Appendix B.3 lists the CDT3D parameters.

Figure 101(g) illustrates the average reconnection time per iteration and Figure 101(l)

depicts the corresponding speedup. The speedup is computed as the ratio of the time

taken by one thread to the time taken by nthreads. Parallel reconnection exhibits good

scalability. The minimum, maximum, and median speedup out of ten consecutive runs with

24 threads is 14.12, 18.93, and 16.07, respectively (Table 21). It should be understood,

that the default combinations of 2-3 and 3-2 flips result in a lower speedup compared to

combinations of 2-3, 3-2, and 4-4 flips (Figure 100(f)).

The scalability of the refinement algorithm is limited due to the cost of sequential op-

erations, such as point creation, point insertion, element deactivation, and decomposition.

The minimum, maximum, and median speedup for refinement with 24 threads is 3.82,

5.87, and 4.60, respectively (Figure 101(m)). The scalability of the improvement algo-

rithm is very limited (Figure 101(n)) because smoothing accounts for up to 88.43% of

the total improvement time (median value) (Table 21). Moreover, the number of eligible

elements for reconnection decreases rapidly during quality improvement, therefore less

concurrency can be achieved compared to the refinement step.

Figure 101(o) illustrates the speedup of the entire generation procedure, including an

initial grid generation (i.e., Delaunay tetrahedralization and boundary recovery), a refine-

ment, and an improvement step. The highest (median) speedup is obtained with 8 threads

(1.83) mainly due to a lower cost for smoothing and a lower number of refinement itera-

tions.

4.10.7 RESULTS USING NASA’S COMMON RESEARCH MODEL

This study evaluates the scalability of the CDT3D using NASA’s Common Research

Model2. The model is a DLR-F6 Airbus type aircraft. A tetrahedral grid of this model is

generated with VGRID3 [157, 158] for the purposes of the 6th AIAA CFD Drag Prediction

Workshop4. After the surface of this grid is extracted using UGC5, it is passed to CDT3D

for volume grid generation. Figure 102 depicts the input surface grid.

2https://commonresearchmodel.larc.nasa.gov/2012/01/19/hello-world-2
3https://geolab.larc.nasa.gov/GridTool/Training/VGRID/
4https://aiaa-dpw.larc.nasa.gov
5http://www.simcenter.msstate.edu/



140

(a) Aircraft with symmetry plane (b) Surface grid

(c) Wing-nacelle-pylon system (d) Anisotropic boundary layers

Figure 102: Surface grid of a DLR-F6 Airbus type aircraft with anisotropic boundary

layers on a symmetry plane; #points: 1006144; #triangles: 2012288.

Boundary recovery is challenging, because the surface grid contains high aspect-ratio

anisotropic triangles at the junction of the symmetry wall and the aircraft’s body (Fig-

ure 102(d)). A tetrahedral grid is attempted to generate with AFLR, but the execution

failed due to a topological error in boundary recovery.

This evaluation conducts a total of nine runs; a sequential run and two sets of parallel

runs for varied number of threads (12-48). The first set of parallel runs is performed with-

out element sorting (default option in CDT3D). The second set is performed with element

sorting. Element sorting has been suggested in the literature [171] because it reduces the

overlaps between regions involved in concurrent transformations, thus providing a good

initial work load distribution for parallel reconnection. Element sorting is activated with

parameter sortp (Appendix B.3). The elements are sorted based on the coordinates of

their centroids, according to a Hilbert curve [22, 179]. CDT3D sorts the elements in each

refinement pass before over-decomposition.

Figure 103 depicts cuts of the isotropic tetrahedral grid. Table 22 presents the results.

Parallel reconnection scales near-linearly with up to 24 threads. Element sorting results in

a super-linear speedup when 12 and 24 threads are utilized. Speedup drops with a higher

number of threads (Hyper-Threading is enabled).
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(a) Overall view

(b) Detail view

Figure 103: Cuts of the tetrahedral grid of the flow field of DLR-F6 Airbus aircraft, gen-

erated with CDT3D. A smaller grid (≈200 M tetrahedra) is depicted due to limitations in

visualization.
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Table 22: Performance results on parallel refinement of grid of a flow domain around a

DLR-F6 Airbus aircraft. Parameters: cdfn : 0.8; cdfm : 0.5; mrecm : 2; mrec4 : 1;

nbuckets : 15 · nthreads; frbtransf : 0.4; cbtransf : 1.0; nqual : 0; sortp : 1 activates

element sorting. The included sorting time is reported in parenthesis. The sliver elements

have a dihedral angle smaller than 2◦ or larger than 178◦. #Iter is the number of grid

generation passes. The experiments performed on a DELL workstation with Linux Red

Hat Enterprise, 24 hardware cores Intel(R) Xeon(R) CPU E5-2697v2@2.70 GHz, and 757

GB RAM. Hyper-Threading is enabled when nthreads > 24.

nthreads

%Slivers Time SpeedUp

#Tets (w/o improv.)
#Iter

Recon./Iter Refinement
Recon./Iter Refinement

(Bi) (×10−2) (min) (hours)

1 1.414 1.438 61 51.69 58.98 1 1

w/o sorting

12 1.413 1.472 73 4.81 13.10 10.74 4.50
24 1.455 1.563 83 2.51 11.81 20.59 5.00
36 1.438 1.487 79 1.98 10.59 26.10 5.57
48 1.451 1.556 118 1.84 14.36 28.09 4.10

w/ sorting

12 1.414 1.563 89 3.99 17.38 (3.62) 12.95 3.39
24 1.439 1.499 75 1.98 12.74 (3.16) 26.10 4.62
36 1.458 1.518 93 1.67 14.87 (4.00) 30.95 3.96
48 1.448 1.625 122 1.39 18.77 (5.08) 37.18 3.14

