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ABSTRACT 

 FLEXURAL BEHAVIOR AND STRENGTH OF  
DOUBLY-REINFORCED CONCRETE BEAMS  

WITH HOLLOW PLASTIC SPHERES 

Rutvik. R. Patel  

Old Dominion University, 2018  

Advisor: Dr. Zia Razzaq 

This thesis presents the outcome of an investigation into the experimental and 

theoretical flexural behavior and strength of doubly-reinforced concrete beams with and 

without hollow plastic spheres. Tests are conducted on two types of beams having simply 

supported end conditions. To obtain experimental results, a gradually increasing two-point 

loading is used up to collapse. The experimental load-deflection and load-strain curves are 

recorded. Theoretical analysis is based on developing non-linear moment-curvature 

relationships for cross sections with and without hollow spheres. These moment-curvature 

relationships are then coupled with three separate numerical methods namely, finite-

difference method, finite integral method and Newmark’s method to predict load-deflection 

relationships for both beams. These three approximate analysis methods gave practically the 

same results. In addition, a theoretical study is conducted to predict the load-deflection curves, 

and the cracking and collapse load indices of full-scale beams with and without hollow 

spheres. The predicted cracking and peak load values are in good agreement with those found 

in the laboratory experiments. The study shows that the use of hollow plastic spheres in 

reinforced concrete beams results in a substantial decrease in self-weight without 

compromising the ultimate strength.  
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NOMENCLATURE 

 .௦ Area of tension steelܣ

  ௦′ Area of compression steelܣ

 .௦′ Resultant forces from compression zoneܥ

Cc Concrete compression force. 

c Neutral axis.

d Distance from top of beam to tension steel. 

d’ Distance from top of beam to compression steel. 

Ec Concrete modulus of elasticity. 

fc              Computed concrete compression stress.     

fc
’ Specified concrete compression strength. 

௥݂ Concrete modulus of rupture. 

T Resultant forces from tension zone. 

I Moment of inertia. 

Mc Collapse moment.

Mcr Cracking moment. 

ɸ Curvature.

∈ୡ୲ Bottom Strain 



є Strain. 

є˳ Concrete strain at maximum stress. 

v Deflection. 

W Applied Load. 

R12 Conjugated load. 

wself Self-weight of beam. 

Wcr Cracking load. 

Wc Collapse load. 

h  Segment length. 

S.G. Strain gage. 

ηcr Ratio of cracking load to self-weight of beam. 

ηc Ratio of collapse load to self-weight of beam. 

R Radius of hollow sphere. 
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Chapter 1 

INTRODUCTION 

1.1 Background   

  A new reinforced concrete construction technique was invented in Europe around 

1990 that combined the use of hollow polyethylene plastic spheres embedded in regions of 

low normal stresses of a structure. The use of such hollow sphere results in a reduction of 

structural self-weight of about 20 to 25 percent. The present study is focused on assessing the 

effectiveness of plastic spheres in a doubly reinforced concrete beam and on determining its 

flexural behavior and strength.               

  A reinforced concrete structure with hollow spheres can be constructed in three 

ways: precast, semi-precast, and cast-in-situ. Figure 1 shows an example of a semi-precast 

application. This technique involves use of the hollow spheres and most of the main 

reinforcement for a given structure. The elements are then stitched on-site through a concrete 

placement. Figure 2 shows an example of cast-in-situ setup in which hollow spheres are placed 

in modules between the top and bottom steel. The modules are then placed on conventional 

formwork followed by placement of concrete. Precast reinforced concrete structural units with 

hollow spheres can be delivered to a site as fully precast elements. This option however, 

becomes less continent for large span structures. A precast application is generally used and 

formed to be economical for slabs. 

  A review of the existing literature revealed that a number of studies have been 

conducted on the performance of slabs with hollow spheres, also known as bubble decks. 

However, no studies have been published for reinforced concrete beams with such hollow 

spheres. This thesis presents a theoretical and experimental study of simply-supported doubly 
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reinforced concrete beams of both types with and without hollow spheres under gradually 

increasing statics loads up to collapse. Numerical results include the prediction of moment-

curvature and load-deflection relationships. The nonlinear load-deflection curves are arrived 

at using finite-difference method, finite-integral, and Newmark’s methods. 

 

 

Figure 1. Semi-precast section for a slab 

 

Figure 2. Cast-in-situ system for a slab 

   



3 
 

 
 

1.2 Literature Review  

  As mentioned in Section 1.1 of this thesis, the past studies have been focused on 

reinforced concrete slabs and not beams with hollow spheres. Consequently, the literature 

review presented below relates to reinforced concrete slabs with hollow spheres. 

  Churakov [1] presented in his study that in 1990, a new construction technique 

which is called bubble deck technology was invented by Berunning to link airspace and steel 

using a voided biaxial concrete slab. The bubble deck technology uses spheres made of 

recycled industrial plastic to create air voids while providing strength through a section. As a 

result, this allows the hollow slab to act as a normal monolithic two-way spanning concrete 

slab. Bubble deck slabs can be lighter, stronger, and thinner than conventional reinforced 

concrete slabs.  

  In 2012, a study had been conducted by Ibrahim, Ali and Salman [2] on the flexural 

capacities of reinforced two-way bubble deck slabs. A bubble deck slab has a two-dimensional 

arrangement of voids within the slabs to reduce self-weight. The behavior of bubble deck slabs 

is influenced by the ratio of bubble diameter to slab thickness. To verify the flexural behavior 

of bubble deck slabs such as ultimate load, deflection, concrete compressive strain and crack 

pattern two-dimensional flexural tests were tested by using special loading frame. Results 

have shown that the crack pattern and flexural behavior depend on the void diameter to slab 

thickness ratio. 

  During their research Calin, Gintu, and Dascalu [3] found out that bubble deck slab 

can omit a significant volume of concrete in the central core where the slab is principally un-

stressed in flexure. In slabs, the depth of compressed concrete is usually a small proportion of 

the slab depth and this means that it almost always involves only the concrete between the 
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ball and the surface, so there is no sensible difference between the behavior of a solid slab and 

bubble deck slab. 

  In 2012, Teja and Kumar [4] studied the durability of bubble deck slab and 

explained it on the basis of creep and shrinkage. A bubble deck element was compared with 

a solid concrete block of the same dimension and of the same quality of concrete. Then, the 

difference between the shrinkage strains of these two was measured. The results show that 

bubble deck element has a negligible larger marginal shrinkage strain than a solid slab with 

equivalent dimension, same concrete performances, and under the same exposure to 

environmental conditions. The influence of carbonation shrinkage can be neglected in the 

design of concrete structures with bubble deck system because only a small part of the 

concrete cross section is exposed to this kind of shrinkage. 

             In 2010, Sharma, Mounika and Purnachandra [5] conducted studies on the fire 

resistance of bubble deck slabs. The analysis was first done on a hollow core slab without fire 

for two charges, one that leads to elastic dynamic response and the other that causes plastic 

behavior and severe concrete cracking. The same blast analysis had been subjected to fire. 

There were many difficulties in obtaining a reliable result. A discussion of the Experimental 

setup and experimental results are compared with simplified numerical models solved with 

the software LS-DYNA. Fire does not change the material and structural properties that fast 

as compared to an explosion. The most important conclusion of the analysis is that crack 

patterns and blast load dynamic responses are indeed altered by fires with temperature up to 

4500C. Yet within the limitations of assumptions concerning boundary conditions, the 

examined slabs keep their blast bearing capacity after blast load scenarios up to 1.5kg C4 with 

at 1m standoff distance. 
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   In 2009, Lai [6] discussed the acoustic behavior of bubble deck slabs in “Structural 

behavior of bubble deck slabs and their applications” and found that bubble deck performs 

acoustically in a better way than any other hollow or solid floor surfaces. Because of the three-

dimensional structure and the graduated force flow, the hollow spheres have a positive 

influence on sound insulation. The tests reveal that the airborne sound insulation is even higher 

than expected. This indicates the bubbles have a positive influence on sound insulation. The 

main criteria for reducing noise is the weight of the deck and therefore bubble deck evidently 

will not act otherwise than other deck types with equal weight. 

            Schnellenbach and Pfeffer [7] from the Institute for Concrete Structures and 

Materials as the Darnstadt University of Technology conducted another large study on the 

punching behavior of bubble deck. Two different depths, 240 mm and 450 mm, were used to 

model the shallowest and deepest variety of the slabs. The slab was made of standard B25 and 

B35 concrete with a maximum aggregate size of 16 mm and attached to a short column in 

order to simulate the response. The slabs were radially supported at eight points and were 

monitored by strain gauges, deflection gauges, and extensometers. The tests proved that 

although the HDPE spheres did not influence the crack pattern along the slab, the resistance 

to punching shear was less than a solid slab. When sawn open, the cross section showed that 

the crack angle varied from 30o to 40o. In order to further understand the structural mechanics 

of the Bubble deck, the researchers generated a 3D nonlinear finite element model of the slab 

with software DIANA. The FEM analysis conformed to the results of the physical 

investigations and verified the punching shear behavior of bubble deck. They suggest reducing 

the allowable shear area if any bubbles intersect the control perimeter so that those spheres 

will not play a role in the punching shear resistance. These findings correspond with other 
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studies in that they recommend mitigating the punching shear response by excluding HDPE 

spheres from the shear perimeter.  

