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ABSTRACT 

POTENTIAL INTERACTION ANALYSIS OF OFFSHORE WIND ENERGY AREAS AND 
BREEDING AVIAN SPECIES ON THE US MID-ATLANTIC COAST 

 
Jeri Lynn Wisman 

Old Dominion University, 2018 
Director: Dr. Sara Maxwell 

 
 
 
 
 Due to increasing US interest in developing wind energy sites in offshore waters, we 

synthesized existing data on colonial breeding seabird populations with the potential risk of 

interacting with lease areas in the mid-Atlantic. Previous efforts by BOEM and NOAA have 

predicted avian density using at-sea survey data; we seek to complement this work by focusing 

specifically on birds during the critical and energetically demanding breeding life history stage. 

We combined colony size and location for each species along the mid-Atlantic coast with buffers 

around the colonies that correlate with the species’ foraging range. We integrated population size, 

vulnerability to offshore wind, and foraging areas to create a multi-species vulnerability model 

and overlaid this model onto current BOEM lease areas. Our model determined areas of high-

predicted vulnerability in the northern and southern ends of the Eastern Shore of Virginia, southern 

to mid-areas of the New Jersey coastline, and western Long Island of New York. Out of the total 

study area, 31.73% of the high-predicted vulnerable areas overlapped with currently leased areas 

for offshore wind energy development. We also compared our model to NOAA’s predicted density 

models and found they could be used together to identify areas with both high predicted density 

and high vulnerability as they overlapped 38.54% in our study area. The differences between these 

two models also suggest that simply relying on predicted density as a metric for determining 

impacts may miss areas that are critical for breeding birds.  

We also collected GPS location data on common terns (Sterna hirundo) at Dawson Shoals, 

Virginia during their 2017 nesting season. We analyzed their movement and behavior in relation 

to offshore wind sites. We determined that common terns most often utilized an area roughly half 

the size of the suggested foraging range found in the literature, and that some traditional risk-

models may be overestimating the potential impacts of offshore wind development on seabirds. 
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Tracking data should be integrated into methods used to minimize seabird impacts while 

developing an offshore wind energy industry in the mid-Atlantic.
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CHAPTER 1 
 
 
 
 

POTENTIAL INTERACTION ANALYSIS OF OFFSHORE WIND 

ENERGY AREAS AND BREEDING AVIAN SPECIES ON THE US 

ATLANTIC COAST 
 

INTRODUCTION 

 

 The need for renewable, clean energy is an increasingly pressing global issue. Renewable 

energy may be one of society’s most promising opportunities to reduce excessive carbon dioxide 

emissions that have led to ongoing climate change (Dincer 2000, Panwar et al. 2011, 

Shahabuddin et al. 2016). Wind power is the fastest growing industry and source of renewable 

energy (Bastos et al. 2015). The European Union and China have led the world in planning, 

developing, and building wind energy sites (Drewitt & Langston 2006, Sun et al. 2012, Busch et 

al. 2013, Bailey et al. 2014). Offshore wind energy, where turbines are placed in marine 

environments, is now also on the rise, and promises to be an increasing source of renewable 

energy. 

The first offshore wind turbines were built in Vindeby, Denmark in 1991 (Breton & Moe 

2009), however the first commercial scale offshore wind farm was built in 2002 off the Denmark 

coast (Bailey et al. 2014). As of 2010, 45 European offshore wind energy sites had a power 

capacity of 2.9 gigawatts (GW) (Busch et al. 2013). One gigawatt can power between 225,000 to 

300,000 homes, though this may be an underestimation1. In Portugal alone, there has been an 

increase in reliance on wind energy by 41% just in 2013, totaling 4.5 GW (Bastos et al. 2015). In 

China, offshore wind power resources have the potential to produce 750 GW whereas China’s 

onshore wind power potential is 253 GW (Sun et al. 2012). China has set the highest pace for 

offshore wind energy site development and construction (Sun et al. 2012). Shanghai Donghai 

Bridge Wind Farm in China was the first offshore wind energy site demonstration project in Asia 

                                                            
1 https://www.boem.gov/Offshore-Wind-Energy/ 
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and is expected to power more than 200,000 city households (Sun et al. 2012). As of 2011, there 

are at least nine proposed offshore wind energy sites which could produce 2.35 GW of power 

total (Shiming et al. 2010, Jinjin 2011). 

In the US, there is one commercial offshore wind site in operation consisting of five wind 

turbines off Block Island, Rhode Island. This site become operational in December 2016 and can 

produce 0.03 GW, powering 17,000 homes despite its small size2,3 when compared to European 

and Chinese offshore facilities. The Bureau of Ocean Energy Management (BOEM) began 

overseeing renewable energy development in the US Outer Continental Shelf (OCS) in 2009. 

Since then, BOEM’s Office of Renewable Energy Programs (OREP) has issued 13 commercial 

wind energy leases offshore4 with the potential to produce at least 14.6 GW (Gilman et al. 2016). 

There are several other areas in the planning stages with BOEM (Gilman et al. 2016).  

Though offshore wind energy seems to be a promising alternative to fossil fuels, there are 

key implications for marine species, especially for seabirds, that need to be considered (Drewitt 

and Langston 2006). As development of offshore wind energy expands, evaluations are needed 

to address how they will affect the marine environment and species. Though the environmental 

impacts of onshore wind energy development provide a starting point, offshore wind energy sites 

in the US are novel and their exact impacts are uncertain (Bailey et al. 2014). These 

environmental and biodiversity impacts include, but are not limited to: noise pollution, 

electromagnetic field disruption, entanglement risk, avoidance behaviors, collision risk, habitat 

change to both benthic and pelagic zones, food web changes, contaminant release from the 

seabed, and increased vessel traffic during construction (Boehlert & Gill 2010, Bailey et al. 

2014). Wind energy sites could also affect human environments through visual impediment of 

oceans, potentially impact tourism, and could pose an obstruction to shipping lanes, among other 

impacts.  

Of the many potential environmental impacts, seabirds are of particular concern, and 

effects on these species can include food web changes, collision, avoidance behavior, energetic 

costs, and migration route changes (Punt et al. 2009). Bird collision and displacement from 

important habitat areas may be the most frequent impacts (Gill 2005, Drewitt & Langston 2006, 

                                                            
2 https://www.nytimes.com/2016/12/14/science/wind-power-block-island.html 
3 http://dwwind.com/project/block-island-wind-farm/ 
4 https://www.boem.gov/BOEM-RE-Programs-Fact-Sheet/ 
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Furness et al. 2013); therefore, they necessitate extensive assessments to propose areas for 

offshore wind energy development as well as mitigation plans for those in use. There have been 

many reviews and assessments of these marine avian risks to identify areas for offshore wind 

development that will minimize risk to seabirds (Curtice et al. 2016, Kinlan et al. 2016, Winship 

et al. personal communication). The Marine-Life Data Analysis Team (MDAT), a member of the 

National Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean 

Science (NCCOS), produced long-term average predictive maps of relative abundance and 

relative occurrence probability using large datasets of at-sea transect surveys and environmental 

data (Curtice et al. 2016). The results of the abundance model are the long-term average relative 

abundance of individuals per strip transect segment while the occurrence probability model 

results are the long-term average relative occurrence probability per strip transect segment 

(Curtice et al. 2016). Species groups were developed including: regulated species, similar spatial 

patterns, similar taxonomic identification, common feeding strategies, common prey, how 

regions were utilized (breeding, feeding, migrating through, or resident), and stressor sensitivity-

based (i.e. higher collision sensitivity, higher displacement) groups.  Finally, total species 

richness maps were created by stacking each individual species’ predicted presence and counting 

the total number of species present in each cell.  

BOEM also funded NOAA’s NCCOS’ work to provide broad-scale avian spatial 

information to aid marine spatial planning in the mid-Atlantic region. Phase I of this project was 

published in 2016 (Kinlan et al. 2016) and phase II is currently underway (Winship et al. 

personal communication). Survey data on marine birds in the US Atlantic Coast was used to 

develop a statistical modeling framework to create avian relative occurrence and abundance 

models to estimate the relationship to temporal and spatial environmental predictor variables. 

These were also used to predict the spatial distribution of seabirds in the mid-Atlantic. Predictor 

variables are divided into six categories: survey, temporal, geographic, terrain, physical 

oceanographic and atmospheric, and biological. A fundamental assumption of this work is that 

all species were recorded when present; behavior was not considered as it is not possible through 

surveying methods. Breeding seabirds are inherently included in these predictive models, but the 

impacts to this critical life stage can be underestimated when combined with other life history 

stages. During the breeding season, seabirds are central place foragers, meaning that they are tied 

to the breeding colony and only forage in limited ranges for limited lengths of time before 
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returning to the nest to feed chicks or relieve their mates. Seabirds can be even more sensitive to 

avoidance and displacement of turbines and increased energy expenditures during this 

energetically demanding time, and as a result, impacts on breeding colonies from offshore wind 

energy should be critically assessed individually.  

To assess the potential interaction risk, we created a model that incorporates colonial 

nesting data for breeding seabirds in the mid-Atlantic, and the vulnerability of these species to 

wind energy. Six seabird species were included in this model: brown pelican (Pelecanus 

occidentalis), common tern (Sterna hirundo), great black-backed gull (Larus marinus), gull-

billed tern (Gelochelidon nilotica), herring gull (Larus argentatus), and laughing gull 

(Leucophaeus atricilla). All six species have a breeding season and spatial range within the mid-

Atlantic region (Table 1) and are hypothesized to have high risk to offshore wind energy impacts 

based on previous studies (Willmott et al. 2013). Some of these seabirds are also listed as species 

of concern in various mid-Atlantic States (Table 2). This research aims to assess potential 

interaction of breeding seabird populations with offshore wind sites during the breeding season. 

Offshore wind energy in the US is a unique opportunity to evaluate and estimate impacts of wind 

turbines on the environment prior to construction. This study aims to inform environmental 

assessments to aide decision-makers in determining areas with minimal impact on seabirds. 
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Table 1. Breeding season timeline by species 

Species Arrive Mate Incubation Brooding Departure 

Brown pelican Apr – May 7-10 d 30-35.5 d 3 weeks September 

Common tern May – June not known 21.7-23.1 d <12 days mid-July 

Great black-
backed gull 

Mar – Apr Mar – Apr 
5-6 d to lay eggs 

27-28 d 7-10 days August 

Gull-billed tern mid-Apr monogamous 
nest bldg. 5-25 d 
after nest arrival 

22-23 d not known mid-August 

Herring gull mid-May pair formation 
occurs before 
arrival or right at 
arrival 

22-27 d 8-10 days August – 
September 

Laughing gull Mar-Apr pair formation 
occurs before 
arrival 

27-29 d both day and 
night for 3-4 d 
and only at night 
for 10 d 

July – 
September 

 

 

Table 2. Species conservation status by state  

Species VA MD DE NJ NY CT RI 

Brown 
pelican 

Not listed Not listed Not listed Not listed Not listed Not listed Not listed 

Common 
tern 

Greatest 
conservation 
need with 
very high 
conservation 
need 

Endangered Endangered 
– breeding 

Special 
concern – 
breeding 

Threatened Special 
concern 

Not listed  

Great 
black-
backed gull 

Not listed Not listed Not listed Not listed Not listed Not listed Not listed  

Gull-billed 
tern 

Threatened Endangered Not listed Special 
concern – 
breeding 

Not listed Not listed Not listed 

Herring gull Not listed Not listed Not listed Not listed Not listed Not listed Not listed 

Laughing 
gull 

Greatest 
conservation 
need with 
moderated 
conservation 
need 

Not listed Not listed Not listed Protected Not listed Not listed 
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METHODS 

 

DATA COLLECTION 

 Data on currently active renewable energy lease areas in the mid-Atlantic were 

downloaded as georeferenced shapefiles from BOEM and NOAA’s Data Registry 

(MarineCadastre.gov). Colonial seabird data was provided from the USGS Colonial Waterbird 

Monitoring Database. This database is a collaborative effort between various partners who 

conduct waterbird nesting surveys and is funded by the US Fish and Wildlife Service (USFWS). 

The database extends from Maine to Georgia. The most recent survey was conducted in 2013 

and was used in this analysis. From the 2013 survey, data from states in the mid-Atlantic region 

(Virginia, New Jersey, New York, and Connecticut) were included in our analysis; note that data 

was not available for Maryland, Delaware and Rhode Island. The data used were locations of 

coastal colonial sites and included the number of adult breeding pairs. All data were manipulated 

using ArcMap v10.5.1 (ESRI). Data were filtered by selecting only coastal colonies within the 

study region. Data were further filtered down to individual species identified as at-risk for 

impacts with offshore wind development (Willmott et al. 2013) and had a breeding range within 

the mid-Atlantic. Only species that have a documented foraging range during breeding that is 

greater than 10 km were further considered, as these species were most likely to forage within 

the current lease areas of offshore wind energy sites. The final species included in the potential 

interaction analyses were: brown pelicans (Pelecanus occidnetalis), common terns (Sterna 

hirundo), great black-backed gulls (Larus marinus), gull billed terns (Gelochelidon nilotica), 

herring gulls (Larus argentatus), and laughing gulls (Leucophaeus atricilla) (Erwin 1977, Morris 

& Black 1980, Briggs et al. 1981, Fritts et al. 1983, Fasola & Bogliani 1990, Rome & Ellis 

2004). 

 

MODEL DEVELOPMENT 

A multi-species vulnerability model was created through a series of model steps (Fig. 1). 

First, for each of the six species, we used the colony location data in the mid-Atlantic region to 

split the nesting areas into natural ‘colony groups’ (Fig. 2); these groups were determined by 

identifying natural breaks in groupings of nesting sites, for example the break between 

Assateague island and Assawoman island in Virginia. Eight colony groups were identified, and 

https://marinecadastre.gov/
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the number of pairs for each species in each colony group were summed to determine the 

proportion of population (PP). The proportion of the population within study area at each colony 

group was determined: 

 

(1) For each species: Proportion of Population (PP) = colony population
spp population (in study area)

 

 

Second, potential foraging ranges (FR) were created to encompass possible areas where 

breeding seabirds could travel to forage based on information found in the literature (Table 3). 

As few of these species have been individually tracked using satellite telemetry, neither the most 

heavily used areas nor direction (along shore, offshore) could be included, as this information 

was not found in the literature (Table 3).  Some generalizations, however, were found in the 

literature and areas where individuals are likely to forage more (‘common’ foraging zone) were 

weighted with a value of ‘1’ and areas where the foraging range likely extended to but are less 

commonly found foraging (‘uncommon’ foraging zone) were weighted with a value of ‘0.5’.  

Third, each species was given an offshore wind impact value (‘individual species 

vulnerability score’). Using Wilmott et al. (2013), each species was given a value in the 

following categories: displacement risk, disturbance risk, threat ranking, population sensitivity, 

collision sensitivity, nocturnal flight, diurnal flight, macro avoidance of wind turbines, breeding, 

habitat flexibility, and percent of time spent in the rotor swept zone (Table 4). These values were 

summed for each species to create the individual species vulnerability scores used in this 

analysis. Individual vulnerability scores were then weighted based on its score relative to the 

other five species. The scores were weighted by dividing by the maximum score across all 

species’ scores (Equation 2): 

 

(2) Individual Species Vulnerability Score (VS) = species vulnerability
maximum vulnerability of all species

 

 

The above metrics were combined for each species, with the proportion of the population and 

vulnerability scores spatially incorporated into the foraging ranges for each colony:  

 

(3) For each species at each colony: Colony vulnerability (CVspp) = PP x VS x FR 
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Finally, these individual species models were summed across the study area to create a multi-

species vulnerability model with the following equation: 

 

(4) Multi-species vulnerability (MSV) = ∑CVspp 
  

Using the multi-species vulnerability model, areas that have a heightened importance for 

surveying and monitoring impacts of offshore wind energy sites were identified. 

 
 

 

 

 

 

 

 

 

Fig. 1. Flowchart of methods used to create the multi-species vulnerability model 
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Fig. 2. Natural colony groups of nesting colonies in the 2013 breeding season along the US mid-Atlantic coast 
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Table 3. ‘Common’ and ‘uncommon’ foraging ranges by species. ‘Uncommon’ foraging ranges are those 
determined through a literature search of the species’ greatest distance travelled for foraging from their nest 

during the breeding season. ‘Common’ foraging ranges are determined through a literature search as the distance 
more commonly travelled from the nest during the breeding season (FR = foraging range) 

Common 
name 

Common 
FR (km) 

Uncommon 
FR (km) 

Common FR Information Methodology Data source 

Brown pelican 10 20 Most abundant within 20 
km of nesting islands 
during main breeding 
season 

Beach censuses; 
ship and aerial 
surveys 

(Briggs et al. 
1981) 

Common tern 13 20 Equally found in: open bay 
(13 and 21 km away); 
inlets/ beach; tidal creeks 
(1.5-2.5 km away); and 
marsh/ tidal pools (next to 
colony) 

Field surveys (Erwin 1977) 

Great black-
backed gull 

10 15 N and SE direction 20m 
from nest site 

Field surveys (Rome and Ellis 
2004) 

Gull-billed tern 5 10 Densities decreased as the 
distance from colony 
increased 

Field surveys (Fasola and 
Bogliani 1990) 

Herring gull Not 
known 

15 Occurred equally in all 
directions 20m from nest 
site 

Field surveys (Rome and Ellis 
2004) 

Laughing gull 20 45 May forage up to 45 km 
from colony sites 

Field surveys (Fritts et al. 
1983) 

 

 

Table 4. Values from Wilmott et al. (2013) used to determine the individual species vulnerability score 

Category Brown 
pelican 

Common 
tern 

Great black-
backed gull 

Gull-billed 
tern 

Herring 
gull 

Laughing 
gull 

Displacement risk 4.54 8.03 8.37 0 6.55 5.74 
Disturbance risk 3 1 2 2 2 2 
Protected species 1 1 1 1 1 1 
Population sensitivity 2.50 2.25 2.50 2.75 2.50 2.25 
Collision sensitivity 8.83 9.16 9.81 4.62 9.81 8.98 
Nocturnal flight 1 1 3 5 3 3 
Diurnal flight 3 5 2 5 2 3 
Macro avoidance 10 6 6 6 6 6 
Breeding 1.5 2 2 1 2 1.5 
Habitat flexibility 1 3 2 0 1 1 
Rotor swept zone 3 1 1 1 1 3 
TOTAL 39.37 39.44 39.86 28.37 36.86 37.47 
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MODEL COMPARISON 

Data were downloaded from BOEM and NOAA’s Data Registry (MarineCadastre.gov). 

We also compared our produced models to NOAA’s avian predicted density model (Fig. 3) to 

determine spatial distribution of birds and highlight areas of high occurrence of at-risk seabird 

species (Kinlan et al. 2016). To compare our multi-species vulnerability model to NOAA’s 

predicted density model, we acquired the predicted density raster layers for the same six seabird 

species (brown pelican, common tern, great black-backed gull, gull-billed tern, herring gull, 

laughing gull) (Winship et al. personal communication). We used the raster layers that 

represented the summer season (June to August) to attempt to relate breeding predicted density 

to vulnerability risk during the breeding season. Once the individual species’ density raster layers 

were summed together, we normalized the model by using a ‘rescaleLayer’ function in R. This 

was to create a model that had a predicted density value range from 0 to 1. To compare our 

multi-species vulnerability model to NOAA’s predicted avian density model, we calculated the 

percent overlap for the top quartile of model results when individual layers for all six species 

were combined (0.75-1.0). 

https://marinecadastre.gov/
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Fig. 3. NOAA’s predicted density model. Includes our selected six species (brown pelican, common tern, great 

black-backed gull, gull-billed tern, herring gull, laughing gull) along the US mid-Atlantic coast during the summer 
period (June to August) derived from a statistical modeling framework that related historical survey data to temporal 

and spatial environmental predictor variables (Winship et al. personal communication) 

 

  



13 
 

RESULTS 

 

Approximately 700 colonies of our six species were observed in the 2013 Colonial 

Waterbird Survey, including three brown pelican colonies, 141 common tern colonies, 191 great 

black-backed gulls colonies, 22 gull-billed tern colonies, 180 herring gull colonies, and 156 

laughing gull colonies (Fig. 4). This culminated in 61,725 pairs observed in 2013 in the mid-

Atlantic region. When comparing the ‘uncommon’ outer foraging ranges of the six species, 

laughing gulls are expected to travel the furthest (45km) followed by brown pelicans and 

common terns (20km) (Fig. 5; Table 3). According to the literature, the most ‘common’ foraging 

range for assessed species were about the same distance (around 10 km) from their nest (Fig. 5; 

Table 3). Herring gulls did not have a common foraging range value, as it could not be 

determined from the literature. The greatest density of seabird colonies was found near southern 

to mid-New Jersey’s coastline followed by the northern Eastern Shore of Virginia (Fig. 4). It 

should be noted that laughing gulls greatly influenced the southern New Jersey population 

numbers as 81.3% of the population was laughing gulls. Using the individual species 

vulnerability score assessment, we found that great black-backed gulls face the highest potential 

impact risk (39.68) followed by common terns (39.44) and brown pelicans (39.37; Table 4). The 

vulnerability score range was small, from 28.37-39.68 (difference of 11.31). 

 The multi-species vulnerability model indicates multiple areas of high vulnerability. 

