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with various modeled commodities, and their impact on the accuracy 
of the gravity model was studied. Both travel time and travel distance 
were used to generate the impedance for friction factor; the results 
showed that for the commodity-based long-haul model, travel times 
were more appropriate for impedance modeling. Results suggest that 
the gamma function is more suitable than the exponential function 
for calculation of the friction factor. Extensive analysis of the causes 
of variation between observed and modeled values is provided. The 
analyses and conclusions may help modelers better understand char-
acteristics specific to freight transportation and can promote model 
constructions with greater accuracy and efficiency.

Literature RevieW

Although a few standard techniques are repeatedly used to forecast 
the movement of passenger cars, similar consensus has not been 
achieved for modeling of freight transportation. In the past two 
decades, a series of documents and guidebooks have been pub-
lished. NCHRP Report 606 systematically summarizes the newest 
techniques and solutions in freight modeling and provides examples 
of projects that apply these methodologies (1). NCHRP Report 606 
defines five classes of freight models as follows:

1.	 Direct facility flow factoring,
2.	 O-D factoring method,
3.	 Truck model,
4.	 Four-step commodity model, and
5.	 Economic activity model.

These model classes share many basic components, including 
direct factoring, trip generation, trip distribution, modal split, traffic 
assignment, and economic and land use modeling. Not all compo-
nents are included in each model class. NCHRP Report 606 discusses 
components and their application for individual model classes. How-
ever, freight modeling is complex. For example, there is no conclu-
sive result or guidance showing how a gravity model can give an 
accurate replication of the behavior of freight distribution. Some 
real-world works provide less-than-ideal results with the use of 
gravity models. In the Hampton Roads travel demand forecasting 
model, truck trip distributions were tested with a gravity model, and 
the results are not sufficiently accurate (2).

Another key reference for freight modeling is the FHWA Quick 
Response Freight Manual II (QRFM) (3), which provides default val-
ues for estimating and forecasting trip generation in the general meth-
odologies, such as the regression model and simple rates factors. Four 
basic methods are discussed: (a) simple growth factor methods, 
(b) four-step travel forecasting, (c) commodity-based forecast, and 

The application of a gravity model in freight modeling work on both 
short-haul and long-haul trips is discussed. A commodity-based gravity 
model was developed to assess the distribution of freight by long-haul 
trucks in southeastern Virginia. Although gravity models have been used 
extensively in transportation studies, little work has been done to address 
the special characteristics of freight transportation, such as the definition 
of friction factors and the differences between long-haul and short-haul 
trips. Results of a recent study of these and similar problems provide 
valuable insight into freight distribution modeling. A new calibration 
method that used a genetic algorithm was applied, various commodities 
were modeled, and the impact of the commodities on the accuracy of the 
gravity model was studied. Both travel time and travel distance were 
tested to generate the impedance for friction factors; results showed that 
for commodity-based long-haul models, travel times were more appro-
priate for friction factor calculations. In addition, results showed that the 
gamma function was more suitable than the exponential function for 
friction factor calculations. Extensive analyses of the causes of variation 
between observed values and the gravity model outputs are provided. 
The analyses and conclusions may help modelers better understand 
characteristics specific to freight transportation and can promote model 
constructions with greater accuracy and efficiency.

This paper discusses the use of a gravity model with application of 
genetic algorithms (GAs) in freight modeling. A commodity-based 
gravity model was developed to assess the distribution of freight in 
southeastern Virginia, a region that contains 31 counties. Although 
considerable analysis using gravity models was done in previous 
transportation studies, little work specific to freight transportation, 
including the definition and use of friction factors, has been com-
pleted. The different characteristics of short-haul and long-haul 
freight trips generate different variations and affect the results in dif-
ferent ways. The cycle loops in short-haul local trips make the freight 
model hard to calibrate, and the economic factors generate special 
origin–destination (O-D) pairs that traditional gravity models cannot 
accurately replicate in long-haul freight trips. This paper studies such 
problems, and the results provide valuable insight into freight distri-
bution modeling. The novel application of GA calibration was used 
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author: J. Duanmu, jduanmu@odu.edu.
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(d) economic models. The QRFM also suggests equations for friction 
factors used in the gravity model for various truck types.

