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ABSTRACT

EFFICIENT MACHINE LEARNING APPROACH FOR
OPTIMIZING SCIENTIFIC COMPUTING APPLICATIONS ON

EMERGING HPC ARCHITECTURES

Kamesh Arumugam Karunanithi
Old Dominion University, 2017

Co-Directors: Dr. Mohammad Zubair
Dr. Desh Ranjan
Dr. Baľsa Terzić

Efficient parallel implementations of scientific applications on multi-core CPUs

with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploi-

ting the data parallel architecture of the accelerator along with the vector pipelines

of modern x86 CPU architectures, load balancing, and efficient memory transfer

between different devices. It is relatively easy to meet these requirements for highly-

structured scientific applications. In contrast, a number of scientific and engineering

applications are unstructured. Getting performance on accelerators for these appli-

cations is extremely challenging because many of these applications employ irregular

algorithms which exhibit data-dependent control-flow and irregular memory acces-

ses. Furthermore, these applications are often iterative with dependency between

steps, and thus making it hard to parallelize across steps. As a result, parallelism in

these applications is often limited to a single step. Numerical simulation of charged

particles beam dynamics is one such application where the distribution of work and

memory access pattern at each time step is irregular. Applications with these pro-

perties tend to present significant branch and memory divergence, load imbalance

between different processor cores, and poor compute and memory utilization. Prior

research on parallelizing such irregular applications have been focused around op-

timizing the irregular, data-dependent memory accesses and control-flow during a

single step of the application independent of the other steps, with the assumption

that these patterns are completely unpredictable. We observed that the structure of

computation leading to control-flow divergence and irregular memory accesses in one

step is similar to that in the next step. It is possible to predict this structure in the

current step by observing the computation structure of previous steps.

In this dissertation, we present novel machine learning based optimization techni-

ques to address the parallel implementation challenges of such irregular applications



on different HPC architectures. In particular, we use supervised learning to predict

the computation structure and use it to address the control-flow and memory access

irregularities in the parallel implementation of such applications on GPUs, Xeon Phis,

and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon

Phis. We use numerical simulation of charged particles beam dynamics simulation

as a motivating example throughout the dissertation to present our new approach,

though they should be equally applicable to a wide range of irregular applications.

The machine learning approach presented here use predictive analytics and forecas-

ting techniques to adaptively model and track the irregular memory access pattern

at each time step of the simulation to anticipate the future memory access pattern.

Access pattern forecasts can then be used to formulate optimization decisions du-

ring application execution which improves the performance of the application at a

future time step based on the observations from earlier time steps. In heterogeneous

architectures, forecasts can also be used to improve the memory performance and

resource utilization of all the processing units to deliver a good aggregate perfor-

mance. We used these optimization techniques and anticipation strategy to design a

cache-aware, memory efficient parallel algorithm to address the irregularities in the

parallel implementation of charged particles beam dynamics simulation on different

HPC architectures. Experimental result using a diverse mix of HPC architectures

shows that our approach in using anticipation strategy is effective in maximizing

data reuse, ensuring workload balance, minimizing branch and memory divergence,

and in improving resource utilization.
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CHAPTER 1

INTRODUCTION

Heterogeneous architectures are now becoming ubiquitous in the computing sys-

tems ranging from supercomputers to embedded systems. These architectures inte-

grate different types of processing units (PUs) with different hardware and perfor-

mance characteristics, for example, multi-core CPUs, GPUs, Intel Many Integrated

Core (MIC), and FPGAs. These processing units have the potential to improve per-

formance for many scientific applications [38]. At present, a large fraction of Top500

[72] and Green500 [31] supercomputers now use heterogeneous computing architectu-

res. Accelerators, in particular, have played a significant role in the evolution of these

architectures. In fact, systems composed of multi-core CPUs and different types of

accelerators, like NVIDIA GPUs and Intel MIC (e.g. Xeon Phis), are among the most

common type of heterogeneous architectures in world’s top supercomputers [72]. For

instance, three of top-5 supercomputers in the world are heterogeneous architectures

with hardware accelerators: Tianhe-2 (Milkyway-2) employs Intel Xeon Phi many-

core accelerators [57], Piz Daint [74] and ORNL Titan [29] employ NVIDIA Tesla

GPUs. Table 1 gives a breakdown on the hardware specification of different PUs in

these three systems along with their theoretical performance in PFlop/s. The pre-

sence of accelerators in these systems boost the overall raw performance as well as the

price-to-performance and power-to-performance ratios of these systems when com-

pared to the traditional symmetric CPU architectures. With power consumption as

one of the major design constrains in todays computing systems, this trend towards

heterogeneous architectures comprising of multi-core CPUs with GPUs, Xeon-Phi

and other accelerators will continue.

The vastly different architectures and programming models of multi-core CPUs

and accelerators, however, present several challenges in achieving good performance.

Optimizing overall application performance requires taking into account the indivi-

dual characteristics of the PUs. For instance, multi-core CPUs use fewer cores, which

are typically out-of-order, multi-instruction issue cores which run at high-frequency

and use large-sized caches to minimize the latency of a single thread. This makes
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Tianhe-2 Piz Daint Titan

CPU cores per node 24 12 16

Accelerators per node 3 1 1

Number of nodes 16000 5320 18688

Total system memory (TB) 1024 340 710

Theoretical Peak Performance (PFlop/s) 54.90 25.33 27.11

Power consumption (MW) 17.81 2.27 8.21

Table 1: Specifications of three supercomputers from world’s top-5 (as of June 2017).

CPUs more suitable for latency-critical applications. In contrast, GPUs use thou-

sands of cores, which are in-order cores that share their control unit and are designed

for handling multiple tasks simultaneously where the memory access latency is ty-

pically hidden with calculations instead of big data caches. This makes GPUs more

suitable for throughput-oriented applications which are typically expressed as data-

parallel computations - the same program is executed on many data elements in

parallel. For this reason, conventional architecture specific optimizations techniques

alone may not work well in a heterogeneous system and hence, novel techniques are

required to realize the potential and promise of heterogeneous computing. In other

words, performance on heterogeneous architecture can only be achieved if the appli-

cation workload is partitioned and mapped to the PUs such that all the PUs are best

utilized and combined to deliver good aggregate performance.

Heterogeneous architectures composed of multi-core CPUs and accelerators are

most effective in accelerating applications with dense and highly-structured worklo-

ads common in many problem domains ranging from graphics applications to mo-

lecular dynamics simulation and climate modeling. This is because many of these

applications use regular algorithms that operate on structured data like large vectors

or matrices, and access them in statically predictable ways which fit well on these ar-

chitectures where they can exploit the data-parallel, single-instruction multiple data

(SIMD) nature of the accelerators and the vectorization support of x86 CPUs to

improve performance. In particular, these algorithms exhibit high computational de-

mands, extensive data parallelism, access memory in a streaming fashion, and require

little synchronization. These characteristics in an application make them effective

in achieving coalesced memory accesses, minimizing thread divergence and synchro-

nization, improving SIMD and vector pipeline utilizations, etc., which are some of
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the important factors to achieve good performance on many parallel architectures.

Moreover, there exist a plethora of optimization techniques, methods, and languages

models to achieve efficient parallelization of regular algorithms [44, 34, 55], and their

implementation on GPUs and Intel MIC can be at least an order of magnitude faster

than fine-tuned parallel CPU version [24].

However, a number of scientific and engineering applications are unstructured.

Getting performance on accelerators for these applications is extremely challenging

because many of these applications employ algorithms which exhibit data-dependent

control-flow and memory accesses that are not readily amenable to these architec-

tures. Algorithms with these properties are said to be irregular, and pose problems

for high-performance parallel implementations due to the following characteristics in

them -

• Irregular algorithms often demonstrate significant memory access irregularity

which leads to severe performance bottlenecks on SIMD architectures [18, 14].

The data-dependent memory accesses in these programs tend to have less spa-

tial locality compared to traditional graphics and regular general-purpose ap-

plications.

• Input values in these algorithms determine the program’s runtime behavior,

which therefore cannot be statically predicted. These properties in the al-

gorithm pose problems for high-performance parallel implementations, where

equal distribution of work over processor cores and locality of reference are

required within each cache sharing processor core.

• Performance of applications on data-parallel, SIMD architectures relies on high

SIMD lane occupancy and efficient memory coalescing for inter-thread data

locality, where the former requires minimal divergent branching for threads in

a SIMD group, while the latter requires regular memory access patterns and

data structure layouts [23, 59]. Unfortunately, irregular algorithms tend to

present both significant branch and memory divergence which leads to severe

performance bottlenecks.

Irregular algorithms are the core of many scientific computing applications that

arise from several domains of science and engineering. Some of the well-known appli-

cations that employ irregular algorithms are charged particles beam dynamics simu-

lation [77, 39], n-body simulations [9], data mining [75], Boolean satisfiability [17],
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social networks [37], system modeling [66], compilers [2], meshing [25], and discrete-

event simulation [54]. The irregular nature of the underlying algorithms makes these

applications difficult to parallelize and more challenging to map to modern parallel

architectures. Several efficient implementations for some of these applications using

accelerators and other parallel architectures have been published in recent literature,

demonstrating that individually most of these architectures are capable of accelera-

ting at least some irregular applications relative to the CPUs [19, 51, 53]. However,

developing parallel implementations for these application using collaborative compu-

ting on heterogeneous architectures to deliver the best aggregate performance from

all the PUs remains a challenge.

1.1 AIM OF THE THESIS

Efficient parallel implementations of scientific applications on multi-core CPUs

with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploi-

ting the data parallel architecture of the accelerator along with the vector pipelines of

modern x86 CPU architectures (using 128-bit Streaming SIMD Extensions (SSE) or

256-bit Advanced Vector Extensions (AVX)), load balancing, and efficient memory

transfer between different devices. It is relatively easy to meet these requirements for

highly-structured scientific applications. In contrast, getting good performance on

accelerators for unstructured applications that employ irregular algorithms is extre-

mely challenging, thereby making their efficient parallel implementation a daunting

task. Furthermore, these applications are often iterative with dependency between

steps, and thus making it hard to parallelize across steps. As a result, the parallelism

in these applications is often limited to a single step.

Numerical simulation of charged particles beam dynamics is one such irregular

application that has gained increased interest in computational physics, especially in

recent years, as these simulations are crucial in understanding and the design of: (i)

high-brightness synchrotron light sources - powerful tools for cutting-edge research

in physics, biology, medicine and other fields, and (ii) electron-ion particle colliders,

which probe the nature of matter at unprecedented depths. This application simu-

lates the time evolution of charged particles in particle accelerator by computing

the collective effects (e.g. forces from self-interaction, forces from external magnetic

fields, and so on) acting on individual particles of a beam for a few hundreds or

thousands of time steps where the computation of collective effects at each time step
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is irregular. In particular, distribution of work and data in the accurate computation

of collective effects at each time step of the simulation is highly unstructured and

cannot be characterized a priori, as these quantities are input-dependent and evolve

with the computation itself. To obtain high performance in such irregular algorithms

is extremely challenging, and to this end, much effort has been devoted in the de-

velopment of suitable algorithms that enable unprecedented fidelity and precision in

the study of collective effects [10]. However, implementing algorithms with such high-

accuracy and resolution have proven to be extremely challenging due to the data- and

compute-intensive nature of the underlying numerical methods [47, 46, 42, 16, 49].

Consequently, many of the existing algorithms employ a number of approximations

and simplifications to reduce the computational load [16, 49]. This improves the

performance while sacrificing the accuracy.

Another well-known irregular application is n-body simulation using the Barnes-

Hut algorithm which computes the gravitational forces acting on n different celes-

tial objects for a number of time steps where each time step simulates a particular

moment in the time evolution of the celestial bodies. Barnes-Hut algorithm hierar-

chically decomposes the space around the celestial bodies into successively smaller

volumes, called grids, and computes summary information for the bodies contained

inside each grid, allowing the algorithm to quickly approximate forces that the n bo-

dies induce upon each other. The hierarchical decomposition is recorded in an octree

data structure and the force calculations at each step require tree-building and repe-

ated traversal of the unbalanced octree which is highly irregular. Other examples of

such irregular scientific applications include - molecular dynamics simulation, finite

elements methods, simulation of wave and sound propagation in 3D objects, etc.

Prior research on parallelizing such applications have been focused around op-

timizing the irregular, data-dependent memory accesses and control-flow during a

single step of the application, independent of the other steps, with the assumption

that these patterns are completely unpredictable [18, 9, 5]. Multiple analysis of these

applications executing irregular workloads for a few hundreds or thousands of steps

show that control-flow and data access patterns made by the irregular algorithm fol-

low a loosely similar pattern between steps. In such situation, one effective approach

to reduce the irregularities is to analyze the control-flow and data access patterns at

each step of the application and then anticipate future data dependence and control-

flow before it is needed. Given the complexity and diversity of control-flow and data
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access patterns in these applications, we believe anticipation strategies are best rea-

lized via intelligent application-specific prediction models that can adaptively model

and track access patterns. Access pattern forecasts can then be used to make opti-

mization decisions during application execution which improves the performance at

a future step based on the observations from the earlier steps.

In this thesis, we aim to use such predictive analytics and forecasting techniques to

optimize irregular scientific computing applications like beam dynamics simulation on

emerging high-performance computing (HPC) architectures. In particular, we target

on attaining the following two optimization goals while developing efficient parallel

implementations on GPUs, Xeon Phis and heterogeneous architectures composed of

multi-core CPUs with GPUs or Xeon Phis -

• Performance exploitation of individual PUs of heterogeneous systems - Archi-

tecture specific optimizations to reduce the control-flow and memory access

irregularities while mapping these applications on to the parallel architectures.

• Effective workload partitioning between the hybrid mix of PUs of the under-

lying heterogeneous architecture to obtain the best aggregate performance.

To optimize the irregularities, we explore the use supervised learning to adaptively

model and track irregular access patterns in the irregular algorithm at each step

of the application to anticipate the future control-flow and data access patterns.

Access pattern forecasts are then used to formulate runtime decisions that optimize

the irregular computations at a future step based on the observations from earlier

time steps. For example, forecasts can be used to determine computations to thread

mapping that maximize data reuse within a cache sharing thread group and minimize

thread divergence, improve data prefetching, linearize the irregularities, etc. Most

of these runtime decisions improve the performance of the application on each PU

independently. In order to improve the performance in the collective computing

environment of the heterogeneous architecture, the forecasts are used to create and

distribute sub-problems to different PUs of the heterogeneous architecture which

maximizes the resource utilization.

Throughout this thesis, we use numerical simulation of charged particles beam

dynamics simulation as a motivating example to develop and illustrate all the opti-

mization techniques. However, the techniques presented here are equally applicable
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to a wide range of iterative applications that have characteristics similar to that of

beam dynamics simulation.

1.2 THESIS CONTRIBUTIONS

The main contributions of this thesis are -

• We present supervised learning based optimization techniques to address the

control-flow and memory access irregularities in the parallel implementation of

iterative scientific applications on GPU and Intel MIC architectures. The new

optimization technique uses predictive analytics and forecasting techniques to

adaptively model and track the irregular memory access patterns at each step

of the application to anticipate the future memory access patterns. Access

pattern forecasts are used to make optimization and prefetch decisions during

application execution which improves the performance at a future step based

on observations from earlier steps.

• We present optimization techniques that use machine learning algorithms to

divide the original problem into multiple smaller sub-problems and then dis-

tribute these sub-problems efficiently between different PUs of the underlying

heterogeneous architecture such that it improves the memory performance and

resource utilization of all the PUs and delivers a good aggregate performance.

• We demonstrate all our optimization techniques from previous bullets using

numerical simulation of charged particle beam dynamics simulation which re-

quire execution of irregular workloads for multiple time steps. In particular,

we present a cache-aware and memory efficient parallel algorithm that use the

proposed machine learning based optimization techniques to address the irre-

gularities in the parallel implementation of beam dynamics simulation on hete-

rogeneous architectures composed of GPUs, Xeon Phis and multi-core CPUs.

1.3 THESIS ORGANIZATION

The structure of this thesis as follows:

• Chapter 2 provides a brief overview of several topics that are essential for un-

derstanding the problems addressed in this thesis, namely: overview of different
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parallel architectures, implementation challenges on GPUs and Xeon Phis, he-

terogeneous computing challenges, irregular algorithms and its implementation

challenges, physical problem of charged particles beam dynamics simulation

and related work, and numerical integration algorithms which is one of the

core irregular algorithm used in beam dynamics simulations and in many other

scientific computing applications.

• Chapter 3 describes the algorithm to numerically simulate charged particles

beam dynamics, its limitation on sequential machines, challenges in developing

efficient parallel implementation, and a brief survey of previous research in

developing parallel algorithms for this problem.

• Chapter 4 presents the memory efficient parallel algorithm that use machine

learning based optimization techniques to address the challenges from irregu-

larities in the parallel implementation of charged particles beam dynamics on

GPUs. Further, it presents a quantitative analysis of its performance on NVI-

DIA Tesla K40 GPU.

• Chapter 5 presents the parallel algorithm and its implementation on hetero-

geneous architectures for the irregular computations in beam dynamics simu-

lation. In addition to addressing the irregularities, the algorithm presented in

this chapter extends the machine learning approach from Chapter 4 to optimize

the resource utilization of all the PUs of underlying heterogeneous architecture.

• Chapter 6 provides a concluding discussion on the optimization techniques and

algorithms presented in this dissertation.
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CHAPTER 2

BACKGROUND

This chapter provides a brief overview of several topics that are essential for un-

derstanding the problems addressed in this thesis. In particular, Section 2.1 provides

a overview of the parallel architectures used in this study, and Section 2.2 presents

the parallel implementation challenges on these architectures. Next, in Section 2.3,

we discuss irregular algorithms and its parallel implementation challenges. Section

2.4 presents the physical problem of charged particle beam dynamics simulation and

provides a overview of the related work in its numerical simulation methods. Finally,

in Section 2.5, we a take brief look at numerical integration algorithms, which is

the core irregular algorithm used in beam dynamics simulations and in many other

scientific computing applications.

2.1 OVERVIEW OF PARALLEL ARCHITECTURES

In this section, we take a brief look at the typical architecture of two widely

used accelerator - NVIDIA’s General Purpose GPU and Intel’s Xeon Phi coprocessor

architecture.

2.1.1 GENERAL PURPOSE GPUS

At the hardware level, NVIDIA’s GPU architecture is an scalable array of mul-

tithreaded Streaming Multiprocessors (SMs). Each SM features several Streaming

Processor (SP) cores and double-precision logic units (DP unit), where each SP core

is a fully pipelined integer arithmetic logic unit (ALU) and single-precision floating

point unit (FPU). In addition to SP cores and DP units, each SM features (i) lo-

ad/store units, (ii) special function units (SFU) for transcendental instructions such

as sin, cosine, reciprocal, and square root, (iii) schedulers and instruction dispatch

units, (iv) instruction cache, (v) register file, (vi) on-chip shared-memory and L1-

cache, (vii) read-only cache, and (viii) texture units. The size and number of each

unit vary form one generation of GPUs to another. Each core also supports Fu-

sed Multiply-Add (FMA) instructions for both single precision and double precision
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(a) Grid of thread blocks (b) Memory hierarchy

Figure 1: CUDA programming model for general purpose computing on NVIDIA
GPUs.

floating point operations. GPUs also supports larger off-chip global, constant and

texture memory that are shared among all SMs. The global/texture memory are of-

ten cached and use two-level caching system, where L1-cache is located within each

SM, while the L2-cache is located off-chip and is shared among all the SMs.

Compute Unified Device Architecture (CUDA) is the general purpose parallel

computing platform and programming model used for designing parallel computati-

ons on NVIDIA GPUs. CUDA programming allows the programmer to define functi-

ons, called kernels, that when called, are executed on the GPUs by many different

parallel CUDA threads. The programmer or compiler organizes these CUDA threads

into one-dimensional, two-dimensional, or three-dimensional block of threads, called

a thread block where each thread within a thread block executes an instance of the

kernel. The maximum number of threads in a thread block vary from one generation

of GPUs to another, for example, a thread block may contain up to 1024 CUDA

threads for programming Kepler GPUs. The thread blocks are further organized

into a one-dimensional, two-dimensional, or three-dimensional grid of thread blocks
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as illustrated by Figure 1a. The number of thread blocks in a grid is usually dictated

by the size of the data being processed or the number of processors in the system,

which it can greatly exceed. Thread blocks are executed independently which allows

it to be scheduled in any order across any number of cores as illustrated in [60], and

this enables the programmers to write code that scales with the number of cores.

CUDA threads have access to data from six different memory space during their

course of execution: register memory, constant memory, shared memory, texture

memory, local memory, and global memory. Figure 1b illustrates how CUDA threads

can access data from the different memory spaces. Each thread has private per-

thread registers that are often used to hold frequently accessed data, and these are

not programmer controlled. Each thread has private local memory that is used for

register spills, function calls, and automatic array variables. Each thread block has a

per-block shared memory which is visible to all threads of the block and has the same

lifetime as the block. Shared memory is often used for inter-thread communication

and data sharing in parallel algorithms. The global, constant and texture memory

spaces are accessible from all threads and these three memory spaces are persistent

across kernel launches by the same application.

When a CUDA kernel is invoked by the host CPU, the blocks of threads that

constitute the kernel grid are enumerated and scheduled on the available SMs in any

order, concurrently or sequentially, so that the compiled CUDA kernel can execute

on any number of SMs. Multiple thread blocks can execute concurrently on a single

SM and as the thread blocks terminate, new blocks are launched on the vacated SM.

Each SM employs SIMT architecture to manage and execute hundreds of threads con-

currently [60]. The SM creates, manages, schedules and executes threads in groups

of 32 parallel threads called warps. Individual threads composing a warp start their

execution at the same program address, but they have their own program counter

and register state and are therefore free to branch and execute independently. At

any given time, all threads within a warp execute the same instruction in a lockstep.

As a result, full warp efficiency is realized when all 32 threads of a warp agree on

their execution path, or more formally referred to as control-flow (warp execution

efficiency is the average percentage of active threads in each executed warp). Howe-

ver, the presence of data dependent conditional branch often cause threads within

the same warp to follow different control-flow paths (also known as branch or control-

flow divergence) and this causes the warp to serially execute each branch path taken,
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disabling threads that are not on that path, and when all paths complete, the thre-

ads converge back to the same execution path. It is important to note that such

branch divergence occurs only within a warp; different warps execute independently

regardless of whether they are executing common or disjoint code paths.

2.1.2 INTEL XEON PHI COPROCESSOR

The Intel Xeon Phi coprocessor is based on the Many Integrated Core (MIC)

architecture. This architecture uses previous concepts developed by Intel for the

Larrabee many core architecture, as well as the Teraflops Research Chip and the

Intel Single-chip Cloud computer. We will discuss one of the Xeon Phi variants, the

Knight Corner (KNC). This is the model used in this thesis. The KNC architecture is

primarily composed of processing cores (more than 50), caches, memory controllers,

PCIe client logic, and a very high bandwidth, bidirectional ring interconnect . Each

core is equipped with (i) Vector processing unit (VPU), (ii) scalar processing unit,

(iii) Extended Math Unit (EMU) for transcendental instructions such as sin, cosine,

reciprocal, and square root, (iv) scalar and vector registers, (v) a L1 cache (data and

instruction), and (vi) a unified L2 cache. Caches within a core are fully coherent and

implement the x86 memory order model. The L1 and L2 caches provide an aggregate

bandwidth that is approximately 15 and 7 times, respectively, faster compared to the

aggregate memory bandwidth.