Figure 104 depicts plots of the results. The efficiency is computed as the ratio of the

achieved speedup to the number of the threads. A program that scales linearly has a par-

allel efficiency of 1. Super-linear speedup leads to efficiency greater than 1. Table 22

reports the additional cost for element sorting in parenthesis. This cost is included in the

refinement module. Also refinement includes overheads due to other sequential compo-

nents. When 1 thread is utilized, the non-parallelized components together account for

(58.98− (51.69 · 61)/60)/58.98 = 10.89% of the total refinement time. When 48 threads

are utilized (without sorting), they account for 74.80%. When 48 threads are utilized and

sorting is employed, the overheads due to sequential components increase to 84.94% (Ta-

ble 22). Clearly, the end-to-end timing performance worsens when sorting is enabled.
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Figure 104: Scalability and efficiency of parallel reconnection and refinement of tetrahe-

dral grid of DLR-F6 Airbus, with approximately 1.5 Billion elements (Table 22).
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4.11 CONCLUSIONS

A new parallel optimistic unstructured grid generator for the discretization of piece-

wise linear complex domains with high quality isotropic elements has been presented. To

the best of our knowledge, this is the first method that optimizes the grid connectivity

in parallel throughout the generation procedure, including a post-improvement step. The

connectivity optimization is based on a speculative approach that has been proven to per-

form well on hardware-shared memory (i.e., single chip). Our new speculative paradigm

repetitively reconnects the grid using tightly-coupled topological transformations. Simple

hill-climbing is employed to maximize the quality of the worst local element. The local re-

connection scheme is based on: (i) data over-decomposition, (ii) atomic operations to avoid

data races, and (iii) load-balancing to redistribute work-units among the threads. The grid

generation engine is essentially a combination of Advancing Front type point placement,

direct point insertion, and parallel multi-threaded connectivity optimization schemes.

The generator is evaluated on a variety of aerospace configurations. The results in-

dicate that the high quality and performance attributes of this method see substantial im-

provement over existing state-of-the-art technology. The proposed framework will be part

of an Extreme-Scale Anisotropic Mesh Generation Environment to meet industries expec-

tations and NASA’s CFD vision for 2030 [180, 43].

The presented unstructured grid generator fullfills the following requirements:

1. Stability. The grids generated (sequentially or parallel) by CDT3D are of compa-

rable quality with the grids generated with state-of-the-art technology. Parallelism

slightly affects the percentage of generated slivers before improvement and the final

element quality after improvement.

2. Robustness. CDT3D exhibits “ultimate” robustness on recovering boundary con-

strained surfaces with high-aspect ratio or badly shaped triangles. CDT3D demon-

strates excellent quality characteristics on a variety of realistic aerospace configura-

tions. Isotropic tetrahedral grids with billions of elements are generated efficiently.

3. End-User Productivity. The sequential implementation of CDT3D refines the grid

up to 2.5 times faster compared to state-of-the-art code. When 12 cores are utilized,

CDT3D reduces the end-to-end grid generation time (including post-improvement)
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up to a factor of 2, and the refinement time up to a factor of 9.8, compared to state-

of-the-art technology. The parallel speculative connectivity optimization scheme ex-

hibits near-linear scalability when 24 cores are utilized to discretize the flow domain

of a DLR-F6 Airbus aircraft with approximately 1.5 billion elements.

4. Code Re-Use. The proposed software has a modular design. It includes four mod-

ules: (i) Delaunay Tetrahedralization, (ii) Boundary Recovery, (iii) Refinement, and

(iv) Quality Improvement. Each module can be easily replaced and/or updated with

a minimal effort.

4.12 FUTURE WORK

CDT3D is an end-to-end solution that focuses in both quality and performance aspects

of mesh generation. In future efforts, this method could be further enhanced in the follow-

ing ways:

1. Currently CDT3D interpolates a distribution function initially computed from the

boundary surface. The distribution function determines the desired field point spac-

ing. Other means of controlling the field point spacing, such as a geometric growth

normal to boundary surfaces or a background grid may be also used.

2. Incorporate additional quality criteria for grid reconnection, such as a skewness met-

ric [132]. Local reconnection using a Delaunay criterion followed by a Min-Max

skew criterion typically results in a slightly improved quality at the expense of an

increase in required CPU time.

3. Improve the scalability of the refinement module with the parallelization of the point

creation, point insertion, element deactivation, and element sorting components.

4. Introduce more complex topological transformations (n ≥ 5) with pre-computation

of the candidate solutions to potentially improve element quality [77]. Investigate

the impact of those transformations in the performance and the convergence of the

parallel optimistic connectivity optimization scheme.

5. Allow non-manifold surface connectivity throughout the generation process (e.g.,

boundary recovery, refinement, and improvement). Allow transparent source sur-

faces to be used as an input to control field point spacing nearby.
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6. Incorporate smart smoothing techniques [71] in addition to optimal point placement

and centroid averaging. Smoothing is a fundamental component of the improvement

algorithm and highly influences the element quality. This experimental evaluation

showed that vertex relocation is an expensive operation, as it takes about 80− 90%

of the total improvement time, and should therefore be performed in parallel.

