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ABSTRACT 

ADDING EXECUTABLE CONTEXT TO EXECUTABLE ARCHITECTURES: ENABLING AN 
EXECUTABLE CONTEXT SIMULATION FRAMEWORK (ECSF) 

Johnny J. Garcia 
Old Dominion University, 2011 

Director: Dr. Andreas Tolk 

A system that does not stand alone is represented by a complex entity of 

component combinations that interact with each other to execute a function. In today's 

interconnected world, systems integrate with other systems - called a system-of-

systems infrastructure: a network of interrelated systems that can often exhibit both 

predictable and unpredictable behavior. The current state-of-the-art evaluation process 

of these system-of-systems and their community of practitioners in the academic 

community are limited to static methods focused on defining who is doing what and 

where. However, to answer the questions of why and how a system operates within 

complex systems-of-systems interrelationships, a system's architecture and context 

must be observed overtime, its executable architecture, to discern effective predictable 

and unpredictable behavior. 

The objective of this research is to determine a method for evaluating a system's 

executable architecture and assess the contribution and efficiency of the specified 

system before it is built. This research led to the development of concrete steps that 

synthesize the observance of the executable architecture, assessment 

recommendations provided by the North Atlantic Treaty Organization (NATO) Code of 

Best Practice for Command and Control (C2) Assessment, and the metrics for 

operational efficiency provided by the Military Missions and Means Framework. Based 

on the research herein, this synthesis is designed to evaluate and assess system-of-

systems architectures in their operational context to provide quantitative results. 
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1. INTRODUCTION 

1.1. OVERVIEW 

The U.S. Department of Defense (DoD) and other agencies and organizations 

deploy systems supporting mission critical operations. On the front end of system 

development, particularly during procurement, analysis and experimentation are often 

conducted to ascertain the effectiveness of a developing system to meet defined 

mission requirements. Supporting this task is the modeling and simulation (M&S) 

community which assists the overarching goal of the procurement community to 

evaluate a system's architecture before building the specified system. Current analysis 

techniques are performed using static evaluation of the system's architecture; in 

essence, these techniques merely evaluate the system in a controlled environment 

while examining the coherence and plausibility of the architecture's artifacts. These 

static evaluation processes answer who (entity) is doing what (function) where 

(component) (Banks et al. 1987; Balci, 1987). 

Conducting an appropriate dynamic analysis of a system's effectiveness and 

performance in its intended operational environment often proves difficult since 

present approaches focus on technical and architecture systems (Maranzano et al., 

2005) being represented in drawings, flowcharts, PowerPoint® presentations, and block 

diagrams. This tabletop analysis does not exhibit the characteristics of the executable 

architecture and thus limits the known and unknown system behaviors to only who is 

doing what and where. Systems supporting the critical missions of the DoD, whether 

developed for Battlespace Management, Intelligence-Surveillance-Reconnaissance (ISR), 

Force Protection, Service Management, Freedom of Movement, Medical Evacuation, or 

other operations within the DoD, are required to comply with the Department of 

Defense Architectural Framework (DoDAF), an architectural evaluation. Although 

DoDAF is considered state-of-the-art and represents the key cognizant analysis vehicle 

of the intended system, most of the requirements have been recognized and the 

possible situations are offered as given, potentially "outside the box" options (Levis et 
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al., 2000; Handley et al., 2000). DoDAF presently does not contain trade-off analysis, 

game theory projections, Monte Carlo simulation, or other complicated modeling 

analytical support tools (Charles & Turner, 2004). In its current state, DoDAF starts at a 

universal level (DoDAF V1.5 Vol. I and II, 2005) but fails to extrapolate the behaviors 

characteristic of the executable architecture. This lack of robust features and ability to 

accurately evaluate the architecture was noted by Levis (Levis & Wagenhals, 2006). Levis 

identifies this as a precise objective with no framework to accomplish this objective. He 

stated: 

The derivation of an executable model of the architecture from the views and the 
associated integrated dictionary provides a basis for understanding the 
interrelationships among the various architecture products and establishes the 
foundation for implementing a process for assessing and comparing architectures 
(Levis & Wagenhals, 2000, p. 226). 

According to ISO/IEC 15939:2002, an attribute is a "characteristic of an entity 

that can be distinguished quantitatively or qualitatively by human or automated means" 

(2000, p. 154). Architecture attributes are important because they describe the 

properties of the system in a unique, distinguishing manner. Whether described 

granularly leaving little doubt which components are codified into the system's design, 

esoterically for confidentiality or a specific community's comprehension, or generally to 

ascertain primary requirements, architecture attributes establish the baseline of a 

system for mission or operational assurance. 

Measurability of entities makes architectures ideally useful for monitoring and 

tracking many systems' engineering tasks. Bass, et al. (1998) used entities to measure 

systems architectures in making valuable decisions and tradeoffs in evaluating the 

architecture (p. 221-237). Although Bass's entities improved an organization's decisions 

affecting system development or acquisition, the context of external behaviors remain 

excluded from the evaluation process. Since systems are no longer islands to 

themselves, neglecting the effects of other systems could produce a variety of 

unintended or unwanted results. 
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How are systems modeled? The V-Model (Figure 1) is a systems development 

model designed to simplify the understanding of the complexity associated with 

developing systems (Forsberg, 2005; INCOSE, 2007). 

Project 
Definition1 

„ I t , \ /Operation 
Concept of \ „, .„ .. / and nnpratmriE Verification /' . ?n a 
operations a f ^ Maintenance 

Validation 
Requirements System 

and 
Architecture 

Verification 
and Validation 

\ 

Detailed 
Design 

Integration,, 
Test, and 

Verification 
Project 

Test and 
integration 

\nip\3ni3ninhhn 

Time 
Figure 1: V-MODEL 

In systems engineering, the V-model is used to define a uniform procedure for 

product or project development. The V-model is a graphical representation of the 

systems development lifecycle. It summarizes the main steps to be taken in conjunction 

with the corresponding deliverables within the computerized system evaluation 

framework. The "V" represents the sequence of steps in a project life cycle 

development. It describes the activities and results that must be produced during 

product development (Forsberg, 2005; INCOSE, 2007). The left side of the "V" 

represents the decomposition of requirements and creation of system specifications. 

The right side of the "V" represents integration of parts and their verification. 

What is systems architecture? According to Zachman's Framework, an enterprise 

architecture framework provides a formal and highly structured way of viewing and 

file:///nip/3ni3ninhhn


4 

defining an enterprise, while systems architecture is described as "not systems 

architecture, but a set of them. Architecture is relative - what you think an architecture 

is depends on what you are doing" (Zachman, 1987). When considering how the 

product - the system represented by the system architecture - will be used, it is 

apparent that the system will exist in a dynamic environment in which it must address 

multiple, concurrent tasks. Today's state-of-the-art executable architectures do not 

effectively address how architectures are evaluated within the entirety of their context. 

In essence, the "why" and "how" architectures function in their intended environment 

or purpose before fielding remains unresolved. 

Through conducted research, the concept of executable context was developed 

with the intent to model the systems architecture within a system's intended 

environment or its "context." The main objective or problem statement of this research 

is, "Can systems architecture be modeled within its operational and systems context? If 

so, does this lead to better decisions after the system is evaluated?" Figure 2 shows how 

current state-of-the-art systems architecture evaluation focuses on either the 

operational model or the systems model, rather than in a harmonized effort. 

Mission Requirements 

Operational Requirements 

/ M R \ / M R \ / M R \ / M R \ 

<JKEBS/&> ^KEBI^ ^ B 3 E S ^ MKEEM^ 

Systems Measures of 
Per formance ( M O P ) 
System Requirements 

Functional Requirements 

Capability Requirements MEKk aEMk « B K M 
Figure 2: System and operational architecture disjointed evaluations 
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This research uses contributions from the disciplines of modeling and simulation 

(M&S) and systems engineering (SE) to functionally orchestrate the dynamic execution 

of operational and systems architecture to answer specific questions with the 

executable context simulation framework developed within this research effort. 

1.2. RESEARCH METHOD 

To aid in the understanding of theoretically-based research findings, it was 

necessary to test the state-of-the-art in systems architecture evaluation against 

theoretically-based challenges. Depending on the statistical results, this may include 

outcomes that combine effects of factors indirectly related to the systems architecture. 

Therefore, assessment of the systems architecture evaluation may prove to be difficult. 

These potential obstacles may be overcome by adding qualitative results to the 

quantitative outcome (Green, et al., 1987). 

In the case of this thesis, the research method expands the research breadth and 

enlightens the more universal debate on system-of-systems architecture evaluation. In 

summary, this research strategy that comprises this thesis integrates quantitative and 

qualitative methods, or mixed methodology, with the intent to produce an intrinsic 

awareness of system behavior, capture a broader scope of how external elements affect 

systems behavior, and reduce potential risk imposed by elements undetected in the 

current static evaluation methods. In addition, the research strategy intends to develop 

a method for the M&S community to probe underlying issues imposed by external 

systems by using mixed-method analysis - defined as creative alternatives to traditional 

or monolithic ways to conceive and implement architecture evaluation. 

1.3. RESEARCH OBJECTIVES 

The intent of this thesis is to determine how to capture and execute the system 

in context. Defined in detail in section 2, evolving the static architecture evaluation 

process into systems context comprehension will use a systematic method to induce 

dynamic modeling. Each architectural capability will be identified and evaluated to 
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ascertain performance and system effectiveness, particularly concerning their 

operational context. The inclusion of the external environment influences how systems 

operate. 

By including operational context within this protocol, the research will develop a 

method to support repeatable and measurable environments while producing a more 

reliable and representative systems architecture context. The circumstantial analysis of 

dynamic modeling support capabilities uses replaceable components that can be 

introduced or excluded to instantiate systems architecture capabilities and evaluate 

operational objectives. Key research observations are driven by these questions: 

• What are the systems that are affected by this system? 

• What are the systems that affect this system? 

• What environment does this system operate in? 

• Will this system execute within its intended environment as predicted? 

1.4. RESEARCH APPROACH 

The research approach is to develop a method to convert architecture products 

into an executable model and generates a federation of simulations that represents a 

system of systems. The research is based upon an examination of the systems' 

operational environments and operational mission threads. The findings of this research 

generalize this methodology and provide resources for the methodology to function 

with multiple frameworks and models. Further, the research explores how an 

executable context is defined based on theoretical and real-world operational examples. 

In summary, the research approach is directed to determining how or if the 

incorporation of the context leads to different decisions. 

1.4.1. ACTIVITIES 

The research activities of this dissertation were approached using four concrete 

steps. First, the theory was developed. Second, the theory was tested based on 

theoretical cases to address technical issues associated with the utilization of models 
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and simulations. Third, the research was built into a methodology to improve the 

management of related information. Fourth and finally, the methodology was used to 

develop a conceptual solution to provide quantitative results of architecture in an 

operational context. 

1.4.2. IMPACT 

By applying this method of architecture evaluation, the evolution of system-of-

systems may be significantly impacted. It is hypothesized that dynamic, evaluated 

architectures will develop greater operational accuracy by providing more accurate and 

appropriate analysis of system-of-systems architectures. The developed method enables 

the application of system specific measures of performance based on system 

architecture specification to contribute directly to the operationally relevant measures 

of effectiveness required to evaluate the systems in their intended operational contexts. 

To achieve this, the research evaluated systems architectures for connectivity, 

performance, and information flow within their intended purpose of operation. 

1.5. RESEARCH ORGANIZATION 

This dissertation is organized in nine chapters. Chapter 1, Introduction, defines 

the research method, objectives, and approach to activities and their impact. Chapter 2, 

Literature Research, provides the literature review of related research, thus establishing 

the applicability of the research contained herein. Chapter 3, Research Challenge and 

Problem Set, identifies the gap this research intends to close through the advancement 

of the current state of system-of-systems architecture evaluation and research accuracy. 

Chapter 4, Research Leveraged Methods, provides an overview of how the research 

method advances the state-of-the-art within existing methods regarding their 

applicability to system-of-systems architecture evaluations. Chapter 5, Method 

Development and Overview, details the proposed theoretical solution and method to 

establish the academic research foundation, which includes research generalization of 

other architecture frameworks. Chapter 6, Bounding the Research: Executable Context 

Engineering Element Examples, bounds the research, experimental results, and 
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synthesis of the executable context engineering elements. Chapter 7, Conclusion, 

provides conclusions for the theoretical, methodology and solution of the research. 

Chapter 8, Extensibility of the Research, identifies future research areas for extending 

and enhancing the executable context method for portfolio management and other 

domains for system-of-systems, conclusions and open research directions. Finally, 

chapter 9, References, provides all references described within this dissertation. 

Table 1 below describes the organization in better details in relation to theory, 

method and solution. This table aligns what elements are used to aid in the theory of 

the research, the development of the method and how the theory and the method were 

used to develop a solution to the problem. These elements will be used to define each 

section of the document. 

Theory 

Method 

Solution 

State of the "Art" 

Literature: 
1. Systems Engineering 
2. System-of-systems 
3. Architecture Frameworks 
4. Architecture Evaluation 

1. DEVS Unified Process (DUNIP) 
2. Method Architecture Validation 

(MAVS) 
3. NATO Code of best practice 

(NCOBP) 
4. Mission to Means Framework 

(MMF) 

1. Discrete Event System 
Specification (DEVS) 

2. JAVA DEVS 
3. Department of Defense 

Architectural Framework (DoDAF) 
4. Executable Context Simulation 

Framework (ECSF) 

Data 

Research 

Static 
Information 

Federated 
models-

Modeling & 
Simulation 

Research Findings 

Gap Identified 

Executable Architecture 
defined 

Quantitative Knowledge 
"Executable Context" 

defined 

Table 1: Research Alignment 
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2. LITERATURE RESEARCH 

A system's context, as defined by Buede (2000), is a set of entities that interact 

with other systems via the system's external interfaces. In Figure 3, Buede (2000) 

depicts where the external systems can impact the system and whether or not the 

system impacts the external systems. A system in Buede's (2000) depiction below may 

function by providing some context to an external source, consume other system's 

resources, or interact with the external system bi-directionally. Buede (2000, p. 38) 

further defines that "the entities in the system's context are responsible for some of the 

system's requirements as it applies to the external systems." Therefore, Buede's (2000) 

context definition incorporates that set of entities which support the interaction of a 

system with all other external systems. 

Context 

Impacts, but not impacted by, "System" ^ ^ ^ ^ 1 

Figure 3: Buede's depiction of a system's "context" (Buede, 2000, p. 38) 
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A system's environment context attribute is dependent on the environment in 

which the system and its components exist (Crnkovic & Larsson, 2004). All systems 

reside within a context, and the context, to include those components of the 

environment, needs to be defined to aid in the evaluation of the system's operation. 

Levis, on the other hand, describes the context of a system as a set of entities that can 

impact the system but cannot be impacted by the system (Levis, 1993, p. 2-6). Levis's 

(1993) statement is true for a stand-alone system but not for today's interconnected 

environments that are amalgamations of many systems interacting in the modes 

described by Buede (2000) and are a part of a system-of-systems paradigm. 

Leveraging the ideas of a context to define a system-of-systems model requires 

two methodologies for validating architecture: an information paradigm of evaluation 

and a knowledge paradigm for architecture evaluation. In Zachman's framework, 

systems architecture is described as "not systems architecture, but a set of them". 

Zachman developed six interrogatives - who, what, where, when, how, and why (1987) 

to define architecture element representation. Sage and Rouse (1999) expanded these 

interrogatives into two groups. One group relates to information (who, what, where and 

when. The second group relates to knowledge (why and how). This framework 

distinguishes between those elements that relate to information - who (people), what 

(entities), where (locations), when (time) - and those that relate to knowledge: how 

(functions) and why (purpose). 

According to Russell Ackoff (1989), a systems theorist and professor of 

organizational change, the content of the human mind can be classified into five 

categories: 

• Data 

• Information 

• Knowledge 

• Understanding, and 

• Wisdom 

Ackoff (1989) states, "Data is raw. It simply exists and has no significance beyond 

its existence (in itself)." It can exist in any form, usable or not, and does not have 
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meaning in and of itself. Information is data that has been given meaning by way of 

relational connection. This "meaning" can be useful but does not have to be. 

Knowledge is the appropriate collection of information, such that its intent is to be 

useful. Knowledge is a deterministic process. When someone memorizes information, 

they have amassed knowledge. This knowledge has a useful meaning to that person, but 

it does not provide for, in itself, integration such that it would infer further knowledge. If 

integration of meaningful information and knowledge would infer further knowledge, 

systems that have an understanding of context may behave more reliably because they 

can synthesize new knowledge, or minimally, new information from what is previously 

known and understood. Understanding context can build upon currently held 

information, knowledge, and comprehension itself. Systems, in essence, exhibit 

understanding in the sense that they are able to synthesize new knowledge from its 

context. From these syntheses of information and knowledge, systems' architectural 

evaluations become information-based paradigms. 

The emphasis of this research focuses the information-based evaluation 

paradigm, based on a body of knowledge, to the development of an executable context 

for systems architecture evaluation. This information-based approach for evaluation 

based on knowledge is desirable for systems architecture evaluation. In today's 

engineering environment, architectural evaluation is needed to support collaboration 

among designers, programmers, program managers, and stakeholders who will procure, 

test and ultimately use such systems. 

Buede (2000) describes information as data in context. Knowledge is applicable 

information in procedural form (Polanyi, 1998). However using today's architecture 

evaluation methods, knowledge-based evaluation is not yet possible. The questions how 

and why a system acts must become part of the evaluation, otherwise referred to as 

knowledge-based evaluation as depicted in Figure 4. Knowledge-based evaluations 

include mission requirements (MR), operational requirements (OR) and external 

systems (ES) within the system's architectural definition. Figure 4 illustrates how 

executable context (EC) enables conditions under which architectures can be 
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experimented with and evaluated. The information interrogatives (who, what and 

where) are composed in the context of the system (the MR, OR and ES). An executable 

architecture defines the when. All metrics applied on these levels measure the 

performance of system components or sub-systems. The method developed within this 

research enables a system to be modeled in the environment that enhances the ability 

to answer why and how the architecture will be executed in its intended environment or 

for its intended purpose (the system-of-systems). In this environment, the effectiveness 

of the system in the operational context is measured by measures of effectiveness 

(MOE) and measures of performance (MOP). 

