1992

Numerical Solutions for Weakly Singular Hammerstein Equations and Their Superconvergence

Hideaki Kaneko
Old Dominion University, hkaneko@odu.edu

Richard D. Noren
Old Dominion University, rnoren@odu.edu

Yuesheng Xu

Follow this and additional works at: http://digitalcommons.odu.edu/mathstat_fac_pubs

Part of the [Applied Mathematics Commons](http://digitalcommons.odu.edu/mathstat_fac_pubs)

Repository Citation

http://digitalcommons.odu.edu/mathstat_fac_pubs/29

Original Publication Citation

This Article is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for inclusion in Mathematics & Statistics Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
NUMERICAL SOLUTIONS FOR WEAKLY SINGULAR HAMMERSTEIN EQUATIONS AND THEIR SUPERCONVERGENCE

HIDEAKI KANEKO, RICHARD D. NOREN AND YUESHENG XU

ABSTRACT. In the recent paper [7], it was shown that the solutions of weakly singular Hammerstein equations satisfy certain regularity properties. Using this result, the optimal convergence rate of a standard piecewise polynomial collocation method and that of the recently proposed collocation-type method of Kumar and Sloan [10] are obtained. Superconvergence of both of these methods are also presented. In the final section, we discuss briefly a standard product-integration method for weakly singular Hammerstein equations and indicate its superconvergence property.

1. Introduction. We consider the Hammerstein equation with weakly singular kernel

\[\varphi(s) - \int_a^b g_\alpha(|s-t|)k(s,t)\psi(t,\varphi(t))\,dt = f(s), \quad a \leq s \leq b, \]

where

\[g_\alpha(s) = \begin{cases}
 s^{\alpha-1} & \text{for } 0 < \alpha < 1 \\
 \log s & \text{for } \alpha = 1.
\end{cases} \]

Throughout this paper, we assume that

(i) \(k \in C([a, b] \times [a, b]) \)

(ii) \(\psi \in C([a, b] \times (-\infty, \infty)) \) and satisfies the Lipschitz condition \(|\psi(t, y_1) - \psi(t, y_2)| \leq A|y_1 - y_2| \).

In the recent paper [7], it was shown that under assumptions (i), (ii) and

(iii) \(AG < 1 \), where \(G \equiv \sup_{a \leq s \leq b} \int_a^b |g_\alpha(|s-t|)k(s,t)|\,dt \),

there is a unique solution to equation (1.1).

Generalizing the argument of C. Schneider [14], regularity properties of the solution \(\varphi \) were also obtained in [7]. For our present purposes, these results can be summarized as follows: