
ix 

 

21. Decomposed Delaunay Subdomains..................................................................... 28 

 

22. Triangulation of Leading Edge and Trailing Edge of NACA 0012 Airfoil .......... 28 

 

23. Execution times for Decomposition Depths ......................................................... 30 

 

24. Fine-Grain Mesh for NACA 0012 Airfoil ............................................................ 33 

 

25. Transition from Boundary Layer to Inviscid Region at Trailing Edge for 

 NACA 0012 Airfoil .............................................................................................. 34 

 

26. Near-Body Inviscid Region at Leading Edge for NACA 0012 Airfoil ................ 35 

 

27. Coarse-Grain Mesh for NACA 0012 Airfoil ........................................................ 36 

 

28. Zoomed-In View of Coarse-Grain Mesh for NACA 0012 Airfoil ....................... 37 

 

29. Near-Body Inviscid Region at Leading Edge for Wright 1903 Airfoil ................ 38 

 

30. Near-Body Inviscid Region at Trailing Edge for Wright 1903 Airfoil ................ 39 

 

31. Benchmarking for First Implementation of Parallel Triangulation 

 Algorithm .............................................................................................................. 41 

 

32. Dividing Path Segment Types .............................................................................. 47 

 

33. Pinch Points .......................................................................................................... 48 

 

34. Benchmarking for Current Implementation of Parallel Triangulation 

 Algorithm .............................................................................................................. 49 

 

35. Speedup and Efficiency ........................................................................................ 52 

 

 

 





3 

 

Amdahl’s law multiplies when a repetitive pipeline is followed, such as the one depicted 

in Fig. 1. 

 

 

 

 
 

Fig. 2. Max speedup according to Amdahl’s Law 

 

 

 

 Since the end goal is to generate a mesh which accurately and efficiently fits the 

PDE, the time to achieve this goal is dependent on the number of iterations through the 

pipeline of mesh generation to PDE solver to analysis. Clearly, this iterative process needs 

an initial mesh to begin the process. If the initial mesh closely represents the PDE, then 

fewer iterations through the pipeline are required to achieve a suitable solution. However, 

if the initial mesh is highly inaccurate with respect to the PDE, then the first iterations 



4 

 

through the pipeline will present numerous areas which require refinement. Eventually, 

after so many iterations through the pipeline that began with an unsuitable initial mesh, the 

current mesh will have similar error estimates as an initial mesh which was well-suited and 

closely represented the PDE. So the initial mesh sets the pace for the remainder of the 

iterations through the pipeline as well as the amount of refinement work. Clearly we need 

an initial mesh that has a high degree of accuracy with respect to the PDE while 

simultaneously being an efficient discretization of the domain in order to provide the most 

CPU savings to the PDE solver and to also generate the final mesh with the fewest number 

of iterations through the pipeline, thus yielding the fastest overall execution time. 

 

  



5 

 

Chapter 2 

BACKGROUND 

 

 There are currently a myriad of mesh generation techniques and mesh types, which 

have variable uses and meet particular demands. Isotropic mesh generation and anisotropic 

mesh generation along with the advancing front and Delaunay refinement methods are 

covered in this section. Also, some current parallel mesh generation techniques are 

reviewed. 

2.1 ISOTROPIC MESH GENERATION 

 Properties of Delaunay triangulations hold for isotropic meshes and are 

mathematically provable. Properties of Delaunay triangulations include the empty-

circumcircle property, which states that for each triangle, the circumscribed circle does not 

contain any other vertices of the triangulation. Delaunay triangulations also maximize the 

minimal angle of the overall mesh, which improves the condition number of the stiffness 

matrix which has an effect on the rate of convergence and in some cases, the existence of 

a solution when solving the PDE. The proof of termination and uniqueness is also 

guaranteed by the Delaunay property. With the robust mathematics involving element 

quality and proof of termination, isotropic Delaunay mesh generators have become 

common place. The best sequential isotropic Delaunay triangulator and mesh generator is 

Triangle [3], which is robust and has the fastest evaluated execution time while also 

providing mechanisms for prescribing element quality and size as well.  