7. Improve the convergence of the parallel optimistic connectivity optimization.

8. Develop an Advancing-normal point type placement procedure to generate high as-

pect ratio tetrahedral, or mixed type (tetrahedral, prismatic, and hexahedral) ele-

ments [131]. A mixed element grid type could provide improved flow solver effi-

ciency with the geometric flexibility of a fully unstructured tetrahedral grid. High

aspect ratio elements are formed in layers near the boundary surface and are suitable

for simulating viscous flow in computational fluid dynamics applications. Finally, a

parallelization of the boundary layered algorithm should be considered.
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APPENDIX A

BIOMECHANICAL DEFORMABLE REGISTRATION FOR DEEP

BRAIN STIMULATION

A.1 INTRODUCTION

In this paper we present an adaptive deformable registration method for Deep Brain

Stimulation. The method relies on hexahedral mesh generation to compensate for the noise

of CT scans. An adaptive approach is utilized to improve the accuracy of a well known

non-rigid registration method used extensively for registration of MRI data. Finally, par-

allel computing is used to reduce the execution time, which increases with adaptivity. Our

evaluation on three DBS cases indicates that the proposed scheme satisfies the real-time

constraints of DBS surgery and recovers the deep-brain deformation with high fidelity. Un-

derstanding brain shift in this context is an important task to improve the patient outcomes

in DBS surgery.

Deep brain stimulation (DBS) is an effective palliative therapy for patients suffering

from Essential Tremor, Parkinson’s disease, and other neurological movement disorders.

As an adjunct to medical intervention, DBS therapy can reduce the morbidity associated

with these disorders significantly [105]. DBS surgery involves the placement of electrical

leads into precise locations in the deep structures of the brain without direct intraopera-

tive visualization of the target structures or of the electrode lead (Figure 105). Modern

DBS surgery makes use of stereotactic systems and image guidance to accurately place

electrode leads, as well as intraoperative imaging to surveil the location of the lead and

guide the surgery. The effectiveness of DBS is directly correlated with the accuracy of

DBS electrode lead placement, with more accurate electrode placement leading to better

clinical outcomes. Re-operation is rarely necessary to correct the placement of a DBS lead

(1% to 12.7%)[20, 56, 91, 86]. The targets of the DBS surgery are located in the basal

ganglia, a structure that helps regulate movement and is central to the pathology of Parkin-

son’s disease. The basal ganglia itself includes the subthalamic nucleus (STN) and globus

pallidus internus (GPi), two targets of DBS surgery [193, 198].
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Figure 105: Deep Brain Stimulation (DBS). An implanted pacemaker delivers electrical

stimulation to targeted areas in the brain that control movement, blocking the abnormal

nerve signals that cause Tremor and Parkinsons disease symptoms. The image obtained

from the Department of Neurosurgery at the University of Texas Health Science Center at

San Antonio (UTHSCSA).

Compounding the relatively small size and deep location of these nuclei is the fact that

they are often moving targets during surgery. The phenomenon of brain shift is well doc-

umented during DBS and other procedures that result in CSF leakage. Previous studies

have shown a brain shift during DBS surgery of up to 4mm in deep brain structures, and

up to 13mm in cortical structures, as well as development of a pneumocephalus in early

post-surgery of up to 20mm. In addition to intraoperative shift, there is evidence that as

subdural air collections resolve in the weeks after surgery, these leads may continue to

shift [193, 198]. This shift complicates the placement of the DBS electrode leads because

the target nuclei are not visible on intraoperative CT, the modality commonly available

in community and academic medical centers. The accurate modeling and correction for

intraoperative brain shift during DBS surgery is essential for the improvement of surgical

outcomes.
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In this paper we propose a method to detect and quantify brain shift during DBS surgery us-

ing preoperative (CT, MRI) and intraoperative (O-arm CT) imaging as inputs to a patient-

specific biomechanical adaptive deformable (or non-rigid) registration algorithm [58]. In

essence, this approach compares preoperative and intraoperative images, detecting their

movement, and inferring the unknown position of the surgical targets after brain shift us-

ing the deformation recovered from these landmarks.

In this work, we describe a method to detect the brain shift that occurs during DBS surgery

both qualitatively and quantitatively. The average brain shift of 2mm in the area of interest

is at the boundary of resolution for this biomechanical deformable registration method;

however, the presence of a highly radiolucent flexible intracranial fiducial (the stimulating

electrode) improves the accuracy of this method. This effect is greatest precisely where it

is most needed; near the deep-brain targets of DBS surgery. We use this fiducial as a gross

landmark in the registration process that allows us to recover the detailed deformation of

the electrode and the surrounding solid tissues. Finally, we employ recent advancements

in computational power and the availability of powerful multi-processing GPU hardware

to make the intraoperative use of these algorithms feasible and cost-effective. This high-

performance computing architecture is widely available and a good candidate for intraop-

erative use.

A.2 PATIENTS AND METHODS

Three patients were included in this study. All patients had Parkinson’s disease that

was refractory to medical management and were treated with DBS surgery. All patients

were treated at VCUHS Medical Center hospital or the VA McGuire Medical Center in

Richmond. Patients were selected for this retrospective study based on several criteria: (i)

amount of intracranial postoperative air, (ii) presence of bilateral air, (iii) amount of brain

shift, and (iv) availability of preoperative images (MRI, CT), intraoperative images (O-arm

CT) at appropriate procedural intervals, and post-operative images (CT). The image size

and spacing of the acquired clinical O-arm CT data is: 512 × 512 × 192 (voxels3), and

0.415× 0.415× 0.833 (mm3), respectively.

