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Figure 96: Sinusoid Z-Axis Acceleration 

 

 

 

Figure 97: Sinusoid Pitch Rate 
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5.3.7 Sinusoid Short Frequency 

 A second test on the sinusoid maneuver was performed with a reduced frequency of 

oscillation.  This tests also makes use of the Pixhawk’s stabilize flight mode to assist the pilot in 

maintaining level flight conditions.  This ensures that the pitching data will remain on the y-axis 

of rotation throughout the maneuvers duration, and not couple with the remaining two axes.  As 

stated in the prior section, the oscillation is set to ¼ Hz for this test. 

 

Figure 98: Sinusoid Pitching Velocity 
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Figure 99: Sinusoid Angle of Attack 

 

Figure 100: Sinusoid Z-Axis Acceleration 
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Figure 101: Sinusoid Pitch Rate 

5.3.8 S-Turn 

 The S-Turn serves as the only pilot performed maneuver for this test.  The pilot shifts the 

plane laterally while rotating on its z-axis to stimulate rotational effects in the x and z axes.  This 

is to stimulate the sideslip angles, as the later pitching maneuvers should have little effect on the 

probe itself. 
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Figure 102: S-Turn Yaw Rotational Velocity 

 

 

Figure 103: S-Turn Sideslip Angle 
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CHAPTER VI 

CONCLUSIONS 
 

 The flexible coding available to the Pixhawk in conjunction with a custom air data vane 

proved capable for logging in-flight data for unmanned aircraft.  The high logging rate, together 

with moderately accurate individual sensors, provides quality data from a mostly turnkey system.  

This, in conjunction with the Pixhawk’s automated system identification maneuvers, allows for 

increased complexity in system ID maneuvers that would prove difficult through manual 

execution. 

 Using a formally designed experiment with this system, a model of pitch dampening as a 

function of power and angle of attack can be identified.  While the final CCD was not performed 

due to time constraints, the system proved capable of performing the requested maneuvers and 

providing data to determine the stability and control derivatives for the pitching moment. 

 The following sections in this chapter show the key results and lessons learned across this 

project.  This includes a brief overview of the tolerances for the Pixhawk, followed by a discussion 

on the vane dynamics of the custom air data vane.  Next comes some lessons learned in aircraft 

system identification, the validity of DoE/RSM techniques, and ways to further improve the 

systems in future work. 

6.1 PROBE VANE DYNAMICS 

 The vane dynamics were a primary focus because unlike most of the Pixhawk’s systems, 

vanes were designed in house and were a major concern in the development process.  The step 

input tests performed in the wind tunnel showed that even in a worst-case scenario, the vane motion 

would dampen out at around 40 milliseconds.  In all tests, the vanes returned to the correct flow 
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direction, and had impeccable tracking for lower frequency oscillations.  There exists a slight 

overshoot at the peaks of oscillation due to the inertia of the vane itself, but only in the most 

extreme cases, which is not indicative of typical flight behavior. 

6.2 LESSONS LEARNED IN AIRCRAFT SYSTEM IDENTIFICATION 

 The automation of system identification in the Pixhawk has unlocked the potential for even 

more accurate in-flight data than was possible with the traditional multistep maneuver.  Morelli 

states that the multi-sine is the “poor man’s sinusoid maneuver” [3].  A multistep maneuver is 

much simpler for a pilot to initiate, as it involves only holding the control surface at an extreme 

for a predetermined fraction of time.  Sinusoid maneuvers are especially difficult to replicate 

precisely through manual control and chirp motions are even tougher still.  The multistep maneuver 

serves as a manageable alternative for those restricted to manual control only. 

 By having the Pixhawk provide the inputs, a sinusoid and chirp maneuver can be performed 

with formulaic accuracy.  The pilot only needs to flip the switch to begin the maneuver with 

settings dictated by telemetry on the ground.  This means a multi-sine maneuver can be performed 

with a similar pattern to the multistep maneuver to generate even clearer results than would be 

possible for a manual operated pilot.  Due to time constraints, this possibility could not be explored 

for this project, but future work would see even greater accuracy when collecting flight 

characteristics than is possible for the traditional multistep maneuver. 

6.3 VALIDITY OF DESIGN OF EXPERIMENTS 

 While the employment of DoE/RSM methods is not without challenges, the FCD model 

proved effective for air data vane characterization.  Statistical models from the design space 

provide a framework to validate the effectiveness of the test and create a more robust, defensible, 

regression model compared against the traditional OFAT methods.  The optimization techniques 
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also proved useful in altering the design of the vanes for optimal performance.  By randomizing 

the design points, the effect of any lurking factors is averaged over the entire experiment. 

6.4 IMPROVEMENTS OVER PREVIOUS SYSTEMS 

 The concept for the Pixhawk autopilot system and the air data vane was created by Scott 

Hood.  Given the similar hardware, similar performance results were expected, though the vanes 

used in this experiment had a lower resolution than the specifications provided in Hood’s paper.  

This is not so much a fault in the vane design as it was the electrical noise inherent to the Pixhawk 

for this project that limited resolution.  The sophistication of the PX4 development environment 

allows for a much more research friendly system than other competitors like the basic Arduino, 

and is far more user friendly than other candidates with greater processing power, like the 

Beaglebone Black. 

6.5 FUTURE WORK 

 More work is planned for refining the sinusoid maneuvers as an improvement upon the 

traditional multistep maneuver.  This would include implementing more complex sinusoid 

maneuvers into the PX4’s code and testing their efficiency against the multistep maneuver.  This 

development would then transition to the development of system identification maneuvers to 

collect in flight data for multiple flight characteristics simultaneously, potentially exciting motion 

across all three axes simultaneously to collect flight parameter data in minimal time.   

 Although much of the future work will revolve around a project’s specific requirements, 

one of the overall goals is the creation of an ODU branch for the PX4 firmware.  This would allow 

anyone working on ODU projects to track potential changes to the ODU code, reduce the 

duplication of effort, and pave the way for ODU produced features to be integrated into the PX4 
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firmware master branch.  This also opens up new avenues for potential UAV automation for 

ODU’s mechanical and aerospace engineering department. 

 While the short-period calculation was ultimately left unfinished in this project, the 

derivation of the Air Titan’s moments of inertia is all that is needed to implement the procedure.  

The flexibility and complexity of the Air Titan’s design makes finding these inertias difficult, but 

this is the last barrier to conducting a formal study using outdoor testing.  Future testing should 

endeavor to use a more rigid airframe. 
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Figure 105: Custom Arduino 

 

          The construction of a new system, however, means a lack of third party sensor support.  Any 

sensors needed would have to be manually added and their code written.  The effort of creating a 

fully independent system is a sizable one and would be difficult to complete given the time 

constraints of this project 

A3. BEAGLEBONE BLACK 

The Beaglebone Black boasts the strongest hardware among autopilots on the market.  

Unfortunately, this system lacks both the libraries and third-party sensor support.  This system 

would not need to be constructed from the ground up, but much like the Custom Arduino, the 

integration of sensors would be a significant undertaking and may not yield ideal results [32]. 
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Figure 106: Beaglebone Black 

 

A3.1 Field Programmable Gate Array (FPGA) 

          The FPGA is an integrated circuit designed to be configured after manufacturing.  

Researchers at Cal Poly Pomona used a FPGA board and a real-time operating system to gain full 

control over the hardware environment [33].  The freedom to customize the FPGA allows for the 

construction of an autopilot for extremely specific applications.  Simply put, this option is building 

an autopilot from the ground up. This also makes it the most difficult of the options to construct, 

as the only features available are the one made by the designer themselves.   

 

Figure 107: FPGA 
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A3.2 Data Analysis Options 

A3.2.1. Flight Plot 

Flight plot is a Java app that provides an alternative way of decoding and viewing sdlog2 

files.  This is not recommended for those looking to transition the data to a graphing program like 

Excel or MATLAB, yet it does provide the log data without the timely process of converting the 

logs to csv files.  This makes it ideal for performing rapid iterations during testing to ensure 

instruments are working properly [24]. 

 

 

Figure 108: Flight Pilot GUI 
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A3.3 Log Muncher 

 Log Muncher is an online client that accepts log files directly and charts all parameters 

against the GPS timestamp given a few minutes to process.  This is the software PX4’s 

development team recommends to those using the Pixhawk, as it doesn’t require converting to csv 

files to observe data.  Also, being a web based client, it is easy to transfer data to colleagues [24]. 