 

 



6 

 

2.2 ANISOTROPIC MESH GENERATION 

 With the fast developing field of computational fluid dynamics (CFD), a new mesh 

type has been introduced, graded anisotropic meshes. Graded anisotropic meshes aim to 

decrease the computational efforts of the PDE solvers as well as to decrease the number of 

elements in the mesh. Isotropic mesh generators which focus on solution-based adaptation 

create many unnecessary elements where there is a high degree of gradation in the flow 

velocities in a given direction. These anisotropic gradations in the flow velocities require 

anisotropic elements, typically with a 10,000:1 aspect ratio, so representing these regions 

with isotropic elements incurs a 10,000 fold increase in the number of elements. Using 

isotropic mesh generators to model anisotropic PDE has a negative effect for two reasons: 

the mesh generation time is increased significantly because more elements need to be 

created and refined, and the time for the flow solver is increased due to the increase in the 

number of elements in the mesh. Isotropic mesh generators are faced with the choice to 

prescribe either a high-density region to capture the anisotropic gradations in flow 

velocities while introducing wasted computations, or to settle for a low-resolution region 

to save computations while sacrificing the ability to capture the anisotropic gradients. Fig. 

3 shows an isotropic discretization of a sample anisotropic domain, while Fig. 4 shows the 

same sample domain discretized appropriately with anisotropic elements.  

 

 

 

 
 

Fig. 3. Isotropic representation of an anisotropic domain. 



7 

 

 
 

Fig. 4. Anisotropic representation of an anisotropic domain. 

 

 

 

 Sequential anisotropic mesh generators [8, 12] have been developed to help take 

advantage of these anisotropic characteristics. Sequential two-dimensional tools for 

aerospace application development exist, such as XFOIL [17] and MSES [18], which also 

cater towards airfoil development through geometry discretization and mesh generation. 

Other general-purpose anisotropic mesh generation approaches by Li et al. and Bossen and 

Heckbert [27, 28] do not offer any guarantee of termination or uniqueness due to the 

inability to mathematically prove the algorithm, making them unreliable choices. 

2.3 ADVANCING FRONT METHOD 

 The advancing front method presented by Marcum and Schoberl [22, 23] works by 

first discretizing the geometry into segments which become the initial fronts, see Fig. 5a, 

and then choosing a front to advance with by creating a triangle using the selected front as 

the base of the new triangle. A new point may need to be created if there is no suitable 

point currently available, see Fig. 5b. The front that is the base of the triangle is then 

removed from the set of fronts because it has become obscured by the new triangle. The 

other two edges of the triangle are added to the set of fronts on the condition that they are 

not obscured by the new triangle. The new point is chosen as the point that will produce 

the optimal triangle for the desired mesh. The optimal triangle is dependent on the PDE 

that is being solved. 



8 

 

(a) (b)  
 

Fig. 5. (a) Initial discretization of the boundary of the geometry. All edges are part of the 

front; (b) First triangle created and front (red) removed. Point for second triangle (green) 

being considered. 

 

 

 

 The advancing front method terminates once there are no remaining fronts, 

meaning the domain has been fully discretized. However, the advancing front method has 

difficulties terminating when two fronts of drastically different edge lengths attempt to 

merge. An inefficiency occurs with this approach when attempting to create a new triangle 

since the new triangle must not intersect with any existing triangles or fronts, so 

intersection checks need to be performed for the local neighborhood of the prospective 

triangle. 

2.4 DELAUNAY REFINEMENT METHOD 

 Delaunay refinement algorithms [24, 25] begin with an initial Delaunay 

triangulation, Fig. 6b, of the vertices of the input geometry, Fig. 6a, and then aims to 

improve the overall quality of the mesh by inserting new points, known as Steiner points. 

The invariant of these algorithms is that the mesh is always a Delaunay mesh and each new 

point may require that current triangles be removed and replaced with new triangles or a 

constraining edge may be split, causing the triangles that share the edge to be removed and 

replaced with new triangles. The criteria for refining the mesh is typically based on element 



9 

 

size and angles. The algorithm terminates once there are no more ill-suited elements 

according to the refinement policy, see Fig. 6c and Fig. 6d.  

 

 

 

(a) (b)  

(c) (d)  
 

Fig. 6. (a) Input geometry; (b) Initial triangulation; (c) Initial triangulation refined using 

Delaunay refinement with angle constraint of 33 degrees; (d) Initial triangulation refined 

using Delaunay refinement with angle constraint of 33 degrees and area constraint of 1 

unit. 
 

