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Traffic incidents cause a ripple effect of reduced travel speeds, lane 
changes, and the pursuit of alternative routes that results in gridlock 
on the immediately affected and surrounding roadways. The disrup-
tions caused by the secondary effects significantly degrade travel time 
reliability, which is of great concern to the emergency planners who 
manage evacuations. Outcomes forecast by a generic incident model 
embedded in a microscopic evacuation simulation, the Real-Time Evac-
uation Planning Model (RtePM), were examined to quantify the change 
in time required for an emergency evacuation that results from traffic 
incidents. The incident model considered vehicle miles traveled on each 
individual segment of the studied road network model. The two scenar-
ios considered for this investigation were evacuations of (a) Washington, 
D.C., after a simulated terrorist attack and (b) Virginia Beach, Virginia, 
in response to a simulated hurricane. These results could help the emer-
gency planning community understand and investigate the impact of 
traffic incidents during an evacuation.

Traffic incidents cause a ripple effect of reduced travel speeds, lane 
changes, and the pursuit of alternative routes that results in gridlock 
on the immediately affected and surrounding roadways. The dis­
ruptions caused by the secondary effects significantly degrade travel 
time reliability, which is of great concern to the emergency planners 
who manage evacuations.

Little extant literature and even fewer predictive models address 
the effects of traffic incidents on evacuation duration. This study 
derives multiple regression models from limited data sets of differ­
ent large-scale evacuation scenarios with the Real-Time Evacuation 
Planning Model (RtePM). The results of these regression models  
are compared with the results of previous evacuation studies to exam­
ine the feasibility of developing generalizable models of large-scale 
evacuation duration as a result of traffic incidents. The authors pro­
pose a simple, non-data-intensive traffic incident model to address 
criteria for the simplicity, scalability, time constraints, and universal 
funding shortages of evacuation planning models, as Matherly et al. 
describe in A Transportation Guide for All-Hazards Emergency 
Evacuation (1).

In the remainder of this paper, after a discussion of related lit­
erature and the RtePM microscopic evacuation model, four multi­
variate regression models will be used to analyze the effects of traffic 
incidents in two large metropolitan areas.

Background

In its Manual on Classification of Motor Vehicle Traffic Accidents, 
the American National Standards Institute defines an accident as a 
situation in which injury or damage occurs to one or more motor 
vehicles that is not caused by a natural cataclysm (e.g., landslide, 
flood, or earthquake) (2). The National Highway Traffic Safety 
Administration calls this definition a crash. An incident is any disrup­
tive event that happens on or near a road facility, including accidents or 
other types of events (e.g., a stall, debris, or road kill). Traffic incident 
modeling and the relevant modeling factors are briefly described in 
the next section.

Traffic Incident Modeling

Most recent traffic incident modeling research prioritizes the predic­
tion of incident occurrence over the analysis of its effects (3–5). These 
approaches usually require vast amounts of data and do not satisfy the 
requirements for generalizability (1). Modeling paradigms used for 
incident modeling traditionally include mathematical programming 
and linear regression.

Chen and Xiao, for example, used linear programming to describe 
the real-time rerouting of evacuations around incidents with intel­
ligent traffic signals (6). Because of the complexity of the linear pro­
gram, the polynomial time-bounded algorithm could process only 
up to 100 evacuees. Computational requirements render mathemati­
cal programming unfeasible for large-scale problems such as the 
evacuation of hundreds of thousands of people; Collins et al. discuss 
the limitations of practical mathematical programming (7).

Linear regression also has been used previously to predict traffic 
incidents in traffic incident analysis, as in the negative binomial-based 
regression model of Abdel-Aty and Radwan (8) and the hierarchical 
regression model (i.e., a regression model embedded in a regression 
model) of Huang et al. (9). Both applications of linear regression 
focus on incident prediction, whereas the regression models developed 
in this paper focus on the impacts of traffic incidents on evacuation 
time. Murray-Tuite and Mahmassani (10) and Liu et al. (11) also 
apply mathematical programming to evacuation modeling.
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Previous research on the impacts of travel demand in evacuations 
includes the work of Pel et al., who used the EVAQ deterministic 
simulation to investigate several driving factors on the evacuation 
duration of a scenario based in Rotterdam, Netherlands (12). The 
model did not consider traffic incidents. Wang et al. investigated the 
impact of human factors on evacuation duration by using systems 
dynamics and focus on the spread of panic in an evacuation event of 
1,500 people (13). Robinson and Khattak (14, 15), Robinson (16), 
and Robinson et al. (17) examined evacuees’ decision-making pro­
cesses (e.g., whether to evacuate, whether to reroute around conges­
tion, and the impact of roadside information signals). Research by 
Murray-Tuite and Mahmassani includes human factors, such as the  
need to rendezvous with family members before leaving the area (18). 
Quarantelli presents other research into human behavior during an 
evacuation (19, 20).

Robinson and Khattak considered the impacts of traffic incidents 
on evacuation duration, and their work is compared with the models 
derived in this paper (21). They used Citilabs’ Cube Avenue meso­
scopic simulation engine with historical incident data from Virginia’s 
Hampton Roads (HR) region, whereas the model presented here uses 
a generic traffic incident rate. The scenarios described in this paper 
contain hundreds of thousands of evacuees and were implemented 
with the RtePM microsimulation model.

The generic traffic incident rate model implemented in RtePM was 
derived from publicly available national-level data to determine an 
incident probability per vehicle miles traveled (VMT) (22, p. 94);  
Collins et al. derived this formula (23). The generic incident model 
consists of two parts. The first determines whether an incident occurred 
on a road segment (a smaller unit than a road link, which could 
be composed of multiple segments) by using the VMT value in the 
previous time step (usually 1 h). The second determines the impact 
of a traffic incident on other vehicles in the segment throughout 
the incident duration (usually limited to one time step); this impact 
includes reductions in available lanes and maximum speed. [Some 
limitations and assumptions of this approach (i.e., only one incident 
per segment per time step) are discussed later.] The approach results 
in the following formula:

P p1 1 (1)VMT( )= − −

where P and p are the standard and fixed probabilities of an incident 
occurring per VMT, respectively. Collins et al. present information 
on the exact derivation and data sources for both of these parts 
of the model (23); traffic incident rates are discussed later, in the 
variables section.

Parsimony of Independent Variables

The modeling of traffic incidents during an evacuation scenario could 
encompass a wide range of factors, most of which relate to road 
geometry. When only on- and off-ramps are considered, the factors 
that contribute to accidents fall broadly into four categories: ramp 
length, distance between ramps, sight distance and signage, and exit 
ramp design (24). A significant amount of research has been conducted  
in these areas to understand the relationship between ramp geom­
etry and traffic incident rates. For instance, McCartt et al. find that 
short-curve ramps account for a disproportionate number of crashes 
(25). Likewise, decreased distance between interchanges increases 
crashes, presumably because drivers are presented with more deci­
sion points (26). Limited sight distance caused by a small horizontal 

curvature angle on ramps and lack of appropriate signage also can 
increase the occurrence of traffic incidents (24, 26, 27).