Why 
How 

System Requirements 

Functional Requirements 

Capability Requirements 

[Execution] 

Environment 

When 

Information Knowledge 

Figure 4: Executable context (EC) as it relates to knowledge-based evaluation 

As emphasized in this research, such architectural evaluation and the resulting 

products must be completely dynamic to support these collaborative dialogs and to 

allow stakeholders to accurately understand the intended system function and its 
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intended purpose within the context of its environment. Since system governance is 

typically tied to limited resources, early detection and awareness of risk that could 

affect a stakeholder's operations should benefit from executable context architecture 

evaluation. This research introduces a new method to employ knowledge-based 

evaluation of systems architectures. While current approaches evaluate measures of 

performance on the tactical/system's level and measures of effectiveness on the 

operational level independently, the framework developed here allows immediate use 

of the system performance based on the system's specification and the use of it in the 

operational context to contribute to the measures of effectiveness. As such, all six 

identified interrogatives - who, what, where, when, why, and how - can now be 

evaluated in one common framework. 

The next section provides state-of-the-art in other disciplines that bound the 

research method: systems engineering, architecture evaluation, system-of-systems, 

system architectures, architectural frameworks and executable architectures. 

2.1. STATE-OF-THE-ART IN SYSTEMS ENGINEERING 

Systems engineering focuses on the engineering of large-scale, complex systems 

(Sage, 1992). First and foremost, systems engineering is a trans-disciplinary 

management technology (Sage, 2002). The term systems engineering can be traced 

back to Bell Telephone Laboratories in the 1940s (Schlager, 1956) and, according to Hall 

(1962), is a way to identify and manipulate the properties of a system as a whole, which 

in complex engineering projects may greatly differ from the sum of the parts' 

properties. Hall's perspective motivated the Department of Defense, NASA, and other 

industries to apply the discipline of systems engineering (Hall, 1962). 

As systems and their complex relationships grew, it was no longer possible to 

rely on design evolution to improve upon a system since the existing tools were not 

sufficient to meet growing demands on architecture evaluation (Sage, 1992). An 

evolution of systems engineering emerged comprising the development and 

identification of new methods and modeling techniques. Modeling aids in better 

comprehension of engineering systems as they grow more complex. When it was no 
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longer possible to rely on design evolution to improve upon a system and the existing 

tools were not sufficient to meet growing demands, new methods began to be 

developed that addressed the complexity directly. The evolution of systems 

engineering, which continues to this day, comprises the development and identification 

of new methods and modeling techniques. These methods aid in better comprehension 

of engineering systems as they grow more complex. Popular tools that are often used in 

the systems engineering context were developed during these times. 

2.2. STATE-OF-THE-ART IN ARCHITECTURE EVALUATION 

During architecture evaluation, stakeholders strive to verify the requirements of 

the system. In addition to enhancing confidence that the architecture will meet the 

demands placed on it, the inclusion of the right evaluation components during this 

phase can help generate confidence that the architecture will be able to support its 

intended purpose. Architecture assessment involves thought experiments - modeling 

and walking through scenarios that exemplify requirements - as well as an expert 

assessment that identifies gaps and weaknesses in the architecture as described in 

"Architecture Reviews: Practice and Experience" and "Best Current Practices: Software 

Architecture Validation" (Best Current Practices, 1990; Marazano, et al., 2005, pp. 34-

43). Just as a system architect can not overlook such contextual factors as the network, 

security requirements, hardware and systems standards, the architect cannot overlook 

the context as defined in the research of the system. The key technical considerations 

alluded to by "system fit to context" have to do with interoperability, consistency, and 

interface with external systems. However, there are considerations to be factored into 

architectural evaluation and choices to fit within the development organization's culture 

and capabilities. 

Architecture evaluations (AE) minimize duplicity and, with the help of high 

performance scalable designs, facilitate easy formation of new evaluations. AEs can 

produce a number of definite evaluations and enable a new understanding of evaluation 

failures in relation to the capability requirements. AEs are valuable in the identification 

of the types of applicable, accurate evaluation of data sources. AVs produce a 
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standardized flow identifying a set of required parameters for the sub-process 

evaluation as well as the accessibility of result data to perform data evaluation. AEs 

offer a framework for the performance of general processing needed for the evaluation 

majority flows by maintaining the evaluation subroutines' flexibility. 

2.2.1. EVALUATION OF THE ARCHITECTURE 

According to Bredemeyer, architects make their best effort to fulfill the 

requirements on the system throughout the evaluation phase of the architecture using 

an external architecture team to provide an objective evaluation of the architecture 

(1999). Evaluation of the architecture includes "thought experiments," modeling and 

walking through scenarios to illustrate the requirements as well as evaluation by 

specialists to identify architectural gaps and limitations based on their experience 

(Rechtin, 1991; Seliger, 1997). 

Another vital part of architecture evaluation is the improvement of prototypes 

or proofs-of-concept. This is a more realistic, effective method of determining the future 

success of the architecture as it tests the basic version of the architecture when it is 

ready to implement. The architecture evaluation process is accomplished iteratively, 

with multiple cycles through requirements, structuring, and evaluation. This method 

yields the most control upon architecture specification but is normally complicated with 

the issues of organization (e.g., the "Not Invented Here "(NIH) syndrome) that decrease 

or even completely restrain the use of the architecture (Bredemeyer, 2007). 

According to Bredemeyer's research, the process of evaluating architecture 

specification is the most difficult to accomplish (Bean Architect, 2007). To enable a valid 

outline of the architecture (who, what and where), Bredemeyer broke the process into 

sub-phases, along the outline of the architecture, to aid in the evaluation. 

Meta-Architecture: To aid in making decisions, the visualization of the 

architecture is originated first. It is good to explicitly assign research time to generate 

ideas in documented architectural styles, dominant designs, patterns, reference 

architectures, or other architectures within the context of the system. 
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Conceptual architecture: The architectural system is then reduced to the 

components and the responsibilities of each component while considering the 

interrelation of various components. The objective of the conceptual architecture is to 

concentrate on suitable system decomposition without focusing on the requirement 

specification and information type. In addition, conceptual architecture is a helpful 

medium to communicate regarding architecture to the non-technical stakeholders, i.e. 

marketing and management departments (Bredemeyer, 2010). 

Logical architecture: The conceptual architecture creates the preliminary point 

for the logical architecture. Logical architecture is possibly developed and also 

distinguished in the architecture establishment period. Developing the system activities 

as dynamic capabilities is a helpful method in the architect's thinking process regarding 

the component's interfaces and responsibilities. Component specifications influence the 

architecture. 

Another important part of architecture evaluation is the development of 

prototypes or proofs-of-concept. Taking a skeletal version of the architecture all the way 

through to implementation, for example, is a highly effective method of evaluating 

aspects of the architecture (Bredemeyer, 2010). 

This research used the latest version of the Department of Defense (DoD) 

Modeling and Simulation Glossary, which defines evaluation as "the process of 

determining the degree to which a model (architecture) or simulation is a faithful 

representation of the real world from the perspective of the intended uses of that 

architecture" (Defense Modeling and Simulation Office, 1997 p. 162). Evaluation, as 

described by Banks, et al., demonstrates that a computerized model satisfies the 

simulation objectives and requirements with sufficient accuracy within its domain of 

applicability (1987). 

In these definitions, the terms "real world" and "domains" refer to the entities 

needed to enable an executable context to answer the interrogatives how and why. 

Prior research conducted by Levis, Mittal, and others enabled executable architectures 
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to answer the when of the six interrogatives, and architectural frameworks provide the 

means to answer the who, what, and where (Mittal, 2006; Levis, & Wagenhals, 2006). 

The current state of the art in architecture evaluation has shown that evaluation of 

systems architecture is based on model developer interpretation to evaluate the 

operational architecture and systems architecture artifacts independent of each other. 

This research enables the integration of the independent models into a common 

method that allows harmonization of system and operational architecture as an 

executable. This research also allows the resulting artifacts be federated into an 

executable context that represents all external systems and can be initialized with the 

elements describing an operational scenario, allowing relevant measures of 

performance on the system level and measures of effectiveness on the scenario level to 

be derived from operational requirements while using standard simulation architectures 

environments and common frameworks. 

2.3. WHAT IS A SYSTEM-OF-SYSTEMS? 

There are many definitions of system-of-systems (SoS) depending on the 

application area and focus (Maier, 2005, p. 3149-3154; Carlock, et al., 2001, p. 242-261; 

Sage, et al., 2001, p. 324-345; Gideon, et al., 2005; Keating, Rogers, Unal, Dryer, et al. 

p.36; Keating, 2005). Popper, Bankes, Callaway and DeLaurentis (2004) describe SoS as 

a collection of task-oriented or dedicated systems that pool their resources and 

capabilities together to obtain a new, more complex, 'meta-system' which offers more 

functionality and performance than simply the sum of the constituent systems. 

Several combinations of characteristics are observed in SoS (Bar-Yam, et al., 

2004): 

• Operational independence of elements 

• Managerial independence of elements 

• Evolutionary development 

• Emergent behavior 

• Geographical distribution 

• Heterogeneity of systems 

• System of networks 
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SoS studies are interdisciplinary and span through the study of architecting as 

well as various modeling and simulation techniques including network theory, systems 

theory, uncertainty modeling, agent-based modeling, and object-oriented simulation. 

This research emphasizes the use of SoS to define measures, operational systems 

architectures and visual tools for capturing systems and operational requirements, and 

decision and operational analysis of external systems which are needed to aid in the 

development of the SoS to establish the context of the system being evaluated 

2.4. STATE-OF-THE-ART IN SYSTEMS ARCHITECTURE 

Systems architecture is necessary to describe the structure of a system. Every 

system has an architecture, whether it is explicitly or implicitly designed and 

documented. Architecture has many definitions. The International Council on Systems 

Engineering (INCOSE) defines systems architecture as, "the arrangement of elements 

and subsystems and the allocation of functions to them to meet system requirements" 

(INCOSE, 2006 p 9). IEEE 1471 defines architecture as the "fundamental organization of 

a system embodied in its components, their relationships to each other, and to the 

environment, and the principles guiding its design and evolution" (Institute of Electrical 

and Electronics Engineers, 2000). Merriam-Webster defines systems architecture as "a 

conceptual design that characterizes the structure and/or behavior of a system" 

(Merriam-Webster, 2003). Buede defines systems architecture as a way to "provide the 

foundation for developing and evaluating engineered system of systems" (Buede, 2000, 

p. 38). 

Systems architecture includes the process for generating a functional, physical 

and operational architecture from a top-level operations concept. A state-of-the-art 

robust architecture exhibits an optimal degree of fault-tolerance, backward 

compatibility, forward compatibility, extensibility, reliability, maintainability, availability, 

serviceability, usability, and such other attributes as necessary and/or desirable. 

Systems architecture is a process for planning and building structures and systems to 

respond to a given need (Rechtin & Maier, 1997). The set of relations, which the 
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architecture describes, can be expressed in various ways such as software, hardware, 

organizational management, or knowledge representation. 

The essence of system architecting is structuring by bringing form to function, by 

bringing order out of chaos, and by converting partially formed ideas of a client into a 

workable conceptual model. In systems architecting, the alternative architectures are 

large and the selection is not easy. Therefore, the systems architecting process focuses 

on balancing the customer needs, fitting the interfaces of system components, and 

compromising among the key system attributes, such as cost, risk, schedule, and 

performance. Systems architecture is concerned with the internal interfaces among the 

system's components or sub-systems and the relationship between the system and its 

external environment. It is a representation because it provides the elements 

comprising a system, the relationships among the system elements, and the rules 

governing the relationships. It is also a process because a sequence of steps is necessary 

to design or change the architecture of a system. 

Systems architecture can best be described as a representation of an existent or 

"to be created" system and the process and discipline for effectively implementing the 

design(s) for such a system. The set of relations (that is, embedded information) that 

architecture describes may be expressed in hardware, software, or other application. 

Although the words between these definitions are somewhat different, the concept 

behind architecture is consistently described as organizing a system into constituent 

parts as specified through requirements to satisfy a desired goal. One challenge when 

discussing architecture is to understand what part of the architecture is under 

discussion and establishes the need for an executable context of the systems 

architecture. Architecture frameworks help in the organizing of architectural 

information. 

2.5. STATE-OF-THE-ART IN ARCHITECTURAL FRAMEWORKS 

Architecture frameworks improve understanding by providing systematic 

approaches to architecture development. However, many aspects of architecture 

remain unambiguous (Tang, Han, & Chen, 2004). IEEE 1471:2000 defines the primary 



20 

goal of architectural frameworks as an indication of "what information regarding 

architecture is important to be captured in architecture descriptions and to provide 

means for capturing this information" (Institute of Electrical and Electronics Engineers, 

2000). Architectural frameworks guide the selection of what information is relevant for 

this purpose and trigger the architecture description. 

An architecture framework provides a consistent approach for standardizing, 

planning, analyzing and modeling these entities for this research. Several architecture 

frameworks have been published for this purpose. Activities defined in these 

architecture frameworks vary, as do their outcomes. After examining different 

architecture frameworks and methods for architecture evaluation such as A Framework 

for Classifying and Comparing Software Architecture Evaluation Methods (Barbar, M.A., 

et. al., 2004, pp. 309-318), the IEEE Recommended Practice for Architectural Description 

of Software-Intensive System (Institute of Electrical and Electronics Engineers, 2000), 

and A Comparative Analysis of Architecture Frameworks (Tang, Han., & Chen, 2004), 

this research leverages the Department of Defense Architecture Framework (DoDAF) as 

its fit-for-purpose: an adaption of specific principles to be applied to all programs for 

standardized language and presentation of the architecture framework to ensure 

architecture solutions are appropriate for the DoD. 

2.5.1. DEPARTMENT OF DEFENSE ARCHITECTURE FRAMEWORK (DoDAF) PROVIDES 
THE WHO, WHAT AND WHERE 

The Department of Defense mandates that DoDAF be adopted to express high-

level system and operational requirements and architectures (DoDAF Working Group, 

2003). DoDAF is the basis for the integrated architectures mandated in DOD Instruction 

5000.2 (2003) and provides broad levels of specification related to operational, system 

and technical views (Chairman, Joint Chief of Staff (JCS) Instruction 3170.01D, 2004; 

Chairman, JCS Instruction 6212.01D, 2006). DoDAF and other DoD mandates pose 

significant challenges to the DoD system/operational architecture development and 

testing communities because DoDAF specifications must be evaluated for compliance 

with requirements and objectives, even though they are not expressed in a form 
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amenable to such evaluation. However, a DoDAF-compliant system does not have the 

necessary information to construct high-fidelity simulations (Mittal, 2006; Levis, & 

Wagenhals, 2006). Such simulations become, in effect, the executable architectures 

referred to in the DoDAF document or in the context of this research, the when. 

DoDAF is mandated for large procurement projects in the Command and Control 

domain, but its use in relation to M&S is not explicitly mentioned in the documentation 

(Atkinson, K., 2004, p.8; Atkinson, 2010; DoD Metadata Registry and Clearinghouse, 

2004). Thus, an opportunity has emerged to support the translation of DoDAF-compliant 

architectures into models that are of sufficient fidelity to support architectural 

evaluation in simulation environments. Operational views capture the requirements of 

the architecture being evaluated and system views provide its technical attributes. 

Section 6.2 will provide greater detail on how DoDAF was used within an executable 

context as related to this research. Together, these views form the basis for semi-

automated construction of the needed models for an executable context. 

2.6. STATE-OF-THE-ART IN EXECUTABLE ARCHITECTURES 

Although executable architectures are rooted in several years of research on 

transforming modeling languages into executable artifacts, the focus of this research lies 

on those approaches that emphasize the operational aspect of the use of the defined 

systems, in particular in the military context (although not limited to this context in its 

implications). To these predecessors of executable architectures belong, in particular, 

the approaches on Architecture Description Languages (ADL) (Clements, 1996). The 

work described by McKenzie, Petty, and Xu (2004) shows an application thereof to 

improve federation design. Other related work deals with executable Universal Model 

Language (eUML) (Mellor, 2002). All these approaches are useful but do not focus on 

the evaluation of tactical performance and operational effectiveness and efficiency. 

According to Levis, executable architecture is described by the DoDAF as "utility 

of dynamic and energetic simulation software to estimate architecture models" (Levis, & 

Wagenhals, 2006). Levis emphasizes the assessment of the executable model 

completely to define and understand the dynamic features of the system's needs and 
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executable model. To maintain this practice, the executable model has supported the 

use of Colored Petri Nets (CPN) (Levis, & Wagenhals, 2006). 

Andrew Zinn declared that, as per Levis, Holly and Handley, the highlighted Petri 

Nets must manufacture an executable model that aligns all the sequences in multiple 

views or static models into a single model (2004). Lee, et al. used Systems Engineering 

standard EIA 632 as the process for engineering a system and applied the DoDAF six-

step guidelines to develop architecture templates to assist in the project (Lee, et al., 

2005). Executable contexts (EC) - the method developed herein - also use the DoDAF 

six-step guidelines with some enhancements for architecture evaluation (Garcia, 2010). 

Following Pawlowski's proposal of the Executable Architecture Methodology for 

Analysis (EAMA), others have discussed, designed, and proposed different approaches 

to deal with executable architecture issues (Pawlowski, et al., 2004). For example, 

Executable Architecture Analysis Modeling Method (EAAM) will enable an organization 

to conduct dynamic, persistent, extensible, measurable, repeatable, and interactive 

testing (Garcia, 2009). This research used and leveraged a number of research activities 

that support who (people), what (entities), where (locations), when (time), and refer to 

information within the architecture as described by Levis, Mittal, and others (Levis, & 

Wagenhals, 2006; Mittal, 2008). This research enables knowledge assessment of how 

(functions) and why (purpose) when dealing with evaluation of the architectures. 

As research objectives and goals were established, research findings revealed a 

necessity to consider a range of system interoperability factors and environments while 

making crucial decisions in executable architecture development. To respond to these 

factors, the research process used recent interoperability technologies and currently 

improved adaptations effectively to incorporate executable architecture with the 

objective environment. Methods of system interoperability target web services and 

other applicable standards of World Wide Consortium (W3C) (www.w3c.org) as much as 

possible to ensure that the communications are compatible with the remote system and 

that evaluation is accessible (Austin, et al., 2004). 

http://www.w3c.org
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3. RESEARCH CHALLENGE AND PROBLEM SET 

This research focuses on contributions to the relevant body of knowledge that 

will enable the use of knowledge to evaluate architectures as defined in Figure 5 below. 

This research will incorporate the how and why or knowledge-based evaluation through 

executable context. This research intends to show how knowledge based evaluation 

enhances system-of-systems into an executable context that represents all external 

systems and can be initialized with the elements describing an operational scenario and 

allows relevant measures of performance on the system level and measures of 

effectiveness on the scenario level to be derived from operational requirements. 