 

 



10 

 

2.5 PARALLEL MESH GENERATION 

 Current parallel mesh generators by Globisch, Kadow, Lammera and Burghardt, 

and Khan and Topping exist which handle the isotropic cases [14, 16, 19, 20] do not 

perform well for parallel anisotropic mesh generation. Extensive efforts have been 

applied by Ito et al. and Chrisochoides and Nave [13, 15] to generating meshes in parallel 

for the uniform isotropic and graded isotropic case. In parallel, Zagaris et al. [10, 11] and 

sequentially Loseille et al. and Zhang et al. [8, 12], researchers have begun developing 

anisotropic mesh generation paradigms to facilitate these CFD simulations.  

 Since efficient unstructured meshes for aerospace applications are comprised of 

two different mesh types, a pseudo-structured anisotropic boundary layer and an 

unstructured isotropic inviscid region, two separate paradigms are needed to generate high-

fidelity initial meshes that are computationally efficient for PDE solvers. The pseudo-

structured anisotropic boundary layer is generated through an extrusion-based advancing-

front method, as presented by Aubry et al. [9], while the unstructured isotropic inviscid 

region is generated using a graded decoupled approach presented by Linardakis and 

Chrisochoides [5] along with Delaunay refinement presented by Shewchuk [26]. 

 

  



11 

 

CHAPTER 3 

PARALLEL ANISOTROPIC BOUNDARY LAYER POINT INSERTION 

 

 Physical phenomena such as boundary layers in fluid mechanics are anisotropic in 

nature. There is a high degree of gradation in the flow velocities normal to the surface, thus 

it is beneficial to discretize the mesh in a way that efficiently captures these anisotropic 

flow velocities in order to yield substantial CPU savings without compromising accuracy. 

This dictates that the mesh should be refined in the direction normal to the surface, as 

shown in Fig. 7, where these strong gradients exist. These characteristics allow for the 

extrusion-based point insertion along the normal of the surface at each vertex on the planar 

straight-line graph (PSLG). Essentially, each vertex is treated as an endpoint for a ray while 

the normal at the vertex is treated as the direction of the ray. New points are then inserted 

along the ray, as in Fig. 8, according to a growth function. There are multiple functions, as 

presented by Garimella and Shephard [1], which can be used to space the prospective 

points. Certain growth functions may yield a more accurate discretization of the domain 

depending on the PDE that is being solved. Two common growth functions are polynomial 

and geometric, which offer a uniform growth along the normal of the PSLG. However, 

other more sophisticated, adaptive growth functions [1], may be necessary for more 

complex geometries. 

 

 

 



12 

 

 
 

Fig. 7. NACA 0012 Airfoil with surface normals 

 

 

 

 

 

 

   
 

Fig. 8. NACA 0012 Airfoil with vertices inserted along surface normals 

 

 

 

 Clearly, larger angles will naturally occur where the slope changes rapidly, such as 

the leading edge shown in Fig. 8, and extremely large angles at cusps, such as the trailing 

edge in Fig. 8. The regions where these large angles occur are the areas of the mesh that 

need refinement to satisfy the resolution constraints of the mesh’s boundary layer region. 

For the flow solver, since the boundary conditions are calculated first and are propagated 

through and affect the entire solution over the mesh, it is critical that the boundary layer be 

properly discretized. This means avoiding the case of intersecting rays. Additionally, if the 



13 

 

angle between two rays is too large, then the distance between vertices of neighboring rays 

will grow at excessively rapid rates, affecting the density of the mesh in the corresponding 

area, causing interpolation errors when the PDE solution is computed.  

3.1 RAY INSERTION 

 To treat cases where there is a large angle between two rays, a new point is created 

between the two points that have a large angle between their normals. Due to the nature of 

the PSLG being an explicit representation of the geometry, we lose the ability to determine 

the exact location of the new point, and therefore the normal at this point. Due to a lack of 

implicit information about the geometry, the midpoint of the two points and the average of 

the two normals at the two points is used to create a new ray. This is for the case where 

only one refining ray is needed to satisfy the angle constraint, a user-input constant that 

sets an upper bound on the angle between neighboring rays. The approach is analogous for 

cases where more refining rays are needed where the new points for the new rays are 

uniformly spaced along the straight line connecting the original two points. This process is 

done in parallel where each thread accesses a shared queue of vertices and computes the 

normal at the vertex which becomes the ray. After the rays have been determined for each 

of the vertices of the PSLG, the angle between the current ray and the forward neighboring 

vertex’s ray is computed. If the angle is too large, then the aforementioned approach of 

creating refining rays is implored. Fig. 9a shows two large angles easily visible at the 

trailing edge of the NACA 0012 Airfoil after the ray-based point insertion, while Fig. 9b 

includes the augmented points determined by the large angle detection. An angle constraint 

of seven degrees was used for Fig. 9b. A smaller angle constraint can be applied to yield a 

trailing edge region with high resolution.  



