

122

Figure 96: Sinusoid Z-Axis Acceleration

Figure 97: Sinusoid Pitch Rate

123

5.3.7 Sinusoid Short Frequency

 A second test on the sinusoid maneuver was performed with a reduced frequency of

oscillation. This tests also makes use of the Pixhawk’s stabilize flight mode to assist the pilot in

maintaining level flight conditions. This ensures that the pitching data will remain on the y-axis

of rotation throughout the maneuvers duration, and not couple with the remaining two axes. As

stated in the prior section, the oscillation is set to ¼ Hz for this test.

Figure 98: Sinusoid Pitching Velocity

124

Figure 99: Sinusoid Angle of Attack

Figure 100: Sinusoid Z-Axis Acceleration

125

Figure 101: Sinusoid Pitch Rate

5.3.8 S-Turn

 The S-Turn serves as the only pilot performed maneuver for this test. The pilot shifts the

plane laterally while rotating on its z-axis to stimulate rotational effects in the x and z axes. This

is to stimulate the sideslip angles, as the later pitching maneuvers should have little effect on the

probe itself.

126

Figure 102: S-Turn Yaw Rotational Velocity

Figure 103: S-Turn Sideslip Angle

127

CHAPTER VI

CONCLUSIONS

 The flexible coding available to the Pixhawk in conjunction with a custom air data vane

proved capable for logging in-flight data for unmanned aircraft. The high logging rate, together

with moderately accurate individual sensors, provides quality data from a mostly turnkey system.

This, in conjunction with the Pixhawk’s automated system identification maneuvers, allows for

increased complexity in system ID maneuvers that would prove difficult through manual

execution.

 Using a formally designed experiment with this system, a model of pitch dampening as a

function of power and angle of attack can be identified. While the final CCD was not performed

due to time constraints, the system proved capable of performing the requested maneuvers and

providing data to determine the stability and control derivatives for the pitching moment.

 The following sections in this chapter show the key results and lessons learned across this

project. This includes a brief overview of the tolerances for the Pixhawk, followed by a discussion

on the vane dynamics of the custom air data vane. Next comes some lessons learned in aircraft

system identification, the validity of DoE/RSM techniques, and ways to further improve the

systems in future work.

6.1 PROBE VANE DYNAMICS

 The vane dynamics were a primary focus because unlike most of the Pixhawk’s systems,

vanes were designed in house and were a major concern in the development process. The step

input tests performed in the wind tunnel showed that even in a worst-case scenario, the vane motion

would dampen out at around 40 milliseconds. In all tests, the vanes returned to the correct flow

128

direction, and had impeccable tracking for lower frequency oscillations. There exists a slight

overshoot at the peaks of oscillation due to the inertia of the vane itself, but only in the most

extreme cases, which is not indicative of typical flight behavior.

6.2 LESSONS LEARNED IN AIRCRAFT SYSTEM IDENTIFICATION

 The automation of system identification in the Pixhawk has unlocked the potential for even

more accurate in-flight data than was possible with the traditional multistep maneuver. Morelli

states that the multi-sine is the “poor man’s sinusoid maneuver” [3]. A multistep maneuver is

much simpler for a pilot to initiate, as it involves only holding the control surface at an extreme

for a predetermined fraction of time. Sinusoid maneuvers are especially difficult to replicate

precisely through manual control and chirp motions are even tougher still. The multistep maneuver

serves as a manageable alternative for those restricted to manual control only.

 By having the Pixhawk provide the inputs, a sinusoid and chirp maneuver can be performed

with formulaic accuracy. The pilot only needs to flip the switch to begin the maneuver with

settings dictated by telemetry on the ground. This means a multi-sine maneuver can be performed

with a similar pattern to the multistep maneuver to generate even clearer results than would be

possible for a manual operated pilot. Due to time constraints, this possibility could not be explored

for this project, but future work would see even greater accuracy when collecting flight

characteristics than is possible for the traditional multistep maneuver.

6.3 VALIDITY OF DESIGN OF EXPERIMENTS

 While the employment of DoE/RSM methods is not without challenges, the FCD model

proved effective for air data vane characterization. Statistical models from the design space

provide a framework to validate the effectiveness of the test and create a more robust, defensible,

regression model compared against the traditional OFAT methods. The optimization techniques

129

also proved useful in altering the design of the vanes for optimal performance. By randomizing

the design points, the effect of any lurking factors is averaged over the entire experiment.

6.4 IMPROVEMENTS OVER PREVIOUS SYSTEMS

 The concept for the Pixhawk autopilot system and the air data vane was created by Scott

Hood. Given the similar hardware, similar performance results were expected, though the vanes

used in this experiment had a lower resolution than the specifications provided in Hood’s paper.