            Mann [8] at the technical university of Darmstadt in Germany also performed tests 

on the stiffness of a bubble deck slab. The results verified with the theoretical analysis and 

with the physical tests done in the Netherlands [8]. For the same strength, bubble deck has 

87% of the bending stiffness of a similar solid slab but only 66% of the concrete volume due 

to the HDPE bubbles. As a result, the typical deflection was marginally higher than that of a 

solid slab, as expected. However, the significantly lower deadweight compensated for the 

slightly reduced stiffness, and therefore gave bubble deck a higher carrying capacity. Table 1 

summarizes the results of their experiments. Analyses have also proven that deflections under 

service loads were a little higher than that of an equivalent solid slab. On the other hand, the 

reduced permanent load positively affects the long-term response in the serviceability limit 

state (SLS) design, which governs crack propagation. 

Table 1. Stiffness test report summary [8] 

 

 *On the condition of same amount of steel, the concrete itself has 220% greater effect  

  The Technical University of Denmark and AEC Consulting Engineers Ltd, led by 

Professor Nielsen [18], tested both the shear strength and punching shear resistance. They 

used a slab depth of 188 mm, which is not a typical bubble deck thickness, and used a 

force/Thickness (a/d) ratio of 1.4. They found that shear strength for bubble deck was 

approximately 80%. For punching shear they experimented on slabs with depths of 230 mm 
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and 450 mm. They found that the crack pattern was similar to that of a solid slab and that local 

punching failure did not occur within the given load cases. The average experimental value of 

the punching shear capacity of this slab was about 90% of a solid slab. The test specimens 

actually performed better than the theoretical models, but still not as good as a solid concrete 

slab. 

  To the best of the author’s knowledge, a study of reinforced concrete beams having 

hollow spheres has not been published in the past. 

1.3 Problem Statement  

  The main problem addressed in this thesis is to conduct an experimental and 

theoretical study of the flexural behavior and strength of simply-supported doubly reinforced 

concrete beams. The corresponding beams with no hollow spheres are also studied for 

comparison, and are referred to as solid beams. Figure 3a shows a solid beam with a uniform 

cross section. The cross section and reinforcement details are shown in Figure 3b and 3c. 

Figures 4b and 4c show the cross section and reinforcement details of a beam with hollow 

spheres. The theoretical problem is to develop rigorous nonlinear moment-curvature relations 

for these cross sections and then couple them with central finite-difference, finite integral and 

Newmark’s solution scheme to predict the load-deflection relation of the beam up to collapse. 

This theoretical data is then used to compare to the load-deflection curve obtained from the 

experimental results. Lastly, the theoretical prediction model is applied to full-scale beams 

both with and without hollow spheres.   
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(a) Solid reinforced concrete beam 

 

 

              

 

Figure 3. (a) Solid reinforced concrete beam, (b) Cross section, and (c) Reinforcement detail  

 

 

       (b)           (c) 
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(a) Beam with hollow sphere  

 

                    

 

Figure 4. (a) Beam with hollow spheres, (b) Cross section of beam, and (c) Reinforcement 

details for beam with hollow spheres 

 

1.4 Objectives and Scope  

  With reference to both the solid reinforced concrete beam and the reinforced beam 

with hollow spheres, the primary objectives of this research are to: 

1. Experimentally study the flexural behavior and strength of doubly reinforced concrete 

beams with and without hollow spheres;  

Hollow 
sphere 

         (b)           (c) 
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2. Generate an algorithm for nonlinear moment-curvature relationships; 

3. Predict theoretical load-deflection relationships by coupling a moment-curvature 

relationship with three numerical methods, namely, central finite-difference method, finite 

integral method and Newmark’s method; 

4. Predict both moment-curvature and load-deflection curves for beams with real-life span 

and with hollow spheres of three different diameter; 

5. Assess the effectiveness of beams with hollow spheres in comparison to solid beam. 

  In this research, scale down model beams with cross-sectional dimensions of 6 × 6 

in., and a span of 36 in. are used. Ultimate strength of concrete used is 4,000 psi. The nominal 

yield stress of steel reinforcement is 71,000 psi. The steel reinforcement consists of four no.3 

rebar, and stirrups are made from no.2 rebar. Hollow spheres shown in Figure 4c, have a 

diameter of 2.5 in.   

1.5 Assumptions and Conditions  

The main assumptions and conditions adopted in this study are: 

1. Beams have simply-supported end conditions; 

2. The beams are loaded by two-point loads and gradually increase up to collapse; 

3. The bond between the hollow sphere and stirrups is maintained during casting process as 

well as during loading; 

4. Bernoulli-Navier plane section hypothesis is adopted; 

5. The tensile resistance of concrete is neglected in the analysis after the stress at a given 

cross section has reached the modulus of rupture; 

6. Concrete is assumed to fail when the compressive strain reaches 0.003 in. /in. 
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CHAPTER TWO  

THEORETICAL ANALYSES 

  This chapter presents detail about the numerical results obtained from the 

theoretical study of both doubly reinforced concrete beams with and without hollow spheres. 

Numerical results are presented in the form of moment-curvature relationship, and load-

deflection relationships. Once the non-linear moment-curvature relations are developed, the 

load-deflection curves are predicted using three different approaches, namely, the finite-

difference, the finite integral, and Newmark’s methods.    

2.1 Material Properties  

  The physical properties of concrete and steel reinforcement used in this study are 

summarized in this section.  

2.1.1 Stress-Strain Relation for Concrete  

  In this thesis, concrete with a compressive strength of 4,000 psi is used. The 

following nonlinear normal stress-strain relation for concrete given by Lin and Burns [14] is 

adopted:  

௖݂ = ௖݂ ′ ൤2	 ቀ
єܿ
є˳
ቁ െ ቀ

єܿ
є˳
ቁ
ଶ
൨                                                                                                              (1)    

Where:                                                                       

௖݂ = Computed concrete compression stress, 

௖݂ ′= Specified concrete compression stress, 

є௖ = Strain, 

є˳= Concrete strain at maximum stress. 

  Figure 5 is a graph of Equation 1. 
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2.1.2 Stress-Strain Relation for Steel  

  An elastic-plastic stress-strain relationship as shown in Figure 6 is adopted for the 

steel reinforcement. Thus, the following relationship are applicable: 

௦݂ = є௦ Es, 		|є௖| ൑ 	 є௬                                                                                                                                    (2a) 

௦݂ = fy ,   |є௖| ൒ 	 є௬                                                                                                                                      (2b) 

௦݂ = - ݂ ௬,   є௖ ൑ 	є௬                                                                                                                                     (2c) 

 

 

Fig 5. Stress-Strain relation for concrete 
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Figure 6. Stress-strain relation for steel 

 

2.2 Moment-Curvature Relation  

  To determine the moment-curvature relationships for the cross sections shown in 

Figures 3b and 4b, the location of the neutral axis needs to be determined for each value of 

the gradually increasing applied load. With reference to Figure 8, the axial force equilibrium 

equation is written as follows: 

ΣFx = Cc + Cୱ′ – T = 0.                                                                                                                   (3) 

Where: 

T = ܣ௦ ௦݂                                                                                                                                                                                    (4) 

′௦ܣ =′௦ܥ ௦݂′                                                                                                                                (5)  

In this expression, As and As
’ are areas of tensile and compressive steel reinforcements, 

respectively, ݂ ௦, and ݂ ௦′ are based on either hook’s law or material yield stress, fy, as applicable. 

The term Cc represents the total compressive force in concrete and is given by: 

Cc = ∫ fୡ b dx                                                                                                                          (6) 

   

 

 

S
te

el
 s

tr
es

s,
 f

s, 
(p

si
) 

 

Steel strain, є࢙, (in. /in.) 
0 



14 
 

 
 

In which dx is the depth of a concrete compressive elemental area shown in Figure 8. For the 

solid reinforced concrete cross section, the right hand side integral in Equation 6, can 

approximately be determine by using the following expression:  

Cc = ∑ ௖݂௜	
௡
௜ୀ଴ (ΔAc)i                                                                                                                    (7a) 

Cc = ∑ ௖݂௜	
௡
௜ୀ଴ (ΔAco)i                                                                                                                    (7b) 

In which ௖݂௜ is the concrete compressive stress, (ΔAc)i , and (ΔAco)i  are the finite elemental area 

as shown schematically in Figure 7 given by: 

(ΔAc)i  = bi  (Δx)i                                                                                                                          (8) 

By substituting the value of (ΔAc)i into Equation 7a, Cc is found out for solid cross section. By 

using values of T, Cc, and Cs’ in Equation 3, try to satisfy the force equilibrium condition 

iteratively.  

  Similar approach is used for locating the neutral axis location with gradually 

increasing load for cross section with hollow sphere. With reference to Figure 9, the axial 

force equilibrium equation should be same as Equation 3. Figure 7 shows the location of 

hollow sphere inside the cross section. Due to the geometric property of hollow sphere shown 

in Figure 7, the width of concrete in each layer varies with the depth of the cross section. To 

find the actual width of concrete layers we have to subtract the width, 2Y, which is occupied 

by each layer of the hollow sphere and can be expressed as: 

Y = √ܴଶ െ ܺଶ                                                                                                                          (9) 

As shown in Figure 7, R is a radius of the hollows sphere and X is a vertical length from the 

center of sphere to the C.G. of layer. Computed values from Equation 9, are used to compute 

(ΔAco)i  which is schematically shown in Figure 7 for cross section with hollow sphere given 

as: 
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(ΔAco)i  = (b - 2Y)i  Δxi                                                                                                                           (10) 

Values computed using given equations are coupled with Equation 7, to find out the Cc for 

cross section with hollow sphere. By using the computed values of T, Cc, and Cs’ in Equation 

3, try to satisfy the force equilibrium condition iteratively. 

