
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computational Modeling & Simulation
Engineering Theses & Dissertations

Computational Modeling & Simulation
Engineering

Spring 2011

Adding Executable Context to Executable Architectures: Enabling Adding Executable Context to Executable Architectures: Enabling

an Executable Context Simulation Framework (ECSF) an Executable Context Simulation Framework (ECSF)

Johnny J. Garcia
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Garcia, Johnny J.. "Adding Executable Context to Executable Architectures: Enabling an Executable
Context Simulation Framework (ECSF)" (2011). Doctor of Philosophy (PhD), Dissertation, Computational
Modeling & Simulation Engineering, Old Dominion University, DOI: 10.25777/yr2g-yp42
https://digitalcommons.odu.edu/msve_etds/26

This Dissertation is brought to you for free and open access by the Computational Modeling & Simulation
Engineering at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling & Simulation
Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information,
please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/26?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ADDING EXECUTABLE CONTEXT TO EXECUTABLE ARCHITECTURES:

ENABLING AN EXECUTABLE CONTEXT SIMULATION FRAMEWORK (ECSF)

by

Johnny J. Garcia
M.S. December, 2002, Florida Institute of Technology

M.B.A. December, 2003, Florida Institute of Technology
B.S. May, 1999, St. Leo College
B.A. May, 1999, St. Leo College

A dissertation submitted to the faculty of
Old Dominion University in partial fulfillment of the

Requirements for the degree of

DOCTOR OF PHILOSOPHY

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY
May 2011

Approved by:

Andreas Tolk (Director)

Tom Pawlowski (Member)

rederic D. McKenzie (Member)

ABSTRACT

ADDING EXECUTABLE CONTEXT TO EXECUTABLE ARCHITECTURES: ENABLING AN
EXECUTABLE CONTEXT SIMULATION FRAMEWORK (ECSF)

Johnny J. Garcia
Old Dominion University, 2011

Director: Dr. Andreas Tolk

A system that does not stand alone is represented by a complex entity of

component combinations that interact with each other to execute a function. In today's

interconnected world, systems integrate with other systems - called a system-of-

systems infrastructure: a network of interrelated systems that can often exhibit both

predictable and unpredictable behavior. The current state-of-the-art evaluation process

of these system-of-systems and their community of practitioners in the academic

community are limited to static methods focused on defining who is doing what and

where. However, to answer the questions of why and how a system operates within

complex systems-of-systems interrelationships, a system's architecture and context

must be observed overtime, its executable architecture, to discern effective predictable

and unpredictable behavior.

The objective of this research is to determine a method for evaluating a system's

executable architecture and assess the contribution and efficiency of the specified

system before it is built. This research led to the development of concrete steps that

synthesize the observance of the executable architecture, assessment

recommendations provided by the North Atlantic Treaty Organization (NATO) Code of

Best Practice for Command and Control (C2) Assessment, and the metrics for

operational efficiency provided by the Military Missions and Means Framework. Based

on the research herein, this synthesis is designed to evaluate and assess system-of-

systems architectures in their operational context to provide quantitative results.

Ill

Copyright, MMXI, by Johnny J. Garcia, All Rights Reserved

ACKNOWLEDGEMENTS

IV

I would like to thank my advisor, Dr. Andreas Tolk, for his continuous

support, guidance and friendship throughout this work. His vision, enthusiasm and

dedication to science, modeling and simulation, and education have been influential.

There are no words to express my gratitude, admiration and affection for him. It has

been a privilege to work under his supervision. I would like to thank my committee

member, Dr. Tom Pawlowski, for his guidance and feedback at critical points in my

research. I would like to thank my other committee members, Dr. Frederick

Mckenzie and Dr. Charles Keating, for their valuable suggestions throughout this

study. All together, my committee's insights enriched my dissertation immensely. I

would like to thank all my family, friends and sponsors for their continuous

encouragement. "But the Lord stood at my side and gave me strength" (2 Timothy

4:17). Without the grace of the Lord I could not have accomplished this work. I am

grateful and indebted to my mother and father, Juan and Diana Garcia, for their

love, throughout my life. Of course, I would be remiss if I did not mention the

extensive support and love of my mother and father-in-law, Julie Phelps and Serafin

Escobar. I would also like to commemorate my grandmother, Delia Lopez, who was

my rock throughout my life and told me to never give up; I truly miss her. Finally and

most specially, this study is dedicated to my wonderful wife of 21 years, Lorena

Garcia, who finds the best in me and stands by me with her endless patience,

strength, friendship and love through the journey of life and to my wonderful twin

V

daughters (Hope and Faith) who have provided me continuous love, hugs and kisses

when daddy was tired and worn from the process of this work.

vi

TABLE OF CONTENTS
Page

1. INTRODUCTION 1

1.1. OVERVIEW 1

1.2. RESEARCH METHOD 5

1.3. RESEARCH OBJECTIVES 5

1.4. RESEARCH APPROACH 6

1.4.1. ACTIVITIES 6

1.4.2. IMPACT 7

1.5. RESEARCH ORGANIZATION 7

2. LITERATURE RESEARCH 9

2.1. STATE-OF-THE-ART IN SYSTEMS ENGINEERING 13

2.2. STATE-OF-THE-ART IN ARCHITECTURE EVALUATION 14

2.2.1. EVALUATION OF THE ARCHITECTURE 15

2.3. WHAT IS A SYSTEM-OF-SYSTEMS? 17

2.4. STATE-OF-THE-ART IN SYSTEMS ARCHITECTURE 18

2.5. STATE-OF-THE-ART IN ARCHITECTURAL FRAMEWORKS 19

2.5.1. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK (DODAF) PROVIDES

THE WHO, WHAT AND WHERE 20

2.6. STATE-OF-THE-ART IN EXECUTABLE ARCHITECTURES 21

3. RESEARCH CHALLENGE AND PROBLEM SET 23

3.1. WHY IS THIS A GAP? 23

3.2. SPECIFIC RESEARCH OBJECTIVES 24

3.3. PROPOSED SOLUTION THEORY AND METHOD 25

3.4. EVALUATION METHOD 27

vii

4. EVALUATION OF EXISTING METHODS REGARDING THEIR APPLICABILITY 29

4.1. NATO CODE OF BEST PRACTICES 29

4.2. DODAF AND EXECUTABLE ARCHITECTURES 31

4.2.1. EXECUTABLE ARCHITECTURE THAT APPLY DODAF TECHNIQUES 32

4.2.2. INTEGRATION DEFINITION (IDEF) 33

4.3. ZACHMAN 37

4.4. 4+1 VIEW MODEL 38

4.4.1. LOGICAL ARCHITECTURE 40

4.4.2. LOGICAL VIEW NOTATION 40

4.4.3. PROCESS ARCHITECTURE 41

4.4.4. DEVELOPMENT ARCHITECTURE 41

4.4.5. PHYSICAL ARCHITECTURE 42

4.4.6. SCENARIOS 42

4.5. MODEL-DRIVEN ENGINEERING 42

4.6. MISSIONS AND MEANS FRAMEWORK (MMF) 44

4.6.1. MAPPING TO DODAF 45

5. METHOD DEVELOPMENT OVERVIEW 48

5.1. DISCRETE EVENT SYSTEM SPECIFICATION (DEVS) AND DEVS UNIFIED PROCESS

(DUNIP) 48

5.2. FEDERATING EXECUTABLE CONTEXT WITH FEDEP/DSEEP 50

5.3. MEASURES OF EFFECTIVENESS (MOE) AND MEASURES OF PERFORMANCE

(MOP) 52

6. EXPECTED RESULTS 54

6.1. FIRST EXAMPLE: DEADLOCK 54

viii

6.1.1. MUTUAL EXCLUSION 55

6.1.2. A THREAD HOLDING A RESOURCE IS ABLE TO PERFORM AN UNBOUNDED

WAIT 55

6.1.3. RESOURCES CANNOT BE FORCIBLY TAKEN AWAY FROM THEIR CURRENT

OWNERS 55

6.1.4. A CIRCULAR WAIT CONDITION 55

6.1.5. SUMMARY OF DEADLOCK 57

6.2. THEORETICAL EXAMPLE OF EC: LIVELOCK 57

6.2.1. STARVATION 58

6.2.2. INFINITE EXECUTION 58

6.2.3. BREACH OF SAFETY PROPERTIES 58

6.2.4. ANALYTICAL ALGORITHMS 58

6.2.5. DEADLOCK AVOIDANCE 59

6.2.6. DEADLOCK/UVELOCK RECOVERY 60

6.2.7. DEADLOCK/UVELOCK PREVENTION 61

6.2.8. EXECUTABLE CONTEXT EXAMPLES FOR SOLVING DEADLOCK AND LIVELOCK61

6.2.9. DEADLOCK AND LIVELOCK PROBLEM FORMATION 63

7. OPERATIONAL EXAMPLE 68

7.1. DESIGN OF EXPERIMENT (DOE) FOR OPERATIONAL EXAMPLE 68

7.1.1. PUTTING EC TO PRACTICE: DEVELOPMENT OF THE EXECUTABLE CONTEXT

SIMULATION FRAMEWORK (ECSF) 71

7.2. EXECUTABLE CONTEXT: FOUR-STEP METHOD IN PRACTICE 82

7.2.1. STEP 1: DEVELOP THE BLUEPRINT EXAMPLE FOR JOINT CLOSE AIR SUPPORT

(JCAS) AS IT RELATES TO A NET ENABLED WEAPON (NEW) 83

7.2.2. STEP 2: BUILD AN EXECUTABLE ARCHITECTURE 91

ix

7.2.3. STEP 3: MAP EXECUTABLE ARCHITECTURE TO THE BLUEPRINT 97

7.2.4. STEP 4: FEDERATE ALL STEPS INTO AN EXECUTABLE METHOD 101

7.3. RESULTS OF THE NEW EXPERIMENT 102

8. CONCLUSION I l l

9. EXTENSIBILITY OF THE RESEARCH 115

10. REFERENCES 119

11. APPENDIX A CODE BLOCK FOR CLASS 129

12. APPENDIX B DEVS JAVA CODE BLOCK 132

13. VITAE 140

X

LIST OF FIGURES

:igure 1: V-MODEL 3

:igure 2: System and operational architecture disjointed evaluations 4

:igure 3: Buede's depiction of a system's "context" (Buede, 2000, p. 38) 9

:igure 4: Executable context (EC) as it relates to knowledge-based evaluation 12

igure 5: Research intentions from information to knowledge 23

:igure 6: EC's four steps for evaluating targeted systems 26

igure 7: NCOBP problem formulation 30

igure 8: Executable context problem formulations 31

igure 9: IDEF 3 symbols (UOB symbols) 36

igure 10: Examples of IDEF 3 diagram 36

igure 11: The 4+1 view model 40

igure 12: The synthesis and employment processes for the "how and why" 45

igure 13: DEVS Unified Process (DUMP) 49

igure 14: Deadlock model 56

igure 15: Deadlock with four processes and four resources 57

igure 16: Wait graph - deadlock situation with termination of thread 3 avoidance 59

igure 17: Executable context deadlock and livelock analysis 64

igure 18: Flagged state transition map 65

igure 19: ECSF 71

igure 20: Remote data ingesting 73

igure 21: Executable context integration services 74

igure 22: Executable context integration services 75

igure 23: Executable context simulation framework integration with other models.... 76

igure 24: ECSF mapping of models and results 77

igure 25: ECSF Interrelated results 78

igure 26: Executable context architecture integration 80

igure 27: ECSF as part of an enterprise-level process 81

igure 28: JSAF 82

XI

Figure 29: Executable context's four steps for evaluating targeted system-of-systems. 83

Figure 30: JCAS operation without NEW 85

Figure 31: JCAS operation with NEW 85

Figure 32: Experiments ERD 88

Figure 33: Experiments OV-6C 89

Figure 34: Blueprint mapping 91

Figure 35: Decoupling example 93

Figure 36: Atomic DEVS models in executable context 94

Figure 37: ECSF coupling and composability of atomic models for CAS implementation 95

Figure 38: Step 2 of the executable context method - decomposing the systems

processes with other systems in the operational process to develop the hybrid

viewSV-410C 96

Figure 39: Executable context method step 2b - build executable architecture and

compose systems processes with operational processes into the Operational

Activity Model OV-5 97

Figure 40: Step 3 - map executable architecture to the blueprint 98

Figure 41: Simple operational activity diagrams 99

Figure 42: Storage of executable parameters 100

Figure 43: Step 4 - putting it all together 102

Figure 44: JCAS Dead Lock Model 105

Figure 45: "how" and "why" of Run 1 (SDB) 106

Figure 46: "how" and "why" of run 2 (SDB 2) 107

Figure 47: "how" and "why" of run 3 NEW 108

Figure 48: Functional Orchestration of Operational and Systems Architectures using

Executable Context Method 112

Figure 49: Future research - executable context for portfolio management 118

XII

LIST OF TABLES

Table 1: Research Alignment 8

Table 2: Research Question and Identified Methods 27

Table 3: IDEF methods 34

Table 4: Zachman enterprise architecture framework interrogatives 38

Table 5: MMF mapping to DoDAF 47

Table 6: DSEEP seven-step process 51

LIST OF EQUATIONS

Equation 1: DEVS equation structure is used in executable context 66

Equation 2: PSSK equation 105

1

1. INTRODUCTION

1.1. OVERVIEW

The U.S. Department of Defense (DoD) and other agencies and organizations

deploy systems supporting mission critical operations. On the front end of system

development, particularly during procurement, analysis and experimentation are often

conducted to ascertain the effectiveness of a developing system to meet defined

mission requirements. Supporting this task is the modeling and simulation (M&S)

community which assists the overarching goal of the procurement community to

evaluate a system's architecture before building the specified system. Current analysis

techniques are performed using static evaluation of the system's architecture; in

essence, these techniques merely evaluate the system in a controlled environment

while examining the coherence and plausibility of the architecture's artifacts. These

static evaluation processes answer who (entity) is doing what (function) where

(component) (Banks et al. 1987; Balci, 1987).

Conducting an appropriate dynamic analysis of a system's effectiveness and

performance in its intended operational environment often proves difficult since

present approaches focus on technical and architecture systems (Maranzano et al.,

2005) being represented in drawings, flowcharts, PowerPoint® presentations, and block

diagrams. This tabletop analysis does not exhibit the characteristics of the executable

architecture and thus limits the known and unknown system behaviors to only who is

doing what and where. Systems supporting the critical missions of the DoD, whether

developed for Battlespace Management, Intelligence-Surveillance-Reconnaissance (ISR),

Force Protection, Service Management, Freedom of Movement, Medical Evacuation, or

other operations within the DoD, are required to comply with the Department of

Defense Architectural Framework (DoDAF), an architectural evaluation. Although

DoDAF is considered state-of-the-art and represents the key cognizant analysis vehicle

of the intended system, most of the requirements have been recognized and the

possible situations are offered as given, potentially "outside the box" options (Levis et

2

al., 2000; Handley et al., 2000). DoDAF presently does not contain trade-off analysis,

game theory projections, Monte Carlo simulation, or other complicated modeling

analytical support tools (Charles & Turner, 2004). In its current state, DoDAF starts at a

universal level (DoDAF V1.5 Vol. I and II, 2005) but fails to extrapolate the behaviors

characteristic of the executable architecture. This lack of robust features and ability to

accurately evaluate the architecture was noted by Levis (Levis & Wagenhals, 2006). Levis

identifies this as a precise objective with no framework to accomplish this objective. He

stated:

The derivation of an executable model of the architecture from the views and the
associated integrated dictionary provides a basis for understanding the
interrelationships among the various architecture products and establishes the
foundation for implementing a process for assessing and comparing architectures
(Levis & Wagenhals, 2000, p. 226).

According to ISO/IEC 15939:2002, an attribute is a "characteristic of an entity

that can be distinguished quantitatively or qualitatively by human or automated means"

(2000, p. 154). Architecture attributes are important because they describe the

properties of the system in a unique, distinguishing manner. Whether described

granularly leaving little doubt which components are codified into the system's design,

esoterically for confidentiality or a specific community's comprehension, or generally to

ascertain primary requirements, architecture attributes establish the baseline of a

system for mission or operational assurance.

Measurability of entities makes architectures ideally useful for monitoring and

tracking many systems' engineering tasks. Bass, et al. (1998) used entities to measure

systems architectures in making valuable decisions and tradeoffs in evaluating the

architecture (p. 221-237). Although Bass's entities improved an organization's decisions

affecting system development or acquisition, the context of external behaviors remain

excluded from the evaluation process. Since systems are no longer islands to

themselves, neglecting the effects of other systems could produce a variety of

unintended or unwanted results.

3

How are systems modeled? The V-Model (Figure 1) is a systems development

model designed to simplify the understanding of the complexity associated with

developing systems (Forsberg, 2005; INCOSE, 2007).

Project
Definition1

„ I t , \ /Operation
Concept of \ „, .„ .. / and nnpratmriE Verification /' . ?n a
operations a f ^ Maintenance

Validation
Requirements System

and
Architecture

Verification
and Validation

\

Detailed
Design

Integration,,
Test, and

Verification
Project

Test and
integration

\nip\3ni3ninhhn

Time
Figure 1: V-MODEL

In systems engineering, the V-model is used to define a uniform procedure for

product or project development. The V-model is a graphical representation of the

systems development lifecycle. It summarizes the main steps to be taken in conjunction

with the corresponding deliverables within the computerized system evaluation

framework. The "V" represents the sequence of steps in a project life cycle

development. It describes the activities and results that must be produced during

product development (Forsberg, 2005; INCOSE, 2007). The left side of the "V"

represents the decomposition of requirements and creation of system specifications.

The right side of the "V" represents integration of parts and their verification.

What is systems architecture? According to Zachman's Framework, an enterprise

architecture framework provides a formal and highly structured way of viewing and

file:///nip/3ni3ninhhn

4

defining an enterprise, while systems architecture is described as "not systems

architecture, but a set of them. Architecture is relative - what you think an architecture

is depends on what you are doing" (Zachman, 1987). When considering how the

product - the system represented by the system architecture - will be used, it is

apparent that the system will exist in a dynamic environment in which it must address

multiple, concurrent tasks. Today's state-of-the-art executable architectures do not

effectively address how architectures are evaluated within the entirety of their context.

In essence, the "why" and "how" architectures function in their intended environment

or purpose before fielding remains unresolved.

Through conducted research, the concept of executable context was developed

with the intent to model the systems architecture within a system's intended

environment or its "context." The main objective or problem statement of this research

is, "Can systems architecture be modeled within its operational and systems context? If

so, does this lead to better decisions after the system is evaluated?" Figure 2 shows how

current state-of-the-art systems architecture evaluation focuses on either the

operational model or the systems model, rather than in a harmonized effort.

Mission Requirements

Operational Requirements

/ M R \ / M R \ / M R \ / M R \

<JKEBS/&> ^KEBI^ ^ B 3 E S ^ MKEEM^

Systems Measures of
Per formance (M O P)
System Requirements

Functional Requirements

Capability Requirements MEKk aEMk « B K M
Figure 2: System and operational architecture disjointed evaluations

5

This research uses contributions from the disciplines of modeling and simulation

(M&S) and systems engineering (SE) to functionally orchestrate the dynamic execution

of operational and systems architecture to answer specific questions with the

executable context simulation framework developed within this research effort.

1.2. RESEARCH METHOD

To aid in the understanding of theoretically-based research findings, it was

necessary to test the state-of-the-art in systems architecture evaluation against

theoretically-based challenges. Depending on the statistical results, this may include

outcomes that combine effects of factors indirectly related to the systems architecture.

Therefore, assessment of the systems architecture evaluation may prove to be difficult.

These potential obstacles may be overcome by adding qualitative results to the

quantitative outcome (Green, et al., 1987).

In the case of this thesis, the research method expands the research breadth and

enlightens the more universal debate on system-of-systems architecture evaluation. In

summary, this research strategy that comprises this thesis integrates quantitative and

qualitative methods, or mixed methodology, with the intent to produce an intrinsic

awareness of system behavior, capture a broader scope of how external elements affect

systems behavior, and reduce potential risk imposed by elements undetected in the

current static evaluation methods. In addition, the research strategy intends to develop

a method for the M&S community to probe underlying issues imposed by external

systems by using mixed-method analysis - defined as creative alternatives to traditional

or monolithic ways to conceive and implement architecture evaluation.

1.3. RESEARCH OBJECTIVES

The intent of this thesis is to determine how to capture and execute the system

in context. Defined in detail in section 2, evolving the static architecture evaluation

process into systems context comprehension will use a systematic method to induce

dynamic modeling. Each architectural capability will be identified and evaluated to

6

ascertain performance and system effectiveness, particularly concerning their

operational context. The inclusion of the external environment influences how systems

operate.

By including operational context within this protocol, the research will develop a

method to support repeatable and measurable environments while producing a more

reliable and representative systems architecture context. The circumstantial analysis of

dynamic modeling support capabilities uses replaceable components that can be

introduced or excluded to instantiate systems architecture capabilities and evaluate

operational objectives. Key research observations are driven by these questions:

• What are the systems that are affected by this system?

• What are the systems that affect this system?

• What environment does this system operate in?

• Will this system execute within its intended environment as predicted?

1.4. RESEARCH APPROACH

The research approach is to develop a method to convert architecture products

into an executable model and generates a federation of simulations that represents a

system of systems. The research is based upon an examination of the systems'

operational environments and operational mission threads. The findings of this research

generalize this methodology and provide resources for the methodology to function

with multiple frameworks and models. Further, the research explores how an

executable context is defined based on theoretical and real-world operational examples.

In summary, the research approach is directed to determining how or if the

incorporation of the context leads to different decisions.

1.4.1. ACTIVITIES

The research activities of this dissertation were approached using four concrete

steps. First, the theory was developed. Second, the theory was tested based on

theoretical cases to address technical issues associated with the utilization of models

7

and simulations. Third, the research was built into a methodology to improve the

management of related information. Fourth and finally, the methodology was used to

develop a conceptual solution to provide quantitative results of architecture in an

operational context.

1.4.2. IMPACT

By applying this method of architecture evaluation, the evolution of system-of-

systems may be significantly impacted. It is hypothesized that dynamic, evaluated

architectures will develop greater operational accuracy by providing more accurate and

appropriate analysis of system-of-systems architectures. The developed method enables

the application of system specific measures of performance based on system

architecture specification to contribute directly to the operationally relevant measures

of effectiveness required to evaluate the systems in their intended operational contexts.

To achieve this, the research evaluated systems architectures for connectivity,

performance, and information flow within their intended purpose of operation.

1.5. RESEARCH ORGANIZATION

This dissertation is organized in nine chapters. Chapter 1, Introduction, defines

the research method, objectives, and approach to activities and their impact. Chapter 2,

Literature Research, provides the literature review of related research, thus establishing

the applicability of the research contained herein. Chapter 3, Research Challenge and

Problem Set, identifies the gap this research intends to close through the advancement

of the current state of system-of-systems architecture evaluation and research accuracy.