This is not so much a fault in the vane design as it was the electrical noise inherent to the Pixhawk

for this project that limited resolution. The sophistication of the PX4 development environment

allows for a much more research friendly system than other competitors like the basic Arduino,

and is far more user friendly than other candidates with greater processing power, like the

Beaglebone Black.

6.5 FUTURE WORK

 More work is planned for refining the sinusoid maneuvers as an improvement upon the

traditional multistep maneuver. This would include implementing more complex sinusoid

maneuvers into the PX4’s code and testing their efficiency against the multistep maneuver. This

development would then transition to the development of system identification maneuvers to

collect in flight data for multiple flight characteristics simultaneously, potentially exciting motion

across all three axes simultaneously to collect flight parameter data in minimal time.

 Although much of the future work will revolve around a project’s specific requirements,

one of the overall goals is the creation of an ODU branch for the PX4 firmware. This would allow

anyone working on ODU projects to track potential changes to the ODU code, reduce the

duplication of effort, and pave the way for ODU produced features to be integrated into the PX4

130

firmware master branch. This also opens up new avenues for potential UAV automation for

ODU’s mechanical and aerospace engineering department.

 While the short-period calculation was ultimately left unfinished in this project, the

derivation of the Air Titan’s moments of inertia is all that is needed to implement the procedure.

The flexibility and complexity of the Air Titan’s design makes finding these inertias difficult, but

this is the last barrier to conducting a formal study using outdoor testing. Future testing should

endeavor to use a more rigid airframe.

132

17. Robotics, D. How-to guide: Pixhawk with 6S batteries (>4S). 2013; Available
from: https://pixhawk.org/users/tutorials/pixhawk_6s_mod.

18. Britcher, C., Pressure Probes Lecture. 2017, Old Dominion University: Norfolk,
VA.

19. Gonsalez, J.C. and E.A. Arrington, Five-Hole Flow Angle Probe Calibration for
the NASA Glenn Icing Research Tunnel. 1999.

20. Karam, J.T.J.R., Dynamic behavior of angle-of-attack vane assemblies (model
for aircraft thunderstorm penetration studies). Journal of Aircraft, 1975. 12: p.
190-192.

21. Wieringa, J., Evaluation and design of wind vanes. Journal of Applied
Meteorology, 1967. 6(6): p. 1114-1122.

22. Bertin, J.J. and R.M. Cummings, Aerodynamics for engineers. Sixth edition. ed.
2014, Boston: Pearson. x, 822 pages.

23. Github. 2017 [cited 2016 09]; Available from:
https://github.com/Deafro/FirmwareAOASS.

24. Meier, L. PX4 Development Guide. 2010 11/08/2016 [cited 2016 08/03];
Available from: http://dev.px4.io/.

25. Flyer, D. QGroundControl. 2009 [cited 2017 01]; Available from:
http://qgroundcontrol.org/.

26. Nutt, G. Nuttx Real-Time Operating System. 2017 [cited 2016 08]; Available
from: http://nuttx.org/.

27. Flying Unmanned Aircraft: A Pilot's Perspective. 2011: Hampton.
28. LSM303D Datasheet. 2017 [cited 2015 08]; Available from:

https://www.pololu.com/file/0J703/LSM303D.pdf.
29. L3GD20H Datasheet. 2017.
30. Ardupilot. Using an Airspeed Sensor. 2016 [cited 2016 05]; Available from:

http://ardupilot.org/plane/docs/airspeed.html.
31. Arduino. 2016 [cited 2016 October 10]; Available from: https://www.arduino.cc/.
32. Beaglebone Black. 2016, October 20 [cited 2015 October 18]; Available from:

http://beagleboard.org/black.
33. Bhandari, S., et al. Avionics System for UAV Flight Controls Research. 2013.

Reston: American Institute of Aeronautics and Astronautics.

136

Figure 105: Custom Arduino

 The construction of a new system, however, means a lack of third party sensor support. Any

sensors needed would have to be manually added and their code written. The effort of creating a

fully independent system is a sizable one and would be difficult to complete given the time

constraints of this project

A3. BEAGLEBONE BLACK

The Beaglebone Black boasts the strongest hardware among autopilots on the market.

Unfortunately, this system lacks both the libraries and third-party sensor support. This system

would not need to be constructed from the ground up, but much like the Custom Arduino, the

integration of sensors would be a significant undertaking and may not yield ideal results [32].

137

Figure 106: Beaglebone Black

A3.1 Field Programmable Gate Array (FPGA)

 The FPGA is an integrated circuit designed to be configured after manufacturing.

Researchers at Cal Poly Pomona used a FPGA board and a real-time operating system to gain full

control over the hardware environment [33]. The freedom to customize the FPGA allows for the

construction of an autopilot for extremely specific applications. Simply put, this option is building

an autopilot from the ground up. This also makes it the most difficult of the options to construct,

as the only features available are the one made by the designer themselves.