Several researchers have contributed to the study of road cur­
vature on segments of urban and rural roadways. Results in this 
area are far less decided than in the ramp studies. Accurately and 
adequately measuring curvature is a complex task. In a study of the 
United Kingdom and Wales, Haynes et al. explain that contradictory 
results in this area of study result from discrepancies in measurement, 
methods of data collection, and even a common understanding of what 
constitutes a bend in the road (28). In a study of the United Kingdom, 
Wang et al. found that “wards with more curved roads have fewer 
casualties,” even though this finding is based on mainly urban roads 
and the density of curves in a given area (29). Wang et al. believe that 
drivers are more careful in areas with many curved roads, particularly  
when these roads are through residential or commercial areas but do 
not discuss curvature on other types of roads or give specific acci­
dent statistics (29). However, in a study of New Zealand’s roadways, 
Haynes et al. found initial measurements indicating that in a 10-year 
period up to 2005, “Approximately half of the crashes were recorded 
on straight sections, with 22% on easy curves, 24% on moderate 
curves and 4% on severe curves” (30). Ultimately, Haynes et al. 
concluded that the Wang et al. study results may be correct—but only 
when applied to urban roads (i.e., accident rates may be reduced 
on urban roads with more curves, but not necessarily elsewhere). 
Haynes et al. also suggest that problems with these types of curvature 
studies result from the lack of statistical power because small sample 
sizes are spread over large geographic areas (30).

Beyond crashes related to ramp configuration and conflicting 
research results about the effects of road curvature on traffic inci­
dents, current transportation research yields few results applicable 
to a parsimonious evacuation model. This study acknowledges 
the existence of research suggesting that traffic incident rates are 
affected by road geometry. The study intends to provide a gener­
alizable model for emergency planners that cannot, by its nature, 
include all aspects of road geometry and its intersections with 
human behavior and driver decision-making behavior during an 
evacuation scenario. Consideration of these factors intentionally is 
left to computationally intense, large-scale models in use for long-term 
event forecasting and planning. To confine the scope of this model to 
its original intent, the authors make broad generalizations about the 
nature of traffic incidents, using settings in the simulation software 
(outlined later).

Real-Time Evacuation Planning Model

Funded by the Science and Technology Directorate of the U.S. 
Department of Homeland Security, the RtePM is a web-based U.S. 
government software application developed in response to emergency 
managers’ desires for a quick, user-friendly tool to estimate the time  
required to evacuate an area after a natural or human-induced disaster 
(www.rtepm.vmasc.odu.edu). The Johns Hopkins University Applied 
Physics Laboratory led initial prototype development, which included 
the use of a novel car-following model developed by Gang-Len Chang 
at the University of Maryland. In fall 2012, the Virginia Modeling, 
Analysis, and Simulation Center at Old Dominion University assumed 
responsibility for RtePM development. The RtePM model has been 
independently verified and validated (31).

The RtePM draws on census, proprietary road network, and 
commercial data and combines different modeling techniques to 
simulate an evacuation [e.g., evacuees determine routes according to 
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an A*-search algorithm (32)]. The RtePM is a microlevel simula­
tion in which individual vehicles respond to the environment in an 
autonomous way (i.e., they stop at signal intersections and deter­
mine their own evacuation routes). Users can modify many factors, 
including roadway contraflow, lane closures, vehicle occupancy, and 
population changes as well as overlay geographical data depicting 
natural and human-caused disaster scenarios. The RtePM provides 
time estimates required for user-defined evacuations as part of the 
standard output. Collins et al. completely describe and validate the 
traffic incident model used in RtePM (23).

Methodology

The researchers ran several thousand stochastic simulations under 
different variable conditions (i.e., traffic incidents and evacuation 
response rates) with the RtePM generic incident model for the two 
scenarios: a terrorist attack on Washington, D.C., and a hurricane  
in Virginia Beach, Virginia. Multivariate regression models then 
were used to investigate the impact of incidents on evacuation times. 
Everitt and Dunn provide an introduction to multivariate statistical 
analysis (33).

Scenarios

The first scenario reflects an evacuation in response to a hypothetical 
terrorist attack on Washington, D.C., to the surrounding national 
capital region (NCR). This region was chosen for its high traffic 
volume originating from a single, centralized area to examine the flow 
of hundreds of thousands of individually modeled vehicles in all direc­
tions. The second scenario represents the evacuation of Virginia Beach 
through the metropolitan HR area in response to a hurricane. This area 
was chosen because of the many complicating features of the road 

network, including five major tunnels, more than 1,200 bridges, both 
rural and urban areas, and significant congestion.