These areas are a result of regions with high seabird populations, species with high vulnerability 

to offshore wind, high use foraging areas, or a combination of these three elements (Fig. 6). Our 

model results indicate higher variation in vulnerability when assessing areas closer to the 

coastline when compared to NOAA’s predicted density model (Fig. 3). The NOAA predicted 

density model shows more variation in density in areas further offshore as the distance increases 

further offshore. Our multi-species vulnerability model shows more variation in vulnerability 

along the coast (Fig. 6). The top quartiles (values 0.75 – 1) of the two models overlapped 38.54% 

of the total study area for the multi-species vulnerability model (Fig. 7). Both models indicate 

that the southern New Jersey and western Long Island coast are higher vulnerable areas. Our 

multi-species vulnerability model also indicates that the Eastern Shore of Virginia coast is a 

higher vulnerable area along the coast but becomes less vulnerable more than 15 – 20km 
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offshore (Fig. 6). The multi-species vulnerability model shows that 31.73% of the top quartile 

areas overlap with the current offshore wind energy lease areas. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Population size of nesting colonies in the 2013 breeding season along the US mid-Atlantic coast. Figure 
includes: brown pelicans (BRPE), common terns (COTE), great black-backed gulls (GBBG), gull-billed terns 

(GBTE), herring gulls (HERG), and laughing gulls (LAGU) 
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Fig. 5. ‘Common’ and ‘uncommon’ foraging ranges of nesting colonies in the 2013 breeding season along the US 
mid-Atlantic coast, including: brown pelicans (BRPE), common terns, (COTE), great black-backed gulls (GBBG), 

gull-billed terns (GBTE), herring gulls (HERG), and laughing gulls (LAGU) 
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Fig. 6. Multi-species vulnerability model. Includes our selected six species (brown pelican, common tern, great 
black-backed gull, gull-billed tern, herring gull, laughing gull), which indicates areas of heightened importance for 

surveying and monitoring impacts of offshore wind energy sites 
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Fig. 7. Overlap analysis of our multi-species vulnerability model and NOAA’s predicted density model. Both 
models include our selected six species (brown pelican, common tern, great black-backed gull, gull-billed tern, 

herring gull, laughing gull) 
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DISCUSSION 

 

This study found that when assessing the breeding season individually, the potential for 

overlap and impacts from offshore wind energy differs from when breeding is included with 

several other parameters (Fig. 7). Using survey data of nesting pairs in conjunction with range 

data and species-specific vulnerability to wind energy, we were able to see finer-scale 

differences in vulnerability than previous studies. Focusing on specific, targeted species during 

the highly critical life history stage of breeding is a key component of assessing how offshore 

wind sites could affect seabird populations. Furthermore, our model allows users to see that areas 

commonly used for foraging (<10km offshore) may have potentially less impacts than the outer 

range of seabird foraging ranges (10 – 45km offshore; Fig. 6). For example, the literature 

suggests that common terns may forage up to 20km from their nests during breeding which 

would result in higher potential overlap with offshore wind lease areas. If the ‘common’ foraging 

area (13 km from nest) is weighted, as was in our model, then it displays lower potential overlap 

and vulnerability scores in the areas that do overlap with offshore wind lease areas. This suggests 

that the impact risk from offshore wind energy would be lower than previously expected and 

indicating the potential for lower ecological impacts from this renewable energy source. 

 

COMPARISON TO PREDICTED DENSITY 

We also compared our multi-species vulnerability model (Fig. 6) to NOAA’s predicted 

density model (Fig. 3) for several seabird species (Kinlan et al. 2016, Winship et al. personal 

communication). The NOAA predicted density model shows consistently high-density values 

along the New Jersey coastline. Our multi-species vulnerability model shows that the 

vulnerability in this area ranges widely, with values ranging from 0.004 – 0.855. There are also 

similar differences in results between the two models when analyzing them throughout the 

Virginia coast. In western Long Island, the models are more similar than along New Jersey and 

Virginia, but again our multi-species vulnerability model shows more variability compared to the 

consistently high-density values. This suggests it is important to consider offshore wind vary 

when accounting for population density, vulnerability, and the foraging range during the 

breeding season.  These two models should be used together to find areas with heightened 

vulnerability to impacts from offshore wind by first determining areas of high predicted density 
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using resources like NOAA’s predicted density models (Kinlan et al. 2016, Winship et al. 

personal communication) followed by the application of the multi-species vulnerability model to 

determine areas within high avian predicted density that also have high predicted vulnerability 

values as well. This can focus conservation and mitigation efforts to areas with both high density 

and high vulnerability, with an increased focus on the breeding season when birds are most 

vulnerable. 

 Our multi-species vulnerability model overlapped with the NOAA predicted density 

model 38.4% when considering the top quartile of each models results (Fig. 7). One explanation 

for the relatively low similarity between the two models could be the lack of colonial data from 

Maryland, Delaware and Rhode Island in the multi-species vulnerability model. Furthermore, the 

multi-species vulnerability model only extends up to 45km from the shoreline as this is the 

furthest foraging range distance, whereas the predicted density model extends up to 475km 

offshore. Despite the differences between these models, energy site managers and developers can 

still evaluate important impact risk information. Our model is an important management tool as 

it assesses impacts to hypothesized at-risk seabirds during a known critical life history stage and 

fills a critical data gap in assessing offshore wind site risk on breeding seabirds. Furthermore, we 

suggest that conservation efforts focused on monitoring population-level impacts posed by 

offshore wind should be targeted in areas along the southern and northern ends of the Virginia 

Eastern Shore, the coast of New Jersey and the western area of Long Island. 

 

MODEL LIMITATIONS 

 Our multi-species vulnerability model is not predictive and relies on nesting survey data 

that is collected every five years and does not consider flight behavior. It takes a conservative 

approach in identifying high vulnerability areas for seabirds from offshore wind energy 

development. The foraging ranges are large and rely on the literature. Additionally, our model 

currently only includes six at-risk seabird species (Willmott et al. 2013). NOAA’s predicted 

density model can include up to 40 species (Kinlan et al. 2016, Winship et al. personal 

communication). However, for comparison purposes, the predicted density model used in this 

study assessed only the same six species as our vulnerability model. More species should be 

considered in the future when evaluating overlap and risk posed by offshore wind energy sites, if 
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additional species are found to extend offshore or wind energy areas or impacts are determined 

to be closer to shore. 

Updated and new technologies should also be considered when identifying foraging 

ranges as they can provide more detailed and exact information regarding the common foraging 

areas and the direction of travel from the nests. Our model is spatially limited because some 

states in the mid-Atlantic region (Maryland, Delaware and Rhode Island) were not included in 

the USGS Colonial Waterbird Database. Our multi-species vulnerability model methods should 

be continued and expanded to include updated colonial data, improved spatial information on 

foraging ranges, and more seabird species that are at-risk from impacts to better assess and 

identify key areas to monitor for population impacts from offshore wind. 

 

IMPORTANCE OF CONSIDERING BREEDING 

 As evident in the differences between our multi-species vulnerability model and survey-

based species richness and predicted density models (Kinlan et al. 2016, Winship et al. personal 

communication), considering only breeding seabirds allows users to identify smaller, possibly 

more critical management areas. These areas can be targeted for management and conservation 

purposes in the event of nearby offshore wind energy development. These areas can be 

monitored for changes in breeding population numbers to assess changes possibly due to 

offshore wind development. We suggest considering the critical life history stage breeding 

separately as well as included in multi-variate models when evaluating population impacts of 

offshore wind energy development on marine avian species.  
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CONCLUSIONS 

Our multi-species vulnerability model determined that impact risk from wind energy is 

different when solely assessing breeding data with foraging ranges and species-specific 

vulnerability. The results display finer-scale differences in vulnerability than previous studies 

that included breeding with several other parameters. Furthermore, considering specific species 

during the breeding season is a key component of assessing how offshore wind energy sites 

could affect seabird populations. Also considering foraging ranges during the breeding season 

found that ‘common’ foraging ranges may face potentially less impacts than the ‘uncommon’ 

foraging range found in the literature. Using our multi-species vulnerability model, we suggest 

that the southern and northern ends of the Virginia Eastern Shore, the southern to mid-New 

Jersey coast, and western Long Island of New York could face higher levels of vulnerability to 

offshore wind energy and should be monitored if development begins. 
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CHAPTER 2 
 
 
 
 

COMMON TERN MOVEMENT ECOLOGY DURING THE BREEDING 

SEASON AND IMPLICATIONS FOR OFFSHORE WIND ENERGY 

DEVELOPMENT 
 

INTRODUCTION 

 

There are several methods of using tags to track individual animals that ecologists can 

use to assess movement and behavior of many animal species. However, the technology has been 

limited for which species can be assessed. Until recently, satellite tags have been too large for 

many avian species which rely on flight.  As this technology has improved, size and costs of 

tracking devices have both decreased. These improvements allow for a better understanding of 

fine-scale movements and behaviors of smaller avian species that could not previously support 

larger tags (Maxwell et al. 2016). These newer and smaller tags have allowed researchers to 

study fine-scale seabird movements, behavior, and habitat use (Burger & Shaffer 2008, Hazen et 

al. 2012, Montevecchi et al. 2012). 