Chapter 4, Research Leveraged Methods, provides an overview of how the research

method advances the state-of-the-art within existing methods regarding their

applicability to system-of-systems architecture evaluations. Chapter 5, Method

Development and Overview, details the proposed theoretical solution and method to

establish the academic research foundation, which includes research generalization of

other architecture frameworks. Chapter 6, Bounding the Research: Executable Context

Engineering Element Examples, bounds the research, experimental results, and

8

synthesis of the executable context engineering elements. Chapter 7, Conclusion,

provides conclusions for the theoretical, methodology and solution of the research.

Chapter 8, Extensibility of the Research, identifies future research areas for extending

and enhancing the executable context method for portfolio management and other

domains for system-of-systems, conclusions and open research directions. Finally,

chapter 9, References, provides all references described within this dissertation.

Table 1 below describes the organization in better details in relation to theory,

method and solution. This table aligns what elements are used to aid in the theory of

the research, the development of the method and how the theory and the method were

used to develop a solution to the problem. These elements will be used to define each

section of the document.

Theory

Method

Solution

State of the "Art"

Literature:
1. Systems Engineering
2. System-of-systems
3. Architecture Frameworks
4. Architecture Evaluation

1. DEVS Unified Process (DUNIP)
2. Method Architecture Validation

(MAVS)
3. NATO Code of best practice

(NCOBP)
4. Mission to Means Framework

(MMF)

1. Discrete Event System
Specification (DEVS)

2. JAVA DEVS
3. Department of Defense

Architectural Framework (DoDAF)
4. Executable Context Simulation

Framework (ECSF)

Data

Research

Static
Information

Federated
models-

Modeling &
Simulation

Research Findings

Gap Identified

Executable Architecture
defined

Quantitative Knowledge
"Executable Context"

defined

Table 1: Research Alignment

9

2. LITERATURE RESEARCH

A system's context, as defined by Buede (2000), is a set of entities that interact

with other systems via the system's external interfaces. In Figure 3, Buede (2000)

depicts where the external systems can impact the system and whether or not the

system impacts the external systems. A system in Buede's (2000) depiction below may

function by providing some context to an external source, consume other system's

resources, or interact with the external system bi-directionally. Buede (2000, p. 38)

further defines that "the entities in the system's context are responsible for some of the

system's requirements as it applies to the external systems." Therefore, Buede's (2000)

context definition incorporates that set of entities which support the interaction of a

system with all other external systems.

Context

Impacts, but not impacted by, "System" ^ ^ ^ ^ 1

Figure 3: Buede's depiction of a system's "context" (Buede, 2000, p. 38)

10

A system's environment context attribute is dependent on the environment in

which the system and its components exist (Crnkovic & Larsson, 2004). All systems

reside within a context, and the context, to include those components of the

environment, needs to be defined to aid in the evaluation of the system's operation.

Levis, on the other hand, describes the context of a system as a set of entities that can

impact the system but cannot be impacted by the system (Levis, 1993, p. 2-6). Levis's

(1993) statement is true for a stand-alone system but not for today's interconnected

environments that are amalgamations of many systems interacting in the modes

described by Buede (2000) and are a part of a system-of-systems paradigm.

Leveraging the ideas of a context to define a system-of-systems model requires

two methodologies for validating architecture: an information paradigm of evaluation

and a knowledge paradigm for architecture evaluation. In Zachman's framework,

systems architecture is described as "not systems architecture, but a set of them".

Zachman developed six interrogatives - who, what, where, when, how, and why (1987)

to define architecture element representation. Sage and Rouse (1999) expanded these

interrogatives into two groups. One group relates to information (who, what, where and

when. The second group relates to knowledge (why and how). This framework

distinguishes between those elements that relate to information - who (people), what

(entities), where (locations), when (time) - and those that relate to knowledge: how

(functions) and why (purpose).

According to Russell Ackoff (1989), a systems theorist and professor of

organizational change, the content of the human mind can be classified into five

categories:

• Data

• Information

• Knowledge

• Understanding, and

• Wisdom

Ackoff (1989) states, "Data is raw. It simply exists and has no significance beyond

its existence (in itself)." It can exist in any form, usable or not, and does not have

11

meaning in and of itself. Information is data that has been given meaning by way of

relational connection. This "meaning" can be useful but does not have to be.

Knowledge is the appropriate collection of information, such that its intent is to be

useful. Knowledge is a deterministic process. When someone memorizes information,

they have amassed knowledge. This knowledge has a useful meaning to that person, but

it does not provide for, in itself, integration such that it would infer further knowledge. If

integration of meaningful information and knowledge would infer further knowledge,

systems that have an understanding of context may behave more reliably because they

can synthesize new knowledge, or minimally, new information from what is previously

known and understood. Understanding context can build upon currently held

information, knowledge, and comprehension itself. Systems, in essence, exhibit

understanding in the sense that they are able to synthesize new knowledge from its

context. From these syntheses of information and knowledge, systems' architectural

evaluations become information-based paradigms.

The emphasis of this research focuses the information-based evaluation

paradigm, based on a body of knowledge, to the development of an executable context

for systems architecture evaluation. This information-based approach for evaluation

based on knowledge is desirable for systems architecture evaluation. In today's

engineering environment, architectural evaluation is needed to support collaboration

among designers, programmers, program managers, and stakeholders who will procure,

test and ultimately use such systems.

Buede (2000) describes information as data in context. Knowledge is applicable

information in procedural form (Polanyi, 1998). However using today's architecture

evaluation methods, knowledge-based evaluation is not yet possible. The questions how

and why a system acts must become part of the evaluation, otherwise referred to as

knowledge-based evaluation as depicted in Figure 4. Knowledge-based evaluations

include mission requirements (MR), operational requirements (OR) and external

systems (ES) within the system's architectural definition. Figure 4 illustrates how

executable context (EC) enables conditions under which architectures can be

12

experimented with and evaluated. The information interrogatives (who, what and

where) are composed in the context of the system (the MR, OR and ES). An executable

architecture defines the when. All metrics applied on these levels measure the

performance of system components or sub-systems. The method developed within this

research enables a system to be modeled in the environment that enhances the ability

to answer why and how the architecture will be executed in its intended environment or

for its intended purpose (the system-of-systems). In this environment, the effectiveness

of the system in the operational context is measured by measures of effectiveness

(MOE) and measures of performance (MOP).

Why
How

System Requirements

Functional Requirements

Capability Requirements

[Execution]

Environment

When

Information Knowledge

Figure 4: Executable context (EC) as it relates to knowledge-based evaluation

As emphasized in this research, such architectural evaluation and the resulting

products must be completely dynamic to support these collaborative dialogs and to

allow stakeholders to accurately understand the intended system function and its

13

intended purpose within the context of its environment. Since system governance is

typically tied to limited resources, early detection and awareness of risk that could

affect a stakeholder's operations should benefit from executable context architecture

evaluation. This research introduces a new method to employ knowledge-based

evaluation of systems architectures. While current approaches evaluate measures of

performance on the tactical/system's level and measures of effectiveness on the

operational level independently, the framework developed here allows immediate use

of the system performance based on the system's specification and the use of it in the

operational context to contribute to the measures of effectiveness. As such, all six

identified interrogatives - who, what, where, when, why, and how - can now be

evaluated in one common framework.

The next section provides state-of-the-art in other disciplines that bound the

research method: systems engineering, architecture evaluation, system-of-systems,

system architectures, architectural frameworks and executable architectures.

2.1. STATE-OF-THE-ART IN SYSTEMS ENGINEERING

Systems engineering focuses on the engineering of large-scale, complex systems

(Sage, 1992). First and foremost, systems engineering is a trans-disciplinary

management technology (Sage, 2002). The term systems engineering can be traced

back to Bell Telephone Laboratories in the 1940s (Schlager, 1956) and, according to Hall

(1962), is a way to identify and manipulate the properties of a system as a whole, which

in complex engineering projects may greatly differ from the sum of the parts'

properties. Hall's perspective motivated the Department of Defense, NASA, and other

industries to apply the discipline of systems engineering (Hall, 1962).

As systems and their complex relationships grew, it was no longer possible to

rely on design evolution to improve upon a system since the existing tools were not

sufficient to meet growing demands on architecture evaluation (Sage, 1992). An

evolution of systems engineering emerged comprising the development and

identification of new methods and modeling techniques. Modeling aids in better

comprehension of engineering systems as they grow more complex. When it was no

14

longer possible to rely on design evolution to improve upon a system and the existing

tools were not sufficient to meet growing demands, new methods began to be

developed that addressed the complexity directly. The evolution of systems

engineering, which continues to this day, comprises the development and identification

of new methods and modeling techniques. These methods aid in better comprehension

of engineering systems as they grow more complex. Popular tools that are often used in

the systems engineering context were developed during these times.

2.2. STATE-OF-THE-ART IN ARCHITECTURE EVALUATION

During architecture evaluation, stakeholders strive to verify the requirements of

the system. In addition to enhancing confidence that the architecture will meet the

demands placed on it, the inclusion of the right evaluation components during this

phase can help generate confidence that the architecture will be able to support its

intended purpose. Architecture assessment involves thought experiments - modeling

and walking through scenarios that exemplify requirements - as well as an expert

assessment that identifies gaps and weaknesses in the architecture as described in

"Architecture Reviews: Practice and Experience" and "Best Current Practices: Software

Architecture Validation" (Best Current Practices, 1990; Marazano, et al., 2005, pp. 34-

43). Just as a system architect can not overlook such contextual factors as the network,

security requirements, hardware and systems standards, the architect cannot overlook

the context as defined in the research of the system. The key technical considerations

alluded to by "system fit to context" have to do with interoperability, consistency, and

interface with external systems. However, there are considerations to be factored into

architectural evaluation and choices to fit within the development organization's culture

and capabilities.

Architecture evaluations (AE) minimize duplicity and, with the help of high

performance scalable designs, facilitate easy formation of new evaluations. AEs can

produce a number of definite evaluations and enable a new understanding of evaluation

failures in relation to the capability requirements. AEs are valuable in the identification

of the types of applicable, accurate evaluation of data sources. AVs produce a

15

standardized flow identifying a set of required parameters for the sub-process

evaluation as well as the accessibility of result data to perform data evaluation. AEs

offer a framework for the performance of general processing needed for the evaluation

majority flows by maintaining the evaluation subroutines' flexibility.

2.2.1. EVALUATION OF THE ARCHITECTURE

According to Bredemeyer, architects make their best effort to fulfill the

requirements on the system throughout the evaluation phase of the architecture using

an external architecture team to provide an objective evaluation of the architecture

(1999). Evaluation of the architecture includes "thought experiments," modeling and

walking through scenarios to illustrate the requirements as well as evaluation by

specialists to identify architectural gaps and limitations based on their experience

(Rechtin, 1991; Seliger, 1997).

Another vital part of architecture evaluation is the improvement of prototypes

or proofs-of-concept. This is a more realistic, effective method of determining the future

success of the architecture as it tests the basic version of the architecture when it is

ready to implement. The architecture evaluation process is accomplished iteratively,

with multiple cycles through requirements, structuring, and evaluation. This method

yields the most control upon architecture specification but is normally complicated with

the issues of organization (e.g., the "Not Invented Here "(NIH) syndrome) that decrease

or even completely restrain the use of the architecture (Bredemeyer, 2007).

According to Bredemeyer's research, the process of evaluating architecture

specification is the most difficult to accomplish (Bean Architect, 2007). To enable a valid

outline of the architecture (who, what and where), Bredemeyer broke the process into

sub-phases, along the outline of the architecture, to aid in the evaluation.

Meta-Architecture: To aid in making decisions, the visualization of the

architecture is originated first. It is good to explicitly assign research time to generate

ideas in documented architectural styles, dominant designs, patterns, reference

architectures, or other architectures within the context of the system.

16

Conceptual architecture: The architectural system is then reduced to the

components and the responsibilities of each component while considering the

interrelation of various components. The objective of the conceptual architecture is to

concentrate on suitable system decomposition without focusing on the requirement

specification and information type. In addition, conceptual architecture is a helpful

medium to communicate regarding architecture to the non-technical stakeholders, i.e.

marketing and management departments (Bredemeyer, 2010).

Logical architecture: The conceptual architecture creates the preliminary point

for the logical architecture. Logical architecture is possibly developed and also

distinguished in the architecture establishment period. Developing the system activities

as dynamic capabilities is a helpful method in the architect's thinking process regarding

the component's interfaces and responsibilities. Component specifications influence the

architecture.

Another important part of architecture evaluation is the development of

prototypes or proofs-of-concept. Taking a skeletal version of the architecture all the way

through to implementation, for example, is a highly effective method of evaluating

aspects of the architecture (Bredemeyer, 2010).

This research used the latest version of the Department of Defense (DoD)

Modeling and Simulation Glossary, which defines evaluation as "the process of

determining the degree to which a model (architecture) or simulation is a faithful

representation of the real world from the perspective of the intended uses of that

architecture" (Defense Modeling and Simulation Office, 1997 p. 162). Evaluation, as

described by Banks, et al., demonstrates that a computerized model satisfies the

simulation objectives and requirements with sufficient accuracy within its domain of

applicability (1987).

In these definitions, the terms "real world" and "domains" refer to the entities

needed to enable an executable context to answer the interrogatives how and why.

Prior research conducted by Levis, Mittal, and others enabled executable architectures

17

to answer the when of the six interrogatives, and architectural frameworks provide the

means to answer the who, what, and where (Mittal, 2006; Levis, & Wagenhals, 2006).

The current state of the art in architecture evaluation has shown that evaluation of

systems architecture is based on model developer interpretation to evaluate the

operational architecture and systems architecture artifacts independent of each other.

This research enables the integration of the independent models into a common

method that allows harmonization of system and operational architecture as an

executable. This research also allows the resulting artifacts be federated into an

executable context that represents all external systems and can be initialized with the

elements describing an operational scenario, allowing relevant measures of

performance on the system level and measures of effectiveness on the scenario level to

be derived from operational requirements while using standard simulation architectures

environments and common frameworks.

2.3. WHAT IS A SYSTEM-OF-SYSTEMS?

There are many definitions of system-of-systems (SoS) depending on the

application area and focus (Maier, 2005, p. 3149-3154; Carlock, et al., 2001, p. 242-261;

Sage, et al., 2001, p. 324-345; Gideon, et al., 2005; Keating, Rogers, Unal, Dryer, et al.

p.36; Keating, 2005). Popper, Bankes, Callaway and DeLaurentis (2004) describe SoS as

a collection of task-oriented or dedicated systems that pool their resources and

capabilities together to obtain a new, more complex, 'meta-system' which offers more

functionality and performance than simply the sum of the constituent systems.

Several combinations of characteristics are observed in SoS (Bar-Yam, et al.,

2004):

• Operational independence of elements

• Managerial independence of elements

• Evolutionary development

• Emergent behavior

• Geographical distribution

• Heterogeneity of systems

• System of networks

18

SoS studies are interdisciplinary and span through the study of architecting as

well as various modeling and simulation techniques including network theory, systems

theory, uncertainty modeling, agent-based modeling, and object-oriented simulation.

This research emphasizes the use of SoS to define measures, operational systems

architectures and visual tools for capturing systems and operational requirements, and

decision and operational analysis of external systems which are needed to aid in the

development of the SoS to establish the context of the system being evaluated

2.4. STATE-OF-THE-ART IN SYSTEMS ARCHITECTURE

Systems architecture is necessary to describe the structure of a system. Every

system has an architecture, whether it is explicitly or implicitly designed and

documented. Architecture has many definitions. The International Council on Systems

Engineering (INCOSE) defines systems architecture as, "the arrangement of elements

and subsystems and the allocation of functions to them to meet system requirements"

(INCOSE, 2006 p 9). IEEE 1471 defines architecture as the "fundamental organization of

a system embodied in its components, their relationships to each other, and to the

environment, and the principles guiding its design and evolution" (Institute of Electrical

and Electronics Engineers, 2000). Merriam-Webster defines systems architecture as "a

conceptual design that characterizes the structure and/or behavior of a system"

(Merriam-Webster, 2003). Buede defines systems architecture as a way to "provide the

foundation for developing and evaluating engineered system of systems" (Buede, 2000,

p. 38).

Systems architecture includes the process for generating a functional, physical

and operational architecture from a top-level operations concept. A state-of-the-art

robust architecture exhibits an optimal degree of fault-tolerance, backward

compatibility, forward compatibility, extensibility, reliability, maintainability, availability,

serviceability, usability, and such other attributes as necessary and/or desirable.

Systems architecture is a process for planning and building structures and systems to

respond to a given need (Rechtin & Maier, 1997). The set of relations, which the

19

architecture describes, can be expressed in various ways such as software, hardware,

organizational management, or knowledge representation.

The essence of system architecting is structuring by bringing form to function, by

bringing order out of chaos, and by converting partially formed ideas of a client into a

workable conceptual model. In systems architecting, the alternative architectures are

large and the selection is not easy. Therefore, the systems architecting process focuses

on balancing the customer needs, fitting the interfaces of system components, and

compromising among the key system attributes, such as cost, risk, schedule, and

performance. Systems architecture is concerned with the internal interfaces among the

system's components or sub-systems and the relationship between the system and its

external environment. It is a representation because it provides the elements

comprising a system, the relationships among the system elements, and the rules

governing the relationships. It is also a process because a sequence of steps is necessary

to design or change the architecture of a system.

Systems architecture can best be described as a representation of an existent or

"to be created" system and the process and discipline for effectively implementing the

design(s) for such a system. The set of relations (that is, embedded information) that

architecture describes may be expressed in hardware, software, or other application.

Although the words between these definitions are somewhat different, the concept

behind architecture is consistently described as organizing a system into constituent

parts as specified through requirements to satisfy a desired goal. One challenge when

discussing architecture is to understand what part of the architecture is under

discussion and establishes the need for an executable context of the systems

architecture. Architecture frameworks help in the organizing of architectural

information.

2.5. STATE-OF-THE-ART IN ARCHITECTURAL FRAMEWORKS

Architecture frameworks improve understanding by providing systematic

approaches to architecture development. However, many aspects of architecture

remain unambiguous (Tang, Han, & Chen, 2004). IEEE 1471:2000 defines the primary

20

goal of architectural frameworks as an indication of "what information regarding

architecture is important to be captured in architecture descriptions and to provide

means for capturing this information" (Institute of Electrical and Electronics Engineers,

2000). Architectural frameworks guide the selection of what information is relevant for

this purpose and trigger the architecture description.

An architecture framework provides a consistent approach for standardizing,

planning, analyzing and modeling these entities for this research. Several architecture

frameworks have been published for this purpose. Activities defined in these

architecture frameworks vary, as do their outcomes. After examining different

architecture frameworks and methods for architecture evaluation such as A Framework

for Classifying and Comparing Software Architecture Evaluation Methods (Barbar, M.A.,

et. al., 2004, pp. 309-318), the IEEE Recommended Practice for Architectural Description

of Software-Intensive System (Institute of Electrical and Electronics Engineers, 2000),

and A Comparative Analysis of Architecture Frameworks (Tang, Han., & Chen, 2004),

this research leverages the Department of Defense Architecture Framework (DoDAF) as

its fit-for-purpose: an adaption of specific principles to be applied to all programs for

standardized language and presentation of the architecture framework to ensure

architecture solutions are appropriate for the DoD.

2.5.1. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK (DoDAF) PROVIDES
THE WHO, WHAT AND WHERE

The Department of Defense mandates that DoDAF be adopted to express high-

level system and operational requirements and architectures (DoDAF Working Group,

2003). DoDAF is the basis for the integrated architectures mandated in DOD Instruction

5000.2 (2003) and provides broad levels of specification related to operational, system

and technical views (Chairman, Joint Chief of Staff (JCS) Instruction 3170.01D, 2004;

Chairman, JCS Instruction 6212.01D, 2006). DoDAF and other DoD mandates pose

significant challenges to the DoD system/operational architecture development and

testing communities because DoDAF specifications must be evaluated for compliance

with requirements and objectives, even though they are not expressed in a form

21

amenable to such evaluation. However, a DoDAF-compliant system does not have the

necessary information to construct high-fidelity simulations (Mittal, 2006; Levis, &

Wagenhals, 2006). Such simulations become, in effect, the executable architectures

referred to in the DoDAF document or in the context of this research, the when.

DoDAF is mandated for large procurement projects in the Command and Control

domain, but its use in relation to M&S is not explicitly mentioned in the documentation

(Atkinson, K., 2004, p.8; Atkinson, 2010; DoD Metadata Registry and Clearinghouse,

2004). Thus, an opportunity has emerged to support the translation of DoDAF-compliant

architectures into models that are of sufficient fidelity to support architectural

evaluation in simulation environments. Operational views capture the requirements of

the architecture being evaluated and system views provide its technical attributes.

Section 6.2 will provide greater detail on how DoDAF was used within an executable

context as related to this research. Together, these views form the basis for semi-

automated construction of the needed models for an executable context.

2.6. STATE-OF-THE-ART IN EXECUTABLE ARCHITECTURES

Although executable architectures are rooted in several years of research on

transforming modeling languages into executable artifacts, the focus of this research lies

on those approaches that emphasize the operational aspect of the use of the defined

systems, in particular in the military context (although not limited to this context in its

implications). To these predecessors of executable architectures belong, in particular,

the approaches on Architecture Description Languages (ADL) (Clements, 1996). The

work described by McKenzie, Petty, and Xu (2004) shows an application thereof to

improve federation design. Other related work deals with executable Universal Model

Language (eUML) (Mellor, 2002). All these approaches are useful but do not focus on

the evaluation of tactical performance and operational effectiveness and efficiency.

According to Levis, executable architecture is described by the DoDAF as "utility

of dynamic and energetic simulation software to estimate architecture models" (Levis, &

Wagenhals, 2006). Levis emphasizes the assessment of the executable model

completely to define and understand the dynamic features of the system's needs and

22

executable model. To maintain this practice, the executable model has supported the

use of Colored Petri Nets (CPN) (Levis, & Wagenhals, 2006).

Andrew Zinn declared that, as per Levis, Holly and Handley, the highlighted Petri

Nets must manufacture an executable model that aligns all the sequences in multiple

views or static models into a single model (2004). Lee, et al. used Systems Engineering

standard EIA 632 as the process for engineering a system and applied the DoDAF six-

step guidelines to develop architecture templates to assist in the project (Lee, et al.,

2005). Executable contexts (EC) - the method developed herein - also use the DoDAF

six-step guidelines with some enhancements for architecture evaluation (Garcia, 2010).

Following Pawlowski's proposal of the Executable Architecture Methodology for

Analysis (EAMA), others have discussed, designed, and proposed different approaches

to deal with executable architecture issues (Pawlowski, et al., 2004). For example,

Executable Architecture Analysis Modeling Method (EAAM) will enable an organization

to conduct dynamic, persistent, extensible, measurable, repeatable, and interactive

testing (Garcia, 2009). This research used and leveraged a number of research activities

that support who (people), what (entities), where (locations), when (time), and refer to

information within the architecture as described by Levis, Mittal, and others (Levis, &

Wagenhals, 2006; Mittal, 2008). This research enables knowledge assessment of how

(functions) and why (purpose) when dealing with evaluation of the architectures.