The Guidebook on Statewide Travel Forecasting gives a general 
procedure for a statewide freight forecasting model (4). It focuses on 
the detailed methods that may be used in a four-step freight model. 
Along with general methodologies and principles, Demetsky et al. 
presented an example of a statewide freight demand forecast (5). A 
partition method that disaggregated integrated commodity produc-
tion and attraction around the statewide region and a gravity model 
were used to generate O-D pairs. Several examples of statewide 
models represent special types of problems. Although most publica-
tions mention the use of a gravity model in freight trip distribution, 
few give a deep analysis of the reliability, accuracy, and limitations 
of such application. Without careful study of the characteristics of 
freight behavior, use of a gravity model could generate problematic 
outputs that do not accurately represent freight distribution.

Analysis of Short-Haul Trips

Trip Generation and Application Range:  
A Neglected and Unclear Issue

Trip generation first estimates and then forecasts the productions 
and attractions of freight movements that begin or end in a trans-
portation analysis zone. Trip generation models create daily or 

annual trips as functions of population or categorized employment 
data with derived trip rates from publicly recommended resources, 
such as the QRFM or regional resources. The various truck types 
generate different numbers of trips, and local trucks (short-haul) 
and long-distance trucks (long-haul) behave differently. Generally, 
long-haul trips are point-to-point trips, whereas short-haul trips 
often include multiple intermediate stops. Generated trips must be 
properly categorized according to their transportation behavior.

Long-haul transportation should be separated from short-haul trips. 
Long-haul trips usually proceed directly from the origin to the destina-
tion without intermediate stops. “Long-haul” refers to trips made 
directly between distribution centers (ports, warehouses, final destina-
tions), not only to trips of longer distances. Fully loaded trucks travel 
long distances to maximize efficiency. Short-haul freight shippers pur-
sue maximum routing efficiency for trips that may include numerous 
intermediate stops. Local customers often desire smaller quantities to 
reduce inventory costs, necessitating more frequent deliveries.

Figure 1 shows differences in destination types. Long-haul freight 
movements, such as those between counties, are predominately 
direct trips with full loads. Local trips often comprise loops. Tradi-
tional gravity models cannot properly replicate such mixed behavior 
modes and might generate O-D trips between these seven buildings 
that result in zero commodity exchange.

A stratified model process helps to minimize such mistakes. One 
level is constructed for long-haul trips. Another level is built for 

County 2

County 3

Local Customer 3
Local Customer 2

Local Customer 1

Factory

Food
Mart

County 1

FIGURE 1    Long haul versus short haul.
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local transportation. Long-haul transportation involves study of 
freight flows along major corridors. Local truck trips can be ignored, 
and trips between county centroids are sufficiently accurate. Model-
ing accuracy is improved by correct placement of centroids and 
avoidance of trips within a transportation analysis zone. In county-
based gravity models, centroids should be placed in the area that 
represents where most business units are located, not necessarily at 
the geographic center. Additionally, centroid locations must be close 
to a major highway that is included in the county-based model. 
When reliable location and commodity data are available with 
greater detail, accuracy can be improved by subdividing counties 
into smaller fine zones. However, commodity transfers must not be 
allowed to occur between fine zones within the same county, 
because those transfers could alter the true long-haul trips that 
are modeled.

Local Short-Haul Trips and  
Traditional Gravity Method

For local trucks, traditional trip generation algorithms and the grav-
ity model can be used. However, there are special issues concerning 
truck trips.

First, the trip rate may not be accurate enough. For the same cate-
gory of business unit, the daily trip total does not increase proportion-
ally with the number of employees; often, the trip rate per employee 
decreases as the employee population increases (6).

Second, there are no trips between different types of businesses. 
For example, food stores will not attract trips generated from home 
improvement warehouses. The gravity model must be generated for 
different business categories. However, it is not easy to finely 
categorize these behaviors.

Finally, gravity models are based on macroeconomic theory and 
may not accurately mimic freight behaviors at the microscopic 
level. A simple example is shown in Figure 1. A looped route con-
nects four zones: three customer zones and one factory zone. Each 
station has one production and one attraction in 1 day. With the 
intrazone and interzone travel times assumed to be equal (not in 
straight lines), as shown in Table 1, the gravity model will initially 
evenly distribute 0.25 trips to each O-D pair. In the real world, trips 
occur only between connected pairs in the loop. Some calibration 

work might adjust the value in this matrix; however, it is somewhat 
difficult to replicate the looped trips accurately with macroeconomic 
distribution theory, because gravity models always distribute trips 
from origin to any destination with nonzero attractions, but in the 
real world, special trip behaviors may keep some special O-D pairs 
with zero trips. Here this result is caused by looped route behavior. 
The later section on analysis of the high root mean square error 
(RMSE) addresses this problem in economic aspects for long-haul 
trips. A good trip modeling method is needed to provide adequate 
and accurate consideration of such trips. When short-haul trips do 
not use a looping route, traditional trip generation methods and the 
gravity model may still provide a reasonable approximation for 
local freight transport.