The Xeon Phi is highly optimized for vector processing and it implements SIMD

execution model in all VPUs. Each VPU features a 512-bit SIMD instructions, as a

replacement for the more commonly found Intel SSE, MMX and AVX instructions.

With 512-bit SIMD instructions, VPU provides data parallelism at a very fine grain,

working on 512 bits of 16 single-precision floats or 16 integers or 8 double-precision

floats at a time. The VPU also supports Fused Multiply-Add (FMA) instructions and

hence can execute 32 single-precision or 16 double-precision floating point operations

per cycle. A more comprehensive overview of Intel Xeon Phi architecture can be

found in [40].

2.2 PARALLEL COMPUTING CHALLENGES

In this section, we first illustrate the impact of data-parallel, SIMD nature of NVI-

DIA’s GPU and Intel’s Xeon Phi architecture on application performance. Next, in
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Section 2.2.2, we take a brief look at the parallel computing challenges in heteroge-

neous architectures.

2.2.1 ARCHITECTURAL INFLUENCES ON PERFORMANCE

Effectively exploiting data parallelism using SIMD pipelines is one of the most

important aspects in achieving high performance on PUs such as GPU, Intel MIC and

modern x86 architectures. For example, Intel MIC has 512-bit VPU units per core

to expose SIMD parallelism, GPUs by design employ SIMT architecture within each

streaming multiprocessors that execute threads in group of 32 (equivalent to 1024-bit

SIMD for single precision floating point), x86 architectures uses 128-bit Streaming

SIMD Extensions or 256-bit Advanced Vector Extensions (AVX) to support SIMD

parallelism. In these PUs, data parallelism using SIMD pipelines is a power efficient

way of boosting the peak performance, and such parallelism is exploited at different

granularities: usually, several work items (also called threads) are organized into a

work group. These are broken down into several SIMD groups (e.g. warps in GPUs)

that are executed by a SIMD pipeline. Each PU may have multiple SIMD pipelines

to execute SIMD groups in parallel, where effective hardware utilization of the PU

relies largely on exploiting the SIMD pipelines.

Programming applications to maximize the utilizations of SIMD pipelines and to

deliver high-performance of the application code on the PUs remains a challenge. In

particular, the nature of SIMD execution requires that all threads in a SIMD thread

group (e.g., a warp in GPUs) to execute the same instruction in lockstep. While this

allows the processor design in PUs to be relatively simple, application performance

may suffer significantly whenever threads in the same SIMD group behave differently

due to control or memory latency divergence [60]. Control divergence results in

serialized execution of divergent control paths, leaving execution resources idle and

throttling parallelism. Similarly, memory latency divergence causes a SIMD group to

stall until the longest memory request for a vector load completes before executing

any dependent instructions. In this section, we first briefly overview the effects of

control-flow and memory latency divergence on application performance. Then, we

look at the SIMD architectural features that affect control-flow and memory latency

divergence, and those that try to mitigate them.
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Memory Latency Divergence

When a SIMD thread group of size w issues a load instruction (e.g., w = 32

threads for GPUs, w = 8 double precision loads in Intel Xeon-Phi’s 512-bit VPU),

the SIMD group will block once an instruction dependent upon the load data becomes

the next to issue. As a result, this group of threads is unable to make progress until

all the data for the constituent load instructions are available. In particular, for

SIMT architectures, a single delinquent load can block forward progress of the SIMD

group. This introduces the problem of memory latency divergence, where a SIMD

group can be stalled until the last memory request from a vector load instruction

is returned, potentially long after other memory requests from the vector load have

completed. In many workloads, this load latency cannot be hidden by executing other

SIMD groups. Several studies have highlighted how memory latency divergence can

be a significant performance bottleneck in GPUs and Xeon Phis [52, 68, 22]. This

problem of memory latency divergence is not unique to GPUs (or Xeon Phis) and

can also manifest itself in other SIMD/vector architectures that support “gather”

load operations.

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8

Figure 2: Memory latency divergence when the addresses accessed by SIMD group
are scattered in the memory.
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𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8

(a)

𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8

(b)

Figure 3: Memory latency divergence when: (a) the addresses accessed by SIMD
group are uniform (all equal), (b) the addresses accessed by SIMD group are conse-
cutive.

Memory latency divergence arises from several factors. First, the target data for

a set of memory requests from a SIMD group may reside in different levels of memory

hierarchy, and the memory hierarchy service different requests at different times due

to hits and misses at various levels. Second, the time to complete each memory

request depends on several factors, including which DRAM bank the target memory

resides in, contention in the interconnect network, and availability of resources in

the memory controller. Third, current memory systems are primarily optimized to

support traditional, structured workloads with low degree of memory access irregu-

larity. In case of workloads with high degree of irregular or non-coalesced memory

accesses, the memory system serializes the execution of memory references from a

SIMD thread group, which stalls the SIMD group until the last memory reference

is returned. For example, consider a SIMD group of size w that executes a load

instruction. In the worst case, all w addresses are scattered in the address space,

which results in w data loads from the memory. This serializes the execution of load

instructions, which stalls the SIMD group until the last load instruction is returned.

Figure 2 illustrates the memory divergence for load instruction within a SIMD group

of size w = 8 where all the w addresses are scattered in the address space. On the

other hand, if the addresses are uniform (i.e., all equal) or consecutive, only a single

load has to be issued (see Figure 3a and Figure 3b).
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g l o b a l void ke rne l ( ){
. . . .
i f ( cond i t i on ){

. . . .
Code−Block A
. . . .

} else {
. . . .
Code−Block B
. . . .

}
. . . .

}

(a) CUDA kernel with if − else construct.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Instruction

Branch

Instruction

Code-Block A

Code-Block B

Warp

Threads

Warp
divergence

Path taken 
or

Active thread

Path not taken
or 

Disabled thread

(b) Control-flow for an warp executing the if − else branch condition when half
of warps thread evaluate the branch condition to true.

Figure 4: Control-flow divergence in GPUs.

Control-flow Divergence

Consider a SIMD group of threads executing the if − else construct shown in

Figure 4a. The threads within the SIMD group works with full efficiency when all

the threads execute the if part or all execute the else part. On the other hand, when

threads within a SIMD group take different control-flow paths then the execution of

the group takes multiple passes through the divergent paths. The first pass executes

the threads that follow if part (Code-Block A) and the second pass executes those

that follow the else part (Code-Block B). In other words, each thread from the SIMD
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group takes both the branch paths sequentially, even though it just executes one of

them. This results in poor to suboptimal hardware utilization which often degrades

the application performance. For example, Figure 4b illustrates the control-flow in

a GPU warp when half of the its thread evaluate the branch condition to true. In

the first pass, only half the threads takes the path for if condition (denoted by black

arrow) and the other half remains disabled (denoted by grey arrow). Similarly, in

the second pass, half the threads take the path for else condition (denoted by black

arrow) and the other half remains disabled (denoted by grey arrow). This reduces

the SMID groups or warp execution efficiency to 50%. Such reduction in execution

efficiency often leads to poor utilization of the compute resources, which severely

degrades the application performance on SIMD architectures [32]. As a result, it is

of vital importance to mitigate the control-flow divergence and subsequently increase

the execution efficiency of all SIMD thread groups for obtaining good application

performance on SIMD architectures.

Mitigating Divergence

The architectural features in GPUs and Intel MIC that affect memory latency

divergence (besides the SIMD execution model illustrated in the previous section)

and those that try to mitigate divergence are -

• Memory Coalescing - A common architectural technique that reduces me-

mory bandwidth demand in SIMD architectures is memory coalescing. In this

technique, the individual requests from a SIMD group are combined, based

on their target address, to form as few cache-line sized (e.g. 128B in GPUs)

requests as possible. Coalescing is primarily designed to reduce bandwidth re-

quirements by eliminating redundant accesses to the same cache line. However,

it also reduces the opportunity for memory latency divergence by minimizing

the number of distinct memory requests per SIMD group. Coalescing is not

effective, however, if the data accessed by the threads in a SIMD group are

not spatially colocated, as is commonly the case in applications that exhibit

memory access patterns that are not readily amenable to the SIMD architec-

ture. Previous studies have shown that coalescing is extremely effective for

traditional structured workloads with uniform memory access patterns, but its

effectiveness falls short for workloads with irregular memory accesses [22].
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• Multithreading - SIMD architectures leverage thread-level parallelism to hide

memory access latency. The effect of long divergence-induced stalls can be

mitigated if there are enough ready SIMD thread groups in the system to hide

the latency of the slowest request. Previous studies [22, 27, 41] have shown,

however, that in spite of having a large number of thread contexts to choose

from, a SIMD processor core will frequently sit idle as all the SIMD groups

are stalled on pending memory accesses. For instance, recent NVIDIA GPUs

support at most 48 to 64 warps within a SP, while the main memory latency

have been measured to exceed 400 cycles. It is, therefore, important to note that

thread-level parallelism cannot always completely hide main memory latency

[8].

• Caches - Caches have low latency when compared to the global memory.

As a result, memory requests from a SIMD thread group that hit in a cache

are returned sooner even with access irregularities or latency divergence when

compared to servicing the same requests from global memory. This improves

the average memory latency. However, for memory latency divergence to be

meaningfully addressed with caches, a substantial fraction of SIMD groups

must be able to serve all of their memory requests with cache hits. Otherwise,

the cache misses for a SIMD group will be serviced from the global memory,

and faces the latency divergence issues described above.

2.2.2 HETEROGENEOUS COMPUTING CHALLENGES

The presence of different type of PUs with different processing capabilities in-

troduces many challenges to the application design. In particular, the level of he-

terogeneity in these systems introduces non-uniformity in system development, pro-

gramming practices, and overall system capability. These non-uniformities presents

a significant challenge to the programming community in developing applications

that can fully exploit the capabilities of the multiple PUs and in approaching their

combined theoretical performance. Several studies have been devoted to developing

programming models that can exploit these heterogeneous architectures in a unified

way, e.g., OpenCL [43], OpenACC [63] and OpenMP [64]. These models simplify

the programming effort required in exploiting these architectures, however, achie-

ving good performance on heterogeneous architectures still largely depends on (i)
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performance exploitation of each single PU, and (ii) performance aggregation from

all the PUs. This requires partitioning the application workload and mapping them

efficiently between the PUs such that all the PUs are best utilized and combined to

deliver best aggregate performance.

Performance exploitation of the individual PU is achieved using architecture-

specific optimization strategies, [60, 59, 80]. Researchers have developed several op-

timizations techniques and tools on top of the programming models to extract more

performance on each type of architecture [70, 69, 79]. On the other hand, vastly

different architectures and programming models of different PUs in a heterogeneous

system presents several challenges in optimizing applications to deliver good aggre-

gate performance from all the PUs. Several factors relating to both the PU and the

application itself, and spanning from microarchitecture-level to system-level need to

be taken into account for fully leveraging their potential in heterogeneous compu-

ting systems [55]. In particular, designing effective workload partitioning between a

hybrid mix of PUs is challenging because -

• Heterogeneity of the platform requires partitioning algorithms to fully consi-

der the PUs differences in processing capability, hardware architecture, and

memory model. For example, GPUs and Xeon Phis usually offer higher pro-

cessing throughput than CPUs (on average 2.5X in [45]), but have separate

memory spaces and low data communication bandwidth to the CPU memory

(GPUs are connected with the host CPU through a PCI Express bus). Due to

the interaction between the PUs in a heterogeneous environment, optimizing

performance and energy efficiency requires taking into account the individual

characteristics of the PUs. Some of the dominant PU-specific factors that needs

to be considered are

– Current load on PUs and achieving load balancing between them,

– Memory bandwidth and CPU to accelerator data transfer overhead; avoi-

ding and/or amortizing overhead of launching kernels on accelerators,

– Overlapping data transfer with computation or CPU computation with

computation on accelerators,

– Taking into account the limitations of PUs, e.g. CPU to GPU/Xeon-Phi

memory bandwidth, size of GPU/Xeon-Phi and CPU memory, number
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of threads in GPU/Xeon-Phi and CPU cores, reduced performance of

GPU/Xeon-Phi for double-precision computations etc. [78]. Additionally,

aggressively using CPU for computation affects its ability to act as a host,

which harms the performance [30, 73].

• The diversity of platforms, applications, and datasets increases the partitioning

complexity [71]. The diversity lies in the fact that heterogeneous platforms exist

in different configurations and forms (e.g., multi-core CPUs with accelerators,

embedded systems, MPSoC, etc.), and that data parallel applications (with

different datasets) present various kinds of performance behavior even on the

same platform.

• Application or problem specific factors that influence workload partitioning -

– Subdividing the workload and selecting suitable work sizes to be allocated

to different PUs

– Accounting for data dependencies, e.g. if a task has data dependencies on

previous task, where was the previous task executed?

• From programmer’s viewpoint, it is challenging to obtain, with limited time

and effort, the optimal partitioning that leads to the best performance for a

given heterogeneous platform, application, and dataset.

A more comprehensive survey of heterogeneous computing techniques and the

challenges involved in heterogeneous computing can be found in [55].

2.3 IRREGULAR ALGORITHMS

The terms regular and irregular stem from the compiler literature. Regular al-

gorithms operate on structured data like large vectors or matrices, and access them

in statically predictable ways - e.g. dense linear algebra computations, matrix vec-

tor multiplications, etc. These algorithms often have high computational demands,

exhibit extensive data parallelism, access memory in a streaming fashion, and re-

quire little synchronization [50]. This sort of regularity in the algorithm exhibit data

independent control-flow and memory references which can be exploited to minimize

memory divergence by coalescing memory accesses, and minimize thread divergence

and synchronization by maintaining workload balance. In fact, there exists a plethora
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of techniques, methods and languages to achieve efficient parallelization of regular

algorithms [44, 34], and their implementation on GPUs and Xeon Phis can be at-least

an order of magnitude faster than fine tuned parallel CPU version [24].

On the other hand, irregular algorithms are characterized by control-flow and

memory references that are data dependent. In particular, distribution of work and

data in these algorithms cannot be characterized a priori because these quantities

are input-dependent and evolve with the computation itself. Irregular algorithms

are the core of many high-performance applications, such as n-body simulations [9],

data mining [75], Boolean satisfiability [17], social networks [37], system modeling

[66], compilers [2], meshing [25], and discrete-event simulation [54]. Efficient parallel

implementation of irregular algorithms are challenging because:

• Irregular algorithms often demonstrate significant Memory Access Irregularity

(MAI) [18] which leads to severe performance bottlenecks on SIMD architec-

tures [14]. The data dependent memory accesses in these programs tend to

have less spatial locality compared to traditional graphics and regular general-

purpose applications.

• Input values in these algorithms determine the program’s runtime behavior,

which therefore cannot be statically predicted. These properties in the al-

gorithm pose problems for high-performance parallel implementations, where

equal distribution of work over processors cores and locality of reference are

required within each cache sharing processor cores.

• Performance of applications on SIMD architectures relies on high SIMD lane

occupancy and efficient memory coalescing for inter-thread data locality, where

the former requires minimal divergent branching for threads in a SIMD group,

while the latter requires regular memory access patterns and data structure

layouts [23, 59]. Unfortunately, irregular algorithms tend to present both signi-

ficant branch and memory divergence which leads to severe performance bott-

lenecks.

2.4 BEAM DYNAMICS

In this section, we present an overview of charged particle beam dynamics and

the general equations that govern the dynamics of charged particles in a synchrotron

(a type of cyclic particle accelerator).
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2.4.1 PHYSICAL PROBLEM

The dynamics of charged particle beams is captured by the Lorentz force [47]:

d

dt
(γmev) = e (E + β ×B) , (1)

with the relativistic β and γ, velocity v, electric fieldE and magnetic fieldB specified

as, respectively,

β ≡ v/c, γ =
1√

1 + β2
, v(p) =

p/me√
1 + p · p/(mec)2

, (2a)

E = −∇φ− 1

c
∂tA, B = ∇×A. (2b)

φ and A the retarded scalar and retarded vector potentials, respectively. They are

obtained by integrating the charge distribution ρ and the charge current density J

over the retarded time t′ = t− |r − r′|/c:[
φ(r, t)

A(r, t)

]
=

∫ ∞
0

[
ρ(r′, t− r−r′

c
)

J(r′, t− r−r′

c
)

]
d2r′

|r− r′|
, (3a)

[
ρ(r, t)

J(r, t)

]
=

∫ ∞
0

[
1

v(p)

]
f(r,p, t)dp. (3b)

r and p are particle coordinates and momentum, respectively, f(r,p, t) is the particle

distribution function (DF) of the beam in phase space, me particle mass, c the speed

of light. Both electric and magnetic fields are composed of two components, one

due to external fields and the other due to self-fields: E = Eext +Eself , B = Bext +

Bself . Eext andBext are external electromagnetic (EM) fields fixed by the accelerator

lattice, and Eself and Bself are the EM fields from the beam self-interaction. The

beam self-interaction depends on the history of the beam charge distribution ρ and

current density J via the retarded potentials φ and A.

The computation of retarded potentials requires integration over the history of

charge distribution and current density, as can be seen from Equation 3a. This is

the main computational bottleneck of the beam dynamics simulations. In particular,

the problems to overcome in a successful beam dynamics simulation are: (i) data

storage for the time-dependent beam quantities (ρ and J); (ii) numerical treatment

of retardation and singularity in the integral equation for retarded potentials; and
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Figure 5: Conceptual view of charged particles beam dynamics on a 2D plane.

(iii) accurate and efficient multi-dimensional integration in the equation for retarded

potentials.

Figure 5 and Figure 6 illustrates the conceptual view of charged particle beam

dynamics in a synchrotron (a type of cyclic particle accelerator) that is approximated

on a 2D plane. Figure 5 provides an overall view of the simulation, and Figure 6

illustrates the simulation process in a step-by-step manner. In both these figures,

blue line denotes the design orbit along which a beam bunch with N charged particles

travel under the influence of a bending force of a magnet. In order to numerically

simulate the dynamics of this beam, first the charged particles at time t0 = 0 are

generated from Monte Carlo sampling of initial DF of N particles with a total charge

ofQ. The particles evolve by a small time increment ∆t between each time step due to

the forces acting on the individual particles. These forces are computed using Vlasov-

Maxwell equations that are solved either directly, by sampling the entire phase space

of the DF, either on a grid or in an appropriate basis [15], or by using a particle

tracking approach [46, 47, 77, 76, 39]. The computational requirements associated

with sampling the entire phase space limit the direct solvers to lower dimensions

(usually 1D). On the other hand, tracking methods are less restrictive owing to the

fact that sampling of the phase space is done only through simulation particles. This



24

(a) (b)

(c) (d)

(e) (f)

Figure 6: Simulation of charged particles beam dynamics. (a) Particle distribution
for charged particle beam at time t0 is generated from Monte Carlo sampling of initial
DF of N particles with a total charge of Q. (b) - (e) The charged particles in the beam
emits synchrotron radiation when forced to travel along a curved trajectory under the
influence of a bending force of a accelerator magnets (referred to as Bending Magnet
in the above figure). (f) The radiations emitted from all the earlier time steps catch
up with the charged particle beam at time tk = k∆t for all integers k > 0, and these
synchrotron radiations leads to hazardous self-interactions.
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allows the study in higher-dimensional systems, which gives them a clear advantage

and makes them a preferred method for modeling collective effects in beam dynamics

simulations. The most dominant of the particle tracking approaches is the particle-

in-cell method [77, 76, 39], where the individual particles are tracked in continuous

phase space, whereas moments of the distribution such as densities and currents are

computed simultaneously on discrete spatial grid points. The continuous phase space

in the plane of the beam lattice is referred as Lab Frame (LF)(XY−plane in Figure

5).

Furthermore, at each time step, the particle distribution experiences the effects of

coherent synchrotron radiation (csr) and other collective effects. Figure 6 illustrates

the collective effects on the particles due to beam’s self-interaction. In particular,

when a charged particle beam travels along a curved trajectory under the influence

of a bending force of an accelerator magnets, it emits synchrotron radiations, as il-

lustrated in Figure 6b - 6e. The radiations emitted from all the earlier time steps

catch up with the charged particle beam at time tk for all integers k > 0, and these

synchrotron radiations leads to hazardous self-interactions. This self-interaction cau-

ses significant emittance degradation, as well as fragmentation and microbunching

within the beam bunch, rendering the beam useless for physics research.

2.4.2 RELATED WORK

Present beam dynamics simulation methods employ a number of approximation

in the study of collective (including CSR) effects. For example, the beam dynamics

calculation in elegant [16] is based on the analysis of bunch self-interaction for a

rigid-line bunch. This method is widely used for accelerator design and is the first

to reveal CSR-induced microbunching in bunch compressors. However, in the re-

gime of extreme bunch compression when the bunch deflection is appreciable, the

1D approximation used in elegant may not be appropriate [49]. The earliest 2D

beam dynamics simulation is TraFiC4 [42]. Here electro-magnetic (EM) fields are

generated from the source particles moving along prescribed orbit, and CSR effects

are calculated from the impact of these EM fields on the dynamics of test particles.

An early self-consistent beam dynamics simulation was developed by [46, 47]. This

code calculates direct interaction between microparticles, with the retarded poten-

tials obtained by integrating bunch distribution over retarded times. However, the

computation efficiency for this code is severely limited by the direct particle-particle
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interaction employed in the model. Recently, Bassi et al. [11] have developed a

highly efficient, high-resolution 2D self-consistent code for simulation of the CSR

effects. This simulation has generated interesting results on CSR-induced microbun-

ching in bunch compressors. Currently, the code assumes linear optics, so the effects

caused by nonlinear optics are not included. Self-consistent CSR simulations based

on finite element method was pioneered by Agoh and Yokoya [1]. This method can

include boundary effect by chamber walls much easier than the Greens function ap-

proach. More comprehensive review of the status of beam dynamics simulation can

be found in the review article by Bassi et al. [10].

2.5 NUMERICAL INTEGRATION

Numerical integration (also called as quadrature) constitutes a broad family of

algorithms for calculating the numerical value of a definite integral. In this section,

we describe the two widely used quadrature algorithms to calculate one-dimensional

definite integrals: Newton-Cotes formulas and Adaptive quadrature. Then, we ex-

tend the description to definite integrals for higher dimensions (commonly called as

multiple or multi-dimensional integrals).

2.5.1 NEWTON-COTES FORMULAS

Newton-Cotes formulae are a family of numerical integration techniques where

the value of a definite integral is approximated as a weighted sum of the integrand

values at equally spaced points. More formally, given a function or integrand f(x),

Newton-Cotes formula of degree n that approximates the definite integral of f(x)

over an interval [a, b] is stated as

∫ b

a

f(x)dx ≈
n∑
i=0

wif(xi) (4)

where x0 = a, xn = b, and xi = x0 + ih with step size h = xn−x0
n

= b−a
n

. The weights

wi are derived from Lagrange basis polynomials [21, p. 500], and it depends only on

the degree n of the Newton-Cotes formula.

Table 2 lists some of the widely used Newton-Cotes formulae of varying degree.