A.2.1 PROCEDURAL METHODS

Pre-operative images for all patients were obtained, including fine-cut cone-beam CT,

volumetric T1, T2, and FLAIR MRI protocols. Additionally, the placement of six bony

fiducials in the patient’s scalp assists in later rigid registrations. A stereotactic plan was
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created using these images. The NexFrame stereotactic system by Medtronic, Inc. was

used for all cases. Next, the stereotactic space was registered to the image space using

the previously placed bony fiducials while optimizing registration accuracy. The patient’s

skull was trepanned and the dura opened to allow visualization of the brain. The stereo-

tactic tower was aligned to target and then the rigid cannulas were inserted into the brain

along the planned track trajectory. The patient was awoken and Microelectrode recording

(MER) was then carried out to physiologically identify the target nucleus with the intent of

correcting any targeting inaccuracy. An O-arm image was then obtained with the cannula

and microelectrode at the target. Additional parallel tracks were made if necessary. Once

the ideal track was determined, the microelectrode was then withdrawn, and the DBS lead

inserted.

The same procedure is then repeated on the contralateral side. O-arm CT images are taken

after insertion of the microcannula on the second side, and then again after final placement

of both DBS leads. Following closure, the fiducials are removed and the patient is then

taken for a second post-operative fine-cut CT scan.

A.2.2 COMPUTATIONAL METHODS

An Adaptive Physics-Based Non-Rigid Registration method (A-PBNRR) [57] cus-

tomized to register 3D preoperative and intraoperative images for DBS is proposed. Given

preoperative MRI and CT, as well as intraoperative MR (iMR) or CT (iCT), we aim to

find a deformation field between them and then deform the preoperative MRI according to

this field. The main idea of the physics-based non-rigid registration method is to use the

known displacement vector associated with sparse feature points in the brain to estimate

the entire brain deformation using a regularization term based on a brain biomechanical

model [45]. This method includes four critical components: (i) Segmentation and Mesh

Generation; generate a patient-specific model, (ii) Feature point detection; identify small

image blocks that have rich structural information in the preoperative MRI, (iii) Block

matching; calculate displacement for each image block to generate a sparse deformation

field, and the main computational step (iv) Finite Element Solver; estimate entire brain

deformation based on the sparse deformation field computed at the block matching step.

Instead of using a tetrahedral mesh, we use a hexaderal mesh, which is more robust

for CT images with higher noise than MRI. Given the noise in CT scans and the fact

that the relevance of a displacement estimated with a block matching algorithm depends

on the existence of highly discriminative structures within a block, we briefly focus on
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feature selection and block matching. We use the variance of the image intensity within

the block region to measure its relevance, only selecting a fraction of all potential blocks

based on a predefined parameter of the algorithm. To avoid redundancy by the overlapping

of blocks (i.e., eliminate blocks that are too close to each other), a parameter of prohib-

ited connectivity is used. There are three options for the connectivity: vertex, edge, and

face connectivity (Figure 106). In addition to various connectivity patterns supported in

the ITK implementation, we use face connectivity since it allows us to leverage the high

confidence landmarks from the lead. Block matching is a well-known technique widely

used in motion coding, image processing, and compression. It is based on the assumption

that a complex non-rigid transformation can be approximated by point-wise translations

of small image regions. Considering an image block in a floating image and a predefined

search window in a reference image, the block matching algorithm searches for a posi-

tion in the reference image that maximizes a similarity measure. Similarity measures in

this task include mean square difference of intensity (MSD), mutual information (MI), and

normalized cross correlation (NCC) [27]. By assembling the individual displacement vec-

tors, one can create a sparse displacement field, which the finite element solver will use to

approximate the unknown displacement vector associated with the mesh vertices.

A.2.3 ANALYSIS

The patient specific biomechanical non-rigid registration algorithm described above

estimates the deformation that occurs between any two images. In particular, the registra-

tion algorithm accurately tracks highly radiopaque structures, such as the flexible electrode

lead. Our hypothesis is that the deformation in the flexible electrode approximates the de-

formation in the deformable soft tissue (which is radiolucent). The deformations produced

between successive intraoperative images is first visualized, and then qualitatively evalu-

ated. We describe the deformation in the region of interest near to the deep basal ganglia

nuclei, or in a diameter of 1cm around the flexible electrode lead. Next, the recovered

deformation fields are used to deform the preoperative scan. Using this newly updated

image, we measure the locations of the relevant nuclei and characterize the brain shift that

accounts for this movement.

A.3 RESULTS

For each patient, we performed a deformable registration between O-arm CT1 and

O-arm CT2 images. Table 23 lists the parameters of the registration. We identified the
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preoperative and intraoperative positions of the relevant nuclei, as well as the deformation

at the tip of the flexible lead from the deformed registered O-arm CT1. For the initial-

ization of the non-rigid registration, we performed a rigid alignment using Slicer’s 4.4.0

BRAINSFit module [98]. Table 24 presents some quantitative results of the deformable

registration. In all cases, the deformation is for the first side lead. In cases 1-2, the tip

of the lead shifted primarily posteriorly and toward the side of the lead. In case 3, the

lead shifted anteriorly and toward the side of the lead. In our future work, we will include

additional quantitative data regarding the shift in clinically important nuclei like the STN

and the GPi in the MRIs, as well as additional measures of registration accuracy like the

Hausdorff Distance. Figure 107 presents the qualitative evaluation results for case 1. The

image discrepancies after our non-rigid registration are smaller compared to the rigid reg-

istration, particularly near the flexible electrode lead. Figure 108 depicts in more detail

the recovered deformations for case 2. Figure 109 depicts qualitative evaluation results for

case 3.

Table 23: The input parameters for the deformable registration (x: axial; y: coronal; z:

sagittal).