  The bending moment equilibrium is written as: 

Mext = Mint                                                                                                                                (11) 

In this equation, Mext is obtained from the bending moment diagram shown in Figure 10b, and 

express as follows: 

Mext = W z,    0 < z < Lo                                                                                                                             (12a) 

Mext = W Lo,   Lo < z < L/2                                                                                                                        (12b) 

With reference to Figure 8, the internal resisting bending moment Mint is calculated using the 

following expression: 

Mint = ሺ	∑ ݂ܿ݅	
݊
݅ൌ0 (ΔAc)i   xi ) - ܣ௦′ ௦݂′ (d-d’)                                                                                    (13)  

Where xi is the distance of a finite elemental layer to the tension zone as shown in Figure 7, 

and ௦݂′ is a compressive steel stress itself taken as a negative quantity.        

  The computational procedure involves iteratively satisfying the equilibrium 

conditions represented by Equation 3 and Equation 13. For given cross sections, the converged 

value of c for a specified load, W is used to compute the corresponding curvature value, Φ. 

The corresponding moment, M, is obtained from the bending moment diagram which is in 

equilibrium with Mint given by Equation 13. Detailed steps for generating moment-curvature 

relationships for cross section shown in Figure 3b and 4b are given in the following section 

2.2.1 and 2.2.2 respectively.      
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Figure 7. Schematics of the cross section with geometry of the hollow sphere  

 

 

 

Figure 8. Cross-sectional strain, stresses, and forces for solid R.C. beam.  
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Figure 9. Cross-sectional strain, stresses and forces of hollow sphere beam   

 

 

          

 

 

Figure 10. Schematics of discretized cross sections 
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Figure 11. Beam schematics and bending moment diagram     

 

 

Figure 12. Strain, stresses, and force diagram for solid beam       
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(a) Beam schematics 
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Figure 13. Strain, stresses, and force diagram for beam with hollow sphere    

 

2.2.1 Solution Algorithm for Moment-Curvature Relation for Solid Cross Section  

  This section gives detailed steps for generating moment-curvature relationships for 

the cross section shown in Figure 3b. Algorithm steps are as follows: 

1. Specify the dimension and material properties of the solid reinforced cross section. 

2. Assume a neutral axis depth c and a value for ϵc as shown in Figure 7 and 8. 

3. Divide the cross section in-to n number layers as shown in Figure 10a. 

4. With strain values from Step 3, compute stress, fci, values using Equation 1. 

5. Specify all forces on stress diagram as shown in Figure 8. 

6. By using Equation 4, and 5 find out the values for T and Cs’. 

7. Using Equation 8, compute the value of (ΔAc)i  for each layer. 

8. With (ΔAc)i from Step 7, and stress values fci, from Step 4, compute Cc using Equation 7a.  

 ′ࢉࢌ 0.85

Strain  Stresses and forces   
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9. With T, Cc, from Step 4, and Cs’ from Step 8, check if Equation 3 is satisfied or not; if not 

satisfied then consider different value for c; and go to Step 2 and repeat Steps 2-9 until the 

equilibrium condition given by Equation 3 is satisfied. 

10. Compute concrete modulus of rupture, f୰, and elastic modulus, Ec, using the following 

ACI equations [11]:  

௥݂ = 7.5ඥ ௖݂′                                                                                                                                            (14) 

Ec = 57,000ඥ ௖݂′                                                                                                                                     (15) 

11. With fr and Ec from Step 10, compute the bending moment at cracking by using: 

Mcr =  
୍	௙ೝ
ୡ

                                                                                                               (16) 

12. With fr and Ec from Step 10, compute bottom strain ϵct, using the following equation: 

ϵct =  
௙ೝ
ா೎

                                                                                                                                          (17)  

13. With ϵct from Step 12, compute curvature at cracking by using following expression: 

Φ = 
∈೎೟
ୌିୡ

                                                                                                                           (18) 

14. Compute the internal resisting bending moment given in Equation 13, using converged 

values of c for each load level. 

15. Using converged c values for each load level, compute the corresponding curvature values. 

In order to determine if the above algorithm provides the similar ultimate moment capacity as 

one can obtain from Whitney’s theory [19], the following procedure is also used herein. Using 

force equilibrium, the depth of Whitney’s stress block, a, shown in Figure 12 is: 

a = 
′࢙࡯	ି	்

଴.଼ହ	ൈ	௙೎ᇱ	ൈ	ୠ	
                                                                                                                               (19) 
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The ultimate bending moment  

Mu = Cc ቀ݀ െ	
௔

ଶ
ቁ + Cs

’ ሺ݀ െ ݀′ሻ                                                                                                           (20) 

Where: 

Cc = 0.85 × ݂ ௖′ × b × a                                                                                                                                     (21)    

The ultimate curvature, Φu, using the strain diagram shown in Figure 13, is given by: 

Φu = 
଴.଴଴ଷ

ୡ
                                                                                                                (22) 

  The above iterative algorithm is programmed to obtain numerical results which are 

shown in Figure 14. Complete listing of a computer program to find out moment-curvature 

relation based on the provided algorithm is shown in Appendix B.  

2.2.2 Solution Algorithm for Moment-Curvature Relation for Cross Section with 

Hollow Sphere   

  This section gives detailed steps for generating moment-curvature relationships 

with converge values of c for each load increment of cross section shown in Figure 4b. The 

overall solution process is as follows: 

1. Specify the dimension and material properties of the cross section with hollow sphere. 

2. Assume a neutral axis depth c and a value for ϵc as shown in Figure 7 and 9. 

3. Divide the cross section in-to n number layers as shown in Figure 10b. 

4. With strain values for each layer from Step 3, compute stress fci values using Equation 1. 

5. Specify all forces on stress diagram as shown in Figure 9. 

6. By using Equation 4 and 5 find out the values for T and Cs’. 

7. Using Equation 9, compute the width 2Y for each layer of hollow sphere.  

8. With 2Y from Step 7, compute the value of (ΔAco)i  using Equation 10. 



22 
 

 
 

9. With (ΔAco)i from Step 8, and stress fci, from Step 4, compute Cc using Equation 7b.  

10. With T, Cc, from Step 4, and Cs’ from Step 8, check if Equation 3 is satisfied or not; if not 

satisfied then consider a different value for c; and go to Step 2 and repeat Step 2-9 until 

equilibrium condition given by Equation 13 is satisfied.    

11. Using Equation 14 and 15 find values of fr and Ec. 

12. With fr from Step 8, compute bending moment at cracking using Equation 16. 

13. With fr and Ec from Step 13, compute bottom strain ϵct using Equation 17.  

14. With ϵct from Step 14, compute curvature at cracking by using Equation 18. 

15. Compute the internal resisting bending moment given in Equation 13, using converged 

values of c for each load level. 

16. Using converged c values for each load level, compute the corresponding curvature values. 

The above iterative algorithm is programmed to obtain numerical results which is shown in 

Figure 15. Complete listing of a program is shown in Appendix B.  

2.3 Numerical Results  

  This section provides graphical representation of moment-curvature relationships 

based on algorithms in Section 2.2.1 and 2.2.2. Figures 14 and 15 represent the moment-

curvature curves for both cross sections with and without hollow spheres respectively. 
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Figure 14. Moment-curvature relation for solid cross section 

 

 

Figure 15. Moment-curvature relation for cross section with hollow sphere 
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 2.4 Finite-Difference Analysis for Predicting Load-Deflection Curves  

  A central finite-difference method [18] to develop load-deflection relations is 

described in this section. Briefly, the finite-difference procedure involves expressing 

derivatives in terms of the nodal values of dependent variables. As shown in Figure 16, this 

approach divides the beam into n number of equal length segments including the points 

outside the boundary of the beam called the phantom points. 

 

Figure 16. Finite difference discretization  

 

The beam slope at any node i is given by:  

(
ௗ௩

ௗ௭
)i =  

௩೔శభ		–		௩೔షభ		
ଶ௛

                      (23) 

The beam curvature, ɸ, at any given node is given by: 

ௗమ௩

ௗ௭మ
  ≈	

௩೔షభ		–		ଶ௩೔		ା		௩೔శభ		
ሺ௛ሻమ

  = -Φ                                                                                            (24) 

In Equations 23 and 24, vi represents the deflection value at any node i, h is the segment 

length, and i represents the node number. Equation 24 is applied at each node over [0, L/2] 

along with boundary conditions provided in Section 2.4.1. Due to symmetry of the beam 

Lo

Z 
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geometry and loading conditions, only half of the beam needs to be analyzed, that is i = 1, 2, 

3, …, n, where n = 9 is adopted for this study.    

2.4.1 Boundary Conditions  

 Since the deflection and the curvature at i = 1 are zero at the left support,  

 ଵ = 0                                                                                                                                     (25a)ݒ

ሺௗ
మ௩

ௗ௭మ
)1 = 0                (25b) 

Using Equations 24 and Equation 25b, one gets: 

 ଶ                             (25c)ݒ = ଴ݒ

Also, due to zero slope at mid-span: 

(
ௗ௩

ௗ௭
)L/2 = 0                            (25d) 

which upon using Equation 23 for i = 9 leads to: 

 (25e)                             ଼ݒ = ଵ଴ݒ

Equations 25a, 25c, 25e are used in the formulation presented in Section 2.4.2. 