Each scenario represents a large-scale, city-level evacuation to 
capture high traffic incident rates and their subsequent impacts. 
The RtePM microlevel simulation engine takes into account fac­
tors such as seasonal populations, which are explicitly included; 
background traffic also is accounted for as an effect on the existing 
modeled vehicles in the simulation. The expected number of traffic 
incidents was about the same in both scenarios (approximately 50 
traffic incidents per evacuation event) because of the total VMTs in 
the evacuation. The similar number of expected traffic incidents in 
both scenarios provides a basis to compare these two geographically 
distinct regions.

Scenario 1. Washington, D.C.

On the basis of 2010 U.S. Census data, the model was initialized to 
evacuate 848,000 nighttime residents, all of whom were assumed to 
leave by private vehicle; pedestrians and public transportation were 
not considered. Vehicles carried 2.5 people on average, resulting 
in 339,000 vehicles in the microsimulation (14). Evacuees moved 
through the transportation network of nearly 10,000 road segments 
from their starting locations to one of 10 user-defined endpoints 
(Figure 1a). On reaching the endpoint, the vehicles were considered 
to have been evacuated. The RtePM estimated the evacuation time 
to be 10.4 h with no incidents and an 8-h response time.

Scenario 2. Virginia Beach

The Virginia Beach scenario modeled the evacuation of that city 
before a hurricane. The scenario was chosen because of the wealth 
of existing studies of evacuations in the region (14–17, 21). On the 

(a) (b)

FIGURE 1    Screen shots from RtePM illustrating road networks and evacuated areas for study scenarios: (a) Washington, D.C. (simulation’s 
shaded central square also includes adjacent areas in Arlington County, Virginia, and a portion of Alexandria, Virginia), and (b) Virginia Beach.
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basis of U.S. Census data, the population expected to evacuate was 
431,000 nighttime, nonseasonal residents (Figure 1b). The micro­
simulation evacuated 172,000 vehicles, with an average vehicle occu­
pancy of 2.5 people, through nearly 2,500 road segments to nine 
endpoints. The RtePM estimated the evacuation would take 13.7 h 
with no incidents and an 8-h response time.

Variables

With the simulations conducted in stochastic mode, the RtePM 
automatically and uniformly varied several factors in the model, 
including acceleration rate, vehicle speed, and vehicle length. The 
researchers also uniformly varied three explanatory factors: evacu­
ating population size, response rate, and incident rate type. Simulation 
runs consisted of permutations of the values for these variables. 
Because the RtePM is a stochastic simulation, each permutation was 
repeated 100 times.

Evacuating Population Size

The value for evacuating population size varied ±2% following a 
normal distribution to reflect changing population size at any given 
time.

Response Rate

Following a truncated sigmoid-shaped evacuation response curve 
according to accepted distributions in emergency evacuation literature, 
the time for the last evacuees to depart varied from 1 h (mass exodus) 
to 23 h (slow evacuation over the course of a day) (34). The response 
rate variable was changed in hourly increments for the simulation runs. 
The final departure time determined the shape of the response curve. 
The sigmoid-shaped departure time often is represented in evacu­
ation literature by the Rayleigh distribution, in which β is adjusted 
on the basis of the situation to represent the mode of the distribution 
function (35).

1 exp 0.5 (2)
2

p t
t( ) = − −
β













where p(t) equals the probability density function for the Rayleigh 
distribution and t is an arbitrary variable.