The notation fi is a shorthand for f(xi), and the number ξ in error term is between

a and b. The exponent of step size h in the error term shows the rate at which

the approximation error decreases, and the derivative of f in the error term shows
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Degree (n) Common name Formula Error term

1 Trapezoid rule 1
2h(f0 + f1) − 1

12h
3f (2)(ξ)

2 Simpson’s rule 1
3h(f0 + 4f1 + f2) − 1

90h
5f (4)(ξ)

3 Simpson’s 3/8 rule 3
8h(f0 + 3f1 + 3f2 + f3) − 3

80h
5f (4)(ξ)

4 Boole’s rule 2
4h(7f0 + 32f1 + 12f2 + 32f3 + 7f4) − 8

945h
7f (6)(ξ)

Table 2: Newton-Cotes formulae for different degrees.

which polynomials can be integrated exactly (i.e., with error equal to zero). For the

Newton-Cotes rules to be accurate, the step size h needs to be small, which means

the domain of integration [a, b] must be small itself, which is not true most of the

time. One way to improve the accuracy is to partition the integration interval from a

to b into a number of subintervals and apply Newton-Cotes rule on each subinterval,

where the integral and error estimate from each subinterval is accumulated to give

the final estimates for the original integral. The resulting set of equation is called

as composite integration rule. For example, the composite integration rule using

Trapezoid rule is stated as

∫ b

a

f(x)dx ≈ h

2

[
f(a) + 2

m−1∑
k=1

f (a+ kh) + f(b)

]
(5)

where m is the number of subintervals, and subintervals have the form [kh, (k +

1)h], with h = (b−a)
m

and k = 0, 1, 2, . . . ,m − 1. The overall error estimate for

composite trapezoidal rule can be obtained by accumulating the individual errors for

each subinterval. A more comprehensive survey of Newton-Cotes formulae and their

corresponding composite rules can be found in [21, p. 601].

2.5.2 ADAPTIVE QUADRATURES

Newton-Cotes formulae and their corresponding family of composite rules are

based on evaluating the integrand at evenly spaced points. This global perspective

ignores the fact that many functions have regions of high variability along with

other sections where change is gradual. As a result, numerical integration using
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Newton-Cotes formulae are accurate only when the integrand f is smooth (i.e., if it

is sufficiently differentiable or it features only subintervals where change is gradual).

On the other hand, when the integrand is highly oscillatory or it lacks derivatives

at certain points, then integration methods such as adaptive quadrature are used. In

adaptive quadrature, step sizes are adaptively adjusted so that small intervals are

used in regions of rapid variations and larger intervals are used where the function

changes gradually.

More formally, given a function or integrand f(x), adaptive quadrature approx-

imates the integral
∫ b
a
f(x)dx to a user-specified error tolerance of τ using static

quadrature rules on adaptively refined subregions of the integration domain [21,

p. 638], where static quadrature rules are used to compute the integral estimate

(Q(a, b) ≈
∫ b
a
f(x)dx) and the error estimate (ε(a, b) ≈ |Q −

∫ b
a
f(x)dx|) on each

subregion [a, b]. Some of the most commonly used quadrature rules are Simpson’s

rule, Newton-Cotes formulas, Gauss-Kronrod 7/15-point, and Gauss-Kronrod 10/21-

point [21].

Adaptive quadrature is a recursive algorithm which builds a binary recursion tree

of subregions as the computation proceeds. This recursion tree of subregions is a

visual and conceptual representation of the control-flow in adaptive quadrature. The

root of subregion recursion tree is the input integration domain [a, b] over which

the initial estimates for integral and error are determined using quadrature rules.

When the estimated error is larger than the required error tolerance, the subregion

[a, b] is partitioned into two equal halves ([a, a+b
2

] and [a+b
2
, b]). The partitioned

subregions constitute the left and right child node of the parent node [a, b]. This

process is repeated recursively on the left and right nodes until the error estimate on

the subregion associated with the tree node is smaller than the error tolerance. Once

the recursion terminates, the final estimates of the integral and the error are given

by the corresponding estimates from the subregions represented by the leaves of the

subregion recursion tree. Moreover, nature of this recursive algorithm adapts to the

integrand automatically by partitioning the integration domain into subregions with

fine spacing where the integrand is varying rapidly and coarse spacing where the

integrand is varying slowly.

Let P = 〈x0, x1, x2, . . . , x|P |〉 be the partition on the integration domain [a, b] that

is generated by the adaptive quadrature algorithm for an integral
∫ b
a
f(x)dx, where

x0 = a < x1 < x2 < . . . < x|P | = b. The final estimate for the integral using the
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Figure 7: Adaptive quadrature for the Gaussian integral
∫ 1

0
e−

(x−0.2)2

0.005 dx using Simp-
son’s quadrature rule with error tolerance τ = 0.001.
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partition is given by

I =

|P |−1∑
i=0

Q(xi, xi+1) (6)

where Q(xi, xi+1) is the integral estimate given by quadrature rule on the subregion

[xi, xi+1] for all integers i in the range 0 < i < |P |. Moreover, ε(xi, xi+1) < τ , for all

integers i in the range 0 < i < |P |, where ε(xi, xi+1) is the error estimate given by

quadrature rule along the subregion [xi, xi+1]. It is important to note that the set

of all subregions [xi, xi+1] for all integers i in the range 0 < i < |P | represents the

leaves of subregion recursion tree.

For example, consider a Gaussian function f(x) = e−
(x−0.2)2

0.005 ∀x ∈ [0, 1] (see

Figure 7a). The subregion recursion tree generated by the adaptive quadrature to

approximate the Gaussian integral
∫ 1

0
f(x)dx to a error tolerance of τ = 0.001 using

Simpson’s quadrature rule is shown in Figure 7b. The partition generated along the

integration region [0, 1] is given by 〈0, 1
16
, 1

8
, 3

16
, 7

32
, 1

4
, 5

16
, 3

8
, 1

2
, 1〉, where the partitions

along the subregion [0, 3
8
] has fine spacing and has coarse spacing along [3

8
, 1] (see

Figure 7a).

2.5.3 MULTIPLE INTEGRALS

The multiple integral is a generalization of the definite integral to functions of

more than one real variable. For example, multiple integral of a function f(x1, x2, . . . , xn)

in n variables has the following form:∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

f(x1, x2, . . . , xn)dx1dx2 . . . dxn (7)

where [ai, bi] is the integration region for the variable xi, and [a1, b1] × [a2, b2] ×
. . . [an, bn] is the hyper-rectangle that represents the integration domain for Equation

7. In general, multiple integral with n variables is referred to as n-dimensional or

n-D integral. The simplest of all multiple integrals is the 2D integral (also called as

double integral), e.g., ∫ b1

a1

∫ b2

a2

f(x1, x2)dx1dx2 (8)

where [a1, b1]× [a2, b2] is a integration region in R2. Typically, above double integral

is computed as repeated one-dimensional integral by applying Fubini’s theorem [82],
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∫ b1

a1

[∫ b2

a2

f(x1, x2)dx1

]
dx2 (9)

where multiple integral of the function f(x1, x2) is first performed over the variable

x1 and then performed over the variable x2. In other words, numerical approximation

of Equation 9 involves applying one-dimensional integration methods like Newton-

Cotes formula or Adaptive quadrature along inner dimension with each value of the

outer dimension held constant. Then the result of inner dimension is integrated in the

outer dimension again by using any one of the standard one-dimensional integration

methods. The choice of integration method along each dimension is usually based

on the nature of integrand along that particular dimension. In particular, Newton-

Cotes formula is used when the integrand is smooth; otherwise adaptive quadrature

is used.

Multiple integrals of higher dimensions (n > 2) can also be computed as repeated

one-dimensional integrals. However, this approach requires the function evaluations

to grow exponentially as the number of dimensions increases. For instance, using

repeated one-dimensional integral with m function evaluations along each dimension

requires a total of mn functional evaluations to compute n-dimensional integral.

In order to overcome this curse of dimensionality, methods such as Monte Carlo

integration, Sparse Grids, Bayesian Quadrature, or algorithms adaptive on the entire

n-dimensional space are used for multiple integrals with higher dimension (n > 5)

[12, 13, 33, 20]. The fastest known such open source adaptive method is cuhre

[12, 13], which is available as part of cuba library [35, 36]. A brief overview of

cuhre is illustrated in Appendix A.1, and a more comprehensive survey of other

integration methods for multiple integrals can be found in [21, 26, 67, 56].
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CHAPTER 3

BEAM DYNAMICS SIMULATION

In this chapter, we first introduce the algorithm to numerically simulate the char-

ged particles beam dynamics and then provide a detailed discussion of the irregular

algorithms used in this simulation. Then, in Section 3.2, we present the limitati-

ons of implementing this simulation algorithm on sequential machines and present

with the irregular properties in the numerical simulation which makes the parallel

implementation a challenging task. Finally, Section 3.3 presents our prior work in

developing efficient parallel algorithms for this problem.

3.1 OUTLINE OF THE ALGORITHM

Numerical simulation of charged particle beam dynamics on a 2D plane of the

beam lattice consists of four consecutive steps that are computed at each time step

of the simulation, and are repeated for a few hundreds or thousands of time steps

(see Figure 8). Formally, for a simulation with step size ∆t, following four steps are

executed during each time step k, for some integer k in the range 0 to Nt, where Nt

is the number of time steps required for the simulation -

1. Particle Deposition - Deposit the DF sampled by N particles onto a 2D

spatial grid of NX × NY resolution using particle-in-cell method [77, 76, 39],

thereby yielding 2D grid of moments, one for each grid-point. The moments

here is a multidimensional quantity representing the distribution’s deposited

charge, current densities, etc.

2. Compute Retarded Potentials - The collective effects in the particle distri-

bution due to beam’s self-interaction are modeled through retarded potentials,

which are computed at each grid-point of the 2D spatial grid using the quadra-

ture defined in Equation 3a.

3. Compute Self-Forces - Self-forces are computed on each grid-point of the

spatial grid using Equation 1. Next, the self-forces acting on each particle are

computed by linear interpolation from the 2D grid of self-forces. It is required
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Compute forces
acting on each particle
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Evaluate retarded potentials 
on 𝑁𝑋 × 𝑁𝑌 spatial grid

Initial Distribution
of 𝑁 particles 

at  𝑡 = 0

Advance particles by Δ𝑡
𝑡 = 𝑡 + Δ𝑡

Push Particles

Repeated for
𝑁𝑡

time steps

Figure 8: Outline of charged particle beam dynamics simulation algorithm.

that the particle deposition onto the grid and interpolation from the grid onto

particles is done in the same manner, so as to avoid “ghost forces”.

4. Push Particles - The particles are advanced to next time step by a small

increment ∆t in time by solving Lorentz equation (Equation 1), using leap-frog

scheme [47].

The steps 1-4 are repeated for Nt steps, where Nt is usually in the order of few

hundreds to thousands. The heart of beam dynamics simulation is the stage at which

the retarded potentials are computed, which, as later illustrated in this chapter, is

the crucial and by far the most computationally-intensive step of the simulation. As

a result, to obtain high performance in the overall beam dynamics simulation, it is

important to optimize this step. However, the algorithm required to compute the

retarded potentials is highly irregular, making its efficient parallel implementation a

daunting task.

3.1.1 PARTICLE DEPOSITION

During particle deposition stage of the simulation, moments of the particle distri-

bution are computed on discrete grid points using PIC approach [77, 76, 39], where
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the distribution is first transformed to a normalized representation in which the

charged particles are enclosed within a 2D unit-grid. Then, the moments of charged

particles are deposited onto the nearest grid points of the unit-grid using inverse

interpolation as described in [39]. As a result, during time step k with simulation

time tk = k∆t for some integer k in range 0 < k < Nt, the particle deposition stage

generates a 2D grid of moments which denotes the moments of particle distribution

at that particular time step. For simplicity, we use the notation Dk to denote the

2D grid of moments at time step k.

Figure 9 and 10 outlines the transformation of particle distribution to a 2D unit-

grid representation using PIC approach. The top panel of the Figure 9 shows the

charged particle dynamics along a design orbit, where the particle distribution at

each time step is tightly enclosed within a spatial grid of resolution NX ×NY . The

bottom panel of Figure 9 denotes one such spatial grid that tightly envelops the

particle distribution at time step k, where the spacing between the extreme points is

declared to be LX and LY , respectively, so that the outliers are in the middle of the

boundary cells. The spatial grid makes an angle α with the XY−plane. Orienting

the beam in such a way so as to occupy the smallest volume while containing all

the particles yields optimal spatial resolution on a fixed-size rectangular grid. In

general, the spatial grid enclosing the particle distribution at time step k is uniquely

identified by its tilt angle α, physical size of the grid in X− and Y−directions, LX

and LY respectively, and the location of its center of charge point (X0, Y0). In other

words, given the quintuple 〈α,LX , LY , X0, Y0〉k at time step k, the spatial grid that

envelops the particle distribution at tk can be constructed from the quintuple. Next,

particles within the spatial grid are rotated through an angle α from the design orbit

in XY−plane, so as to account for the (X, Y ) correlation and is further normalized to

be contained within a unit-grid given by [−0.5, 0.5]×[−0.5, 0.5]. The coordinate space

in the rotated and normalized plane is referred to as Grid Frame (GF) (X̃Ỹ−plane

in Figure 10). Once the particle distribution is normalized, all the charged particles

are deposited onto the nearest grid points using PIC deposition scheme, thereby

yielding the moments of the distribution on each grid-point of the unit-grid, which

involves inverse interpolation (scatter operation) from the particle position to the

nearest grid points. This results in a 2D grid of moments gk[1..NX , 1..NY ] for the

particle distribution at tk, where gk[i, j] denote the moments deposited on a grid-point

(x̃i, ỹj) (in GF ) located in ith row and jth column of the unit-grid. The moments
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Figure 9: Spatial-grid enclosing the particle distribution at a particular time step of
the simulation. Its size is determined by the outliers of the distribution along the
principal axes. Blue line denotes the design orbit.



36

𝐿𝑋 = 𝑁𝑋 − 1 ℎ𝑋

𝛼

𝑋

𝑌

 𝑋

(𝑋0, 𝑌0)

 𝑌
ℎ𝑋

ℎ𝑌

𝐿𝑌 = 𝑁𝑌 − 1 ℎ𝑌

(𝑋0, 𝑌0)

Rotate 
Spatial-Grid

𝑌

𝑋

 𝑌

1.0

1.0

 𝑋(0.5, 0)

(−0.5, 0)

(0,0.5)

(0,−0.5)

Figure 10: Steps in particle deposition stage of the beam dynamics simulation.

gk[i, j] is a triplet 〈ρ, JX , JY 〉, where ρ is the deposited charge, JX and JY are the

current densities in X- and Y - directions, respectively. It is important to note that

the moments deposited on a point (x̃i, ỹj) on the unit-grid (in GF ) and on a point

(xi, yj) on the spatial grid (in LF ) at tk are identical and is given by gk[i, j], where

the transformation between GF and LF using the quintuple 〈α,LX , LY , X0, Y0〉k is

given by xi
yj

 =

X0

Y0

+

cosα − sinα

sinα cosα

LX x̃i
LY ỹj

 (10)

x̃i
ỹj

 =

 1
LX

cosα 1
LX

sinα

− 1
LY

sinα 1
LY

cosα

xi −X0

yj − Y0

 (11)
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3.1.2 COMPUTE RETARDED POTENTIALS

The collective effects in the particle distribution due to beam’s self-interaction

is modeled through retarded potentials, which are computed at each grid-point of

the 2D spatial grid. Formally, suppose Vk denotes the set of grid points on the 2D

grid at time step k, such that |Vk| = NXNY and each grid-point p ∈ Vk is a two-

dimensional point (x, y), denoting Cartesian coordinate (or LF -coordinate) of the

grid-point on the 2D spatial grid (i.e., (x, y) is the position of p on Dk). Then, the

retarded potentials at p are computed using the quadrature in Equation 3a, which,

after a variable transformation to avoid singularity, yields

I(p) =

∫ R(p)

0

dr′
∫ θ

(p)
max(r′)

θ
(p)
min(r′)

f
(p)

(r′, θ′, t′) dθ′ (12)

where 0 < R(p) ≤ κc∆t for some positive integer κ ≤ k, retarded time t′ = k∆t−r′/c,
and i∆t < t′ ≤ (i+ 1)∆t for some integer i in the range k − κ ≤ i < k. The integral

estimate I(p) is a triplet 〈φ,AX , AY 〉, where φ is the scalar potential, AX and AY

are the vector potentials in X− and Y− directions, respectively. The domain of

integration, {(r′, θ′) ∈ R2 | 0 ≤ r′ ≤ R(p), θ
(p)
min(r′) ≤ θ′ ≤ θ

(p)
max(r′)}, is a subregion

of R2 and it is denoted S0,R(p). For convenience, we shall refer to the integral in

Equation 12 that computes retarded potentials as rp-integral.

Computation of Integration Limits

Figure 11 illustrates the computation of integration limits, where for all r′ sampled

along the outer dimension, the portion of circle with radius r′ and center at (x, y) that

is within the spatial grid enclosing the particle distribution at time t′ constitutes the

inner integral limits. Moreover, these limits are discontinuous for some r′. The red-

line in Figure 11 denotes the integration range in θ′−domain, where [θ
(p)
min(r′), θ

(p)
max(r′)]

represents the inner integral limits and the circle of radius r′ with center at p is

referred to as circle of causality at p (denoted by grey dotted line). The outer

integral limit R(p) is the smallest value of r′ such that the circle of causality for all

r′ > R(p) has no intersection with the spatial grid at t′, and for all 0 ≤ r′ ≤ R(p)

the circle intersects the spatial grid at t′.
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Figure 11: Evaluation of integration limits in θ′−domain for rp-integral.

Integrand Evaluation

The integrand f
(p)

: A → R3, where A ∈ {(r′, θ′, t′) | 0 ≤ r′ ≤ R(p), t′ = k∆t −
r′

c
, θ′ ∈ [0, 2π]} and a point (r′, θ′, t′) on the integrand represents the polar coordinate

(r′, θ′) in LF with center at (x, y) as shown in Figure 12a. Cartesian equivalent for

(r′, θ′, t′) is given by [
x′

y′

]
=

[
x cos θ′

y sin θ′

][
1

r′

]
. (13)

The integrand f
(p)

(r′, θ′, t′) in rp-integral denote the moments, 〈ρ, JX , JY 〉, deposited

on the polar coordinate (r′, θ′) (or (x′, y′) in Cartesian system) by the particle dis-

tribution at time t′. However, f
(p)

does not have an analytic form, and as a result,

f
(p)

(r′, θ′, t′) is numerically approximated using neighboring points from the 2D grid

of moments deposited on the spatial grid at time t′. When t′ = i∆t, moments on the

spatial grid at t′ is given by the 2D grid of moments computed during the particle
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Figure 12: Numerical approximation of integrand values in rp-integral using inter-
polation.
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deposition stage of time step i. On the other hand, when i∆t < t′ < (i + 1)∆t,

the moments at t′ is approximated using interpolation from the 2D grid of moments,

Di−1, Di, and Di+1. Furthermore, for all t′ < t, the value of f
(p)

(r′, θ′, t′) is defined

only when (x′, y′) is within the spatial grid at time t′ and is 0 otherwise. For exam-

ple, Figure 12a and Figure 12b illustrates the approximation of f
(p)

(r′, θ′, t′) using 27

neighboring points.

In Figure 12a, spatial grids from earlier time steps (i− 1), i, and (i+ 1) that are

computed during the particle deposition stage of the corresponding time steps are

shown by grey colored grids, whereas the spatial grid at the current time step k is

shown by black colored grid. Further, the spatial grid at retarded time t′ which is

approximated from the neighboring three spatial grids is shown by blue colored grid.

The point (r′, θ′, t′) on the integrand lies on the portion of causality circle that is

within the spatial grid at t′. Figure 12b illustrates the approximation of f
(p)

(r′, θ′, t′)

using the normalized unit-grid (in GF ) representation of the moments, where (x̃′, ỹ′)

is the GF equivalent for the LF -coordinate (x′, y′). The moments deposited on (x̃′, ỹ′)

is approximated using moments from the grid points of neighboring three unit-grids,

where the set of grid points required by the interpolation is shown using blue dots.

Formally, for all r′ sampled from the interval [(k− i− 1)c∆t, (k− i)c∆t] (i.e. for

all t′ ∈ [i∆t, (i+1)∆t]), integrand f
(p)

(r′, θ′, t′) is approximated using 27 neighboring

points from the 2D grids of moments, Di−1, Di and Di+1 (nine points from each of

the three data grids). In other words, 2D grids of moments from time steps i − 1,

i, and i + 1 are required for calculating rp-integral along the subregion, {(r′, θ′) ∈
R2 | (k − i − 1)c∆t ≤ r′ ≤ (k − i)c∆t, θ

(p)
min(r′) ≤ θ′ ≤ θ

(p)
max(r)}. Adapting to

this relation, rp-integral along the entire integration region S0,R(p) requires grids of

moments between time steps k − κ and k (i.e. Dk−κ to Dk), where the computation

of integral along a subregion Sjc∆t,(j+1)c∆t uses data from Dk−j, Dk−j−1, and Dk−j−2.

Numerical Integration

Numerical approximation of rp-integral use repeated one-dimensional integration

algorithm, as illustrated in Section 2.5.3. The choice of integration method along

each dimension is based on the nature of integrand along that particular dimension.

Empirical analysis on rp-integral behavior shows that the integrand has strongly

varying orders of magnitude in different parts of the subregion in r′-domain. In

contrast, the inner dimension features only regions where change is gradual (i.e.
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integrand is smooth in θ′-domain). As a result, outer integral is computed using

adaptive quadrature and the inner integral using Newton-Cotes formulas.

More formally, for a grid-point p ∈ Vk and a subregion Sa,b = {(r′, θ′) ∈ R2 |
a ≤ r′ ≤ b, θ

(p)
min(r′) ≤ θ′ ≤ θ

(p)
max(r′)}, integration algorithm results in a partition,

〈r(p)
0 , r

(p)
1 , . . . , r

(p)
n 〉, along the outer dimension, where r

(p)
0 = a < r

(p)
1 < · · · < r

(p)
n = b

and n > 0 is an integer, such that the partition has fine spacing where the integrand

is varying rapidly and coarse spacing where the integrand is varying slowly. Given

the partition, rp-integral is calculated as follows:

I(p) =
n−1∑
i=0

Q(r
(p)
i , r

(p)
i+1) (14)

where Q(r
(p)
i , r

(p)
i+1) is the Quadrature rule estimate along the subregion S

r
(p)
i ,r

(p)
i+1

,

and for every r′ sampled along that subregion, inner integral is computed using

Newton-Cotes formulae, as illustrated in [21]. For example, Q(r
(p)
i , r

(p)
j ) estimate

using adaptive Simpson’s rule is given by,

Q(r
(p)
i , r

(p)
j ) = S

(
r

(p)
i ,

r
(p)
i +r

(p)
j

2

)
+ S

(
r
(p)
i +r

(p)
j

2
, r

(p)
j

)
− S(r

(p)
i , r

(p)
j )

≈
∫ r

(p)
j

r
(p)
i

dr′
∫ θ

(p)
max(r′)

θ
(p)
min(r′)

f
(p)

(r′, θ′, t′) dθ′
(15)

where S(r
(p)
i , r

(p)
j ), S

(
r

(p)
i ,

r
(p)
i +r

(p)
j

2

)
, and S

(
r
(p)
i +r

(p)
j

2
, r

(p)
j

)
are the estimates given

by Simpson’s quadrature rule and are calculated as follows

S(a, b) =
b− a

6

[
fin(a) + 4fin

(
a+b

2

)
+ fin(b)

]
(16)

where fin(r′) =
∫ θ(p)max(r′)

θ
(p)
min(r′)

f
(p)

(r′, θ′, t′) dθ′ i.e. fin(r′) is the inner integral in θ′−domain

and it is approximated as the weighted sum of integrand values at equally spaced

points within the domain of integration, where the weights are given by Newton-Cotes

formulas [21, p. 613]. For the purpose of this study, we use three-point Newton-Cotes

formula to compute the inner integral.