2.4.2 Finite Difference Formulation  

  The numerical procedure is based on a second-order central finite-difference 

technique [18] which is, applied to Equation 24 at n equidistant nodes over [0, L/2]. Using 

appropriate boundary and symmetric conditions mentioned in the section 2.4.1 together with 

the Equation 24 for the nodes i = 0, 1, 2…, 9, the following matrix equation is obtained: 
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[N] {v} = - h2 {Φ}                                                                                                    (26b) 

  Appendix B presents the steps to formulate Equation 26b. The vector {Φ} 

represents curvature values at various nodes, and {v} represents the deflection vector. The 

curvature vector {Φ} in Equation 26b can be computed using the non-linear moment-

curvature relations. Using excel curve-fitting function, curvature equations are formulated in 

terms of bending moments, M. Thus for solid cross section,  

Φ = 9E-09M3 - 5E-07M2 + 1E-05M - 2E-05,  0 ൑  M ൑ 62.5 kip-in.                                                 (27a) 

Φ = 0.0003M2 - 0.0363M + 1.1487, 62.5 ൑ M ൑ 66 kip-in.                                                          (27b) 

And for a cross section with hollow sphere, 

Φ = 1E-08M3 - 7E-07M2 + 2E-05M - 3E-05,  0 ൑  M ൑ 62.5 kip-in.                                                 (28a) 

Φ = 0.0009x - 0.0559, 62.5 ൑ M ൑ 64.8 kip-in.                                                                                 (28b)

      The bending moment, M, at any node i can be computed using Equation 12a and 12b 

respectively.  

2.4.3 Finite-Difference Algorithm. 

  A finite-diffrence based algorithm for genrating load-deflection relationships using 

Equation 18a is developed and is presented herein. The steps are as follows: 

1. Define the total number of segments on the beam. 
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2. Define the boundary conditions for the beam as shown in Section 2.4.1. 

3. For i = 0, 1, 2, …, 9 compute all simultanious equations by using Equation 24. 

4. With all differential equations from Step 3, and boundary condition from Step 2, simplify 

these equations. 

5. With simplified equations from Step 4, generate the matrix Equation 26a.  

6. Using Equation 12a and 12b compute the moments for each nodes respectively. 

7. With moments from Step 6, compute the curvature vector {ɸ} using Equation 27a, 27b 

and 28a, 28b  respectively for both beams. 

8. With curvature {ɸ} vector from Step 7, and [N] matrix from Step 5, compute Equation 

26b in order to find the values of delfection vector {v}. 

9. Repeat Steps 6 to 7, until the collapse load condition is reached.  

The above iterative algorithm is programmed to compute the load-deflection relationships for 

both the beams. A complete listing of computer programming based on the above algorithm 

is given in Appendix A. 

2.4.4 Numerical Results  

             This section provides the load-deflection curves based on the algorithm provided 

in section 2.4.3 for both reinforced concrete beams with and without hollow spheres. Figure 

17 and 18 represents the load-deflection curve obtain theoritically for both beams with and 

without hollow spheres respectively. 
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Figure 17. Load-deflection curve for solid reinforced concrete beam 

 

 

 

Figure 18. Load-deflection for reinforced concrete beam with hollow spheres 
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2.5 Finite Integral Analysis  

  Finite integral method is a promising method of solving differential equations. It is 

generally of superior accuracy by comparing with the well-known finite-difference method. 

Brown and Trahair [12] used the finite integral approach to obtain numerical solutions of 

linear ordinary differential equations. Usami and Galambos [14] used the finite integral 

approach in a study of single angle beam-columns. Zhao and Razzaq [13] studied the behavior 

of biaxially loaded steel beam-columns subjected to a high temperature using a finite integral 

formulation. Mamadou and Razzaq [15] use finite integral method to study inelastic behavior 

and strength of steel beam-column with applied torsion.  

  Briefly, the finite integral procedure involves replacing the continuous differential 

equations which must be satisfied everywhere by a series of simultaneous equations which, 

represent the differential equations at a series of discrete points. All but the highest differential 

coefficients in these equations are eliminated by replacing them by linear combinations of the 

highest differential coefficients and of the constants of integration, these combinations being 

determined by the method of finite integrals. The resulting simultaneous equations may be 

combined with the boundary conditions and solved for the highest differential coefficients. 

The discrete values of the dependent variables are then calculated by back-substitution into 

the finite integral expressions. If the variation of a function f over an interval zj < z < zj+1 such 

that zj+1 - zj = h, is approximated by a parabola: 

f = az2 + bz + c                                                                                                                      (29) 

And fitted to three adjacent values of f, it can be shown by the following equation: 

׬ ݖ݀	݂
௭೔శభ
௭೔

ൌ ௛

ଵଶ	
ሺ5 ௜݂	+ 8 fi+1 – fi+2)                                                                                       (30) 

׬ ݖ݀	݂
௭೔శమ
௭೔

ൌ ௛

ଵଶ	
ሺ4	 ௜݂ + 16 fi+1 + 4 fi+2)                                                                                 (31) 
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For an integral li defined by:  

li =׬ ݖ݀	݂
௜௛
଴                                                                                                                   (32) 

The matrix equation formed by single equation of the Equation 30 and 31 can be written as:  

{li}= 
௛

ଵଶ
ሾ	ܰ	ሿሼ	f	ሽ                                                                                                                   (33) 

Here;     

{l} = {l0 l1 l2 ………. ln}T                                                                                                   (34a)     

{f} = {f0 f1 f2 ………. fn}T                                                                                                       (34b) 

 N is a square matrix of size (n+1), which is defined as given below:    

[N] = 





































........

........

..89168164

..04168164

..0189164

..0004164

..000185

..000000

                                                                    (35) 

 
If the function l like f is approximated by a series of parabolas, the second integral m of the 

function f given by: 

m=׬ ݖ݀	݈
௜௛
଴ ൌ ׬	 ׬ ݖ݀	ݖ݀	݂

௜௛
଴

௜௛
଴                                                                                                                              (36) 

Equation 30 can be approximated by:  

{m} = 
௛మ

ଵସସ
 [N]2{f}                                                                                                                       (37) 

From the above equations given by Brown and Trahir [12], we conclude that for a function 

F, the integrals are:  
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׬ = ′′′ܨ ݖூ௏݀ܨ
௜௛
଴                                                                                                                      (38) 

׬= ′′ܨ ׬ ݖூ௏݀ܨ
௜௛
଴

௜௛
଴                                                                                                                  (39) 

׬ = ′ܨ ׬ 	
௜௛
଴

௜௛
଴ ׬ ݖூ௏݀ܨ

௜௛
଴                                                                                                                    (40) 

Fi
׬=  ׬ ׬ ׬ ݖூ௏݀ܨ

௜௛
଴

௜௛
଴ 		

௜௛
଴

௜௛
଴                                                                                                                (41) 

This set of equations can approximately be represented as: 

ሼܨ′′′ሽ  = 
௛

ଵଶ
ሾܰሿሼܨூ௏ሽ                                                                                                                           (42) 

ሼܨ′′ሽ = ቀ ௛
ଵଶ
ቁ
ଶ
ሾܰሿሾܰሿሼܨூ௏ሽ                                                                                                                   (43) 

ሼܨ′ሽ = ቀ ௛
ଵଶ
ቁ
ଷ
ሾܰሿሾܰሿሾܰሿሼܨூ௏ሽ                                                                                                              (44) 

{F} = ቀ ௛
ଵଶ
ቁ
ସ
ሾܰሿሾܰሿሾܰሿሾܰሿሼܨூ௏ሽ                                                                                                     (45) 

Now obtain an equation for deflection and their derivatives of order three or less in terms of 

integrals involving fourth order derivatives, and determine the constant of integration by 

means of the available boundary condition: 

v = ׬ ׬ ݖ݀	"ݒ
௭
଴ ݖ݀	

௭
଴  + A1z +A2                                                                                                 (46) 

Invoke Boundary condition: 

  ଴= 0; A2 = 0ݒ

 ௟ = 0ݒ

A1 = െଵ

௅
׬ ׬ ݖ݀	"ݒ

௭
଴ ݖ݀	

௭
଴                                                                                                               (47) 

v = ׬ ׬ ݖ݀	"ݒ
௭
଴ ݖ݀	

௭
଴  െ௓

௅
׬ ׬ ݖ݀	"ݒ

௭
଴ ݖ݀	

௭
଴                                                                                  (48) 

Now using values of Equation 43, we can rewrite the Equation 48 as: 

 ሼݒሽ =		ቂ ௛
ଵଶ
ቃ
ଶ
ሾܰሿଶ൛ݒ"ൟ െ	ቀଵ

௅
ቁ ቂ ௛

ଵଶ
ቃ
ଶ
ሾ ௡ܰ

ଶሿ൛ݒ"ൟ                                                                          (49) 
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 ሼݒሽ ൌ ሾ ഥܰሿ	ሼݒ"ሽ                                                                                                                     (50) 

Where: 

 ሾ ഥܰሿ ൌ 	 ቂ ௛
ଵଶ
ቃ
ଶ
ሾܰሿଶ െ ቀଵ

௅
ቁ ቂ ௛

ଵଶ
ቃ
ଶ
ሾ ௡ܰ

ଶሿ                                                                                             (51a)                        

 ሾ ௡ܰ
ଶሿ ൌ  [ݖ଴

ଶ{Nn}T  ݖଵ
ଶ{Nn}T  ݖଶ

ଶ{Nn}T …… ݖ௡ଶ{Nn}T ]T                                                          (51b) 

  Euqation 51b defines the matrix [ ௡ܰ
ଶ] but ሾ ௡ܰ

ଶሿ matrix also can be defined as last 

row of [N2] matrix. In Equation 50, {v”} is the curvature Φ vector which can be found out 

using the nonlinear moment curvature relation of two beams. Using excel curve fitting 

program Equation 27 and 28 are generated which are curvature, ɸ, equations with respect to 

moment, M. Because applied load condition is two-point load system moment, M can be 

computed using Equation 12a and 12b respectively for each node. In this present study, n = 

16 was selected. 