As research objectives and goals were established, research findings revealed a

necessity to consider a range of system interoperability factors and environments while

making crucial decisions in executable architecture development. To respond to these

factors, the research process used recent interoperability technologies and currently

improved adaptations effectively to incorporate executable architecture with the

objective environment. Methods of system interoperability target web services and

other applicable standards of World Wide Consortium (W3C) (www.w3c.org) as much as

possible to ensure that the communications are compatible with the remote system and

that evaluation is accessible (Austin, et al., 2004).

http://www.w3c.org

23

3. RESEARCH CHALLENGE AND PROBLEM SET

This research focuses on contributions to the relevant body of knowledge that

will enable the use of knowledge to evaluate architectures as defined in Figure 5 below.

This research will incorporate the how and why or knowledge-based evaluation through

executable context. This research intends to show how knowledge based evaluation

enhances system-of-systems into an executable context that represents all external

systems and can be initialized with the elements describing an operational scenario and

allows relevant measures of performance on the system level and measures of

effectiveness on the scenario level to be derived from operational requirements.

Figure 5: Research intentions from information to knowledge

3.1. WHY IS THIS A GAP?

Executable context (EC) provides the ability to conduct knowledge-based

evaluation. Current system-of-systems architecture evaluations are limited to

information-based schemas identifying routine requirements such as connectivity

among nodes in the architecture. Information-based evaluation identifies who, what,

and where. An executable architecture is defined as a dynamic model of the sequencing

24

of activities performed at operational nodes by roles (within organizations) using

resources or systems to produce and consume information (Pawlowski et al., 2004).

This research will provide a means to assess evaluation of systems architecture

performances to meet its intended purpose. However, as stated in the literature review,

executable architectures are only proven to depict the when.

Knowledge-based analysis is critical to assess the system-of-systems against the

operational conditions expected by the mission requirement. To determine this

effectiveness, it is necessary to employ an architectural representation that one can

execute in a simulation environment so that system performance and, subsequently, its

effectiveness and evaluation can be measured within its intended environment or

executable context.

The challenge - otherwise identified as the research method developed by this

research to aide in closing the gap - is how this research can be used to evaluate a

system's performance and effectiveness when operating in its operational environment.

Executable context closes this gap by incorporating the why and how or knowledge-

based evaluation.

The correlated challenge is the use of measures of performance (MOP) -

measuring system performance regarding the interrogatives who, what, where, and

when - based on executable architecture systems specifications in direct support of

measures of operational effectiveness (MOE) - measuring the operational system

contributions in the context of operations regarding the interrogatives why and how.

3.2. SPECIFIC RESEARCH OBJECTIVES

This research is intended to develop a method and implement a supporting

framework based on executable architectures, the NATO Code of Best Practice (NCOBP)

for C2 Assessments and the Missions and Means Framework to enable evaluation of

system-of-systems architectures using an executable context.

In particular, the following questions have to be addressed:

• What is an appropriate approach to make a system specification that is

available in the form of a system architecture executable?

25

• How can the resulting artifact be federated into an executable context

that represents all external systems and can be initialized with the

elements describing an operational scenario?

• How can the relevant measures of performance on the system level and

measures of effectiveness on the scenario level be derived from

operational requirements?

3.3. PROPOSED SOLUTION THEORY AND METHOD

The intent of the research explored in this dissertation is to develop a method

and framework that supports the evaluation of a system-of-systems architecture within

its operational context. This process creates a systematic method to evolve the current

information-based architecture evaluation process into a knowledge-based executable

context method. This new method will identify architectural capabilities and provide

measures of the performance and effectiveness of the system-of-systems.

The proposed method starts with the system architecture and utilizes

appropriate methods, as identified in the first step of the research, to generate an

executable architecture that supports access to all specified details. Next, this

executable artifact is modified into a federate. Using methods defined by the

operational community, operations relevant to the user of the new system scenarios

and metrics for measures of performance and operational effectiveness are identified.

Using standardized engineering methods, a federation to execute the system's

architecture in the operational context delivering the required results for the identified

metrics is developed and executed.

Figure 6 shows how entities, interactions and the conceptual model enable

evaluation elements needed to develop the blueprint of the targeted valid systems

architecture as described above. In the figure below, these elements are mission

requirements (MR), operational requirements (OR), system requirements (SR),

functional requirements (FR), capability requirements (CR), and external systems (ES).

Following the method as specified in Buede (2000), all five requirements groups are

26

derived in collaboration of customers, users, and engineers from the operational goals

envisioned to be supported or enabled by the system to be developed.

Step 1 -Blue Print
Mission System

Scenarios
Entities
Relations
Interaaions
Behavior
Events

Systems
Functions
Components
Interface Ext
Interfaces Internal
Data

Step 2 - Build EX Architecture
NTWTEMSSKM

-W1T| II: I!| Tii

Step 3 - Map Blue Print to EA
Mission System

Event
TContext generates metric data

EJS-^T T » » 4 - 3 P " " i *—

fr •:• i: jnt£t-^.:-^-y.

I=: IE: l i : | i : I : -

Step 4 -EX Context
Environments and Events

Figure 6: EC's four steps for evaluating targeted systems

The figure shows EC's four steps for evaluating targeted systems as:

• Develop context blueprint - Identify metrics

• Build Executable Architectures (EA)

• Develop Executable Context (EC) - Federate the EA and EC

• Execute context and observe quantitative metrics

27

3.4. EVALUATION METHOD

Evaluation is a "Proof of Specified Performance" (MDA, 2008). It follows that a

validation process requires specification, performance, and means of proof.

Furthermore, DoD Modeling and Simulation Glossary defines evaluations as "the

process of determining the degree to which a model (architecture) or simulation is a

faithful representation of the real world from the perspective of the intended uses of

that architecture" (p. 162).

To ensure the EC method meets the criteria for architecture evaluation within

the M&S community, the following valid practices, specifications, frameworks and

methods are employed:

• Extend the use of DoDAF modeling to include provisions for M&S through

the Discrete Event System Specification (DEVS) Unified Process (DUNIP)

to enable DoDAF to become the executable architecture

• Apply Distributed Simulation Engineering and Execution Process (DSEEP)

IEEE Std. 1730-2010

• Leverage the NATO Code of Best Practice (NCOBP)

• Map DoDAF to the Mission to Means Framework (MMF)

The next section will give more details for these methods and how they were

applied in the context of this research to enable the envisioned framework. The

following table summarizes the appropriate methods to answer the questions identified

earlier.

28

Research Question
What is an appropriate approach to make
a system specification that is available in
form of a system architecture executable?
How can the resulting artifact be federated
into an executable context that represents
all external systems and can be initialized
with the elements describing an
operational scenario?

How can the relevant measures of
performance on the system level and
measures of effectiveness on the scenario
level be derived from operational
requirements?

Identified Method
• Application of DUNIP
• JAVA DEVS

• Extending DUNIP to result in a federate
• Apply DSEEP to identify federates that

can represent external systems and
operational context

• Develop federation
• Apply MMF to identify relevant

scenarios
• For each scenario, apply MMF to

identify MOP and MOE
• For each MOP and MOE define data

access points and data collection
• For each relevant scenario, conduct

simulation experiments

Table 2: Research Question and Identified Methods

These methods ensure and the resulting framework enables that all measures of

performance on the system level are computed within the user relevant operational

context based on the system's specification and contribute directly to the operational

efficiency. Furthermore, the resulting level of detail allows for specific evaluation of

system interactions in the context of being part of the operationally specified system-of-

systems so that detailed analysis of system behavior in the operational context becomes

observable.

29

4. EVALUATION OF EXISTING METHODS REGARDING THEIR APPLICABILITY

Best practices represent the current conventional wisdom applied to a particular

condition or circumstance with the expectation of the result being the more effective of

any other previous method, technique, activity, process, etc. Leveraging repeatable

methodologies creates operational and system model harmonization for resulting

artifacts to be federated into an executable context, as identified in the literature

research, than what has historically been done.

4.1. NATO CODE OF BEST PRACTICES

When architectures are used to define new systems, the evaluation phase needs

to show effectiveness and efficiency in the DoDAF context, often referred to as "fit-for-

purpose," meaning the best solution for a given problem (DoDAF Working Group, 2003;

DoD Instruction, 2003). In order to support these methods, metrics are needed.

The NATO Code of Best Practice (NCOBP) for Command and Control (C2)

Assessment states that a "proper set of scenarios [use cases] is critical to assessment." It

notes that scenarios should "consist of four elements - a context, the participants, the

environment and the evolution of events in time." It notes that "the purpose of

scenarios is to ensure that the assessment is informed by decision maker planning

assumptions and the appropriate range of opportunities to observe the relevant

variables and their interrelationships" (2002).

The NCOBP is designed to facilitate the transition from C2 theory (i.e., the C2

Conceptual Reference Model) to operational practice. The NCOBP for C2 Assessment

established an operations research method that recommends best practices for the

structure of architecture evaluation. Since 2007, the NCOBP has been adopted as a

standard within the Joint Staff and Office of the Secretary of Defense (OSD) Networks

and Information Integration (Nil).

Figure 7 shows the structure of the NCOBP processes and their main domains to

aid in problem formulation and analysis.

30

Problem
Formulation

Solution
Strategy

Sponsor's
Problem Human &

Organizational
Issues

Measures
of Merit

Scenarios
Methods

/] & Tools rs

Products
Assess

Risk

Figure 7: NCOBP problem formulation

To conduct this research, the NCOBP problem formulation was modified for EC

to aid in architecture evaluation. EC problem formulation describes how the process of

system-of-systems architecture evaluation goes from the context of a system (as

described earlier in Buede) to the EC defined in the previous section. Figure 8 shows

how the interactions of all entities enable evaluation in an EC that supports evaluation

of effectiveness and efficiency guided by an accepted assessment solution.

31

Operational
and System Arch

Evaluation

Figure 8: Executable context problem formulations

4.2. DoDAF AND EXECUTABLE ARCHITECTURES

DoDAF describes typical products as views prescribing high-level design artifacts,

but leaves open the form in which the views are expressed. DoDAF products are textual,

graphical and tabular items developed while building a description of known

architecture elements and defining the characteristics relevant to the architectural

purpose. The present DoDAF arranges products that represent static information on a

variety of views. These static products may not be a reliable vehicle for detailed dynamic

systems analysis and how these systems build interaction with each other.

Primarily, executable architecture descriptions are for analysis and must begin

with an integrated, consistent, unambiguous architecture. DoDAF is the basis for the

integrated architectures mandated in DoD Instruction 5000.2 and provides broad levels

of specification related to operational, system and technical views (2003). Integrated

32

architectures are the foundation for interoperability in the Joint Capabilities Integration

and Development System (JCIDS) prescribed in GCSI 3170.01D and further described in

CJCSI 6212.01D (2004; 2006). DoDAF and other DoD mandates pose significant

challenges to the DoD system and operational architecture development since DoDAF

specifications must be evaluated for compliance with requirements and objectives, yet

they are not expressed in a form that is amenable to such evaluation. However, DoDAF

compliant systems and operational architectures have the necessary information to

construct high-fidelity simulations. Such simulations become, in effect, the executable

architectures referred to in this research.

In this context, an integrated architecture is defined as a set of operational and

systems architecture components which have similar sense, meaning, relationship,

characteristics and properties. Among the multiple architectures, an integrated

architecture can be defined while the similar, single architectures cannot, even if based

on the identical set of DoDAF integrated products. United architecture elements can be

rejoined for the next levels of development and analytical purposes. The program

managers, domain experts and decision makers require these architectures to place,

recognize and resolve definitions, facts, properties, constraints, issues and interfaces

both across and within architectural boundaries. The impact and effect will be

determined by the analysis.

4.2.1. EXECUTABLE ARCHITECTURE THAT APPLY DoDAF TECHNIQUES

Most studies regarding executable architectures are based on designing,

evaluating and suggesting a path similar to other kinds of architecture modeling

methods and techniques. The MITRE Corporation created the Executable Architecture

Methodology for Analysis (EAMA) for analysis incorporating a combat model,

communication model and process model to symbolize the main components of

architecture and implementation of these models in the simulation environment. Joint

Forces Command developed the Process Architecture and Analysis Model (PAAM),

which is an operational and analytical tool used to inspect the effectiveness of future

and current operational architectures (Pawlowski, et al., 2004; Garcia, & Browning,

33

2006). In reference to DoDAF, executable architecture, as it relates to the Method for

Architecture Evaluations (MAVS), is used to assist in establishing the requirement for

most information systems within the DoD (Garcia, 2010). One of the key DoDAF

functions is to provide analysis worthy of military conduct. To provide this analysis,

information-driven combat operations analysis leverages simulation technology to

recognize the military value of Command, Control, Communications, Computers,

Intelligence, Surveillance, and Reconnaissance systems (C4ISR). This research

investigates the usage of architecture descriptions based on the DoDAF to supply the

required data for a dynamic-based model. It is enhanced through use cases from

suggested operations center architectures. The conclusion from the literature reveals

that the poor implementation of the DoDAF does not supply the necessary information

for architecture evaluation.

In performing a comparison of the subject within the current literature, two

points can be considered. First, it is difficult and complex to integrate products with

DoDAF to produce executable architectures. Usually the philosophy of the integration

methods is connected to the usage of systems and operational architecture models to

produce executable architectures. The second point is how to leverage DoDAF in

consistent approaches in producing executable architectures.

DoDAF is a widely-adopted architecture framework in the defense industry.

DoDAF had its beginnings in the C4ISR community and is recognized as a basic part of

the DoD's drive toward net-centric warfare.

4.2.2. INTEGRATION DEFINITION (IDEF)

Integration Definition (IDEF) is another modeling technique which can be utilized

to enable knowledge-based architecture evaluation. IDEF was built by the US Air Force

and it is presently being extended through knowledge-based organizations. Initially, it

was developed to support the manufacturing industry. Methods of IDEF have been

engaged for a wide range of uses, including the general development of software. IDEF's

16 methods from IDEF to IDEF14, including IDEFIX, are each intended to capture a

similar kind of information by modeling procedures. IDEF methods are used to generate

34

graphical representations of multiple systems, examine the model and establish a model

of a preferred version of the systems and assist the change from one to another.

Occasionally, IDEF is used in connection with gap analysis.

The table below demonstrates the methods of IDEF that are either currently in

existence or in developmental stages. The methods from IDEFO to IDEF4 are most

generally used.

IDEF METHODS

IDEFO

IDEF1

IDEF1X

IDEF2

IDEF3

IDEF4

IDEF5

IDEF6

IDEF7

IDEF8

IDEF9

IDEF10

IDEF11

IDEF12

IDEF13

IDEF14

Function Modeling

Information Modeling

Data Modeling

Simulation Model Design

Process Description Capture

Object-Oriented Design

Ontology Description Capture

Design Rationale Capture

Information System Auditing

User Interface Modeling

Scenario-Driven IS Design

Implementation Architecture Modeling

Information Artifact Modeling

Organization Modeling

Three Schema Mapping Design

Network Design

Table 3: IDEF methods

As an illustration of the procedures, the methods of IDEFO are intended to model

the purpose of an enterprise, generating a graphical model which indicates what directs

35

the function, who executes, what resources are carried out in its use, what the factors

of production are and what dealings and relationships it has with other utilities. In other

words, the IDEFO aids in answering the information interrogatives of the research (who,

what and where) of the context of the systems.

IDEF3 was created to assist systems modeling within the business world by

capturing explanations of activities lists. For a specific scenario, an IDEF3 diagram may

indicate the sequence of procedures, which procedures occur in a similar fashion, where

choices exist, points, etc., making the IDEF3 into more of a diagram. The IDEF3 can be an

influential tool to recognize the performance and functions of a systems architecture

and is leveraged in this research. Figure 9 below is an example IDEF3 diagram using the

IDEF3 or UOB symbols in Figure 10. The example indicates a decision point following a

procedure marked "Evaluate Proposal." In the case that the decision is positive, the next

connection or junction demonstrates that any path will result in the last procedure

"Award Contract." The diagram of IDEF3 demonstrates a proper sequence of

procedures.

36

UOB Labels

NodeRef # IDEF Reft*

Links

_^ Simple Procedure Link

Junctions

Constraint Procedure Link

Relational Link

AND

OR

Synchronous AND

Synchronous OR

_ XOR

Figure 9: IDEF 3 symbols (UOB symbols)

Evaluate
Proposal

1

X

Accept
Proposal for
Core Contract

3

Accept
Proposal for
Options

4

Award
Contract

Figure 10: Examples of IDEF 3 diagram

37

These procedures in IDEF modeling can assist in gathering the needed

information to answer the "when" of the information interrogatives. On its own, IDEF is

not as advanced as the executable architectures discussed in the previous section, but is

leveraged as part of the EC research to enable data gathering of non-DoDAF elements

and filling data gaps to gather metrics and measures.

4.3. ZACHMAN

The business society frequently utilizes the Zachman framework, which was

created in the 1980s by John Zachman. From Zachman's viewpoint, the framework was

created to help companies deal with the dynamics and complexities of the information

age. The framework is fundamentally a matrix of 36 cells which represent the how

(function), what (data), who (people), where (network), why (motivation) and when

(time) at six deferent stages from prospective to detail and is the motivation behind the

development of DoDAF.

While the Zachman framework, along with other frameworks, was established in

the world of business, the DoD required something customized to its needs. Most of the

frameworks were created to promote and sell services and goods, uses that are

unrelated to DoD. The Architecture Working Group (AWG) released C4ISR Architectural

Framework Version 1.0 in 1996. Within a year, AWG implemented much required

revisions and additions to the C4ISR Architectural Framework, and Version 2.0 was

released. According to the Under Secretary of Defense (USD) 23 Feb 1998 Memorandum

cited by Andrew W. Zinn, it was stated that, "We see the C4ISR Architecture Framework

as a critical element of the strategic direction in the Department, and accordingly direct

that all ongoing and planned C4ISR or related architectures be developed in accordance

with Version 2.0."

As mentioned earlier in the introduction, Zachman uses six interrogatives: who,

what, where, when, why and how (Zachman, 1997). To illustrate the function of the EC

concept, these six interrogatives are further broken down to illustrate EC as a method

38

that enables information (who, what, where), enriches executable architectures (when)

and enhances the creation of knowledge (why, how). Table 4 shows the Zachman

Enterprise Architecture Framework and expands upon his use of what, how, where,

who, when and why.

Objective/Scope
(contextual)

Role: Planner

Enterprise Model
(conceptual)

Role: Owner

System Model
(logical)

Role:Designer

Technology Mode)
(physical)

Rote:Builder

Detailed Reprentation
(out of context)

Rote: Programmer

Functioning
Enterprise

Role: User

DATA
What

List of things
important in
the business

Conceptual
Data/
Object Model

Logical
Data
Model

Physical
Data/Class
Model

Data
Definition

Usable
Data

FUNCTION
How

List of
Business
Processes

Business
Process
Model

System
Architecture
Model

Technology
Design
Model

Program

Working
Function

NETWORK
Where

List of
Business
Locations

Business
Logistics
System

Distributed
Systems
Architecture

Technology
Architecture

Network
Architecture

Usable
Network

PEOPLE
Who

List of
important
Organizations

Work
Flow
Model

Human
Interface
Architecture

Presentation
Architecture

Security
Architecture

Functioning
Organization

TIME
When

Ustof
Events

Master
Schedule

Processing
Structure

Control
Structure

Timing
Definition

Implemented
Schedule

MOTIVATION
Why

Ustof
Business Goal
& Strategies

Business
Plan

Business
Rule
Model

Rule
Design

Rule
Speculation

Working
Strategy

Table 4: Zachman enterprise architecture framework interrogatives

4.4. 4+1 VIEW MODEL

There are numerous ways to view or build architecture models. One such model

is the 4+1 View Model. The 4+1 View Model describes software architecture using five

concurrent views, each of which addresses a specific set of concerns. The logical view

describes the design's object model; the process view describes the design's

concurrency and synchronization aspects; the physical view describes the mapping of

39

the software onto the hardware and shows the system's distributed aspects; and the

development view describes the software's static organization in the development

environment.

According to Kruchten, by using five synchronized views, the 4+1 model

illustrates the architecture of software (1995). These views include the logical view,

development view, process view, physical view and scenario view. Every view deals with

a definite set of concerns. The object model of design, the services to be provided by

the system to users, is described by the logical view. The non-functional features of

synchronization and concurrency of the design is described by the process view. The

concentration on actual software, the statistic management of the software in the

environment of development, is illustrated by the development view. The software

mapping against the hardware is described by the physical view and also shows the

distributed features of the system. The software designers can manage the description

of their architectural decisions around these four views and demonstrate them with

some preferred scenarios or use cases that represent a fifth view. These views are

related to knowledge evaluation of a system-of-systems and provided some context for

the EC methods development.

The architecture is developed partly by using these scenarios. The different

stakeholders could find their requirement in the software architecture through the 4+1

model. Through the physical view, the system engineers approach this 4+1 view model

first, then via the process view. Through the logical view, customers, data specialists and

end users can view the architecture. Staff members of software configuration and

project managers use the model through the development view (Kruchten, 1995).

40

End-user Programmers
Functionality Software management

Logical View Development
View

1 C Scenarios J

Process View Physical View

Integrators System engineers
Performance Topology
Scalability communications

Figure 11: The 4+1 view model

4.4.1. LOGICAL ARCHITECTURE

The logical architecture primarily supports the functional system needs of the

users in the service terms. The system is deducted to a key abstraction set consumed by

the problem domain in the object class' format, which develops the principles of

inheritance, abstraction and encapsulation. In addition to functional analysis, it also

provides the ability to recognize design elements and common mechanisms over the

different divisions of the system.

4.4.2. LOGICAL VIEW NOTATION

The logical view notation is derived from the notation of Booch Object-Oriented

Design object modeling language and methodology that was widely used in object-

oriented analysis and design. The notation aspect of the Booch method has now been

superseded by the Unified Modeling Language (UML), which features graphical

elements from the Booch method along with elements from the object-modeling

technique (OMT) and object-oriented software engineering (OOSE). It is streamlined to

consider only the architecturally important items.

41

4.4.3. PROCESS ARCHITECTURE

Process architecture considers few non-functional necessities such as availability

and performance. It deals with the distribution and concurrency of a system's reliability,

fault tolerance and the adjustment procedure of major logical view abstractions within

the process architecture. The process architecture can be illustrated at different stages

of the abstraction, as each stage deals with various concerns. At the major level, the

process architecture can be considered as a set of logical networks communicating with

independently executed programs, circulated over a set of hardware resources joined

by a WAN or LAN. Distributing the same physical resources, the multiple logical

networks may exist concurrently. A process is a combination of executable unit tasks.

The processes indicate the stage of deliberately-controlled process architectures. Also,

for the improved allocation of the processing load, the processes can be simulated

(Kruchten, 1995).

4.4.4. DEVELOPMENT ARCHITECTURE

In the software development environment, architecture development

concentrates on the authentic software organization module. The software is enclosed

in small portions called the subsystems or the program libraries, which can be

developed by few developers. In a hierarchy of layers, the subsystems are maintained,

supplying a distinct and narrow interface by each layer to the above layers. Through the

subsystem and module diagrams, the system's development architecture is indicated,

displaying the associations of exports and imports. Only after recognition of all the

software elements can the total development architecture be illustrated.