The greatest asset of satellite tracking studies is the potential to contribute to conservation 

and management decision-making (Burger & Shaffer 2008). There are numerous advantages of 

animal-borne tracking; multiple individuals from established populations can be tracked, 

individual behaviors can be determined through time and key habitat areas can be identified. 

Unlike surveying efforts, satellite telemetry is a good method for encompassing wider 

geographic and temporal coverage (Williams et al. 2015). Studies using satellite tags on seabirds 

have revealed long-range movements of many seabird species (Burger & Shaffer 2008). Long-

term datasets from tracking data can be vital for understanding the impacts of anthropogenic 

activity, such as offshore wind energy development, on seabirds (Williams et al. 2015). 
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Birds have often been used as environmental indicators and to study the anthropogenic impacts 

on ecosystems. Birds are sensitive to environmental changes, respond predictably, and data can 

be easy to compile and interpret (Butler et al. 2012). Birds have been used to learn more about 

habitat quality (O’Connell et al. 2000, Stolen et al. 2005, Frederick et al. 2009), impacts of 

pollution (Bouwman et al. 2013, Balmford 2013, Pilastro et al. 1993), disease outbreaks (Eidson 

et al. 2001, Rochlin et al. 2011, Suarex & Tsutsui 2004), and are indicators of biodiversity 

(Mikusiński et al. 2001, Kati et al. 2004). Birds have also been useful subjects for conservation 

planning and informing policy as they allow researchers to study ecosystem health. 

One such species of seabirds that could be used as environmental indicators from 

anthropogenic impacts are common terns (Sterna hirundo). This is an avian species that have 

previously been difficult to track due to their small body mass; however, several conservation 

concerns exist for this species that would be aided through tracking. Common terns are 

migratory, colonial seabirds that are long-lived, lay small clutches, and do not begin breeding 

until around 4 years old (Erwin 1977, Ezard et al. 2007, Palestis 2014). Common terns are 

generalist foragers, meaning they will feed both inshore and offshore. During the nesting season 

they become central place forages, meaning they only forage centrally around the nest (Erwin 

1977). They feed on small fish (i.e. silversides, killifish, sandeels, bay anchovies) while diving 

and breed on barrier islands in the Eastern Shore of Virginia from late May to early July (Erwin 

1977, Safina & Burger 1985). Common terns are listed globally as “least concern” by the IUCN 

Red List (International 2016), however the coastal Virginia population has declined 70.7% 

between 1993 and 2013 (Watts & Paxton 2014). This decline was mostly due to the invasion of 

laughing gulls within the Hampton Roads Tunnel Island, which was habitat for the largest 

common tern colony in Virginia and had compensated for common tern population numbers in 

the past (Watts & Paxton 2014). The common tern population in Maryland has also declined 

86% since the early 1990s5. Common terns are listed as a species of greatest conservation need 

in Virginia6 and endangered in Maryland7.  

Common terns are hypothesized to have a high risk of collision and displacement from 

offshore wind energy (Willmott et al. 2013) and have been sited during ship-based surveys 

                                                            
5 http://md.audubon.org/conservation/tern-island-birds 
6 https://www.dgif.virginia.gov/wp-content/uploads/virginia-threatened-endangered-species.pdf 
7 http://dnr.maryland.gov/wildlife/Documents/rte_Animal_List.pdf 
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conducted at Virginia’s offshore wind energy lease site (Tetra Tech 2014). This species also 

displays high foraging habitat fidelity which leads researchers to believe that they will have a 

high sensitivity to displacement by wind turbines (González-Solís et al. 1999). Despite being 

agile flyers, terns could still face the risk of bird strikes if turbines are established in areas where 

they aggregate in large groups or if they are built within regular flight paths (Palestis 2014). The 

extent of collision and disturbance risk has been hard to determine with survey data. Surveys are 

limiting for assessing collision risk as it is a poor method of documenting seabird movement 

patterns, is costly, is unable to accurately collect behavioral data (e.g. foraging and transiting) 

and is difficult to compare importance of different areas (Drewitt & Langston 2006, Williams et 

al. 2015). Surveying also suffers from large inter-observer differences (Camphuysen et al. 2004) 

and cannot suffice for small-scale, individual temporal coverage, as they are costly to conduct 

and thus are usually limited in both duration and area surveyed (Drewitt & Langston 2006). 

These limitations may have contributed to an under- or over-estimation of wind energy risk to 

seabird populations as regulators assessed risk in a very conservative manner due to the 

uncertainties involved (Bailey et al. 2014). 

 Here, we determine the movement and behavior of common terns using GPS tracking 

devices. Our primary aims are to: (1) determine home range and distribution of common terns 

during the breeding season, (2) determine if movements are impacted by environmental 

influences such as weather or diurnal patterns, (3) aid decision-makers in minimizing the impact 

of offshore wind turbines on seabird populations. This goal is to inform environmental 

assessments that can contribute to establishing an offshore wind energy industry in Virginia and 

Maryland that will have minimal ecological impact with maximum human and ecosystem health 

and clean energy benefits. We hypothesize that the common tern study population will rarely 

enter the current Virginia and Maryland offshore wind lease areas (Fig. 8) during their breeding 

season. We also aim to establish more precise foraging range information for common terns and 

discuss how this can be applied to other common tern colonies that are closer to offshore wind 

lease areas. 
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Fig. 8. Maryland and Virginia lease areas for offshore wind energy development (current as of May 2018)  
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METHODS 

 

ETHICS STATEMENT 

 All state, federal and institutional guidelines were followed, and this study was approved 

by and carried out in accordance with the recommendations of the Institutional Animal Care and 

Use Committee at Old Dominion University (IACUC Permit 17-007). Permission to work with 

Federal Bird Banding was issued by the US Department of the Interior (Bird Banding Permit 

23803 under Dr. Eric Walters). Permissions to work within the state of Virginia were issued by 

the Virginia Department of Game and Inland Fisheries (Scientific Collection and Bird Banding 

Permit 059952). 

SATELLITE TRACKING 

 We used animal-borne telemetry technology to track the movements of common terns 

from late May to early June of 2017. Tags used the Global Positioning System (GPS) to record 

locations (latitude and longitude) of the individuals to track animal movement and determine 

animal behaviors and habitat usage (Hazen et al. 2012; Fig. 2). Common terns were captured in 

situ at their breeding grounds using methods demonstrated by Burger and Shaffer (2008) and 

Maxwell et al. (2016). 

 This study was conducted at Dawson Shoals (37.6° N, 75.6° W), a barrier island off the 

coast of the Virginia Eastern Shore, where common terns nest during the early summer. The 

lagoon and barrier island system of the Eastern Shore are critical areas for colonial seabird 

nesting and accounted for 54.7% of all breeding pairs surveyed in the coastal plain region of 

Virginia (Watts & Paxton 2014). Dawson Shoals is located between both the Maryland and 

Virginia offshore wind energy lease sites (Fig. 9); the construction of the Virginia demonstration 

site is scheduled to begin by 2020 at the earliest8. 