2.5.1 Finite Integral Algorithm 

    A finite-integral algorithm for genrating non-linear load-deflection relation using 

Equation 49 is developed and presented herein. The steps are as follows: 

1. Define total number of segments of the beam. 

2. By using Equation 24 and 25 find out the values for each node and compute the [N] matrix. 

3. With [N] matrix from Step 2, compute [N2] matrix. 

4. Using the [N2] matrix from Step 3, solve for [ ௡ܰ
ଶ] matrix using Equation 51b. 

5. Using [N2] from Step 3, and [ ௡ܰ
ଶ] from Step 4, compute ሾ ഥܰሿ matrix using Equation 51a. 

6. Find the values of moment at each node using Equation 12a and 12b respectively. 

7. With moments from Step 6, compute the curvature vector ሼݒ"ሽ by using Equation 27a, 27b 

and 28a, 28b for both beams respectively. 



33 
 

 
 

8. With ሾ ഥܰሿ	matrix from Step 5, and ሼݒ"ሽ from Step 7, compute Equation 50 in order to find 

defelection at each node. 

9.  Repeat Steps 6 to 9 until the collapse load condition is reached.  

The above iterative algorithm is programmed to compute the load-deflection relationships for 

both the beams. A complete listing of computer programming based on the above algorithm 

is given in Appendix A. 

2.5.2 Numerical Results  

  This section provides the load-deflection curves for both reinforced concrete beams 

with and without hollow spheres based on the algorithm provided in section 2.5.1. Figure 19 

and 20 represents the load-deflection curve obtain theoritiaclly for solid reinforced concrete 

beam and reinforced concrete beam with hollow sphere respectively. 

 

Figure 19. Load deflection curve for solid R.C beam 
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Figure 20. Load deflection for R.C beam with hollow sphere 
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  Newmark's [16] numerical procedure is approximate method, but eventually, it 

leads to exact moment and deflection values when loading diagrams are made up of segments 
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towards the beam we can get better and more accurate results for moment and deflection 

values.   

2.6.1 Computation of Moments in beam  

  A fundamental part of these procedures depend on the rapid and systematic 
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successive shears, multiplied by the length of the beam over which the shear acts. A definite 

sign convention is adopted in this system, in which moment will be considered as positive 

when it produces compression in the top fiber beam. When resultant force to the left of a 

section is upwards, shear will consider as positive. Loads will consider as positive when loads 

act upward. The procedure is simplified by omitting the length of the segment as a common 

factor so the multiplication of the shear by the distance between loads until the end of the 

computation. Then the moment will be computed as a numerical quantity, multiply all by a 

common factor, which is the factor for the loads multiplied by the distance between loads.  

2.6.2 Computation of Deflection Value  

  For finding deflection value at each node first we need to find out the value of 

curvature at each node which can be found out using Equation 26 and 27 solid reinforced 

concrete beam and reinforced concrete beam with hollow spheres respectively. This curvature 

values are used to find conjugated loads. Triangular loading section which is shown in Figure 

21 is used to find conducted loading. Expression for conjugated loading [16] is given as:    

R = R1 + R2                                                                                                                           (52) 

R12 = 
௛

଺
 (ɸi-1 + 4 ɸi + ɸi+1)                                                                                                     (53) 

 
  In this equation, ɸi-1, 4 ɸi, and ɸi+1 are successive curvature values and h is length 

of each segment. Using same iterative process which we use to find out the moments, 

deflections are found out from conjugated loading.  
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Figure 21. Equation for continuous polygonal curve [16] 

2.6.3 Algorithm based on Newmark method 

  An algorithm for solving non-linear load deflection case using Newmark’s method 

is devloped and presented herein. The solution procedure is given below: 

1. Define the total number of segments and total nodes on beam.  

2. Define the loading condition on particular node point. And mark row 2 as loading case. 

3. Now start with assuming any random number for shear at first node on left side of beam 

and by adding that shear value from column 1 with sucssesive load value on column 2 you 

can find shear value for column 2. Then repate this step untill you find shear value for last 

column. 

4. Consider moment at first node equal to zero and repeate the same process which is 

described in Step 3, until moment value of last node is found out.  

5. If needed, then apply linear correction to moment values found out in Step 4; otherwise 

consider moment values of Step 4.  

ɸi ɸi‐1  ɸi+1 

R1 R2 

R12 = R1 + R2 = (h/6) (ɸi-1 + 4 ɸi + ɸi+1) 
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6. Using values of moments from Step 5, compute curvature{Φ} using Equation 27a, 27b 

and 28a, 28b for respective beam. 

7. With curvature values from Step 6, compute conjucated loading using Equation 49. 

8. Using conjucated loading from Step 7, repeat procedure which is shown in Step 3 to 5, in 

order to find actual deflections at each node. 

9. Repeat the Step 2-8, untill the collapse load condition is reached. 

The above iterative algorithm is used to compute the load-deflection relationship for both the 

beams and entire solution procedure based on this algorithm is provided in Appendix A. 

2.6.4 Numerical Results  

  This section provides the load-deflection curves for both reinforced concrete beams 

with and without hollow spheres based on the algorithm provided in section 2.6.3. Figure 22 

and 23 represents the load-deflection curve obtained theoritiaclly for solid reinforced concrete 

beam and reinforced concrete beam with hollow sphere respectively.    

 

 

Figure 22. Load-deflection for beam with hollow sphere  
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Figure 23. Load-deflection for solid beam 

2.7 Theoretical Study of Large Beams 

  In this research, theoretical study has been conducted for full scale beams having 

different span and having different diameter of spheres. A total of 6 beams are examined in 

which 3 beams are solid reinforced concrete beams and the other 3 beams are reinforced 

concrete beams having hollow spheres. In this study, beams are designated as Beam 3, 4, 5, 

6, 7, and 8. From that Beam 3, 5, and 7 are solid reinforced concrete beam and Beam 4, 6, and 

8 are reinforced concrete beam having hollow spheres. Span length of these beams are 15 ft., 

21 ft., and 27ft and hollow spheres which are used for these beams have a diameter of 6 inches, 

8 inches and 11 inches respectively. Cross section of the reinforced concrete beams with 

hollow sphere are shown in Figure 24, 25 and 26. Solid beams also have the same cross 

sections as shown in Figure 24, 25 and 26, just excluding the hollow sphere from it.  
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  To determine the load-deflection relations, first non-linear moment-curvature 

relationships are developed for all beams using the same iterative algorithm which is, shown 

in section 2.2.1 and 2.2.2. Then by coupling that moment-curvature relation with the central 

finite-difference algorithm provided in section 2.4.3 we are able to predict the load-deflection 

relation for these beams. In order to compare the load carrying capacity of these beams, ratio 

of cracking load, and collapse load to the self-weight of beams are calculated. The ratio of the 

beam cracking load, Wcr, to the self-weight wself of beam, can be defined as:   

ηcr = 
ௐ೎ೝ

௪ೞ೐೗೑
                                                                                                                (54) 

Similarly, the ratio of the beam collapse load Wc to its self-weight wself can be expressed as: 

ηc = 
ௐ೎

௪ೞ೐೗೑
                                                                                                                (55) 

Equation 54 and 55 are used to find the ratio ηcr, ηc for each beam.  

 

Figure 24. Cross section of Beam  

 

3 in. 
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Figure 25. Cross section of Beam 

 

Figure 26. Cross section of Beam 8  

4 in.



41 
 

 
 

2.8 Numerical Results  

  This section provides tabulated numerical results as well as the graphical 

representation of load-deflection relationship for all beams. Figure 27 through 32 represent 

the load-deflection curve for all beams. Table 2 shows the theoretical output of cracking and 

collapse load indices. Figure 33 and 34 represents the comparison of ηcr and ηc with respect 

to the length of beams. 
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Figure 27. Load-deflection curve for Beam 3  
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Figure 28. Load-deflection curve Beam 4  
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Figure 29. Load-deflection curve for Beam 5 
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Figure 30. Load-Deflection curve for Beam 6 
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Figure 31. Load-Deflection curve for Beam 7 
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Figure 32. Load-Deflection curve for Beam 8  
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Table 2. Cracking and collapse loads indices 

Beam 
type 

Beam 
No. 

Wcr 

(kips) 
Wc 

(kips) 
wself 

(kips) ηcr ηc 
Span 
(ft.) 