Figure 107: FPGA

138

A3.2 Data Analysis Options

A3.2.1. Flight Plot

Flight plot is a Java app that provides an alternative way of decoding and viewing sdlog2

files. This is not recommended for those looking to transition the data to a graphing program like

Excel or MATLAB, yet it does provide the log data without the timely process of converting the

logs to csv files. This makes it ideal for performing rapid iterations during testing to ensure

instruments are working properly [24].

Figure 108: Flight Pilot GUI

139

A3.3 Log Muncher

 Log Muncher is an online client that accepts log files directly and charts all parameters

against the GPS timestamp given a few minutes to process. This is the software PX4’s

development team recommends to those using the Pixhawk, as it doesn’t require converting to csv

files to observe data. Also, being a web based client, it is easy to transfer data to colleagues [24].

Figure 109: Log Muncher Web Page

140

 The downside to this software is its lack of flexibility. Log Muncher does not chart graphs

from custom channels, and it is difficult to collect specific information on any one part of a

particular flight.

A3.4. Px4tools

Px4Tools is easy to share through the code repository github.com. This software has access

to advanced plotting capabilities, heavy customization, and the tools needed for detailed analysis.

It is a powerful tool for users familiar with python, though it does require the files be converted to

csv before using PX4Tools [24].

141

Figure 110: Px4 Tools

142

APPENDIX B

ADC LOGGING

 The only change made to the firmware PX4 Flight Stack was to add an additional

subscription to sdlog2.c that transmits data from the 3.3V ADC pins to the sdlog2 function.

Additional changes were implemented in sdlog2_messages.h to add a family tree and create names

to house the collected data. The changes were minimal and did not interfere with the other sections

of the code. Each code change is listed below, indicating the name and location of the file where

changes were made [23]: The fully assembled code used in this project can be found at

https://github.com/Deafro/FirmwareAoASS

A1. FIRMWARE/SRC/MODULES/SDLOG2/SDLOG.C

The PX4 developers include an additional module called adc_report that stores all voltage

information across the eight ADC channels. In order to use this data in sdlog2.c, the function must

subscribe to adc_report.

Line Code Modified

114 #include <uORB/topics/adc_report.h>

Table 10: ADC Report Subscription

143

The next change involved creating a structure variable for the function adc_report and adc

source of information:

Line Code Modified

1226 struct adc_report_s adc;

Table 11: AOAS Source Structure

The message structure for where the data are stored was then included. (The term “AOAS”

originates from the modifications made to sdlog2_messages.h and will be detailed in this section.)

Line Code Modified

1288 struct log_AOAS_s log_AOAS

Table 12: ADC Data Variable

The program is now subscribed to adc_report and the integer data from adc_report then

needs to be collected:

Line Code Modified

1338 int adc_sub;

1383 subs.adc_sub = -1;

Table 13: ADC Data Structure

144

The final change was the creation of the cells for data storage. Stored in

adc.channel_value[] is the data for all 8 ADC pins and it was through trial and error that the last

two digits corresponded with the 3.3V ADC pins (6 and 7 since the array starts with 0).

Line Code Modified

2285 If (copy_if_updated(ORB_ID(adc_report)),
&subs.adc_sub, &buf.adc)) {

2286 log_msg.msg_type = Log_AOAS_MSG;

2287 log_msg.body.log_AOAS.channel_value_aoa =
buf.adc.channel_value[6];

2288 log_msg.body.log_AOAS.channel_value_ss =
buf.adc.channel_value[7];

2289 LOGBUFFER_WRITE_AND_COUNT(AOAS);

}

Table 14: Sdlog Family Structure

A1.1. Firmware/src/modules/sdlog2_messages.h

 sdlog2_messages.h creates the format for messages written by sdlog2. The changes were

minor, which included the creation of the AOAS structure and the addition of two variable names

to that structure: channel_value_aoa and channel_value_ss.

145

Line Code Modified

651 #define LOG_AOAS_MSG 120

652 struct log_AOAS_s {

653 float channel_value_aoa;

654 float channel_value_ss;

655 };

Table 15: Message Names

The final change was to create the LOG_FORMAT function for AOAS. The phrase “ff”

allows the program to know the message contains two floating numbers. The variable names were

also added to the list:

Line Code Modified

729 LOG_FORMAT(AOAS, “ff”, “AOA,SS”)

Table 16: Log Format

A2. PARAMETER ID MANEUVERS

 In addition to ADC logging, the firmware has been modified to execute system

identification maneuvers. The modified code creates a separate channel that when activated, will

override manual control for a control surface with a preprogrammed system identification

maneuver. The code can perform step, ramp, sinusoid, chip, and 2-1-1 parameter ID maneuvers

for pitch, roll, and yaw. This will place the maneuver in control of the autopilot system and provide