Incident Rate Type

Traffic incidents occurred at a given probability per VMT, which is 
defined as the total number of miles traveled by all vehicles while on 
the segment for some set period, usually 1 h. [Collins et al. present the  
derivation, justification, and validation of the incident model (23).] 
This simple traffic incident model was tested statistically to follow 
a negative binomial distribution that is the expected distribution for 
traffic incidents (9, 23). Variations in the expected incident-to-accident 
ratio and rounding errors in the data used to derive the incident model 
required the definition of low, medium, and high incident rates, with 
expected incident rates at 0.905, 1.000, and 1.291 per 100,000 VMT, 
respectively (36; R. Margiotta, personal communication, Oct. 9, 
2011). These incident rate types were coded 1, 2, and 3, respectively, 
in the regression analysis; no incidents were coded 0.

Results

The results from the simulation runs are presented as correlation 
statistics and multivariate linear regression models. The RtePM 
simulation runs were conducted on a dedicated networked computer 
cluster that is available through the RtePM website. The focus of 
these results is on the macro-level effects of traffic incident rates on 
the overall evacuation time.

Scenario 1. Washington, D.C.

The Washington, D.C., scenario, hereafter referred to as the NCR 
scenario, was simulated 4,800 times; results of these runs are listed 
in Tables 1 and 2. The dependent variable in these runs is evacuation 
duration (i.e., time in hours for an evacuation to complete), and the 
independent variables are the total number of traffic incidents occur­
ring during each run and the three explanatory variables described 
earlier.

The ordinary least squares (OLS) method was used to deter­
mine the parameters of the linear regression models. To confirm 
the assumption of independent explanatory variables required of 
the OLS method, the authors tested for statistically significant linear 
correlation with the Pearson correlation coefficient.

Evacuation duration has a statistically significant relationship with 
each of the variables included in the original analysis. Of these, 
only the response rate variables have a nearly perfect positive linear  
relationship with the dependent variable; the others have a negligible 
linear relationship (near zero) and thus can be used with the OLS  

TABLE 1    Correlation Between Variables for NCR Scenario

Variable
Incident 
Rate Type

Response 
Rate

Evacuating 
Population 
Size

Total 
Incidents

Evacuation duration 0.057a 0.939a −0.091a −0.055a

Incident rate type na 0.000 −0.007 0.939a

Response rate na na −0.095a −0.113a

Evacuating  
population size

na na na 0.004 

Note: na = not applicable.
aStatistically significant at 99% confidence level.

TABLE 2    Linear Regression Coefficients for NCR Scenario  
for Both Models

Model Coefficient
Standard 
Error t-Statistic P-Value

Total Incidents

Intercept 6.597 0.059 111.620 <.001a

Response rate 0.638 0.003 191.058 <.001a

Total incidents 0.012 0.001 10.258 <.001a

Incident Rates

Intercept 6.622 0.055 120.158 <.001a

Response rate 0.634 0.003 191.674 <.001a

Incidents rate type 0.237 0.020 11.617 <.001a

aStatistically significant at 99% confidence level.
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linear regression method. The total incidents and incident rate vari­
ables also have strong, statistically significant positive linear relation­
ships, which is not surprising because they measure essentially the 
same phenomenon in the model. Because of their strong relation­
ship, the two variables were not included in the same model; rather, 
two regression models were constructed for each scenario: one with 
incident rate, the other with total incidents. Evacuating population 
size also was eliminated from the model after initial linear regression 
results showed that it was not statistically significant.

Regression Model with Total Incidents

Results of the regression model including the total incidents variable 
for the NCR scenario are summarized in the top half of Table 2. The 
adjusted R2-value—appropriate for models with multiple independent 
variables—indicates that 88.4% of variation in the simulation data is 
explained by the model that includes response rate and total incidents 
as independent variables (33). According to the standard error value 
(1.587) of the model, approximately 68.2% of the regression model 
estimates are within approximately 1.5 h of the actual evacuation 
duration for the RtePM simulation runs; 95.4% are within 3 h.