Figure 5: Research intentions from information to knowledge 

3.1. WHY IS THIS A GAP? 

Executable context (EC) provides the ability to conduct knowledge-based 

evaluation. Current system-of-systems architecture evaluations are limited to 

information-based schemas identifying routine requirements such as connectivity 

among nodes in the architecture. Information-based evaluation identifies who, what, 

and where. An executable architecture is defined as a dynamic model of the sequencing 
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of activities performed at operational nodes by roles (within organizations) using 

resources or systems to produce and consume information (Pawlowski et al., 2004). 

This research will provide a means to assess evaluation of systems architecture 

performances to meet its intended purpose. However, as stated in the literature review, 

executable architectures are only proven to depict the when. 

Knowledge-based analysis is critical to assess the system-of-systems against the 

operational conditions expected by the mission requirement. To determine this 

effectiveness, it is necessary to employ an architectural representation that one can 

execute in a simulation environment so that system performance and, subsequently, its 

effectiveness and evaluation can be measured within its intended environment or 

executable context. 

The challenge - otherwise identified as the research method developed by this 

research to aide in closing the gap - is how this research can be used to evaluate a 

system's performance and effectiveness when operating in its operational environment. 

Executable context closes this gap by incorporating the why and how or knowledge-

based evaluation. 

The correlated challenge is the use of measures of performance (MOP) -

measuring system performance regarding the interrogatives who, what, where, and 

when - based on executable architecture systems specifications in direct support of 

measures of operational effectiveness (MOE) - measuring the operational system 

contributions in the context of operations regarding the interrogatives why and how. 

3.2. SPECIFIC RESEARCH OBJECTIVES 

This research is intended to develop a method and implement a supporting 

framework based on executable architectures, the NATO Code of Best Practice (NCOBP) 

for C2 Assessments and the Missions and Means Framework to enable evaluation of 

system-of-systems architectures using an executable context. 

In particular, the following questions have to be addressed: 

• What is an appropriate approach to make a system specification that is 

available in the form of a system architecture executable? 
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• How can the resulting artifact be federated into an executable context 

that represents all external systems and can be initialized with the 

elements describing an operational scenario? 

• How can the relevant measures of performance on the system level and 

measures of effectiveness on the scenario level be derived from 

operational requirements? 

3.3. PROPOSED SOLUTION THEORY AND METHOD 

The intent of the research explored in this dissertation is to develop a method 

and framework that supports the evaluation of a system-of-systems architecture within 

its operational context. This process creates a systematic method to evolve the current 

information-based architecture evaluation process into a knowledge-based executable 

context method. This new method will identify architectural capabilities and provide 

measures of the performance and effectiveness of the system-of-systems. 

The proposed method starts with the system architecture and utilizes 

appropriate methods, as identified in the first step of the research, to generate an 

executable architecture that supports access to all specified details. Next, this 

executable artifact is modified into a federate. Using methods defined by the 

operational community, operations relevant to the user of the new system scenarios 

and metrics for measures of performance and operational effectiveness are identified. 

Using standardized engineering methods, a federation to execute the system's 

architecture in the operational context delivering the required results for the identified 

metrics is developed and executed. 

Figure 6 shows how entities, interactions and the conceptual model enable 

evaluation elements needed to develop the blueprint of the targeted valid systems 

architecture as described above. In the figure below, these elements are mission 

requirements (MR), operational requirements (OR), system requirements (SR), 

functional requirements (FR), capability requirements (CR), and external systems (ES). 

Following the method as specified in Buede (2000), all five requirements groups are 



26 

derived in collaboration of customers, users, and engineers from the operational goals 

envisioned to be supported or enabled by the system to be developed. 

Step 1 -Blue Print 
Mission System 

Scenarios 
Entities 
Relations 
Interaaions 
Behavior 
Events 

Systems 
Functions 
Components 
Interface Ext 
Interfaces Internal 
Data 

Step 2 - Build EX Architecture 
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Step 3 - Map Blue Print to EA 
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Step 4 -EX Context 
Environments and Events 

Figure 6: EC's four steps for evaluating targeted systems 

The figure shows EC's four steps for evaluating targeted systems as: 

• Develop context blueprint - Identify metrics 

• Build Executable Architectures (EA) 

• Develop Executable Context (EC) - Federate the EA and EC 

• Execute context and observe quantitative metrics 
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3.4. EVALUATION METHOD 

Evaluation is a "Proof of Specified Performance" (MDA, 2008). It follows that a 

validation process requires specification, performance, and means of proof. 

Furthermore, DoD Modeling and Simulation Glossary defines evaluations as "the 

process of determining the degree to which a model (architecture) or simulation is a 

faithful representation of the real world from the perspective of the intended uses of 

that architecture" (p. 162). 

To ensure the EC method meets the criteria for architecture evaluation within 

the M&S community, the following valid practices, specifications, frameworks and 

methods are employed: 

• Extend the use of DoDAF modeling to include provisions for M&S through 

the Discrete Event System Specification (DEVS) Unified Process (DUNIP) 

to enable DoDAF to become the executable architecture 

• Apply Distributed Simulation Engineering and Execution Process (DSEEP) 

IEEE Std. 1730-2010 

• Leverage the NATO Code of Best Practice (NCOBP) 

• Map DoDAF to the Mission to Means Framework (MMF) 

The next section will give more details for these methods and how they were 

applied in the context of this research to enable the envisioned framework. The 

following table summarizes the appropriate methods to answer the questions identified 

earlier. 
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Research Question 
What is an appropriate approach to make 
a system specification that is available in 
form of a system architecture executable? 
How can the resulting artifact be federated 
into an executable context that represents 
all external systems and can be initialized 
with the elements describing an 
operational scenario? 

How can the relevant measures of 
performance on the system level and 
measures of effectiveness on the scenario 
level be derived from operational 
requirements? 

Identified Method 
• Application of DUNIP 
• JAVA DEVS 

• Extending DUNIP to result in a federate 
• Apply DSEEP to identify federates that 

can represent external systems and 
operational context 

• Develop federation 
• Apply MMF to identify relevant 

scenarios 
• For each scenario, apply MMF to 

identify MOP and MOE 
• For each MOP and MOE define data 

access points and data collection 
• For each relevant scenario, conduct 

simulation experiments 

Table 2: Research Question and Identified Methods 

These methods ensure and the resulting framework enables that all measures of 

performance on the system level are computed within the user relevant operational 

context based on the system's specification and contribute directly to the operational 

efficiency. Furthermore, the resulting level of detail allows for specific evaluation of 

system interactions in the context of being part of the operationally specified system-of-

systems so that detailed analysis of system behavior in the operational context becomes 

observable. 
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4. EVALUATION OF EXISTING METHODS REGARDING THEIR APPLICABILITY 

Best practices represent the current conventional wisdom applied to a particular 

condition or circumstance with the expectation of the result being the more effective of 

any other previous method, technique, activity, process, etc. Leveraging repeatable 

methodologies creates operational and system model harmonization for resulting 

artifacts to be federated into an executable context, as identified in the literature 

research, than what has historically been done. 

4.1. NATO CODE OF BEST PRACTICES 

When architectures are used to define new systems, the evaluation phase needs 

to show effectiveness and efficiency in the DoDAF context, often referred to as "fit-for-

purpose," meaning the best solution for a given problem (DoDAF Working Group, 2003; 

DoD Instruction, 2003). In order to support these methods, metrics are needed. 

The NATO Code of Best Practice (NCOBP) for Command and Control (C2) 

Assessment states that a "proper set of scenarios [use cases] is critical to assessment." It 

notes that scenarios should "consist of four elements - a context, the participants, the 

environment and the evolution of events in time." It notes that "the purpose of 

scenarios is to ensure that the assessment is informed by decision maker planning 

assumptions and the appropriate range of opportunities to observe the relevant 

variables and their interrelationships" (2002). 

The NCOBP is designed to facilitate the transition from C2 theory (i.e., the C2 

Conceptual Reference Model) to operational practice. The NCOBP for C2 Assessment 

established an operations research method that recommends best practices for the 

structure of architecture evaluation. Since 2007, the NCOBP has been adopted as a 

standard within the Joint Staff and Office of the Secretary of Defense (OSD) Networks 

and Information Integration (Nil). 

Figure 7 shows the structure of the NCOBP processes and their main domains to 

aid in problem formulation and analysis. 
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Figure 7: NCOBP problem formulation 

To conduct this research, the NCOBP problem formulation was modified for EC 

to aid in architecture evaluation. EC problem formulation describes how the process of 

system-of-systems architecture evaluation goes from the context of a system (as 

described earlier in Buede) to the EC defined in the previous section. Figure 8 shows 

how the interactions of all entities enable evaluation in an EC that supports evaluation 

of effectiveness and efficiency guided by an accepted assessment solution. 
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4.2. DoDAF AND EXECUTABLE ARCHITECTURES 

DoDAF describes typical products as views prescribing high-level design artifacts, 

but leaves open the form in which the views are expressed. DoDAF products are textual, 

graphical and tabular items developed while building a description of known 

architecture elements and defining the characteristics relevant to the architectural 

purpose. The present DoDAF arranges products that represent static information on a 

variety of views. These static products may not be a reliable vehicle for detailed dynamic 

systems analysis and how these systems build interaction with each other. 

Primarily, executable architecture descriptions are for analysis and must begin 

with an integrated, consistent, unambiguous architecture. DoDAF is the basis for the 

integrated architectures mandated in DoD Instruction 5000.2 and provides broad levels 

of specification related to operational, system and technical views (2003). Integrated 
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architectures are the foundation for interoperability in the Joint Capabilities Integration 

and Development System (JCIDS) prescribed in GCSI 3170.01D and further described in 

CJCSI 6212.01D (2004; 2006). DoDAF and other DoD mandates pose significant 

challenges to the DoD system and operational architecture development since DoDAF 

specifications must be evaluated for compliance with requirements and objectives, yet 

they are not expressed in a form that is amenable to such evaluation. However, DoDAF 

compliant systems and operational architectures have the necessary information to 

construct high-fidelity simulations. Such simulations become, in effect, the executable 

architectures referred to in this research. 

In this context, an integrated architecture is defined as a set of operational and 

systems architecture components which have similar sense, meaning, relationship, 

characteristics and properties. Among the multiple architectures, an integrated 

architecture can be defined while the similar, single architectures cannot, even if based 

on the identical set of DoDAF integrated products. United architecture elements can be 

rejoined for the next levels of development and analytical purposes. The program 

managers, domain experts and decision makers require these architectures to place, 

recognize and resolve definitions, facts, properties, constraints, issues and interfaces 

both across and within architectural boundaries. The impact and effect will be 

determined by the analysis. 

4.2.1. EXECUTABLE ARCHITECTURE THAT APPLY DoDAF TECHNIQUES 

Most studies regarding executable architectures are based on designing, 

evaluating and suggesting a path similar to other kinds of architecture modeling 

methods and techniques. The MITRE Corporation created the Executable Architecture 

Methodology for Analysis (EAMA) for analysis incorporating a combat model, 

communication model and process model to symbolize the main components of 

architecture and implementation of these models in the simulation environment. Joint 

Forces Command developed the Process Architecture and Analysis Model (PAAM), 

which is an operational and analytical tool used to inspect the effectiveness of future 

and current operational architectures (Pawlowski, et al., 2004; Garcia, & Browning, 
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2006). In reference to DoDAF, executable architecture, as it relates to the Method for 

Architecture Evaluations (MAVS), is used to assist in establishing the requirement for 

most information systems within the DoD (Garcia, 2010). One of the key DoDAF 

functions is to provide analysis worthy of military conduct. To provide this analysis, 

information-driven combat operations analysis leverages simulation technology to 

recognize the military value of Command, Control, Communications, Computers, 

Intelligence, Surveillance, and Reconnaissance systems (C4ISR). This research 

investigates the usage of architecture descriptions based on the DoDAF to supply the 

required data for a dynamic-based model. It is enhanced through use cases from 

suggested operations center architectures. The conclusion from the literature reveals 

that the poor implementation of the DoDAF does not supply the necessary information 

for architecture evaluation. 

In performing a comparison of the subject within the current literature, two 

points can be considered. First, it is difficult and complex to integrate products with 

DoDAF to produce executable architectures. Usually the philosophy of the integration 

methods is connected to the usage of systems and operational architecture models to 

produce executable architectures. The second point is how to leverage DoDAF in 

consistent approaches in producing executable architectures. 

DoDAF is a widely-adopted architecture framework in the defense industry. 

DoDAF had its beginnings in the C4ISR community and is recognized as a basic part of 

the DoD's drive toward net-centric warfare. 

4.2.2. INTEGRATION DEFINITION (IDEF) 

Integration Definition (IDEF) is another modeling technique which can be utilized 

to enable knowledge-based architecture evaluation. IDEF was built by the US Air Force 

and it is presently being extended through knowledge-based organizations. Initially, it 

was developed to support the manufacturing industry. Methods of IDEF have been 

engaged for a wide range of uses, including the general development of software. IDEF's 

16 methods from IDEF to IDEF14, including IDEFIX, are each intended to capture a 

similar kind of information by modeling procedures. IDEF methods are used to generate 
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graphical representations of multiple systems, examine the model and establish a model 

of a preferred version of the systems and assist the change from one to another. 

Occasionally, IDEF is used in connection with gap analysis. 

The table below demonstrates the methods of IDEF that are either currently in 

existence or in developmental stages. The methods from IDEFO to IDEF4 are most 

generally used. 

IDEF METHODS 

IDEFO 

IDEF1 

IDEF1X 

IDEF2 

IDEF3 

IDEF4 

IDEF5 

IDEF6 

IDEF7 

IDEF8 

IDEF9 

IDEF10 

IDEF11 

IDEF12 

IDEF13 

IDEF14 

Function Modeling 

Information Modeling 

Data Modeling 

Simulation Model Design 

Process Description Capture 

Object-Oriented Design 

Ontology Description Capture 

Design Rationale Capture 

Information System Auditing 

User Interface Modeling 

Scenario-Driven IS Design 

Implementation Architecture Modeling 

Information Artifact Modeling 

Organization Modeling 

Three Schema Mapping Design 

Network Design 

Table 3: IDEF methods 

As an illustration of the procedures, the methods of IDEFO are intended to model 

the purpose of an enterprise, generating a graphical model which indicates what directs 
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the function, who executes, what resources are carried out in its use, what the factors 

of production are and what dealings and relationships it has with other utilities. In other 

words, the IDEFO aids in answering the information interrogatives of the research (who, 

what and where) of the context of the systems. 

IDEF3 was created to assist systems modeling within the business world by 

capturing explanations of activities lists. For a specific scenario, an IDEF3 diagram may 

indicate the sequence of procedures, which procedures occur in a similar fashion, where 

choices exist, points, etc., making the IDEF3 into more of a diagram. The IDEF3 can be an 

influential tool to recognize the performance and functions of a systems architecture 

and is leveraged in this research. Figure 9 below is an example IDEF3 diagram using the 

IDEF3 or UOB symbols in Figure 10. The example indicates a decision point following a 

procedure marked "Evaluate Proposal." In the case that the decision is positive, the next 

connection or junction demonstrates that any path will result in the last procedure 

"Award Contract." The diagram of IDEF3 demonstrates a proper sequence of 

procedures. 
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Relational Link 

AND 

OR 

Synchronous AND 

Synchronous OR 
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Figure 9: IDEF 3 symbols (UOB symbols) 
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Figure 10: Examples of IDEF 3 diagram 
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These procedures in IDEF modeling can assist in gathering the needed 

information to answer the "when" of the information interrogatives. On its own, IDEF is 

not as advanced as the executable architectures discussed in the previous section, but is 

leveraged as part of the EC research to enable data gathering of non-DoDAF elements 

and filling data gaps to gather metrics and measures. 

4.3. ZACHMAN 

The business society frequently utilizes the Zachman framework, which was 

created in the 1980s by John Zachman. From Zachman's viewpoint, the framework was 

created to help companies deal with the dynamics and complexities of the information 

age. The framework is fundamentally a matrix of 36 cells which represent the how 

(function), what (data), who (people), where (network), why (motivation) and when 

(time) at six deferent stages from prospective to detail and is the motivation behind the 

development of DoDAF. 

While the Zachman framework, along with other frameworks, was established in 

the world of business, the DoD required something customized to its needs. Most of the 

frameworks were created to promote and sell services and goods, uses that are 

unrelated to DoD. The Architecture Working Group (AWG) released C4ISR Architectural 

Framework Version 1.0 in 1996. Within a year, AWG implemented much required 

revisions and additions to the C4ISR Architectural Framework, and Version 2.0 was 

released. According to the Under Secretary of Defense (USD) 23 Feb 1998 Memorandum 

cited by Andrew W. Zinn, it was stated that, "We see the C4ISR Architecture Framework 

as a critical element of the strategic direction in the Department, and accordingly direct 

that all ongoing and planned C4ISR or related architectures be developed in accordance 

with Version 2.0." 

As mentioned earlier in the introduction, Zachman uses six interrogatives: who, 

what, where, when, why and how (Zachman, 1997). To illustrate the function of the EC 

concept, these six interrogatives are further broken down to illustrate EC as a method 
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that enables information (who, what, where), enriches executable architectures (when) 

and enhances the creation of knowledge (why, how). Table 4 shows the Zachman 

Enterprise Architecture Framework and expands upon his use of what, how, where, 

who, when and why. 

Objective/Scope 
(contextual) 

Role: Planner 

Enterprise Model 
(conceptual) 

Role: Owner 

System Model 
(logical) 

Role:Designer 

Technology Mode) 
(physical) 

Rote:Builder 

Detailed Reprentation 
(out of context) 

Rote: Programmer 

Functioning 
Enterprise 

Role: User 

DATA 
What 

List of things 
important in 
the business 

Conceptual 
Data/ 
Object Model 

Logical 
Data 
Model 

Physical 
Data/Class 
Model 

Data 
Definition 

Usable 
Data 

FUNCTION 
How 

List of 
Business 
Processes 

Business 
Process 
Model 

System 
Architecture 
Model 

Technology 
Design 
Model 

Program 

Working 
Function 

NETWORK 
Where 

List of 
Business 
Locations 

Business 
Logistics 
System 

Distributed 
Systems 
Architecture 

Technology 
Architecture 

Network 
Architecture 

Usable 
Network 

PEOPLE 
Who 

List of 
important 
Organizations 

Work 
Flow 
Model 

Human 
Interface 
Architecture 

Presentation 
Architecture 

Security 
Architecture 

Functioning 
Organization 

TIME 
When 

Ustof 
Events 

Master 
Schedule 

Processing 
Structure 

Control 
Structure 

Timing 
Definition 

Implemented 
Schedule 

MOTIVATION 
Why 

Ustof 
Business Goal 
& Strategies 

Business 
Plan 

Business 
Rule 
Model 

Rule 
Design 

Rule 
Speculation 

Working 
Strategy 

Table 4: Zachman enterprise architecture framework interrogatives 

4.4. 4+1 VIEW MODEL 

There are numerous ways to view or build architecture models. One such model 

is the 4+1 View Model. The 4+1 View Model describes software architecture using five 

concurrent views, each of which addresses a specific set of concerns. The logical view 

describes the design's object model; the process view describes the design's 

concurrency and synchronization aspects; the physical view describes the mapping of 
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the software onto the hardware and shows the system's distributed aspects; and the 

development view describes the software's static organization in the development 

environment. 