After appropriate categorization, either short- or long-haul trips 
can be modeled by the gravity model.

GA and Calibration for Long-Haul 
Commodity-Based Gravity Model

Data Preparation

Before a gravity model is run, trips must be generated as produc-
tion and attraction for each transportation analysis zone. NCHRP 
Synthesis 298 describes two types of truck trips: vehicle based and 
commodity based (7). Vehicle-based trip generation directly generates 
the number of truck trips. Commodity-based generation produces the 
flow of specific commodity types, which are converted into truck trips 
according to payload conversion factors. Commodity-based models 
are used for the large-area, county-level freight models associated with 
industrial or agriculture production or regional integrated demands. 
County-level freight flow models generated from direct economic 
activities can give a more accurate replication of the commodity flow 
behavior. Trip generation for local freight movements is more directly 
related to individual company size and daily business activities: mod-
els simulating local trucks may use regression models to generate the 
trip values for each business unit.

In this study, a commodity-based, county-level gravity model 
was constructed to cover 31 counties in southeastern Virginia, 
including Hampton Roads, the Richmond Tri-Cities area, and the 
intermediate counties connecting them. Detailed survey data of 
freight transportation between each county was obtained from the 
TRANSEARCH database (8). TRANSEARCH is an annually 
updated nationwide database of freight flows between U.S. county 
or zip code markets. The database uses four-digit standard trans-
portation commodity codes to define the commodities. The data-
base includes several hundred types of commodities with records 
for tonnage of each flowing between O-D pairs (county level) in 
the defined locations. To simplify the modeling effort, commodi-
ties were grouped into 10 basic categories. The production–
attraction and O-D pairs for each category were obtained directly 
from the database. Table 2 gives the categorized commodities in 
the second column. Ten distribution matrixes with 31 × 31 O-D 
pairs for each category were generated as the observed internal 
flow distribution value. Some of the commodities generate small 
productions and attractions and were not included in the gravity 
model. As shown in Table 2, Column 3, seven commodity types 
were selected. The travel time and travel distance between these 
31 O-D pairs were also generated for the friction factor calcula-
tion. The RMSE and TAV shown in Table 2, Columns 4 and 5, are 
discussed in later sections.

TABLE 1    O-D Pairs Comparison:  
Hypothetical Example

 
Origin  
Zone

Destination Zone

1 2 3 4

Gravity Model Application

1 0.25 0.25 0.25 0.25

2 0.25 0.25 0.25 0.25

3 0.25 0.25 0.25 0.25

4 0.25 0.25 0.25 0.25

Trip O-D Pairs in Reality

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1

4 1 0 0 0
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Gravity Model

Unlike traditional gravity models for passenger trips, the gravity 
model for county-level freight flow predicts the directed flows 
between O-D pairs by using commodity tonnage. Equation 1 shows 
the typical gravity model equation that is used for freight tonnage 
transportation:

T P
A F K

A F Kij I
j ij ij

j ij ij
j

= ∑ ( )1

F
Wij

ij
C

= 1
2( )

where

	 Tij	=	 tonnage from zone i to j;
	 PI	=	flow production in zone i;
	 Aj	=	flow attraction in zone j;
	 Fij	=	� friction factor relating to the spatial separation between 

zone i and zone j;
	Kij	=	� optional zone-to-zone adjustment factor, called the K-factor 

or socioeconomic factor; and
	W Cij	=	 impedance between zone i and j with a power of C

for any commodity category.
Considering the characteristics of freight transportation, two 

types of algorithms for friction factor Fij are used: (a) the gamma 
function, in which the impedance is related only to travel time (with 
parameters a, b, and c), and (b) the exponential function, in which 
the impedance is formed by both travel time and travel distance.