Most development architectures consider the internal needs associated with the

ease of development, reuse, software management and the programming language or

toolset limitations. The development outlook is the source for the requirement

allocation of team tasks or team organization; cost assessment and planning;

observation of project improvement; and software reusability, security and portability

42

analysis. To establish the line of product, the development view is the foundation

(Kruchten, 1995).

4.4.5. PHYSICAL ARCHITECTURE

The physical architecture mainly considers the system's non-functional needs

such as performance, reliability, scalability and availability. The software will run on the

computer networks or on the processing nodes. The objects, processes and tasks are

the different recognized elements which must be mapped onto the different nodes.

Many varied physical configurations should be used, including a few for testing and

development and the remainder for system deployment for different sites and clients.

Consequently, the node software mapping requires increased flexibility and less impact

on the source code (Kruchten, 1995).

4.4.6. SCENARIOS

The elements of the four views are intended to work collectively by the small,

significant set of scenarios. The scenarios are an abstraction of the major significant

necessities. The design is articulated by using object scenarios, pictures and object

interaction pictures. It supports two primary objectives: determine the architectural

elements when designing the architecture and illustrate and evaluate tasks on the

completion of architecture design. Both of these tasks are performed as the starting

point of an architectural prototype test (Kruchten, 1995).

The EC methodology requires the use of all of these views in order to produce a

evaluated architecture. Content can be added to each view to aid in the results of the

overall methodology.

4.5. MODEL-DRIVEN ENGINEERING

The process of model-based software engineering is generally addressed as

Model-Driven Engineering (MDE). This method improves the model before the end

product or artifact is designed, and following the design of the end product or artifact,

the model is renovated to reflect the actual artifact. Model-driven engineering (MDE) is

43

a software development methodology which focuses on creating and exploiting domain

models (abstract representations of the knowledge and activities that govern a

particular application domain), rather than on the computing (or algorithmic) concepts.

The MDE approach is meant to increase productivity by maximizing compatibility

between systems (via reuse of standardized models), simplifying the process of design

(via models of recurring design patterns in the application domain), and promoting

communication between individuals and teams working on the system (via a

standardization of the terminology and the best practices used in the application

domain).

A modeling paradigm for MDE is considered effective if its models make sense

from the point of view of a user that is familiar with the domain and can serve as a basis

for implementing systems. The models are developed through extensive communication

among product managers, designers, developers and users of the application domain.

As the models approach completion, they enable the development of software and

systems.

Some of the better known MDE initiatives are:

• The Object Management Group (OMG) initiative Model-Driven Architecture

(MDA), which is a registered trademark of OMG (Object Management Group,

2009).

• The Eclipse ecosystem of programming and modeling tools.

An MDE tool is utilized to interpret, compare, develop and align models and

meta-models. More than one tool may control all of the features required for MDE. The

UML utilized in MDE is a minute subset of great broader range of UML. As a division of

MDE, the UML is enclosed by its own UML meta-model. Development has been made to

progress models of executable UML, even though it has not received industry majority

acceptance when used for the same limited range (Object Management Group, 2009).

MDE encourages efficient use of system models in the development process and

it supports reuse of best practices when creating system-of-systems (Brown, 2009).

According to Douglas C. Schmidt, model-driven engineering technologies offer a

44

promising approach to address the inability of third-generation languages to alleviate

the complexity of platforms and express domain concepts effectively (Schmidt, D.C,

2006).

4.6. MISSIONS AND MEANS FRAMEWORK (MMF)

The MMF is the method used to provide military mission specifications and to

qualitatively estimate the mission's effective use of alternative war fighting Doctrine,

Organization, Training, Materiel, Leadership, Personnel, and Facilities (DOTMLPF)

services. The MMF was developed by Deitz, et al. and enables architectures

representation to specify the military mission and, therefore, quantitatively evaluates

the mission utility of alternative warfighting DOTMLPF services and products (Dietz, et

al., 2004). This research leveraged mapping of the MMF entities to DoDAF views.

This mapping is an essential piece that enables the EC to develop the much

needed measures against the EC problem formulation. The MMF first amalgamates top-

down and then merges bottom-up as illustrated by Figure 12 below. The MMF segments

were used as necessities in the development and testing for the Army's planned Future

Combat Systems - equipped Unit of Action.

A Measure of Performance (MOP) is a criterion used to assess friendly actions

that are tied to measuring task accomplishment [JP 1-02, Appendix A- l , p.333, 3/2007].

Measure of Effectiveness is a criterion used to assess changes in system behavior,

capability, or operational environment that is tied to measuring the attainment of an

end state, achievement of an objective, or creation of an effect [JP 1-02, Appendix A- l ,

p.333, 3/2007]. MOP and MOE will be described in greater detail in the results sections

of Chapter 6.

Bottom Up

Figure 12: The synthesis and employment processes for the "how and why"

4.6.1. MAPPING TO DoDAF

The following section describes the detailed experiments conducted to support

the evaluation of this research in an operational environment. Table 5 represents how

MMF operators are mapped to DoDAF views. This mapping enables EC to represent the

means required to support architectures evaluation. The MMF provides a way to

describe military operations domain using the language of military science in a manner

that can be digested and used by those supporting the warfighters and also be readily

presented back to and understood by the warfighters. The MMF provides a structured

way to describe key elements of military operations that are essential to understand in

order to successfully model and simulate those operations. The framework provides the

necessary structure to support a disciplined, repeatable procedure to explicitly specify

the mission and assess mission accomplishment. Used in conjunction with automated

knowledge acquisition and integration tools, the framework supports the operator's

ability to capture the products of key portions of the top - down planning and decision

46

making process in data element form rather than just text and graphics, whether

manually generated or machine generated. Because tasks, the building blocks of

missions, are pulled from authoritative sources, common and commonly accepted terms

and definitions are built into the framework methodology. Components, which

represent the means used to execute tasks, are similarly derived from authoritative

sources and other databases.

Conditions and standards for specific tasks are established based on the results

of mission analysis, Course of Action (COA) development and war gaming during the

planning and decision making process. The same task may be iterated several times

with different sets of conditions and standards based on when and where the task

iteration is to occur within the concept of operations. Measures and criterion used to

develop standards may be structured to provide quantitative metrics in the form of

Measures of Performance (MoP), which describe minimum acceptable levels of

performance in terms of time, distance, accuracy, etc. Standards may also be structured

to provide more qualitative metrics in the form of Measures of Effectiveness (MoE),

which describe the desired end state or purpose of the task. MoPs are also extremely

useful in an operational context in defining the level of performance required under a

given set of conditions to enable the entity performing the task to accomplish the

purpose (MoE) of that task or to enable a different (higher, lower, adjacent) entity to

accomplish the purpose of a related task. Consequently, it is possible to establish a link

between required performance (MoP) and desired effect (MoE) within the context of an

operation.

•0V-1,AV-1
•The "why" and "wherefore." An assignment with a purpose that indicates the action to be taken.
"What" the required outcomes are and "who" has been assigned them.

•AV-1
•"Under what circumstances" a mission is to be accomplished.

• OV-l.AV-1
• "Where" (geo-spatial) and "when" with what TPFDD execution matrix.

• OV-5
• Task-based, outcome-centric specification of operations that provide the means to accomplish

the mission. Objective: organize task outcomes and evaluate mission effectiveness.

• OV-5,SV-ll
• Function-based, performance-centric "how well" specifications of capabilities.

• OV-2,OV-3,OV-4,AIISV
• Component-based, state-centric specifications of the forces that provide the means. Network

of units, personnel, and equipment. Physical and logical networking.

• OV-6a, OV-6b, OV-6c, OV-7, SV-lOa, SV-lOb, SV-lOc
• Interaction-based, phenomena-centric specification of effects of operations on forces.

Table 5: MMF mapping to DoDAF

48

5. METHOD DEVELOPMENT OVERVIEW

This section gives an overview of how the identified methods are applied in

detail to provide the support needed to address the earlier identified research questions

and how they are combined into the proposed framework ECSF.

5.1. DISCRETE EVENT SYSTEM SPECIFICATION (DEVS) AND DEVS UNIFIED PROCESS

(DUNIP)

The Discrete Event System Specification (DEVS) formalism is a general enough

approach to handle the complex hierarchical nature of architectures and the

interrelationships of the views and elements. Saurabh Mittal, of DUNIP Technologies,

postulates and identifies a shortcoming or oversight in the DoDAF standard adopted by

the DoD. Mittal suggests that, "DoDAF doesn't mandate any simulation methodology to

analyze the system or perform any pre-design feasibility studies" (Mittal, et al. 2007). In

summary, DoDAF does not lend itself to the M&S field, even though M&S would be an

invaluable tool to evaluate DoDAF specifications to verify that requirements and

objectives are met.

Executable context, therefore, extends DUNIP to create an executable federate

that allows for the use of DEVS JAVA properties that contains the meta-data that helps

convert the models into a common federate and provides for operational and systems

model transparency. This creates operational and system model harmonization for

resulting artifacts to be federated into an executable context, as identified in the

literature research, than what has historically been done.

DEVS Unified Process (DUNIP) uses the DEVS formalism as a basis for automated

generation of models from various requirement specifications and realization as

collaborative services (Mittal, 2006). See Figure 13.

49

DEVS
Behavior

Requirements
at lower levels

levels of
System

Specification

C
DEVS Model '
Structures at

higher levels of
System)

Specification

System
Theory

Real-time
JZJf execut'jfi

Simulation
Execution

SOADEVS

Transparent Simulators

DEVSML
Platform

Independent
Models

41
Platform Specific Models

Test Models/
Federations

Verification and
Validation

Figure 13: DEVS Unified Process (DUNIP)

This research utilized DUNIP to express its architecture models to establish a

valid model leveraging Figure 13 in order to develop the following steps:

1. Develop the requirement specifications in DoDAF.

2. Use the DEVS-based automated model generation process to

generate the DEVS atomic and coupled models from the

requirement specifications using XML

3. Evaluate the generated models using DEVS W3C atomic and

coupled schemas to make them capable for collaborative

development,

4. From Step 2, simulate the coupled model using DEVS

5. Execute the simulation on an isolated machine or in distributed

manner using SOA. Execute the simulation in real-time as well as

in logical time.

6. The test-suite generated from DEVS models can be executed in

the same manner as laid out in Step 2.

50

7. Compare the results from Step 5 and Step 6 to evaluate the

architecture.

DEVS is inherently based on object-oriented methodology and systems theory

and categorically separates the model, the simulator, and the experimental frame; it has

been used to model systems over the years. Mittal also proposed a mapping of DoDAF

architectures into a computational environment that incorporates dynamical systems

theory and an M&S framework (Mittal, 2006).

Zeigler developed the DEVS formalism that supports systems engineering of

discrete events in a modular and hierarchical method. The formalism provides a

mathematical basis for studying discrete event systems for good understanding. It has

been used largely for replication and modeling because of its mathematical foundation

(Zeigler, 2003). The research activities associated with the DEVS theory have been

developed in three directions in the past years: theory, methodology and applications.

The DEVS formalism's applicability to performance measurement, logical analysis, and

discrete event control has been confirmed through expansion of formalism and

adaptation of the other theories (Zeigler, 2003).

The methodology will support complex information systems specification and

evaluation using advanced simulation capabilities. Specifically, the DEVS formalism will

provide the basis for the computational environment with the systems theory and M&S

attributes necessary for design modeling and evaluation. DUNIP demonstrated how this

information is added and harnessed from the available DoDAF products toward

development of an extended DoDAF integrated architecture that is "executable." This

research focused on adding minimal information to enable DoDAF to become the

executable architecture for the knowledge-based method developed.

5.2. FEDERATING EXECUTABLE CONTEXT WITH FEDEP/DSEEP

IEEE Recommended Practice for Distributed Simulation Engineering and

Execution Process (DSEEP) is a standard developed by the Simulation Interoperability

Standards Organization (SISO) (IEEE Std. 1730-2010). The standard outlines

recommended high-level processes that should be adopted throughout the

51

development lifecycle of distributed simulations. It has much in common with the

systems engineering lifecycle and provides additional guidance to an organization's

standard processes, specifically tailored to the needs of personnel involved in producing

M&S environments. DSEEP is a generalized evolution of the IEEE 1516.3 Federation

Development and Execution Process (FEDEP) that has similar aims but is tailored

explicitly toward distributed simulations. The DSEEP IEEE standard provides

recommended practice of the Distributed Simulation Engineering and Execution Process

(DSEEP). The DSEEP is intended as a high-level process framework into which the lower-

level systems engineering practices native to any distributed simulation user can be

easily integrated. Simulation architectures include Distributed Interactive Simulation

(DIS), High Level Architecture (HLA), and Test and Training Enabling Architecture (TENA).

The DSEEP is comprised of seven steps that define the entire lifecycle of an M&S

application from initial concept to results analysis. Each step is divided into activities.

This process is explained in Table 6.

Stepl:
Define Simulation

Environment
Objectives

Step 2:
Perform Conceptual

Analysis

Step 3:
Design Simulation

Environment

Step 4:
Develop Simulation

Environment

Step 5:
Plan, Integrate and

Test Simulation
Environment

Step 6:
Execute Simulation
Environment and
Prepare Outputs

Step 7:
Analyze Data and
Evaluate Results

•Activity 1.1. Identify User and Sponsor Needs
•Activity 1.2. Develop Objectives
•Activity 1.3. Conduct Initial Planning

•Activity 2.1. Develop Scenario
•Activity 2.2. Develop Conceptual Model
•Activity 2.3. Develop Simulation Environment Requirements

° Activity 3.1. Select Members
• Activity 3.2. Prepare Simulation Environment Design
• Activity 3.3. Prepare Detailed Plan

• Activity 4.1. Develop Simulation Data Exchange Model
• Activity 4.2. Establish Simulation Environment Agreements
• Activity 4.3. Implement Member Application Designs
• Activity 4.4. Implement Simulation Environment Infrastructure

• Activity 5.1. Plan Execution
• Activity 5.2. Integrate Simulation Environment
•_ Activity 5.3. Test Simulation Environment

• Activity 6.1. Execute Simulation
• Activity 6.2. Prepare Simulation Environment Outputs

• Activity 7.1. Analyze Data
• Activity 7.2. Evaluate and Feedback Results

Table 6: DSEEP seven-step process

52

Within this research, DSEEP and FEDEP were used as a key step in the method.

After the DoDAF model had been extended to include provisions for M&S through DEVS,

the features of DSEEP and FEDEP were applied to the new architecture to aid in

decision-making, reducing risk, training system selection, and test and evaluation.

Specifically, DSEEP can be applied to determine the right mix of systems to employ in

the architecture, thereby reducing the risk of using systems that may not function best

for the particular mission. Furthermore, results of the DSEEP process can be used to

determine which systems to test and evaluate further for inclusion or exclusion in the

target architecture. DSEEP can prove to be a valuable part of the EC methodology by

narrowing the decision making process, minimizing risks and highlighting what is

suitable for further testing. The DSEEP has been designed to serve as the generalized

framework from which alternative and more detailed views can be specified in order to

better serve the specialized needs of specific communities. Such views provide more

detailed "hands-on" guidance to users of this process from the perspective of a

particular domain (e.g., analysis, training), a particular discipline (e.g., VV&A, security),

or a particular implementation strategy (e.g., HLA, DIS, TENA).

5.3. MEASURES OF EFFECTIVENESS (MOE) AND MEASURES OF PERFORMANCE

(MOP)

This experimental example provides data that has been expanded in the

research to show that the EC method enables architecture evaluation in gathering:

Measures of Effectiveness (MoE) and Measures of Performance (MOP). Traditional

measures of effectiveness (MOE) and measures of performance (MOP) practice have

focused on forces-based, material-centric measures such as time required completing

an operation. The MMF was used to focus on Mission-centric Measures within EC. Here,

MoE and MoP measures and standards are the codification of how planned/delivered

task outcome affects Mission success. In many cases, the required task involves a

specific system and a desired condition that enables the use of the system; EC enables

the use of the MMF and the federation of the operational and systems artifacts to

ensure that all measures of performance on the system level are computed within the

53

user relevant operational context based on the system's specification and contribute

directly to the operational efficiency (MOE) and systems efficiency (MOP). Furthermore,

the resulting level of detail allows for specific evaluation of system interactions in the

context of being part of the operationally specified system-of-systems, so that detailed

analysis of system behavior in the operational context becomes observable.

54

6. EXPECTED RESULTS

This section provides two examples of how a knowledge-based approach enables

evaluation of theoretical and operational conditions.

The first example is a well-documented problem in the field of computer science

and computer engineering: deadlock and livelock systems. This example requires the

detailed modeling of interactions between the specified system and other systems in

the operational context. As current solutions on the operational level do not use

detailed specification in the form of architecture to model their system, such

observations are not supported by this category. As current solutions for executable

architectures do focus on the system and do not take the operational context

sufficiently into account, this second category of current solution is no alternative to the

proposed framework as well. If the experiment with the implemented framework shows

such an example, the contribution, of this research to close part of the gap is made.

The second example is evaluating the contributions of a new system added to an

existing operational process within the DoD and compares it with a current solution.

This will provide insight into how metrics can be gathered to evaluate how the new

system operates within its operational context. It requires the consistent application of

system level measures of performance for the system providing the current solution as

well as for the new system that provides the alternative solutions. As the same methods

are applied to define the current and new system based on its specification, the

comparison of their operational contribution is based on equal and comparable

engineering specifications, and not on the assumptions of model developers. As such

comparisons are not feasible with current approaches; the demonstration of the

feasibility of such an experiment is an innovative contribution.

6.1. FIRST EXAMPLE: DEADLOCK

Because EC can be generally applied, there are multiple ways it can solve the

deadlock problem. In computer science, deadlock refers to a specific condition when

two or more processes are each waiting for each other to release a resource, or more

55

than two processes are waiting for resources in a circular chain (Mogul, et. al., 1996;

Anderson, et. al., 2001; Zobel, D., 1983). There are four general properties that must

hold to produce a deadlock.

6.1.1. MUTUAL EXCLUSION

When one thread owns some resource, another cannot acquire it. This is the

case with most critical sections, but is also the case with GUIs in Windows. Each window

is owned by a single thread, which is solely responsible for processing incoming

messages; failure to do so leads to lost responsiveness at best and deadlock in the

extreme.

6.1.2. A THREAD HOLDING A RESOURCE IS ABLE TO PERFORM AN UNBOUNDED WAIT

For example, when a thread has entered a critical section, code is ordinarily free

to attempt acquisition of additional critical sections while it is held. This typically results

in blocking if the target critical section is already held by another thread.

6.1.3. RESOURCES CANNOT BE FORCIBLY TAKEN AWAY FROM THEIR CURRENT
OWNERS

In some situations, it is possible to steal resources when contention is noticed,

such as in complex database management systems (DBMSs). This is generally not the

case for the locking primitives available to manage code on the Windows platform.

6.1.4. A CIRCULAR WAIT CONDITION

A circular wait occurs if a chain of two or more threads is waiting for a resource

held by the next member in the chain. Note that for non-reentrant locks, a single thread

can cause a deadlock with itself. Most locks are reentrant, eliminating this possibility.

Deadlock can be modeled with a directed graph. In a deadlock graph, vertices

represent either processes (circles) or resources (squares). A process which has acquired

a resource is shown with an arrow (edge) from the resource to the process. A process

which has requested a resource that has not yet been assigned to it is modeled with an

56

arrow from the process to the resource. If these create a cycle, there is deadlock. The

deadlock situation described above can be modeled like this:

v

Thread 1

*

Thread 2
>

Figure 14: Deadlock model

Model Key:

-•J = processes

i—I = resources

— ' = acquired resource

' - requested resource

The deadlock model shown above illustrates an extremely simple deadlock

situation, but it is also possible for a more complex situation to create deadlock. The

following is an example of deadlock with four processes and four resources:

57

Process 1 Process 2 Process 3 Process 4

Model Key:

v_, = processes

I I = resources

' = acquired resource

' = requested resource

Figure 15: Deadlock with four processes and four resources

6.1.5. SUMMARY OF DEADLOCK

Deadlock is a set of processes in which each process in the set is waiting for an
c

event that only another process in the set can cause (Sirer, 2001; Rensselaer, D.H., 2004;

Venkatesh, J., et al., 2000). The event is usually the release of a currently-held resource.

As a result, none of the processes can run, release resources or be awakened.

6.2. THEORETICAL EXAMPLE OF EC: LIVELOCK

A livelock is similar to a deadlock, except that the state of the two processes

involved in the livelock constantly changes with regards to the other process. It occurs

when a process repeats itself because it continues to receive erroneous information. It

can also occur when a process calls another process and is then called by that process

with no logic to detect this situation and stop the operation. A livelock differs from a

deadlock in that processing continues to take place, rather than just waiting in an idle

loop. As a real world example, livelock occurs when two people meet in a narrow

corridor, and each tries to be polite by moving aside to let the other pass, but they end

up swaying from side to side without making any progress, moving the same way at the

same time. In general, the term usually connotes one of the following:

Resource 1
" 1' ltH*M

Resource 2 Resource 3 Resource 4

58

6.2.1. STARVATION

Systems with a non-zero service cost and unbounded input rate may experience

starvation. For example, if an operating system kernel spends all of its time servicing

interrupts, user processes will starve.

6.2.2. INFINITE EXECUTION

The individual processes of an application may run successfully, but the

application as a whole may be stuck in a loop. For example, a naive browser loads web

page "a" that redirects to page "b" which erroneously redirects back to page "a".

Another example is a process stuck traversing a loop in a corrupted linked list.

6.2.3. BREACH OF SAFETY PROPERTIES

The safety property of distributed systems states that the application will not

perform an incorrect action or enter an undesirable state. By adding a temporal

attribute to the application state, the program is considered live locked if it does not

make forward progress within a specified timeframe. For example, if the temporal rule

that a response is sent for every request within 10 seconds fails, then the server is

deemed to be at a standstill. Creating the appropriate specifications for a given

application requires detailed domain knowledge about the program's intended behavior

and internals of its implementation. In summary, livelock is a situation in which a block

returns to the same state infinitely, often at the same instant.

6.2.4. ANALYTICAL ALGORITHMS

A pessimistic algorithm detects contention when attempting to acquire a shared

resource, usually responding by waiting until it becomes available (for example,

blocking). Optimistic algorithms attempt forward progress with the risk that contention

will be detected later on, such as when a transaction attempts to commit.

Lock-free or interlocked-based algorithms that can detect and respond to

contention are relatively common for systems-level software; these algorithms often

avoid entering a critical section in the fast path, choosing to deal with livelock instead of

59

deadlock. Livelock presents a challenge to parallel code and is caused by fine-grained

contention. The result stalls forward progress much like a deadlock.

In the example below, threads 1, 2 and 3, and three locks A, B and C are involved

in some form of shared-memory coordination. Thread 1 holds lock A and is blocked on

acquiring lock B; thread 2 holds lock B and is blocked on acquiring lock C; thread 3 holds

lock C. If thread 3 then attempts to acquire lock A, the algorithm initiates and constructs

a wait graph like that depicted in Figure 16. Then it will detect a cycle and respond by

terminating thread 3. This frees up lock C, which enables thread 2 to unblock, acquire C,

execute and release B. This unblocks thread 1, which is then able to acquire B and

execute to completion.