According to Kruchten, by using five synchronized views, the 4+1 model 

illustrates the architecture of software (1995). These views include the logical view, 

development view, process view, physical view and scenario view. Every view deals with 

a definite set of concerns. The object model of design, the services to be provided by 

the system to users, is described by the logical view. The non-functional features of 

synchronization and concurrency of the design is described by the process view. The 

concentration on actual software, the statistic management of the software in the 

environment of development, is illustrated by the development view. The software 

mapping against the hardware is described by the physical view and also shows the 

distributed features of the system. The software designers can manage the description 

of their architectural decisions around these four views and demonstrate them with 

some preferred scenarios or use cases that represent a fifth view. These views are 

related to knowledge evaluation of a system-of-systems and provided some context for 

the EC methods development. 

The architecture is developed partly by using these scenarios. The different 

stakeholders could find their requirement in the software architecture through the 4+1 

model. Through the physical view, the system engineers approach this 4+1 view model 

first, then via the process view. Through the logical view, customers, data specialists and 

end users can view the architecture. Staff members of software configuration and 

project managers use the model through the development view (Kruchten, 1995). 
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Figure 11: The 4+1 view model 

4.4.1. LOGICAL ARCHITECTURE 

The logical architecture primarily supports the functional system needs of the 

users in the service terms. The system is deducted to a key abstraction set consumed by 

the problem domain in the object class' format, which develops the principles of 

inheritance, abstraction and encapsulation. In addition to functional analysis, it also 

provides the ability to recognize design elements and common mechanisms over the 

different divisions of the system. 

4.4.2. LOGICAL VIEW NOTATION 

The logical view notation is derived from the notation of Booch Object-Oriented 

Design object modeling language and methodology that was widely used in object-

oriented analysis and design. The notation aspect of the Booch method has now been 

superseded by the Unified Modeling Language (UML), which features graphical 

elements from the Booch method along with elements from the object-modeling 

technique (OMT) and object-oriented software engineering (OOSE). It is streamlined to 

consider only the architecturally important items. 
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4.4.3. PROCESS ARCHITECTURE 

Process architecture considers few non-functional necessities such as availability 

and performance. It deals with the distribution and concurrency of a system's reliability, 

fault tolerance and the adjustment procedure of major logical view abstractions within 

the process architecture. The process architecture can be illustrated at different stages 

of the abstraction, as each stage deals with various concerns. At the major level, the 

process architecture can be considered as a set of logical networks communicating with 

independently executed programs, circulated over a set of hardware resources joined 

by a WAN or LAN. Distributing the same physical resources, the multiple logical 

networks may exist concurrently. A process is a combination of executable unit tasks. 

The processes indicate the stage of deliberately-controlled process architectures. Also, 

for the improved allocation of the processing load, the processes can be simulated 

(Kruchten, 1995). 

4.4.4. DEVELOPMENT ARCHITECTURE 

In the software development environment, architecture development 

concentrates on the authentic software organization module. The software is enclosed 

in small portions called the subsystems or the program libraries, which can be 

developed by few developers. In a hierarchy of layers, the subsystems are maintained, 

supplying a distinct and narrow interface by each layer to the above layers. Through the 

subsystem and module diagrams, the system's development architecture is indicated, 

displaying the associations of exports and imports. Only after recognition of all the 

software elements can the total development architecture be illustrated. 

Most development architectures consider the internal needs associated with the 

ease of development, reuse, software management and the programming language or 

toolset limitations. The development outlook is the source for the requirement 

allocation of team tasks or team organization; cost assessment and planning; 

observation of project improvement; and software reusability, security and portability 
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analysis. To establish the line of product, the development view is the foundation 

(Kruchten, 1995). 

4.4.5. PHYSICAL ARCHITECTURE 

The physical architecture mainly considers the system's non-functional needs 

such as performance, reliability, scalability and availability. The software will run on the 

computer networks or on the processing nodes. The objects, processes and tasks are 

the different recognized elements which must be mapped onto the different nodes. 

Many varied physical configurations should be used, including a few for testing and 

development and the remainder for system deployment for different sites and clients. 

Consequently, the node software mapping requires increased flexibility and less impact 

on the source code (Kruchten, 1995). 

4.4.6. SCENARIOS 

The elements of the four views are intended to work collectively by the small, 

significant set of scenarios. The scenarios are an abstraction of the major significant 

necessities. The design is articulated by using object scenarios, pictures and object 

interaction pictures. It supports two primary objectives: determine the architectural 

elements when designing the architecture and illustrate and evaluate tasks on the 

completion of architecture design. Both of these tasks are performed as the starting 

point of an architectural prototype test (Kruchten, 1995). 

The EC methodology requires the use of all of these views in order to produce a 

evaluated architecture. Content can be added to each view to aid in the results of the 

overall methodology. 

4.5. MODEL-DRIVEN ENGINEERING 

The process of model-based software engineering is generally addressed as 

Model-Driven Engineering (MDE). This method improves the model before the end 

product or artifact is designed, and following the design of the end product or artifact, 

the model is renovated to reflect the actual artifact. Model-driven engineering (MDE) is 
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a software development methodology which focuses on creating and exploiting domain 

models (abstract representations of the knowledge and activities that govern a 

particular application domain), rather than on the computing (or algorithmic) concepts. 

The MDE approach is meant to increase productivity by maximizing compatibility 

between systems (via reuse of standardized models), simplifying the process of design 

(via models of recurring design patterns in the application domain), and promoting 

communication between individuals and teams working on the system (via a 

standardization of the terminology and the best practices used in the application 

domain). 

A modeling paradigm for MDE is considered effective if its models make sense 

from the point of view of a user that is familiar with the domain and can serve as a basis 

for implementing systems. The models are developed through extensive communication 

among product managers, designers, developers and users of the application domain. 

As the models approach completion, they enable the development of software and 

systems. 

Some of the better known MDE initiatives are: 

• The Object Management Group (OMG) initiative Model-Driven Architecture 

(MDA), which is a registered trademark of OMG (Object Management Group, 

2009). 

• The Eclipse ecosystem of programming and modeling tools. 

An MDE tool is utilized to interpret, compare, develop and align models and 

meta-models. More than one tool may control all of the features required for MDE. The 

UML utilized in MDE is a minute subset of great broader range of UML. As a division of 

MDE, the UML is enclosed by its own UML meta-model. Development has been made to 

progress models of executable UML, even though it has not received industry majority 

acceptance when used for the same limited range (Object Management Group, 2009). 

MDE encourages efficient use of system models in the development process and 

it supports reuse of best practices when creating system-of-systems (Brown, 2009). 

According to Douglas C. Schmidt, model-driven engineering technologies offer a 
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promising approach to address the inability of third-generation languages to alleviate 

the complexity of platforms and express domain concepts effectively (Schmidt, D.C, 

2006). 

4.6. MISSIONS AND MEANS FRAMEWORK (MMF) 

The MMF is the method used to provide military mission specifications and to 

qualitatively estimate the mission's effective use of alternative war fighting Doctrine, 

Organization, Training, Materiel, Leadership, Personnel, and Facilities (DOTMLPF) 

services. The MMF was developed by Deitz, et al. and enables architectures 

representation to specify the military mission and, therefore, quantitatively evaluates 

the mission utility of alternative warfighting DOTMLPF services and products (Dietz, et 

al., 2004). This research leveraged mapping of the MMF entities to DoDAF views. 

This mapping is an essential piece that enables the EC to develop the much 

needed measures against the EC problem formulation. The MMF first amalgamates top-

down and then merges bottom-up as illustrated by Figure 12 below. The MMF segments 

were used as necessities in the development and testing for the Army's planned Future 

Combat Systems - equipped Unit of Action. 

A Measure of Performance (MOP) is a criterion used to assess friendly actions 

that are tied to measuring task accomplishment [JP 1-02, Appendix A- l , p.333, 3/2007]. 

Measure of Effectiveness is a criterion used to assess changes in system behavior, 

capability, or operational environment that is tied to measuring the attainment of an 

end state, achievement of an objective, or creation of an effect [JP 1-02, Appendix A- l , 

p.333, 3/2007]. MOP and MOE will be described in greater detail in the results sections 

of Chapter 6. 



Bottom Up 

Figure 12: The synthesis and employment processes for the "how and why" 

4.6.1. MAPPING TO DoDAF 

The following section describes the detailed experiments conducted to support 

the evaluation of this research in an operational environment. Table 5 represents how 

MMF operators are mapped to DoDAF views. This mapping enables EC to represent the 

means required to support architectures evaluation. The MMF provides a way to 

describe military operations domain using the language of military science in a manner 

that can be digested and used by those supporting the warfighters and also be readily 

presented back to and understood by the warfighters. The MMF provides a structured 

way to describe key elements of military operations that are essential to understand in 

order to successfully model and simulate those operations. The framework provides the 

necessary structure to support a disciplined, repeatable procedure to explicitly specify 

the mission and assess mission accomplishment. Used in conjunction with automated 

knowledge acquisition and integration tools, the framework supports the operator's 

ability to capture the products of key portions of the top - down planning and decision 
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making process in data element form rather than just text and graphics, whether 

manually generated or machine generated. Because tasks, the building blocks of 

missions, are pulled from authoritative sources, common and commonly accepted terms 

and definitions are built into the framework methodology. Components, which 

represent the means used to execute tasks, are similarly derived from authoritative 

sources and other databases. 

Conditions and standards for specific tasks are established based on the results 

of mission analysis, Course of Action (COA) development and war gaming during the 

planning and decision making process. The same task may be iterated several times 

with different sets of conditions and standards based on when and where the task 

iteration is to occur within the concept of operations. Measures and criterion used to 

develop standards may be structured to provide quantitative metrics in the form of 

Measures of Performance (MoP), which describe minimum acceptable levels of 

performance in terms of time, distance, accuracy, etc. Standards may also be structured 

to provide more qualitative metrics in the form of Measures of Effectiveness (MoE), 

which describe the desired end state or purpose of the task. MoPs are also extremely 

useful in an operational context in defining the level of performance required under a 

given set of conditions to enable the entity performing the task to accomplish the 

purpose (MoE) of that task or to enable a different (higher, lower, adjacent) entity to 

accomplish the purpose of a related task. Consequently, it is possible to establish a link 

between required performance (MoP) and desired effect (MoE) within the context of an 

operation. 



•0V-1,AV-1 
•The "why" and "wherefore." An assignment with a purpose that indicates the action to be taken. 
"What" the required outcomes are and "who" has been assigned them. 

•AV-1 
•"Under what circumstances" a mission is to be accomplished. 

• OV-l.AV-1 
• "Where" (geo-spatial) and "when" with what TPFDD execution matrix. 

• OV-5 
• Task-based, outcome-centric specification of operations that provide the means to accomplish 

the mission. Objective: organize task outcomes and evaluate mission effectiveness. 

• OV-5,SV-ll 
• Function-based, performance-centric "how well" specifications of capabilities. 

• OV-2,OV-3,OV-4,AIISV 
• Component-based, state-centric specifications of the forces that provide the means. Network 

of units, personnel, and equipment. Physical and logical networking. 

• OV-6a, OV-6b, OV-6c, OV-7, SV-lOa, SV-lOb, SV-lOc 
• Interaction-based, phenomena-centric specification of effects of operations on forces. 

Table 5: MMF mapping to DoDAF 
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5. METHOD DEVELOPMENT OVERVIEW 

This section gives an overview of how the identified methods are applied in 

detail to provide the support needed to address the earlier identified research questions 

and how they are combined into the proposed framework ECSF. 

5.1. DISCRETE EVENT SYSTEM SPECIFICATION (DEVS) AND DEVS UNIFIED PROCESS 

(DUNIP) 

The Discrete Event System Specification (DEVS) formalism is a general enough 

approach to handle the complex hierarchical nature of architectures and the 

interrelationships of the views and elements. Saurabh Mittal, of DUNIP Technologies, 

postulates and identifies a shortcoming or oversight in the DoDAF standard adopted by 

the DoD. Mittal suggests that, "DoDAF doesn't mandate any simulation methodology to 

analyze the system or perform any pre-design feasibility studies" (Mittal, et al. 2007). In 

summary, DoDAF does not lend itself to the M&S field, even though M&S would be an 

invaluable tool to evaluate DoDAF specifications to verify that requirements and 

objectives are met. 

Executable context, therefore, extends DUNIP to create an executable federate 

that allows for the use of DEVS JAVA properties that contains the meta-data that helps 

convert the models into a common federate and provides for operational and systems 

model transparency. This creates operational and system model harmonization for 

resulting artifacts to be federated into an executable context, as identified in the 

literature research, than what has historically been done. 

DEVS Unified Process (DUNIP) uses the DEVS formalism as a basis for automated 

generation of models from various requirement specifications and realization as 

collaborative services (Mittal, 2006). See Figure 13. 
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Figure 13: DEVS Unified Process (DUNIP) 

This research utilized DUNIP to express its architecture models to establish a 

valid model leveraging Figure 13 in order to develop the following steps: 

1. Develop the requirement specifications in DoDAF. 

2. Use the DEVS-based automated model generation process to 

generate the DEVS atomic and coupled models from the 

requirement specifications using XML 

3. Evaluate the generated models using DEVS W3C atomic and 

coupled schemas to make them capable for collaborative 

development, 

4. From Step 2, simulate the coupled model using DEVS 

5. Execute the simulation on an isolated machine or in distributed 

manner using SOA. Execute the simulation in real-time as well as 

in logical time. 

6. The test-suite generated from DEVS models can be executed in 

the same manner as laid out in Step 2. 
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7. Compare the results from Step 5 and Step 6 to evaluate the 

architecture. 

DEVS is inherently based on object-oriented methodology and systems theory 

and categorically separates the model, the simulator, and the experimental frame; it has 

been used to model systems over the years. Mittal also proposed a mapping of DoDAF 

architectures into a computational environment that incorporates dynamical systems 

theory and an M&S framework (Mittal, 2006). 

Zeigler developed the DEVS formalism that supports systems engineering of 

discrete events in a modular and hierarchical method. The formalism provides a 

mathematical basis for studying discrete event systems for good understanding. It has 

been used largely for replication and modeling because of its mathematical foundation 

(Zeigler, 2003). The research activities associated with the DEVS theory have been 

developed in three directions in the past years: theory, methodology and applications. 

The DEVS formalism's applicability to performance measurement, logical analysis, and 

discrete event control has been confirmed through expansion of formalism and 

adaptation of the other theories (Zeigler, 2003). 

The methodology will support complex information systems specification and 

evaluation using advanced simulation capabilities. Specifically, the DEVS formalism will 

provide the basis for the computational environment with the systems theory and M&S 

attributes necessary for design modeling and evaluation. DUNIP demonstrated how this 

information is added and harnessed from the available DoDAF products toward 

development of an extended DoDAF integrated architecture that is "executable." This 

research focused on adding minimal information to enable DoDAF to become the 

executable architecture for the knowledge-based method developed. 

5.2. FEDERATING EXECUTABLE CONTEXT WITH FEDEP/DSEEP 

IEEE Recommended Practice for Distributed Simulation Engineering and 

Execution Process (DSEEP) is a standard developed by the Simulation Interoperability 

Standards Organization (SISO) (IEEE Std. 1730-2010). The standard outlines 

recommended high-level processes that should be adopted throughout the 
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development lifecycle of distributed simulations. It has much in common with the 

systems engineering lifecycle and provides additional guidance to an organization's 

standard processes, specifically tailored to the needs of personnel involved in producing 

M&S environments. DSEEP is a generalized evolution of the IEEE 1516.3 Federation 

Development and Execution Process (FEDEP) that has similar aims but is tailored 

explicitly toward distributed simulations. The DSEEP IEEE standard provides 

recommended practice of the Distributed Simulation Engineering and Execution Process 

(DSEEP). The DSEEP is intended as a high-level process framework into which the lower-

level systems engineering practices native to any distributed simulation user can be 

easily integrated. Simulation architectures include Distributed Interactive Simulation 

(DIS), High Level Architecture (HLA), and Test and Training Enabling Architecture (TENA). 

The DSEEP is comprised of seven steps that define the entire lifecycle of an M&S 

application from initial concept to results analysis. Each step is divided into activities. 

This process is explained in Table 6. 

Stepl: 
Define Simulation 

Environment 
Objectives 

Step 2: 
Perform Conceptual 

Analysis 

Step 3: 
Design Simulation 

Environment 

Step 4: 
Develop Simulation 

Environment 

Step 5: 
Plan, Integrate and 

Test Simulation 
Environment 

Step 6: 
Execute Simulation 
Environment and 
Prepare Outputs 

Step 7: 
Analyze Data and 
Evaluate Results 

•Activity 1.1. Identify User and Sponsor Needs 
•Activity 1.2. Develop Objectives 
•Activity 1.3. Conduct Initial Planning 

•Activity 2.1. Develop Scenario 
•Activity 2.2. Develop Conceptual Model 
•Activity 2.3. Develop Simulation Environment Requirements 

° Activity 3.1. Select Members 
• Activity 3.2. Prepare Simulation Environment Design 
• Activity 3.3. Prepare Detailed Plan 

• Activity 4.1. Develop Simulation Data Exchange Model 
• Activity 4.2. Establish Simulation Environment Agreements 
• Activity 4.3. Implement Member Application Designs 
• Activity 4.4. Implement Simulation Environment Infrastructure 

• Activity 5.1. Plan Execution 
• Activity 5.2. Integrate Simulation Environment 
•_ Activity 5.3. Test Simulation Environment 

• Activity 6.1. Execute Simulation 
• Activity 6.2. Prepare Simulation Environment Outputs 

• Activity 7.1. Analyze Data 
• Activity 7.2. Evaluate and Feedback Results 

Table 6: DSEEP seven-step process 
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Within this research, DSEEP and FEDEP were used as a key step in the method. 

After the DoDAF model had been extended to include provisions for M&S through DEVS, 

the features of DSEEP and FEDEP were applied to the new architecture to aid in 

decision-making, reducing risk, training system selection, and test and evaluation. 