Equation 3 is a gamma function from NCHRP Report 365, usu-
ally used in urban areas (9). In Equation 2, Fij is expressed as the 
power of the inverse of the interzonal impedance. If travel time tij is 
used as the impedance criteria and a = 1 and c = 0, Equation 3 
degenerates into Equation 2:

F at eij ij
b ctij= − ( )3

where tij is the travel time impedance.
The exponential function shown in Equation 4 is derived from 

Equation 3. The difference between the two equations is in the defini-

tion of impedance. Equation 3 defines the impedance directly from 
travel time. Equation 4 uses multiple factors to define the impedance. 
The algorithm of impedance G is described in Equation 5.

Φ G ePG( ) = ( )4

where

	Φ (G)	=	� friction factor of generalized cost used in the gravity model,
	 G	=	generalized impedance, and
	 P	=	calibration parameter for a special commodity type.

G d k k d k k, , ( )τ χ τ χ( ) = + + +0 1 2 3 5

where

	d	=	 trip length in miles;
	τ	=	 journey time in minutes;
	χ	=	� direct monetary cost, which for road trips includes (fuel and 

nonfuel) vehicle operating costs and tolls;
	k0	=	constant term;
	k1	=	coefficient for distance;
	k2	=	coefficient for travel time; and
	k3	=	coefficient for monetary cost.

Generally, χ equals the mileage dij multiplied by cost per mile FC 
as shown in Equation 6:

χij ij Cd F= × ( )6

If a series of initial values for a, b, c, k, FC, and P are set, the gravity 
model can generate an initial O-D matrix for all related zones. How-
ever, without calibration, those O-D matrixes are incorrect and cannot 
give an accurate forecast for freight distribution. The parameters and 
coefficients need to be calibrated first.

Calibration of Gravity Model

Use of GAs in Model Calibration

Gravity models can be calibrated with transportation software such 
as TRANPLAN or processed with iterative work. In this project, a 

TABLE 2    Categorized Commodities

Category  
Number Description

Selected for Gravity 
Model Test

RMSE from 
Gamma Function

Percentage  
Difference of TAV

1 Agriculture Selected 1.43 8.07

2 Foodstuffs Selected 1.1 2.03

3 Solid minerals fuels Not selected na na

4 Petroleum products Not selected na na

5 Ores and metal waste Not selected na na

6 Metal products Selected 4.18 8.48

7 Building materials Selected 1.74 8.05

8 Fertilizers Selected 1.9 2.76

9 Chemicals Selected 2.81 7.35

10 Manufactured goods Selected 1.8 6.80

Note: na = not applicable.
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GA was used to determine the best combination of parameters to 
minimize the errors between modeled output and observed values.

The RMSE is applied as the object value to determine the conver-
gence status. The RMSEs between calculated Tij values and the 
observed values are assessed with the lower calculated RMSE rep-
resenting a closer match of the calculated values to the observed. If 
the RMSE values remain stable after many iterations, the search 
process is stopped.

RMSE

est obs

obs

=

−( )
×

==

=

∑∑ T T

n n

T

ij ij
i

n

j

n

ij
i

2

11

1

nn

j

n

n n

∑∑
=

×
1

7( )

where

	T ij
est	=	estimated tonnage from i to j,

	T ij
obs	=	observed tonnage from i to j, and

	 n	=	 total number of zones.

A GA is a technique inspired by processes that utilize natural 
evolution, such as inheritance, mutation, selection, and crossover. 
Evolution is described as the natural process of survival of the fittest 
for a population. In the GA context, evolution is the process of sur-
vival of the fittest genome of a population, or the parameter set that 
produces the best results within a population. Genomes are made up 
of a value or set of values that allows the algorithm to change to find 
the best genome. Genomes are usually coded as a series of strings, 
simulating chromosomes, a nod to the medical origins of the pro-
cess. In this project, the GA uses a series of parameters for the fric-
tion factor equation as a genome and applies them to calculation of 
the gravity model. The optimization process is carried out through 
natural selection as each generation progresses. Parent genomes can 
use any or all of the following: reproduction to create new children 
or genomes, a crossover method to mix their chromosomes, or 
mutation to completely alter their chromosomes. A stochastic selec-
tion process selects children of the best fitness (also known as 
genomes) and uses them as the parents of the next generation.