 We captured adult individuals at their nests during incubation using a treadle trap and 

then recaptured with either a treadle trap or bow net. Waterproof GPS transmitters (Pathtrack 

                                                            
8 http://pilotonline.com/news/local/environment/dominion-loses-million-federal-grant-for-virginia-offshore-wind-
project/article_5e69e24a-bb41-57b3-b582-a411d12c352b.html 
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Ltd, Otley, West Yorkshire, UK; nanoFix-GPS+) were attached to individuals to collect 

movement and behavior data. Tags were attached using waterproof Tesa tape (Tesa Tape Inc., 

Charlotte, NC) to the back two tail feathers, 1–2cm behind the uropygial or preening gland. Tags 

were 2.4 x 1.1 x 0.5cm with a thin antenna extending 4.8cm and weigh 1.4g, approximately 

1.14% of the average body weight of the tagged birds (122.7g, 102-157g). There were no visible 

signs of discomfort from the tags as there were no observed bite marks on the tape or tags nor 

were birds ever observed to attempt contact with the tags (pecking at them, etc.) during our 

monitoring after tag deployment. The location data was stored on the devices and required 

recapture of the individual to download the information. Twenty-six GPS tags were deployed 

and 15 were recovered resulting in a 58% success rate of recapture. Recapture was possible as 

common terns are central foragers during the breeding season and return frequently to nests to 

incubate eggs and/or bring food to their mate. Tags are also capable of being reused once the 

data is downloaded and removed. Tags were deployed on an average of five days and collected a 

data point every 10 minutes. This allowed the tags to capture a minimum of four foraging trips 

which has been shown to produce reliable estimates of animal ranges and sufficient evidence for 

individual behaviors (Soanes et al. 2013). 

 Tag deployments were conducted in two batches. The first round was deployed from 

6/9/17 to 6/13/17 and the second round was deployed from 6/16/17 to 6/26/17 (Table 5). Other 

information was collected on the individuals as we handled and attached the tags to them, 

including: weight (g), wing length (mm), tarsus length (mm), the maximum and minimum length 

(mm), fork length (mm), and the head to bill length (mm).  All handled birds were banded with 

permissions and protocol from the USGS Bird Banding Lab. Regurgitation samples were 

collected opportunistically and feather samples were collected from all individuals to analyze in 

future studies to tie stable isotope and diet information to the habitat distribution determined in 

this project. 
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Fig. 9. Location data points of the tagged common tern population during breeding season of 2017 
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Table 5. Tag deployment summary 
 

Individual Deployment  
date 

Recapture  
date 

Length of  
tag attachment (days) 

1A 9 June 2017 10 June 2017 1 
1B 10 June 2017 12 June 2017 3 
2A 9 June 2017 12 June 2017 4 
2B 12 June 2017 18 June 2017 7 
3A 13 June 2017 16 June 2017 4 
3B 13 June 2017 NA NA 
5A 13 June 2017 16 June 2017 4 
5B 13 June 2017 16 June 2017 4 
6A 13 June 2017 16 June 2017 4 
8A 17 June 2017 26 June 2017 10 
8B 22 June 2017 NA NA 
12A 18 June 2017 25 June 2017 8 
13A 17 June 2017 23 June 2017 7 
13B 18 June 2017 25 June 2017 8 
14A 18 June 2017 25 June 2017 8 
14B 22 June 2017 NA NA 
15A 17 June 2017 22 June 2017 6 
15B 18 June 2017 22 June 2017 5 
16A 18 June 2017 NA NA 
18A 18 June 2017 22 June 2017 5 
18B 18 June 2017 22 June 2017 5 
21A 18 June 2017 22 June 2017 5 
21B 17 June 2017 22 June 2017 6 
23A 17 June 2017 22 June 2017 6 
23B 18 June 2017 26 June 2017 9 
24A 16 June 2017 22 June 2017 7 
24B 18 June 2017 25 June 2017 8 
25A 16 June 2017 22 June 2017 7 
25B 22 June 2017 NA NA 
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FLIGHT METRICS 

 The GPS location data were used to create flight tracks of the foraging trips taken by the 

tagged individual birds (Fig. 10). These tracks were then used to calculate the average distances 

traveled. We used ArcMap 10.5.1. (ESRI) software to calculate the cumulative distances for each 

flight that the recaptured birds took. To avoid an individual bird bias while producing the 

averages, flight distances were first averaged on an individual basis. These averages produced an 

overall average of the distance travelled by the tagged population. We also divided the tracks 

into two categories: nocturnal and diurnal flights. Diurnal flights were considered from times 

06:00 to 20:00 and nocturnal flights were considered from times 20:01 to 05:59, based average 

sunrise-sunset times for the time of year. A paired student t-test determined if there was a 

statistical difference between the distance travelled nocturnally versus diurnally. 

 

Fig. 10. Trajectories of the movements tracked using GPS satellite transmitters on breeding common tern individuals 
in June of 2017 
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ANALYTICAL TECHNIQUES 

 All analyses and map-building were conducted using R (R Core Team) and ArcMap 

10.5.1 (ESRI) programming. First, animal movement and behavior were determined through a 

residence time analysis. Second, home range and animal distribution estimates were produced 

through a kernel density estimation analysis (Kernohan et al. 2001). These analyses allowed us to 

determine where critical foraging and transiting habitat occurs and whether this overlapped with 

either the Maryland or Virginia offshore wind energy lease areas. Data for the wind energy lease 

areas were obtained from the Bureau of Ocean Energy Management’s (BOEM) Marine Cadastre 

database. 

I. ANIMAL MOVEMENT AND BEHAVIOR 

 A residence time analysis was conducted to determine areas of greatest use (high 

residence time) by the common tern individuals. Methods employed by Barraquand and 

Benhamou (2008) are commonly used to classify foraging behaviors and is based on time spent 

near successive path locations. Using this method, we imposed a circle over each consecutive 

location and the time spent within the circle was summed. The size of the circle is user-defined 

and dependent on the biology and foraging behavior of the study species (Maxwell et al. 2016). 

For this project, we used a small circle radius - of 1.11x10-3 km (or 1x10-4 degree decimals) - as 

the common terns tended to stay close to their nest (within 13 km). Locations with high 

residence time were defined as the top 25% quartile of all residence time values (Torres et al. 

2011, Maxwell et al. 2016). 

II. HOME RANGE AND ANIMAL DISTRIBUTION 

 A kernel density estimation (KDE) analysis results in kernel utilization distributions 

(KUDs), the number of locations per user-defined grid cells, by taking the weighted sums of 

normal distributions centered on each point within the dataset (Maxwell et al. 2011). This was 

done by creating individual KUDs for each tagged seabird at UD levels of 90%, 75%, 50%, and 

25%. For all KUDs in this study, a 1 km buffer was created around the tag deployment site/ 

nesting site to eliminate data points within the buffer so that the KDE focused only on habitats 

not being used for nesting. The KDE also requires a minimum of five location data points to 

calculate the distribution so any individual in the following scenarios studied that had less than 
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five points did not have a KUD created. To minimize bias towards individual that collected more 

locations, the individual KUD values were summed for all birds in each raster cell. The summed 

layer was then ‘normalized’ by dividing the sum raster layer by the maximum value in the layer. 

This created an overall KUD for the study population. 

 Furthermore, environmental factors were examined using home range estimation. We 

subset and compared distribution on days where weather events occurred (‘weather’ days) versus 

days where no weather events occurred (‘clear’ days) as well as compared diurnal versus 

nocturnal flights. Weather data was collected from Weather Underground (the Weather 

Company) and days when rain, thunderstorms, and/ or fog occurred were considered ‘weather’ 

days compared to days ‘clear’ days, resulting in 8 days with weather events and 10 days without. 