Specifically, DSEEP can be applied to determine the right mix of systems to employ in 

the architecture, thereby reducing the risk of using systems that may not function best 

for the particular mission. Furthermore, results of the DSEEP process can be used to 

determine which systems to test and evaluate further for inclusion or exclusion in the 

target architecture. DSEEP can prove to be a valuable part of the EC methodology by 

narrowing the decision making process, minimizing risks and highlighting what is 

suitable for further testing. The DSEEP has been designed to serve as the generalized 

framework from which alternative and more detailed views can be specified in order to 

better serve the specialized needs of specific communities. Such views provide more 

detailed "hands-on" guidance to users of this process from the perspective of a 

particular domain (e.g., analysis, training), a particular discipline (e.g., VV&A, security), 

or a particular implementation strategy (e.g., HLA, DIS, TENA). 

5.3. MEASURES OF EFFECTIVENESS (MOE) AND MEASURES OF PERFORMANCE 

(MOP) 

This experimental example provides data that has been expanded in the 

research to show that the EC method enables architecture evaluation in gathering: 

Measures of Effectiveness (MoE) and Measures of Performance (MOP). Traditional 

measures of effectiveness (MOE) and measures of performance (MOP) practice have 

focused on forces-based, material-centric measures such as time required completing 

an operation. The MMF was used to focus on Mission-centric Measures within EC. Here, 

MoE and MoP measures and standards are the codification of how planned/delivered 

task outcome affects Mission success. In many cases, the required task involves a 

specific system and a desired condition that enables the use of the system; EC enables 

the use of the MMF and the federation of the operational and systems artifacts to 

ensure that all measures of performance on the system level are computed within the 
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user relevant operational context based on the system's specification and contribute 

directly to the operational efficiency (MOE) and systems efficiency (MOP). Furthermore, 

the resulting level of detail allows for specific evaluation of system interactions in the 

context of being part of the operationally specified system-of-systems, so that detailed 

analysis of system behavior in the operational context becomes observable. 
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6. EXPECTED RESULTS 

This section provides two examples of how a knowledge-based approach enables 

evaluation of theoretical and operational conditions. 

The first example is a well-documented problem in the field of computer science 

and computer engineering: deadlock and livelock systems. This example requires the 

detailed modeling of interactions between the specified system and other systems in 

the operational context. As current solutions on the operational level do not use 

detailed specification in the form of architecture to model their system, such 

observations are not supported by this category. As current solutions for executable 

architectures do focus on the system and do not take the operational context 

sufficiently into account, this second category of current solution is no alternative to the 

proposed framework as well. If the experiment with the implemented framework shows 

such an example, the contribution, of this research to close part of the gap is made. 

The second example is evaluating the contributions of a new system added to an 

existing operational process within the DoD and compares it with a current solution. 

This will provide insight into how metrics can be gathered to evaluate how the new 

system operates within its operational context. It requires the consistent application of 

system level measures of performance for the system providing the current solution as 

well as for the new system that provides the alternative solutions. As the same methods 

are applied to define the current and new system based on its specification, the 

comparison of their operational contribution is based on equal and comparable 

engineering specifications, and not on the assumptions of model developers. As such 

comparisons are not feasible with current approaches; the demonstration of the 

feasibility of such an experiment is an innovative contribution. 

6.1. FIRST EXAMPLE: DEADLOCK 

Because EC can be generally applied, there are multiple ways it can solve the 

deadlock problem. In computer science, deadlock refers to a specific condition when 

two or more processes are each waiting for each other to release a resource, or more 
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than two processes are waiting for resources in a circular chain (Mogul, et. al., 1996; 

Anderson, et. al., 2001; Zobel, D., 1983). There are four general properties that must 

hold to produce a deadlock. 

6.1.1. MUTUAL EXCLUSION 

When one thread owns some resource, another cannot acquire it. This is the 

case with most critical sections, but is also the case with GUIs in Windows. Each window 

is owned by a single thread, which is solely responsible for processing incoming 

messages; failure to do so leads to lost responsiveness at best and deadlock in the 

extreme. 

6.1.2. A THREAD HOLDING A RESOURCE IS ABLE TO PERFORM AN UNBOUNDED WAIT 

For example, when a thread has entered a critical section, code is ordinarily free 

to attempt acquisition of additional critical sections while it is held. This typically results 

in blocking if the target critical section is already held by another thread. 

6.1.3. RESOURCES CANNOT BE FORCIBLY TAKEN AWAY FROM THEIR CURRENT 
OWNERS 

In some situations, it is possible to steal resources when contention is noticed, 

such as in complex database management systems (DBMSs). This is generally not the 

case for the locking primitives available to manage code on the Windows platform. 

6.1.4. A CIRCULAR WAIT CONDITION 

A circular wait occurs if a chain of two or more threads is waiting for a resource 

held by the next member in the chain. Note that for non-reentrant locks, a single thread 

can cause a deadlock with itself. Most locks are reentrant, eliminating this possibility. 

Deadlock can be modeled with a directed graph. In a deadlock graph, vertices 

represent either processes (circles) or resources (squares). A process which has acquired 

a resource is shown with an arrow (edge) from the resource to the process. A process 

which has requested a resource that has not yet been assigned to it is modeled with an 
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arrow from the process to the resource. If these create a cycle, there is deadlock. The 

deadlock situation described above can be modeled like this: 

v 

Thread 1 

* 

Thread 2 
> 

Figure 14: Deadlock model 

Model Key: 

-•J = processes 

i—I = resources 

— ' = acquired resource 

' - requested resource 

The deadlock model shown above illustrates an extremely simple deadlock 

situation, but it is also possible for a more complex situation to create deadlock. The 

following is an example of deadlock with four processes and four resources: 
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Process 1 Process 2 Process 3 Process 4 

Model Key: 

v_, = processes 

I I = resources 

' = acquired resource 

' = requested resource 

Figure 15: Deadlock with four processes and four resources 

6.1.5. SUMMARY OF DEADLOCK 

Deadlock is a set of processes in which each process in the set is waiting for an 
c 

event that only another process in the set can cause (Sirer, 2001; Rensselaer, D.H., 2004; 

Venkatesh, J., et al., 2000 ). The event is usually the release of a currently-held resource. 

As a result, none of the processes can run, release resources or be awakened. 

6.2. THEORETICAL EXAMPLE OF EC: LIVELOCK 

A livelock is similar to a deadlock, except that the state of the two processes 

involved in the livelock constantly changes with regards to the other process. It occurs 

when a process repeats itself because it continues to receive erroneous information. It 

can also occur when a process calls another process and is then called by that process 

with no logic to detect this situation and stop the operation. A livelock differs from a 

deadlock in that processing continues to take place, rather than just waiting in an idle 

loop. As a real world example, livelock occurs when two people meet in a narrow 

corridor, and each tries to be polite by moving aside to let the other pass, but they end 

up swaying from side to side without making any progress, moving the same way at the 

same time. In general, the term usually connotes one of the following: 

Resource 1 
" 1' ltH*M 

Resource 2 Resource 3 Resource 4 
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6.2.1. STARVATION 

Systems with a non-zero service cost and unbounded input rate may experience 

starvation. For example, if an operating system kernel spends all of its time servicing 

interrupts, user processes will starve. 

6.2.2. INFINITE EXECUTION 

The individual processes of an application may run successfully, but the 

application as a whole may be stuck in a loop. For example, a naive browser loads web 

page "a" that redirects to page "b" which erroneously redirects back to page "a". 

Another example is a process stuck traversing a loop in a corrupted linked list. 

6.2.3. BREACH OF SAFETY PROPERTIES 

The safety property of distributed systems states that the application will not 

perform an incorrect action or enter an undesirable state. By adding a temporal 

attribute to the application state, the program is considered live locked if it does not 

make forward progress within a specified timeframe. For example, if the temporal rule 

that a response is sent for every request within 10 seconds fails, then the server is 

deemed to be at a standstill. Creating the appropriate specifications for a given 

application requires detailed domain knowledge about the program's intended behavior 

and internals of its implementation. In summary, livelock is a situation in which a block 

returns to the same state infinitely, often at the same instant. 

6.2.4. ANALYTICAL ALGORITHMS 

A pessimistic algorithm detects contention when attempting to acquire a shared 

resource, usually responding by waiting until it becomes available (for example, 

blocking). Optimistic algorithms attempt forward progress with the risk that contention 

will be detected later on, such as when a transaction attempts to commit. 

Lock-free or interlocked-based algorithms that can detect and respond to 

contention are relatively common for systems-level software; these algorithms often 

avoid entering a critical section in the fast path, choosing to deal with livelock instead of 
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deadlock. Livelock presents a challenge to parallel code and is caused by fine-grained 

contention. The result stalls forward progress much like a deadlock. 

In the example below, threads 1, 2 and 3, and three locks A, B and C are involved 

in some form of shared-memory coordination. Thread 1 holds lock A and is blocked on 

acquiring lock B; thread 2 holds lock B and is blocked on acquiring lock C; thread 3 holds 

lock C. If thread 3 then attempts to acquire lock A, the algorithm initiates and constructs 

a wait graph like that depicted in Figure 16. Then it will detect a cycle and respond by 

terminating thread 3. This frees up lock C, which enables thread 2 to unblock, acquire C, 

execute and release B. This unblocks thread 1, which is then able to acquire B and 

execute to completion. 

Figure 16: Wait graph - deadlock situation with termination of thread 3 avoidance 

6.2.5. DEADLOCK AVOIDANCE 

Deadlocks can be avoided if certain information about operational processes is 

available in advance of resource allocation. For every resource request, the system sees 

if granting the request will enter the system into an unsafe state, one that could result 
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in deadlock. The system then only grants the request that will lead to safe states. In 

order for the system to determine if the next state will be safe or unsafe, it must always 

share advance knowledge of the number and type of all resources in existence, available 

and requested. 

To avoid livelock and related problems, an operating system must schedule a 

network interrupt as carefully as it schedules process execution. Furthermore, using a 

modified interrupt-driven networking implementation, this will eliminate livelock 

without degrading other aspects of system performance. 

6.2.6. DEADLOCK/LIVELOCK RECOVERY 

Once a deadlock is detected, there are two choices: 

• Abort all deadlocked processes (which will cause some computations to be 

repeated) 

• Abort one process at a time until cycle is eliminated (which requires re­

running the detection algorithm after each abort) 

A further consideration is process preemption. Process preemption releases 

resources until the system can continue. However, process preemption involves certain 

issues including: 

1. Selecting the victim 

2. Rollback 

3. Programming model 

4. Starvation 

5. Livelock 

Livelock is a risk with some algorithms that detect and recover from deadlock. If 

more than one process takes action, the deadlock detection algorithm can repeatedly 

trigger. This can be avoided by ensuring that only one process (chosen randomly or by 

priority) takes action. 
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6.2.7. DEADLOCK/LIVELOCK PREVENTION 

Simply put, deadlock/livelock can be prevented by ensuring that one of the 

above five conditions does not occur. Further, removing the mutual exclusion condition 

means that no processes have exclusive access to a resource. This proves impossible for 

resources that cannot be spooled, and even with spooled resources, deadlock could still 

occur. 

Hold and wait conditions may be removed by requiring processes to request all 

needed resources before starting up. However, this advance knowledge is impossible in 

many cases. Another way is to require processes to release all their resources before 

requesting all the resources they will need, but this is also often impractical. The "no 

preemption" condition may also be impossible to remove as processes must access a 

resource for a certain amount of time or the processing outcome may be inconsistent. 

Finally, the circular wait condition is the easiest to remove. A process may be 

allowed to possess only one resource at a time, or a ranking may be imposed, 

eliminating waiting cycles. A hierarchy typically determines a partial order between 

resources. 

6.2.8. EXECUTABLE CONTEXT EXAMPLES FOR SOLVING DEADLOCK AND LIVELOCK 

The EC method provides an answer to the modeling and simulation cases of both 

deadlock and livelock detection between processes. Furthermore, EC enables a systems 

process aligned with an operational process to execute in chronological order as a 

sequence of events. These events are in predetermined states that change as the 

simulation progresses. For example, the state of a phone operator in a process could go 

from "idle" to "busy" as a call is answered and back to "idle" after the call has been 

routed. 

The EC approach is advantageous when a process is finite because each step can 

be modeled accurately and the variables controlled to avoid errors. Also, the modeler 

can control the rate at which the simulation runs - slower to observe individual 

outcomes or faster to run the simulation multiple times for a distribution of the results. 
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Using EC to model the system under test would allow the modeler to analyze 

concurrent systems and operational processes and to stop the simulation where a 

deadlock/livelock occurs. An algorithm can determine which process relinquishes and 

which retains control of the resource(s). By modeling the processes and their 

interactions, the frequency of deadlocks/livelock can be recorded over many 

simulations and determined if the frequency is acceptable. 

In the EC solution for deadlock/livelock detection and resolution strategy, 

resource requests are granted without considering the potential for deadlock. At 

appropriately chosen times, a deadlock detection procedure is invoked. If the procedure 

identifies a deadlock, the deadlock is resolved. 

Many algorithms that detect or prevent deadlocks reorder the waiting entities 

into a non-decreasing list by request size. The algorithms then attempt to find at least 

one execution sequence that does not result in deadlock. In the case of simulation 

systems, reordering the waiting entities may violate the reallocation rule of the 

resource. The reallocation rule decides whether the resource queue allows late arrivals 

in the queue to pass stalled entities. In the case of multiple-unit requests, this policy 

may alter the outcome of the deadlock detection by erroneously designating a 

deadlocked simulation to be free from deadlock. 

In the case of manufacturing system real-time control, resolution is achieved by 

removing a deadlocked entity from the resource (machine) it holds, placing it in a 

temporary buffer and reallocating the released resource to a waiting entity. The 

resolution procedure in computer applications typically chooses a set of entities to be 

aborted and restarted or partially rolled-back to break the deadlock. 

Due to the varied nature of deadlocks in a general simulation system, removal or 

roll-back of entities is not directly applicable while modeling manufacturing systems. 

Preferably, EC could allow the simulation to automatically recover from deadlock 

situations without additional burden on the simulation modeler. Also, the ability to run 

the simulation many times in a short time span allows the modeler to test under 

different conditions and gauge the effectiveness of multiple solutions. 
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Another advantage to using EC is the use of a master scenario event list (MSEL). 

The MSEL is a list of events with corresponding times at which to inject the events into 

the simulation. Using the MSEL, a deadlock/livelock can be injected at any given point in 

the simulation to test the system under different situations. This also ensures that a 

deadlock/livelock does in fact occur rather than waiting for it to randomly occur while 

testing for solutions. 

EC may accurately model the problem of deadlock/ livelock by categorizing then 

prioritizing the discovered deadlock using information from the initial procedure. This 

places no additional computational burden for the information required by the 

prioritization procedure. 

In the case of group processing deadlocks, it is possible to develop appropriate 

prioritization to resolve the deadlocks once the reduction procedure is in place. This is 

accomplished by automatically displacing some of the entities in deadlock. The 

procedure is applicable to both categories of permanent deadlocks. It is assumed 

resolving transient deadlocks are not a logical process in the case of group processing. 

This is due to the time penalty involved in displacing entities and the duration of the 

transient deadlocks at the time detection is not known. 

6.2.9. DEADLOCK AND LIVELOCK PROBLEM FORMATION 

In early problem formulation, EC can test the model design and check for 

deadlock or livelock, thus prioritizing processes to avoid this situation during actual 

process execution. If it is impossible to identify deadlock using informal methods, 

studying aspects of the EC specification can be used. EC uses the DEVS structure as 

defined below: 
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M = {X, S, Y, 6int, 6ext, A, ta} where: 

X = set of inputs values 

S= set of states 

Y = set of output values 

6int= S -> S internal transition function 

6ext = Q x X -> S external transition function 

A = S->Y output function 

ta = S -> R time advance function 

Equation 1: DEVS equation structure is used in executable context 

Simulating a model within the EC method will produce trajectories like the ones 

shown in Figure 17 below. The figure shows the following information displayed over 

execution of a federation of models using the EC method: 

X 

S 

* * 0 * x l 

Figure key: 

X= Inputs 

S = States assumed and duration 

e = Time elapsed since last transition 

Y = Outputs 

Figure 17: Executable context deadlock and livelock analysis 

Deadlock detection and resolution can be managed using mostly the operational 

and systems state defined within the EC specification. The undesired deadlock condition 

is simply a system state and operational process. That state, as well as state sequences 

leading up to it, should be recognized and avoided. First, the culprit states need to be 
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revealed via simulation. Next, the processes within its states need to be used to 

reconfigure the models to avoid deadlock or livelock. Initial simulation can uncover any 

of these situations that arise. During initial simulation, state transitions can be exported 

as diagrams, matrices, or other machine-readable formats. 

Patterns must be discovered that represent deadlock and livelock, as well as the 

patterns leading up to them. Capturing system states that lead to or currently represent 

these states must be identified using simulation by transitioning current and other 

flagged states that lead to these patterns. System states that currently mirror a flagged 

state transition map will require intervention to break the upcoming situation. 

tbm 

Model Under 
Test 

t l imbaM 

Flagged 
Output -
Trajectory tlnwbase 

Mm» 

Model Under 
Test 

r. 
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N 

Flagged _____ 
State , 
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Figure 18: Flagged state transition map 

V 

State transition diagrams at atomic and coordination detail levels can be 

traversed and scanned for static and cyclic patterns that represent or lead to deadlock 

and livelock situations. Many of the patterns identified can be used to automatically 
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detect and resolve these issues in later simulations. Specific processes prone to 

deadlock can use the current state or sequences of previous states to detect, resolve 

and transition to prevent these situations; examples of this will be described in more 

detail in section 6.3. 

Using EC, algorithms and logic that detect and resolve the deadlock situation can 

supplement complex models a number of ways. Process priority logic algorithms can be 

embedded inside deadlock or livelock processes and models. Further, logic could be 

separated from normal model design and stored in mediation nodes serving as passive 

monitors. During preliminary phases, flagged state maps and "doomed" patterns can 

represent atomic models or coordinators (models with children). If a deadlock or 

livelock is a particular process' state transition, the local flagged state map could be 

used by that process to prevent the situation. In this case, the process would internally 

transition differently to prevent the situation. 

If the cause of the deadlock is more complex or at a global level, intervention 

from a higher authority may be needed to control multiple paralleled paths causing the 

condition. Priority mediation nodes present among the processes can constantly 

monitor state sequences for their respective responsibility processes and identify those 

"doomed" for a deadlock. If the models are on a path to deadlock, the priority mediator 

must intervene by injecting instructional messages to worker models to change their 

behavior. Additional message interpretation, transitioning logic and input ports must be 

added, but the mediator design would be less intrusive to original design and would cut 

down on programming for each participant models or processes. Priority mediation 

models can plug in and prioritize deadlock and livelock processes. 