Solid 
3 3.00 40.00 2.35 1.28 17.08 15 
5 4.52 51.20 5.25 0.86 9.76 21 
7 6.74 77.00 10.8 0.62 7.13 27 

With 
hollow 
spheres  

4 2.88 38.98 1.92 1.50 20.3 15 
6 4.44 50.00 4.14 1.08 12.1 21 
8 6.48 75.00 7.80 0.83 9.62 27 

 

 

 

Figure 33. Cracking load index versus beam length 
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Figure 34. Collapse load index versus beam length 
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CHAPTER 3 

EXPERIMENTAL INVESTIGATION  

  The outcome of an experimental study is documented in this chapter. Steel stress-

strain relationship, concrete compressive strength, and beam load-strain and load-deflection 

curves are presented in this chapter.  

3.1 Material Properties  

3.1.1 Stress-Strain Relation for Steel 

  This section provides tabulated as well as graphical results which are obtained by 

performing tensile test on steel rebar. Details of test specimens, test apparatus and test result 

are given in the following section. 

3.1.1.1 Test Specimen and Specimen Cross Section Properties 

  Total 3 different specimens are used to perform tensile tests. Cross-sectional 

properties of these specimens are shown in Table 3. Figure 35 shows the details of test 

equipment and location of rebar in the equipment.  

 

Table 3. Cross-Sectional properties of specimen.  

Specimen No Type of Rebar Length (in.) 
Cross-sectional 

Area (in2) 

1 No.2 12 0.05 

2 No.3 15 0.11 

3 No.3 10 0.11 
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                                                        Figure 35. Tensile test equipment.  

 

3.1.1.2 Experimental Results 

  Experimental results for sample specimen are presented herein. Load is applied at 

specific incremental rate and respective strain values are measured. After collecting values till 

breaking point, graph for stress-strain relation are generated. Figure 36 shows the graphical 

representation of stress-strain relation for specimen.  
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Figure 36.  Stress-strain curve for sample specimen 

3.1.2 Compression Test of Concrete   

  This section gives details about the results which are obtained from performing 

compression test on the concrete cylinders. A total of 3 cylinders are casted using same 

concrete mix which is used to cast concrete beams. Each cylinder is having a height of 8 in. 

and diameter of 4 in. Equipment which is used to perform compression test is shown in Figure 

37. Table 4 provides the experimental results which are obtained from the test. 

Table 4. Compression Test data (fc
’) 

Specimen Number Compression strength (fc
’) 

Specimen 1 3993 Psi  

Specimen 2  3983 Psi 

Specimen 3 3997 Psi  
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Figure 37. Compression Test 

  

3.2 Test Procedure for Beams   

              For testing concrete beams, two point load system which is shown in Figure 38, is 

used. For setting up the loading system, concrete beams are first placed on simply supported 

ends. To apply load on the beam pneumatic pump and hydraulic jack are used. To transfer the 

point load into two point load system, steel I-beam and two metal blocks are used. To measure 

the increments of applied load, a load cell unit is attached with the hydraulic jack. Dial gages 

are setup to measure the deflection of beams at different locations. Dial gage D.G. 1, D.G. 3 

measure the deflection values for nodes which are 8 in. away from the mid-span. Dial gage 

D.G. 2 measures the deflection value at the mid-span. As load values increase, strain starts to 

develop in concrete. So, to measure the amount of strain in concrete, uniaxial strain gages are 
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used. In this test 9 strain gages are mounted on three different surfaces of the beam. Location 

of each strain gage is shown the Figure 39. 

  After assembling the entire set up, mounted strain gages are connected in strain 

gage box which records the strain for each increment of load. Once the dial gages are set and 

strain gages are connected, calibration has been made to set the reading of the dial, and strain 

gage to zero. The test is now ready to commence.  

            At first, certain load is applied so that the top of the metal block came in contact 

with the hydraulic jack. It is now required to ensure that the reading of dial gages do not 

change. Change in the reading indicates that setup is not done properly. Now load increments 

are applied gradually using the hydraulic jack. The dial and strain gauges readings are 

recorded. Again the load increments are applied and readings are measured. To obtain better 

graphical representation load increments are limited to 0.2 kips. This procedure is repeated 

till the collapse condition occur. This testing procedure is used for testing all concrete beams.  

 

Figure 38. Test Setup for Two-point Load system 



55 
 

 
 

 

 

(a) Top view  

 

 

(b) Bottom view  

 

(c) Elevation view  

Figure 39. Strain gauge location on (a) top surface (b) bottom surface (c) elevation surface  
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3.3 Experimental Results  

  This section gives a brief idea about the experimental results which are obtained 

by performing the flexural test on the beams.  

3.3.1 Flexural Test to Determine the Peak Load Capacity  

  The main purpose of this test was to determine the cracking load, and peak load of 

both beams under such kind of loading. A test is conducted on a total of 4 experimental beams. 

These beams are designated as Beam A, Beam B, Beam C, and Beam D. From that, Beam A 

and Beam C are solid doubly reinforced concrete beam, Beam B and Beam D, are doubly 

reinforced concrete beam with the hollow spheres. For this test, strain, and dial gages were 

not used. After conducting this test we are able to predict the cracking and collapse load 

pattern of these beams. Accumulated experimental results are shown in Table 5.  

Table 5. Cracking load and peak load results  

Number of beam Cracking load (kip) Collapse load (kip) 

Beam A 1.55 5.90 

Beam B 1.45 5.45 

Beam C 1.50 5.85 

Beam D 1.45 5.50 

 

3.3.2 Flexural test on Beam 1 

           After determining the peak and collapse load capacity of these beams, another test 

is conducted using the solid doubly reinforced concrete beam. The solid beam is designated 

as Beam 1. Beam 1 is tested with simply supported end condition. Dial gages D.G. 1 and D.G. 

3 were setup to measure side point’s deflections and D.G. 2 was setup to measure mid-span 
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deflection as shown in Figure 38. Total 9 strain gages were mounted on Beam 1 at the 

locations shown in Figure 39 to measure the strain amount. Now using the same test 

procedure, which is described in section 3.2, is conducted. Data is accumulated by applying 

specific load increments to beam up to the collapse condition.  

  Table 19 given in Appendix C presents the accumulated experimental results of 

Beam 1 and these results are used to compute the graphical representation of load-strain and 

load-deflection curves. Figure 45 shows the combined results from all 9 strain gages. Figure 

42 presents the load-strain curves for strain gages S.G. 1, 3, and 4. Figure 40 presents the load-

strain curves for strain gages S.G. 2, 5, and 6. Figure 44 shows the load-strain curves for strain 

gages S.G. 7, 8, and 9. Load-deflection relationships are shown in Figure 46.  

  While conducting the test, small cracks start to develop from the bottom part of the 

beam and with the increase in load amount, cracks starts to stretch up which is shown in Figure 

40 and 41.  
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Figure 40. Cracking pattern of Beam 1  

 

 

Figure 41. Cracking pattern in bottom surface of beam 1 after testing.  
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Figure 42. Load-strain curves for Strain Gauge 1, 3, and 4  
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Figure 43. Load-strain curves for Strain Gauge 2, 5, and 6 

0

1

2

3

4

5

6

7

‐400 ‐350 ‐300 ‐250 ‐200 ‐150 ‐100 ‐50 0
L

oa
d

, W
 (

ki
p

s)

Strain, Є × 10-6 (in./in.) 

Strain gauge 2

Strain gauge 5

Strain gauge 6



61 
 

 
 

 

Figure 44. Load- strain curves for Strain Gauge 7, 8, and 9 
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Figure 45. Combine Strain Gauge curves 

0

1

2

3

4

5

6

7

‐3500 ‐3000 ‐2500 ‐2000 ‐1500 ‐1000 ‐500 0 500 1000

L
oa

d
, W

 (
K

ip
s)

 

Strain, Є × 10-6 (in./in.)

Strain gauge 3
Strain gauge 2
Strain gauge 1
Strain gauge 4
Srain gauge 5
Strain gauge 6
Strain gauge 7
Strain gauge 8
Strain gauge 9



63 
 

 
 

 

 

Figure 46. Experimental load-deflection curves  
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to beam up to the collapse condition. Tabulated experimental results which are accumulated 

from dial and strain gages are shown in Table 20 in Appendix C.  

  Experimental results are shown in the form of load-deflection and load-strain 

relationships. Figure 49 shows the graphical representation of load-strain curve for strain 

gages S.G. 1, 2, and 3. Figure 50 and 51 shows the graphical representation of load-strain 

curve for S.G. 4, 5, 6 and S.G. 7, 8, and 9 respectively. Load-deflection relationships are 

shown in Figure 52.  Combined load-strain data for all 9 strain gages are shown in Figure 53. 

With increasing the load values small cracks starts to develop in the bottom of the beam and 

as load values increases the cracks are getting thicker and thicker. Location of cracks are 

clearly shown in Figure 48 with red lines.   

 

Figure 47. Testing setup for Beam 2 
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Figure 48. Cracking pattern in bottom surface of Beam 2 after test  

   

 

 

Figure 49. Load-strain curves for Strain Gauge 1, 2, and 3 
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Figure 50. Load-strain curves for Strain Gauge 4, 5, and 6 

 

 

Figure 51. Load-strain curve for Strain Gauge 7, 8, and 9 
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Figure 52. Experimental load-deflection curve  
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Figure 53. Combine load-strain curves 

0

1

2

3

4

5

6

‐3500 ‐3000 ‐2500 ‐2000 ‐1500 ‐1000 ‐500 0 500 1000

Lo
ad

, W
 (
K
ip
s)

Strain, Є × 10‐6 (in./in.)