14 

 

(a) (b)  
 

Fig. 9. (a) Trailing edge point insertion for original surface normals; (b) Trailing edge 

point insertion with refining rays added 

 

 

 

3.2 RAY INTERSECTION 

 Once the rays have been determined, a quality check is performed to determine if 

any of the rays intersect. Since the rays extrude outward from the surface in the direction 

of the normal, convex geometries will not have intersecting rays, because all interior angles 

of a convex polygon are not greater than 180 degrees. This allows for the search space to 

be greatly reduced by only checking concavities, which can be determined using the two-

dimensional orientation test to determine if a point lies to the left, right, or on a directed 

line. Walking along the PSLG in a counter-clockwise order, the orientation test is 

performed to see if point pi lies to the left of the directed line (pi-2, pi-1). If this holds true, 

then we have detected the beginning of a concavity. To determine the end of the concave 



15 

 

region, the edge (pi-2, pi-1) is kept constant while the walking continues along the geometry 

until the first point that is on or to the right of the directed line (pi-2, pi-1) is found. Since we 

assume a simple polygon as the input geometry, and we keep track of the edges that each 

vertex is incident upon, we can perform the counter-clockwise walk in linear time with 

respect to the number of vertices since each vertex is incident upon exactly two edges. 

3.3 ANISOTROPIC VERTEX CREATION 

 After the intersection check terminates, the main thread allocates space for all of 

the needed Vertex objects. After the data is allocated, each thread accesses a shared queue 

of Ray objects and calculates the new points along the ray direction with respect to the 

growth function and uses these points to set the coordinates of the associated vertices. New 

vertices are inserted until the number of vertices for the current ray equals the number of 

layers requested, or in the case of an intersection with another ray, until the intersection 

point. The process is performed in parallel since no communication between threads is 

needed, because the data has already been allocated by the main thread, so each worker 

thread only needs to compute the location in memory for its vertices that it will be 

initializing, but does not need to modify the global container storing the Vertex objects. 

The final point inserted along each ray direction is then used to create constraining edges 

to enclose the boundary layer. 

 

  



16 

 

CHAPTER 4 

PARALLEL TRIANGULATION OF BOUNDARY LAYER 

 

 After the point insertion step is complete, the vertices in the boundary layer need to 

be triangulated. The algorithm presented by Blelloch et al. [2] is used, which utilizes the 

duality between the two-dimensional Delaunay Triangulation and the three-dimensional 

lower convex hull of a paraboloid, see Fig. 10.  

 

 

 

 
 

Fig. 10. Paraboloid (yellow), lower convex hull (green) with corresponding Delaunay 

triangulation (blue), points on the Cartesian plane, and projected points on the paraboloid 

for a sample point set. 

 

 

 

 



17 

 

4.1 2D DELAUNAY TRIANGULATION FROM 3D CONVEX HULL 

 The connection is between the two-dimensional Delaunay Triangulation’s two-

dimensional in-circle test and the three-dimensional lower convex hull of the paraboloid’s 

three-dimensional orientation test. The two-dimensional in-circle test, see Fig. 11a, 

answers the question, “does point t lie inside, on, or outside the circle defined by points a, 

b, and c?” by evaluating the determinant of the matrix in Fig. 11b. If the determinant is 

negative, then point t lies within the circle. If the determinant is zero, then point t lies on 

the circle. If the determinant is positive, then point t lies outside of the circle. Similarly, the 

three-dimensional orientation test, see Fig. 12a, answers the question, “does point t lie 

below, on, or above the plane defined by points a, b, and c?” by evaluating the determinant 

of the matrix in Fig. 12b. If the determinant is negative, then point t lies below the plane. 

If the determinant is zero, then point t lies on the plane. If the determinant is positive, then 

point t lies above the plane. When the point set is projected onto the paraboloid z = x2 + y2, 

the matrix for computing the three-dimensional orientation test is identical to the matrix 

used to compute the two-dimensional in-circle test because the equation of the paraboloid 

is the third term for each row in both the two-dimensional in-circle test and the three-

dimensional orientation test. This means that each facet of the lower convex hull of the 

paraboloid corresponds to a triangle in the Delaunay Triangulation. 