After preliminary phases discover the condition, a reconfiguration phase will 

assign various priorities to execution threads. This case may involve situations where a 

resource recognizes that two threads are competing for it and allow a higher priority 

thread to execute first. Priority levels of incoming requests can be stored in incoming 

messages. External transition functions can interpret the message content, transition 

and output messages accordingly. Should low priority threads be continually shut out, 
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priority mediators will intervene. Mediators will send messages to standard processes' 

input ports to manipulate their functionality. Priority mediators could also dynamically 

set priorities of various threads via "resolve" messages to temporarily allow a low 

priority thread a chance to execute. Priority mediators must be aware of local and global 

systems states to have enough intelligence and situational awareness to make these 

decisions. 
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7. OPERATIONAL EXAMPLE 

In this section, the mechanics of EC and the four step process are described using 

an operational example. Beginning with the EC simulation framework in section 7.1.1 

and its architectural mapping, EC's process is described in detail in sections 7.2.1 

through 7.2.4. The results of the operational experiment and how EC proves effective is 

contained in section 7.3. 

7.1. DESIGN OF EXPERIMENT (DOE) FOR OPERATIONAL EXAMPLE 

DoE is a systematic approach to investigation of a system or process (Weiss 

2009). A series of structured tests are designed in which planned changes are made to 

the input variables of a process or system. The effects of these changes on a pre-defined 

output are then assessed (Taguchi 1986, Tamelu 1988). 

For EC, the DoE is a formal way to maximize information gained for knowledge 

generation and to aid in mapping the NCOBP problem formulation and the architecture 

framework to the MMF. The DoE offers more than "one change at a time" experimental 

methods as it allows generation of the needed measures that answer the specific 

questions defined in the problem formulation. 

"One change at a time" experiments always carry the risk that the experimenter 

may find one input variable to have a significant effect on the response (output) while 

failing to discover that changing another variable may alter the effect of the first (i.e. 

dependency or interaction) (Taguchi 1988). This often occurs because the experimenter 

is tempted to stop the test when the first significant effect is found. To reveal an 

interaction or dependency, "one change at a time" testing relies on the experimenter to 

carry the tests in the appropriate direction. However, a DoE plans for all possible 

dependencies (thought experiments) first and then prescribes the requirements to 

exactly measure these dependencies (i.e. whether input variables change the response 

on their own, when combined or not at all). In terms of resource, the exact length and 

size of the experiment are set by the design before testing/experimenting begins. 
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Managing large system-of-systems with complex integration and 

interoperability issues is challenging. Functionality and information are not regularly 

reused, resulting in duplication. In a growing environment consisting of hundreds of 

interconnected systems, co-existence is difficult to maintain. Despite the success of 

many individual projects with their local goals, the military continues to face difficulty of 

incorporating these minor solutions into an enterprise-level portfolio. Moreover, 

systems and functionality must be syntactically and semantically incorporated into the 

shared environment. 

To address the problems this research has identified, consider the following 

questions: 

1. What is an appropriate approach to make a system specification that is 

available in the form of a system architecture executable? 

2. Can the resulting artifact be federated into an executable context that 

represents all external systems and can be initialized with the elements 

describing an operational scenario? 

3. Can the relevant measures of performance on the system level and measures 

of effectiveness on the scenario level be derived from operational 

requirements? 

The EC method was developed for these types of challenges. The Department of 

Defense Architecture Framework (DoDAF) has served as the common overarching 

framework for understanding, comparing and integrating architectures across 

organizational boundaries. As indicated by the literature research, DoDAF architectures 

are not effective for enabling quick and efficient information flow among complex 

system-of-systems and decentralized organizations. An architecture describes an 

organization's missions, structure, business processes, information exchange 

requirements, system-level infrastructure and other characteristics. Expressing 

architectures using DoDAF lays the foundation for achieving interoperability. DoDAF 

enables the alignment of architectures that supports a federated approach. The use of 

architectures also promotes the sharing, reuse and composability of architecture 
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components and viewpoints. Various issues involving complex integration and 

interoperability with large system-of-systems can be managed and resolved using 

executable architectures. 

Once created, architectures are typically used as static descriptions of systems 

and organizations that depict operational, system and technical viewpoints. In order to 

fully execute the architectures, simulators must use the dynamic and behavioral aspects 

described in the DoDAF viewpoints and in the underlying meta-model. Executable 

architectures induce the dynamic behaviors and provide performance measures for 

evaluators. DoDAF can be used to describe the functionality of various systems and the 

missions and test events they participate in. Since EC can exercise the models that 

represent systems and events, EC not only optimizes these systems and events, but EC 

also reveals the integration and interoperability problems associated with these systems 

and events prior to encountering them during live testing. By utilizing EC before testing 

begins, the military can significantly avoid problems that arise during live testing. 

Of course, proper evaluation is a critical aspect of testing and requires additional 

research. Simulation can help ensure that events or missions represented by 

architectures are generating the necessary metrics for evaluation. From a planning 

standpoint, evaluators can define architectural objects of interest, measures, objectives 

and criteria. Later, those metrics can be extracted via iterative execution using varying 

conditions and architecture configurations in order to ultimately converge to an optimal 

solution to best satisfy the objectives. 

In short, issues remain with effectively describing what happened during a test 

when it relates to the execution of an architecture model. Pre-test simulation can also 

be initiated to reveal what can happen under varying scenarios and conditions. 

Traceability between architectural descriptions and gathered data could help indicate 

what happened during the evaluation and analyze why problems were encountered. 

From an architectural perspective, progress indicators could track evaluation progress 

and ensure that the evaluation is on the right track. Fatal discrepancies can also be 

caught before continuing a potentially corrupted evaluation. Information flows among 
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various producers and consumers according to architectures would also be visually 

confirmed. 

7.1.1. PUTTING EC TO PRACTICE: DEVELOPMENT OF THE EXECUTABLE CONTEXT 
SIMULATION FRAMEWORK (ECSF) 

This research conducts experiments to test the utility of EC. One experiment 

provided a qualitative example of the entire EC method to attain qualitative measures 

of Net Enabled Weapon defense systems architecture within its intended operational 

environment before the system is built. A simulation framework called Executable 

Context Simulation Framework (ECSF) is depicted below in Figure 19. 
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Figure 19: ECSF 
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The central point of the ECSF resides in executing the simulator as a web service. 

The development of this kind of framework will help to solve large-scale problems and 

guarantee interoperability among different networked systems, specifically discrete 

event system specification (DEVS)-evaluated models. DEVS is one of the most suitable 

formalisms for the representation of real world systems. Simulating a model involves 

implementing a behavioral model and running it in the simulator. A simulator is defined 

as a piece of program that executes the model. Web-based simulation requires the 

convergence of simulation methodology and web service technology. The capability to 

run the simulation service is provided by the server side design of DEVS Simulation 

protocol supported by the latest DEVSJAVA Version 3.1. 

Reuse and composability principles will be followed in a number of ways. ECSF 

open-simulation framework enables connectivity with other simulators during 

execution. The fundamentals of the ECSF are based on its role in distributed simulations. 

These fundamentals allow ECSF to send and receive events to and from remote systems 

during execution. The executable architecture can be reactive or act as a stimulator. 

ECSF High Level Architecture (HLA) and XML interfaces can create a federation of 

simulations to further enhance the fidelity of outputs and measures; Figure 20 shows 

the XML interface for the simulation framework. 

Figure 20 also illustrates the process of ingesting information from remote 

sources, which involved subscribing to topics of information in a publish/subscribe 

architecture. Upon the receipt of information, the parsing process involved XML parsing 

or data binding using a technology such as Java Architecture for XML Binding (JAXB). 

Figure 20 also shows how to establish the web service for the ECSF that incorporates 

DEVSJAVA as an executable service. This service also converts the static architecture 

model into the required MMF DoDAF operators. 
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Figure 20: Remote data ingesting 

Figure 21 represents the ingestion process; any information relevant to the 

executing architecture will be injected into the simulation. Outputs or reflections from 

the simulation could also be sent to remote systems in an event-based manner using 

the same web service technologies. 
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Figure 21: Executable context integration services 

DoDAF barriers were considered potential obstacles to achieving objectives. 

Figure 22 below shows how EC communicates with linked models during an execution 

and shows parallel execution of all linked simulators over time and messages passed 

between simulator acts as event triggers. Usually the executable architecture layer 

triggers activities in the other simulators. 
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Figure 22: Executable context integration services 

Figure 23 shows the EC simulation framework integrated models during the 

experiment using web services and HLA. Similar to Figure 22, Figure 23 also depicts how 

the executable architecture triggers activities in other linked models via messages. The 

executable architecture also receives callback events from other simulators during the 

course of the simulation. 
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Figure 23: Executable context simulation framework integration with other models 

ECSF can use these technologies before and after an execution as well for pre-

simulation configuration and post-simulation data extraction and analysis. The 

fundamentals of the current system are based on being a part of distributed simulation 

and system, receiving input events from remote systems, and acting as a messaging 

system among other interoperating systems. 

Figure 24 represents the process that was used to map high-level or lower-level 

statistics generated from models or sub-models to higher level operational goals and 

form a bigger picture of how the capability is working from a larger scope and how it 

affects or contributes to the goals of other systems. Figure 24 is a concept diagram of 

how ECSF can be used to identify problems in the architectures. The resulting artifacts 

are federated into an executable context that represents all external systems and can be 

initialized with the elements describing an operational scenario, allowing relevant 

measures of performance on the system level and measures of effectiveness on the 

scenario level to be derived from operational requirements while using standard 

simulation architectures environments and common frameworks. 
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During the evaluation, the architecture would help drive the simulation by 

stimulating other systems and reacting to callbacks from artifacts and environment 

using logic designed in the federation. Afterwards, results and metrics are gathered to 

be compared to the requirements and goals of the evaluation. 
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Figure 24: ECSF mapping of models and results 

Figure 25 below describes how each model provides its respective results and 

how ECSF creates traceability between results. This figure shows linked simulators and 

their respective outputs. Using each simulator alone does not tell the whole story. 

However ECSF understands the causal relationships between all results across all 

simulators. For example, users can look at outputs from Operational Activities from the 

executable architecture components and drill for more data about network 

transmissions from the network simulator component that occurred during that 

Operational Activity. ECSF consolidates results. 
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Figure 25: ECSF Interrelated results 

Since the major focus of the EC method is used for evaluation, an essential 

attribute is the usefulness of the results. In anticipation of many unique and specific 

uses of the EC method, EC was designed for user-defined data collection for any part of 

architecture and even information architecture modeled outside the architecture such 

as network modeling for system-to-system interactions. The current EC configuration 

also allows the customization of individual architecture elements such as operational 

activities as described in the OV-5. 

The OV-5 describes the operations that are normally conducted in the course of 

achieving a mission or a business capability. It describes capabilities, operational 

activities, input and output flows between activities, and I/O flows to/from activities 

that are outside the scope of the architecture. 

The purpose of the OV-5 is to: (1) clearly delineate lines of responsibility for 

activities, (2) uncover unnecessary operational activity redundancy, (3) make decisions 

about streamlining, combining, or omitting activities, (4) define or flag issues, 

opportunities, or operational activities and their interactions that need to be scrutinized 
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further, (5) provide a foundation for depicting sequencing and timing, and (6) identify 

critical mission threads and operational information exchanges by annotating which 

activities are critical [DoDAF vl.5, Volume II: Product Descriptions, 23 April 2007]. The 

ability to insert logic capable of modeling the realistic activities of an OV5 node could 

also provide an assessment of the system's usefulness from a modeling perspective. 

Another factor to review the method is the ability to simulate different types of 

scenarios in many different ways. The generic simulation component of EC is based on 

standardized fundamental M&S principles, which allows it to simulate many types of 

models other than typical flow models. Its flexibility does not confine its use to one 

specific purpose, allowing it to execute architectures in a variety of ways unique to the 

user's preferences. Some commercial M&S tools can only simulate typical flow models 

for specific purposes like queue studying. EC can be measured by its ability to accurately 

execute tightly- or loosely-coupled systems while producing useful results. EC could also 

be evaluated on its ability to integrate and simulate architectures, processes and 

models. Figure 26 shows how two architectures are integrated using EC generic DEVS 

modeling approach. The figure shows how architectures are difficult to integrate in 

their pictorial format even if DoDAF is the common denominator, which is supposed to 

allow integration. However, once represented in DEVS format, architectures can more 

easily integrate via DEVS coupling. 
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Figure 26: Executable context architecture integration 

The plan is to use a variety of techniques when attempting to evaluate the 

architectures. An initial preference would be to use output evaluation and compare 

architecture execution results test data that may be available, but other evaluation 

techniques will also be considered and utilized in order to evaluate the architectures. 

This type of output testing is likely to use statistical techniques to compare output data 

and trajectories from the model with output data and trajectories from the system and 

study correlation. Although black box testing using input/outputs mappings could be 

used for basic evaluation of models, the ECSF doesn't have to narrow its analysis to the 

high level input/output behaviors of an architecture. The ECSF models every part of an 

architecture and would allow the decomposition of an architecture into lesser modeling 

parts with their own behaviors and analysis, some which may have their own individual 

data or detailed subject matter expertise. This technique follows a bottom-up approach 

where lower-level sub-models are cumulatively evaluated up to the highest level. 
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Integration would be evaluated for models at the same level. Testing would be 

repeated until all system components, sub-models and the entire model have been 

integrated and tested. Evaluation could be assisted by confirming individual parts of 

architectures from the ground up. 

Enterprise level process 
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M&STools M&S capabilities M&STools 

/ f \ 

Results 

Figure 27: ECSF as part of an enterprise-level process 

The Joint Semi-Automated Forces (JSAF) 2007 in Figure 28 provided the 

operational context and executable architectures to represent the mission and flow of 

information, and the network models provided the simulated information flow over 

operational networks for the NEW example. 
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Figure 28: JSAF 

The intercommunication provided by the federation allows events in federates 

to trigger events in other federates, which creates a flow of execution among 

simulators. Examples include combat simulator events triggering reactive process flows 

in the executable architecture or information exchange sequences in the architecture 

triggering network transmissions in the network simulator. Federated simulators are 

not limited to combat and network models and can re-use any existing simulator of 

interest. 

7.2. EXECUTABLE CONTEXT: FOUR-STEP METHOD IN PRACTICE 

EC begins with systems architecture and an operational context for obtaining 

utility factors (metrics). Figure 29 shows the 4 steps of the EC method. In the figure 

below, mission requirements (MR) and operational requirements (OR) describe the 

context; system requirements (SR), functional requirements (FR) and capability 

requirements (CR) describe the system with both comprising the mission blueprint. 

External systems (ES) are introduced in step 4. 
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Figure 29: Executable context's four steps for evaluating targeted system-of-systems 

7.2.1. STEP 1: DEVELOP THE BLUEPRINT EXAMPLE FOR JOINT CLOSE AIR SUPPORT 
(JCAS) AS IT RELATES TO a NET ENABLED WEAPON (NEW) 

Step 1 for the JCAS experiment is to map the mission and operational 

requirement with the systems, functional and capability requirements as designed in the 

architecture. This requires a great amount of data gathering to bind the problem and 

answer how to make a system specification that is available in the form of a system 

architecture executable. How can the resulting artifact be federated into an executable 

context that represents all external systems and can be initialized with the elements 

describing an operational scenario, and how can the relevant measures of performance 

on the system level and measures of effectiveness on the scenario level be derived from 

operational requirements? 
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During JCAS operations, a target is selected and assigned to JCAS aircraft. JCAS 

targets may be fixed, relocateable, or mobile and are often time-sensitive. Information 

is extremely perishable under these conditions. Much of the information aircrews need 

to attack a target is not available when the mission is assigned or may change while en 

route to the target. In this environment, real time or near-real time information, 

through situational awareness, reliable communications, and effective Command and 

Control is absolutely critical for success. 

Targets may present fleeting opportunities where delays could permit the enemy 

to escape or maneuver to an advantageous position. Immediate JCAS may be in 

response to situations where the supported unit has encountered a force beyond its 

capabilities and an immediate response is necessary for success. JCAS systems must 

permit rapid assessment of the situation and the ability to quickly redirect efforts. 

Sensors, which may include Intelligence, Surveillance and Reconnaissance, JCAS 

aircraft, Joint Terminal Attack Controller (JTAC), or ground force capabilities, track the 

target location and provide continuous updates to the applicable network. The weapon 

is then released using the best location information available at the time. During 

weapon flight, it is possible for the initial target location, as well as the actual target 

itself, to change. This is relatively common for mobile targets encountered in a JCAS 

environment. The weapon's impact point is adjusted via In-Flight Target Updates 

(IFTUs) and the weapon proceeds or is guided to the updated location. Sensors may 

continuously update the target location throughout the weapon flight. 

With network-enabled weapons (NEW), the launcher could engage the target 

and, if necessary, allow the JTAC to supply IFTUs to the weapon. This is beneficial if the 

target is no longer discernable from the air. Figure 30 depicts a current JCAS operation. 

Either non-precision-guided munitions are used or the on-the-ground JTAC guides the 

weapons using another type of system. Figure 31 depicts the same JCAS operation using 

NEW. The JTAC will be able to target the weapons using the NEW implementation 

messages. The sensors onboard the weapons will provide additional guidance. 
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Figure 30: JCAS operation without NEW 

Figure 31: JCAS operation with NEW 
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The JCAS operation without the Net Enabled Weapon (NEW) systems 

architecture or the "as is" architecture in Figure 30 represents the baseline model. 

Figure 31 depicts the same JCAS operation using NEW, or the "to be" architecture. The 

ability to use the EC method in both cases is beneficial to generate the needed 

measures to define measures, operational systems architectures and visual tools for 

capturing systems and operational requirements, decision and operational analysis of 

external systems which are needed to aid in the development of the SoS to establish the 

context of the system being evaluated based on the experiment preconditions and 

assumptions generated during the problem formulation. 

7.2.1.1. PRECONDITIONS OF THE JCAS IMPLEMENTATION 

This experiment assumes the following preconditions. On orders from Division 

Headquarters, the Brigade Combat Team (BCT) continues its advance to the objective. 

Pre-planned Close Air Support (CAS) sorties were allocated by division to the BCT to 

provide CAS. One of the brigade's battalions has entered a troops-in-contact (TIC) 

situation and has asked for one of the allocated CAS missions to engage a target: one T-

72 tank is in the open. Geographical terrain is flat and obstruction-free. The CAS mission 

has already checked in with the Air Support Operations Center co-located with the 

Corps Main Command Post and is currently en route to a holding position 20 NM south 

of the TIC, at which point it checks in with the Brigade Tactical Air Control Party. 