Strain gauge 1

Strain gauge 3

Strain gauge 2

Strain gauge 4

Strain gauge 5

Strain gauge 6

Strain gauge 7

Strain gauge 8

Strain gauge 9



69 
 

 
 

Chapter 4  

COMPARISION OF RESULTS  

4.1 Comparison of Moment Curvature Relation  

  The comparison of moment-curvature relationships of both cross sections with and 

without hollow sphere are discussed in this section. Table 6 compares the theoretical values 

of moment and curvature of both cross sections used in this research. Figure 54 presents the 

graphical comparison of the moment-curvature values of both cross sections. 

Table 6. Comparison of bending moments and curvature  

        

Cross 

Sections 
Condition 

Bending 

moment, M 

(kip-in.) 

Curvature, ɸ 

(rad. /in.) × 10-5 

  Solid 
Cracking   17.07 4.30 

Ultimate   66.00 337 

With hollow 

sphere 

Cracking  16.78 4.34 

Ultimate   64.80 315.7 

 

4.2 Comparison of Load-Deflection Relation 

  Experimental and theoretical comparison of load-deflection relationships are 

discussed in this section. Figure 55 and 56 compares the theoretical and experimental load-

deflection relationship for both the beams. Figure 57 and 58 compares the theoretical versus 

experimental results for solid reinforced concrete beam and reinforced concrete beam with 

hollow spheres respectively. From the figures we can see that load-deflection values of 
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theoretical and experimental investigations are in good agreement to each other. Figure 59, 

60, and 61 shows the difference in theoretical results of 15 feet, 21 feet, and 27 beams 

respectively. 

4.3 Experiments versus Theory  

  The comparison of load-deflection and load-strain relationships from experiment 

and theory are discussed in this section. Table 7 compares the peak load, deflection, and strain 

data obtained from experimental and theoretical study for both beams used in this research. 

Figure 57 and 58 presents the comparison of the load-deflection relationships of Beam 1 and 

Beam 2 respectively. As seen from the figures, the peak deflections from theory and 

experiment are in good agreement. Figure 62 and 63 present the comparison of load-strain 

relationships of Beam 1 and Beam 2. Based on the results in Table 7, it can be seen that there 

is a marginal amount of difference in experimental and theoretical results of both beams. 

Figure 64 and 65 present the comparison of experimental results versus the theoretical 

predicted load-deflection relationships of both beams with and without hollow spheres 

respectively. 

Table 7. Comparison of experimental and theoretical results  

Beam type  Experimental  Theoretical  

Solid beam  

(Beam 1) 

Peak load (kips) 5.8 5.5 

Deflection, VL/2 (in.) 0.30 0.26 

Peak Strain, Єc 0.00305 0.003 

Beam with hollow 

sphere (Beam 2) 

Peak load 5.4 5.5 

Deflection, VL/2 (in.) 0.35 0.41 

Peak Strain, Єc 0.0029 0.003 
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Figure 54. Comparison of moment-curvature curves 

 

 

Figure 55. Comparison of theoretical load-deflection curves 
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Figure 56. Comparison of experimental load-deflection curves 
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Figure 57. Comparison of theoretical and experimental load-deflection curves  
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Figure 58. Comparison of theoretical and experimental load-deflection curves 
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Figure 59. Load-Deflection curves for 15 feet beam 
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Figure 60. Load-Deflection curves for 21 feet beam 
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Figure 61. Load-Deflection curves for 27 feet beam 

0

10

20

30

40

50

60

70

80

90

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

L
oa

d
, W

 (
ki

p
s)

Mid span deflection, v (in.)

For beam with
hollow spheres

For solid beam



78 
 

 
 

 

Figure 62. Theoritcal versus experimental load-strain values for Beam 1 

 

  

Figure 63. Theoritical versus experimental load-strain curve for Beam 2 

0

1

2

3

4

5

6

7

‐3500 ‐3000 ‐2500 ‐2000 ‐1500 ‐1000 ‐500 0

L
oa

d
, W

 (
ki

p
s)

 

Strain, Є × 10-6 (in./in.) 

Experimental values

Theoritical values

0

1

2

3

4

5

6

‐3500 ‐3000 ‐2500 ‐2000 ‐1500 ‐1000 ‐500 0

L
oa

d
, W

 (
ki

p
s)

Strain, Є × 10-6 (in./in.)

Theoritical values

Experimental values



79 
 

 
 

 

 

 

 

Figure 64. Comparison of experimental results to various predicted  

load-deflection relations for solid beam  
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Figure 65. Comparison of experimental results to various predicted  

load-deflection relations for beam with hollow spheres 
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higher than the solid beams. Also, experimental results in Table 8 present the same thing for 

 ௖௥. The study shows that the beam with hollow spheres has a higher amount ofߟ ௖ andߟ

deflection values than the solid beam. Thus, it is clear that hollow spheres plays an important 

role in reducing the self-weight of beams without affecting their strengths while slightly 

increasing the deflections by a small amount.  

Table 8. Summary of results  

 

 Solid 

beam 

Beam with 

hollow spheres  

Weight (lbs.) 112 100 

Experimental collapse load index, ߟ௖ 51.78 55.00 

Experimental cracking load index, ߟ௖௥ 12.70 14.00 

Ultimate moments (kip-in.) 66.00 64.30  

Ultimate curvature (rad. /in.)  0.00337 0.003157 

Elastic stiffness, k for theoretical load-

deflection curve  

83.89 59.17 

Elastic stiffness, k for practical load-deflection 

curve 

32.69 27.83 
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Chapter 5  

Conclusion and Future Research 

5.1 Conclusion  

  Based on the experimental and theoretical results, the following conclusions are 

drawn: 

1. Theoretical load-deflection relationships based on the finite-difference, finite integral, and 

Newmark’s methods are in excellent agreement with each other as well as with the 

experimental results. 

2. For the scale down beam tests, 12 pounds of concrete is replaced by 0.30 pounds of plastic 

spheres. 

3. The use of hollow spheres in the reinforced concrete beam tested resulted in reduction of 

beam self-weight by 12 percent. 

4. The theoretical study of full-scale beams showed that the use of hollow spheres gave a 

nearly 22 percent of reduction in self-weight. 

5. The peak load values from the experimental study are in good agreement with those from 

the analysis. 

6. The load-strain relations from the experimental study are in good agreement with those 

computed theoretically.   

7. The test beam with hollow spheres has a 10 and 6 percent chance of higher values of 

cracking and collapse load indices, respectively, as compared to the solid beam. 

8. The theoretical study of full-scale beams shows that the beams with hollow spheres has a 

33 percent chance of higher values of cracking and collapse load indices, as compared to 

solid beam. 
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5.2 Future Research  

         Research needs to be conducted on steel reinforced concrete indeterminate beams with 

hollow plastic spheres. Additional research also needs to be conducted on the effective use of 

hollow plastic spheres for various types of concrete structures. 
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APPENDIX A 

Computer Programming for Load-Deflection Relation 
 
 

 This appendix presents a listing of computer programs which are generated using 

Microsoft excel to predict the load deflection curve. Programs are based on: 

(a) Central finite difference method. 

(b) Finite Integral method. 

(c) Newmark’s Approach. 

(a) Computer programming for Finite Difference Method  

          This section shows the excel programming for finite difference procedure which is 

based on solution algorithm provided in section 2.4.3. The program consists of several parts, 

part one is formulation of equations and applying boundary conditions, these equations can 

be written as: 

Node i =1, ɸ =   
ሺ୴଴	–	ଶ୴ଵ	ା	୴ଶሻ

௛మ
                                                                                                            (56)                         

Node i =2, ɸ =   
ሺ୚ଵ	–	ଶ୚ଶ	ା	୴ଷሻ

௛మ
                                                                                                             (57)      

Node i =3, ɸ =   
ሺ୴ଶ	–	ଶ୴ଷ	ା	୴ସሻ

௛మ
                                                                                                            (58) 

Node i =4, ɸ =   
ሺ୴ଷ	–	ଶ୴ସ	ା	୴ହሻ

௛మ
                                                                                                            (59) 

Node i =5, ɸ =   
ሺ୴ସ	–	ଶ୴ହ	ା	୴଺ሻ

௛మ
                                                                                                            (60) 

Node i =6, ɸ =   
ሺ୴ହ	–	ଶ୴଺	ା	୴଻ሻ

௛మ
                                                                                                            (61) 

Node i =7, ɸ =   
ሺ୴଺	–	ଶ୴଻	ା	୴଼ሻ

௛మ
                                                                                                            (62) 

Node i =8, ɸ =   
ሺ୴଻	–	ଶ୴଼	ା	୴ଽሻ

௛మ
                                                                                                            (63) 

Node i =9, ɸ =   
ሺ୴଼	–	ଶ୴ଽ	ା	୴ଵ଴ሻ

௛మ
                                                                                                            (63) 
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Part two consists of formulation of N matrix by which is shown in Table 9, part three is to 

find out N inverse matrix by using inverse function in excel. 