Figure 2 shows the order and process of the GA in conjunction 
with the gravity model. The GA starts with the genome produce 
function by initially creating random genomes within typical ranges 
of the gravity model parameters. The gravity model runs a set of 
genomes producing a freight tonnage distribution that the popula-
tion read function inputs, then adds the new genomes to the existing 
population of previously run genomes. The GA compares the read 
tonnage distribution to the measured tonnage distribution to calcu-
late RMSE values for each genome. A population rank function then 
takes the current population of genomes and ranks them in order of 
best RMSE values. The 10 best RMSE valued genomes remain and 
are used as parents for the next generation; other genomes are dis-
carded. At this point, the algorithm compares the newly formed 
population of genomes and the previous population to measure the 
difference based on a convergence measure outlined in the next sec-
tion. If convergence is met or the maximum number of iterations has 
run, then the algorithm stops and the top 10 genomes are reported. 
This study set the maximum number of iterations to 500. If conver-
gence is not met after 500 iterations, the algorithm proceeds to the 
next step, a mate and mutate function. The mate function consists of 
the reproduction of a new genome from two randomly selected 

genomes existing in the current population. The new genome is cre-
ated with each of its parameters being a random value bracketed by 
parameters of the parent’s genomes. Along with reproduction, a ran-
dom set of children within the population is assessed to have the 
opportunity to mutate, which is accomplished by randomly select-
ing parameters within the selected genome and randomizing the 
value within the initial ranges. Mutations are used to attempt to 
avoid getting stuck within a local minimum of the problem space. 
GAs have been used in many transportation studies; Foytik and 
Cetin used a GA to find an accurate volume-delay function for 
Hampton Roads and Charlottesville (10). Other studies that used 
GAs are that of Kalic and Teodorovic (11), where GAs were used to 
determine passenger car distribution, and that of Qiu (12), which 
used GAs to calibrate gravity and logit models.

Evaluation of Modeling Results: Convergence

It is expected that for a good convergence, the average trip length 
TAV will have a difference of less than 10% compared with the 
observed value:

T P Di i
i

k

AV = ×
=

∑
1

8( )

where k is the total number of distance interval sets in the model and Pi 
is the transportation tonnage percentage of the ith distance interval Di.

K-Factor Adjustment

After numerous GA iterations, the value of RMSE could still be 
large. K-factors may be applied to partially adjust for some zones 
if socioeconomic conditions cause abnormal skews from regular 
distribution.

K R
X

X Rij ij
ij

ij ij

=
−

−
1

1
9( )

Genome
Produce

Population
Read

Population Rank

Mate and 
Mutate

Population 
Output

Gravity 
Model

FIGURE 2    Major components of GA design.
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where Rij is the ratio of observed tonnages to the calculated flows 
from zone i to zone j and Xij is the ration of O-D flows to the total 
O-D flows leaving zone i.

Equation 9 is applied if 10% to 40% of the flow is leaving a zone. 
For other conditions, Rij should be used as the K-factor. In general, 
use of K-factors is not recommended (13).

Constraint and Search Range for Design Variables

In a GA, a predefined search range for each design variable is set 
according to historical values and guidance (9):

1.	 Values for exponential function for friction factors:
–  Travel cost FC: 1 < FC < 2.5,
– k1 = 0,
– k2 = −1 to −0.01,
– k3 = −1 to −0.01, and
– P = 0.01 to 10 and

2.	 Values for gamma function for friction factors:
– a = 20,000 to 300,000 (integer),
– b = −1 to 1, and
– c = 0.01 to 1.

Result Analysis and Discussion

After extensive GA searches, optimized values of parameters are 
input to the gravity model. The model output provides some consis-
tent results: the RMSE value is high with all values greater than 1 
(Table 2, Column 4), and the relative difference of average of trip 
length TAV is relatively low; all are less than 10%.

Another way to analyze TAV is to check the tonnage distribution 
along the defined distance intervals. The distributed tonnage obtained 
from the calibrated model can be compared with the value from 
TRANSEARCH. The tonnage distribution shown in Figure 3 demon-
strates a well-matched result; even the worst RMSE value (in Com-
modity Category 6) shows a relatively good match. However, the 
RMSE values present a high level of variance in individual O-D pairs. 
The friction factor used in Figure 3 was generated from the gamma 
function in Equation 3. Friction factors defined as the function of both 
travel costs and travel time in Equation 5 yield higher RMSE values. 
These results are not included in the table. In this case, the gamma 
function is more suitable for calculation of the friction factor.