Regression Model with Incident Rate

The second regression model for the NCR scenario incorporated 
incident rate instead of total incidents; results are shown in the 
bottom half of Table 2. The adjusted R2-value (.885) and standard 
error (1.582) are close to the values in the previous model, indicating 
that both models explain evacuation duration similarly. This result is 
important because the total incidents variable depends on the simula­
tion run, whereas incident rate and response rate do not. The use of 
incident rate and response rate allows predictions about evacuation 
duration that would be generated by the simulation without actually 
running the simulation; it is particularly useful for an emergency 
planner who might not have the time or resources available to run the 
full simulation but is required to make predictions about evacuation 
of the NCR region.

The equation derived for the regression model of evacuation 
duration (Y) for the NCR scenario with incident rate is

Y X X= + +6.622 0.634 0.237 (3)RR IR

where XRR is the response rate and XIR is the incident rate.

Scenario 2. Virginia Beach

The Virginia Beach scenario, hereafter referred to as the HR scenario, 
was simulated for 5,350 runs. Tables 3 and 4 summarize the find­
ings for the Pearson correlation coefficient and regression results, 
respectively. As in the NCR scenario, the explanatory variables are 
sufficiently independent of each other (except for incident rate and 
total incidents), thus satisfying the assumptions of the OLS method.

Regression Model with Total Incidents

The model for the HR scenario incorporating the total incidents 
variable explained approximately 87.4% of the variance in evacua­

tion duration on the basis of the adjusted R2-value and had a standard 
error of 1.125.

Regression Model with Incident Rate

Similarly, the model for the HR scenario with the incident rate vari­
able accounted for 87.1% of the variance in evacuation duration 
and had a standard error of 1.135. Despite being lower than the R2 
values for the NCR scenario, these values still imply that the regression 
model explains a large amount of variability. The regression model of 
evacuation duration for the HR scenario with incident rate is

Y X X= + +11.085 0.433 0.444 (4)RR IR

Scenario Comparison

Even though the population in the NCR scenario is almost twice 
that in the HR scenario, the expected evacuation duration, without 
incidents, in the NCR scenario is about 3 h shorter. This differ­
ence is largely a result of severe bottlenecks that arise in the HR 
scenario, in which evacuees can flee only northward or westward;  
in the NCR scenario, the population can evacuate in any direction. 
This logistic discrepancy is reflected in the regression models of 
the two scenarios.

The larger response rate coefficient in the NCR scenario indicates 
that it has a greater effect than in the HR scenario. Conversely, the 
incident rate coefficient in the NCR scenario is smaller, indicating 
that changes in the response rate have a smaller effect than in the 

TABLE 3    Correlation Between Variables for HR Scenario

Variable
Incident 
Rate Type

Response 
Rate

Evacuating 
Population 
Size

Total 
Incidents

Evacuation duration 0.048a 0.910a −0.035a 0.060a

Incident rate type na −0.116a 0.001 0.953a

Response rate na na −0.063a −0.116a

Evacuating  
  population size

na na na 0.005 

aStatistically significant at 99% confidence level.

TABLE 4    Linear Regression Coefficients for HR Scenario  
for Both Models

Model Coefficient
Standard 
Error t-Statistic P-Value

Total Incidents

Intercept 10.953 0.040 270.917 <.000a

Response rate   0.436 0.002 188.256 <.000a

Total incidents   0.024 0.001   33.511 <.000a

Incident Rates

Intercept 11.085 0.039 283.289 <.000a

Response rate   0.433 0.002 185.032 <.000a

Incidents rate type   0.444 0.014   31.781 <.000a

aStatistically significant at 99% confidence level.
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HR scenario. The explanation for this phenomenon is that evacuees 
to the NCR have more alternative routes available if they encounter 
congestion resulting from a traffic incident, thus avoiding the severe 
bottlenecks of the HR area.