Parameter Units Value Description

Element type - 8-node Hex -

Similarity metric - NCC Normalized Cross Correlation

Fs - 5% % selected image blocks

Connectivity pattern - “face” -

Bs,x ×Bs,y × Bs,z voxels 3× 3× 3 Block size

Ws,x ×Ws,y ×Ws,z voxels 9× 9× 9 Window size

Hs,x ×Hs,y ×Hs,z - 18× 18× 13 Num Hexahedrons

Eb Pa 2.1× 103 Brain’s Young modulus

νb - 0.45 Brain’s Poisson ratio

Fr - 25% % of rejected block outliers

Nappr - 5 Num of outlier rejection steps

Nint - 5 Num of interpolation steps

Niter - 1 Num of adaptive iterations

A.4 CONCLUSIONS

In this study, we measured the brain shift that occurs during deep brain stimulation

surgery by using flexible DBS leads as a radiopaque landmark in a biomechanical de-

formable registration method. We show how it is possible to recover the deformations that
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Table 24: Deformation (mm) at the tip of the flexible lead, end-to-end non-rigid registra-

tion time (including I/O) (seconds), and speed-up for the three clinical cases. The exper-

iments conducted in a Linux workstation with 8 Intel i7-2600 @3.400 GHz CPU cores,

and 16GB of RAM.

Case
Deformation (mm) Time (sec)

Speed-Up
Lead tip Lead max 1 thread 8 threads

1 1.05 2.21 233.07 100.70 2.31
2 1.26 2.08 212.76 90.10 2.36
3 1.57 3.18 219.99 94.01 2.34

affect two clinically important nuclei of the basal ganglia. This technique can be applied

intraoperatively to improve the targeting of DBS leads, and post-operatively to under-

stand the nature of shift during DBS surgery. Future work includes characterizing how the

brain shift occurs over time using multiple intraoperative images acquired during a single

surgery. In addition, using pre- and post-operative MRI, it becomes possible to recover

the entire time course of shift, including any that occurs before the first intraoperative im-

age is captured. A better understanding of this shift and the intraoperative correction of

the same can, with future enhancements of this method, improve targeting accuracy and

patient outcomes in DBS surgery.
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Figure 106: The distribution of the selected blocks in a brain CT scan, using different con-

nectivity patterns. The results are depicted on six consecutive slices. From top to bottom

row: sagittal CT slice (left) and volumetric rendering (right), selected blocks with “ver-

tex” connectivity, selected blocks with “edge” connectivity, selected blocks with “face”

connectivity. The “vertex” pattern results in a more uniform distribution, while the “face”

pattern results in a higher block density near the lead and tissue boundaries.
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Figure 107: Qualitative results for case 1. Top row: intra-op O-arm CT2 (left) and its

volume rendering (right). Middle row: Rigid registered O-arm CT1 subtracted from CT2.

Bottom row: Deformable registered O-arm CT1 subtracted from CT2.
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Figure 108: Deformable registered O-arm CT1 for patient 2. The shift is larger near the

cortical structures and smaller in deep brain structures (tip of the lead). Top: cut section of

a volume rendering. Bottom: axial, sagittal, and coronal slices.
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(a) (b)

(c) (d)

(e) (f)

Figure 109: Qualitative evaluation results for case 3. (a)-(f) depict the same sagittal slice

of the volumetric CT scan. (a): O-arm CT1; (b): O-arm CT2; (c): rigid registered O-arm

CT1; (d): non-rigid registered O-arm CT1; (e): rigid registered O-arm CT1 subtracted

from O-arm CT2; (f): non-rigid registered O-arm CT1 subtracted from O-arm CT2.
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APPENDIX B

SOFTWARE USAGE

B.1 CBC3D USAGE

–image: multi-labeled segmented image.

–latticeSpacing: spacing of the BBC lattice (in mm).

• Range: [0.1, inf]

Default: 8

–fidelity: mesh fidelity.

• Range: [0.1, 1]

Default: 0.8

–multiple-fidelities: file that contains the fidelity values of each material.

–upsampleResolution: performs a global image up-sampling.

• 0: no up-sampling

• 1: two-fold up-sampling

• 2: four-fold up-sampling

Default: 0

–checkImageTopology: performs image topological checks and converts the non-

manifold voxel connectivity into a manifold voxel connectivity.

• 0: no

• 1: yes

Default: 0

–checkMeshTopology: performs mesh topological checks and imposes additional re-

finement (local or global) to eliminate the non-manifold element connectivity. Applies

only if checkImageTopology 1.

• 0: no
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• 1: yes

Default: 0

–thresholdToRelabelDisconnectedImageRegions: threshold for relabeling the dis-

connected image regions.

• Range: (0, 0.01]

Default: 0.001

–thresholdToRelabelDisconnectedMeshRegions: threshold for relabeling the dis-

connected mesh regions.

• Range: (0, 0.1]

Default: 0.001

–hybridMesh: generates a mixed mesh from an adaptive tetrahedral mesh by merging

clusters of tetrahedra into hexahedra and pyramids.

• 0: no

• 1: yes

Default: 0

–maxNumberSurfaceTrianglesOnPyramid: adjusts the topology on the mesh sur-

face by allowing a pyramid to have 0, 1, 2, 3, or 4 surface triangles.

• Range: [0, 4]

Default: 0

–shapeFunctionType: element shape functions (for tetrahedra and hexahedra).

• 0: linear

• 1: quadratic

Default: 0

–outputSurfaceBCCMeshTriangles: prints the surface triangles of the BCC mesh.

–outputBCCMesh: prints the BCC mesh (.vtk).

–numIterations: number of smoothing iterations.