The following assumptions were made regarding the experiment tied to the 

problem formulation as described in the prior section: 

• Resources are 100% available (platforms, sensors, network). 

• Flights of fighters are on-station 20 miles away from the target. 

• Pilot will not download data to the weapon until clearance to engage is 

received. 

• The weapon functions properly. 

• JTAC is on the ground supporting battalion operations. 

• JTAC found, fixed, identified and tracked targets. 
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• Battalion FSO assigned CAS against target and informed the JTAC of the 

flight. 

• Rules of Engagement/Airspace/Ground deconfliction process produces 

no conflicts. 

• Brigade Commander approves the CAS mission. 

• Sorties are on the Air Tasking Order in support of the BCT. 

• ATO specified time period is 0600 to 0559 ZULU (24 hour period). 

• CAS is en route to the BCT Area of Operations upon request for CAS. 

• JTAC personnel are trained to control Type 1, 2, and 3 CAS missions and 

set up their PRC-117F secure radio transmitter, laser range finder, laptop 

computer, and GPS receiver. 

• The airspace is deconflicted/cleared for the CAS mission. 

• Digital 9 line includes target coordinates and elevation, attack parameters 

for bomb impact, and exclusion zones. 

Figure 32 below represents the Entity Relationship Diagram (ERD) for the JCAS 

implementation; it is an abstract and conceptual representation of data. Entity-

relationship modeling is a database modeling method used to produce a type of 

conceptual schema or semantic data model of a system, often a relational database and 

its requirements in a top-down fashion (Chen 1976). 
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Figure 32: Experiments ERD 

Figure 33 below represents the Operational Viewpoint or the OV-6c: Event-Trace 

Description. 
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Figure 33: Experiments OV-6C 

The OV-6c provides a time-ordered examination of the resource flows as a result 

of a particular operational context. Each event-trace diagram should have an 

accompanying description that defines the particular situation. Operational event/trace 

descriptions (sometimes called sequence diagrams, event scenarios, or timing diagrams) 

allow the tracing of actions in a scenario or critical sequence of events. The OV-6c can 

be used by itself or in conjunction with an OV-6b State Transition Description to 

describe the dynamic behavior of activities. The intended usage of the OV-6c includes: 

• Analysis of operational events. 
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• Behavioral analysis. 

• Identification of non-functional user requirements. 

• Operational context. 

Detailed description: The OV-6c is valuable for moving to the next level of detail 

from the initial operational concepts. An OV-6c model helps define interactions and 

operational threads. The OV-6c can also help ensure that each participating operational 

activity and location has the necessary information it needs at the right time to perform 

its assigned operational activity. 

The OV-6c also enables the tracing of actions in a critical sequence of events. OV-

6c can be used by itself or in conjunction with OV-6b State Transition Description to 

describe the dynamic behavior of business activities or a mission/operational thread. An 

operational thread is defined as a set of operational activities with sequence and timing 

attributes and includes the resources needed to accomplish the activities. A particular 

operational thread may be used to depict a military or business capability. In this 

manner, a capability is defined in terms of the attributes required to accomplish a given 

mission objective by modeling the set of activities and their attributes. The sequence of 

activities forms the basis for defining and understanding the many factors that impact 

on the overall capability. Table 4 below uses the data from the ERD and OV-6c to map 

the blueprint developed to the MMF for metrics gathering and the NCOBP problem 

formulation as shown in Figure 34 below. 
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Figure 34: Blueprint mapping 

7.2.2. STEP 2: BUILD AN EXECUTABLE ARCHITECTURE 

Step 2 is to build an executable architecture that composes the architecture 

models and simulations into distributed or concurrent systems. This executable 

architecture was built and simulated using the DEVS/JAVA formalism. As expected, the 

formalism was able to address discrete event and time-stepped simulation and was 

generic enough to address all unexpected issues encountered during the process of 

making an architecture executable or integrating models using web services. 

Unlike earlier executable architecture prototypes, the DEVS simulation captures 

considerably more statistical data. Each element in the architecture, whether a 

composite process or a particular system node used within a process, is accompanied by 

an experimental frame which serves as a monitor throughout the simulation. DEVS 
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simulation monitors and records all time-stamped events of nodes throughout the 

simulation. From there, recorded information may include resource utilization when a 

node is invoked. Afterward, the monitors are compiled and the information can be 

studied. Monitors can be configured to record any type of information of interest to 

analysts. 

As discussed in Section 4.1, DUNIP is leveraged to aid in the development of an 

atomic model, which is an irreducible component in the DEVS framework that 

implements the behavior of a component. It executes the state-machine and interacts 

with other components using its defined in-ports and out-ports. Each such atomic class 

has its own simulator class. A network of these atomic models constitutes a coupled 

model that maintains the coupling relationships between the constituent atomic 

components. The contained services become the DEVS atomic models; research is still 

ongoing to specify the logic behavior in atomic models. DUNIP provides the ECSF with 

the process that uses the DEVS formalism as a basis for automated generation of models 

from various requirement specifications and realization services. DEVS is inherently 

based on object-oriented methodology and systems theory, categorically separates the 

model, the simulator and the experimental frame, and has been used for systems 

modeling and simulation over the years. 

The DEVS decoupling implementation also allows real time execution and 

discrete-event execution where the architecture can be executed much faster than real 

time. Figure 35 gives an example of decoupling with DEVS and the creation of an atomic 

model. 
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Figure 35: Decoupling example 

Figure 35 depicts DEVS models at multiple levels of abstraction. The numbered 

tiers represent the different levels. The figure shows how models can be extended by 

sub-models at lower levels using DEVS coupling. One of the significant developments of 

the ECSF is the masking of a coupled model as an atomic model. What this implies is 

that we have an abstraction mechanism by which a coupled model can be treated as a 

black box and can be executed like an atomic model. In other words, a coupled model 

now has a state machine similar to that of any atomic model. In contrast to the DEVS 

hierarchical modeling, where a coupled model is merely a container and has 

corresponding coupled-simulators (Figure 35), now it is considered an atomic model 

with lowest level atomic simulator (Figure 36). 

Using DEVS coupling, ECSF supports a pluggable architecture and can combine 

multi-resolution DEVS models from multiple sources. Coupling provided by DEVS leads 

to the coupling of architectures. 
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Figure 36: Atomic DEVS models in executable context 

Figure 36 shows how an atomic DEVS models could be extending with addition 

sub-models using external data sources. EC uses DEVS coupling to support a pluggable 

architecture. 

Figure 37 gives a depiction on how ECSF managed the hierarchically structured 

systems and supports the coupling and composability of atomic models. 
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Figure 37: ECSF coupling and composability of atomic models for CAS implementation 

It is formed or composed by mapping the components of the operational 

processes onto the processes of the physical system as shown in Figure 38. 
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Figure 38: Step 2 of the executable context method - decomposing the systems 
processes with other systems in the operational process to develop the hybrid view 

SV-410C 

This process enabled the creation of a hybrid systems view SV410c, which 

combines the Systems/Services Functionality Description (SV-4), documenting system 

functional hierarchies and system functions and the system data flows between them; 

the Organizational Relationships Chart (OV-4), which represents command, control, 

coordination and other relationships among organizations, and the Systems/Services 

Event-Trace Description (SV-10C), which provides a time-ordered examination of the 

system data elements exchanged between participating systems (external and internal), 

system functions or human roles as a result of establishing context as described by the 

EC method that extracts architecture elements to create the hybrid SV-4/10c for the 

executable context simulation framework (ECSF). 

Each event-trace diagram has an accompanying description that defines the 

particular situation. SV-lOc in the Systems and Services View may reflect system-specific 

aspects or refinements of critical sequences of events described in the OV-5 Operational 

Activity Model as illustrated in Figure 39. This includes activities, relationships among 

activities, and inputs/outputs. In addition, overlays can show cost, performing nodes or 

other pertinent information of the JCAS example. 
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Figure 39: Executable context method step 2b - build executable architecture and 
compose systems processes with operational processes into the Operational Activity 

Model OV-5 

7.2.3. STEP 3: MAP EXECUTABLE ARCHITECTURE TO THE BLUEPRINT 

Step 3 is to map the executable architecture to the blueprint of the JCAS 

example as shown in Figure 40 below. This allows the use of an M&S environment to 

capture the measures needed to evaluate the architecture's ability to support its 

intended purpose. 
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Figure 40: Step 3 - map executable architecture to the blueprint 

Ultimately, the structural and behavior characteristics of DoDAF must be 

represented in DEVS in order to be executed. Architectures are first read in their native 

format, then placed in an internal data model, and next translated into executable 

models. First, the architecture must be read and interpreted. This is the uncertain step 

because it involves third-parties. Both the completeness and format of the architecture 

are addressed. From a DoDAF standpoint, many of the entities, relationships, and data 

types of DoDAF data models are able to translate directly to DEVS components. Many 

of the structural properties of DoDAF translate nicely into an executable DEVS format. 

For example, a simple graphical representation of a DoDAF operational activity diagram 

closely resembles a basic chain of coupled atomic DEVS models. Although DoDAF is 

capable of associating logic, criteria, and timing information with many of its model 

components, some architecture builders do not include these details and define only 

the structural properties of the architecture. In cases where executable parameters are 

not available in the native architecture, parameters will be assigned default values 

during the initial executable architecture generation. Of course these values could be 

altered later once the architecture has been ingested. Missing information mostly 
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includes timing information and criteria for decision-making models. If this information 

is represented pictorially in architectures, the rules, conditions, and criteria will be 

reformatted into a machine readable format prior to ingestion. 

Recent improvements in the DoDAF data models have made it easier to store 

this behavioral information in a machine-readable format. Figure 41 below shows a 

simple operational activity diagram with the data types from the DoDAF Meta-model 

(DM2) assigned to major components. This is an example of how DoDAF's structural 

properties translate nicely into DEVS components that can represent the methodology 

within DoDAF and was implemented in the JCAS example. 
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Figure 41: Simple operational activity diagrams 

The above model can have countless DEVS representations in DEVS. A simple 

representation could include a chain of coupled atomic operational activity DEVS 

models with couplings to their respective resource DEVS models in the swim lanes. 
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Figure 42: Storage of executable parameters 

Figure 42 above demonstrates the improved richness of standard DoDAF data 

models and their ability to store many required executable parameters, allowing the 

executable architecture engine to be as parametric as possible. Aside from the 

architecture completeness, DoDAF architectures are stored in multiple third-party 

formats. Architectures are typically formatted in pictorial formats, and need to be 

reformatted into a machine-readable format like Microsoft Excel. Other cases involved 

DoDAF architecture being represented in XML schemas like Core Architecture Data 

Model (CADM) and the newer DoDAF Meta-model (DM2). 
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First, an ingestion component must parse the machine-readable format of the 

architecture and put it into the internal data model. The code block in appendix A 

shows how the internal data model is used to generate DEVS models for each of the 

architecture components. The class is only a template and has been trimmed for 

simplicity. The class basically loops through and visits every architecture component in 

the internal data model and generates its DEVS counterpart while generating various 

ports and coupling everything together using DEVS couplings. 

The internal data model is used to generate DEVS models because it simply holds 

both the structural and behavioral properties needed for the models. Once the DEVS 

models have been generated, the engine advances using adjustable time-step. The 

propagation of the engine "ticking" throughout the entire executable architecture is 

handled by the DEVSJAVA libraries. DEVS model templates contain various collections 

points to collect information about the architecture during execution. The code block in 

appendix B shows a template for an Operational Activity DEVS model. The class is only a 

template and has been trimmed for brevity, but it does contain all the major functions 

present in all DEVS models in DEVSJAVA. 

7.2.4. STEP 4: FEDERATE ALL STEPS INTO AN EXECUTABLE METHOD 

Step 4 federates and amalgamates all steps of the method into an executable 

method as shown in Figure 43 below. Figure 43 outlines how the artifacts and models 

can be federated into an executable context that represents all external systems and 

can be initialized with the elements describing an operational scenario and allows 

relevant measures of performance on the system level and measures of effectiveness on 

the scenario level to be derived from operational requirements while using standard 

simulation architectures environments and common frameworks. The ECSF enables the 

integration of the independent models into an engineering method that allows 

harmonization of System and operational architecture as an executable. This research 

also allows for an executable federation that represents all external systems and can be 

initialized by systems and operationally relevant data. 
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Figure 43: Step 4 - putting it all together 

73 . RESULTS OF THE NEW EXPERIMENT 

The key questions that were answered in these experiments were: 

1. Does incorporating the "context" affect the evaluation of the system? 

2. Does incorporating the "context" lead to different decisions? 

This experiment clearly established that the EC method could incorporate 

systems architectures with an operational context, federated with other models to 

acquire critical measures of effectiveness and measures of performance relating to 

system-of-systems capabilities. It was imperative that a full understanding of the "as-is" 

process be modeled first. Then the "to be" model was developed based on the same 

context. By analyzing the "as-is" versus "to be" models, EC had the ability to provide 

quantitative measures as defined by the metrics established in Step 2. 
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The overall goal is to demonstrate that the EC methodology could assess 

capabilities and aid in the evaluation of the architecture products into a harmonized 

method that enables an executable context, as identified in this research, than what has 

historically been done. 

The following qualitative results and recommendations were provided as part of 

the experiment. The results were based on the following equation: 

How: 

PSSK (Probability of Single Shot Kill) = PFFR x PE/R x PK/E where: 

PFFR = Weapon Free Flight Reliability. PFFR is the probability thatall weapon 
components operate as designed, given a successful aircraft release of a 
functional weapon. PFFR includes all flight functions after weapon release up to 
and includingwarhead detonation. PFFR does not include failures not onboard 
the weapon. 

PE/R = Probability of Engaging the target given a successful release. Given a 
successful release, PE/R is the probability the weapon acquires, correctly 
classifies, commits, and guides to the correct target located near the designated 
aim point. PE/R stresses the seeker and data link and is left open to gives the 
opportunity to pursue the best solution to achieve the desired PSSK. 

PK/E= Probability weapon kills the target given an engagement. PK/E is the 
probability the weapon achieves the desired kill criteria given successful PFFR and 
successful PE/R against each individual target set member. Given the above 
equation the EC method was tailored to qualitatively answer if the architecture 
could validate the probabilitiesof a single shot kill of the NEW capability. 

Equation 2: PSSK equation 

With the results of the "as is" and "to be" models analyzed, the following was 

gathered and evaluated using the following figure, which represents three different 

runs. 

The key elements of the experiments were the ability to use the data to answer 

the specific question of PSSK. Below is a synthesis of the results used to determine how 

EC answered the how and the why. Figure 44 shows an example of a JCAS model being 
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executed with a deadlock situation shown in red. The model contains operational 

process of a targeting Chain for JCAS. Activities requiring resources have couplings to 

those resources and acquire them during execution. During execution, two threads of 

execution reach a deadlock situation over resources. The state of the deadlock is two 

processes that have acquired only one of the two resources needed to execute. Within 

the deadlock, the blue lines represent resources that have been acquired by an activity, 

and the orange lines represent resources that have only been requested. The deadlock 

remains because neither activity will give up its resource. However, logic embedded 

within the resources is in place to handle prioritizing the competing threads. The logic 

causes the lower priority thread to yield, allowing the other thread to gain control of its 

required resources. After the first thread is finished, it releases both resources, and the 

yielding thread can finally execute. This example shows how the executable context 

evaluates a theoretical situation like a dead lock in an operational environment. 
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Figure 44: JCAS Dead Lock Model 

Figure 45 is the synthesis of run 1 or the Small Diameter Bomb (SDB) that 

showed "how" to employ the weapon to gather Measures of Effectiveness from the 

operational activities as shown by the green arrows. The blue arrows show the capture 

of measures of performance from the systems and answer the "why" to employ and 

engage. The results are shown to depict MOPs and MOEs. 
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Figure 45: "how" and "why" of Run 1 (SDB) 

Figure 46 is the synthesis of run 2. This run provided experimental information 

of a Small Diameter Bomb 2 (SDB 2) conventional system and its existing capabilities. 

Results provided the following information showing that "how" the SDB 2 employed 

results and "why" SDB 2 capabilities employed and engaged the target. 
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Figure 46: "how" and "why" of run 2 (SDB 2) 

Figure 47 is the synthesis of run 3 or the Net Enabled Weapon (NEW). This run 

took into account "how" to employ the weapon and "why" to employ the weapon and 

engage the target with experimental and advanced capabilities. Network-enabled 

weapons will provide the warfighter with the capability to prosecute time sensitive and 

mobile targets by supplying real-time accurate target information to the weapon from 

release through impact. In essence, network-centric systems establish communication 

nodes linking weapons with the most accurate information available. Information will be 

provided to the weapon by the most timely and accurate source available and not be 

limited to the delivery platform. In-flight, the weapon receives target location updates 

and incorporates real-time data into guidance systems for aim point adjustments. This 

will provide a means to redirect a GPS-guided weapon after release and hold the mobile 
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target set at risk regardless of weather conditions. If the weapon is equipped with a 

seeker, the seeker may be preprogrammed to take over and gain greater accuracy for 

discriminate targets. Overall, the full impact of network-enabled weapons is still unclear, 

but based on the finding of this research, the benefits clearly touch every element 

within the kill chain. Networking weapons provides a technological solution that fills a 

documented capability gap and has the potential to spawn innovation in advanced 

architectures. More research must be accomplished to properly integrate the 

architecture without creating stovepipe solutions that meet only near-term needs. To 

prevent stovepipe solutions and achieve full network weapon integration, an 

overarching joint portfolio management solution is required to streamline this capability 

to the warfighter and should be a focus on future research. 
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The results for the runs were analyzed based on the problem formulation 

established in step 1 of the EC method and the following results were gathered. The key 

to the analysis on the NEW or "to be "capability is enabled by the following: 

1. What are the systems that are affected by this system? 

2. What are the systems that affect this system? 

3. What environment does this system operate in? 

4. Will this system execute within its intended environment as predicted? 

The experiment is designed to evaluate the use of a Net-Enabled weapon in 

comparison to using a conventional weapon. There are significant issues in developing 

the experimental design. Many of these issues stem from the large scope of the 

experimental design needed to evaluate the experiment. The experiment needs to 

correctly and completely describe all of the following items: 

The constraints of the experiment 

The problem and relevant background information 

The defined set of test hypotheses 

The identified variables (independent, dependent, test) 

The tools and techniques 

The preconditions for running the experiment. 

The statistical tests and tools for analyzing the data 

The sources of error 

Ensure that the experiment as a whole is feasible 

Define the number of repetitions 

Define the sources of error 

Define the limitations 

Several significant issues have been identified in running the experiment. The 

first issue concerns the availability of suitable data. In this experiment, each run needs 

to define the data being used. The third significant issue is meeting the pre-conditions 

for running each of the experiments. In addition to being a significant amount of work 
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to develop the tools and materials, the items developed need to be consistent in quality. 