Figure 16: Wait graph - deadlock situation with termination of thread 3 avoidance

6.2.5. DEADLOCK AVOIDANCE

Deadlocks can be avoided if certain information about operational processes is

available in advance of resource allocation. For every resource request, the system sees

if granting the request will enter the system into an unsafe state, one that could result

60

in deadlock. The system then only grants the request that will lead to safe states. In

order for the system to determine if the next state will be safe or unsafe, it must always

share advance knowledge of the number and type of all resources in existence, available

and requested.

To avoid livelock and related problems, an operating system must schedule a

network interrupt as carefully as it schedules process execution. Furthermore, using a

modified interrupt-driven networking implementation, this will eliminate livelock

without degrading other aspects of system performance.

6.2.6. DEADLOCK/LIVELOCK RECOVERY

Once a deadlock is detected, there are two choices:

• Abort all deadlocked processes (which will cause some computations to be

repeated)

• Abort one process at a time until cycle is eliminated (which requires re­

running the detection algorithm after each abort)

A further consideration is process preemption. Process preemption releases

resources until the system can continue. However, process preemption involves certain

issues including:

1. Selecting the victim

2. Rollback

3. Programming model

4. Starvation

5. Livelock

Livelock is a risk with some algorithms that detect and recover from deadlock. If

more than one process takes action, the deadlock detection algorithm can repeatedly

trigger. This can be avoided by ensuring that only one process (chosen randomly or by

priority) takes action.

61

6.2.7. DEADLOCK/LIVELOCK PREVENTION

Simply put, deadlock/livelock can be prevented by ensuring that one of the

above five conditions does not occur. Further, removing the mutual exclusion condition

means that no processes have exclusive access to a resource. This proves impossible for

resources that cannot be spooled, and even with spooled resources, deadlock could still

occur.

Hold and wait conditions may be removed by requiring processes to request all

needed resources before starting up. However, this advance knowledge is impossible in

many cases. Another way is to require processes to release all their resources before

requesting all the resources they will need, but this is also often impractical. The "no

preemption" condition may also be impossible to remove as processes must access a

resource for a certain amount of time or the processing outcome may be inconsistent.

Finally, the circular wait condition is the easiest to remove. A process may be

allowed to possess only one resource at a time, or a ranking may be imposed,

eliminating waiting cycles. A hierarchy typically determines a partial order between

resources.

6.2.8. EXECUTABLE CONTEXT EXAMPLES FOR SOLVING DEADLOCK AND LIVELOCK

The EC method provides an answer to the modeling and simulation cases of both

deadlock and livelock detection between processes. Furthermore, EC enables a systems

process aligned with an operational process to execute in chronological order as a

sequence of events. These events are in predetermined states that change as the

simulation progresses. For example, the state of a phone operator in a process could go

from "idle" to "busy" as a call is answered and back to "idle" after the call has been

routed.

The EC approach is advantageous when a process is finite because each step can

be modeled accurately and the variables controlled to avoid errors. Also, the modeler

can control the rate at which the simulation runs - slower to observe individual

outcomes or faster to run the simulation multiple times for a distribution of the results.

62

Using EC to model the system under test would allow the modeler to analyze

concurrent systems and operational processes and to stop the simulation where a

deadlock/livelock occurs. An algorithm can determine which process relinquishes and

which retains control of the resource(s). By modeling the processes and their

interactions, the frequency of deadlocks/livelock can be recorded over many

simulations and determined if the frequency is acceptable.

In the EC solution for deadlock/livelock detection and resolution strategy,

resource requests are granted without considering the potential for deadlock. At

appropriately chosen times, a deadlock detection procedure is invoked. If the procedure

identifies a deadlock, the deadlock is resolved.

Many algorithms that detect or prevent deadlocks reorder the waiting entities

into a non-decreasing list by request size. The algorithms then attempt to find at least

one execution sequence that does not result in deadlock. In the case of simulation

systems, reordering the waiting entities may violate the reallocation rule of the

resource. The reallocation rule decides whether the resource queue allows late arrivals

in the queue to pass stalled entities. In the case of multiple-unit requests, this policy

may alter the outcome of the deadlock detection by erroneously designating a

deadlocked simulation to be free from deadlock.

In the case of manufacturing system real-time control, resolution is achieved by

removing a deadlocked entity from the resource (machine) it holds, placing it in a

temporary buffer and reallocating the released resource to a waiting entity. The

resolution procedure in computer applications typically chooses a set of entities to be

aborted and restarted or partially rolled-back to break the deadlock.

Due to the varied nature of deadlocks in a general simulation system, removal or

roll-back of entities is not directly applicable while modeling manufacturing systems.

Preferably, EC could allow the simulation to automatically recover from deadlock

situations without additional burden on the simulation modeler. Also, the ability to run

the simulation many times in a short time span allows the modeler to test under

different conditions and gauge the effectiveness of multiple solutions.

63

Another advantage to using EC is the use of a master scenario event list (MSEL).

The MSEL is a list of events with corresponding times at which to inject the events into

the simulation. Using the MSEL, a deadlock/livelock can be injected at any given point in

the simulation to test the system under different situations. This also ensures that a

deadlock/livelock does in fact occur rather than waiting for it to randomly occur while

testing for solutions.

EC may accurately model the problem of deadlock/ livelock by categorizing then

prioritizing the discovered deadlock using information from the initial procedure. This

places no additional computational burden for the information required by the

prioritization procedure.

In the case of group processing deadlocks, it is possible to develop appropriate

prioritization to resolve the deadlocks once the reduction procedure is in place. This is

accomplished by automatically displacing some of the entities in deadlock. The

procedure is applicable to both categories of permanent deadlocks. It is assumed

resolving transient deadlocks are not a logical process in the case of group processing.

This is due to the time penalty involved in displacing entities and the duration of the

transient deadlocks at the time detection is not known.

6.2.9. DEADLOCK AND LIVELOCK PROBLEM FORMATION

In early problem formulation, EC can test the model design and check for

deadlock or livelock, thus prioritizing processes to avoid this situation during actual

process execution. If it is impossible to identify deadlock using informal methods,

studying aspects of the EC specification can be used. EC uses the DEVS structure as

defined below:

64

M = {X, S, Y, 6int, 6ext, A, ta} where:

X = set of inputs values

S= set of states

Y = set of output values

6int= S -> S internal transition function

6ext = Q x X -> S external transition function

A = S->Y output function

ta = S -> R time advance function

Equation 1: DEVS equation structure is used in executable context

Simulating a model within the EC method will produce trajectories like the ones

shown in Figure 17 below. The figure shows the following information displayed over

execution of a federation of models using the EC method:

X

S

* * 0 * x l

Figure key:

X= Inputs

S = States assumed and duration

e = Time elapsed since last transition

Y = Outputs

Figure 17: Executable context deadlock and livelock analysis

Deadlock detection and resolution can be managed using mostly the operational

and systems state defined within the EC specification. The undesired deadlock condition

is simply a system state and operational process. That state, as well as state sequences

leading up to it, should be recognized and avoided. First, the culprit states need to be

65

revealed via simulation. Next, the processes within its states need to be used to

reconfigure the models to avoid deadlock or livelock. Initial simulation can uncover any

of these situations that arise. During initial simulation, state transitions can be exported

as diagrams, matrices, or other machine-readable formats.

Patterns must be discovered that represent deadlock and livelock, as well as the

patterns leading up to them. Capturing system states that lead to or currently represent

these states must be identified using simulation by transitioning current and other

flagged states that lead to these patterns. System states that currently mirror a flagged

state transition map will require intervention to break the upcoming situation.

tbm

Model Under
Test

t l imbaM

Flagged
Output -
Trajectory tlnwbase

Mm»

Model Under
Test

r.

A
N

Flagged _____
State ,
Sequence

Figure 18: Flagged state transition map

V

State transition diagrams at atomic and coordination detail levels can be

traversed and scanned for static and cyclic patterns that represent or lead to deadlock

and livelock situations. Many of the patterns identified can be used to automatically

66

detect and resolve these issues in later simulations. Specific processes prone to

deadlock can use the current state or sequences of previous states to detect, resolve

and transition to prevent these situations; examples of this will be described in more

detail in section 6.3.

Using EC, algorithms and logic that detect and resolve the deadlock situation can

supplement complex models a number of ways. Process priority logic algorithms can be

embedded inside deadlock or livelock processes and models. Further, logic could be

separated from normal model design and stored in mediation nodes serving as passive

monitors. During preliminary phases, flagged state maps and "doomed" patterns can

represent atomic models or coordinators (models with children). If a deadlock or

livelock is a particular process' state transition, the local flagged state map could be

used by that process to prevent the situation. In this case, the process would internally

transition differently to prevent the situation.

If the cause of the deadlock is more complex or at a global level, intervention

from a higher authority may be needed to control multiple paralleled paths causing the

condition. Priority mediation nodes present among the processes can constantly

monitor state sequences for their respective responsibility processes and identify those

"doomed" for a deadlock. If the models are on a path to deadlock, the priority mediator

must intervene by injecting instructional messages to worker models to change their

behavior. Additional message interpretation, transitioning logic and input ports must be

added, but the mediator design would be less intrusive to original design and would cut

down on programming for each participant models or processes. Priority mediation

models can plug in and prioritize deadlock and livelock processes.

After preliminary phases discover the condition, a reconfiguration phase will

assign various priorities to execution threads. This case may involve situations where a

resource recognizes that two threads are competing for it and allow a higher priority

thread to execute first. Priority levels of incoming requests can be stored in incoming

messages. External transition functions can interpret the message content, transition

and output messages accordingly. Should low priority threads be continually shut out,

67

priority mediators will intervene. Mediators will send messages to standard processes'

input ports to manipulate their functionality. Priority mediators could also dynamically

set priorities of various threads via "resolve" messages to temporarily allow a low

priority thread a chance to execute. Priority mediators must be aware of local and global

systems states to have enough intelligence and situational awareness to make these

decisions.

68

7. OPERATIONAL EXAMPLE

In this section, the mechanics of EC and the four step process are described using

an operational example. Beginning with the EC simulation framework in section 7.1.1

and its architectural mapping, EC's process is described in detail in sections 7.2.1

through 7.2.4. The results of the operational experiment and how EC proves effective is

contained in section 7.3.

7.1. DESIGN OF EXPERIMENT (DOE) FOR OPERATIONAL EXAMPLE

DoE is a systematic approach to investigation of a system or process (Weiss

2009). A series of structured tests are designed in which planned changes are made to

the input variables of a process or system. The effects of these changes on a pre-defined

output are then assessed (Taguchi 1986, Tamelu 1988).

For EC, the DoE is a formal way to maximize information gained for knowledge

generation and to aid in mapping the NCOBP problem formulation and the architecture

framework to the MMF. The DoE offers more than "one change at a time" experimental

methods as it allows generation of the needed measures that answer the specific

questions defined in the problem formulation.

"One change at a time" experiments always carry the risk that the experimenter

may find one input variable to have a significant effect on the response (output) while

failing to discover that changing another variable may alter the effect of the first (i.e.

dependency or interaction) (Taguchi 1988). This often occurs because the experimenter

is tempted to stop the test when the first significant effect is found. To reveal an

interaction or dependency, "one change at a time" testing relies on the experimenter to

carry the tests in the appropriate direction. However, a DoE plans for all possible

dependencies (thought experiments) first and then prescribes the requirements to

exactly measure these dependencies (i.e. whether input variables change the response

on their own, when combined or not at all). In terms of resource, the exact length and

size of the experiment are set by the design before testing/experimenting begins.

69

Managing large system-of-systems with complex integration and

interoperability issues is challenging. Functionality and information are not regularly

reused, resulting in duplication. In a growing environment consisting of hundreds of

interconnected systems, co-existence is difficult to maintain. Despite the success of

many individual projects with their local goals, the military continues to face difficulty of

incorporating these minor solutions into an enterprise-level portfolio. Moreover,

systems and functionality must be syntactically and semantically incorporated into the

shared environment.

To address the problems this research has identified, consider the following

questions:

1. What is an appropriate approach to make a system specification that is

available in the form of a system architecture executable?

2. Can the resulting artifact be federated into an executable context that

represents all external systems and can be initialized with the elements

describing an operational scenario?

3. Can the relevant measures of performance on the system level and measures

of effectiveness on the scenario level be derived from operational

requirements?

The EC method was developed for these types of challenges. The Department of

Defense Architecture Framework (DoDAF) has served as the common overarching

framework for understanding, comparing and integrating architectures across

organizational boundaries. As indicated by the literature research, DoDAF architectures

are not effective for enabling quick and efficient information flow among complex

system-of-systems and decentralized organizations. An architecture describes an

organization's missions, structure, business processes, information exchange

requirements, system-level infrastructure and other characteristics. Expressing

architectures using DoDAF lays the foundation for achieving interoperability. DoDAF

enables the alignment of architectures that supports a federated approach. The use of

architectures also promotes the sharing, reuse and composability of architecture

70

components and viewpoints. Various issues involving complex integration and

interoperability with large system-of-systems can be managed and resolved using

executable architectures.

Once created, architectures are typically used as static descriptions of systems

and organizations that depict operational, system and technical viewpoints. In order to

fully execute the architectures, simulators must use the dynamic and behavioral aspects

described in the DoDAF viewpoints and in the underlying meta-model. Executable

architectures induce the dynamic behaviors and provide performance measures for

evaluators. DoDAF can be used to describe the functionality of various systems and the

missions and test events they participate in. Since EC can exercise the models that

represent systems and events, EC not only optimizes these systems and events, but EC

also reveals the integration and interoperability problems associated with these systems

and events prior to encountering them during live testing. By utilizing EC before testing

begins, the military can significantly avoid problems that arise during live testing.

Of course, proper evaluation is a critical aspect of testing and requires additional

research. Simulation can help ensure that events or missions represented by

architectures are generating the necessary metrics for evaluation. From a planning

standpoint, evaluators can define architectural objects of interest, measures, objectives

and criteria. Later, those metrics can be extracted via iterative execution using varying

conditions and architecture configurations in order to ultimately converge to an optimal

solution to best satisfy the objectives.

In short, issues remain with effectively describing what happened during a test

when it relates to the execution of an architecture model. Pre-test simulation can also

be initiated to reveal what can happen under varying scenarios and conditions.

Traceability between architectural descriptions and gathered data could help indicate

what happened during the evaluation and analyze why problems were encountered.

From an architectural perspective, progress indicators could track evaluation progress

and ensure that the evaluation is on the right track. Fatal discrepancies can also be

caught before continuing a potentially corrupted evaluation. Information flows among

71

various producers and consumers according to architectures would also be visually

confirmed.

7.1.1. PUTTING EC TO PRACTICE: DEVELOPMENT OF THE EXECUTABLE CONTEXT
SIMULATION FRAMEWORK (ECSF)

This research conducts experiments to test the utility of EC. One experiment

provided a qualitative example of the entire EC method to attain qualitative measures

of Net Enabled Weapon defense systems architecture within its intended operational

environment before the system is built. A simulation framework called Executable

Context Simulation Framework (ECSF) is depicted below in Figure 19.

Make sure the
platform
underneaththe
ECSF
environment
works In a
consistent and
predictable way

Connectsthe
processfrom
endtoend

Makes all the
connections
between
components
work

I
Descriptions of
available
components

Executable Context Simulation Framework (ECSF)

Service Oriented Architecture (SOA)
^

SOA
Supervisor

Workflow
Engine

SOA Service
Broker

ECSF

f Registry

>

ECSF Adaptor

Atomic Web
Services

V)

ECSF Adaptor

HLA
Federation

V)

ECSF Adaptor

TENA

V J

ECSF Adaptor

Process Sim
(DoDAF)

V J

ECSF Adaptor

Communications
models

V J

y

J
/ — ^

Figure 19: ECSF

72

The central point of the ECSF resides in executing the simulator as a web service.

The development of this kind of framework will help to solve large-scale problems and

guarantee interoperability among different networked systems, specifically discrete

event system specification (DEVS)-evaluated models. DEVS is one of the most suitable

formalisms for the representation of real world systems. Simulating a model involves

implementing a behavioral model and running it in the simulator. A simulator is defined

as a piece of program that executes the model. Web-based simulation requires the

convergence of simulation methodology and web service technology. The capability to

run the simulation service is provided by the server side design of DEVS Simulation

protocol supported by the latest DEVSJAVA Version 3.1.

Reuse and composability principles will be followed in a number of ways. ECSF

open-simulation framework enables connectivity with other simulators during

execution. The fundamentals of the ECSF are based on its role in distributed simulations.

These fundamentals allow ECSF to send and receive events to and from remote systems

during execution. The executable architecture can be reactive or act as a stimulator.

ECSF High Level Architecture (HLA) and XML interfaces can create a federation of

simulations to further enhance the fidelity of outputs and measures; Figure 20 shows

the XML interface for the simulation framework.

Figure 20 also illustrates the process of ingesting information from remote

sources, which involved subscribing to topics of information in a publish/subscribe

architecture. Upon the receipt of information, the parsing process involved XML parsing

or data binding using a technology such as Java Architecture for XML Binding (JAXB).

Figure 20 also shows how to establish the web service for the ECSF that incorporates

DEVSJAVA as an executable service. This service also converts the static architecture

model into the required MMF DoDAF operators.

73

EC Interoperability Services
- Publish and Subscribe Services (PASS)
- Data Mediation Services
- NCES compatible interfaces
- C2 Adapters

Mi l i tary Communi ty

JC3IEDM XML / BML / Custom XML

JavaEE , JavaBean, API access

Figure 20: Remote data ingesting

Figure 21 represents the ingestion process; any information relevant to the

executing architecture will be injected into the simulation. Outputs or reflections from

the simulation could also be sent to remote systems in an event-based manner using

the same web service technologies.

74

XML Entities

Entity
Mapping

DoDAF
Architecture
Entities

Incoming XML Messages
e.g. JC3IEDM XML/BML/Custom XML

T «•

BC/M&S Community
Interoperability and
Mediator Services

:C2
Web Service Request
Topic Subscription

Web Service
Endpoints

Figure 21: Executable context integration services

DoDAF barriers were considered potential obstacles to achieving objectives.

Figure 22 below shows how EC communicates with linked models during an execution

and shows parallel execution of all linked simulators over time and messages passed

between simulator acts as event triggers. Usually the executable architecture layer

triggers activities in the other simulators.

75

Figure 22: Executable context integration services

Figure 23 shows the EC simulation framework integrated models during the

experiment using web services and HLA. Similar to Figure 22, Figure 23 also depicts how

the executable architecture triggers activities in other linked models via messages. The

executable architecture also receives callback events from other simulators during the

course of the simulation.

76

Figure 23: Executable context simulation framework integration with other models

ECSF can use these technologies before and after an execution as well for pre-

simulation configuration and post-simulation data extraction and analysis. The

fundamentals of the current system are based on being a part of distributed simulation

and system, receiving input events from remote systems, and acting as a messaging

system among other interoperating systems.

Figure 24 represents the process that was used to map high-level or lower-level

statistics generated from models or sub-models to higher level operational goals and

form a bigger picture of how the capability is working from a larger scope and how it

affects or contributes to the goals of other systems. Figure 24 is a concept diagram of

how ECSF can be used to identify problems in the architectures. The resulting artifacts

are federated into an executable context that represents all external systems and can be

initialized with the elements describing an operational scenario, allowing relevant

measures of performance on the system level and measures of effectiveness on the

scenario level to be derived from operational requirements while using standard

simulation architectures environments and common frameworks.

77

During the evaluation, the architecture would help drive the simulation by

stimulating other systems and reacting to callbacks from artifacts and environment

using logic designed in the federation. Afterwards, results and metrics are gathered to

be compared to the requirements and goals of the evaluation.

,\
it Architectures

Results

Core Data / - - ~ ~ \ . Mid-Simulation
ExchangeC J |n je c ts/Outputs
Services ^~-*~S^

Results to
Requirements
Mapping

t
External M&S or
BC Communities

- Usefulness
-Forecasting
-Model Contribution

High Level
Requirements/ Goals

Figure 24: ECSF mapping of models and results

Figure 25 below describes how each model provides its respective results and

how ECSF creates traceability between results. This figure shows linked simulators and

their respective outputs. Using each simulator alone does not tell the whole story.

However ECSF understands the causal relationships between all results across all

simulators. For example, users can look at outputs from Operational Activities from the

executable architecture components and drill for more data about network

transmissions from the network simulator component that occurred during that

Operational Activity. ECSF consolidates results.

78

0 < M X > f O
Architecture Execution

N 6 " t ^ .

Architecture

Combat

Transmission Time

Packet Tracing

Bandwidth

Latency

Time

Resource
Efficiency

Cost

Defined Measures
of Performance

I Attrition

"S. Operational
I Effectiveness

.Interrelated
r Results

J

Figure 25: ECSF Interrelated results

Since the major focus of the EC method is used for evaluation, an essential

attribute is the usefulness of the results. In anticipation of many unique and specific

uses of the EC method, EC was designed for user-defined data collection for any part of

architecture and even information architecture modeled outside the architecture such

as network modeling for system-to-system interactions. The current EC configuration

also allows the customization of individual architecture elements such as operational

activities as described in the OV-5.

The OV-5 describes the operations that are normally conducted in the course of

achieving a mission or a business capability. It describes capabilities, operational

activities, input and output flows between activities, and I/O flows to/from activities

that are outside the scope of the architecture.

The purpose of the OV-5 is to: (1) clearly delineate lines of responsibility for

activities, (2) uncover unnecessary operational activity redundancy, (3) make decisions

about streamlining, combining, or omitting activities, (4) define or flag issues,

opportunities, or operational activities and their interactions that need to be scrutinized

79

further, (5) provide a foundation for depicting sequencing and timing, and (6) identify

critical mission threads and operational information exchanges by annotating which

activities are critical [DoDAF vl.5, Volume II: Product Descriptions, 23 April 2007]. The

ability to insert logic capable of modeling the realistic activities of an OV5 node could

also provide an assessment of the system's usefulness from a modeling perspective.

Another factor to review the method is the ability to simulate different types of

scenarios in many different ways. The generic simulation component of EC is based on

standardized fundamental M&S principles, which allows it to simulate many types of

models other than typical flow models. Its flexibility does not confine its use to one

specific purpose, allowing it to execute architectures in a variety of ways unique to the

user's preferences. Some commercial M&S tools can only simulate typical flow models

for specific purposes like queue studying. EC can be measured by its ability to accurately

execute tightly- or loosely-coupled systems while producing useful results. EC could also

be evaluated on its ability to integrate and simulate architectures, processes and

models. Figure 26 shows how two architectures are integrated using EC generic DEVS

modeling approach. The figure shows how architectures are difficult to integrate in

their pictorial format even if DoDAF is the common denominator, which is supposed to

allow integration. However, once represented in DEVS format, architectures can more

easily integrate via DEVS coupling.

80

Simulation composed of
multiple architectures

Architecture Views High level integration via
lower level integration
using composable DEVS models

Composed
DEVS Models

Executable
DEVS Architecture

Architecture Views

Executable
DEVS Architecture

Figure 26: Executable context architecture integration

The plan is to use a variety of techniques when attempting to evaluate the

architectures. An initial preference would be to use output evaluation and compare

architecture execution results test data that may be available, but other evaluation

techniques will also be considered and utilized in order to evaluate the architectures.