• Range: [0, inf)
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Default: 0

–flexibility: trade-off between the regularization energy defined by the stress energy

of a linear biomechanical elastic model, and the similarity energy.

• Range: [0.1, 1]

Default: 1

–E: Young’s modulus (N/mm2).

• Range: (0, inf)

Default: 0.0021

–v: Poisson’s ratio.

• Range: [0.1, 0.49]

Default: 0.45

–nonConnectivity: non-connectivity pattern for the extraction of the target points.

• 0: “vertex”

• 1: “edge”

• 2: “face”

• 3: “no”

Default: 0

–minDihedralAngle: minimum dihedral angle for smoothing.

• Range: (0◦, 30◦]

Default: 5◦

–minScaledJacobian: minimum scaled Jacobian for smoothing.

• Range: [0, 1]

Default: 0.20

–scaleFactorForSearchRadius: scales the neighborhood to search for target points.

• Range: (0, inf)

Default: 1.5

–scaleFactorForEdges: scales the average length of the edges incident to a vertex.
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• Range: (0, 5]

Default: 0.2

–scaleFactorForConfidence: scales the confidence of landmarks incident on low

quality elements.

• Range: (0, 1]

Default: 0.2

–maxNumberScaledConfidenceIterations: maximum number of iterations with a

scaled confidence.

• Range: [0, inf)

Default: 3

–numberLaplacianSmoothingIterations: number of iterations for Laplacian

smoothing to improve mesh quality.

• Range: [0, inf)

Default: 0

–localTransformations: enables local transformations tom improve mesh quality.

• 0: no

• 1: yes

Default: 0

–outputSourcePoints: prints the source points used for smoothing (.vtk).

–outputTargetPoints1: prints the target points used for smoothing (.vtk).

–outputTargetPoints2: prints the target points used for smoothing in an image (e.g.,

.nrrd).

–outputSurfaceSmoothMeshTriangles: prints the surface triangles after smoothing

(.vtk).

–outputSmoothMesh: prints the smoothened mesh (.vtk).

–numThreads: number of threads.

• Range: [1, inf)

Default: 1

–evaluateMeshQuality: prints the dihedral angles histogram and some quality statis-

tics.
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• 0: no

• 1: yes

Default: 0

–evaluateMeshVolume: computes the mesh volume, and checks if the sum of the

volumes of the elements equals to the volume defined by the polyhedral domain.

• 0: no

• 1: yes

Default: 0

–evaluateMeshFidelity: computes the mesh fidelity using a HD metric.

• 0: no

• 1: yes

Default: 0
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B.2 A-PBNRR USAGE

–movingImage: moving (preoperative) image.

–fixedImage: fixed (intraoperative) image.

–segmentedImage: segmentation of the moving image.

–halfBlockSizeX: size of half block in X image direction (in voxels).

• Range: [1, inf)

Default: 1

–halfBlockSizeY: size of half block in Y image direction (in voxels).

• Range: [1, inf)

Default: 1

–halfBlockSizeZ: size of half block in Z image direction (in voxels).

• Range: [1, inf)

Default: 1

–halfWindowSizeX: size of half window in X image direction (in voxels).

• Range: [1, inf)

Default: 5

–halfWindowSizeY: size of half window in Y image direction (in voxels).

• Range: [1, inf)

Default: 5

–halfWindowSizeZ: size of half window in Z image direction (in voxels).

• Range: [1, inf)

Default: 5

–simMetric: similarity metric for block matching.

• 0: Normalized Cross Correlation (NCC)

• 1: Normalized Mutual Information (NMI)

Default: 0

–nonConnectivity: non-connectivity voxel pattern for feature selection.
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• 0: Vertex non-connectivity

• 1: Edge non-connectivity

• 2: Face non-connectivity

Default: 0

–meshMethod: mesh generation method.

• 0: CBC3D

• 1: Delaunay

• 2: LD

• 3: Structured Hex

Default: 0

–selectionFraction: fraction of selected image blocks from total number of image

blocks.

• Range: (0, 1]

Default: 0.05

–rejectionFraction: fraction of rejected image blocks from number of selected image

blocks.

• Range: (0, 1]

Default: 0.25

–tradeOff: controls the trade-off between regularization energy defined by the stress

energy of a linear elastic model and the similarity energy.

• Range: (0, 1]

Default: 1

–numApproxSteps: number of approximation (outlier rejection) iterations.

• Range: [1, inf)

Default: 5

–numInterSteps: number of interpolation iterations.

• Range: [0, inf)

Default: 5

–numAdaptiveIterations: number of adaptive iterations.
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• Range: [1, inf)

Default: 1

–zeroBlocksFraction: minimum ratio of blocks without correspondence to selected

image blocks.

• Range: [0, 1]

Default: 0.01

–shapeFunctionType: type of shape function for interpolation.

• 0: Linear

• 1: Linear w/ ESF

• 2: Quadratic

• 3: Quadratic w/ ESF

Default: 0

–tumorResection: tumor resection flag.

• 0: off

• 1: on

Default: 0

–HDEvaluation: evaluation of registration accuracy with a Hausdorff Distance metric.

• 0: off

• 1: on

Default: 0

–outputDeformationField: output deformation field; the field maps points in the fixed

image to homologous points in the moving image.

–outputImage: output registered image.

–numThreads: number of threads.

• Range: [1, inf)

Default: 1

–E1: Young modulus (N/mm2) for material with label 1 (brain parenchyma).

• Range: (0, inf)
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Default: 2.1e-4

–v1: Poisson ratio for material with label 1 (brain parenchyma).