 

Table 9. N matrix for Finite-difference Method   

Node  2  3  4  5  6  7  8  9 

2  ‐2  1  0  0  0  0  0  0 

3  1  ‐2  1  0  0  0  0  0 

4  0  1  ‐2  1  0  0  0  0 

5  0  0  1  ‐2  1  0  0  0 

6  0  0  0  1  ‐2  1  0  0 

7  0  0  0  0  1  ‐2  1  0 

8  0  0  0  0  0  1  ‐2  1 

9  0  0  0  0  0  0  2  ‐2 

                 

 

 

Table 10. N inverse matrix 

Node   2  3  4  5  6  7  8  9 

2  ‐1  ‐1  ‐1  ‐1  ‐1  ‐1  ‐1  ‐0.5 

3  ‐1  ‐2  ‐2  ‐2  ‐2  ‐2  ‐2  ‐1 

4  ‐1  ‐2  ‐3  ‐3  ‐3  ‐3  ‐3  ‐1.5 

5  ‐1  ‐2  ‐3  ‐4  ‐4  ‐4  ‐4  ‐2 

6  ‐1  ‐2  ‐3  ‐4  ‐5  ‐5  ‐5  ‐2.5 

7  ‐1  ‐2  ‐3  ‐4  ‐5  ‐6  ‐6  ‐3 

8  ‐1  ‐2  ‐3  ‐4  ‐5  ‐6  ‐7  ‐3.5 

9  ‐1  ‐2  ‐3  ‐4  ‐5  ‐6  ‐7  ‐4 

  

Part four consists of finding deflection values using curve fitting formulas. Deflection values 

are shown in column 1 of Table 11. Now using Equation 18 matrix equation is solved out. 

Last column of Table 11 gives the actual values of deflections at each node.  
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Table 11. Curvature and Deflection values  

Curvature Deflection 
2.4046E-06 -0.034372875 
4.4738E-05 -0.068736132 
0.00024738 -0.102920437 
0.00083235 -0.136115223 
0.00213324 -0.165980584 
0.00213324 -0.187312985 
0.00213324 -0.200112426 
0.00213324 -0.204378906 

 

(b) Computer program for Finite Integral Method  

   This section gives the detail of excel programming to find out the load deflection 

curve which is based on finite integral method and the solution algorithm which is shown in 

section 2.5.1. By following Step 3 from algorithm N matrix is generated which is shown in 

Table 12. Using matrix multiplication function in excel N2 matrix is find out. Step 5 is 

computation of Nn
2 matrix using Equation 35. Table 14 shows the final computed values of 

Nn
2 matrix. Now using Step 9 N bar matrix is found out which is shown in Table 16.   
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Table 17. Deflection and curvature values  

Curvature  Deflection 

0  0 

1.95487E‐05  ‐0.022083641 

5.45932E‐05  ‐0.044067692 

0.000152461  ‐0.065830558 

0.000425775  ‐0.086775765 

0.00118905  ‐0.105217078 

0.00118905  ‐0.118880121 

0.00118905  ‐0.12690621 

0.00118905  ‐0.129581573 

0.00118905  ‐0.12690621 

0.00118905  ‐0.118880121 

0.00118905  ‐0.105217078 

0.000425775  ‐0.086775765 

0.000152461  ‐0.065830558 

5.45932E‐05  ‐0.044067692 

1.95487E‐05  ‐0.022086266 

0  0 

 

(c) Newmark’s method 

During this research for computing load deflection on a theoretical basis, a 

computer program has been develop using Newmark’s method. By following a step by 

step procedure which is described in the algorithm shown in section 2.6.3 we can formulate 

the excel program using Newmark’s method. Details of the excel sheet is shown in Table 

18.  
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APPENDIX B 

Computer Programming for Non-Linear Moment Curvature Relation 

           This appendix presents a listing of computer programs, which can be used to find 

out the moment curvature relation. Detail script of the programming is shown below: 

(a) Moment curvature for solid R.C beam   

% Material properties of R.C beam 
fc=4000; e_cu=0.003; 
fy=71000; Ey=28842000; ey=fy/Ey; 
Ec=57000*sqrt(fc); 
 
n=Ey/Ec; 
b=6; d_gross=6; d=4.8125; dc=1; 
As=0.22; r=As/(b*d); 
Asc=0.22; rc=Asc/(b*d);  
 
%Computation of b 
if fc<=4000 
b1=0.85; 
elseif 4000<fc<=8000 
b1=0.85-0.05*(fc-4000)/1000; 
else 
b1=0.65; 
end 
k=sqrt(((r+rc)*n)^2+2*(r+rc*dc/d)*n)-(r+rc)*n; 
fsc=((k*d-dc)/(d-k*d))*fy; 
T=As*fy; Cs=Asc*fsc; eo = 0.002;  
Aci = 6*0.195*i; i = [0,31]; 
fcs = fc(2(eci/e0)-(eci/e0)^2); 
Cc= symsum(fcs,eci,0,31)*Aci;  

 while  
    T-Cc-Cs = 0; 
end 
%Formulation for Moment curvature 
M=[]; phi=[]; 
%Moment and Curvature at cracking  
Ig=(b^4)/12; c=d_gross/2; fr=7.5*sqrt(fc); 
e_bottom = fr/Ec; 
Mcr=fr*Ig/c; phi_cr = e_bottom/c; 
M=[M;Mcr]; phi=[phi; phi_cr]; 
k=sqrt(((r+rc)*n)^2+2*(r+rc*dc/d)*n)-(r+rc)*n; 
fsc=((k*d-dc)/(d-k*d))*fy; 
My=As*fy*d*(1-k/3)+Asc*fsc*(k*d/3-dc); phi_y=ey/(d-k*d); 
M=[M;My]; phi=[phi;phi_y];   
T=As*fy; Cs=Asc*fsc; 
a = (T-Cs)/(0.85*fc*b); 
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Cc=0.85*fc*a*b; 
%Moment Curvature at ultimate condition.  
ct=0.5*d; c=0; 
while abs(c/ct-1)>0.0002; 
e_sc=((ct-dc)/ct)*e_cu; 
fsc=Ey*e_sc; 
Cs=Asc*fsc; Cc=0.85*fc*b*b1*a; T=As*fy; 
end 
Mu=0.85*fc*b1*a*b*(d-b1*a/2)+Asc*fsc*(d-dc); phi_u=e_cu/(0.85*a); 
M=[M;My;Mu] 
phi=[phi;phi_y;phi_u] 
%Moment curvature relation  
plot(phi,M*0.001,'--s'); 

 
(b) Moment curvature for R.C beam having hollow sphere  

 
% Material properties of R.C beam 
fc=4000; e_cu=0.003; 
fy=71000; Ey=28842000; ey=fy/Ey; 
Ec=57000*sqrt(fc); 
n=Ey/Ec; 
b=6; d_gross=6; d=4.8125; dc=1; 
As=0.22; r=As/(b*d); 
Asc=0.22; rc=Asc/(b*d); 
%Sphere_Dia = 2.5; ds = 2.5; 
 
%Computation of b 
if fc<=4000 
b1=0.85; 
elseif 4000<fc<=8000 
b1=0.85-0.05*(fc-4000)/1000; 
else 
b1=0.65; 
end 
k=sqrt(((r+rc)*n)^2+2*(r+rc*dc/d)*n)-(r+rc)*n; 
fsc=((k*d-dc)/(d-k*d))*fy; 
T=As*fy; Cs=Asc*fsc; e_o = 0.002;  
Acoi = 6*0.195*i; i= [0,31]; 
fcs = fc(2(eci/e_o)-(eci/e_o)^2); 
Cc= symsum(fcs,eci,0,31)*Acoi;  

 while  
    T-Cc-Cs = 0; 
end 
 
T=As*fy; Cs=Asc*fsc; eo = 0.002; 
X = symsum(1.25-0.105*i, i,0,31);  
Yi = sqrt((1.25*1.25)-(X*X));  
Aci = (6-2*Yi)*0.105; 
fcs = fc(2(eci/e0)-(eci/e0)^2); 
Cc= symsum(fcs,eci,0,31)*Aci;  

 while  
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    T-Cc-Cs = 0; 
end  
%Formulation for Moment curvature 
M=[]; phi=[]; 
Ig=(b^4)/12; c=d_gross/2; fr=7.5*sqrt(fc); 
e_bottom = fr/Ec; 
Mcr=fr*Ig/c; phi_cr= e_bottom/c; 
M=[M;Mcr]; phi=[phi; phi_cr];  
k=sqrt(((r+rc)*n)^2+2*(r+rc*dc/d)*n)-(r+rc)*n; 
fsc=((k*d-dc)/(d-k*d))*fy; 
My=As*fy*d*(1-k/3)+Asc*fsc*(k*d/3-dc); phi_y=ey/(d-k*d); 
M=[M;My]; phi=[phi;phi_y]; 
T=As*fy; Cs=Asc*fsc; 
Cc=0.85*fc*a*b; 

 while  
    T-Cc-Cs = 0; 
    a = (T-Cs)/(0.85*fc*b); 
end 
ct=0.5*d; c=0; 
while abs(c/ct-1)>0.0002; 
e_sc=((ct-dc)/ct)*e_cu; 
fsc=Ey*e_sc; 
Cs=Asc*fsc; Cc=0.85*fc*b*b1*a; T=As*fy; 
end 
Mu=0.85*fc*b1*a*b*(d-b1*a/2)+Asc*fsc*(d-dc); phi_u=e_cu/(0.85*a); 
M=[M;My;Mu] 
phi=[phi;phi_y;phi_u] 
%Moment curvature relation  
plot(phi,M*0.001,'--s'); 
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APPENDIX C 

Experimental Data 

  This section gives the detailed tabulated results of the experimental test which is 

performed on the beams. Table 19 and 20 show the details of solid R.C beam and R.C beam 

with hollow spheres. Tables includes data which are accumulated from strain and dial gages.  

Table 19. Experimental results of Beam 1  
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Table 20. Experimental results of Beam 2 
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