Note that high-fidelity computation of collective effects by calculating retarded

potentials at all grid points on the 2D spatial grid is the crucial and by far the

most computationally intensive step of this simulation. As a result, to obtain high

performance in the overall beam dynamics simulation, it is important to optimize

this step.
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3.2 SEQUENTIAL SIMULATION

In this section, we first present the limitations of implementing beam dynamics

simulation on sequential machines and show that the performance of sequential si-

mulation is severely limited by the retarded potentials computation stage. Next, in

Section 3.2.2, we present the empirical analysis of sequential beam dynamics simu-

lation and show that distribution of work and data in the accurate computation of

retarded potentials at each time step is irregular and exhibits control-flow and me-

mory access patterns that are not readily amenable to the data-parallel, SIMD nature

of GPU and Intel MIC architectures. In particular, we show that the computation of

rp-integral is highly irregular, and as a result, naive parallel implementations of such

computations tend to present significant branch and memory divergence on SIMD

architectures which leads to severe performance bottlenecks.

3.2.1 LIMITATIONS OF SEQUENTIAL IMPLEMENTATION

Figure 13: Percentage of sequential execution time spent by different stages of the
beam dynamics simulation per time step averaged over all time steps for various grid
resolutions.

The heart of beam dynamics simulation is the high-fidelity computation of col-

lective effects which require calculating retarded potentials at all grid points on the

2D spatial grid of each time step. This is crucial and by far the most computatio-

nally intensive step of the beam dynamics simulation. We illustrate this empirically

by simulating the beam dynamics sequentially with N = 100000, where the ini-

tial distribution is generated by Monte Carlo sampling of N particles with a total

charge of the beam bunch Q = 1nC. This simulation is executed sequentially for
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three different spatial grid resolutions: (i) 32 × 32, (ii) 64× 64, and (iii) 128 × 128.

Figure 13 illustrates the percentage of execution time required by different stages of

this simulation per time step averaged over all time steps. Notice that, during each

time step, compute retarded potentials stage of the simulation takes 95 − 99% of

the overall execution time. This shows that the efficiency of sequential simulation

is severely limited by the computational requirement associated with computing re-

tarded potentials. Empirical study with different simulation configuration generates

behavior that is consistent with that shown in Figure 13. In other words, for each

time step of the beam dynamic simulation, computing retarded potentials is the most

computationally-intensive step for all the valid simulation configurations.

3.2.2 EMPIRICAL ANALYSIS

This section presents the computational requirement and memory access proper-

ties of retarded potentials computation stage of the simulation that poses problems

for high-performance parallel implementations. We use empirical analysis on sequen-

tial beam dynamics implementation to study the computational properties, and then,

based on the observed behavior, we make a general inference about the properties

that tend to present significant challenge in developing parallel implementation on

GPUs and Intel MICs.

The input configuration considered for empirical analysis using sequential simula-

tion is illustrated below and the values are chosen so as to illustrate specific properties

of rp-integral and retarded potentials computations that are commonly observed for

all valid simulation configurations. It is important to note that individual values of

parameters in the chosen configuration are not relevant to the discussion that fol-

lows, and the conclusions inferred from the observed properties apply to all valid

simulation configurations.

Simulation configuration for empirical study: N = 100000, NX = 32,

NY = 32, Nt = 1000, τ = 0.001, and the initial distribution is generated

by Monte Carlo sampling of N particles with a total charge of beam bunch

Q = 1nC.

Note that the resolution of the above described simulation configuration is very low

to provide any valuable insights about the physics behind beam dynamics process.

However, they are chosen only to study the properties of the computation involved.
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Further, high-resolution and high-fidelity beam dynamics simulation is computatio-

nally intractable with sequential codes. In practice, to study all the relevant physics

of beam dynamics in particle accelerators, N is in the order of few hundred thou-

sands to millions of particles, NX and NY varies from 64 to 1024, error tolerance for

rp-integral approximation τ is between 10−12 to 10−6, and Nt is of the order of few

hundreds to thousands of time steps. Such high-resolution and high-fidelity simulati-

ons are intractable with sequential implementations, and thus necessitating the need

for high-performance parallel implementations.

Computational Workload Characteristics

Figures 14 and 15 illustrate the computational requirement for beam dynamics

simulation using different simulation configurations, where computational require-

ment or workload is measured in terms of the number of double-precision floating

point operations required for the corresponding computation. In particular, Figure

14 shows the workload behavior of compute retarded potentials stage at different

time steps of a beam dynamics simulation using the above described configuration,

where x-axis denote different time steps of the simulation and y-axis denote double-

precision floating point operations required for computing retarded potentials at a

particular time step in GFlops (109 Flops). Next, Figure 15 shows the computa-

tional workload for rp-integral evaluations at all grid points on a spatial grid at a

particular time step of the simulation using above described configuration but with

8 × 8 spatial grid (We choose 8 × 8 instead of 32 × 32 grids for visual presentation

convenience). The x-axis in figure denotes the set of grid points at a particular

time step and y-axis denotes double-precision floating point operations required for

numerically approximating rp-integral in MFlops (106 Flops).

It is evident from Figure 14 and Figure 15 that the computational requirement

is not uniform and varies unpredictably between time steps and grid points. In

particular, Flops required for rp-integral computation at each grid-point is different

from one another which leads to non-uniform workload between time steps. Such

non-uniform and input dependent workload poses multiple challenges to develop

a high-performance parallel implementation, where equal distribution of work over

processor cores and maintaining workload balance is crucial for good performance

and scalability.
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Figure 14: Workload characteristics of compute retarded potentials stage of the beam
dynamics simulation for 1000 time steps calculated using the sequential simulation
code with N = 100000 particles, 32 × 32 spatial grid resolution, error tolerance for
rp-integral computations τ = 0.001, and total beam charge of Q = 1nC. (Note that
the computational workload is measured as a function of double-precision floating
point operations in GFlops)

Figure 15: Workload characteristics of rp-integral computation at different grid
points on a 8×8 spatial grid at a particular time step of the beam dynamics simulation
with N = 100000 particles, error tolerance for rp-integral computations τ = 0.001,
and total beam charge of Q = 1nC. (Note that the computational workload is mea-
sured as a function of double-precision floating point operations in GFlops)
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Control-flow Properties

Figure 16 illustrates the subregion recursion tree generated by adaptive quadra-

ture along the outer dimension of rp-integral at grid points p1, p2, p3 and p4 on the

spatial grid at time step k, where the values of p1, p2, p3, p4 and k are empirically

selected to illustrate the control-flow properties of rp-integral. In Figure 16, flow of

computation or control-flow is determined by the pre-order traversal of the corre-

sponding recursion tree. In particular, the red-arrows on each subregion recursion

tree denotes the control-flow path for evaluating rp-integral at the corresponding

grid-point, and the order of execution is shown by the number on each arrow. Addi-

tionally, the partition generated by the adaptive quadrature for the outer integral is

shown at the bottom of each sub-figure.

Now, consider computing retarded potentials at time step k which requires eva-

luating rp-integral at all grid points Vk = {p1, p2, . . . , p|V |}, where |Vk| = NXNY

and pi is a point on the spatial grid at tk, for all integers i in range 0 < i ≤ |Vk|.
From Figure 16, and from the empirical analysis on sequential beam dynamics simu-

lation, we make the following general inference about rp-integral properties at any

two observation-point pi and pj (i 6= j)

1. Partition generated by adaptive quadrature along the outer dimension of rp-

integral is unique for each grid-point i.e. outer integral partition for rp-integral

at pi is different form that of rp-integral at pj. For example, in Figure 16, the

partition generated for rp-integral at p1 and p4 are

P (p1) = 〈0, R(p1)
32

, R(p1)
16

, R(p1)
8
, R(p1)

4
, R(p1)

2
, R(p1)〉

P (p4) = 〈0, R(p4)
4
, 3R(p4)

8
, R(p4)

2
, R(p4)〉

2. The pre-order traversal for the subregion recursion tree generated by adaptive

quadrature along the outer dimension of rp-integral evaluation at pi is different

from that of rp-integral at pj. In other words, control-flow for rp-integral at pi

and pj are substantially different from one another.

3. The number of floating-point operations required to calculate rp-integral at pi

is different from that of rp-integral at pj.

The properties listed above shows that numerical approximation of rp-integral

using adaptive quadrature is irregular and exhibits control-flow patterns that are
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Figure 16: Subregion recursion tree generated by adaptive quadrature along the outer
dimension of RP-integral at grid points p1, p2, p3 and p4.
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not readily amenable to many modern parallel architectures. Moreover, these irre-

gular properties in an algorithm tend to present multiple challenges in developing

high-performance parallel implementations on GPU and Intel MIC architectures, as

illustrated in Section 2.3.

Memory Access Properties

Let the moments computed from all time steps be stored linearly on the host/de-

vice memory as a 2D array M [0..Nt, 1..NXNY ] in row major order such that moments

deposited on a grid-point located in ith row and jth column of the spatial grid during

the particle deposition stage at tk = k∆t is stored in M [k, (iNX + j)], for all integers

i, j and k in the range 0 ≤ i ≤ NX , 0 ≤ j ≤ NY , and 0 ≤ k ≤ Nt, respectively.

Figure 17 illustrates the memory access on a portion of 2D array M (between

row-index 350 − 410) that is observed during the rp-integral evaluation at each of

the four grid points (p1, p2, p3 and p4), where a grid-cell at mth row and nth column

denotes the data element M [m,n]. Each cell has a gradient color that represents

the number of times the data element corresponding to that cell is accessed while

computing rp-integral. When M [m,n] is not accessed during the lifetime of rp-

integral evaluation at tk, then the cell corresponding to M [m,n] is marked green. On

the other hand, blue gradient at M [m,n] denotes that the data element is accessed

at least once during the course of execution and the gradient magnitude denotes

the number of times M [m,n] is accessed during the rp-integral evaluation at the

corresponding grid-point.

Now, consider computing retarded potentials at tk which requires evaluating rp-

integral at all grid points Vk = {p1, p2, . . . , p|Vk|}, where |Vk| = NXNY and pi for all

integers i in range 0 < i ≤ |Vk| is a point on the spatial grid at tk. From Figure 17,

and from the empirical analysis on sequential beam dynamics simulation, we make

the following general inference about the memory-access characteristics of rp-integral

computation at any two grid points pi and pj (i 6= j)

1. Temporal locality - A certain subset of data accessed during the computation of

rp-integral at pi is likely to be referenced again in relative temporal proximity.

In other words, for rp-integral computation at pi, there exist one or more data

elements M [m,n] that is referenced more than once. In Figure 17, a cell in

mth row and nth column with a gradient magnitude of greater than one de-

notes that the element M [m,n] is referenced and reused gradient magnitude
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Figure 17: Memory requests on a portion of 2D array M (between row-index 350−
410) for rp-integral at grid points p1, p2, p3, and p4.

times during the course of corresponding rp-integral evaluation. For example,

data element M [406, 17] is accessed and used roughly 160 times during the

rp-integral computation at p3.

2. Spatial locality - Value of the integrand f
(pi) that constitutes the rp-integral at

pi is approximated using interpolation from 27 neighboring points, as described

in Section 3.1.2. Consequently, memory access to read these 27 points exhibits

3D spatial locality for every integration point that gets sampled during the

numerical integration procedure.

3. For each rp-integral evaluation, there exists a small set of data elements that

are reused more frequently than others which are denoted by the darkest shade

of the blue gradient in Figure 17. For example, consider the memory access

on array M for rp-integral computation at grid-point p1. Notice that the data

elements between row index 404 and 407 have higher gradient magnitude i.e.

they are reused more frequently that others. In other words, the moments

computed between t404 and t407 are reused more frequently. This happens when
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the integral computation is focused around the subregion [(k∆t− t407)c, (k∆t−
t404)c] (since, t′ = k∆t−r′/c⇒ r′ = (k∆t−t′)c from the conditions in Equation

12) or the partition has fine spacing within that subregion.

4. The memory access footprint for rp-integral at pi has some overlap with that of

rp-integral at pj for some integer i and j. In other words, there is a significant

reuse of data for two grid points. For example, the data elements accessed

between the row index 404 and 407 for rp-integral at point p3 overlaps with

that of the rp-integral at point p4, as illustrated in Figure 17c and Figure 17d.

However, the gradient magnitude of the overlapping data access are different

i.e. the frequency of reuse is different.

5. While computing rp-integral on grid points, there is a significant reuse of data

for two nearby grid points. The reuse of data for two grid points is inversely

proportional to the distance between the two grid points. More formally, given

two points u and v, where u, v ∈ V and u 6= v, the data locality or the number

of overlapping memory access between rp-integral evaluation at u and v is

inversely proportional to the Euclidean distance between them.

3.3 PRIOR RESEARCH IN PARALLEL SIMULATION

This section presents two parallel algorithms that improve the overall performance

of beam dynamics simulation by offloading the retarded potentials computation stage

at each time step of the simulation onto GPUs. The first algorithm is Two-phase

Algorithm, and Section 3.3.1 presents a brief overview of this algorithm that com-

putes retarded potentials at each time step by focusing on load-balancing, which,

due to the uneven computation load associated with rp-integrals evaluation, is cri-

tical for good performance and scalability. The second algorithm is Heuristics

Algorithm, and Section 3.3.2 presents a overview of this algorithm which uses

two different heuristics to maximize data reuse and to balance the workload among

threads during the retarded potentials computation stage of the simulation. The

heuristics used in this algorithm are based on the properties observed from empirical

analysis of sequential simulation illustrated in Section 3.2.2. A more comprehen-

sive review of these two algorithms and their implementation performance on GPU

architectures is published in [5, 6].
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3.3.1 TWO-PHASE ALGORITHM

The two-phase approach is a globally adaptive algorithm that approximates rp-

integral estimates at NXNY grid-points at each time step by adaptively locating

subregions in parallel where the error estimate is greater than some user-specified

error tolerance. It then calculates the rp-integral estimates on these subregions in

parallel.

Compute-Potentials(k, V, τ,M)

1 L← RP-PhaseOne(k, V, τ,M)

2 RP-PhaseTwo(t, V, L, τ,M)

RP-PhaseOne(k, V, τ,M)

1 L← ∅
2 for each grid-point p ∈ V in parallel

3 p.I ← 0, p.ε← 0

4 compute outer integral limit [0, R]

5 List-Insert(L, ([0, R], p))

6 while (|L| < Lmax) and (|L| 6= 0)

7 for each tuple ([a, b], p) ∈ L in parallel

8 (I, ε)← RP-QuadRule(([a, b], p), τ,M)

9 List-Insert(S, (([a, b], p), I, ε))

10 L← Partition(S, Lmax, τ)

11 for each tuple (([a, b], p), I, ε) ∈ S
12 if ε < τ

13 p.I ← p.I + I

14 p.ε← p.ε+ ε

15 return L

RP-PhaseTwo(t, V, L, τ,M)

1 for each ([a, b], p) ∈ L parallel

2 (I, ε)← RP-Quadrature(([a, b], p), τ,M)

3 p.I ← p.I + I

4 p.ε← p.ε+ ε

The procedure Compute-Potentials implements this algorithm where RP-

PhaseOne and RP-PhaseTwo method illustrates the two phases of the algorithm
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to compute rp-integral to a error tolerance of τ at all grid points p ∈ V , where p is a

grid-point on the spatial grid at time t = k∆t. Grid-point p is a 5-tuple (x, y, t, I, ε)

element, where (p.x, p.y) denotes the Cartesian coordinate of a point on the spatial

grid at time p.t, p.I is the integral estimate for the rp-integral at p and p.ε is the error

estimate. The integral estimate p.I is a 3-tuple (φ,AX , AY ) element which represents

the scalar and vector potentials on p. The moments computed from all time steps

are stored linearly on the device memory as a 2D array M [1..Nt, 1..NXNY ] in row

major order such that moments deposited on a grid-point located in ith row and jth

column of the spatial grid during the particle deposition stage at tk = k∆t is stored

in M [k, (iNX + j)], for all integers i, j and k in the range 0 ≤ i ≤ NX , 0 ≤ j ≤ NY ,

and 0 ≤ k < Nt, respectively. In the description below, a subregion is identified by

the record ([a, b], p), where p denotes a grid-point on the spatial grid at time step k

and [a, b] denotes the limits of integration along outer dimension of rp-integral at p.

The two-phase approach is an extension of the GPU-accelerated multidimensional

numerical integration algorithm described in Appendix A.1.

RP-Quadrature(([a, b], p), τ,M)

1 (I ′, ε′)← RP-QuadRule(([a, b], p), τ,M)

2 H ← ∅
3 Push(H, (p, [a, b], I ′, ε′))

4 while ε′ > τ

5 (([a, b], p), I, ε)← Pop(H)

6 m← a+b
2

7 (Il, εl)← RP-QuadRule(([a,m], p), τ,M)

8 (Ir, εr)← RP-QuadRule(([m, b], p), τ,M)

9 I ′ ← I ′ − I + Il + Ir

10 ε′ ← ε′ − ε+ εl + εr

11 Push(H, (([a,m], p), Il, εl))

12 Push(H, (([m, b], p), Ir, εr))

13 return (I ′, ε′)

The procedure RP-PhaseOne, RP-PhaseTwo and RP-Quadrature is iden-

tical to Quadrature-PhaseOne, Quadrature-PhaseTwo and Sequential-

Cuhre, respectively, from Appendix A.1. However, instead of using Cuhre method
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Grid Resolution (NX ×NY ) 64× 64 128× 128 256× 256

Double Precision Performance (GFlops/sec) 60 61 61

Arithmetic Intensity (Flops/DRAM byte) 0.30 0.31 0.31

Effective Bandwidth (GB/sec) 73 75 76

Global Load Efficiency 29% 30% 32%

Global Load Transactions per Request 7.8 8.0 8.1

Warp Execution Efficiency 60% 75% 77%

L1-cache Global Hit Rate 46% 40% 38%

L2-cache Hit Rate 99.6% 97.3% 90%

Table 3: Performance of Two-Phase-RP-Kernel for computing retarded poten-
tials in a beam dynamics simulation with 100000 particles and for different grid
resolutions on NVIDIA Tesla K40 GPU.

for numerical integration as described in the appendix, we use repeated one dimen-

sional integral to compute rp-integral estimates, where outer integral is calculated

using adaptive quadrature and inner integral using Newton-Cotes rules. In parti-

cular, procedure RP-Quadrature implements this repeated one-dimensional inte-

gration method to solve rp-integral, where outer integral is computed using adap-

tive Simpson’s rule and inner integral using three-point Newton-Cotes rule. Furt-

hermore, the procedure C-Rule is replaced with RP-QuadRule (([a, b], p), τ,M),

which calculates Simpson’s quadrature rule estimates, I and ε, along a subregion

S = {(r′, θ′) ∈ R2 | a ≤ r′ ≤ b, θ
(p)
min(r′) ≤ θ′ ≤ θ

(p)
max(r′)}, for rp-integral at a grid-

point p, where I is the integral estimate and ε is the error estimate. In other words,

procedure RP-QuadRule calculates Equation 15 from Section 3.1.2. We omit the

pseudocode for RP-QuadRule, as it is identical to the standard Simpson’s rule

(three point Newton Cotes rule) [21]. A more comprehensive review of the two-

phase algorithm, its implementation and performance analysis on GPU architectures

can be found in [5].

Performance Analysis and Limitations

Table 3 illustrates the double-precision floating-point performance for computing

retarded potentials at a particular time step of a beam dynamics simulation with

100000 particles and varying grid resolution on NVIDIA Tesla K40 GPU with global
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Figure 18: Roofline model analysis for Two-Phase-RP-Kernel on NVIDIA Tesla
K40 GPU.

memory accesses configured to be cached in both L1 and L2 (commonly called the

Caching mode). Initial distribution for all the simulations are generated by Monte

Carlo sampling of N particles with a total charge of beam bunch Q = 1nC, and the

rp-integral at all grid points are approximated to a error tolerance of τ = 10−6.

The performance metrics illustrated in this section are measured using NVIDIA

profiler [62], and a detailed description about each metric and its relation to kernel’s

performance is illustrated in Appendix B.2. In this study, for convenience, we shall

refer to the kernel implementing GPU specific code from Compute-Potentials

procedure of the two-phase algorithm as Two-Phase-RP-Kernel.

Roofline Model Analysis - Figure 18 shows the performance of Two-Phase-RP-

Kernel illustrated on the Roofline model for K40 GPU. A detailed description about

Roofline plot and its use to bound the performance of GPU kernels is illustrated in

Appendix B.1. The performance achieved by Two-Phase-RP-Kernel for the
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simulation with 100000 particles and 128 × 128 grid resolution is 61 GFlops/sec

(see Table 3), and it is indicated by a blue horizontal line in Figure 18. The point

where this blue horizontal line intersects the bandwidth ceiling marks the achieved

arithmetic intensity. In particular, the green and red X marks achieved arithmetic

intensity for Two-Phase-RP-Kernel when the system being modeled delivers a

memory bandwidth of BWTheoretical-Peak = 288 GB/sec and BWExperimental-Peak = 200

GB/sec, respectively. Table 3 illustrates the arithmetic intensity (with the bandwidth

assumed to be BWExperimental-Peak) achieved by Two-Phase-RP-Kernel measured

for different simulation configuration. We notice that arithmetic intensity achieved

for the kernel is approximately 0.31 Flops/DRAM byte-accessed when the memory

the system being modeled delivers a memory bandwidth of BWExperimental-Peak. It is

clear from Figure 18 and the achieved arithmetic intensity in Table 3 that the kernel

is memory-bound and it performs poorly because it does not make good use of the

available bandwidth, which, due to low arithmetic intensity of the implementation,

is the main bottleneck.

Branch Divergence - The warp execution efficiency Two-Phase-RP-Kernel is far

less than 100% for all simulation configurations, as illustrated in Table 3. This

indicates that the kernel implementation has large number divergent branches that

results in poor utilization of the GPU’s hardware resources, thereby leading to poor

execution performance.

Memory Performance - The memory performance of Two-Phase-RP-Kernel on

GPU is analyzed using profiler metrics - Global load efficiency, Global load tran-

saction per requests, Cache hits, etc. These metrics and its relation to the kernel’s

performance is described in Appendix B.2. The following key observations about the

memory performance of Two-Phase-RP-Kernel are inferred from the metrics in

Table 3:

1. Global load efficiency is far less than 100% which indicates scattered and non-

coalesced memory access, and such accesses waste off-chip bandwidth by over-

fetching unnecessary data. Typically, caching in L2 only (non-caching mode)

is enabled to reduce such over-fetch. However, as illustrated in [6], this kernel

has poor global load efficiency even with non-caching mode indicating high

bandwidth waste in both caching and non-caching mode.
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2. The global load transactions per request is approximately 4X times greater

than the ideal value; in other words, the global load transaction is replayed

8 times for each global memory load. This shows that substantial number of

memory request from the kernel are non-coalesced that results in transaction

replays.