• Range: (0, inf)

Default: 0.45

–E2: Young modulus (N/mm2) for material with label 2 (tumor).

• Range: (0, inf)

Default: 2.1e-3

–v2: Poisson ratio for material with label 2 (tumor).

• Range: (0, inf)

Default: 0.45

–CBC3DSpacing: lattice spacing (in mm) for CBC3D mesh generation.

• Range: (0, inf)

Default: 8

–CBC3DFidelity: mesh fidelity for CBC3D mesh generation.

• Range: [0.1, 1]

Default: 0.85

–CBC3DNumIterations: smoothing iterations for CBC3D mesh generation.

• Range: [0, inf)

Default: 0

–CBC3DMultipleFidelities: multi-fidelities for CBC3D mesh generation.

–DelaunayDelta: element size for Delaunay mesh generation.

• Range: (0, inf)

Default: 5
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B.3 CDT3D USAGE

–plc: input piecewise linear complex (stl or vtk).

–sort: sorting flag for input boundary points.

• 0: no sorting

• 1: random permutation

• 2: sorting based on BRIO and Hilbert curve

Default: 2

–brec: boundary recovery flag.

• 0: do not recover boundary

• 1: recover only boundary partitions

• 2: full boundary recovery

Default: 2

–ref: refinement flag.

• 0: do not refine

• 1: refine

Default: 1

–cdf: distribution function multiplier. The distribution function specifies the desired

element size. The distribution function originally determined from the average of the

surrounding boundary edge lengths is multiplied by cdf.

• Range: [0.5, 3]

Default: 1.2

–cdfn: nearby node factor. Nodes are considered too close if the distance between

them is less than their average node distribution functions multiplied by cdfn.

• Range: [0.5, 2]

Default: 0.7

–cdfm: distribution function weighting factor. The node distribution function for new

nodes is averaged with the minimum nearby node distribution functions. This factor is the

weighting for the minimum contribution. Increasing cdfm above 0.0 will generally reduce

the growth of element size from small to larger elements and increase the total number of

grid nodes generated. It will have little or no effect if all the boundary edges are nearly the

same size.
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• Range: [0, 1]

Default: 0

–cdff: satisfied edge length multiplier. An edge is considered satisfied if its length

divided by this factor is less than the average of the node distribution function at the edge

end-nodes.

• Range: [1.1, 3]

Default: 1.5

–cdfr: maximum geometric growth rate. Used as the advancing-front growth limit.

The element size for new nodes is limited to be less than the physical size of the local front

advanced from multiplied by cdfr.

• Range: [1, 3]

Default: 1.1

–dfmax: maximum distribution function. The distribution function specifies the point

spacing in the field. If dfmax < 0 then do not limit the maximum distribution function. If

dfmax = 0 then limit the maximum distribution function to the maximum value determined

from the boundary surface grid. If dfmax > 0 then limit the maximum distribution function

to dfmax.

• Range: [-1, 1e+19]

Default: -1

–angmax: satisfied dihedral element angle. An element is considered satisfied if it has

a maximum angle less than angmax and if all of its edge lengths are satisfied.

• Range: [120, 179.9]

Default: 150

–angqmax: low quality dihedral element angle. Quality improvement is repeated if

there are elements with a maximum angle greater than angqmax. Also an element will not

be created inside a boundary element if it would create a maximum element angle greater

than angqmax.

• Range: [90, 179.9]
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Default: 160

–angqmsk: masking dihedral element angle. Special quality improvement operations

are performed on elements with a maximum angle greater than angqmsk.

• Range: [90, 179.9]

Default: 120

–angqual: final quality dihedral element angle. Local reconnection for quality im-

provement is performed on elements with a maximum angle greater than angqual.

• Range: [70, 179.9].

Default: 120

–angdbs: boundary sliver dihedral element angle. All boundary elements with a dihe-

dral angle greater than angdbs are considered slivers and therefore deleted. The boundary

surface triangles are reconnected to delete boundary slivers.

• Range: [120, 179.9]

Default: 160

–angdfs: quality field sliver dihedral angle. During quality improvement, all field ele-

ments with an angle greater than angdfs are considered sliver elements and are minimized

by inserting a node near the element centroid. Only applicable if the quality field sliver

deletion flag is on (mdfs = 1).

• Range: [120, 179.9]

Default: 165

–angrbfdd: discontinuous dihedral surface angle. Dihedral angle between two adja-

cent faces used to limit boundary surface recovery reconnection. The boundary surface

triangulation will not be reconnected if the result is a dihedral angle between the two faces

which is less than angrbfdd.

• Range: [120, 179.9]

Default: 150

–angrbfmxp: maximum planar face angle. Planar face angle used to limit boundary

surface recovery reconnection. The boundary surface triangulation will not be reconnected

if the result is a greater maximum angle and if the reconnected maximum angle is greater

than angrbfmxp.
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• Range: [60, 179.9]

Default: 140

–angqbfm: maximum low-quality planar surface angle. Planar surface angle for

boundary triangular faces used to check for a low-quality boundary surface triangulation.

If the planar angle for a vertex of any face is greater than angqbfm, then the triangulation

is considered low-quality and mrec4 is set to a value of 1.

• Range: [0, 180]

Default: 160

–mrecm: local-reconnection flag.

• 1: use Delaunay criterion

• 2: use combined Delaunay and min-max Laplacian edge weight

• 3: use combined Delaunay and min-max skew. (not yet implemented)

Default: 2

–mrecm2: local-reconnection flag for traversing the element link-list (applies only in

reconnection with 2-3, and 3-2 flips).