 

 

 



18 

 

(a) (b)  
 

Fig. 11. (a) Two-dimensional in-circle test; (b) Matrix used to evaluate the two-

dimensional in-circle test 

 

 

 

 

 

 

(a) (b)  
 

Fig. 12. (a) Three-dimensional orientation test; (b) Matrix used to evaluate the three-

dimensional orientation test 

 

 

 

Lemma: Consider ∆pqr and the plane defined by the projection of these points p’, q’, and 

r’. The circumcircle, C, of ∆pqr is empty iff the plane defined by p’, q’, and r’ is a face of 

the lower convex hull of the projected point set onto the paraboloid. 

Proof: If the plane is not a face of the lower convex hull, then there must be a point in the 

domain, s’, which lies below the plane, and s which is inside C. However, C is empty, so 



19 

 

the plane defined by p’, q’, and r’ is a face of the lower convex hull. Conversely, if C is not 

empty, then there must be a point in the domain, s, which is inside C, and s’ which lies 

below the plane defined by p’, q’, and r’. However, this plane is a face of the lower convex 

hull, so C is empty. 

4.2 ALGORITHM OVERVIEW 

 The algorithm works by dividing a set of vertices into two subdomains with a 

median line and dividing path of Delaunay edges. The path of Delaunay edges divides 

Delaunay triangles based on if their circumcenter is to one side of the median line or to the 

opposite side of the median line. This approach was chosen because the dividing path 

created between subdomains corresponds to constraining edges which would be present in 

the final triangulation if the domain were triangulated sequentially without being 

decomposed, unlike other algorithms [7] which use user-defined dividing paths to 

arbitrarily partition the domain. However, this is undesirable as these user-defined dividing 

paths are artificial and would not have been present in the original triangulation. These 

artificial dividing paths have a negative effect on the discretization of the boundary layer 

since these dividing paths disturb the spacing pattern and the alignment and orthogonality. 

The median line, for efficiency and simplicity of the algorithm, is parallel to the x-axis or 

y-axis, known as the cut axis. These Delaunay edges are edges of Delaunay triangles in the 

final triangulation, which allows for each subdomain to be triangulated independently by a 

state-of-the-art Delaunay triangulator, Triangle [3]. This approach is used as a coarse-

partitioner which aims to decompose the domain into coarse regions which can be meshed 

independently. Each subdomain only needs to be recursively divided until there are enough 



20 

 

subdomains to yield an acceptable degree of load balancing for the concurrent triangulation 

of the subdomains.  

4.3 COMPUTING THE DIVIDING DELAUNAY PATH 

 Our algorithm starts by creating an initial Subdomain object which stores vertices 

in x-sorted order and a copy in y-sorted order. The sorting is performed using a parallel 

version of quicksort, where half of the threads sort by the x-coordinate vertices and the 

other half of the threads sort by the y-coordinate vertices. The parallel version of quicksort 

uses a global pivot to partition the vertices into two groups: vertices less than the global 

pivot and vertices greater than or equal to the global pivot. This approach is applied 

recursively until there are enough partitioned ranges for each thread to independently sort. 

This allows for the bounding box to be computed in constant time using the first and last 

vertex of the x-sorted and y-sorted vertices. The cut axis is set to be the axis parallel to the 

shortest edge of the bounding box, thus to avoid the creation of long, skinny subdomains 

which are more expensive to triangulate with Triangle due to the merge step of Triangle’s 

divide-and-conquer approach. Maintaining the sorted vertices also allows for the median 

vertex along the cut axis to be located in constant time. Using this median vertex, the cut-

axis-sorted vertices are projected onto a paraboloid centered at the median vertex and then 

flattened onto the vertical plane perpendicular to the cut axis. 

 

 

 



21 

 

 
 

Fig. 13. Cartesian point set (green) and Delaunay path (brown) with corresponding 

flattened projection of the point set (blue) and lower convex hull (red).  