3. Global memory requests from the kernel almost always hits in L2-cache which is

evident by near 100% L2-cache hit rate. This indicates that (i) kernel exhibits

high data locality and/or (ii) the problem fits entirely in L2-cache. Even though

nearly 100% of the memory request is serviced from L2-cache, which in practice

has a bandwidth much greater than BWTheoretical-Peak, the achieved or effective

bandwidth is still far less than BWTheoretical-Peak.

It is clear from the above observations that Two-Phase-RP-Kernel performs

poorly because of irregular, and non-coalesced global memory accesses, which, toget-

her with low arithmetic intensity of the kernel, is the main performance bottleneck.

Moreover, poor data locality and massively multithreaded nature of the kernel with

little cache capacity per thread results in high L1-cache miss rates. Such behavior sig-

nificantly over-fetches off-chip data for the application, wasting memory bandwidth,

and on-chip storage. It is, therefore, clear that optimizing the global memory access

and improving the effective bandwidth is most important for the best performance

of the beam dynamics simulation on GPUs. On the other hand, this also suggests

that other optimization methods such as improving the floating point performance

through the optimization of the arithmetic instructions or hiding the latency of global

memory access through maximizing the multiprocessor occupancy are not effective.

3.3.2 HEURISTICS ALGORITHM

The heuristics algorithm presented in this section use two different heuristics to

maximize data reuse and to minimize divergence in the parallel implementation of

compute retarded potentials stage of the beam dynamics simulation on GPUs. The

heuristics used in the algorithm helps in effectively utilizing the bandwidth at diffe-

rent levels of the memory hierarchy by coalescing the memory accesses, and maximize

the data reuse (i.e. increase the probability of a data block to be reused more ex-

tensively before the block is replaced) by improving data locality. Furthermore, the
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algorithm uses techniques that effectively balance the workload among threads, mi-

nimize their divergence, and reduce the overall floating point operations required to

compute the retarded potentials when compared to prior implementations.

The procedure Compute-Potentials-H implements the heuristics based com-

pute retarded potential stage of the simulation that approximates rp-integral to a

error tolerance of τ at all points p ∈ V , where p is a grid-point on the spatial grid at

time step k with simulation time t = k∆t and |V | = NXNY . Grid-point p is a 5-tuple

(x, y, t, I, ε) element, where (p.x, p.y) denotes the Cartesian coordinate of a point on

the spatial grid at time step p.t, p.I is the integral estimate for the rp-integral at

p and p.ε is the error estimate. The integral estimate p.I is a 3-tuple (φ,Ax, Ay)

element which represents the scalar and vector potentials on p. The moments com-

puted from all time steps are stored linearly on the device memory as a 2D array

M [1..Nt, 1..NXNY ] in row major order such that moments deposited on a grid-point

located in ith row and jth column of the spatial grid during the particle deposition

stage at tk = k∆t is stored in M [k, (iNX + j)], for all integers i, j and k in the range

0 ≤ i ≤ NX , 0 ≤ j ≤ NY , and 0 ≤ k < Nt, respectively.

In Compute-Potentials-H, lines 1-2 initialize the estimates p.I and p.ε to 0

for all points p ∈ V . Next, RP-Classifier procedure at line-3 partitions the set

of grid points into a small number of clusters based on the data locality properties

of the corresponding rp-integrals, using standard clustering techniques like k-means.

More formally, given a set of grid points V and an integer k > 0, RP-Classifier

partitions the |V | grid points into k(≤ |V |) classes, C = {C1, C2, . . . , Ck}, such that

the sum of distance functions of each point in the cluster to its center is minimum,

arg min
C

k∑
i=1

∑
p∈Ci

d(p, µi) (17)

where µi is the center of cluster Ci, and the distance function d(p, µi) is the measure

of similarity between the grid-point p ∈ Ci and its cluster center µi for all integer i

in range 0 < i ≤ k. A value of zero to the distance function implies strong similarity,

and the similarity decreases with the increase in distance value. In RP-Classifier,

two points u and v (u, v ∈ V , u 6= v) are considered to have strong similarity when

the rp-integral evaluations at u and v exhibit high data locality against one another,

in such a case, d(u, v) ≈ 0. One of the simplest measure of data locality is the

number of overlapping memory locations required to evaluate rp-integral at u and

v. Consequently, the distance function d(u, v) can be expressed as the inverse of
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data locality i.e. inverse of the number of overlapping memory locations required to

evaluate rp-integral at u and v.

Compute-Potentials-H(k, V, τ,M)

1 for each grid-point p ∈ V in parallel

2 p.I ← 0, p.ε← 0

3 C ← RP-Classifier(V, k) // implements k-means clustering

4 for each class c ∈ C in parallel

5 P ← RP-IntegralPartition(c, t,M)

6 for each grid-point p ∈ c in parallel

7 for i = 0 to P.length− 1

8 a← P [i], b← P [i+ 1]

9 (I, ε)← RP-QuadRule(p, [a, b], τ,M)

10 if ε < τ

11 p.I ← p.I + I

12 p.ε← p.ε+ ε

13 else

14 List-Insert(L, ([a, b], p))

15 for each ([a, b], p) ∈ L in parallel

16 (I, ε)← RP-Quadrature(p, [a, b], τ,M)

17 p.I ← p.I + I

18 p.ε← p.ε+ ε

The main motivations behind such locality based classification is that when a

set of rp-integrals that exhibit high data locality between each other are mapped to

parallel CUDA threads with one-to-one correspondence, they exhibit strong inter-

thread locality. Such data locality among the threads can be exploited by grouping

them into one or more thread blocks, where the memory performance is improved

due to the benefit form data locality by using L1-cache or shared-memory. In ad-

dition, these thread blocks when scheduled on a single core or simultaneously on

different cores can also benefit from locality using shared L2-cache. However, accu-

rate prediction of data locality without actually evaluating the integral is non-trivial

and computationally challenging due to the data-dependent, irregular, and statically

unpredictable (i.e. unknown until run time) memory accesses patterns of rp-integral
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evaluations at different grid points. As a result, we propose a heuristic to approx-

imate d(u, v), referred to as locality heuristic. The key observation behind locality

heuristic is that while computing rp-integral on grid points, there is a significant

reuse of data for two nearby grid points. The reuse of data for two grid points is

inversely proportional to the distance between the two grid points. More formally,

Locality heuristic: Given two points u and v, where u, v ∈ V and u 6= v,

the data locality or the number of overlapping memory access between

rp-integral evaluation at u and v is inversely proportional to the Euclidean

distance between them.

We performed empirical analysis using sequential beam dynamics simulation for

different input configurations to validate the above assumed heuristics, and all our

experiments confirm the locality heuristic. Consequently, in RP-Classifier, Eucli-

dean distance is used as the distance function to measure the data locality between

two points. (Note that other distance metrics such as L1-distance will do fine also.)

Next, for each class c ∈ C, we require to calculate the rp-integral estimate at all

grid points p ∈ c. Typically, numerical approximation of rp-integral at each grid-

point results in a partition that is independent of the rp-integral at other points, and

methods such as adaptive quadrature are often used to compute these partitions, as

is the case in [5]. Once the partition is computed, integral estimate is calculated

using Equation 14. However, in our proposed approach, a single unique partition per

class that combines the partition of rp-integral at all grid points of that particular

class is calculated using heuristics instead of using traditional adaptive quadrature

methods on each point.

The main motivations for calculating such unique partition for a group of points

instead of individual grid-point is that it eliminates the need for adaptive quadrature

or data-dependent control-flow on each integral evaluation, which, as illustrated in

[3, 4, 5], is the main performance bottleneck for such adaptive computations on SIMD

architectures. The procedure RP-IntegralPartition implements this heuristics

approach, where for each class c ∈ C, it generates a unique partition P [1..P.length]

that denotes a rp-integral partition along the outer integration domain (r′-domain).

Ideally, P should be a combination of the partitions generated by rp-integral at all

p ∈ c. However, computing such partition per class instead of individual grid-point

is computationally challenging due to the data-dependent, and irregular control-flow
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behavior of different rp-integrals. Moreover, it requires prior understanding of the

integrand being integrated. As a result, we propose a heuristic to compute the par-

tition for each class c ∈ C, referred to as control-flow heuristic. The key observation

behind control-flow heuristic is that while working on a set of grid points, we can

use partial results of the same set of grid points at an earlier time step. More formally,

Control-flow heuristic: Given a class of grid points c ∈ C, where c is one

of the k-classes generated by RP-Classifier. Then, the unique partition

required to evaluate the rp-integral at all p ∈ c is approximated by combining

the partition for rp-integral at the class center and the partition for same

set of grid points from earlier time step.

In the heuristics, partition for class center is computed sequentially using tradi-

tional adaptive quadrature method, whereas the partition for each grid-point from

previous time step is computed during the Compute-Potentials-H procedure of

that particular time step. We performed empirical analysis using sequential beam

dynamics simulation for different input configurations to validate the above assu-

med heuristics, and all our experiments confirm the control-flow heuristics. Like

locality heuristics, when rp-Integral computations at all grid points of a particular

class are mapped to parallel CUDA threads with one-to-one correspondence, they

exhibit uniform flow of computation. Such uniform control-flow will eliminate the

branch divergence and load balancing complexities that are introduced when adap-

tive quadrature method is used, as is the case in [5]. Moreover, uniform control-flow,

combined with inter-thread data locality from locality heuristics will further increase

the memory performance when the threads accessing same cache line are grouped in

a warp.

Once the procedure RP-IntegralPartition at line-5 outputs the partition

P [1..P.length] for a class c ∈ C, then the rp-integral estimate for all grid points

p ∈ c is calculated as

p.I =

P.length−1∑
i=1

∫ P [i+1]

P [i]

dr′
∫ θ

(p)
max(r′)

θ
(p)
min(r′)

fp(r
′, θ′, t′)dθ′ (18)

where for all i, integral estimate along the subregion [P [i], P [i + 1]] is computed

using Simpsons quadrature rule when the error estimate is less than τ ; otherwise,

adaptive quadrature method is used to compute the integral. Ideally, for all p ∈ c,
all the subregions in Equation 18 should have error estimate less than τ , as defined
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by the control-flow heuristics. However, there may exist some grid-point p′ ∈ c for

which the error estimate along the subregion [P [j], P [j + 1]] is larger than τ , for

some j in range 0 < j < P.length (i.e. the heuristic fails for some subregion). We

hypothesize that this particular scenario will seldom occur, and even if it should, the

number of subregions that fail the heuristics will be insignificant. However, in order

to maintain the correctness of the integral estimate, we use adaptive quadrature on

these subregions.

The procedure RP-QuadRule at line-9 of Compute-Potentials-H denotes

the Simpsons quadrature rule computation for rp-integral at p along the subregion

[a, b], and it outputs a pair I and ε which correspond to the integral and error es-

timate for that particular subregion. Lines 10-13 accumulates the integral estimate

when error estimate for the subregion is less than τ and all other subregions are

inserted into a list L (line-14) for later application using parallel adaptive quadra-

ture method (line 15-18). The computation between line 15-18 is identical to that

of RP-PhaseTwo procedure from Section 3.3.1. A more comprehensive review

of the heuristics algorithm, its implementation and performance analysis on GPU

architectures can be found in [6].

Performance Analysis and Limitations

Table 4 illustrates the double-precision floating-point performance for computing

retarded potentials at a particular time step of a beam dynamics simulation with

100000 particles and varying grid resolution on NVIDIA Tesla K40 GPU with global

memory accesses configured to be cached in both L1 and L2 (commonly called the

Caching mode). Initial distribution for all the simulations are generated by Monte

Carlo sampling of N particles with a total charge of beam bunch Q = 1nC, and the

rp-integral at all grid points are approximated to a error tolerance of τ = 10−6.

The performance metrics illustrated in this section are measured using NVIDIA

profiler [62], and a detailed description about each metric and its relation to kernel’s

performance is illustrated in Appendix B.2. In this study, for convenience, we shall

refer to the kernel implementing GPU specific code from Compute-Potentials-H

procedure of the heuristics algorithm as Heuristics-RP-Kernel.

Roofline Model Analysis - Figure 19 shows the performance of Heuristics-RP-

Kernel illustrated on the Roofline model for K40 GPU. A detailed description
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Grid Resolution (NX ×NY ) 64× 64 128× 128 256× 256

Double Precision Performance (GFlops/sec) 401 420 440

Arithmetic Intensity (Flops/DRAM byte) 2.00 2.10 2.22

Effective Bandwidth (GB/sec) 398 446 476

Global Load Efficiency 105% 115% 120%

Global Load Transactions per Request 1.8 1.8 1.8

Warp Execution Efficiency 92% 96% 97%

L1-cache Global Hit Rate 100% 99% 99%

L2-cache Hit Rate 100% 100% 97%

Table 4: Performance of Heuristics-RP-Kernel for computing retarded poten-
tials in a beam dynamics simulation with 100000 particles and for different grid
resolutions on NVIDIA Tesla K40 GPU.

about Roofline plot and its use to bound the performance of GPU kernels is illustra-

ted in Appendix B.1. The performance achieved by Heuristics-RP-Kernel for

the simulation with 100000 particles and 128× 128 grid resolution is 420 GFlops/sec

(see Table 4), and it is indicated by a blue horizontal line in Figure 19. The point

where this blue horizontal line intersects the bandwidth ceiling marks the achieved

arithmetic intensity. In particular, the green and red X marks achieved arithmetic

intensity for Heuristics-RP-Kernel when the system being modeled delivers a

memory bandwidth of BWTheoretical-Peak = 288 GB/sec and BWExperimental-Peak = 200

GB/sec, respectively. Table 4 illustrates the arithmetic intensity (with the bandwidth

assumed to be BWExperimental-Peak) achieved by Heuristics-RP-Kernel measured

for different simulation configuration. We notice that arithmetic intensity achieved

for the kernel is approximately 2.10 Flops/DRAM byte-accessed when the memory

the system being modeled delivers a memory bandwidth of BWExperimental-Peak, which

is 7X more than Two-Phase-RP-Kernel. Furthermore, the effective bandwidth

for the kernel is greater than the experimental peak, BWExperimental-Peak. The increase

in effective bandwidth indicates that Heuristics-RP-Kernel is effective in utili-

zing the caches to filter the number of accesses that go to memory, thereby increasing

the arithmetic intensity.

Branch Divergence - The warp execution efficiency Heuristics-RP-Kernel is ne-

arly 100% for all simulation configurations, as illustrated in Table 4. This indicates
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Figure 19: Roofline model analysis for Heuristics-RP-Kernel on NVIDIA Tesla
K40 GPU.

that GPU kernel has fewer divergent branches and has near uniform control-flow.

In other words, locality heuristics in the proposed algorithm is effective in reducing

the control-flow irregularity among threads and minimizing their divergence, which,

as illustrated in Section 2.2 and [60, 59], is one of the most important performance

consideration in programming for CUDA-capable GPU architectures.

Memory Performance - The memory performance of Heuristics-RP-Kernel on

GPU is analyzed using profiler metrics - Global load efficiency, Global load tran-

saction per requests, Cache hits, etc. These metrics and its relation to the kernel’s

performance is described in Appendix B.2. The following key observations about the

memory performance of Heuristics-RP-Kernel are inferred from the metrics in

Table 4:

• Global load efficiency for the kernel, which is the ratio of number of bytes

requested by the kernel to number of bytes transferred, is greater than 100.
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This indicates that, on average, the load requests of multiple threads in a warp

are fetched from the same memory address.

• Global load transactions per request value is much closer to the ideal value of

2.0 for transactions with 8-byte words. This shows that most of the memory

requests from within a warp are coalesced, and the memory accesses are within

at most two cache lines.

• Global memory requests from the kernel almost always hits in L2-cache which is

evident by near 100% L2-cache hit rate. This shows that the kernel fits entirely

in L2-cache, and the behavior is identical to that of Two-Phase-RP-Kernel.

• The L1-cache hit rate is nearly 100%. Typically, increased cache hit from

a kernel reduces the DRAM bandwidth which contributes to the increase in

effective bandwidth of that particular kernel, as is the case for Heuristics-

RP-Kernel.

It is clear from the above observations that the performance of Heuristics-

RP-Kernel is substantially improved when compared to that of Two-Phase-RP-

Kernel. In particular, heuristcs based algorithm is effective in improving data

locality, maximizing data reuse, coalescing the memory accesses, and in increasing

the effective bandwidth of the kernel. Additionally, effective utilization of the band-

width at different levels of the memory hierarchy results in an increase in arithmetic

intensity, which is shown in Figure 19. The heuristics algorithm and its implemen-

tation on GPU is currently the fastest known method for high-fidelity computation

of retarded potentials in a charged particle beam dynamics simulations.
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CHAPTER 4

EFFICIENT PARALLEL SIMULATION ON GPUS

In Section 3.2, we showed that the distribution of work and data in the accurate

computation of retarded potentials at each time step of the simulation is highly

unstructured and they cannot be characterized a priori, as these quantities are input-

dependent and evolve with the computation itself. As a direct consequence of these

properties, obtaining high-performance in such algorithms is extremely challenging,

and to this end, we have developed two parallel algorithms to accurately calculate

the retarded potentials at each time step of the simulation using GPUs, Two-phase

Algorithm and Heuristics Algorithm. Two-phase Algorithm is illustrated

in Section 3.3.1 and it targets equal distribution of work over processor to reduce

control-flow irregularity. Heuristics Algorithm is illustrated in Section 3.3.2 and

it uses heuristics to maximize data reuse and to balance the workload among threads,

thereby reducing both control-flow and memory access divergence on GPUs. Both

these algorithms focus on optimizing the irregular, data-dependent memory accesses

and control-flow during a single time step of the simulation independent of the other

steps, with the assumption that these patterns are completely unpredictable.

Multiple analysis of beam dynamics simulation executing irregular workloads for

a few hundreds or thousands of time steps show that control-flow and data access

patterns made during the computation of retarded potentials follow a loosely similar

pattern between time steps. In such situation, one effective approach to reduce the

irregularities is to analyze the control-flow and data access patterns at each time

step of the simulation and then anticipate future data dependence and control-flow

before it is needed. Given the complexity and diversity of control-flow and data

access patterns in beam dynamics simulation, we believe anticipation strategies are

best realized via intelligent application-specific prediction models that can adapti-

vely model and track access patterns. Access pattern forecasts can then be used to

formulate runtime decisions that optimize future computations of collective effects

on GPUs, such as determining computations to thread mapping that maximize data

reuse within a cache-sharing thread group and minimize thread divergence, data

prefetching, computational workload balancing, linearizing the irregularities, etc.
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This chapter presents the use of predictive analytics and forecasting techniques

to optimize the computation of retarded potentials on GPUs, thereby improving

the overall performance of beam dynamics simulation. In particular, we present a

cache-aware algorithm that use machine learning to forecast the control-flow and

data access patterns required to calculate the retarded potentials at a future time

step based on the computations and access patterns observed from earlier time steps.

The remainder of the chapter is organized as follows. Section 4.1 presents the ma-

chine learning approach to model irregular data access patterns in the computation of

retarded potentials where the future values of control-flow and data access patterns

are predicted based on the previously observed values. Next, the parallel algorithm

to calculate retarded potentials using predictive analytics and its implementation on

GPU architecture is illustrated in Section 4.2. Section 4.3 validates the parallel im-

plementation and then illustrates the performance of parallel algorithm on NVIDIA

Tesla K40 GPU.

4.1 MODELING ACCESS PATTERNS

An effective model for forecasting irregular data access patterns must predict

when, what, and how many data blocks are required by an application before it

is needed. To obtain these predictions, we have modeled data access patterns in

the computation of retarded potentials using application-specific supervised learning

algorithms described in this section. First, we outline the representation of data

access pattern in the numerical approximation of rp-integrals, which are later used

as input to the learning algorithm. Next, we present the online prediction model

that use supervised learning on the observed data access patterns to train the model.

Finally, we outline the algorithm to forecast the data access and control-flow patterns

in rp-integral evaluations at a future time step using the prediction model learned at

an earlier time step.

4.1.1 REPRESENTATION OF DATA ACCESS PATTERN

The computation of rp-integral at a grid-point p ∈ Vk during time step k requires

referencing data from the 2D grids of moments computed from one or more earlier

time steps. In particular, calculating rp-integral along the subregion Sic∆t,(i+1)c∆t

requires referencing data from the 2D grids computed during time steps k−i, k−i−1,

and k−i−2 (i.e., gridsDk−i, Dk−i−1, andDk−i−2), for all positive integers i and k such
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that i < k and k < Nt. Further, when Sic∆t,(i+1)c∆t is subdivided into ni partitions

then rp-integral evaluation within that subregion will result in αni memory references

to each of the three data grids, where α is the number of memory references made

during the computation of inner integral, which is constant for a given Newton-Cotes

formulae.

Adapting to this relation between the number of partitions and the memory

references, we choose to represent the data access pattern in rp-integral evaluation

using the partition generated along subregions, Sic∆t,(i+1)c∆t, for integers i such that

0 ≤ i < Nt. More formally, data access pattern observed during rp-integral evaluation

at a grid-point p ∈ Vk is represented by a list, [n
(p)
0 , n

(p)
1 , . . . , n

(p)
Nt−1], where n

(p)
i denotes

the number of partitions along the subregion Sic∆t,(i+1)c∆t required during rp-integral

evaluation at p, and given the access pattern, we can easily calculate the memory

references to any data grid. As an example, number of reference to Dk−i is given by

α(n
(p)
i + n

(p)
i−1 + n

(p)
i−2).

Data access patterns are extracted during regular execution of the beam dyna-

mics simulation with negligible overhead except for additional storage required to log

the access patterns. These access patterns are later used by a supervised learning

algorithm to train the online prediction model. Note that we have chosen to mo-

del the access patterns using coarser data grids instead of individual data elements.

The rationale behind coarser modeling is that the irregular nature of beam dyna-

mics simulation makes it challenging to track access to individual data elements.

Moreover, even if tracking individual data elements was feasible, the overhead as-

sociated with storing the number of references to each data element will increase

the memory requirement of beam dynamics simulation, which is already a memory

intensive application.

4.1.2 ONLINE PREDICTION MODEL

To capture and forecast the irregular data access patterns, we model the appli-

cation access patterns using online prediction techniques where the future values are

predicted based on the previously observed values. Formally, suppose the current

time step of the simulation is k and we are given a set of access patterns observed

during rp-integral computations at all grid points up to time step k. Then, using all

the data access patterns observed up to time step k, the prediction model forecasts

the access pattern [n
(q)
0 , n

(q)
1 , . . . , n

(q)
Nt

] required to compute rp-integral at a grid-point
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q ∈ Vj for a future time step j, where j > k. This forecast is used to formulate intel-

ligent runtime decisions that optimize the application execution during time step j.

Further, forecasts can be one-step ahead forecasting where j = k+1, or multiple step

ahead forecasting where j >> k. We use one-step ahead forecasting in this study.

Training and Prediction

For model training, given a set of training examples of the form (x1, y1), . . . , (xn, yn)

where xi is the grid-point of the ith example and yi is the access pattern observed

during rp-integral evaluation at xi, a learning algorithm seeks a function g : X → Y ,

where X is the space of inputs (i.e., grid points) and Y is space of outputs (i.e.,

rp-integral data access patterns). In particular, at time step k, the set of rp-integral

computations at all grid points from one or more earlier time steps is used as training

data by a supervised learning algorithm to seek a predictor function gk : X → Y at

that particular time step. However, keeping track of rp-integral computations and

access patterns from multiple time steps may increase the computational load and

memory requirement of the application. In such situation, we can use supervised

learning algorithms with online training where the function predictor at kth time

step, gk, is learned just from the access patterns observed during time step k, and

the previous best predictor gk−1.