• 0: reconnect the grid in a single traversal

• 1: reconnect the grid in repetitive traversals

Default: 0

–mrecqm: quality local-reconnection flag. Applies to all quality improvement except

the last pass.

• 2: use a combined Delaunay and min-max Laplacian edge weight

• 3: use a combined Delaunay and min-max skew. This option typically results in a

slightly improved grid quality at the expense of an increase in required CPU time

Default: 2

–mrecqmf: final quality local-reconnection flag. Applies only to the last pass of qual-

ity improvement.

• 2: use a combined Delaunay and min-max Laplacian edge weight

• 3: use a combined Delaunay and min-max skew (not yet implemented).

Default: 2

–mrec4: 4-4 element local-reconnection flag.



192

• 0: reconnect 4-4 element only during final quality improvement

• 1: reconnect 4-4 element combinations during grid generation

Default: 0

–mrec4q: quality 4-4 element local-reconnection flag (applies when mrec4 = 1).

• 0: reconnect 4-4 element with a lower final quality

• 1: reconnect 4-4 element with higher final quality

Default: 1

–pivot: face normal flag.

• 0: compute face normal without sorting its edges (faster)

• 1: compute a face normal from its sortest edges (more accurate)

Default: 1

–ngen: maximum number of grid passes.

• Range: [0, 10000000].

Default: 10000

–mdse: small edge deletion flag.

• 0: do not delete small edges

• 1: delete small edges

Default: 1

–cdse: small edge factor. Small edges are deleted if the small edge deletion flag is on

(mdse = 1).

• Range: [0, 0.7]

Default: 0.25

–outmesh: output mesh (vtk).

–maxStack: max soft stack size (MB).

–loc: point location flag.

• 0: use exact arithmetics to locate points

• 1: use non-exact arithmetics for points located close to a face or an edge and insert

them as they were exact on a face or an edge
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Default 0

–loctol: tolerance for loc = 1.

• Range: [0, 0.001]

Default: 1e-5

–qstat: grid quality statistics flag.

• 0: suppress

• 1: print

Default: 0

–nqual: number of quality improvement passes. If nqual = 0 then all quality improve-

ment is skipped.

• Range: [0,10]

Default: 2

–nqualf: number of quality improvement repeats. Maximum number of times to repeat

quality improvement if grid quality is too low.

• Range: [0,10]

Default: 1

–nsmth: number of smoothing iterations.

• Range: [0, 10]

Default: 3

–csmth: smoothing coefficient.

• Range: [0, 1]

Default: 0.5.

–vsmthb: smoothing coefficient reduction factor for all nodes adjacent to a boundary.

• Range: [0, 1]

Default: 0.5

–msmth: smoothing flag.

• 1: use optimal placement smoothing initially
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• 2: use centroid averaging smoothing initially

Note: If the selected type produces an invalid grid then the other type is attempted. Default:

1

–mdbs: boundary sliver deletion flag.

• 0: do not delete boundary slivers

• 1: delete boundary slivers and reconnect boundary. The boundary surface triangles

are reconnected to delete boundary slivers.

Default: 0

–mdfs: quality field sliver deletion flag.

• 0: do not add nodes to delete field sliver elements during quality improvement

• 1: add nodes to delete field sliver elements during quality improvement

Default: 1

–ndbs: maximum number of repeats for deleting slivers from boundary (applies if

mdbs = 1).

• Range: [0, 100]

Default: 5

–ndfs: maximum number of repeats for adding field nodes to delete slivers (applies if

mdfs = 1).

• Range: [0, 100]

Default: 10

–nthreads: number of threads for grid refinement. Default: 1

–nthreadsq: number of threads for grid quality improvement. Default: nthreads

–nbuckets: number of buckets for data-decomposition in grid refinement.

• Range: [1, nelements]

Default: nthreads

–nbucketsq: number of buckets for data-decomposition in grid quality improvement.

• Range: [1, nelements]
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Default: nthreadsq

–frbtransf: fraction of buckets to transfer among threads for load balancing in grid

refinement.

• Range: [0,1]

Default: 0.3

–cbtransf: coefficient to reduce the number of buckets transfered between a pair of

threads in grid refinement.

• Range: (0,1]

Default: 1

–frbtransfq: fraction of buckets to transfer among threads for load balancing in grid

quality improvement.

• Range: [0,1]

Default: 0.3

–cbtransfq: coefficient to reduce the number of buckets transfered between a pair of

threads in grid quality improvement.

• Range: (0,1]

Default: 1

–ordt: orders the elemnts in the link-list into two groups (first the active elements, and

then the inactive elements) to improving the performance. Applies in grid refinement.

• 0: do not order

• 1: order

Default: 1

–ordtq: orders the elemnts in the link-list into two groups (first the active elements,

and then the inactive elements) to improving the performance. Applies in grid quality

improvement.

• 0: do not order

• 1: order

Default: ordt

–sortp: sort elements with BRIO and Hilbert curve before data-decomposition in grid

refinement.



196

• 0: off

• 1: on

Default: 0

–sortpq: sort elements with BRIO and Hilbert curve before data-decomposition in grid

quality improvement.

• 0: off

• 1: on

Default: 0

–blockmul: multiplies the sizeof(object) to pre-allocate a continuous block in memory.

• Range: [1, 10e9]

Default: 10e5

–pint: pins a thread to a specific CPU.

• 0: off

• 1: on

Default: 1

–nminpts: minimum number of generated candidate points to achieve convergence in

grid refinemenent.

• Range: [0,1000]

Default: 1

–sliv: counts the slivers after the completion of the grid refinement.

• 0: off

• 1: on

Default: 0
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