 

 

 

 Kadow [16] provides a more in-depth proof regarding the mathematics concerning 

the relationship between the two-dimensional Delaunay triangulation, three-dimensional 

lower convex hull of a paraboloid, and two-dimensional lower convex hull of a paraboloid 

flattened onto a vertical plane. The vertices that have been flattened onto the vertical plane 

are then used to compute the lower convex hull, see Fig. 13, in worst case linear time using 

the Monotone Chain algorithm [4]. See Fig. 14 for the steps of the Monotone Chain 

algorithm for a sample Cartesian point set. The Monotone Chain algorithm works by 

incrementally constructing the lower convex hull from a coordinate-sorted set of points by 

adding one point at a time and removing a point if it makes a right-hand turn. Since the 

vertices were in sorted order before the projection, then the vertices will be in sorted order 

after the projection and flattening. The original vertices that correspond to the points on 

the lower convex hull are then used to create new edges.  



22 

 

 
 

Fig. 14. Steps of the Monotone Chain Algorithm. The vertical grey line sweeps from lowest 

x-coordinate vertex to highest x-coordinate vertex. (a) The current lower convex hull; (b) 

The previous lower convex hull with the next vertex added; (c) The next to last point of 

the lower convex hull makes a right-hand turn, so the next to last point must be removed 

as it is not part of the lower convex hull; (d) The current lower convex hull after the non-

hull point is removed. 

 

 

 

 Fig. 15 shows the boundary layer vertices in the Cartesian plane for a coarse-

grained airfoil. These vertices are then projected onto the paraboloid centered at the median 

vertex, see Fig. 16. The paraboloid is then flattened onto the vertical plane, Fig. 17, and the 

lower convex hull is computed, which becomes the dividing path, see Fig. 18. Since the 

projection and flattening operations are involutory, these operations can be reversed. Fig. 

19 shows the paraboloid with the dividing path computed from the vertical plane, and Fig. 

20 shows the original vertices on the Cartesian plane with the dividing path. This dividing 

path is a Delaunay path since all edges in the path are side of triangles in the final Delaunay 

triangulation. 



23 

 

 
 

Fig. 15. NACA 0012 Airfoil with boundary layer vertices in the Cartesian plane 

 

 

 

 

 

 

 
 

Fig. 16. NACA 0012 Airfoil with boundary layer vertices projected onto a paraboloid 

centered at the median vertex 

 

 

 



24 

 

 
 

Fig. 17. NACA 0012 Airfoil with boundary layer vertices flattened onto the vertical plane 

 

 

 



25 

 

 
 

Fig. 18. NACA 0012 Airfoil with boundary layer vertices flattened onto the vertical plane 

with dividing path (red) 

 

 

 



26 

 

 
 

Fig. 19. NACA 0012 Airfoil with boundary layer vertices projected onto a paraboloid 

centered at the median vertex with dividing path (red) 

 

 

 

 

 

 

 
 

Fig. 20. NACA 0012 Airfoil with boundary layer vertices in the Cartesian plane with 

dividing path (red) 

 

 

 

 



27 

 

4.4 SUBDOMAIN PARTITIONING 

 Two new Subdomain objects are then created and the original Subdomain object’s 

vertices are then partitioned into the two new Subdomain object’s vertices. For simplicity 

and without loss of generality, assume the cut axis is the y-axis. All vertices in the original 

Subdomain object which have an x-coordinate less than the median vertex’s x-coordinate 

are added to the left Subdomain object’s vertices while vertices with x-coordinates greater 

than the median vertex’s x-coordinate are added to the right Subdomain object’s vertices. 

Additionally, vertices that comprise the lower convex hull are added to both the left and 

right Subdomain object’s vertices. This partitioning step is done by iterating over the 

original Subdomain object’s x-sorted and y-sorted vertices in order to maintain the sorted 

vertices in linear time. These new Subdomain objects are then added to a shared stack for 

further decomposing.  

4.5 SUBDOMAIN TRIANGULATION 

 Once a subdomain has been sufficiently decomposed, the enclosing border of edges 

is determined and then triangulated with Triangle. The task of determining the enclosing 

border for the subdomain is visited in the implementation section. The criteria for if a 

subdomain is sufficiently decomposed stays true to the original algorithm, whereas if there 

are no internal vertices (vertices not marked as being on the subdomain boundary), then 

the subdomain’s decomposition is halted. We have added two more variable constraints as 

we are utilizing this approach as a coarse-partitioner: if the number of vertices is less than 

a given tolerance or if the decomposition’s recursive level of a particular Subdomain object 

reaches a given tolerance, then decomposition ceases for this subdomain. 