 

 

Figure 109: Log Muncher Web Page 
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 The downside to this software is its lack of flexibility.  Log Muncher does not chart graphs 

from custom channels, and it is difficult to collect specific information on any one part of a 

particular flight. 

 
A3.4. Px4tools 

Px4Tools is easy to share through the code repository github.com.  This software has access 

to advanced plotting capabilities, heavy customization, and the tools needed for detailed analysis.  

It is a powerful tool for users familiar with python, though it does require the files be converted to 

csv before using PX4Tools [24]. 
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Figure 110: Px4 Tools 
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APPENDIX B 

ADC LOGGING 
 

          The only change made to the firmware PX4 Flight Stack was to add an additional 

subscription to sdlog2.c that transmits data from the 3.3V ADC pins to the sdlog2 function.  

Additional changes were implemented in sdlog2_messages.h to add a family tree and create names 

to house the collected data.  The changes were minimal and did not interfere with the other sections 

of the code.  Each code change is listed below, indicating the name and location of the file where 

changes were made [23]: The fully assembled code used in this project can be found at 

https://github.com/Deafro/FirmwareAoASS 

A1. FIRMWARE/SRC/MODULES/SDLOG2/SDLOG.C 

The PX4 developers include an additional module called adc_report that stores all voltage 

information across the eight ADC channels.  In order to use this data in sdlog2.c, the function must 

subscribe to adc_report. 

 

Line Code Modified 

114 #include <uORB/topics/adc_report.h> 

 

Table 10: ADC Report Subscription 
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The next change involved creating a structure variable for the function adc_report and adc 

source of information: 

Line Code Modified 

1226 struct adc_report_s adc; 

 

Table 11: AOAS Source Structure 

 

The message structure for where the data are stored was then included.  (The term “AOAS” 

originates from the modifications made to sdlog2_messages.h and will be detailed in this section.) 

 

Line Code Modified  

1288 struct log_AOAS_s log_AOAS 

 

Table 12: ADC Data Variable 

 

The program is now subscribed to adc_report and the integer data from adc_report then 

needs to be collected: 

Line Code Modified 

1338 int adc_sub; 

1383 subs.adc_sub = -1; 

 

Table 13: ADC Data Structure 
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The final change was the creation of the cells for data storage.  Stored in 

adc.channel_value[] is the data for all 8 ADC pins and it was through trial and error that the last 

two digits corresponded with the 3.3V ADC pins (6 and 7 since the array starts with 0). 

 

 

Line Code Modified 

2285 If (copy_if_updated(ORB_ID(adc_report)), 
&subs.adc_sub, &buf.adc)) { 

2286 log_msg.msg_type = Log_AOAS_MSG; 

2287 log_msg.body.log_AOAS.channel_value_aoa = 
buf.adc.channel_value[6]; 

2288 log_msg.body.log_AOAS.channel_value_ss = 
buf.adc.channel_value[7]; 

2289 LOGBUFFER_WRITE_AND_COUNT(AOAS); 

} 

 

Table 14: Sdlog Family Structure 

 

A1.1. Firmware/src/modules/sdlog2_messages.h 

       sdlog2_messages.h creates the format for messages written by sdlog2.  The changes were 

minor, which included the creation of the AOAS structure and the addition of two variable names 

to that structure: channel_value_aoa and channel_value_ss.  
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Line Code Modified 

651 #define LOG_AOAS_MSG 120 

652 struct log_AOAS_s { 

653 float channel_value_aoa; 

654 float channel_value_ss; 

655 }; 

 

Table 15: Message Names 

 

The final change was to create the LOG_FORMAT function for AOAS.  The phrase “ff” 

allows the program to know the message contains two floating numbers.  The variable names were 

also added to the list: 

 

Line Code Modified 

729 LOG_FORMAT(AOAS, “ff”, “AOA,SS”) 

 

Table 16: Log Format 

 

A2. PARAMETER ID MANEUVERS 

          In addition to ADC logging, the firmware has been modified to execute system 

identification maneuvers.  The modified code creates a separate channel that when activated, will 

override manual control for a control surface with a preprogrammed system identification 

maneuver.  The code can perform step, ramp, sinusoid, chip, and 2-1-1 parameter ID maneuvers 

for pitch, roll, and yaw.  This will place the maneuver in control of the autopilot system and provide 