Diurnal flights were considered from times 06:00 to 20:00 and nocturnal flights were considered 

from times 20:01 to 05:59, based on average sunrise-sunset times for the time of year. The KUDs 

for these environmental factors were created using the same methods as above for the overall 

population KUD. 

 To determine if the collected dataset contained an adequate number of individuals to 

represent most of the home range (90% utilization distribution) for the entire population, we 

created a kernel density utilization distribution home range, iteratively adding individuals to 

determine how many is needed to reach a home range size asymptote, indicating a sufficient 

sample size (Soanes et al. 2013, Maxwell et al. 2016). 
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RESULTS 

FLIGHT METRICS 

 The data collected shows that the average flight distance of the tagged common tern 

population was 12.01 km (6.20 – 20.87 km; Table 6). Flights were mostly to nearby barrier 

islands and inshore towards Wachapreague, Virginia. The average flight distance during the day 

was 11.00 km (4.72 – 21.36 km) and during the night was 16.98 km (6.60 – 52.97 km). The 

common terns took longer, single nocturnal flight trips, but there was on average more diurnal 

flights per bird. We found a statistically significant difference between nocturnal and diurnal 

flight distances (t = 2.2855; df = 24; p = 0.0314). 

 

Table 6. Flight track metrics 
 

 

Individual Avg flight  
(km) 

Avg flight per day  
(km) 

Avg flight per night  
(km) 

Avg flight duration  
(mins) 

1A 6.20 4.72 12.13 18.00 
1B 11.95 5.45 30.00 67.50 
2A 7.60 5.75 17.82 46.15 
2B 2.20 2.20 NA 20.00 
3A 9.73 9.95 10.82 30.00 
5A 20.03 21.36 9.36 56.11 
6A 17.54 16.65 20.18 45.00 
8A 15.75 14.53 20.18 46.22 
13A 9.32 9.27 10.08 35.33 
14A 8.88 8.34 13.42 36.60 
15B 9.69 9.54 11.40 20.71 
18B 12.62 12.44 14.92 32.41 
23A 20.87 17.88 52.97 82.34 
24B 9.44 9.63 7.86 33.61 
25A 8.48 8.53 6.60 36.39 
Mean  
(Max-Min) 

11.35  
(2.20-20.87) 

10.42  
(2.20-21.36) 

16.98  
(6.60-52.97) 

40.42  
(18.00-82.34) 

  



34 
 

 

RESIDENCE TIME 

 We found high residence times throughout the entire area used by the birds, but most 

occurred close to the nesting area (Fig. 11). There were a few high residence locations inshore 

near the town of Wachapreague, the southern end of Hog Island, and north of Cedar Island. 

These high residence locations were attributed to individual birds, however, and did not reflect 

the trends of the entire tagged population. Other high residence areas occurred east of the nesting 

site in offshore waters up to about 10 km from the tagging site as well as the northern end of 

Parramore Island. Low residence locations occurred frequently throughout the entire study area 

near Dawson Shoals, Parramore Island, Hog Island, Cedar Island, and inshore between Dawson 

Shoals and Wachapreague (Fig. 11). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Residence time analysis of common terns tracked during 2017 breeding season 
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KERNEL DENSITY ESTIMATION 

 The KUD of the overall habitat usage (Fig. 12) for the common tern population at the 

overall area (90% KUD) was 343.92 km2 and the core use are 25% was 7.25 km2 with the 

locations within 1 km of the tagging site removed (Table 7). Like the residence time analysis, we 

found that the areas heavily used (25% KUD) by the common tern individuals were close to the 

nesting area (Fig. 5). Less-used areas (90% KUD) occurred inshore towards Wachapreague, the 

northern end of Cedar Island, the southern end of Hog Island, and directly offshore from Dawson 

Shoals (roughly 10 km). However, the areas that were furthest from the nest were utilized by a 

single individual. Parramore Island is also an important area that the common terns utilize. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. KUD analysis of all common tern locations during the 2017 breeding season 
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Table 7. KUD areas of total common tern population, flights on ‘clear’ days and days with weather events (i.e. 
fog, rain, thunderstorm), and diurnal and nocturnal flights 

 
KUD 
(%) 

Overall area 
(km2) 

‘Clear’ days area 
(km2) 

‘Weather’ days area 
(km2) 

Diurnal flights area 
(km2) 

Nocturnal flights 
area (km2) 

25 7.25 13.35 13.70 7.10 8.75 
50 12.48 15.75 16.85 12.10 14.90 
75 24.73 36.50 29.06 24.55 28.71 
90 343.92 357.61 232.49 315.94 192.50 

 

ENVIRONMENTAL IMPACTS ON HOME RANGE 

 We found differences in the KUD on ‘clear’ days when compared to ‘weather’ days (rain, 

thunderstorm, and/or fog). The overall area (90% KUD) on ‘clear’ days was 357.61 km2 and the 

core area (25% KUD) was 13.35 km2 with the locations within 1 km of the tagging site removed. 

The overall area (90% KUD) on ‘weather’ days was 232.49 km2 and the core area (25% KUD) 

was 13.70 km2. On ‘weather’ days, the common terns utilized southern islands such as 

Parramore and Cedar Island and tended to stay inshore or along the coastline (Fig. 13). On 

‘clear’ days, the utilization distribution was very similar to the overall habitat usage (Fig. 13). On 

‘clear’ days, the KUD extends up to northern Cedar and Metompkin Island as well. For both 

‘clear’ days and ‘weather’ days, the heavily used areas were both close to the tagging site and 

only had a 2.5% difference (the 25% KUD on days with weather events was larger). However, 

the 90% KUD of the ‘clear’ days was 35% larger than the 90% KUD of the ‘weather’ days. 

 We found differences in the KUD of nocturnal flights when compared to diurnal flights. 

The overall area (90% KUD) for diurnal flights was 315.94 km2 and the core area (25% KUD) 

was 7.10 km2. The overall area (90% KUD) for nocturnal flights was 192.50 km2 and the core 

area (25% KUD) was 8.75 km2. During the day, the KUD extends to southern Hog Island, about 

10 km offshore from the nest site, and inshore towards Wachapreague (Fig. 14). The diurnal 

flight 90% KUD is like both the ‘clear’ days and the total population 90% KUD. At night, the 

KUD extends to northern Cedar Island but otherwise remains close to the tagging site (Fig. 14). 

The heavily used areas for both diurnal and nocturnal flights were both close to the tagging site, 

with the core area during nocturnal flights being slightly to the east of Dawson Shoals (~1 km). 

The heavily utilized area (25% KUD) of the nocturnal flights was 18.85% larger than the heavily 

utilized area of the diurnal flights. However, the 90% KUD of the diurnal flights was 39% larger 

than the 90% KUD of the nocturnal flight area. 
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Fig. 13. (A) KUD analysis on ‘clear’ days and (B) KUD analysis on ‘weather’ days (i.e. fog, rain, thunderstorm) 

 

Fig. 14. (A) KUD analysis of diurnal flights and (B) KUD analysis of nocturnal flights  
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SUFFICIENT SAMPLE SIZE ANALYSIS 

 To determine if our sample size was sufficient for our analysis, we created KUDs 

iteratively adding individuals to determine if the home range size would asymptote (Fig. 15). The 

overall home range size reached an asymptote at approximately eight individuals. When 

evaluating KUDs on ‘clear’ days, the home range size reached an asymptote at approximately 12 

individuals and approximately 10 individuals when evaluating KUDS on ‘weather’ days. The 

home range size reached an asymptote at approximately six individuals when evaluating KUDS 

of diurnal flights. The home range size may begin to reach an asymptote at approximately 12 

individuals when evaluating KUDs of nocturnal flights but will need more data to determine the 

full nocturnal home range. This provides reason to assume that our sample size adequately 

represents the entire population during our study period. 