This type of output testing is likely to use statistical techniques to compare output data

and trajectories from the model with output data and trajectories from the system and

study correlation. Although black box testing using input/outputs mappings could be

used for basic evaluation of models, the ECSF doesn't have to narrow its analysis to the

high level input/output behaviors of an architecture. The ECSF models every part of an

architecture and would allow the decomposition of an architecture into lesser modeling

parts with their own behaviors and analysis, some which may have their own individual

data or detailed subject matter expertise. This technique follows a bottom-up approach

where lower-level sub-models are cumulatively evaluated up to the highest level.

81

Integration would be evaluated for models at the same level. Testing would be

repeated until all system components, sub-models and the entire model have been

integrated and tested. Evaluation could be assisted by confirming individual parts of

architectures from the ground up.

Enterprise level process

Existing Deployed composed of existing Existing Deployed
M&STools M&S capabilities M&STools

/ f \

Results

Figure 27: ECSF as part of an enterprise-level process

The Joint Semi-Automated Forces (JSAF) 2007 in Figure 28 provided the

operational context and executable architectures to represent the mission and flow of

information, and the network models provided the simulated information flow over

operational networks for the NEW example.

82

| # | - 1 • [localnost localdomam-SAF] II • SAFGUI)| M Starting lake screensnot) ^/^] Ẑ] 9

Figure 28: JSAF

The intercommunication provided by the federation allows events in federates

to trigger events in other federates, which creates a flow of execution among

simulators. Examples include combat simulator events triggering reactive process flows

in the executable architecture or information exchange sequences in the architecture

triggering network transmissions in the network simulator. Federated simulators are

not limited to combat and network models and can re-use any existing simulator of

interest.

7.2. EXECUTABLE CONTEXT: FOUR-STEP METHOD IN PRACTICE

EC begins with systems architecture and an operational context for obtaining

utility factors (metrics). Figure 29 shows the 4 steps of the EC method. In the figure

below, mission requirements (MR) and operational requirements (OR) describe the

context; system requirements (SR), functional requirements (FR) and capability

requirements (CR) describe the system with both comprising the mission blueprint.

External systems (ES) are introduced in step 4.

83

Step 1 -Blue Print
Mission System

Scenario=
Entities
Relations
Interactions
Behavior
Events

System=
Functions
Components
Interface Ext
Interfaces Internal
Data

Step 2 - Build EX Architecture

Is'-lTs-lIs-lIs-li

Step 3 - Map Blue Print to EA
Mission System

Event
I Context generates metric data

V2L/

Step 4 -EX Context
Environments and Events

Figure 29: Executable context's four steps for evaluating targeted system-of-systems

7.2.1. STEP 1: DEVELOP THE BLUEPRINT EXAMPLE FOR JOINT CLOSE AIR SUPPORT
(JCAS) AS IT RELATES TO a NET ENABLED WEAPON (NEW)

Step 1 for the JCAS experiment is to map the mission and operational

requirement with the systems, functional and capability requirements as designed in the

architecture. This requires a great amount of data gathering to bind the problem and

answer how to make a system specification that is available in the form of a system

architecture executable. How can the resulting artifact be federated into an executable

context that represents all external systems and can be initialized with the elements

describing an operational scenario, and how can the relevant measures of performance

on the system level and measures of effectiveness on the scenario level be derived from

operational requirements?

84

During JCAS operations, a target is selected and assigned to JCAS aircraft. JCAS

targets may be fixed, relocateable, or mobile and are often time-sensitive. Information

is extremely perishable under these conditions. Much of the information aircrews need

to attack a target is not available when the mission is assigned or may change while en

route to the target. In this environment, real time or near-real time information,

through situational awareness, reliable communications, and effective Command and

Control is absolutely critical for success.

Targets may present fleeting opportunities where delays could permit the enemy

to escape or maneuver to an advantageous position. Immediate JCAS may be in

response to situations where the supported unit has encountered a force beyond its

capabilities and an immediate response is necessary for success. JCAS systems must

permit rapid assessment of the situation and the ability to quickly redirect efforts.

Sensors, which may include Intelligence, Surveillance and Reconnaissance, JCAS

aircraft, Joint Terminal Attack Controller (JTAC), or ground force capabilities, track the

target location and provide continuous updates to the applicable network. The weapon

is then released using the best location information available at the time. During

weapon flight, it is possible for the initial target location, as well as the actual target

itself, to change. This is relatively common for mobile targets encountered in a JCAS

environment. The weapon's impact point is adjusted via In-Flight Target Updates

(IFTUs) and the weapon proceeds or is guided to the updated location. Sensors may

continuously update the target location throughout the weapon flight.

With network-enabled weapons (NEW), the launcher could engage the target

and, if necessary, allow the JTAC to supply IFTUs to the weapon. This is beneficial if the

target is no longer discernable from the air. Figure 30 depicts a current JCAS operation.

Either non-precision-guided munitions are used or the on-the-ground JTAC guides the

weapons using another type of system. Figure 31 depicts the same JCAS operation using

NEW. The JTAC will be able to target the weapons using the NEW implementation

messages. The sensors onboard the weapons will provide additional guidance.

85

Figure 30: JCAS operation without NEW

Figure 31: JCAS operation with NEW

86

The JCAS operation without the Net Enabled Weapon (NEW) systems

architecture or the "as is" architecture in Figure 30 represents the baseline model.

Figure 31 depicts the same JCAS operation using NEW, or the "to be" architecture. The

ability to use the EC method in both cases is beneficial to generate the needed

measures to define measures, operational systems architectures and visual tools for

capturing systems and operational requirements, decision and operational analysis of

external systems which are needed to aid in the development of the SoS to establish the

context of the system being evaluated based on the experiment preconditions and

assumptions generated during the problem formulation.

7.2.1.1. PRECONDITIONS OF THE JCAS IMPLEMENTATION

This experiment assumes the following preconditions. On orders from Division

Headquarters, the Brigade Combat Team (BCT) continues its advance to the objective.

Pre-planned Close Air Support (CAS) sorties were allocated by division to the BCT to

provide CAS. One of the brigade's battalions has entered a troops-in-contact (TIC)

situation and has asked for one of the allocated CAS missions to engage a target: one T-

72 tank is in the open. Geographical terrain is flat and obstruction-free. The CAS mission

has already checked in with the Air Support Operations Center co-located with the

Corps Main Command Post and is currently en route to a holding position 20 NM south

of the TIC, at which point it checks in with the Brigade Tactical Air Control Party.

The following assumptions were made regarding the experiment tied to the

problem formulation as described in the prior section:

• Resources are 100% available (platforms, sensors, network).

• Flights of fighters are on-station 20 miles away from the target.

• Pilot will not download data to the weapon until clearance to engage is

received.

• The weapon functions properly.

• JTAC is on the ground supporting battalion operations.

• JTAC found, fixed, identified and tracked targets.

87

• Battalion FSO assigned CAS against target and informed the JTAC of the

flight.

• Rules of Engagement/Airspace/Ground deconfliction process produces

no conflicts.

• Brigade Commander approves the CAS mission.

• Sorties are on the Air Tasking Order in support of the BCT.

• ATO specified time period is 0600 to 0559 ZULU (24 hour period).

• CAS is en route to the BCT Area of Operations upon request for CAS.

• JTAC personnel are trained to control Type 1, 2, and 3 CAS missions and

set up their PRC-117F secure radio transmitter, laser range finder, laptop

computer, and GPS receiver.

• The airspace is deconflicted/cleared for the CAS mission.

• Digital 9 line includes target coordinates and elevation, attack parameters

for bomb impact, and exclusion zones.

Figure 32 below represents the Entity Relationship Diagram (ERD) for the JCAS

implementation; it is an abstract and conceptual representation of data. Entity-

relationship modeling is a database modeling method used to produce a type of

conceptual schema or semantic data model of a system, often a relational database and

its requirements in a top-down fashion (Chen 1976).

88

OWNode

ID PK
State FK
Parent FK
Level FK

SysNode

ID PK
State FK
Parent FK
Level FK
OP Node FK

StateMOb)

Node

PK ID
State
Parent
Level
Cand.Key

CommNode
ID PK
State FK

FK
FK
FK

Parent
Level
Sys

OVSNode
ID PK
State FK
Parent FK
Level FK

OVBOvSNode
view PK
Node FK

view
Node

PK
FK

Invocation
ID PK
StartTimeFK
End Time FK
Node FK

OVS Event
ID PK
Edge FK
Order
Time

DoD/fv lew (r
ID PK
Type FK

SVTOc Event
ID PK
Edge FK
Order FK
Time

State Change
ID
Obi
State

PK
FK
FK

Seq.SVEdge

ID PK
View FK
State FK
Pred. FK
Succ FK
Sys Ex FK

Edge
•PTT

Vtew FK
State FK

Cand.Key

Into Exchange
type Mi

Con.SVEdge
TIT

FK
FK

ID
View
State
Nodel FK
Node2 FK
SysEx FK

Con OVEdge
Tff P R -

View FK
State FK
Nodel FK
Node: FK
Into Ex FK

Sys Exchange
type PI?

CommEdoe
ID
View FK
Stale FK
Nodel FK
Node2 FK
SysEx FK

Seq.OVEdge
ID-
Mew
State
Pred.
Succ.

FK
FK
FK
FK

Info Ex FK

MewType
Type PK

Ext.TransBion
ID PK
Old State FK
NewStateFK
Node FK
Time
Input FK
LastEVT FK

Transition
ID PK
Old State FK
NewStateFK
Node FK
Time

Int.Transition
ID PK
Old State FK
NewStateFK
Node FK
Time
Output FK

Comm.Trans
ID PK
Edge FK
Nodel FK
Node2 FK
Time

DEVS Input
type PR"

DEVS Input
Typei Pk

Figure 32: Experiments ERD

Figure 33 below represents the Operational Viewpoint or the OV-6c: Event-Trace

Description.

89

Maintain Visuaf

ID of Target

Airspace iVingman

Right Lead Flight Voice

Checkln

Figure 33: Experiments OV-6C

The OV-6c provides a time-ordered examination of the resource flows as a result

of a particular operational context. Each event-trace diagram should have an

accompanying description that defines the particular situation. Operational event/trace

descriptions (sometimes called sequence diagrams, event scenarios, or timing diagrams)

allow the tracing of actions in a scenario or critical sequence of events. The OV-6c can

be used by itself or in conjunction with an OV-6b State Transition Description to

describe the dynamic behavior of activities. The intended usage of the OV-6c includes:

• Analysis of operational events.

90

• Behavioral analysis.

• Identification of non-functional user requirements.

• Operational context.

Detailed description: The OV-6c is valuable for moving to the next level of detail

from the initial operational concepts. An OV-6c model helps define interactions and

operational threads. The OV-6c can also help ensure that each participating operational

activity and location has the necessary information it needs at the right time to perform

its assigned operational activity.

The OV-6c also enables the tracing of actions in a critical sequence of events. OV-

6c can be used by itself or in conjunction with OV-6b State Transition Description to

describe the dynamic behavior of business activities or a mission/operational thread. An

operational thread is defined as a set of operational activities with sequence and timing

attributes and includes the resources needed to accomplish the activities. A particular

operational thread may be used to depict a military or business capability. In this

manner, a capability is defined in terms of the attributes required to accomplish a given

mission objective by modeling the set of activities and their attributes. The sequence of

activities forms the basis for defining and understanding the many factors that impact

on the overall capability. Table 4 below uses the data from the ERD and OV-6c to map

the blueprint developed to the MMF for metrics gathering and the NCOBP problem

formulation as shown in Figure 34 below.

91

Operational Context
Estimate

Step 1 of EC mefhocT
Mapping OC andSC

sto establish Blueprint

Environment:
Physical, niilitary,-
civil conditions?

Purpose: Whatis —
the desired effect?

Tasks: What
actions are
required to achieve
purpose?

Capabilities:
Required to enable
task performance
to measure

Components: Units
(equipment and —

people) that have
required capability.

Systems Context
Condition

descriptions from
Task

Condition
descriptionsfroni

Tasks

tacticalmission
tasksortext

SystemsTasks
mapped to

Operational Tasks

tasksin data form Joint Task lists
(TTL)

Standard
(measures/criteria)

Tech Orders and
Previous defined

measures

System
compositions

Systems of System
composition

Figure 34: Blueprint mapping

7.2.2. STEP 2: BUILD AN EXECUTABLE ARCHITECTURE

Step 2 is to build an executable architecture that composes the architecture

models and simulations into distributed or concurrent systems. This executable

architecture was built and simulated using the DEVS/JAVA formalism. As expected, the

formalism was able to address discrete event and time-stepped simulation and was

generic enough to address all unexpected issues encountered during the process of

making an architecture executable or integrating models using web services.

Unlike earlier executable architecture prototypes, the DEVS simulation captures

considerably more statistical data. Each element in the architecture, whether a

composite process or a particular system node used within a process, is accompanied by

an experimental frame which serves as a monitor throughout the simulation. DEVS

92

simulation monitors and records all time-stamped events of nodes throughout the

simulation. From there, recorded information may include resource utilization when a

node is invoked. Afterward, the monitors are compiled and the information can be

studied. Monitors can be configured to record any type of information of interest to

analysts.

As discussed in Section 4.1, DUNIP is leveraged to aid in the development of an

atomic model, which is an irreducible component in the DEVS framework that

implements the behavior of a component. It executes the state-machine and interacts

with other components using its defined in-ports and out-ports. Each such atomic class

has its own simulator class. A network of these atomic models constitutes a coupled

model that maintains the coupling relationships between the constituent atomic

components. The contained services become the DEVS atomic models; research is still

ongoing to specify the logic behavior in atomic models. DUNIP provides the ECSF with

the process that uses the DEVS formalism as a basis for automated generation of models

from various requirement specifications and realization services. DEVS is inherently

based on object-oriented methodology and systems theory, categorically separates the

model, the simulator and the experimental frame, and has been used for systems

modeling and simulation over the years.

The DEVS decoupling implementation also allows real time execution and

discrete-event execution where the architecture can be executed much faster than real

time. Figure 35 gives an example of decoupling with DEVS and the creation of an atomic

model.

93

Atomic DEVS Models
III

Figure 35: Decoupling example

Figure 35 depicts DEVS models at multiple levels of abstraction. The numbered

tiers represent the different levels. The figure shows how models can be extended by

sub-models at lower levels using DEVS coupling. One of the significant developments of

the ECSF is the masking of a coupled model as an atomic model. What this implies is

that we have an abstraction mechanism by which a coupled model can be treated as a

black box and can be executed like an atomic model. In other words, a coupled model

now has a state machine similar to that of any atomic model. In contrast to the DEVS

hierarchical modeling, where a coupled model is merely a container and has

corresponding coupled-simulators (Figure 35), now it is considered an atomic model

with lowest level atomic simulator (Figure 36).

Using DEVS coupling, ECSF supports a pluggable architecture and can combine

multi-resolution DEVS models from multiple sources. Coupling provided by DEVS leads

to the coupling of architectures.

Coupled ATOMIC Service

94

H! • - H I

Q
DEVS Couple Model DPS Atomic i

~~*i §~*T !T*T f *"

Figure 36: Atomic DEVS models in executable context

Figure 36 shows how an atomic DEVS models could be extending with addition

sub-models using external data sources. EC uses DEVS coupling to support a pluggable

architecture.

Figure 37 gives a depiction on how ECSF managed the hierarchically structured

systems and supports the coupling and composability of atomic models.

95

INITIATE MISSION ASSUME COMMAND OF MISSION

[•SEWN MRCET2"HED CONDUCT aMTLEOMnGEMSESSyENr

l i : I : : I : ' l i : l:S
Figure 37: ECSF coupling and composability of atomic models for CAS implementation

It is formed or composed by mapping the components of the operational

processes onto the processes of the physical system as shown in Figure 38.

96

SV4 Systems Atomic SV4 Atomic

SOS Couple Model
3&T ->ii

System Atomic System Atomic System Atomic

-*i sv-
41OC

Figure 38: Step 2 of the executable context method - decomposing the systems
processes with other systems in the operational process to develop the hybrid view

SV-410C

This process enabled the creation of a hybrid systems view SV410c, which

combines the Systems/Services Functionality Description (SV-4), documenting system

functional hierarchies and system functions and the system data flows between them;

the Organizational Relationships Chart (OV-4), which represents command, control,

coordination and other relationships among organizations, and the Systems/Services

Event-Trace Description (SV-10C), which provides a time-ordered examination of the

system data elements exchanged between participating systems (external and internal),

system functions or human roles as a result of establishing context as described by the

EC method that extracts architecture elements to create the hybrid SV-4/10c for the

executable context simulation framework (ECSF).

Each event-trace diagram has an accompanying description that defines the

particular situation. SV-lOc in the Systems and Services View may reflect system-specific

aspects or refinements of critical sequences of events described in the OV-5 Operational

Activity Model as illustrated in Figure 39. This includes activities, relationships among

activities, and inputs/outputs. In addition, overlays can show cost, performing nodes or

other pertinent information of the JCAS example.

97

0 V 5 Process EC Coupled

OV2 Process

r-G
OV2 EC Atomic

"*T

SV4 Systems Process

•O

SV4 (systems of system) Coupled

Proceed to Next Process

Figure 39: Executable context method step 2b - build executable architecture and
compose systems processes with operational processes into the Operational Activity

Model OV-5

7.2.3. STEP 3: MAP EXECUTABLE ARCHITECTURE TO THE BLUEPRINT

Step 3 is to map the executable architecture to the blueprint of the JCAS

example as shown in Figure 40 below. This allows the use of an M&S environment to

capture the measures needed to evaluate the architecture's ability to support its

intended purpose.

98

CRO

JCAS

Use

Case

• Analysis studies

• Capabilities under
investigation

• CONOPS assumptions

• Operational Architecture

• Systems Architecture

» Discrete event simulation
(DEVS) capable

Modeling & Simulation Environment

Executive
Architecture
Simulation

• Schema matching « Use case independent
0 Architecture-driven stimulus • Fewer embedded

• Architecture visualization assumptions
(in execution)

Figure 40: Step 3 - map executable architecture to the blueprint

Ultimately, the structural and behavior characteristics of DoDAF must be

represented in DEVS in order to be executed. Architectures are first read in their native

format, then placed in an internal data model, and next translated into executable

models. First, the architecture must be read and interpreted. This is the uncertain step

because it involves third-parties. Both the completeness and format of the architecture

are addressed. From a DoDAF standpoint, many of the entities, relationships, and data

types of DoDAF data models are able to translate directly to DEVS components. Many

of the structural properties of DoDAF translate nicely into an executable DEVS format.

For example, a simple graphical representation of a DoDAF operational activity diagram

closely resembles a basic chain of coupled atomic DEVS models. Although DoDAF is

capable of associating logic, criteria, and timing information with many of its model

components, some architecture builders do not include these details and define only

the structural properties of the architecture. In cases where executable parameters are

not available in the native architecture, parameters will be assigned default values

during the initial executable architecture generation. Of course these values could be

altered later once the architecture has been ingested. Missing information mostly

99

includes timing information and criteria for decision-making models. If this information

is represented pictorially in architectures, the rules, conditions, and criteria will be

reformatted into a machine readable format prior to ingestion.

Recent improvements in the DoDAF data models have made it easier to store

this behavioral information in a machine-readable format. Figure 41 below shows a

simple operational activity diagram with the data types from the DoDAF Meta-model

(DM2) assigned to major components. This is an example of how DoDAF's structural

properties translate nicely into DEVS components that can represent the methodology

within DoDAF and was implemented in the JCAS example.

0 Organization
activityPerformedByPerformer

Activity Activity

I 4 r System
wholePart - "">'

tQ Systei actrvityResourceOverlap

{ / Organization

•^^— ^ j i Systenr

activityPerformedByPerformer activrtyResourceOveriap

Activity

wholePart

A'± to*0'

0 Organization
activityPerformedByPerformer acthrityResourceOverlap

Activity

wholePart 4^
Actor

System

Figure 41: Simple operational activity diagrams

The above model can have countless DEVS representations in DEVS. A simple

representation could include a chain of coupled atomic operational activity DEVS

models with couplings to their respective resource DEVS models in the swim lanes.

100

Activity

1
Activity

Condition

Activity

1 Activity 1

Figure 42: Storage of executable parameters

Figure 42 above demonstrates the improved richness of standard DoDAF data

models and their ability to store many required executable parameters, allowing the

executable architecture engine to be as parametric as possible. Aside from the

architecture completeness, DoDAF architectures are stored in multiple third-party

formats. Architectures are typically formatted in pictorial formats, and need to be

reformatted into a machine-readable format like Microsoft Excel. Other cases involved

DoDAF architecture being represented in XML schemas like Core Architecture Data

Model (CADM) and the newer DoDAF Meta-model (DM2).

101

First, an ingestion component must parse the machine-readable format of the

architecture and put it into the internal data model. The code block in appendix A

shows how the internal data model is used to generate DEVS models for each of the

architecture components. The class is only a template and has been trimmed for

simplicity. The class basically loops through and visits every architecture component in

the internal data model and generates its DEVS counterpart while generating various

ports and coupling everything together using DEVS couplings.

The internal data model is used to generate DEVS models because it simply holds

both the structural and behavioral properties needed for the models. Once the DEVS

models have been generated, the engine advances using adjustable time-step. The

propagation of the engine "ticking" throughout the entire executable architecture is

handled by the DEVSJAVA libraries. DEVS model templates contain various collections

points to collect information about the architecture during execution. The code block in

appendix B shows a template for an Operational Activity DEVS model. The class is only a

template and has been trimmed for brevity, but it does contain all the major functions

present in all DEVS models in DEVSJAVA.

7.2.4. STEP 4: FEDERATE ALL STEPS INTO AN EXECUTABLE METHOD

Step 4 federates and amalgamates all steps of the method into an executable

method as shown in Figure 43 below. Figure 43 outlines how the artifacts and models

can be federated into an executable context that represents all external systems and

can be initialized with the elements describing an operational scenario and allows

relevant measures of performance on the system level and measures of effectiveness on

the scenario level to be derived from operational requirements while using standard

simulation architectures environments and common frameworks. The ECSF enables the

integration of the independent models into an engineering method that allows

harmonization of System and operational architecture as an executable. This research

also allows for an executable federation that represents all external systems and can be

initialized by systems and operationally relevant data.

102

DATA

Architectures

Static Architecture
WWho, What, WhereW

Architecture
\ ^ Execution (When) J

Measures
^ (Why and H o w) /

Figure 43: Step 4 - putting it all together

73 . RESULTS OF THE NEW EXPERIMENT

The key questions that were answered in these experiments were:

1. Does incorporating the "context" affect the evaluation of the system?

2. Does incorporating the "context" lead to different decisions?

This experiment clearly established that the EC method could incorporate

systems architectures with an operational context, federated with other models to

acquire critical measures of effectiveness and measures of performance relating to

system-of-systems capabilities. It was imperative that a full understanding of the "as-is"

process be modeled first. Then the "to be" model was developed based on the same

context. By analyzing the "as-is" versus "to be" models, EC had the ability to provide

quantitative measures as defined by the metrics established in Step 2.

103

The overall goal is to demonstrate that the EC methodology could assess

capabilities and aid in the evaluation of the architecture products into a harmonized

method that enables an executable context, as identified in this research, than what has

historically been done.

The following qualitative results and recommendations were provided as part of

the experiment. The results were based on the following equation:

How:

PSSK (Probability of Single Shot Kill) = PFFR x PE/R x PK/E where:

PFFR = Weapon Free Flight Reliability. PFFR is the probability thatall weapon
components operate as designed, given a successful aircraft release of a
functional weapon. PFFR includes all flight functions after weapon release up to
and includingwarhead detonation. PFFR does not include failures not onboard
the weapon.

PE/R = Probability of Engaging the target given a successful release. Given a
successful release, PE/R is the probability the weapon acquires, correctly
classifies, commits, and guides to the correct target located near the designated
aim point. PE/R stresses the seeker and data link and is left open to gives the
opportunity to pursue the best solution to achieve the desired PSSK.

PK/E= Probability weapon kills the target given an engagement. PK/E is the
probability the weapon achieves the desired kill criteria given successful PFFR and
successful PE/R against each individual target set member. Given the above
equation the EC method was tailored to qualitatively answer if the architecture
could validate the probabilitiesof a single shot kill of the NEW capability.

Equation 2: PSSK equation

With the results of the "as is" and "to be" models analyzed, the following was

gathered and evaluated using the following figure, which represents three different

runs.

The key elements of the experiments were the ability to use the data to answer

the specific question of PSSK. Below is a synthesis of the results used to determine how

EC answered the how and the why. Figure 44 shows an example of a JCAS model being

104

executed with a deadlock situation shown in red. The model contains operational

process of a targeting Chain for JCAS. Activities requiring resources have couplings to

those resources and acquire them during execution. During execution, two threads of

execution reach a deadlock situation over resources. The state of the deadlock is two

processes that have acquired only one of the two resources needed to execute. Within

the deadlock, the blue lines represent resources that have been acquired by an activity,

and the orange lines represent resources that have only been requested. The deadlock

remains because neither activity will give up its resource. However, logic embedded

within the resources is in place to handle prioritizing the competing threads. The logic

causes the lower priority thread to yield, allowing the other thread to gain control of its

required resources. After the first thread is finished, it releases both resources, and the

yielding thread can finally execute. This example shows how the executable context

evaluates a theoretical situation like a dead lock in an operational environment.

105

Wlngman

Fllghtl pad

Read Back
9 line

Figure 44: JCAS Dead Lock Model

Figure 45 is the synthesis of run 1 or the Small Diameter Bomb (SDB) that

showed "how" to employ the weapon to gather Measures of Effectiveness from the

operational activities as shown by the green arrows. The blue arrows show the capture

of measures of performance from the systems and answer the "why" to employ and

engage. The results are shown to depict MOPs and MOEs.

106

.tf I /)

|2

ro c
o

4-*

0 '

O

CD

3

ro 0)

5

E
to

to

m
"E
- C

u
^

0)

3

CO
01

2

c
0)

E
CD
E.
3

CT 0)

cc

c
3

0 £

CQ

a in

Close Air SuDDort

Time to first target observation

Stowed Kills

Emolov SOB
Rating of control

A/CTDL
Positive Control Range

SDB Munitions
AVG Max Loiter Time

Engage with SDB
% missions target is destroyed

Time of Engagement
Pssk

SDB Munitions
In-flight Reliability

Guidance and Control
Ph/s Predicted
Ph/s Observed

Warhead
Ph/s Predicted
Ph/s Observed

<15min
(13 mln)

NC

NC

50 km

45 mln

NC

<15 mln
(2 mln)

80%

93%

90%

NC

95%

NC

Predicted: 3 .6 ,12
Demonstrated- 2, 5 .11

4.7/5 Excellent

62 km

46 mln

84%

1.6 mln

P.76%.D:69%

82% '

95% /

84%

95%

100% '

NC: No defined criteria

Employ Lethal Fire Support
•Able to arrive in the engagement area within 15 minutes.
•Able to arrive in the engagement area and destroy the
target within 16 2 minutes.

•Ableto destrovfrom 3 to 12 targets per sortie (2 aircraft}
based on load out

T I HOW
Employ SDB
•Ableto emplovtheSDB up to a range of 62 km with a
loftertfme of 52 minutes.

WHY
Engage with SDB
•Able to engage the target within 2 minutes.
•Able to engage and destroy targets with a probability of
single shot kill of 76%, +/-4%.

WHY

>-LU
^

MOPs

—p.

MOEs

Figure 45: "how" and "why" of Run 1 (SDB)

Figure 46 is the synthesis of run 2. This run provided experimental information

of a Small Diameter Bomb 2 (SDB 2) conventional system and its existing capabilities.

Results provided the following information showing that "how" the SDB 2 employed

results and "why" SDB 2 capabilities employed and engaged the target.

107

C _
O 0) ro 0)

« 3 P •!=! 3

- ^ 0) <o J-J -C ro
i/> „ <u w) u 0)

|2o 2 £ £ 2

c
QJ

E
<v
u.
'5
cr
0)

0£

C
3

a.
CM
CO
Q

Close Air Support
Time to first target observation

Stowed Kills

Employ SDB 2
Rating ot control

A/CTDL
Positive Control Range

SDB 2 Munitions
AVG Max Loiter Time

Engage with SDB 2
% missions target is destroyed

Time of Engagement
Pssk

SDB 2 Munitions
In-flight Reliability

Guidance and Control
Ph/s Predicted
Ph/s Observed

Warhead
Ph/s Predicted
Ph/s Observed

<15m!n
(13 mln)

NC

50 km

45 mln

<15mtn
(2 mln)

80%

93%

90%

95%

Predicted: 3 ,6 ,12
Demonstrated: 2 ,5 ,11

NC: No defined criteria

4.7/5 Excellent

70 km

52 mln

84%

1.6 mln
P:76%, D:69%

82%

95%
87%

97%

Employ Lethal Fire Support
•AMe to arrive in the engagement area within IS
minutes.
•AMe to arrive in the engagement area anddestroythe
target within 16.2 minutes.
•AMe to destroy from 3 to 12 targets per sortie (2
aircraft) based on load out.

T I HOW'
Employ SDB 2
•AMe to employ the SDB 2 tip to a range of 62 km with
a loiter time of 52 minutes.

WHY
Engage with SDB 2
-AMeto engagethe target within 2 minutes.
-AMetoengageand destroy targets with a probability
of single shot kill of 76M. +/-M6.

WHY

>-LLI
MOPS

->
MOES

Figure 46: "how" and "why" of run 2 (SDB 2)

Figure 47 is the synthesis of run 3 or the Net Enabled Weapon (NEW). This run

took into account "how" to employ the weapon and "why" to employ the weapon and

engage the target with experimental and advanced capabilities. Network-enabled

weapons will provide the warfighter with the capability to prosecute time sensitive and

mobile targets by supplying real-time accurate target information to the weapon from

release through impact. In essence, network-centric systems establish communication

nodes linking weapons with the most accurate information available. Information will be

provided to the weapon by the most timely and accurate source available and not be

limited to the delivery platform. In-flight, the weapon receives target location updates

and incorporates real-time data into guidance systems for aim point adjustments. This

will provide a means to redirect a GPS-guided weapon after release and hold the mobile

108

target set at risk regardless of weather conditions. If the weapon is equipped with a

seeker, the seeker may be preprogrammed to take over and gain greater accuracy for

discriminate targets. Overall, the full impact of network-enabled weapons is still unclear,

but based on the finding of this research, the benefits clearly touch every element

within the kill chain. Networking weapons provides a technological solution that fills a

documented capability gap and has the potential to spawn innovation in advanced

architectures. More research must be accomplished to properly integrate the

architecture without creating stovepipe solutions that meet only near-term needs. To

prevent stovepipe solutions and achieve full network weapon integration, an

overarching joint portfolio management solution is required to streamline this capability

to the warfighter and should be a focus on future research.

-S£
1/1

£

ro
c
o

ro
0)

O

CD
3
c/>

0)

s

E
0)
i/> >• in

ro
o
'c
.e
u

P

ID

3 (/)
ro
(U

s

e
CD

E
CD
L -

o-
CD

rr,
c
3

Close Air Support

Time to first target observation

Stowed Kills

Employ NEW
Rating ot control

A/CTDL

NEW Munitions
AVG Max Loiter Time

Engage with NEW
% missions target is destroyed
Time of Engagement
Pssk

iSEVV Munitions
In-flight Reliability

Guidance and Control
Ph/s Predicted
Ph/s Observed

Warhead
Ph/s Predicted
Ph/s Observed

<15min
(13 min)

50 ton

45 min

NC

< 15 min
(2 min)

93%

90%

95%
NC

12.6 min
Predicted: 3.6,12
Demonstrated: 2,5,11

NC: No defined criteria

4 7/5 Excellent

85 km

89%

.6 min
P:86%, D:79%

95%

98%

89%

98%

100%

>

Employ Lethal Fire Support
•Able to arrive hi the engagement area within 15
minutes.
•Able to arrive in the engagement area and destroy the
target within 16.2 minutes.
•Able to destroy from 3to 12 targets persortie (2
aircraft) based on load out.

T J ^ HOW
Employ NEW
•Able to employ the NEW up to a range of 62 km with a
loiter time of 52 minutes.

WHY
Engage with NEW
•AWe to engagethe target within 2 minutes.
•Able to engage and destroy targets with a probability
jfojngle^jitMLof 76%. */-4%.

WHY

>-LU MOPs

p

MOEs

1

Figure 47: "how" and "why" of run 3 NEW

109

The results for the runs were analyzed based on the problem formulation

established in step 1 of the EC method and the following results were gathered. The key

to the analysis on the NEW or "to be "capability is enabled by the following:

1. What are the systems that are affected by this system?

2. What are the systems that affect this system?

3. What environment does this system operate in?

4. Will this system execute within its intended environment as predicted?

The experiment is designed to evaluate the use of a Net-Enabled weapon in

comparison to using a conventional weapon. There are significant issues in developing

the experimental design. Many of these issues stem from the large scope of the

experimental design needed to evaluate the experiment. The experiment needs to

correctly and completely describe all of the following items:

The constraints of the experiment

The problem and relevant background information

The defined set of test hypotheses

The identified variables (independent, dependent, test)

The tools and techniques

The preconditions for running the experiment.

The statistical tests and tools for analyzing the data

The sources of error

Ensure that the experiment as a whole is feasible

Define the number of repetitions

Define the sources of error

Define the limitations

Several significant issues have been identified in running the experiment. The

first issue concerns the availability of suitable data. In this experiment, each run needs

to define the data being used. The third significant issue is meeting the pre-conditions

for running each of the experiments. In addition to being a significant amount of work

110

to develop the tools and materials, the items developed need to be consistent in quality.

There are significant issues for developing the experimental design, running the

experiment, and analyzing the results. It is important to understand that the issues in

running and analyzing the experiment were addressed in the experimental design. The

NEW experiment provided a viable method to conduct dynamic, persistent, extensible,

measurable, repeatable and interactive testing of processes, architectures and

components. With the achievement of this goal, today's challenge of evaluation

without an effective method to test and verify tactics, techniques, and procedures (TTP)

in an executable context with systems, organizational structure and functions is

remedied.

This experiment showed the integration of the independent models into a

common method that allows harmonization of system and operational architecture as

an executable. This experiment also allows the resulting artifacts to be federated into

an executable context showing all external systems and was initialized with an

operational scenario that allowed relevant measures of performance on the system and

measures of effectiveness on the operational level.

I l l

8. CONCLUSION

To conclude, the methodical development and testing of the executable context

theory were developed to uphold that this theory is both novel and viable. Results

indicate that, by incorporating executable context in system evaluation, context affects

the overall evaluation and does lead to different decisions based upon this evaluation.

By leveraging literature research and developing an operational and theoretical

example, the executable context method exhibited evidence that system-of-systems

architecture can be evaluated. This method leverages current executable architecture

and architecture analysis methods through modeling and simulation and systems

engineering to close the gap and vet executable context as a new method of evaluation.

With today's state-of-the-art in executable architectures, theoretically-sound

dynamic analysis of system-of-systems effectiveness and performance is difficult to

achieve within an operational environment. The executable context research builds

upon and advances the current state-of-the-art in architecture evaluation by simulating

operational and system contexts. Figure 48 demonstrates functional orchestration of

operational and systems architectures in knowledge-based evaluation of architectures.

Furthermore, this research extended the DUNIP research, enabling an

executable federate that allows for operational and systems model transparency and

extension of the MMF in a federation of the operational and systems artifacts to ensure

that all measures of performance on the system level are computed within the user

relevant operational context based on the system's specification and contribute directly

to the operational efficiency (MOE) and Systems efficiency (MOP). These extensions

enabled operational and system model harmonization for resulting artifacts to be

federated into an executable context.

112

0\.-.- • t «.-,

Mission Requirements

Operational Requirements

/ M R \ / M R \ / M B \ / M R \

M/ES^ JKE2/&. JKEBt^ J/ES/^.

Executable Context Method t t t
MOP

System Requirements

Functional Requirements

Capability Requirements ^̂ ^̂ B ^̂ ^̂ B ^̂ ^̂ A ^^^^B

Figure 48: Functional Orchestration of Operational and Systems Architectures using
Executable Context Method

With the limited resources in today's economy, organizations must efficiently

allocate resources. Executable context research intends to achieve greater evaluation

ability with the same or fewer resources. In essence, executable context melds both

business and technology best practices to improve efficiency and reduce redundancy by

providing higher accuracy in pre-execution evaluation of systems. Executable context

models operational and systems architecture specification contributions with a higher

degree of accuracy as it considers how an architecture is affected by interacting

systems, rather than today's more stovepipe method of system evaluation. This was

achieved through extending the DUNIP Specification to enable an executable HLA

federate, leveraging and extending the MMF to apply measures to a specific scenario,

leveraging the FEDEP and DSEEP processes within in a context and extending the MAVS

method to conduct dynamic architecture evaluation.

113

The executable context method complements other successful approaches such

as the Zachman and DoDAF frameworks, agile methods, total quality management, and

lean sigma. Further, this research is applicable at multiple system levels - from broad

enterprise and business architecture to the intricate systems architecture and

technology implementation. Throughout the executable context research, the concept

was vetted by analyzing the capability architectures to establish system performance

evaluation and effectiveness. The result determined that executable context creates a

partial static analysis environment in which static architecture framework products can

be more closely examined. This closer examination furthers the study of other routine

processes. The current research delivers results that perpetuate repeatable and

measurable environments comprised of replaceable components evaluated under

different technical, operational and system architectures. The research also led to the

creation of a method to convert systems and operational architectures into an

executable context.

Based upon these findings, executable context may also provide added value in

service orientation, business processes, and information and business rules (limited by

certain problems and opportunities within these). Evidence presented throughout this

research indicates that systems that utilize architected solutions out-perform chaotic

systems when architecture is applied at the right levels. Executable context methods are

also developed to determine when an architected solution is appropriate and how much

detail is required. These methods also provide further insight to determine how to

design a plan or processor to convey information effectively and efficiently without

stifling creativity and diversity.

Finally, executable context research derives information and generalizes

architecture frameworks such as DoDAF, Zachman, 4+1 view and others to evaluate that

the current state-of-the-art in executable architectures are not able to analyze

operational system-of-systems in a dynamic fashion, as these foundational principles

evaluate the architectures within their own operational environment. The extensible

114

method developed within this research is an evolution of these concepts that is

designed to close this gap through considering systems within their contexts.

115

9. EXTENSIBILITY OF THE RESEARCH

Many of today's engineering and architecture environments have adopted a

system-of-systems approach to developing and sustaining their capabilities. The focus

has shifted from platform-based programs to integrated capability-based development,

management and sustainment programs. The EC method supports strategic planners to

define the long-range capability roadmaps, evaluate program requirements and

determine spending priorities. While traditional systems architectures focus on the

operational systems and technical standards, it is the mission element of portfolio

management that has increasingly drawn attention. Capability managers struggle with

how to best represent the intended mission element of a capability within the system-

of-systems construct.

Continuous improvement and success of portfolio management ensure that the

appropriate resources are allocated to their authorized portfolio components. Since

portfolios rely on projects in order to achieve their strategic goals, they are

interconnected and the improvement and success of portfolios has direct influence on

the success of system-of-systems projects. This includes:

• System-of-systems acquisition management - a significant increase in

complexity over traditional system acquisition.

• Developments that require significant numbers of technologies be

integrated to one another.

• Challenges to traditional development monitoring tools and cost models.

• Need to capture integration complexity.

• Level of effort required to connect individual components.

• Unintended consequences - high degree of inter-linkage between

components can cause unintended impacts to overall system

performance.

• Components are modified from original use.

• Technology change: replaced throughout the system life.

116

When DoDAF architectures represent test events, a capability is needed for

monitoring, visualizing and analyzing events from a DoDAF perspective. Analysts

familiar with DoDAF are able to examine how various lower-level messages and events

captured during a distributed test environment relate to both system and operational

architecture viewpoints. Analysis and measures calculated during events must also be

overlaid onto detailed visualizations from a DoDAF perspective. Following the release of

DoDAF 2.0, the capability also attempts to follow the DoDAF Meta-model (DM2) and the

idea of enabling users with the flexibility to construct hybrid views. Given that the data

model is implemented as ontology, the capability also explores the ability of revealing

inferred relationships using reasoning engines. Given the ability to reveal additional

relationships based on those explicitly defined, the capability attempts to convey

unexpected and possibly critical information to users.

This research describes a prototype that implements a data model-based on

DM2 and the services that produce meaningful executable context for the Net Ready

Key Performance Perimeters which is comprised of the following elements: compliance

with the Net-Centric Operations and Warfare (NCOW) Reference Model (RM),

applicable Global Information Grid (GIG) Key Interface Profiles (KIP), DOD information

assurance requirements, and supporting integrated architecture products required to

assess information exchange and use for a given capability.

Extension of the research method developed in this thesis has the ability to

provide an integrated approach to system-of-systems evaluation or the ability to

evaluate more than one system at a time. It uniquely leverages the principles of

resource issues for capability development and management, specifically in the key

areas of personnel, resources and activities. The gap between existing "as is" capability

and the desirable "to be" capability require a measure for evaluating key incremental

capability of the "to be" state. EC has the potential to provide value-focused metrics,

including system-level measures of performance and context-based measures of

effectiveness, which could lead to integrated capability metrics suitable to link

enterprise strategic guidance to an engineered capability portfolio. EC could enable an

117

analytical approach based on a simulation-based environment; client capability

engineering teams understand the impact of alternative capabilities on variables such as

strategic key performance parameters, operational and system performance, lifecycle

costing, personnel training requirements and methods. This research may be used to

implement an evaluation process in which needs and resources are integrated early and

resources are committed incrementally based on the achievement of specific levels of

knowledge at established decision points.

This research may also be used to prioritize programs based on the relative

costs, benefits and risks of each investment to ensure a balanced portfolio. EC could be

used to require increasingly precise cost, schedule and performance information for

each alternative that meets specified levels of confidence and allowable deviations at

each decision point leading up to the start of product development. Further, EC may

enable empowered portfolio managers to prioritize needs, make early go/no-go

decisions about alternative solutions and allocate resources within fiscal constraints.

Finally, EC could provide a much needed approach to optimization of operational and

systems requirements.

118

Future Research Portfolio Management

"Executable Context"

tSSSSS^S'

flcr j / CMKutDcwfapmcntfr

iMUaftOKbtaw

system 1

< system 2 -

systemS

system A

systems

systems

on
o ¥

PEOPLE

Figure 49: Future research - executable context for portfolio management

119

10. REFERENCES

Anderson, James H. & Kim, Yong-jik. (2001). Shared-memory mutual exclusion: Major

research trends since 1986.

Architecture Reviews: Practice and Experience by Joseph F. Maranzano, Sandra A.

Rozsypal, Gus H. Zimmerman, Guy W. Warnken, Patricia E. Wirth, and David M.

Weiss IEEE SOFTWARE March/April 2005, pages 34-43.

Arthur D. Hall (1962). A Methodology for Systems Engineering. Van Nostrand Reinhold.

ISBN 0442030460.

Atkinson, K. (2004). Modeling and Simulation Foundation for Capabilities-Based

Planning. Spring Simulation Interoperability Workshop, p. 8.

Austin, D., Barbir, A., Ferris, C, Garg, S. (2004). Web Services Architecture Requirements.

W3C Working Group Note.

B. P. Zeigler, 2003DEVS Today: Recent Advances in Discrete Event based Information

Technology, MASCOTS Conference.

Balci, O. (1987) Credibility and Assessment of Simulation Results: The State of the Art.

Proceedings of the Conference of Methodology and Validation, pp.6-9.

Banks, J., Gerstein, S. & Searles, S.P. (1987) Modeling, Processes, Validation and

Verification of Complex Simulations: A Survey. Proceedings of the Conference on

Methodology and Validation pp. 13-18.

Barbar, M.A., et. al. (2004) A Framework for Classifying and Comparing Software

Architecture Evaluation Methods, Proceedings from the 2004 Australian

Software Engineering Conference, pp. 309-318.

Bar-Yam Y., Allison, M., Batdorf, R., Chen, H., Generazio, H., Singh, H., & Tucker, S.

(2004). The Characteristics and Emerging Behaviors of System of Systems System-

120

of-systems. NECSI: Complex Physical, Biological and Social Systems Project.

http://necsi.org/education/oneweek/winter05/NECSISoS.pdf. Ref. May 2007.

Bass, L, Clements, P., & Kazman, R. (1998). Software Architecture in Practice, Addison-

Wesley.

Best Current Practices: Software Architecture Validation. (1990). AT&T Bell Labs.

Bredemeyer, Dana & Ruth Malan, "The Role of the Architect," white paper published on

the Resources for Software Architects 2004.

Bredemeyer, Dana. (1999). James Madison and the Role of the Architect.

http://www.bredemever.com/papers.htm.

Bredemeyer, Dana. (2007). James Madison and the Role of the Architect.

http://www.bredemever.com/papers.htm.

Brown, Allen. (2009). An Introduction to Model Driven Architecture. IBM.

http://www.ibm.com/developerworks/rational/library/3100.html.

Buede, Dennis M. (2000). The Engineering Design of Systems: Models and Methods.

John Wiley & Sons, Inc. p. 38.

Carlock, P.G. & Fenton R. E. (2001), System-of-Systems (SoS) Enterprise Systems for

Information-Intensive Organizations. Systems Engineering, Vol. 4, Issue 4. pp.

242-261.

Clements, Paul. 1996. ASurvey of Architecture Description Languages. In Proceedings of

the 8th International Workshop on Software Specification and Design (IWSSD

'96). IEEE Computer Society, Washington, DC, USA, 16-25.

Chairman, JCS Instruction 3170.01D. (2004). Joint Capabilities Integration and

Development System.

Chairman, JCS Instruction 6212.01D. 2006. Interoperability and Supportability of

Information Technology and National Security Systems.

http://necsi.org/education/oneweek/winter05/NECSISoS.pdf
http://www.bredemever.com/papers.htm
http://www.bredemever.com/papers.htm
http://www.ibm.com/developerworks/rational/library/3100.html

121

Charles, Philipp, Turner, Phil. (2004) Capabilities based acquisition ... from theory to

reality. CHIPS.

Charles Keating, Ralph Rogers, Resit Unal, David Dryer, et al. "System of Systems

Engineering," Engineering Management Journal, Vol. 15, no. 3, pp. 36.

Charles Keating, "Research Foundations for System of Systems Engineering," 2005 IEEE

International Conference on Systems, Man and Cybernetics, Waikoloa, Hawaii,

October 10-12, 2005. pp. 2720-2725.

Crnkovic, Ivica & Larsson Magnus. (June 2004). Classification of quality attributes for

predictability in component-based systems. IEEE DSN 2004 Workshop on

Architecting Dependable Systems; Florence, Italy.

Defense Modeling and Simulation Office (DMSO). (1997). DoD Modeling and Simulation

Glossary. Alexandria, VA.

Deitz, P.H., Sheehan, J.H., Harris, B.A., Wong, A.B.H., Bray, B.E., Purdy, E.M. The Military

Missions and Means Framework (MMF). 2005

DOD Architecture Framework, V1.0, Vol. I and II, 15 (August 2003).

DoD Instruction 5000.2. (2003). Operation of the Defense Acquisition System.

DoD Metadata Registry and Clearinghouse.

http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal/. Accessed Feb

2010.

DoDAF Working Group. (2003). DOD Architecture Framework Ver. 1.0 Vol. Ill: Deskbook,

DOD.

DoD Net-Centric Services Strategy, Strategy for a Net-Centric, Service Oriented DoD

Enterprise, March, (2007), issued by ASD (NII)/DoD CIO.)

http://diides.ncr.disa.mil/mdregHomePage/mdregHome.portal/

122

Else, Steven. (2005). As-is, Could Be and Possible Transition Consideration, Center for

Government Transformation.

Forsberg, K., Mooz, H., Cotterman, H. Visualizing Project Management, 3rd edition, John

Wiley and Sons, New York, NY, 2005. Pages 108-116, 242-248, 341-360.

Garcia, Johnny, Browning, J. (2006). Innovations in Process Modeling as Applied to

JFCOM Joint Experimentation Directorate Division Experiment Management

Teams. Spring SIW 06S-SIW-015.

Garcia, Johnny. (2009). Executable Architecture Analysis Model (EAAM). Proceedings of

the ITEA LVC Conference Las Cruses, NM.

Garcia, Johnny. (2010). Methodology Supporting Architecture Evaluations (MAVS).

Spring Simulation Conference.

Gideon, J. & Dagli, C. (2005). Taxonomy of System-of-Systems. CD Proceedings of CSER

Conference on Systems Engineering Research. Hoboken, NJ.

Greene, J.C. (1987). Uses and misuses of mixed-method evaluation designs. Proposal for

the 1988 annual meeting of the American Education Research Association (New

Orleans), p. 22.

Handley, Holly, Zaidi, Zainab, Levis, Alexander. (2000). The Use of Simulation Models in

Model Driven Experimentation, System Architectures Laboratory. C3I Center,

George Mason University.

INCOSE Systems Engineering Handbook V.3. (2006). INCOSE.

International Council On Systems Engineering (INCOSE), Systems Engineering Handbook

Version 3.1, August 2007, pages 3.3 to 3.8

123

Institute of Electrical and Electronics Engineers. (2000). IEEE Stat 1471-2000: IEEE

Recommended Practice for Architectural Description of Software-Intensive

Systems.

Institute of Electrical and Electronics Engineers. (2011). IEEE Stat 1730-2010: IEEE

Recommended Practice for Distributed Simulation Engineering and Execution

Process (DSEEP).

International Organization for Standardization. (2002). ISO/IEC 15939:2002 Software

engineering - Software Measurement Process. Geneva, Switzerland: Author.

Joint Publication 1-02, Appendix A- l , p.333, 3/2007

Kruchten, Philippe. (1995). The 4+1 View Model of Architecture, IEEE Software, vol. 12,

no. 6, pp. 42-50.

Lee, J., Choi, M., Jang, J., Park, Y., Jang J., Ko, B. (2005). The Integrated Executable

Architecture Model Development by Congruent Process, Method, and Tools.

Proceedings of the 2005 Command and Control Research and Technology

Symposium, CCRTS '05, Tyson's Corner, VA, p. 259.

Levis, A. (1993). Proceedings of the Symposium on Command and Control Research.

National Defense University, Fort Lesley J. McNair, Washington D.C.

Levis, Alexander & Wagenhals, Lee. (2000). C4ISR Architectures I: Developing a Process

for C4ISR Architecture Design. Systems Engineering, Vol. 3, No. 4, pp. 225-247.

Levis, Alexander & Wagenhals, Lee. (2000). C4ISR Architectures: I. Developing a Process

for C4ISR Architecture Design, System Architectures Laboratory, C3I Center, MSN

4D2, George Mason University.

Levis, Alexander & Wagenhals, Lee. (2006). DoD Architecture Framework

Implementation. Class notes published by AFCEA, Fairfax, VA.

124

Levis, Alexander, National Missile Defense (NMD) Command and Control Methodology

Development. George Mason University, Fairfax, VA. 1993.

Frederic D. Mckenzie, Mikel D. Petty, and Qingwen Xu. 2004. Usefulness of Software

Architecture Description Languages for Modeling and Analysis of Federates and

Federation Architectures. Simulation 80 (11): 559-576.

Maier, M. W. (2005). Research Challenges of System-of-Systems. IEEE International

Conference on Systems Man and Cybernetics, Vol. 4. pp. 3149-3154.

Marazano, Joseph F.; Rozsypal, Sandra A.; Zimmerman, Gus H.; Warnken, Guy W.; Wirth,

Patricia E.; Weiss, David M. (2005). Architecture Reviews: Practice and

Experience. IEEE SOFTWARE March/April Edition, pp. 34-43.

Missile Defense Agency - Department of Defense Documentation of Verification,

Validation & Accreditation (VV&A) for Models and Simulations. (2008) Missile

Defense Agency.

Stephen J. Mellor, Marc Balcer. 2002. Executable UML: A Foundation for Model-Driven

Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Merriam-Webster's Collegiate Dictionary (11th ed.). (2003). Springfield, MA: Merriam-

Webster.

Mittal, Saurabh, Mak, E. Nutaro, J.J. (2007). DEVS-Based Dynamic Modeling & Simulation

Reconfiguration using Enhanced DoDAF Design Process. Special issue on DoDAF.

Mittal, Saurabh, Risco-Martin, J.L. & Zeigler, Bernard P. (2007). DEVSML: Automating

DEVS Execution OverSOA Towards Transparent Simulators. Special Session on

DEVS Collaborative Execution and Systems Modeling Over SOA, DEVS Integrative

M&S Symposium DEVS '07, Spring Simulation Multi-Conference.

125

Mittal, Saurabh. (2006). Extending DoDAF to Allow DEVS-based Modeling and

Simulation. Special issue: DoDAF Journal of Defense Modeling and Simulation

JDMS,Vol. Ill, No. 2.

Mittal, Saurabh. (2007). DEVS Unified Process for Integrated Development and Testing

of Service Oriented Architectures. PhD Dissertation, University of Arizona.

Mogul, Jeffrey C, Ramakrishnan, K. K. (1996). Eliminating receive livelock in an interrupt-

driven kernel, http://citeseer.ist.psu.edu/326777.html.

NATO Code of Best Practice for C2 Assessment. (2002) Command and Control Research

Program (CCRP).

Object Management Group. (2009). Model Driven Architecture: The Architecture of

Choice for a Changing World.

http://www.omg.org/mda/executive overview.htm. Ref: January 2009.

Pawlowski, T., Barr, P., Ring, S., Segarra, S. (2004). Executable Architecture Methodology

for Analysis, FY04 Report. MITRE Technical Report 05W0000034.

Polanyi, M. & Prosch, H. (1998). Meaning, Chicago. The University of Chicago Press

Delphi KM Conference, San Diego, CA.

Popper, S., Bankes, S., Callaway, R., & DeLaruentis, D., System-of-Systems Symposium:

Report on a Summer Conversation. July 21-22, 2004, Potomac institute for Policy

Studies, Arlington, VA.

Rechtin, E. (1991). Systems Architecting: Creating and Building Complex Systems.

Prentice-Hall.

Rensselaer, Dave Hollinger. (2004). Lecture notes.

http://www.cs.rpi.edu/academics/courses/fall04/os/cl0/index.html.

http://citeseer.ist.psu.edu/326777.html
http://www.omg.org/mda/executive
http://www.cs.rpi.edu/academics/courses/fall04/os/cl0/index.html

126

Rensselaer, Dave Hollinger. (2005). Lecture notes.

http://www.cs.rpi.edu/~hollingd/opsvs-

spring2005/notes/Chapter3/Chapter3.pdf.

Sage, A. P. & Rouse, W. B. (Eds.). (1999), Handbook of Systems Engineering and

Management. John Wiley and Sons. p. 264.

Sage, A. P. & Cuppan, CD. (2001). On the Systems Engineering and Management of

Systems-of-Systems and Federations of Systems. Information, Knowledge,

Systems Management, Vol. 2, Issue 4, pp. 325-45.

Schlager, J. (1956). Systems engineering: key to modern development. IRE Transactions

EM-3: 64-66. doi:10.1109/IRET-EM. 1956.5007383.

Schmidt, D.C. (February 2006). "Model-Driven Engineering". IEEE Computer 39 (2).

Retrieved 2011-02-16.,

Secretary of the Navy (SECNAV) Instruction 5200.40. (1999). Verification, Validation, and

Accreditation (VV&A) of Models and Simulations.

http://navmsmo.hq.navy.mil/policv/directives. Accessed February 2010.

Seliger, R. (1997). An Approach to Architecting Enterprise Solutions. HP Journal.

Sirer, Emin Gun. (2001). Deadlock.

http://www.cs.cornell.edu/courses/cs414/2003sp/lectures/9-deadlock.pdf.

Systems Engineering for Intelligent Transportation Systems". US Dept. of Transportation,

p. 10. http://ops.fhwa.dot.gov/publications/seitsguide/seguide.pdf. Retrieved

2011-02-09.

Systems Engineering Handbook, version 2a. (2004). INCOSE.

http://www.cs.rpi.edu/~hollingd/opsvsspring2005/notes/Chapter3/Chapter3.pdf
http://www.cs.rpi.edu/~hollingd/opsvsspring2005/notes/Chapter3/Chapter3.pdf
http://navmsmo.hq.navy.mil/policv/directives
http://www.cs.cornell.edu/courses/cs414/2003sp/lectures/9-deadlock.pdf
http://ops.fhwa.dot.gov/publications/seitsguide/seguide.pdf

127

Taguchi, Genichi. Introduction to Quality Engineering, "The Development of Quality

Engineering." ASI Journal 1, no. 1. White Plains, NY: Asian Productivity

Organization, UNIPUB. pp. 1-4. 1991.

Tang, A., Han, J., Chen, P. (2004). SUTIT-TR2004.01 - A Comparative Analysis of

Architecture Frameworks.

Venkatesh, S., Smith, J. Deuermeyer, B., Curry, G. (2000). Deadlock Detection and

Resolution for Discrete Event Simulation: Mutiple-Unit Seizes. Texas A&M

University, http://tamcam.tamu.edu/papers/multirev/multirev.htm.

Weiss, Elliott N. (2009). Brief Introduction to Taguchi Methods.

Youngblood, S. M. & Pace, D. K. (1995). An Overview of Model and Simulation

Verification, Validation, and Accreditation. Johns Hopkins APL Technical Digest

16 (2). p. 197-206.

Zachman, John A. (1987). A framework for information systems architecture. IBM

Systems Journal. Vol 26. No. 3.

http://www.zachmaninternational.com/images/stories/ibmsj2603e.pdf.

Zachman, John A. (1997). Concepts of the Framework for Enterprise Architecture:

Background, Description and Utility. Zachman International. Accessed Jan 2009.

Zeigler, B.P. (2003). DEVS Today: Recent Advances in Discrete Event based Information

Technology, MASCOTS Conference.

Zinn, Andrew W. (2004). The Use of Integrated Architectures to Support Agent-Based

Simulation: An Initial Investigation. Air Force Institute of Technology, Graduate

School of Engineering and Management, Thesis.

http://tamcam.tamu.edu/papers/multirev/multirev.htm
http://www.zachmaninternational.com/images/stories/ibmsj2603e.pdf

128

Zobel, Dieter. (1983). The Deadlock problem: a classifying bibliography. ACM SIGOPS

Operating Systems Review 17 (4): 6-15. ISSN 0163-5980

http://doi.acm.org/10.1145/850752.850753.

http://doi.acm.org/10.1145/850752.850753

129

11. APPENDIX A CODE BLOCK FOR CLASS

/ / This class has been trimmed for brevity.

/ / Some global variable declarations and helper functions have been omitted for

brevity.

public class OV5_View extends ViewableDigraph {

public OV5_View(String name, QUEUEJnternalEvent internalEventQueue){

super(name);

/ / Generate DEVS models for all models connected this Operational

Activities (Systems, Functions, Resources, etc..)

LIST_NODE ConnectedModels

SINGLETON_DoDAF_Models.getlnstance()._AII_Connected_Models;

for(int i = 0; i < ConnectedModels._size; i++)

{

/ / Each executable architecture data type has a method that generates its

DEVS model

NODE model = (NODE) ConnectedModels.getNodeBylndex(i);

model.generateDEVS(internalEventQueue);

}

/ / Generate DEVS models for "Operational Activities"

/ / Generate DEVS ports to other models based on connectivity

/ / The architecture is currently stored in the data model

LIST_NODE OV5_Nodes

SINGLETON_DoDAF_Models.getlnstance()._AII_OV5_Nodes;

for(int i = 0; i < OV5_Nodes._size; i++)

{

NODE_OV5 ov5 = (NODEJDV5) OV5_Nodes.getNodeBylndex(i);

130

ov5.generateDEVS(_internalEventQueue);

DEVS_OV5 devs_ov5 = ov5.getDEVS_Model();

LIST_NODE ConnectedModels = ov5._ConnectedModels;

for(int j = 0; j < ConnectedModels._size; j++)

{

NODE model = (NODE) ConnectedModels.getNodeBylndex(j);

String ModelName = model.getName();

DEVS_MODEL devs_model = model.getDEVS_Model();

/ / Add dynamic ports to other models

devs_ov5.addOutport("status_" + ModelName);

devs_ov5.addOutport("done_" + ModelName);

devs_model.addOutport("status_" + ov5._NodeName);

}

devs_ov5.initialize();

add(devs_ov5);

}

/ / Officially add and initialize other connected DEVS models

for(int i = 0; i < ConnectedModels._size; i++)

{

NODE model = (NODE) ConnectedModels.getNodeBylndex(i);

DEVS_MODEL devs_model = node.getDEVS_Model();

devs_model.initialize();

add(devs_model);

}

131

/ / Make connections (DEVS couplings) between Operational Activities

and other models

for(int i = 0; i < OV5_Nodes._size; i++)

{

NODE_OV5 ov5 = (NODE_OV5) OV5_Nodes.getNodeBylndex(i);

LIST_NODE ConnectedModels = ov5._ConnectedModels;

for(int j = 0; j < ConnectedModels._size; j++)

{

NODE model = (NODE) ConnectedModels.getNodeBylndex(j);

String ModelName = model.getName();

/ / OV5 -> Supportive Model (status, done)

addCoupling(ov5.getDEVS_Model(), "status_" + ModelName,

model.getDEVS_Model(), "request");

addCoupling(ov5.getDEVS_Model(), "done_" + ModelName,

model.getDEVS_Model(), "done");

}

}

showStateQ;

}

}

132

12. APPENDIX B DEVS JAVA CODE BLOCK

/ / This class has been trimmed for brevity, but it does contain all the major

functions present in all DEVS models in DEVSJAVA.

/ / Some global variable declarations and helper functions have been omitted for

brevity.

public class DEVS_OV5 extends ViewableAtomic {

public DEVS_OV5(String name, int NodelD, QUEUEJnternalEvent

internalEventQueue) {

super(name);

/ / Some standard input and output ports for this model

addlnportfin");

addlnport("CommComplete");

/ / Other Outputs are autogenerated;

addOutport("out");

addOutport("null");

}

public void initialize() {

phase = "passive";

sigma = INFINITY;

super.initializeQ;

}

/ / This external transition function executes when the model receives an

external message

/ / Messages could be empty triggers (from a previous Operational Activity) or

state

/ / updates from other models (Resources, Mediators, Communications model)

133

public void deltext(double e, message x)

{

/ / The function acts differently depending on the its current state

/ / Is this the start of the invocation

if (phasels("passive"))

{

/ / Parse the incoming message

for (int i=0; i< x.getLength();i++)

{

/ / Also figure out at which "port" the message arrived. DEVS models

can have multiple input and output ports

if (messageOnPort(x,"in",i))

{

entity val = x.getValOnPort("in", i);

Universal_Message message = (Universal_Message)val;

int messageType = message._messageType;

/ / Messages also have multiple types

/ / This function can also act differently depending on the port

where a message arrived

if(messageType == MAIN_Lookup.UNIVERSAL_MESSAGE_START)

{

_currentState = MAIN_Lookup.DEVS_BUSY;

_timeStarted = SINGLETON_Time.getlnstance().getCurrentTime();

/ / Does this model send an HLA JSAF order immediately

134

/ / "jnternalEventQueue" is a global event queue used by any

component that generates events

/ / The "Event" object contains the logic that actually sends the HLA

order

if(JSAFJDrder)

{

JnternalEventQueue.enqueue(new

EVENTJSAF_Order(_nodelD._orders));

}

jnternalEventQueue.enqueue(new

EVENT_DB_StateChange(_NodelD, j i ame, _currentState));

/ / Check if this model require a transmission to be carried out

by the Communications model

/ / "holdln" statements put the model in a certain state

if(!requireTransmission())

{

holdln("ToConnectedModels",0);

}else{

holdln("ToComms",0);

}

}

}

}

} else if(phasels("awaitingComms")) {

for (int i=0; i< x.getLength();i++)

135

{

if (messageOnPort(x,MCommComplete",i)) {

entity val = x.getValOnPort("CommComplete", i);

Universal_Message message = (Universal_Message)val;

_internalEventQueue.enqueue(new

EVENT_DB_StateChange(_NodelD, _timeStepStarted + duration, duration));

holdln("done", 0);

}

}

}

}

//This function executes at necessary intervals for the model

/ / The function behaves differently depending on the current state

public void deltint()

{

if(phasels("passive"))

{

holdln("passive",INFINITY);

} else if(phasels("ToConnectedModels")) {

holdln("Delaying",_calculation);

}else if(phasels("Delaying")) {

if(!_requiresTransmission())

{

136

holdlnC'ToComms'^O);

} else {

ExecuteAdditionalLogic();

holdln("Delaying",_calculation);

}

} else if(phasels("ToComms")) {

holdln("awaitingComms"/INFINITY);

}elseif(phasels(Ndone")){

holdln("passive",INFINITY);

}

}

/ / This function executes when an internal and external transition occur at the

same time

public void deltcon(double e, message x)

{

deltint();

deltext(0,x);

}

/ / This function executes when the model produces outputs

public message out()

{

message m = new message();

if(phasels("passive"))

137

{

UniversaMVIessage value = new Universal_Message();

content con = makeContent("null", value);

m.add(con);

} else if(phasels("ToConnectedModels")) {

/ / This code block has prepare messages to send to all other models that

this Operational Activity is connected to

UniversaMVIessage value = new Universal_Message();

for(int i = 0; i < _connectedModels._size; i++)

{

String ModelName =_connectedModels.getNodeBylndex(i).getName();

value._messageType =

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_REQUEST;

value._sendingModel =_name;

value._destinationModel = ModelName;

content con = makeContent("status_" + ModelName, value);

m.add(con);

}

} else if(phasels("ToComms")) {

/ / This code block prepares messages for the Communications model

/ / Associated System Content for COMMS model

Universal_Message value = new UniversalJvlessageQ;

value._messageType =

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_REQUEST;

138

value._sendingModel =_name;

value._destinationModel = _COMMS_Model;

content con = makeContent("status_" +_COMMS_Model._name, value);

m.add(con);

/ / Send Message to COMMS model for transmission simulation

_internalEventQueue.enqueue(new

COMMS_EVENT_Transmission_START(_transmission._sender.getObjectlD(),

_transmission._receiver.getObjectlD(),50, _name, Protocols.TCP,

_NodelD));

} else if(phasels("awaitingCOMMs")) {

Universal_Message value = new Universal_Message();

content con = makeContentf'null", value);

m.add(con);

}elseif(phasels("done")){

/ / Notify Connected Models that this Operational Activity is finished

for(int i = 0; i < _ConnectedModels._size; i++)

{

Universal_Message value = new Universal_Message();

String ModelName =_ConnectedModels.getNodeBylndex(i).getName();

value._messageType =

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_SYSTEM_DONE;

value._sendingModel =_name;

value._destinationModel = ModelName;

content con = makeContent("done_" + ModelName, value);

m.add(con);

139

}

//Trigger the next Operational Activity(ies) via a message

Universaljvlessage value = new Universal_Message();

value._messageType =

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_DONE;

value._sendingModel = _name;

value._destinationModel = _nextOV5;

content con = makeContentfout", value);

m.add(con);

} else if(phasels("Delaying")) {

Universal_Message value = new Universal_Message();

content con = makeContent("nuN", value);

m.add(con);

}else{

Universal_Message value = new Universal_Message();

content con = makeContentfnuH", value);

m.add(con);

}

return m;

}

140

13. VITAE

Johnny J. Garcia

Dr. Garcia is Founder and CEO of one of the fastest growing Modeling and

Simulation (M&S) and Information Security Company in Virginia - SimIS Inc. He has

engineering experience that includes systems architecture design, software

development, database development, C4I systems development, logistics systems

development, and new technology insertion for the Department of Defense,

Department of Energy, National Aeronautics and Space Administration (NASA),

Department of Commerce and Department of Homeland Security. Dr Garcia

received his Bachelors of Arts and Bachelors of Science Degrees from St Leo College,

His Masters of Business Administration (MBA) and Masters of Science (MS) from

Florida Institute of Technology and his Ph.D. in Modeling and Simulation from Old

Dominion University. Dr Garcia is a veteran of the US Navy and a member of

Simulation Interoperability Standards Organization (SISO), Institute of Electrical and

Electronics Engineers (IEEE), International Council of Systems Engineering (INCOSE).

He attends Ascension Catholic Church in Virginia Beach and a member of Young Life

and Cursillo groups of Tidewater and is the proud father of wonderful twin

daughters Hope and Faith and is married to his lovely wife Lorena. Dr Garcia is a

leader in the community and has been recognized as an expert in M&S throughout

the country and the world.

	Adding Executable Context to Executable Architectures: Enabling an Executable Context Simulation Framework (ECSF)
	Recommended Citation

	tmp.1556281668.pdf.9AWFP