 

 



28 

 

 
 

Fig. 21. Decomposed Delaunay subdomains for NACA 0012 Airfoil 

 

 

 

 Fig. 21 shows the boundary layer decomposed into 64 Delaunay subdomains, 

which can all be triangulated independently. Fig. 22 shows a fine-grain, high-density 

boundary layer mesh of the leading edge and trailing edge of the NACA 0012 Airfoil with 

refining rays added after the subdomains have been triangulated. The ray angle tolerance 

used is four degrees, yielding a dense distribution of elements in these critical areas.  

 

 

 

(a) (b)  
 

Fig. 22. (a) Triangulation of leading edge region with refining rays; (b) Triangulation of 

trailing edge region with refining rays 



29 

 

 Typically for airfoils, the leading edge and trailing edge require more refinement. 

This is due to two factors: the implicit geometrical representation has larger angles between 

surface normals in these regions, and the governing PDE. The trailing edge is a highly 

discussed matter in the CFD field due to the Kutta condition and the presence of the 

stagnation points near the trailing edge and the trailing edge wake. Without any knowledge 

of the angle of attack through the fluid, we are only able to prescribe a high degree of 

refining rays uniformly to the trailing edge region, creating high-resolution, graded 

isotropic elements since the location of the wake is variable due to the angle of attack. The 

leading edge region is a high-gradient region with a stagnation point, so quality is critical 

as this is the first part of the airfoil that contacts the fluid, so if the leading edge region is 

not accurately discretized, this inaccuracy has an effect on the PDE solution. 

4.6 DECOMPOSITION PERFORMANCE 

 The decomposition algorithm is used as a coarse-partitioner, where the dividing 

step requires O(n) time with our current implementation. The median vertex can be 

determined in constant time, projecting the vertices requires Θ(n) time, computing the 

lower convex hull is performed in O(n) time, maintaining the primary-axis-sorted vertices 

requires O(n) time for the move and copy operations, and maintaining the cut-axis-sorted 

vertices also requires O(n) time due to the comparisons and move and copy operations. 

Fig. 23 shows the execution times for triangulating the boundary layer based on different 

depths of decomposition. The depths of decomposition that were measured are 3, 4, 5, 6, 

and 7; yielding 8, 16, 32, 64, and 128 subdomains, respectively. The time to triangulate the 

domain with Triangle is also shown. 



30 

 

 
 

Fig. 23. Execution times for different decomposition depths 

 

 

 

 Thus, the total execution times for coarse-partitioning has a loglinear complexity 

solution, so using the decomposition algorithm as a coarse-partitioner for the triangulation 

of the boundary layer is favorable to the overall performance of the application. 

 

  

0

5

10

15

20

25

30

1000000 2000000 3000000 4000000 5000000 6000000 7000000 8000000 9000000 10000000

Ti
m

e 
in

 S
ec

o
n

d
s

Number of Vertices

Execution Times for Decomposition Depths

8 Subdomains 16 Subdomains 32 Subdomains 64 Subdomains

128 Subdomains 256 Subdomains Triangle



31 

 

CHAPTER 5 

ISOTROPIC INVISCID REGION 

 

 For generating the isotropic inviscid region, we use a sizing function along with 

Triangle’s ability to use a user-defined area constraint, typically defined as a sizing 

function based on distance from the airfoil, for Delaunay refinement to provide a smooth 

gradation of triangle size based on distance from the initial geometry towards the far-field. 

Since the size of the inviscid region is typically a factor of 30 to 50 chord lengths from the 

initial geometry, the time to refine the inviscid region is extremely high, due to the large 

area of the domain compared to the boundary layer. Thus, we need to generate the inviscid 

region in parallel. To facilitate the parallel refinement, we follow the approach of 

generating graded Delaunay decoupling paths as presented by Linardakis and 

Chrisochoides in [5], in order to distribute the refinement work among the worker threads 

by creating subdomains which can be concurrently refined. In order to generate 

subdomains that can be efficiently triangulated and refined by Triangle, it is essential to 

create subdomains that are convex and do not contain any holes since Triangle first creates 

an initial triangulation and then removes elements inside concavities and holes from the 

initial triangulation. Using rectangles for the near-body inviscid region and layers of 

geometrically similar trapezoids moving towards the far-field, we can eliminate the cost 

associated with removing triangles from concavities. Rectangles and trapezoids are simple 

shapes that are used to partition the inviscid region. In order to generate the graded 

Delaunay decoupling path of a prospective subdomain, we compute a value k from (1), 