Regression models indicate that, under normal incident rates, 
evacuation duration will increase as a result of traffic incidents 
approximately 8.0% in the HR scenario and 7.2% in the NCR scenarios 
(with a medium incident rate, indexed as 2). Increases in evacuation 
duration seem insignificant at first but are not uniform across all evacu­
ees. A few evacuees are significantly affected by traffic incidents, but 
those with alternative routes may experience little extra delay. Even a 
small increase in evacuation duration is critical in certain emergencies 
(e.g., radioactive cloud from a dirty bomb, in which case minimizing 
exposure is vital).

The general similarities between the two regression models could 
be used to predict evacuation duration in other scenarios. However, 
these models have several limitations. First, any model predictions 
could be done only within the independent variable range of this 
study. For example, the model considers only a 2% variability of the 
total evacuating population; larger variability would likely increase 
the significance of evacuating population size in the multivariate 
regression model. Second, the regression models in this study rep­
resent RtePM simulation data and cannot necessarily account for 
the variability of real-world evacuation duration; panic from certain  
types of events, for example, might cause considerable variabil­
ity (13). Other factors, such as heteroscedasticity (e.g., intergroup 
variation among evacuees such as elderly, families, and tourists who 
may follow indirect evacuation routes to assist family members or 
because of unfamiliarity with the roads), were not considered in this 
analysis.

The proposed approach is novel because it produces a regression 
metamodel of the effects of traffic incidents on evacuation duration. 
Because of the novelty of this analysis, little real-world data and 
few other evacuation simulation results exist to compare findings. 
Robinson and Khattak construct a similar scenario for the HR area 
with the Citilab Cube simulation engine, the Avenue plug-in, and 
facility-dependent incident data as opposed to the generic incident 
approach used in this model (21). They find that traffic incidents 
increase evacuation duration by about 10%, slightly more than the 8.0% 
estimate in the present model. The similarity between results helps 
validate the present generic approach to incident modeling.

Discussion of Results

This purpose of this paper is to provide potential users with simple 
models to predict the effects of incident rates on an emergency evac­
uation. The low data requirements of this approach should benefit 
those who do not have the luxury of time or budgetary resources 
to acquire the data needed to implement other approaches to the 
problem. For example, even though extensive traffic incident data 
are collected in the NCR, only data-sharing coalition members have 
access.

The authors do not suggest that these models are appropriate for 
all purposes. The incident model and RtePM are intended for rapid, 
reasonably accurate modeling of evacuations in the United States, 
including Alaska and Hawaii. The regression models presented 
provide emergency planners with quick, non-data-intensive insight 
into and analysis of the effects of traffic incidents during large-scale 
evacuations.

Conclusions

This paper investigated the effects of traffic incidents on the dura­
tion of an emergency evacuation. Multivariate regression models of 
Virginia Beach and Washington, D.C., were developed to quantify 
this effect. Results used for the regression model come from simula­
tion runs of the RtePM microsimulation model. Regression models 
of the two scenarios account for a large portion of variability in the 
evacuation duration of each region. The regression models indicated 
an 8.0% increase in evacuation duration for the HR scenario and a 
7.2% increase for the NCR scenario, confirming previous work in 
the HR region (21). The difference between the two scenarios was 
attributed to the limited number of alternative evacuation routes 
available to HR evacuees, which resulted in traffic bottlenecks that 
extended the duration of evacuation. Incidents at bottlenecks caused 
vehicles to divert to longer travel routes.

The proposed model provides emergency managers with estimates 
of evacuation duration under similar conditions and hazards. Any 
such application would be feasible only for a limited range of inde­
pendent variables (e.g., the evacuating population would have to be 
within 2% of the total population). The multivariate regression models 
do not account for human behavioral effects such as panic; investi­
gating these effects currently is an unresolved research area. Future 
work will apply this analysis to other scenarios to develop regional 
and situational comparisons as well as generalizations helpful to 
emergency planning managers. Future models also will incorporate 
factors beyond the VMT and behavioral factors such as panic and 
differences in how certain evacuee groups (e.g., elderly and tourists) 
might affect the evacuation outcome.
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