During the search process with the GA, socioeconomic factors 
(K-factors) were not used (=1). The following are possible reasons 
for the high RMSE:

(a)

(b)

FIGURE 3    Tonnage distribution: (a) food (Category 2) and (b) metals (Category 6).
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1.	 The search range is not wide enough for location of the  
optimal points.

2.	 Some economic behaviors give freight transportation its own 
special characteristics.

3.	 The relatively low value of truck flow makes the variation 
more obvious and thus enlarges the RMSE value.

4.	 The gravity model without K-factors might be insufficient to 
represent freight flow behaviors.

Analysis of High RMSE

It is not a unique case that RMSE values after calibration are higher 
than 1. Mao and Demetsky noted the issue when they calibrated the 
freight flow gravity model for county-level freight transportation in 
Virginia (13). Characteristics related only to freight transportation 
should be carefully studied: commodity-related factors, intrazone 
variance, and statistical analysis.

Commodity-Related Factors

Some commodities have a high RMSE in gravity model calibration, 
whereas others generate relatively better results. In Table 2, metal 
products (Category 6) show the highest variance. Category 6 
includes primary metal products, such as electrometallurgical prod-
ucts, steel wire, and aluminum or alloy castings. These products 
have only a few providers and consumers, which produces specific 
business partners as O-D pairs. The freight flow between such busi-
ness pairs cannot simply be modeled with gravity models. Table 3 
demonstrates such errors. The distributions (rounded to integer) of 
O-D pairs from the first 14 counties are shown in the tables. The 
observed values in Table 3 are from the TRANSEARCH database. 
In Origin Zone 10, the commodities produced are transported to 
Zone 2 only. In the gravity model, because other zones also have 
attractions, the commodities produced from Zone 10 are distributed 
to any zones that have nonzero attraction. The quantity of distrib-
uted goods is decided by the distance and attractiveness of the 

TABLE 3    Comparison of Model Output for O-D Pairs

 
Origin  
Zone

Destination Zone

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Observed Value

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 30 0 0 1,603 1,921 27 0 170 0 0 2,148 99

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 46 0 0 0 0 0 0 0 0 0 0 42 0

7 0 23,209 37 0 0 2,225 45 35 0 172 0 0 2,844 153

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 136,793 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 6,508 5 0 0 428 456 0 0 25 0 0 0 16

14 0 1,691 0 0 0 42 32 0 0 0 0 0 61 0

Gravity Model Value

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 22,078 13 2 0 982 554 13 0 75 0 0 862 52

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 111 0 0 0 1 1 0 0 0 0 0 3 0

7 0 37,073 11 2 0 779 252 11 0 67 0 0 793 45

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 108,769 8 6 0 2,281 1,427 20 0 26 0 0 2,557 157

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 9,449 3 1 0 249 130 3 0 20 0 0 139 15

14 0 1,784 1 0 0 34 23 1 0 4 0 0 46 2

Note: Pi for origin zones: 1 = 0; 2 = 34,393; 3 = 0; 4 = 0; 5 = 0; 6 = 141; 7 = 48,336; 8 = 0; 9 = 0; 10 = 136,793; 11 = 0; 12 = 0; 13 = 12,964;  
14 = 2,308. Aj for destination zones: 1 = 0; 2 = 272,758; 3 = 72; 4 = 15; 5 = 0; 6 = 5,747; 7 = 3,570; 8 = 72; 9 = 0; 10 = 424; 11 = 0; 12 = 0;  
13 = 6,566; 14 = 401.
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destination. Therefore, the tonnage distribution is still in a relatively 
accurate range while contributing many distribution errors. These 
errors come from two sources of variance: (a) the amount of goods 
removed from original destination zones and (b) the amount of 
goods transferred to attraction zones that should not have attrac-
tions. Consequently, this type of distribution of commodities can 
generate high RMSE. Therefore, a rarely used commodity may 
cause high variance in the gravity model.

For more general commodities, such as foodstuff (Category 2) 
and manufactured goods (Category 10), the RMSE values are much 
lower. However, the special supplier–consumer relationship still 
can generate considerable errors.

Table 4 shows the gravity model output for foodstuff (rounded to 
integer) and the observed values of O-D pairs for the first 14 zones. 
All zones except Zone 1 attract foodstuff, but production zones do 
not deliver foodstuff to every attraction place. Zone 3, for example, 
delivers only to Zones 7 and 13. Consequently, many O-D pairs that 

should generate no freight flow become nonzero in the output and 
therefore generate high variance.