The choice of learning algorithm depends on the data distribution, quality and

nature of the data, required accuracy of prediction, and so on. Typically, each

learning algorithm have different effect on a given problem, and as result, choosing

the right algorithm often requires studying multiple algorithms and its effects on the

problem before choosing the best performing one. In this study, we use k-nearest

neighbor algorithm (kNN) in regression setting to train the prediction model, which,

based on the heuristics illustrated in Section 3.3.2 and in [6] is an intuitive choice.

4.1.3 FORECASTING MEMORY ACCESS

Given a predictor function gk−1 learned at time step k−1, the data access pattern

for rp-integral evaluation at a grid-point p ∈ Vk for time step k is approximated as,

gk−1(p).

In the algorithm illustrated in Section 4.2, the predicted access patterns for all

points p ∈ Vk are used to determine rp-integral computations to thread mapping

that maximizes the data reuse within a cache-sharing thread group on the target
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architecture. This leads to an improved cache performance, even with the presence of

memory access irregularity. Also, note that the predicted access patterns are just an

approximation to the observed access patterns, and they are primarily used to reduce

memory access irregularities in the simulation by optimizing computation to thread

mapping, therefore, does not compromise the correctness of integral computation.

4.1.4 FORECASTING CONTROL-FLOW

The flow of computation or control-flow for numerically approximating rp-integral

at grid-point p ∈ Vk is typically determined by the algorithm used to compute the

partition, 〈r(p)
0 , r

(p)
1 , . . . , r

(p)
n 〉, along the outer dimension. Adaptive quadrature is tra-

ditionally used to compute such partitions, which, as illustrated in [3, 4], is characteri-

zed by control-flow and memory access irregularities that leads to severe performance

bottlenecks on GPU architectures.

In the proposed algorithm we use predicted access patterns to approximate rp-

integral partition, and given the partition, computation of rp-integral simply in-

volves evaluating Equation-14. Such evaluation exhibit uniform and deterministic

control-flow that can be mapped to GPUs with minimal thread divergences, the-

reby improving the overall performance. Formally, given a predicted access pattern

[n
(p)
0 , n

(p)
1 , . . . , n

(p)
Nt

] corresponding to a grid-point p ∈ Vk, the forecasting algorithm

computes a partition list, 〈r(p)
0 , r

(p)
1 , . . . , r

(p)
m 〉, required to calculate rp-integral at p,

which is an approximation to the partition required to calculate rp-integral within

the required error tolerance. The following two methods are used to transform the

data access pattern to integral partition -

1. Uniform partitioning - Each subregion Sic∆t,(i+1)c∆t is divided into (n
(p)
i −1) finer

subregions of equal size (i.e., n
(p)
i partitions along Sic∆t,(i+1)c∆t), for all integers

i in range 0 < i < Nt. This generates a global partition of size
∑Nt

i=0 n
(p)
i on

the entire integration region [0, R(p)].

2. Adaptive partitioning - Partition generated at an earlier time step is used al-

ongside the access pattern forecast to approximate the partition at time step

k. The choice of partition from an earlier time step is identical to the approach

used in Section 3.3.2, and this partition is updated using the access pattern

forecast to generate a new partition which is used during time step k. For

example, let the partition from an earlier time step contain di partitions along
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Si, then each subregion in Sic∆t,(i+1)c∆t from the earlier partition is divided into

n
(p)
i /di finer subregions to generate a new partition, which is used for rp-integral

calculation at time step k. The partition size generated using this approach is

approximately
∑Nt

i=0 n
(p)
i on the entire integration region S0,R(p).

Note that the partition forecast computed from the access pattern is an approx-

imation to the partition required to calculate rp-integral within the required error

tolerance, and it is possible that the rp-integral estimate calculated using this par-

tition forecast is not within the required error tolerance. The proposed algorithm

illustrated in Section 4.2 handles this situation by considering the prediction as an

initial condition for numerically approximating rp-integral and ensures that integral

estimate always achieves the required error tolerance.

4.2 PARALLEL ALGORITHM

The procedure Compute-Potentials-ML implements the second step of the

four step beam dynamics simulation algorithm where it approximates the rp-integral

at all grid points on a 2D grid for a given time step. The procedure takes input

k, V, τ, g, and D, where k is the current time step of simulation, V is a set of grid

points on the 2D grid at kth time step such that |V | = NXNY , τ is the required error

tolerance for rp-integral evaluations, g denotes the predictor function learned using

supervised learning algorithm at time step k − 1, and D is the list of 2D data grids

of moments from each time step stored linearly on the device memory. Each grid-

point p ∈ V is a reference to 7-tuple object, (x, y, t, I, ε, access pattern, partition),

where (p.x, p.y) denote the Cartesian coordinate of the grid-point on the 2D grid

at time step k, p.t is the simulation time of the corresponding time step, p.I is the

rp-integral estimate, p.ε is the rp-integral error estimate, p.access pattern is a list

containing the data access pattern for rp-integral computation, and p.partition holds

a list containing the partition for rp-integral computation.

The procedure Compute-Potentials-ML works as follows. Line 1-4 initializes

different attributes of the grid-point object. In particular, for each grid-point p ∈
V , line-2 initializes integral and error estimates to 0, line-3 uses the best predictor

function g learned at time step k − 1 to forecast the access pattern required for rp-

integral computation for the current time step k, and line-4 calls a procedure that

implements the algorithm described in Section 4.1.4 to convert access pattern forecast

to rp-integral partition. Next, RP-Clustering procedure at line-5 implements a
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clustering algorithm to partition the grid points based on their data access patterns

such that access patterns for grid points in the same cluster are similar to one another.

Formally, given a set of grid points V and an integer m, RP-Clustering procedure

partitions the |V | grid points into m disjoint clusters, C = {C1, C2, . . . , Cm}, such

that the sum of distance between the grid points access pattern in the cluster to its

center is minimum,

arg min
C

m∑
i=1

∑
p∈Ci

||p.access pattern− µi||2 (19)

where µi is the center of cluster Ci, and m = NX or NY . We use k-means clustering

algorithm to implement RP-Clustering procedure.

Compute-Potentials-ML(k, V, τ, g,D)

1 for each grid-point p ∈ V in parallel

2 p.I ← 0, p.ε← 0

3 p.access pattern← g(p.x, p.y, p.t)

4 p.partition← Compute-Partition(p.access pattern)

5 C ← RP-Clustering(V )

6 L← ∅
7 for each cluster c ∈ C in parallel

8 P ← ∅
9 for each grid-point p ∈ c in parallel

10 P ←Merge-Lists(P, p.partition)

11 for each grid-point p ∈ c in parallel

12 L′ ← Compute-RP-Integral(p, P, τ,D)

13 L←Merge-Lists(L,L′)

14 for each ([a, b], p) ∈ L in parallel

15 (I, ε, P, A)← RP-Quadrature(([a, b], p), τ,D)

16 p.access pattern←Merge-Lists(p.access pattern,A)

17 p.partition←Merge-Lists(p.partition, P )

18 p.I ← p.I + I

19 p.ε← p.ε+ ε

20 g ← Online-Learning(V, g)

Furthermore, two grid points u, v ∈ V , where u 6= v, gets partitioned into same

cluster when u.access pattern exhibits stronger similarity to that of v.access pattern,
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which also implies that rp-integral computation at u and v have maximum data reuse

between them. This property of data reuse and access pattern similarity within a

cluster is used to optimize rp-integral computations to thread mapping such that

the overall memory performance on the target architecture is maximized. In other

words, when a set of rp-integral computations that exhibit similar data access pattern

between each other are mapped to parallel threads with one-to-one correspondence,

they exhibit strong inter-thread locality. Such data locality among threads can be

exploited by grouping them into one or more thread blocks in GPU architectures,

where the memory performance is improved due to the benefit from data locality

by using L1-cache or shared-memory. Note that, RP-Clustering procedure in

Compute-Potentials-ML is similar to the one used in Section 3.3.2, however,

algorithm in Section 3.3.2 uses heuristics to measure the data reuse between two grid

points, whereas in here, we use a more accurate measure of data reuse between two

points by comparing their corresponding rp-integral computations access patterns.

Even though we measure data reuse using predicted access patterns which are just an

approximation to the observed data access patterns, experimental results in Section

4.3 shows that this approach is effective in improving the memory performance.

The for loop in lines 7-13 evaluates rp-integral at all grid points using the partition

approximated in line-4. First, for each cluster c ∈ C, line-8 initializes a list P , and

for each grid-point p ∈ c, the for loop in line 9 merges the list p.partition with P

by calling an auxiliary procedure Merge-List. The procedure Merge-List(P, P ′)

returns the sorted list that is the merge of its two sorted input lists P , and P ′ with

duplicate values removed. In other words, lines 9-10 combine the predicted partition

of all the points p ∈ c into a single unique partition P , such that the combined

partition is an approximation to individual partitions. The main objective behind

combining the partitions is to have uniform control-flow in the for loop at line-11,

which aids in minimizing the thread divergence when computations of this loop are

mapped to GPU threads.

The procedure Compute-RP-Integral(p, P, τ,D) approximates rp-integral at

a grid-point p using only the subregions from a partition list P where the rp-integral

error estimate is less than τ , and the integral and error estimates along each subre-

gion is approximated using Simpson’s quadrature rule. We use an auxiliary procedure

RP-QuadRule([a, b], p,D) to compute Simpson’s quadrature rule estimates, (I, ε),

along a subregion [a, b] for rp-integral at a point p, where I is the integral estimate
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and ε is the error estimate. We omit the pseudocode for RP-QuadRule, as it is

identical to the standard Simpson’s quadratue rule with the inner integral approxi-

mated using Newton-Cotes formulae, as illustrated in [5]. In ith iteration of the for

loop in Compute-RP-Integral procedure, integral and error estimates along an

integration region SP [i],P [i+1] is calculated by calling RP-QuadRule. Next, when

the error estimate returned from RP-QuadRule is less than τ , both integral and

error estimates are accumulated to the input grid-point’s global estimates, p.I and

p.ε, respectively. Otherwise, the grid-point object and the corresponding subregion

where the error estimate is larger than τ is inserted to a list L. Once the for loop

terminates, partition list used to compute the integral is stored in p.partition, data

access pattern observed during the computation is stored in p.access pattern, and

the list L is returned as the output from Compute-RP-Integral procedure.

Compute-RP-Integral(p, P, τ,D)

1 L← ∅
2 for i = 0 to P.length− 1

3 a← P [i], b← P [i+ 1]

4 (I, ε)← RP-QuadRule(([a, b], p), τ,D)

5 if ε < τ

6 p.I ← p.I + I

7 p.ε← p.ε+ ε

8 else

9 List-Insert(L, ([a, b], p))

10 p.partition← P

11 update p.access pattern with the observed data access pattern

12 return L

In the pseudocode for Compute-Potentials-ML, the method Compute-RP-

Integral is called on for each grid-point p ∈ c inside the for loop at line-11, and

it returns a list L′. Each element of this list is a pair ([a, b], p) where [a, b] denotes a

subregion such that the Simpson’s quadrature rule error estimate for rp-integral at a

grid-point p along that subregion is larger than τ . Furthermore, individual list from

each iteration of the for loop is merged to a global list L using the auxiliary proce-

dure Merge-List. The accumulated subregions and grid points from the global list

are processed using traditional adaptive quadrature algorithm in lines 14-19. We use
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the procedure RP-Quadrature to implement Simpson’s adaptive quadrature algo-

rithm, where, in addition to integral and error estimates, our implementation returns

the integral partition along outer dimension and the data access pattern observed du-

ring the algorithm execution. In particular, RP-Quadrature([a, b], p, τ,D) outputs

a tuple, (I, ε, P, A), where I and ε are the integral and error estimates, respectively,

P is the partition along the outer dimension generated by adaptive quadrature’s

control-flow, and A is the observed data access pattern. Next, access pattern and

partition returned from RP-Quadrature is merged with the corresponding grid-

point’s access pattern and partition, respectively, that is seen during Compute-RP-

Integral procedure. Furthermore, rp-integral estimates from adaptive quadrature

are accumulated to the grid-point’s global estimates.

Online-Learning(V, g)

1 X ← ∅
2 Y ← ∅
3 for each grid-point p ∈ V
4 List-Insert(X, (p.x, p.y, p.t))

5 List-Insert(Y, p.access pattern)

6 update the predictor function g : X → Y using supervised learning

on the inputs X and Y

7 return g

Next, in Online-Learning procedure, access patterns observed during rp-integral

computations at all grid points p ∈ V is used by a supervised learning algorithm to

train and update the predictor function g. The updated prediction function g is used

by Compute-Potentials-ML procedure during the next time step.

4.2.1 GPU IMPLEMENTATION

Initialization steps between lines 1-4 are implemented on CPU, where the for

loop is parallelized using OpenMP, and the grid-point attributes: access pattern and

partition, are stored only in CPU memory. The procedure RP-Clustering imple-

menting the k-means clustering algorithm is also implemented on CPU, using scikit-

learn library [65]. Further, in the implementation of RP-Clustering, we choose

number of clusters to be m = max(NX , NY ), and since k-means algorithm prefers

clusters of approximates similar size, each cluster size is approximately min(NX , NY ).
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Lines 7-13 is the heart of beam dynamics simulation that approximates the rp-

integral at all grids points using the predicted partitions, and it is implemented on

GPUs. In particular, computations of the for loop at line-7 is assigned to one or more

thread blocks, where multiple thread blocks are used to take advantage of the Thread

Level Parallelism (TLP). Within each thread block, the computation of for loop at

line-11 is assigned to GPU threads with one-to-one correspondence. In other words,

each cluster c ∈ C is assigned to one or more thread blocks where the computation of

each grid-point p ∈ c is assigned to GPU threads of the corresponding thread-block.

The required number of threads for each block depends on the number of grid points

in the cluster assigned to that particular block, and as a result, number of threads

per block for GPU execution is chosen to be the maximum of all cluster sizes. Each

thread implements the Compute-RP-Integral procedure for the assigned grid-

point and the data access patterns observed during the evaluation of this procedure is

updated on CPU based on the partition used within the procedure. Further, TLP for

the GPU execution is governed by assigning multiple thread blocks to each cluster’s

rp-integral computation, such that the loop iteration in Compute-RP-Integral

procedure is shared between multiple thread blocks. It is important to note that the

flow of computation in for loop at line-11 is uniform between different threads of a

thread-block, and as a result, it eliminates the thread divergences between rp-integral

computations at different grid-points assigned to the threads of the block.

Next, the computations in lines 14-19 is also implemented on GPU using a diffe-

rent kernel from the one explain before. In this kernel, the list elements are mapped

to parallel GPU threads with one-to-one correspondence. Each parallel threads im-

plements the RP-Quadrature procedure in parallel and independent of other thre-

ads. This implementation is identical to the globally adaptive algorithm illustrated in

Section 3.3.1. Finally, Online-Learning procedure to update the prediction model

using supervised learning is implemented on CPU using scikit-learn and OpenMP,

where both the libraries use all the CPU cores to speed up the training process.

4.3 EVALUATION AND EXPERIMENTAL RESULTS

Simulation experiments for studying beam dynamics and performance analysis of

the parallel implementation of Compute-Potentials-ML is carried out on NVI-

DIA Tesla K40 GPU with global memory accesses configured to be cached in both

L1 and L2 (commonly called the Caching mode), unless specified otherwise. Initial
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distribution for all the simulations are generated by Monte Carlo sampling of N par-

ticles with a total charge of beam bunch Q = 1nC, and the rp-integral at all grid

points are approximated to a error tolerance of τ = 10−6. The performance metrics

for all the GPU kernels illustrated in this section are measured using NVIDIA profiler

[62], and the results are averaged over multiple runs. For convenience, we shall re-

fer to the kernel implementing GPU specific code from Compute-Potentials-ML

procedure as Predictive-RP-Kernel.

4.3.1 VALIDATION OF PARALLEL SIMULATION

The correctness and accuracy of beam dynamics simulation depends on the fidelity

of Predictive-RP-Kernel algorithm that use predictive analytics and forecasting

techniques to calculate the retarded potentials in a multistep beam dynamics simu-

lation. To ensure that such prediction based algorithm does not trade simulation’s

correctness for performance, it is imperative to validate the parallel implementation

and its effect on the simulation. We validate the parallel simulation by comparing the

simulation output to the only special case for which the exact analytical results are

available - that of a 1D monochromatic rigid bunch. Exact analytical solutions for

the longitudinal and transverse force for a 1D rigid-line bunch study state model is

given in [28, 48]. The parallel implementation presented here is benchmarked against

the analytical results described in [28, 48] for the parameters of the Linac Coherent

Light Source (LCLS) bend [47]: bend radius R0 = 25.13 m, θb = 11.4◦, longitudinal

rms beam size σs = 50 µm, emittance ε = 1 nm, total beam charge Q = 1 nC. From

Figure 20, it is evident that both longitudinal and transverse forces computed with

our parallel algorithm agree perfectly with the exact analytical solution.

Further, a closer look into the nature of convergence of the computed forces to

the analytic result is shown in Figure 21, which shows the mean-square error, defined

as

ε =
1

N

N∑
i=1

(
Fi − F exact

i

)2
,

with N the number of particles, Fi the computed force and F exact
i the analytic force

on individual particles. As one should expect from Monte-Carlo type simulations,

the accuracy of the computed forces, as measured by the mean-square error, scales

as 1/N – inversely with the number of particles in the simulation [76].
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Figure 20: Analytic versus computed effective longitudinal (left) and transverse
(right) forces for the LCSL bend [47]: N = 1000000 particles on a 128 × 128 grid,
bend radius R0 = 25.13 m, θb = 11.4◦, longitudinal rms beam size σs = 50 µm,
emittance ε = 1 nm, and total beam charge of Q = 1nC.
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Figure 21: Mean-square error for the longitudinal force, as defined in the text, as
a function of the number of particles per cell Nppc = N/Ngrid, for a fixed grid of
128× 128 (or Ngrid = 1282).
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Grid Resolution (NX ×NY ) 64× 64 128× 128 256× 256

Double precision performance (GFlops/sec) 460 480 485

Arithmetic Intensity (Flops/DRAM byte) 2.30 2.40 2.43

Effective Bandwidth (GB/sec) 532 567 580

Global Load Efficiency 135% 150% 160%

Global Load Transactions per Request 1.9 1.9 1.9

Warp Execution Efficiency 97% 99% 99%

L1-cache Global Hit Rate 100% 100% 99%

L2-cache Hit Rate 100% 100% 100%

Table 5: Performance of Predictive-RP-Kernel for computing retarded poten-
tials in a beam dynamics simulation with 100000 particles and for different grid
resolutions on NVIDIA Tesla K40 GPU.

4.3.2 PERFORMANCE ANALYSIS

Table 5 illustrates the double-precision floating-point performance of Predictive-

RP-Kernel at a particular time step of a beam dynamics simulation with 100000

particles and varying grid resolution on NVIDIA Tesla K40 GPU. The results from

Table 5 are used to provide a quantitative analysis on the effects of using predictive

analytics and forecasting techniques in improving the performance of compute retar-

ded potentials stage of the beam dynamics simulations on GPUs. The performance

metrics illustrated in this section are measured using NVIDIA profiler [62], and a

detailed description about each metric and its relation to kernel’s performance is

illustrated in Appendix B.2.

Roofline Model Analysis

Figure 22 shows the performance of Predictive-RP-Kernel illustrated on the

Roofline model for K40 GPU. A detailed description about Roofline plot and its

use to bound the performance of GPU kernels is illustrated in Appendix B.1. The

performance achieved by Predictive-RP-Kernel for the simulation with 100000

particles and 128 × 128 grid resolution is 480 GFlops/sec (see Table 5), and it is

indicated by a blue horizontal line in Figure 22. The point where this blue hori-

zontal line intersects the bandwidth ceiling marks the achieved arithmetic intensity.

In particular, the green X (1.67 Flops/byte) and red X (2.40 Flops/byte) marks
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Figure 22: Roofline model analysis for Predictive-RP-Kernel on NVIDIA Tesla
K40 GPU.

achieved arithmetic intensity for Predictive-RP-Kernel when the memory band-

width attained by the kernel is assumed to be BWTheoretical-Peak = 288 GB/sec and

BWExperimental-Peak = 200 GB/sec, respectively.

Figure 23 compares the performance of Predictive-RP-Kernel against exis-

ting two kernels - Two-Phase-RP-Kernel and Heuristics-RP-Kernel, illus-

trated on the Roofline model for K40 GPU. The vertical lines indicate the achie-

ved arithmetic intensity when the attained memory bandwidth is assumed to be

BWExperimental-Peak and the X marks performance attained for that particular GPU

kernel. It is clear from Figure 22 and Figure 23 that the parallel algorithm and its

implementation on GPUs based on predictive analytics and forecasting technique

has sufficiently high arithmetic-intensity when compared to the previous two im-

plementations. In particular, Predictive-RP-Kernel delivers 480 GFlops/sec of

double precision floating-point performance on K40 GPU and this translates to achie-

ved arithmetic intensity of 2.40 Flops/DRAM-byte accessed which is 8X and 1.2X
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Figure 23: Roofline model analysis of Predictive-RP-Kernel (red line) compared
against Heuristics-RP-Kernel (green line) and Two-Phase-RP-Kernel (grey
line) on NVIDIA Tesla K40 GPU.

more than the Two-Phase-RP-Kernel and Heuristics-RP-Kernel, respecti-

vely. Furthermore, the effective bandwidth for Predictive-RP-Kernel kernel is

greater than BWExperimental-Peak (see Table 5). The increase in effective bandwidth in-

dicates that the kernel implementation is effective in utilizing the caches to filter the

number of accesses that go to memory, thereby increasing the arithmetic intensity.

Branch Divergence

The warp execution efficiency for Predictive-RP-Kernel is nearly 100%, il-

lustrated in Table 5. This indicates that the GPU kernel has fewer divergent branches

and has near uniform control-flow. In other words, use of anticipation strategies are

effective in reducing the control-flow irregularity among parallel threads, which, as

illustrated in Section 2.2 and [60, 59], is one of the most important performance consi-

deration in programming CUDA-capable GPU architectures. Moreover, such higher
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value of warp execution efficiency for Predictive-RP-Kernel indicates that this

kernel implementation is better at utilizing the GPU device to its full potential when

compared to the other two kernels .

Memory Performance

The memory performance of Predictive-RP-Kernel on GPU is analyzed

using profiler metrics - Global load efficiency, Global load transaction per requests,

Cache hits, etc. These metrics and its relation to the kernel’s performance is des-

cribed in Appendix B.2. The following analysis about the memory performance of

Predictive-RP-Kernel is inferred from studying different profiler metrics illus-

trated in Table 5 -

• Global load efficiency of Predictive-RP-Kernel is greater than 100%, which

indicates that on average, the load requests of multiple threads in a warp are

fetched from the same memory address and are also coalesced. In other words,

implementation is effective in taking advantage of the memory coalescing fea-

ture of the GPU’s architecture.

• Global load transactions per request for Predictive-RP-Kernel is much

closer to the ideal value of 2.0 for transactions with 8-byte words. This shows

that most of the memory requests from within a warp are coalesced, and the

memory accesses are within at most two cache lines.

• Global memory requests from Predictive-RP-Kernel almost always hits in

L2-cache which is evident by near 100% L2-cache hit rate. This indicates that

kernel exhibits high data locality and/or the problem fits entirely in L2-cache.