RELATIONSHIP TO OFFSHORE WIND AREAS 

 We found no overlap with the movement analysis of our study population with the 

current Maryland and Virginia lease site areas. We found that the furthest an individual traveled 

was 13 km directly offshore. The Virginia lease area is approximately 43.5 km offshore9 and the 

Maryland lease area is approximately 27 km offshore10. 

 

  

                                                            
9 https://www.dominionenergy.com/about-us/making-energy/renewables/wind/coastal-virginia-offshore-wind 
10 http://www.uswindinc.com/maryland-offshore-wind-project/ 
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Fig. 15. Sample size analysis. (A) Asymptote analysis of total population 90% KUD, (B) asymptote analysis of 90% 

KUD on ‘clear’ days, (C) asymptote analysis of 90% KUD on ‘weather’ days (i.e. fog, rain, thunderstorms), (D) 
asymptote analysis of 90% KUD of diurnal flights, and (E) asymptote analysis of 90% KUD of nocturnal flights 
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DISCUSSION 

 This study was the first of its kind to describe the movements and behaviors of breeding 

common terns in coastal Virginia using GPS technology. We determined that while foraging, 

common terns tend to rely on areas close to their nests. If they have high residence in areas over 

5 km from their nests, it is to northern or southern neighboring barrier islands. Even when 

traveling off the nest for short periods of time (low residence time), the common terns traveled 

less than 15 km in any direction from their nest site. The common terns utilized areas over 1 km 

from the nesting sites differently during various environmental conditions. Terns stayed closer to 

their nesting site and traveled to southern islands during ‘weather’ days while on ‘clear’ days 

they utilized all the common foraging areas such as Metompkin, Cedar, Parramore and Hog 

islands. Time of day also influenced their habitat distribution. Diurnally, common terns utilized a 

larger area and traveled up to 13 km offshore and utilized southern barrier islands such as 

Parramore, Hog, and northern Cobb islands. Nocturnally, they had a slightly smaller distribution 

and utilized Parramore and northern islands such as Cedar and Metompkin island. Furthermore, 

we found no overlap with this population of coastal Virginian common terns with both the 

current Maryland and Virginia offshore wind energy lease areas. 

ANIMAL MOVEMENT AND BEHAVIOR 

 Our residence time analysis suggests that common terns stay close to their nesting site 

while foraging during their nesting season. Most locations (79.5%) occurred within a 5 km radius 

of the tag deployment site. The furthest high residence points from the nesting site occurred 

along the barrier island coastline. As higher residence indicates probable foraging areas (Torres 

et al. 2011) we suggest that even if common terns forage far from their nesting site, they may not 

forage that distance offshore. This information is used to analyze potential overlap and impacts 

of offshore wind energy sites on seabirds by applying ‘uncommon’ and ‘common’ foraging 

ranges while breeding. Applying ‘common’ foraging ranges resulted in less overlap than when 

the original foraging ranges from the literature is applied as the common terns’ tended to 

commonly forage in northern and southern gradients along the coast instead of traveling directly 

offshore. 
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 Our residence time analysis also found that the low residence locations occurred further 

away from the colony than the high residence locations. Low residence possibly indicates 

transiting behaviors, suggesting that the areas that were further from the nesting site were visited 

for only a short period of time and were simply traveling through. Though they spend short 

periods of time at areas further from the nest, again these more distant areas occurred along the 

coastline and not directly offshore. These areas may be used for foraging, but they did not remain 

in the area for a long period of time; thus, decreasing their potential for overlap with wind energy 

areas. There were some locations of high residence time that were over 5 km from the nest but, 

all except one of these locations were either north, south, or inshore from the nesting location 

(Fig. 11). This could indicate that the locations with high probable overlap with offshore wind 

energy still have a lower probability of impact as the time spent at these locations are short. 

HOME RANGE AND ANIMAL DISTRIBUTION 

 The home range analysis further suggests that common terns stay close to the colony 

while foraging. Common terns foraged along the coastline of the barrier islands neighboring their 

nesting island as well as the inland marshes and wetlands. The results of these analyses are 

congruent with an observational study conducted on common tern populations in coastal Virginia 

that found that they were equally distributed in open bays, inlets and beaches, tidal creeks, and 

marsh and tidal pools (Erwin 1977). Some of the individuals in our study foraged offshore but 

only about 10 km, roughly half the literature suggested foraging range of 20 km (Erwin 1977). 

ENVIRONMENTAL IMPACTS ON HOME RANGE 

 The results of the weather analysis found differences in common tern distribution on 

‘weather’ days versus ‘clear’ days. Though the heavily utilized area (25% KUD) was 2.5% larger 

on ‘weather’ days, the overall distribution was 35% greater on ‘clear’ days.  Our results agree 

with a previous study that found that common tern body mass development measures were 

affected by extremely bad weather events that could be a result of fewer, less effective foraging 

trips (Robinson et al. 2002). However, the core used areas (25% KUD) were very similar on 

‘clear’ days and ‘weather’ days. The results of the diurnal versus nocturnal analysis found slight 

differences in common tern distribution on ‘weather’ days versus the ‘clear’ days. Though the 

heavily utilized area (25% KUD) was about 19% larger during nocturnal flights, the overall 

distribution was 39% greater during diurnal flights. However, the home range size did not 
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asymptote with the sample size used when assessing the KUDs of nocturnal flights, so more data 

at a larger sample size may change these results.  

IMPLICATIONS FOR OFFSHORE WIND ENERGY DEVELOPMENT 

These analyses determined that this population of common terns stay close to their 

nesting site during the breeding season. Outside of Dawson Shoals, the common terns traveled to 

and highly utilized both Parramore and Cedar island. Because of this, the study population had 

no overlap with current Virginia and Maryland offshore wind lease or planning areas. Despite no 

interaction between our study population and offshore wind, our results can be applied to other 

common tern populations nesting closer to the leased wind energy areas. We found that common 

terns tend to travel off their nesting site in a northern and southern gradient and relied on nearby 

barrier islands or inshore areas for foraging. This suggests that the wind energy areas will have 

minimal overlap with common tern populations nesting closer to the wind sites as the heavily 

utilized areas did not occur as far offshore as the wind sites will be located. Our environmental 

impact analysis also suggests that weather and nocturnal visibility will have minimal impacts on 

common tern populations. During ‘weather’ days, the common terns utilized a smaller overall 

area and did not travel far offshore (up to 10 km). The population also stayed closer to the nests 

at night, therefore visibility would be greater at the times when they are flying further offshore 

(during diurnal flights) and could have a greater chance of avoiding wind energy structures. Our 

results are a promising suggestion that the impacts of offshore wind energy on common tern 

nesting populations are lesser than previously thought when satellite telemetry technology is 

used to analyze movement and behavior. 
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CONCLUSIONS 

This study focused on the spatial analysis of a colonial common tern location data taken 

during their breeding season in June 2017. These spatial analyses provide a better understanding 

of common tern movement and ecology in coastal Virginia, which has not been previously 

studied using satellite telemetry methods. This project provides a better understanding of coastal 

Virginia common tern populations and their habitat usage during their critical and energetically-

costing breeding life history stage. Further work could be expanded to include subsequent years 

of location data on common tern populations as well as other coastal Virginia breeding species 

such as black skimmers and gull-billed terns. Furthermore, including wind speed and wind 

direction in the weather analysis could provide more insightful results on the effect of weather 

events on flight patterns and foraging trips. 
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