Intrazone Variance

The gravity model may generate nonzero intrazonal freight, but flows 
within a zone are unpredictable. In Table 3, Zone 2 attracted a large 
amount of production, but none is internal transportation. However, 
the gravity model allocated a considerable amount of local production 
to Zone 2, causing high variance. Table 4 is similar; in Zones 2, 7, and 
10, the intrazone attraction value generated high variance.

Statistical Analysis

The gravity model illustrates the macroscopic travel distribution 
relationships between traffic zones. Although it successfully explains 

TABLE 4    Comparison of Model Output for Foodstuff

 
Origin  
Zone

Destination Zone

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Observed Value 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 200 151 705 132 772 6,892 222 0 507 732 256 3,389 0

3 0 0 0 0 0 0 193 0 0 0 0 0 11 0

4 0 1,573 0 20,789 0 0 3,673 0 0 0 0 0 175 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 651 1,670 0 0 0 0 0 0

7 0 41,873 625 1,859 387 3,842 567 1,215 196 1,964 377 908 22,356 188

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 1,702 0 0 0 0 324 0 0 0 0 0 19 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 15,152 93 505 44 1,176 11,025 252 0 663 66 257 0 0

14 0 0 0 0 0 0 476 0 0 0 0 0 0 0

Gravity Model Value 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 2,742 97 1,200 43 772 4,685 340 14 442 58 224 2,925 14

3 0 100 0 21 1 14 93 4 0 2 1 3 65 0

4 0 4,479 78 479 30 581 4,093 275 10 350 51 180 3,146 13

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 462 8 94 3 24 382 28 1 37 6 18 295 1

7 0 27,822 541 6,609 172 3,807 13,832 1,886 75 2,459 403 1,240 16,823 76

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 504 3 106 4 70 469 20 1 7 6 12 331 1

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 7,690 169 2,268 74 1,314 7,474 608 24 775 127 408 3,309 27

14 0 133 3 34 1 17 121 9 0 12 2 6 95 0

Note: Pi for origin zones: 1 = 0; 2 = 31,910; 3 = 646; 4 = 26,370; 5 = 0; 6 = 2,898; 7 = 182,635; 8 = 0; 9 = 0; 10 = 3,236; 11 = 0; 12 = 0; 13 = 60,712; 14 = 954. Aj for 
destination zones: 1 = 0; 2 = 127,791; 3 = 2,123; 4 = 27,581; 5 = 934; 6 = 17,528; 7 = 118,106; 8 = 7,249; 9 = 303; 10 = 9,564; 11 = 1,576; 12 = 4,769; 13 = 86,831; 14 = 357.
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the choice of a large number of passenger trips, the choice of any 
given individual can vary from the aggregately predicted value. The 
variances generated in freight trips can affect the RMSE in a more 
obvious way.

Equation 7 is the RMSE calculation method applied in calibration 
of the gravity model. For each observed value of the O-D pairs,  
the magnitude of tonnage or trips can be regarded as the average 
value of a sample group. The gravity model output can be used as 
the theoretical value of the possible O-D flows. As an example of 
the gravity model, for general trips the RMSE may be around 30% 
of the theoretic value, and on average, the standard deviation of the 
observed value is 30% of the nominal value. Thus, the RMSE of 
truck trips can be estimated as follows. For a randomly selected O-D 
pair, it is assumed that the value of trips is m and the variance of 
trip value that may not be distributed on that O-D pair is σ2 for each 
of m vehicle trips. In total, the range of the estimated trips T with 
one standard deviation between this O-D pair can be expressed 
as T m m= ± × σ. Thus the ratio R1 between average trip and 
standard deviation is

R
m

m1 = × σ

In Virginia, the primary truck type for long-haul freight is the one-
trailer truck. One-trailer trucks on most of the major county-level 
roads represent approximately 10% of the flow, per the observed 
value of annual average daily traffic. For 10% of the total flow in that 
O-D, the trip range becomes T m m10

210 10% % %= × ± × × σ .
This time the ratio R2 between average trip and standard deviation is

R
m

m
R2 1

10

10
10= × ×

×
=%

%

σ

The relative range of error increases more than three times if only 
10% of the trips are interchanged between an O-D pair. Statistically, 
the bigger the sample group size, the less the relative error affects 
the nominal value. Thus, gravity models of passenger trips generate 
fewer RMSEs than freight models. By a rough estimation, accord-
ing to the RMSE calculation method in Equation 7, if the RMSE in 
a general passenger model is 30%, the correspondent value for a 
freight model may be higher than 1. Here, it is assumed that the cali-
brated gravity model can output an unbiased estimation of trip 
interchanges between that O-D pair.

K-Factors and Socioeconomic Considerations

In a county-based freight model, the K-factor in Equation 1 can be 
used for calibration. Although the K-factor mechanism is still unclear 
(13), its contribution to convergence is clear. During a test, while 
K-factors were added after the GA search, the RMSE decreased 
quickly to a small value. The K-factor considers the socioeconomic 
situation for each O-D pair in the matrix, and it adjusts the freight 
flow toward the observed values. The effect is equal to a simulated 
special business relationship between this O-D pair.

Some statewide freight transportation models, including New 
Jersey’s statewide model truck trip table update project and the 
Southern California Association of Governments heavy-duty truck 
model (1), used K-factors in calibration work. K-factors can be used 
to forecast the freight flow on the upgraded network. For short-term 

and medium-term forecasts, the K-factor could be useful and give a 
reliable forecast. However, inaccurate results could be generated if 
K-factors are used in long-term forecasts because the socioeconomic 
situation might change in the long term. In that case, the O-D factor-
ing or the direct facility flow factoring method may give a more 
accurate forecast in a socioeconomic analysis (1).

It can be assumed that if the freight trips for various commodities 
are integrated, because of the increase in number of trips the RMSE 
might decrease. However, gravity models cannot relate the addi-
tional trips to real business activities. For example, if one type of 
commodity increases significantly, additional freight flow will be 
distributed to special related receivers; however, in the integrated 
gravity model, those total trips are redistributed to any possible 
receivers and thus bring extra variance. This redistribution may 
cause even more variance in forecasting.

Conclusion

This paper analyzed the gravity model for freight distribution on 
both short-haul and long-haul trips. The research indicates that 
uncategorized trips and looped routes in short-haul trips can make 
the traditional gravity model difficult to calibrate. To study long-haul 
trips, a commodity-based countywide freight distribution model was 
constructed and calibrated with GA. The results show that a gamma 
function that uses travel time as the deterrence factor generates better 
approximations for the gravity model than an exponential expression 
using both time and travel costs as deterrence factors. The commodity-
based model shows relatively large RMSE values, and the major 
sources of deviation originate from characteristics specific to freight 
transportation:

1.	 Freight transportation behavior is sensitive to the interchanged 
commodities. Some suppliers may have unique relationships with 
certain consumers, which the gravity model may not be able to 
accurately capture in the O-D interchange volumes.

2.	 The intrazone freight distribution generated by the gravity 
model is greater than the observed data (the model is origin con-
strained). Hence, the difference generates additional deviations for 
the gravity model.

3.	 There is much less truck traffic than passenger vehicle trips; 
therefore, the relative errors compared with the gravity model out-
put are higher. It may be difficult to obtain a gravity model with 
parameters that can generate a small RMSE.

This research applies a new solution for commodity-based gravity 
model calibration in freight transportation modeling. GAs can gener-
ate relatively accurate parameters for friction factors. Because com-
modities must be divided into multiple categories and calibration 
work must be accomplished on each of the corresponding gravity 
models, the workload can be heavy. Compared with the traditional 
iterative method, a GA search is efficient for calibration of gravity 
models and saves time. In addition, because there are no iterative and 
regression parameters in the estimation process, errors and deviations 
generated in related approximation work can be avoided. With more 
generalized commodity categories, such as food, the gravity model 
can give more accurate approximations of freight distribution.

The solution and discussions in this study clearly show the mech-
anisms within freight transportation behavior, helping freight mod-
elers make efficient decisions about methodologies and solution 
approaches. New ranges for control variables have been set up to 
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allow the GA model to start a wider search. Gravity models are 
efficient for passenger trip distribution; however, because of the 
limited number of trips and commodity-related transportation char-
acteristics, additional analysis of business behavior and calibration 
work are necessary for generation of an accurate and reliable gravity 
model for freight distribution forecasts.
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