• The L1-cache hit rate for global loads is nearly 100%, which indicates elevated

data reuse between cache sharing threads groups. Further, increased cache hit

from the kernel reduces the DRAM bandwidth, which contributes to the incre-

ase in effective bandwidth and in subsequent increase of arithmetic intensity.

It is evident from the above observations that memory performance for the

GPU implementation of Predictive-RP-Kernel on Tesla K40 GPU is substanti-

ally improved when compared to Two-Phase-RP-Kernel and Heuristics-RP-

Kernel. In particular, computation to thread mapping based on the data access

pattern forecast is effective in maximizing the data reuse within all cache-sharing
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thread groups. This leads to an improved cache performance and aids in reducing

the impact of any unforeseen memory access irregularity. Moreover, optimizations

based on predictive analytics and forecasting is effective in coalescing the memory

accesses and in increasing the effective bandwidth of the kernel. This improves the

overall utilization of the bandwidth at different levels of the memory hierarchy, the-

reby increasing the arithmetic intensity, as shown in Figure 22.

Speedup

Table 6 and Table 7 illustrates the performance of compute retarded potentials

stage of the simulation using Predictive-RP-Kernel compared against Two-

Phase-RP-Kernel and Heuristics-RP-Kernel for different simulation confi-

gurations. In Table 6, GPU time refers to the kernel execution time on the GPU

together with the time spent in memory operations (allocations, initialization, and

memory copy between CPU and GPU), Clustering time and Online-training time re-

fers to the execution time of procedures RP-Clustering and Online-Learning,

respectively, and the Overall time is the total execution time of the compute retarded

potentials stage of the simulation.

The results indicate that depending on the grid resolution and the number of

particles in the simulation, computing retarded potentials using Predictive-RP-

Kernel achieves a speedup gain of up to 6.4X and 2.8X compared to the Two-

Phase-RP-Kernel and Heuristics-RP-Kernel, respectively. Further, the split

execution time in Table 6 shows that the time spent in online-training and clustering

are negligible when compared to the GPU time. In other words, the time spent in

using the access pattern forecast to optimize the computation to thread mapping and

in formulating the runtime decisions are negligible when compared to the performance

benefit achieved from it.
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Number of
particles

Grid
Resolution

Execution Time (sec.)

Clustering
GPU (Compute

and Memory)
Online-training
and Prediction

Overall

100000

64× 64 0.08 1.04 0.05 1.17

128× 128 0.40 4.77 0.10 5.27

256× 256 1.50 53.40 0.40 55.30

1000000

64× 64 0.08 0.93 0.05 1.06

128× 128 0.16 3.41 0.10 3.67

256× 256 1.18 30.10 0.40 31.68

Table 6: Execution time of compute retarded potentials stage of the simulation using Predictive-RP-Kernel for different
simulation configurations on NVIDIA Tesla K40 GPU.

Number of Grid Two-Phase-RP Heuristics-RP Predictive-RP

Particles Resolution Execution Execution Execution Speedup with respect to

(N) (NX ×NY ) Time (sec.) Time (sec.) Time (sec.) Two-Phase-RP Heuristics-RP

100000

64× 64 3.55 1.75 1.17 3.0 1.5

128× 128 28.56 14.20 5.27 5.5 2.7

256× 256 293.63 149.55 55.30 5.3 2.7

1000000

64× 64 2.97 1.40 1.06 2.9 1.3

128× 128 22.82 10.15 3.67 6.2 2.8

256× 256 201.29 88.35 31.68 6.4 2.8

Table 7: Speedup of Predictive-RP-Kernel compared against Two-Phase-RP-Kernel and Heuristics-RP-Kernel
for different simulation configurations on NVIDIA Tesla K40 GPU.
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CHAPTER 5

EFFICIENT PARALLEL SIMULATION ON

HETEROGENEOUS ARCHITECTURE

This chapter presents the parallel algorithm and its implementation on hete-

rogeneous architectures for the retarded potentials computation stage of the beam

dynamics simulation which uses machine learning algorithms to create and distribute

sub-problems to different PUs of the underlying heterogeneous architecture. In par-

ticular, supervised learning algorithm illustrated in the previous chapter and in [7] is

used to adaptively model and track irregular data access patterns in the computation

of retarded potentials at each time step of the simulation to anticipate the future

data access patterns. Then, at some future time step, access pattern forecast is used

to approximately divide the original problem of evaluating the rp-integral into mul-

tiple smaller sub-problems that are defined only on a subset of data (a subproblem

is also referred to as tasks in this chapter). These tasks created from subdividing all

the NXNY rp-integrals of that particular time step are distributed between multiple

PUs of the heterogeneous architectures such that each PU is scheduled with tasks

localized to a portion of the entire data at a given time. In particular, data requi-

red for computing retarded potentials is first partitioned into multiple smaller data

blocks, and these data blocks are mapped to PUs dynamically such that no two PU

shares the same data block. Then, tasks localized to a data block is scheduled on

a PU based on data block to PU mapping which is determined dynamically. This

approach of task creation and distribution based on the data access pattern has the

advantage of assigning tasks with different memory footprint to different PUs which

improves the memory performance on the heterogeneous architectures by ensuring

that only a portion of data is required to be transferred to a particular PU.

The remainder of this chapter is organized as follows. Section 5.1 presents the

algorithm to compute retarded potentials on heterogeneous architecture composed of

one or more PUs of distinct hardware characteristics and processing capabilities. In

Section 5.1, we first provide a brief overview of the data layout (Section 5.1.1) and the

access pattern representation (Section 5.1.2) considered for designing efficient parallel
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algorithm on heterogeneous architecture. Next, in Section 5.1.3, we illustrate the task

creation algorithm that divides the original problem of evaluating the rp-integral at

a grid-point into multiple smaller sub-problems that are defined only on a subset of

data. Section 5.1.4 presents the algorithm for calculating retarded potentials using

the sub-problems created from task creation algorithm, where the set of sub-problems

are distributed across different PUs of the underlying architectures based on their

processing capabilities. Finally, Section 5.2 presents the implementation performance

of the algorithm on two different heterogeneous architectures and show that the use

of machine learning algorithms is effective in partitioning and mapping the workload

to different PUs such that all the PUs are best utilized and combined to deliver good

aggregate performance.

5.1 HETEROGENEOUS ALGORITHM

5.1.1 DATA PARTITION

The heterogeneous algorithm illustrated here divides the original problem of eva-

luating the rp-integral at different grid points into multiple smaller sub-problems or

tasks that are defined only on a subset of data, and it later maps these tasks to

different PUs based on their memory access and computational load requirement.

In order to create such tasks, we first partition the memory logically into multiple

smaller data blocks. In particular, the array of data grids containing the moments

from all the time steps is logically partitioned into multiple smaller data blocks, B0,

B1, . . . , BNt/m where a data block Bi corresponds to the data generated between

time steps mi − 1 to m(i + 1) (i.e.Dmi−1 to Dm(i+1), for all integers i in range 0

to Nt/m, and m ≥ 3 is an integer which defines the granularity of data partition.

The value of m also controls the granularity of the sub-problems generated by the

task creation algorithm, which is illustrated in later sections of this chapter. It is

important to note that the rp-integral approximation algorithm is such that even the

smallest possible sub-problem require data from at-least three data grids which is

why the value of m must be at-least 3.

The task creation and distribution algorithm presented in this chapter use the

partition among the data grids to identify tasks that are localized around individual

data blocks. Then, the distribution algorithm maps these tasks to PUs such that

each PU computes the tasks localized to one or more data-block, where a data-block
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is not shared between multiple PUs. The motivation for distributing the tasks based

on their data block requirement is that such mapping has the advantage of assigning

tasks with different memory footprint to different PUs. This ensures that only a

portion of data is required to be transferred to a particular PU and this is crucial for

improving the memory performance on heterogeneous architectures.

5.1.2 DATA ACCESS PATTERN

The representation of data access pattern forecast in the numerical approxima-

tion of rp-integrals is identical to the one described in Section 4.1 of Chapter 4. In

particular, data access pattern for rp-integral evaluation at a grid-point p ∈ Vk is

represented by a list, [n
(p)
0 , n

(p)
1 , . . . , n

(p)
Nt−1], where n

(p)
i denotes the number of partiti-

ons along the subregion Sic∆t,(i+1)c∆t required during rp-integral evaluation at p, and

given the access pattern, we can easily calculate the memory references to any data

grid. As an example, number of reference to Dk−i is given by α(n
(p)
i + n

(p)
i−1 + n

(p)
i−2).

5.1.3 TASK CREATION

The task creation algorithm divides the original problem of evaluating the rp-

integral at a grid-point into multiple smaller sub-problems that are defined only

on a subset of data. Formally, suppose the current time step of the simulation is

k and gk−1 be the predictor function learned by the supervised learning algorithm

using data access patterns observed from one or more time step up to time step

k− 1. Then, data access pattern for rp-integral evaluation at a grid-point p ∈ Vk for

time step k is approximated as, gk−1(p) = [n
(p)
0 , n

(p)
1 , . . . , n

(p)
Nt

]. This forecast is used

to approximate the partition P (p) = 〈r(p)
0 , r

(p)
1 , . . . , r

(p)
n 〉, along the outer dimension,

which is required to numerically approximate rp-integral at p within the required

error tolerance (illustrated in Section 4.1.3). Next, for each grid-point p ∈ Vk, the

partition array P (p) is sliced into mp non-overlapping sub-arrays, P
(p)
1 , P

(p)
2 , . . . , P

(p)
mp ,

such that rp-integral computation using the partitions from a sub-array P
(p)
i requires

data from at-most one data block Bj for some integer 0 < j < Nt/m and 0 < i ≤ mp.

This divides the original problem of integrating along the region S0,R(p) using the

partition array P (p) into mp sub-problems, where a sub-problem refers to the rp-

integral computation using a partition sub-array P
(p)
i for some integer i ≤ mp (a sub-

problem is also referred to as a task). Once subdivided, the solution to the original

problem is given by sum of rp-integral estimates of the individual sub-problems.
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Each sub-problem or task is represented using a tuple, 〈p, P, j,M〉, where p denotes

a grid-point on the 2D spatial grid at the current time step, P denotes a partition

sub-array such that rp-integral at p using the partitions from P is localized to at-most

one data block, an integer j that identifies the data block required for computing

the sub-problem (i.e. Bj), and M denotes the data access pattern expected from the

computation of rp-integral at p using partitions from P (Note that the access pattern

M falls into data block Bj).

5.1.4 ALGORITHM TO COMPUTE RETARDED POTENTIALS

The procedure Compute-Potentials-HT implements the second step of the

four step beam dynamics simulation algorithm on heterogeneous architecture where

it approximates the rp-integral at all grid points on a 2D grid for a given time

step. The procedure takes input k, V, τ, g, and D, where k is the current time step

of simulation, V is a set of grid points on the 2D grid at kth time step such that

|V | = NXNY , τ is the required error tolerance for rp-integral evaluations, g deno-

tes the predictor function learned using supervised learning algorithm at time step

k − 1, and D is the list of 2D data grids of moments from each time step stored

linearly on the device memory. Each grid-point p ∈ V is a reference to 7-tuple

object, (x, y, t, I, ε, access pattern, partition), where (p.x, p.y) denote the Cartesian

coordinate of the grid-point on the 2D grid at time step k, p.t is the simulation

time of the corresponding time step, p.I is the rp-integral estimate, p.ε is the rp-

integral error estimate, p.access pattern is a list containing the data access pattern

for rp-integral computation, and p.partition holds a list containing the partition for

rp-integral computation.

The procedure Compute-Potentials-HT works as follows. Line 2-7 initializes

different attributes of the grid-point object. In particular, for each grid-point p ∈
V , line-3 initializes integral and error estimates to 0, line-4 uses the best predictor

function g learned at time step k − 1 to forecast the access pattern required for rp-

integral computation for the current time step k, and line-5 calls a procedure that

implements the algorithm described in Section 4.1.4 to convert access pattern forecast

to rp-integral partition. Line-6 divides the original problem of calculating rp-integral

at a grid-point p using the predicted partition array p.partition into multiple smaller

sub-problems such that each sub-problem is localized to at-most one data block Bj,

for some integer j (a sub-problem is also referred to as a task). The procedure
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Create-Tasks implements this algorithm which is described in Section 5.1.3.

Compute-Potentials-HT(k, V, τ, g,D)

1 T ← ∅
2 for each grid-point p ∈ V in parallel

3 p.I ← 0, p.ε← 0

4 p.access pattern← g(p.x, p.y, p.t)

5 p.partition← Compute-Partition(p.access pattern)

6 T ′ ← Create-Tasks(p)

7 T ←Merge-Lists(T, T ′)

8 bins← Task-Binning(T )

9 for each available processing unit in parallel

10 while bins is not empty

11 get list of tasks T ′ from a bin i for some integer i based on the bin

weight and the processing unit where it is scheduled

12 V ′ ← ∅
13 for each task 〈p, j, P,M〉 ∈ T ′

14 q ← p

15 q.I ← 0, q.ε← 0

16 q.access pattern←M

17 q.partition← P

18 List-Insert(V ′, q)

19 copy data generated between time steps mi− 1 to m(i+ 1) from D to D′

20 move D′ to the device memory

21 RP-Computation-PU(k, V ′, τ, g,D′)

22 update the estimates from V ′ to the global list of grid points V

23 g ← Online-Learning(V, g)

The procedure Create-Tasks for a grid-point p returns a list of tasks created

by subdividing the rp-integral at p into multiple smaller sub-problems or tasks. The

individual tasks list corresponding to each grid-point p ∈ V is merged to the global

list T . Next, Tasks-Binning procedure at line-8 implements a binning algorithm

which partitions the list of tasks into multiple disjoint clusters based on the data

block required to compute the tasks. Formally, given the set of tasks T and an

integer k = Nt/m, where each task is a tuple 〈p, j, P,M〉, the binning algorithm
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partitions the |T | tasks into at-most k disjoint clusters or bins, C = {c1, c2, . . . , ck},
such that the tasks in a bin ci require data from data-block Bi. The Tasks-Binning

procedure returns a pool of tasks, bins, which contain the tasks grouped into multiple

bins based on their data-block requirement. These tasks in bins data structure is

shared between multiple PUs of the underlying heterogeneous architectures. Further,

each bin in bins is assigned a weight which denotes the collective computational

workload of the tasks in that particular bin. The weight for a bin is calculated by

reducing all the access vectors of the tasks in that bin. This weight is equivalent to

the total memory reference made by the tasks of that particular bin.

RP-Computation-PU(k, V, τ, g,D)

1 C ← RP-Clustering(V )

2 L← ∅
3 for each cluster c ∈ C in parallel

4 P ← ∅
5 for each grid-point p ∈ c in parallel

6 P ←Merge-Lists(P, p.partition)

7 for each grid-point p ∈ c in parallel

8 L′ ← Compute-RP-Integral(p, P, τ,D)

9 L←Merge-Lists(L,L′)

10 for each ([a, b], p) ∈ L in parallel

11 (I, ε, P, A)← RP-Quadrature(([a, b], p), τ,D)

12 p.access pattern←Merge-Lists(p.access pattern,A)

13 p.partition←Merge-Lists(p.partition, P )

14 p.I ← p.I + I

15 p.ε← p.ε+ ε

Lines 9-22 implements the task distribution algorithm where tasks from bins

are mapped to PUs such that each PU computes the tasks from one or more bins,

where a particular bin is not shared between multiple PUs. The motivation for

distributing the tasks based on their data block requirement is that such mapping

has the advantage of assigning tasks with different memory footprint to different

PUs. This ensures that only a portion of data is required to be transferred to a

particular PU instead of moving the entire data which is crucial for improving the

memory performance. Each PU dynamically selects the bins from the shared pool,
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one at a time according to the weights assigned to them and then computes the tasks

of that particular bin in parallel. GPU and Xeon Phi selects the bins starting with

larger weight and work towards the bins with smaller weight, and CPU selects the

bins starting with smaller weight and work towards the bins with larger weight. This

sort of scheduling results in tasks with heavy computational load to be scheduled on

accelerators and the tasks with lighter computational load to be scheduled on CPUs.

The main motivation for such weighted scheduling is because accelerators offer larger

raw compute power than the CPUs.

Each PU implements RP-Computation-PU procedure which evaluates the

tasks assigned to them from the bin (i.e. evaluates rp-integral for the sub-problems

from the bin). The procedure RP-Computation-PU is similar to the pseudo-

code between lines 5 - 19 of Compute-Potentials-ML. Next, in the procedure

Online-Learning, access patterns observed during rp-integral computations at

all grid points p ∈ V is used by a supervised learning algorithm to train and up-

date the predictor function g. The updated prediction function g is used by RP-

Computation-PU procedure during the next time step.

5.2 PERFORMANCE RESULTS

The performance analysis of the heterogeneous implementation of compute retar-

ded potentials stage of the simulation is carried out on two different heterogeneous

system -

• Machine-G - Heterogeneous architecture composed of multi-core CPU with

four NVIDIA Tesla K40 GPUs

– Multi-core CPU - Dual socketed Intel R© Xeon R© CPU E5-2650 v3 @ 2.30GHz

with 10 cores per socket and supports 2 threads per core, making a total

of 20 CPU cores for the multi-core CPU platform.

– GPU - The Tesla K40 used here is a GK110B GPU-processor based on the

popular Kepler micro-architecture [61]. The GK110B processor in K40 of-

fers 12 GB of GDDR5 on-board memory with a peak memory bandwidth

of 288 GB/sec, and it contains 15 streaming multiprocessors (SMs) each

with 192 single-precision CUDA cores and 64 double-precision units cloc-

ked at 745 MHz. These cores in SMs collectively delivers a peak floating-

point performance of 4.29 Tflops and 1.43 Tflops in single-precision and



91

double-precision, respectively. The global memory accesses in all the GPU

kernels are configured to be cached in both L1 and L2 (commonly called

the Caching mode), unless specified otherwise.

• Machine-X - Heterogeneous architecture composed of multi-core CPU with

two Intel Xeon Phi 5110P coprocessor

– Multi-core CPU - Dual socketed Intel R© Xeon R© CPU E5-2670 v2 @ 2.50

GHz with 10 cores per socket and supports 2 threads per core, making a

total of 20 CPU cores for the multi-core CPU platform.

– Xeon Phi - The Xeon Phi 5110P used in this study is based on the Knights

Corner architecture. Each 5110P coprocessor consist of 60 cores and offers

8GB of GDDR5 on-board memory with a peak memory bandwidth of 320

GB/sec. The cores collectively delivers a peak floating-point performance

of 2.02 Tflops and 1.01 Tflops in single-precision and double-precision,

respectively.

The global memory access for the implementation on GPU architecture is configured

to be cached in both L1 and L2 (commonly called the Caching mode), unless spe-

cified otherwise. The initial distribution for all the simulations used to analyze the

performance of heterogeneous implementation is generated by Monte Carlo sampling

of N particles with a total charge of beam bunch Q = 1nC, and the rp-integral at

all grid points are approximated to a error tolerance of τ = 10−6. The results pre-

sented in this section are generated by compiling the heterogeneous code using GCC

5.4 compiler for multi-core portion of the code, Intel’s ICC 16 compiler for Xeon

Phi portion of the code, and NVCC compiler with CUDA 8.0 environment for GPU

portion of the code.

5.2.1 PERFORMANCE ON DIFFERENT ARCHITECTURES

GPU-only Execution Performance

Table 8 illustrates the performance of parallel implementation of compute retar-

ded potentials stage of the simulation on Machine-G using only GPUs for different

simulation configuration with varying number of Tesla K40 GPUs. The speedup re-

ported in Table 8 is measured by comparing the multi-GPU execution against single

GPU. We notice that performance scales near linearly with the increase in number
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Number of
particles

Grid
Resolution

One GPU Two GPUs Four GPUs

Time (sec.) Time (sec.) Speedup Time (sec.) Speedup

100000

64× 64 1.03 0.62 1.7 0.47 2.2

128× 128 4.71 2.68 1.8 1.51 3.1

256× 256 55.96 29.61 1.9 16.48 3.4

1000000

64× 64 0.94 0.58 1.6 0.45 2.1

128× 128 3.31 1.87 1.8 1.12 3.0

256× 256 34.53 18.14 1.9 10.15 3.4

Table 8: Execution time of the parallel implementation of compute retarded potenti-
als stage of the simulation on Machine-G in GPU-only execution mode for different
simulation configurations with varying number of Tesla K40 GPUs.

of GPUs and achieves up to 1.9X and 3.4X speedup with two and four GPUs, re-

spectively. This shows that the task creation and distribution algorithm is effective

in partitioning the computational load nearly uniformly between multiple GPUs with

minimal overhead.

Xeon Phi-only Execution Performance

Table 9 illustrates the performance of parallel implementation on Machine-X

using only Xeon Phis for different simulation configuration with varying number

of KNC Xeon Phi accelerators. The speedup reported in Table 9 is measured by

comparing the execution on multiple Xeon Phi against single Xeon Phi. We notice

that performance scales near linearly with the increase in number of Xeon Phi and

achieves up to 1.7X speedup with two Xeon Phis. This shows that the task creation
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Number of
particles

Grid
Resolution

One Xeon Phi Two Xeon Phis

Time (sec.) Time (sec.) Speedup

100000

64× 64 1.73 1.0 1.7

128× 128 11.02 6.37 1.7

256× 256 149.34 91.73 1.6

1000000

64× 64 1.54 0.92 1.7

128× 128 8.06 4.68 1.7

256× 256 93.03 57.03 1.6

Table 9: Execution time of the parallel implementation of compute retarded poten-
tials stage of the simulation on Machine-X in Xeon Phi-only execution mode for
different simulation configurations with varying number of KNC Xeon Phi coproces-
sor.

and distribution algorithm is effective in partitioning the computational load nearly

uniformly between multiple Xeon Phis.

Performance Comparison Between Different Architectures

Table 10 illustrates the performance of parallel implementation of compute retar-

ded potentials stage of the simulation on different parallel architectures. The speedup

reported for the implementation on accelerators (GPU and Xeon Phi) in Table 10

is calculated by comparing the execution on accelerator against the multi-core CPU

execution. It is evident from Table 10 that the implementation on KNC Xeon Phi

is up to 2.3X faster than the multi-core CPU implementation, and the GPU imple-

mentation on Tesla K40 is up to 5.2X and 2.7X faster than the multi-core CPU and
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#. of
particles

Grid Re-
solution

20 CPU cores Tesla K40 GPU KNC Xeon Phi

Time (sec.) Time (sec.) Speedup Time (sec.) Speedup

100000

64× 64 4.00 1.03 3.9 1.73 2.3

128× 128 23.50 4.71 5.0 11.02 2.1

256× 256 279.97 55.96 5.0 149.34 1.9

1000000

64× 64 3.57 0.94 3.8 1.54 2.3

128× 128 17.20 3.31 5.2 8.06 2.1

256× 256 176.15 34.53 5.1 93.03 1.9

Table 10: Performance comparison of the parallel implementation of compute retar-
ded potentials stage on different HPC architectures - (a) Multi-core CPU with 20
cores (using the CPU from Machine-X which is the fastest of the two available
multi-core CPUs), (b) Tesla K40 GPU from Machine-G, and (c) KNC Xeon-Phi
from Machine-X.

Xeon Phi implementations, respectively.