There are significant issues for developing the experimental design, running the 

experiment, and analyzing the results. It is important to understand that the issues in 

running and analyzing the experiment were addressed in the experimental design. The 

NEW experiment provided a viable method to conduct dynamic, persistent, extensible, 

measurable, repeatable and interactive testing of processes, architectures and 

components. With the achievement of this goal, today's challenge of evaluation 

without an effective method to test and verify tactics, techniques, and procedures (TTP) 

in an executable context with systems, organizational structure and functions is 

remedied. 

This experiment showed the integration of the independent models into a 

common method that allows harmonization of system and operational architecture as 

an executable. This experiment also allows the resulting artifacts to be federated into 

an executable context showing all external systems and was initialized with an 

operational scenario that allowed relevant measures of performance on the system and 

measures of effectiveness on the operational level. 
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8. CONCLUSION 

To conclude, the methodical development and testing of the executable context 

theory were developed to uphold that this theory is both novel and viable. Results 

indicate that, by incorporating executable context in system evaluation, context affects 

the overall evaluation and does lead to different decisions based upon this evaluation. 

By leveraging literature research and developing an operational and theoretical 

example, the executable context method exhibited evidence that system-of-systems 

architecture can be evaluated. This method leverages current executable architecture 

and architecture analysis methods through modeling and simulation and systems 

engineering to close the gap and vet executable context as a new method of evaluation. 

With today's state-of-the-art in executable architectures, theoretically-sound 

dynamic analysis of system-of-systems effectiveness and performance is difficult to 

achieve within an operational environment. The executable context research builds 

upon and advances the current state-of-the-art in architecture evaluation by simulating 

operational and system contexts. Figure 48 demonstrates functional orchestration of 

operational and systems architectures in knowledge-based evaluation of architectures. 

Furthermore, this research extended the DUNIP research, enabling an 

executable federate that allows for operational and systems model transparency and 

extension of the MMF in a federation of the operational and systems artifacts to ensure 

that all measures of performance on the system level are computed within the user 

relevant operational context based on the system's specification and contribute directly 

to the operational efficiency (MOE) and Systems efficiency (MOP). These extensions 

enabled operational and system model harmonization for resulting artifacts to be 

federated into an executable context. 
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Figure 48: Functional Orchestration of Operational and Systems Architectures using 
Executable Context Method 

With the limited resources in today's economy, organizations must efficiently 

allocate resources. Executable context research intends to achieve greater evaluation 

ability with the same or fewer resources. In essence, executable context melds both 

business and technology best practices to improve efficiency and reduce redundancy by 

providing higher accuracy in pre-execution evaluation of systems. Executable context 

models operational and systems architecture specification contributions with a higher 

degree of accuracy as it considers how an architecture is affected by interacting 

systems, rather than today's more stovepipe method of system evaluation. This was 

achieved through extending the DUNIP Specification to enable an executable HLA 

federate, leveraging and extending the MMF to apply measures to a specific scenario, 

leveraging the FEDEP and DSEEP processes within in a context and extending the MAVS 

method to conduct dynamic architecture evaluation. 
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The executable context method complements other successful approaches such 

as the Zachman and DoDAF frameworks, agile methods, total quality management, and 

lean sigma. Further, this research is applicable at multiple system levels - from broad 

enterprise and business architecture to the intricate systems architecture and 

technology implementation. Throughout the executable context research, the concept 

was vetted by analyzing the capability architectures to establish system performance 

evaluation and effectiveness. The result determined that executable context creates a 

partial static analysis environment in which static architecture framework products can 

be more closely examined. This closer examination furthers the study of other routine 

processes. The current research delivers results that perpetuate repeatable and 

measurable environments comprised of replaceable components evaluated under 

different technical, operational and system architectures. The research also led to the 

creation of a method to convert systems and operational architectures into an 

executable context. 

Based upon these findings, executable context may also provide added value in 

service orientation, business processes, and information and business rules (limited by 

certain problems and opportunities within these). Evidence presented throughout this 

research indicates that systems that utilize architected solutions out-perform chaotic 

systems when architecture is applied at the right levels. Executable context methods are 

also developed to determine when an architected solution is appropriate and how much 

detail is required. These methods also provide further insight to determine how to 

design a plan or processor to convey information effectively and efficiently without 

stifling creativity and diversity. 

Finally, executable context research derives information and generalizes 

architecture frameworks such as DoDAF, Zachman, 4+1 view and others to evaluate that 

the current state-of-the-art in executable architectures are not able to analyze 

operational system-of-systems in a dynamic fashion, as these foundational principles 

evaluate the architectures within their own operational environment. The extensible 
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method developed within this research is an evolution of these concepts that is 

designed to close this gap through considering systems within their contexts. 
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9. EXTENSIBILITY OF THE RESEARCH 

Many of today's engineering and architecture environments have adopted a 

system-of-systems approach to developing and sustaining their capabilities. The focus 

has shifted from platform-based programs to integrated capability-based development, 

management and sustainment programs. The EC method supports strategic planners to 

define the long-range capability roadmaps, evaluate program requirements and 

determine spending priorities. While traditional systems architectures focus on the 

operational systems and technical standards, it is the mission element of portfolio 

management that has increasingly drawn attention. Capability managers struggle with 

how to best represent the intended mission element of a capability within the system-

of-systems construct. 

Continuous improvement and success of portfolio management ensure that the 

appropriate resources are allocated to their authorized portfolio components. Since 

portfolios rely on projects in order to achieve their strategic goals, they are 

interconnected and the improvement and success of portfolios has direct influence on 

the success of system-of-systems projects. This includes: 

• System-of-systems acquisition management - a significant increase in 

complexity over traditional system acquisition. 

• Developments that require significant numbers of technologies be 

integrated to one another. 

• Challenges to traditional development monitoring tools and cost models. 

• Need to capture integration complexity. 

• Level of effort required to connect individual components. 

• Unintended consequences - high degree of inter-linkage between 

components can cause unintended impacts to overall system 

performance. 

• Components are modified from original use. 

• Technology change: replaced throughout the system life. 
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When DoDAF architectures represent test events, a capability is needed for 

monitoring, visualizing and analyzing events from a DoDAF perspective. Analysts 

familiar with DoDAF are able to examine how various lower-level messages and events 

captured during a distributed test environment relate to both system and operational 

architecture viewpoints. Analysis and measures calculated during events must also be 

overlaid onto detailed visualizations from a DoDAF perspective. Following the release of 

DoDAF 2.0, the capability also attempts to follow the DoDAF Meta-model (DM2) and the 

idea of enabling users with the flexibility to construct hybrid views. Given that the data 

model is implemented as ontology, the capability also explores the ability of revealing 

inferred relationships using reasoning engines. Given the ability to reveal additional 

relationships based on those explicitly defined, the capability attempts to convey 

unexpected and possibly critical information to users. 

This research describes a prototype that implements a data model-based on 

DM2 and the services that produce meaningful executable context for the Net Ready 

Key Performance Perimeters which is comprised of the following elements: compliance 

with the Net-Centric Operations and Warfare (NCOW) Reference Model (RM), 

applicable Global Information Grid (GIG) Key Interface Profiles (KIP), DOD information 

assurance requirements, and supporting integrated architecture products required to 

assess information exchange and use for a given capability. 

Extension of the research method developed in this thesis has the ability to 

provide an integrated approach to system-of-systems evaluation or the ability to 

evaluate more than one system at a time. It uniquely leverages the principles of 

resource issues for capability development and management, specifically in the key 

areas of personnel, resources and activities. The gap between existing "as is" capability 

and the desirable "to be" capability require a measure for evaluating key incremental 

capability of the "to be" state. EC has the potential to provide value-focused metrics, 

including system-level measures of performance and context-based measures of 

effectiveness, which could lead to integrated capability metrics suitable to link 

enterprise strategic guidance to an engineered capability portfolio. EC could enable an 
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analytical approach based on a simulation-based environment; client capability 

engineering teams understand the impact of alternative capabilities on variables such as 

strategic key performance parameters, operational and system performance, lifecycle 

costing, personnel training requirements and methods. This research may be used to 

implement an evaluation process in which needs and resources are integrated early and 

resources are committed incrementally based on the achievement of specific levels of 

knowledge at established decision points. 

This research may also be used to prioritize programs based on the relative 

costs, benefits and risks of each investment to ensure a balanced portfolio. EC could be 

used to require increasingly precise cost, schedule and performance information for 

each alternative that meets specified levels of confidence and allowable deviations at 

each decision point leading up to the start of product development. Further, EC may 

enable empowered portfolio managers to prioritize needs, make early go/no-go 

decisions about alternative solutions and allocate resources within fiscal constraints. 

Finally, EC could provide a much needed approach to optimization of operational and 

systems requirements. 
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Figure 49: Future research - executable context for portfolio management 
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11. APPENDIX A CODE BLOCK FOR CLASS 

/ / This class has been trimmed for brevity. 

/ / Some global variable declarations and helper functions have been omitted for 

brevity. 

public class OV5_View extends ViewableDigraph { 

public OV5_View(String name, QUEUEJnternalEvent internalEventQueue){ 

super(name); 

/ / Generate DEVS models for all models connected this Operational 

Activities (Systems, Functions, Resources, etc..) 

LIST_NODE ConnectedModels 

SINGLETON_DoDAF_Models.getlnstance()._AII_Connected_Models; 

for(int i = 0; i < ConnectedModels._size; i++) 

{ 

/ / Each executable architecture data type has a method that generates its 

DEVS model 

NODE model = (NODE) ConnectedModels.getNodeBylndex(i); 

model.generateDEVS(internalEventQueue); 

} 

/ / Generate DEVS models for "Operational Activities" 

/ / Generate DEVS ports to other models based on connectivity 

/ / The architecture is currently stored in the data model 

LIST_NODE OV5_Nodes 

SINGLETON_DoDAF_Models.getlnstance()._AII_OV5_Nodes; 

for(int i = 0; i < OV5_Nodes._size; i++) 

{ 

NODE_OV5 ov5 = (NODEJDV5) OV5_Nodes.getNodeBylndex(i); 
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ov5.generateDEVS(_internalEventQueue); 

DEVS_OV5 devs_ov5 = ov5.getDEVS_Model(); 

LIST_NODE ConnectedModels = ov5._ConnectedModels; 

for(int j = 0; j < ConnectedModels._size; j++) 

{ 

NODE model = (NODE) ConnectedModels.getNodeBylndex(j); 

String ModelName = model.getName(); 

DEVS_MODEL devs_model = model.getDEVS_Model(); 

/ / Add dynamic ports to other models 

devs_ov5.addOutport("status_" + ModelName); 

devs_ov5.addOutport("done_" + ModelName); 

devs_model.addOutport("status_" + ov5._NodeName); 

} 

devs_ov5.initialize(); 

add(devs_ov5); 

} 

/ / Officially add and initialize other connected DEVS models 

for(int i = 0; i < ConnectedModels._size; i++) 

{ 

NODE model = (NODE) ConnectedModels.getNodeBylndex(i); 

DEVS_MODEL devs_model = node.getDEVS_Model(); 

devs_model.initialize(); 

add(devs_model); 

} 
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/ / Make connections (DEVS couplings) between Operational Activities 

and other models 

for(int i = 0; i < OV5_Nodes._size; i++) 

{ 

NODE_OV5 ov5 = (NODE_OV5) OV5_Nodes.getNodeBylndex(i); 

LIST_NODE ConnectedModels = ov5._ConnectedModels; 

for(int j = 0; j < ConnectedModels._size; j++) 

{ 

NODE model = (NODE) ConnectedModels.getNodeBylndex(j); 

String ModelName = model.getName(); 

/ / OV5 -> Supportive Model (status, done) 

addCoupling(ov5.getDEVS_Model(), "status_" + ModelName, 

model.getDEVS_Model(), "request"); 

addCoupling(ov5.getDEVS_Model(), "done_" + ModelName, 

model.getDEVS_Model(), "done"); 

} 

} 

showStateQ; 

} 

} 
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12. APPENDIX B DEVS JAVA CODE BLOCK 

/ / This class has been trimmed for brevity, but it does contain all the major 

functions present in all DEVS models in DEVSJAVA. 

/ / Some global variable declarations and helper functions have been omitted for 

brevity. 

public class DEVS_OV5 extends ViewableAtomic { 

public DEVS_OV5(String name, int NodelD, QUEUEJnternalEvent 

internalEventQueue) { 

super(name); 

/ / Some standard input and output ports for this model 

addlnportfin"); 

addlnport("CommComplete"); 

/ / Other Outputs are autogenerated; 

addOutport("out"); 

addOutport("null"); 

} 

public void initialize() { 

phase = "passive"; 

sigma = INFINITY; 

super.initializeQ; 

} 

/ / This external transition function executes when the model receives an 

external message 

/ / Messages could be empty triggers (from a previous Operational Activity) or 

state 

/ / updates from other models (Resources, Mediators, Communications model) 
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public void deltext(double e, message x) 

{ 

/ / The function acts differently depending on the its current state 

/ / Is this the start of the invocation 

if (phasels("passive")) 

{ 

/ / Parse the incoming message 

for (int i=0; i< x.getLength();i++) 

{ 

/ / Also figure out at which "port" the message arrived. DEVS models 

can have multiple input and output ports 

if (messageOnPort(x,"in",i)) 

{ 

entity val = x.getValOnPort("in", i); 

Universal_Message message = (Universal_Message)val; 

int messageType = message._messageType; 

/ / Messages also have multiple types 

/ / This function can also act differently depending on the port 

where a message arrived 

if(messageType == MAIN_Lookup.UNIVERSAL_MESSAGE_START) 

{ 

_currentState = MAIN_Lookup.DEVS_BUSY; 

_timeStarted = SINGLETON_Time.getlnstance().getCurrentTime(); 

/ / Does this model send an HLA JSAF order immediately 
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/ / "jnternalEventQueue" is a global event queue used by any 

component that generates events 

/ / The "Event" object contains the logic that actually sends the HLA 

order 

if(JSAFJDrder) 

{ 

JnternalEventQueue.enqueue(new 

EVENTJSAF_Order(_nodelD._orders)); 

} 

jnternalEventQueue.enqueue(new 

EVENT_DB_StateChange(_NodelD, j i ame, _currentState)); 

/ / Check if this model require a transmission to be carried out 

by the Communications model 

/ / "holdln" statements put the model in a certain state 

if(!requireTransmission()) 

{ 

holdln("ToConnectedModels",0); 

}else{ 

holdln("ToComms",0); 

} 

} 

} 

} 

} else if(phasels("awaitingComms")) { 

for (int i=0; i< x.getLength();i++) 
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{ 

if (messageOnPort(x,MCommComplete",i)) { 

entity val = x.getValOnPort("CommComplete", i); 

Universal_Message message = (Universal_Message)val; 

_internalEventQueue.enqueue(new 

EVENT_DB_StateChange(_NodelD, _timeStepStarted + duration, duration)); 

holdln("done", 0); 

} 

} 

} 

} 

//This function executes at necessary intervals for the model 

/ / The function behaves differently depending on the current state 

public void deltint() 

{ 

if(phasels("passive")) 

{ 

holdln("passive",INFINITY); 

} else if(phasels("ToConnectedModels")) { 

holdln("Delaying",_calculation); 

}else if(phasels("Delaying")) { 

if(!_requiresTransmission()) 

{ 
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holdlnC'ToComms'^O); 

} else { 

ExecuteAdditionalLogic(); 

holdln("Delaying",_calculation); 

} 

} else if(phasels("ToComms")) { 

holdln("awaitingComms"/INFINITY); 

}elseif(phasels(Ndone")){ 

holdln("passive",INFINITY); 

} 

} 

/ / This function executes when an internal and external transition occur at the 

same time 

public void deltcon(double e, message x) 

{ 

deltint(); 

deltext(0,x); 

} 

/ / This function executes when the model produces outputs 

public message out() 

{ 

message m = new message(); 

if(phasels("passive")) 
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{ 

UniversaMVIessage value = new Universal_Message(); 

content con = makeContent("null", value); 

m.add(con); 

} else if(phasels("ToConnectedModels")) { 

/ / This code block has prepare messages to send to all other models that 

this Operational Activity is connected to 

UniversaMVIessage value = new Universal_Message(); 

for(int i = 0; i < _connectedModels._size; i++) 

{ 

String ModelName =_connectedModels.getNodeBylndex(i).getName(); 

value._messageType = 

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_REQUEST; 

value._sendingModel =_name; 

value._destinationModel = ModelName; 

content con = makeContent("status_" + ModelName, value); 

m.add(con); 

} 

} else if(phasels("ToComms")) { 

/ / This code block prepares messages for the Communications model 

/ / Associated System Content for COMMS model 

Universal_Message value = new UniversalJvlessageQ; 

value._messageType = 

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_REQUEST; 
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value._sendingModel =_name; 

value._destinationModel = _COMMS_Model; 

content con = makeContent("status_" +_COMMS_Model._name, value); 

m.add(con); 

/ / Send Message to COMMS model for transmission simulation 

_internalEventQueue.enqueue(new 

COMMS_EVENT_Transmission_START(_transmission._sender.getObjectlD(), 

_transmission._receiver.getObjectlD(),50, _name, Protocols.TCP, 

_NodelD)); 

} else if(phasels("awaitingCOMMs")) { 

Universal_Message value = new Universal_Message(); 

content con = makeContentf'null", value); 

m.add(con); 

}elseif(phasels("done")){ 

/ / Notify Connected Models that this Operational Activity is finished 

for(int i = 0; i < _ConnectedModels._size; i++) 

{ 

Universal_Message value = new Universal_Message(); 

String ModelName =_ConnectedModels.getNodeBylndex(i).getName(); 

value._messageType = 

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_SYSTEM_DONE; 

value._sendingModel =_name; 

value._destinationModel = ModelName; 

content con = makeContent("done_" + ModelName, value); 

m.add(con); 
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} 

//Trigger the next Operational Activity(ies) via a message 

Universaljvlessage value = new Universal_Message(); 

value._messageType = 

MAIN_Lookup.UNIVERSAL_MESSAGE_TYPE_DONE; 

value._sendingModel = _name; 

value._destinationModel = _nextOV5; 

content con = makeContentfout", value); 

m.add(con); 

} else if(phasels("Delaying")) { 

Universal_Message value = new Universal_Message(); 

content con = makeContent("nuN", value); 

m.add(con); 

}else{ 

Universal_Message value = new Universal_Message(); 

content con = makeContentfnuH", value); 

m.add(con); 

} 

return m; 

} 
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