5.2.2 PERFORMANCE ON HETEROGENEOUS ARCHITECTURES

Consider a heterogeneous system with n processing units, P = {P1, P2 . . . , Pn},
and an application A which requires W floating point operations where W represents

the computational workload of A. Let tp and fp represent the execution time in

seconds and the achieved performance in Flops/sec, respectively, for the parallel

implementation of A using processing unit p, where tp = W/fp, for all p ∈ P . Then,

the ideal execution time (without any overheads) for the parallel implementation of
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A with workload W using a subset of processing units, S ⊂ P , is given by

tideal =
W∑

p∈S
fp

=
1∑

p∈S

1
tp

(20)

We analyze the performance of all our heterogeneous implementations by com-

paring the execution time observed experimentally (denoted by tobserved) against the

ideal execution time (tideal).

Table 11 and Table 12 illustrates the performance of the parallel implementa-

tion of compute retarded potentials stage of the simulation on Machine-G and

Machine-X, respectively. In particular, Table 11 illustrates the performance with

two different heterogeneous system configurations on Machine-G: multi-core CPU

with one Tesla K40 GPU, and multi-core CPU with all four Tesla K40 GPUs. Like-

wise, Table 12 illustrates the performance with two different heterogeneous system

configurations on Machine-X: multi-core CPU with one KNC Xeon Phi, and multi-

core CPU with two KNC Xeon Phis. In both these tables, execution time of the

implementation using only multi-core CPU is denoted by tcpu. In Table 11, execu-

tion time using GPU-only mode with one and four Tesla K40 GPU(s) is denoted

by t1gpu and t4gpu, respectively. Similarity, in Table 12, execution time using Xeon

Phi-only mode with one and two KNC Xeon Phi(s) is denoted by t1phi and t2phi,

respectively. In Table 11 and Table 12, execution time observed on the collective

computing environment of the corresponding heterogeneous architectures is deno-

ted by tobserved, and the ideal execution time on the corresponding heterogeneous

architectures is denoted by tideal, which is calculated using Equation 20.

The efficiency of the heterogeneous implementation on Machine-G and Machine-

X is shown in Figure 24 and Figure 25, respectively. The results indicate that depen-

ding on the grid resolution and the number of particles in the simulation, the parallel

algorithm for heterogeneous architectures achieves 70-97% execution efficiency. This

efficiency is the direct consequence of the effectiveness of heterogeneous algorithm

in partitioning the workload efficiently between different PUs of the underlying ar-

chitecture. In particular, high-efficiency here indicates that the task creation and

distribution approach used in the heterogeneous algorithm is effective in breaking

down the problem into multiple smaller sub-problems and efficiently mapping them

to different PUs based on their individual processing capabilities such that together

they deliver a good aggregate performance.

It is important to note that the task creation and distribution approach used in
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the current implementation has a overhead associated with creating and maintaining

the shared pool of tasks between the PUs. In particular, the constant communication

from the shared pool to fetch tasks by each PU contributes to the overhead, and incre-

ase in this overhead reduces the achieved execution efficiency. This overhead is more

prominent for simulations with smaller resolutions where the computation time is not

sufficiently large enough to hide the cost of the overhead, as is the case for simulati-

ons with 64× 64 grid-resolution. In such scenarios, accelerator only implementation

delivers good performance than the corresponding heterogeneous implementation.

This is evident from the results in Table 11, where for the simulations with 64× 64

grid resolution, the execution on GPU-only mode with four GPUs is faster than the

corresponding heterogeneous execution.
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Number
of

particles
(N)

Grid
Resolution
(NX ×NY )

Execution Time (sec.)

CPU GPU-only Heterogeneous Architectures

20 cores One K40 Four K40 20 CPU cores + One K40 GPU 20 CPU cores + Four K40 GPUs

tcpu t1gpu t4gpu tobserved tideal =
tcput1gpu
tcpu + t1gpu

tobserved tideal =
tcput4gpu
tcpu + t4gpu

100000

64× 64 4.80 1.03 0.47 0.97 0.85 0.51 0.43

128× 128 24.72 4.71 1.51 4.30 3.96 1.50 1.42

256× 256 282.95 55.96 16.48 50.11 46.72 16.42 15.57

1000000

64× 64 4.36 0.94 0.45 0.84 0.77 0.50 0.41

128× 128 18.35 3.31 1.12 3.01 2.81 1.11 1.06

256× 256 178.13 34.53 10.15 31.23 28.92 10.12 9.60

Table 11: Performance of the heterogeneous implementation of compute retarded potentials stage of the simulation on
Machine-G which is composed of multi-core CPU and four NVIDIA Tesla K40 GPUs.

Figure 24: Efficiency of the heterogeneous implementation of compute retarded potentials stage of the simulation on Machine-
G which is composed of multi-core CPU and four NVIDIA Tesla K40 GPUs.
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Number
of

particles
(N)

Grid
Resolution
(NX ×NY )

Execution Time (sec.)

CPU GPU-only Heterogeneous Architectures

20 cores One KNC Two KNC 20 CPU cores + One Xeon Phi 20 CPU cores + Two Xeon Phi

tcpu t1phi t2phi tobserved tideal =
tcput1phi
tcpu + t1phi

tobserved tideal =
tcput2phi
tcpu + t2phi

100000

64× 64 4.00 1.73 1.00 1.39 1.21 1.10 0.80

128× 128 23.50 11.02 6.37 7.75 7.51 5.81 5.01

256× 256 279.97 149.34 91.73 99.37 97.40 71.13 69.09

1000000

64× 64 3.57 1.54 0.92 1.36 1.08 1.05 0.73

128× 128 17.20 8.06 4.68 5.96 5.50 4.61 3.68

256× 256 176.15 93.03 57.03 63.45 60.88 45.53 43.08

Table 12: Performance of the heterogeneous implementation of compute retarded potentials stage of the simulation on
Machine-X which is composed of multi-core CPU and two KNC Xeon Phi coprocessor.

Figure 25: Efficiency of the heterogeneous implementation of compute retarded potentials stage of the simulation on Machine-
X which is composed of multi-core CPU and two KNC Xeon Phi coprocessor.
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CHAPTER 6

CONCLUSIONS

This dissertation targeted several goals relating to optimizing the performance

of irregular scientific applications on emerging HPC architectures like GPUs, Xeon

Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or

Xeon Phis as accelerators. In particular, the dissertation primarily focuses on opti-

mizing the irregular workloads in scientific applications which require execution of

one or more irregular algorithms for multiple time steps (in the order of few hund-

red thousand to millions), where the irregular algorithm at each time step exhibit

control-flow and memory access pattern that are not readily amenable to most pa-

rallel architectures. Using numerical simulation of charged particles beam dynamics

simulations as a motivating example, this dissertation presented novel machine lear-

ning based optimization techniques to address the computational challenges in the

efficient parallel implementation of such irregular applications on HPC architectures.

The machine learning approach presented here relies on supervised learning algo-

rithms to adaptively model and track irregular access patterns observed during the

computation of irregular workloads at each time step of the simulation to anticipate

the future control-flow and data access patterns. We demonstrated that the access

pattern forecasts from anticipation strategies can be successfully used to formulate

optimization decisions that improve the application performance at a future time

step based on the observation from earlier time steps. In particular, we success-

fully used the forecasts to minimize both branch and memory divergence, thereby

reducing the control-flow and memory access irregularities in its parallel implemen-

tation on GPU and Intel MIC architecture. We also showed that the forecast can be

used to optimize the computation-to-thread mapping which maximize the data reuse

by improving data locality. For implementation on heterogeneous architectures, we

demonstrated that the forecast can be used to approximately divide the original pro-

blem into multiple smaller sub-problems, and once divided, we showed that they can

be efficiently mapped between the hybrid mix of processing units of a heterogeneous

architecture to deliver a good aggregate performance.
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We further quantified the impact of using machine learning approach in resolving

the computational challenges in the parallel implementation of beam dynamics simu-

lation using NVIDIA GPUs and two different heterogeneous architectures. Then, we

presented a detailed performance comparison of this new algorithm against the only

two published parallel algorithms for high-fidelity computation of collective effects on

GPUs: Two-Phase-RP and Heuristics-RP algorithm. Two-Phase-RP algo-

rithm is the first high-performance parallel algorithm for beam dynamics simulation

that enabled high-fidelity simulation both feasible and computationally tractable.

Heuristics-RP algorithm addressed the memory inefficiencies in Two-Phase-RP

algorithm, which further provided a substantial boost in the performance. Now, with

the new and improved algorithm presented in this work that can run on a wide variety

of computing platforms compared to the existing algorithms, it enables unpreceden-

ted efficiency in numerical simulation of all the relevant physics of synchrotron light

sources and electron-ion particle colliders. The newly improved efficiency, coupled

with high-fidelity and precision of our earlier implementations, makes the previously

inaccessible physics tractable. For accelerator physics community in general, this

research is a step forward in developing ultra-bright light sources which are essen-

tial tools for discoveries and innovations in physical, biological, energy and medical

sciences.

Though the reported work has focused on addressing the irregularities in parallel

implementation of charged particles beam dynamics simulation, the work presented

has the potential to be much wider reaching. The optimizations should be equally

applicable to other irregular applications which suffers from similar implementation

challenges as that of beam dynamics simulation. For instance, the approach used

to optimize the computation-to-thread mapping based on the predicted access pat-

tern can be adapted by other applications while developing parallel implementations

on GPUs. As an example, in the parallel implementation of n-body simulation

on GPUs using Barnes-Hut algorithm, we can use this approach to determine the

particles-to-thread mapping to minimize the divergence, improve data reuse and to

make prefetch decisions which improves the overall application performance. Other

applications where this approach can be adapted are molecular dynamics simulation,

finite elements methods, simulation of wave and sound propagation in 3D objects,

etc.
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cient deterministic parallel algorithm for adaptive multidimensional numerical

integration on GPUs. In 42nd International Conference on Parallel Processing,

ICPP’13, pages 486–491, Washington, DC, USA, October 2013. IEEE Computer

Society.

[4] K. Arumugam, D. Ranjan, M. Zubair, A. Godunov, and B. Terzić. A
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APPENDIX A

ADAPTIVE MULTI-DIMENSIONAL INTEGRATION

A.1 OVERVIEW OF CUHRE

This section describes the sequential cuhre algorithm for n-dimensional integra-

tion, where the integrals have the form

b1∫
a1

b2∫
a2

...

bn∫
an

f(x)dx, (21)

where x is an n-vector, and f is an integrand. We use [a,b] to denote the hyper

rectangle [a1, b1]× [a2, b2] . . .× [an, bn].

The heart of cuhre algorithm is the procedure C-Rule([a,b], f, n) which out-

puts a triple (I, ε, κ) where I is an estimate of the integral over hyper rectangle [a,b]

([a1, b1] × [a2, b2] . . . × [an, bn]), ε is an error estimate for I, and κ is the axis along

which [a,b] should be split if needed. An important feature of C-Rule is that it eva-

luates the integrand only for 2n + p(n) points where p(n) is Θ(n3) [12]. This is much

fewer than 15n function evaluations required by a simple repeated one-dimension

integration scheme based on 7/15-point Gauss-Kronrod method.

The procedure Sequential-Cuhre implements the cuhre method to compute

n-dimensional multiple integral. The procedure takes input n, a, b, f , a relative error

tolerance τrel and an absolute error tolerance τabs, where a = (a1, a2, ..., an) and b

= (b1, b2, ..., bn). In the description provided below, H is a priority queue of 4-tuples

([x,y], I, ε, κ) where [x,y] is a subregion, I is an estimate of the integral over this

region, ε an estimate of the error and κ the dimension along which the subregion

should be split if needed. The parameter ε determines the priority for extraction of

elements from the priority queue. The algorithm maintains a global error estimate

εg and a global integral estimate Ig. The algorithm repeatedly splits the region with

greatest local error estimate and updates εg and Ig. The algorithm terminates when

the εg ≤ max(τabs, τrel|Ig|) and outputs integral estimate Ig and error estimate εg.
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Sequential-Cuhre(n, a,b,f, τrel, τabs)

1 (Ig, εg, κ)← C-Rule([a,b], f, n)

2 H ← ∅
3 insert(H, ([a,b], Ig, εg, κ)

4 while εg > max(τabs, τrel|Ig|)
5 ([a,b], I, ε, κ)← Extract-Max(H)

6 a′ ← (a1, a2, . . . , (aκ + bκ)/2, . . . , an)

7 b′ ← (b1, b2, . . . , (aκ + bκ)/2, . . . , bn)

8 (Ileft, εleft, κleft)← C-Rule([a,b′], f, n)

9 (Iright, εright, κright)← C-Rule([a′,b], f, n)

10 Ig ← Ig − I + Ileft + Iright

11 εg ← εg − ε+ εleft + εright

12 insert(H, ([a,b′], Ileft, εleft, κleft))

13 insert(H, ([a′,b], Iright, εright, κright))

14 return Ig and εg

A.2 GPU-ACCELERATED PARALLEL ALGORITHM

The sequential adaptive quadrature for multi-dimensional integral is poorly suited

to GPUs, as it does not take advantage of the GPU’s data or task parallelism. This

section presents a parallel quadrature algorithm that can utilize the parallel proces-

sors of GPUs to speed up the computation. The parallel algorithm approximates the

integral by adaptively locating the subregions in parallel where the error estimate is

greater than some user-specified error tolerance. It then calculates the integral and

error estimates on these subregions in parallel. The pseudocode for this algorithm is

provided below in Quadrature-PhaseOne and Quadrature-PhaseTwo pro-

cedures.

In Quadrature-PhaseOne, Lmax is a parameter that is based on target GPU

architecture. The goal of this procedure is to create a list of subregions from the

whole region [a,b], with at least Lmax elements for which further computation is

necessary for estimating the integral to desired accuracy. This list is later passed

on to Quadrature-PhaseTwo. The algorithm maintains an list L of subregions,

stored as [aj,bj]. Initially the whole integration region is split into roughly Lmax equal

parts through the procedure Init-Partition. In each iteration of the while loop in

Quadrature-PhaseOne, first the cuhre rules are applied to all subregions in L
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in parallel to get the integral estimate, error estimate, and the split axis. A list S is

created to store the intervals with these values. Thereafter the algorithm essentially

identifies the “good” and the “bad” subregions in S – the good subregions have

error estimate that is below a chosen threshold, whereas bad subregions have error

estimates exceeding this threshold. The bad subregions need to be further divided,

while the integral and error estimates for the good regions can simply be accumulated.

This is accomplished through the procedures Partition and Update.

Quadrature-PhaseOne(n, a,b, f , d, τrel, τabs, Lmax)

1 Ip ← 0, Ig ← 0, εp ← 0, εg ←∞
// Ip, εp keep sum of integral and error estimates for the “good” subregions

// Ig, εg keep sum of integral and error estimates for all subregions

2 L← Init-Partition(a,b, Lmax, n)

3 while (|L| < Lmax) and (|L| 6= 0) and (εg > max(τabs, τrel|Ig|)
4 S ← ∅
5 for all j in parallel

6 (Ij, εj, κj)← C-Rule(L[j], f, n)

7 insert(S, (L[j], Ij, εj, κj))

8 L← Partition(S, Lmax, τrel, τabs)

9 (Ip, εp, Ig, εg)← Update(S, τrel, τabs, I
p, εp)

10 return (L, Ip, εp, Ig, εg)

Quadrature-PhaseTwo(n, f , τrel, τabs, L, Ig, εg)

1 for j = 1 to |L| parallel

2 Let [aj,bj] be the jth record in L

3 (Ij, εj)← Sequential-Cuhre(n, aj, bj, f , τrel, τabs)

4 Ig ← Ig +
∑

[aj,bj]∈L
Ij

5 εg ← εg +
∑

[aj,bj]∈L
εj

6 return Igand εg

It is worth noting that the original cuhre algorithm always divides selected

subregion into two parts along the chosen axis where the integrand has the largest

fourth divided difference [12].The proposed algorithm here uses this strategy of choo-

sing the axis,with the distinction that the selected subregion is divided into d pieces
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Init-Partition(a,b, Lmax, n)

1 l← max{j|jn ≤ Lmax}
2 split [a,b] along each dimension into l equal parts and

save these ln subregions into L
3 return L

Update(S, τrel, τabs, I
p, εp)

1 t1 ← Ip, t2 ← εp, t3 ← 0, t4 ← 0
// t1, t2 accumulates integral and error estimates for the “good” subregions
// t3, t4 accumulates integral and error estimates for all the subregions

2 for j = 1 to |S|
3 Let ([aj,bj], Ij, εj, κj) be the jth record in S
4 if εj < max(τabs, τrel|Ij|)
5 t1 ← t1 + Ij
6 t2 ← t2 + εj
7 else t3 ← t3 + Ij
8 t4 ← t4 + εj
9 t3 ← t3 + t1

10 t4 ← t4 + t2
11 return (t1, t2, t3, t4)

Partition(S, Lmax, τrel, τabs)

1 L1 ← ∅, L2 ← ∅
// L1 stores the “bad” subregions before subdivision
// L2 stores the subregions after subdivision of “bad” subregions

2 for j = 1 to |S|
3 Let ([aj,bj], Ij, εj, κj) be the jth record in S
4 if εj ≥ max(τabs, τrel|Ij|)
5 insert ([aj,bj], κj) into L1

6 d← split-factor(Lmax, |L1|)
7 for j = 1 to |L1|
8 Let ([aj,bj], κj) be the jth record in L1

9 split [aj,bj] into d equal parts along the axis κj and
insert all these subregions into L2

10 return L2

Listing: Auxiliary procedures in Quadrature-PhaseOne and Quadrature-
PhaseTwo
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along the chosen axis instead of two. The parameter d is dynamically calculated

using a heuristic Split-Factor based on the target architecture and on the number

of bad intervals.Subdivision of a region refines the resolution of that region along with

generating enough subregions to balance the computational load for second phase.

First phase continues until (i) a long enough list of “bad” subregions is created in

which case we proceed to the second phase or (ii) there are no more “bad” subregions

in which case we can return the integral and error estimates Ig and εg as the answer

or (iii) Ig, εg satisfy the error threshold criteria in which case we also return Ig and

εg as the answer. Note that, in case (ii) or (iii) second phase of the algorithm is not

used.

The algorithm continues with the second phase when the global error estimate is

still larger than the required global tolerance. In second phase, on every subregion

[aj,bj] in the list L the algorithm calls sequential cuhre routine ( Sequential-

Cuhre) to compute global integral and error estimate for the selected subregion

(Line 3). Line 4 and 5 update the global integral and error estimate. Second phase

implements a modified version of cuhre to run in parallel for each of the subregions

in the list L returned from first phase. The modified version of cuhre implemented

for GPU take advantage of state-of-the art GPU architectures to speed-up the com-

putations. Our approach combines the original features of cuhre with the improved

algorithm efficiency afforded by massive parallelism on a GPU platform.



115

APPENDIX B

PERFORMANCE ANALYSIS TOOLS

B.1 ROOFLINE PERFORMANCE MODEL

Roofline is a visually intuitive performance model used to bound the performance

of various applications running on multicore, manycore, or accelerator processor ar-

chitectures. Rather than simply using percent-of-peak estimates, the model can be

used to assess the quality of attained performance by combining locality, bandwidth,

and different parallelization paradigms into a single performance figure. One can

examine the resultant Roofline figure in order to determine both the implementation

and inherent performance limitations.

Figure 26 shows the Roofline model for NVIDIA Tesla K40 GPU [81]. The

graph is on a log-log scale. The y-axis is attainable double-precision floating-point

performance in units of GFlops/sec, and the x-axis is arithmetic intensity, varying

from 0.125 Flops/DRAM byte-accessed to 32 Flops/DRAM byte-accessed. The sy-

stem being modeled has a peak double precision floating-point performance of 1.4

Tflops/sec and peak memory bandwidth of BWTheoretical-Peak = 288 GB/sec from har-

dware specifications. Additionally, when fused multiply and add (FMA) instructions

are not utilized then the peak double precision floating-point performance drops to

0.7 Tflops/sec. The two horizontal lines denotes the performance ceilings for peak

double-precision (DP) floating point operations with and without FMA. The black

solid diagonal line in Figure 26 indicates the bandwidth ceiling for BWTheoretical-Peak.

However, peak memory bandwidth is often unachievable in practice. So, in order

to analyze the performance more accurately, we measure the experimental memory

bandwidth using the benchmarks from NVIDIA’s official SDK [58]. Experimental

memory bandwidth for K40 is calculated to be BWExperimental-Peak = 200 GB/sec,

and its bandwidth ceiling in roofline model is shown using the blue solid diagonal

line.

The Roofline sets an upper bound on performance of a kernel depending on the

kernel’s arithmetic intensity and if we think of arithmetic intensity as a column or
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Figure 26: Roofline model for NVIDIA Tesla K40 GPU.

vertical line that hits the roof then it either hits the slanted part or the flat part of

the roof. When the column hits slanted part of the roof, kernel is memory-bound

and the only way to reach peak performance is to increase the arithmetic intensity.

For example, the red vertical column indicates the arithmetic intensity of a memory-

bound kernel and red X marks performance achieved for that particular kernel when

the achieved bandwidth is BWTheoretical-Peak. On the other hand, when the column

hits the flat part of the roof, memory bandwidth is not the limiting factor and the

kernel is compute-bound. For example, the green column indicates the arithmetic

intensity for a compute-bound kernel and green X marks performance achieved for

that particular kernel when the achieved bandwidth is BWTheoretical-Peak.

B.2 PROFILER METRICS

This section contains detailed descriptions of the profiler metrics that are used

to analyze the performance of GPU kernels in this thesis report. These metrics are
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collected using NVIDIA’s nvprof and the Visual Profiler [62].

• Metric name: Warp execution efficiency

Profiler metric: warp execution efficiency

Description: Ratio of the average active threads per warp to the maximum

number of threads per warp supported on a multiprocessor expressed as per-

centage. Values for warp execution efficiency indicate the following -

– Values of less than 100% indicate the presence of threads with different

control-flow paths which leads to performance bottlenecks on GPU archi-

tectures, as illustrated in Section 2.2.1.

– 100% warp execution efficiency indicate that the kernel has no divergent

threads.

• Metric name: Global load efficiency

Profiler metric: gld efficiency

Description: Ratio of number of bytes requested by the kernel to number

of bytes transferred from the global memory expressed as percentage (or ra-

tio of requested global memory load throughput to required global memory

load throughput expressed as percentage). Values for gld efficiency indicate

following performance behavior of a kernel -

– Efficiency of 100% indicates perfect coalescing.

– Values larger than 100% shows that, on average, the load requests of

multiple threads in a warp are fetched from the same memory address

and are also coalesced.

– Values less than 100% indicates scattered and non-coalesced memory access,

and such accesses waste off-chip bandwidth by over-fetching unnecessary

data.

• Metric name: Global load transactions per request

Profiler metric: gld transactions per request

Description: Average number of global memory load transactions performed

for each global memory load.
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– Ideal value for transaction per requests is (32 threads per warp × word

size in bytes / 128 bytes per line), which for 8-byte words is 2.0. The ideal

value is obtained by perfect coalescing.

– Values greater than the ideal value shows that substantial number of me-

mory request from the kernel are non-coalesced and only a fraction of

cache line is used , thereby resulting in transaction replays.

• Metric name: Global L1-cache hit rate

Profiler metric: l1 cache global hit rate

Description: Hit rate in L1 cache for global loads

• Metric name: L2-cache hit rate

Profiler metric: l2 l1 read hit rate

Description: Hit rate at L2 cache for all read requests from L1 cache.
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