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ABSTRACT

CANONICAL CORRELATION ANALYSIS FOR

LONGITUDINAL DATA

Raymond McCollum
Old Dominion University, 2010
Director: Dr. Dayanand Naik

Data (multivariate data) on two sets of vectors commonly occur in applications. Sta-
tistical analysis of these data is usually done using a canonical correlation analysis
(CCA). Occurrence of these data at multiple occasions or conditions leads to longitu-
dinal multivariate data for a CCA. We address the problem of canonical correlation
analysis on longitudinal data when the data have a Kronecker product covariance
structure. Using structured correlation matrices we model the dependency of re-
peatedly observed data. Recent work of Srivastava, Nahtman, and von Rosen (2008)
developed an iterative algorithm to determine the maximum likelihood estimate of
the Kronecker product covariance structure for one set of variables. We implement
and generalize their method to estimate the covariance parameters in the context
of canonical correlation analysis. We implemented unstructured and autoregressive
covariance structures for the repeated measures. However, the developed methods
can be easily implemented for other covariance structure. Testing of hypothesis prob-
lems using the likelihood ratio test statistics are explored. Bootstrap methods are
adopted for calculating the p-values of the tests. Methods are illustrated on a data
set obtained from NASA. Performance of the tests is explored using simulation ex-
periments. Consequences of assuming the independence, between repeated measures
and performing CCA at different time components, on the distribution of estimated
canonical correlations is also explored. Certain simple tests to study the effect of
repeated measures are provided here as well.
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CHAPTER I

INTRODUCTION

Studying the relationship between two sets of multivariate vectors is an important
problem in statistics. Canonical correlation coefficients are used to study these re-
lationships. Canonical correlation analysis (CCA) is a general multivariate method
that is mainly used to study the relationship when both the sets of variables are
quantitative. The method was introduced by Hotelling (1936) and the analysis uti-
lizes the variance covariance matrices of the two variables as well as the covariance
matrix between the two variables. For example, the analysis is based on a matrix of
the form:

SG yy ¿~lyx
S ?

¦ xy ¿-'?

Generalization of the method to more than two sets of variables was done by Ket-
tenring (1971).

In this dissertation, we provide theory and application of CCA to repeatedly
observed (over a time period) data on two sets of variables. The data here look like
data on a multivariate time series, but the interest is to perform CCA on the two
sets of vectors. One can put all the data, on the two vectors, corresponding to the
time periods into large vectors and perform CCA using covariance matrices of these
vectors. However, the procedure requires the covariance matrix between each set of
vectors be calculated. Estimating the variance covariance matrix requires many data
points. In fact, the number of variance covariance parameters in the matrix grows
dramatically as the number of time periods increases. Further, when the longitudinal
data are analyzed directly with no specific structure to the covariance matrix, the
results of repeated CCA are hard to interpret. The resulting variables and coefficients
are the linear combinations of variable one at time one and variable one at time
two and so on make it difficult to form a complete picture of the data. Random
variation of the parameter estimates increases the difficulty by making it seem one
time period is more or less important than another. Assuming certain structures to
the variance covariance matrices can alleviate this problem. This research addresses
the longitudinal data structure and several possible model matrices will be explored
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in an effort to model the data.

While CCA has been generalized in the literature by Kettenring (1971), there
are not many papers directly dealing with CCA for longitudinal data. Srivastava
(2007) and Srivastava and Naik (2008) considered this problem and provided partial
solution. Modeling longitudinal CCA with a specific variance covariance structure,
allows better fit between the model and the data. It also allows the analysis to be
completed using less data points and allows the user to interpret the results more
easily. This research uses a Kronecker product structure for performing a longitudinal
CCA. The utilized matrix is

\ Vxy <g> S?2/ F? <g> S? J '
Kronecker product covariance matrices for analyzing multivariate repeated mea-

sures data have been utilized in the past. For example, see Naik and Rao (2001),
Chaganty and Naik (2002), Roy and Khattree (2005), Srivastava, Nahtman, and
von Rosen (2008) and others. The Kronecker product structure is fit to the data as
an additional restriction on the CCA analysis. Hence all the existing assumptions
of CCA are present and the Kronecker product covariance structure provides more
subject matter expert insight to the model.

The objective of longitudinal CCA is the same as that in the standard CCA in
that the researcher is trying to maximize the correlation between linear combinations
of the variables. The added advantage of the Kronecker product covariance struc-
ture is that it makes the solution much more interpretable than it would be without
the structure. Our work builds on previous work by Srivastava, Nahtman, and Von
Rosen (2008) that solved the problem of determining the explicit forms of maximum
likelihood estimates for a multivariate normal model using a Kronecker product co-
variance structure. They used a flip-plop iterative scheme to iterate between the two
explicit forms of the estimators of the two matrices in the assumed Kronecker prod-
uct. We carefully analyzed the existing solution and broken down the estimators into
sum of several matrices. We showed that the maximum likelihood estimator can be

actually written as a weighted linear combination of the smaller biased estimators.
With the use of Hadamard product and other matrix theory results, weights on the
linear combination of biased estimators are shown to be the inverse values from the
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accompanying matrix in the Kronecker product structure. This insight and under-
standing of their solution was used as a basis for proposing an estimate of the cross
product term in the Kronecker product variance covariance matrix. Rearranging the
longitudinal component of the data allows the development of maximum likelihood
estimators for some of the cross product terms. Details are discussed in Chapter III.

There are several possible structures for use in modeling the variance covariance
matrix. In Chapter III, the merits of each is discussed in detail and the advantages
of each are weighed against the others. Five different models are discussed in total.
The first referred to as type I variance covariance matrix is the totally unstructured
covariance matrix. This matrix assumes no information is available about the struc-
ture of the covariance. It also requires the most data. Type II covariance structure
has three separate time matrices for the multivariate variables and another three
matrices to model the time component. This matrix allows the researcher to explore
different models in relation to the time correlation between the multivariate X and

Y components. Type III covariance structure assumes either the X or the Y variable
is not correlated in time while the other variable is assumed to be correlated in time.

The cross product term is correlated appropriately as determined by the data. Type
IV covariance structure assumes the time correlation component is identical for X, Y
and the cross product between the two. This structure assumes that all correlation
between the time points is the same. Through rearranging this matrix, it is possible
to transform this estimator to get a maximum likelihood estimator of the covariance
matrix for use in the CCA analysis. Finally, Type V covariance structure assumes
there is no correlation between time points. In this case, it assumes that each set of
multivariate data are independent of every other set collected within the X variables
and similarly within the Y variables. The specific form of the time correlation is also
analyzed. For example, an AR(I) correlation structure was assumed to represent the
structure of the multivariate data between time points.

While the MLE was discovered for the likelihood with only one Kronecker prod-
uct structure, the variance covariance matrix for longitudinal CCA is a partitioned
matrix with four Kronecker product structures (see the structure given above in (I)).
Through transformations, a maximum likelihood estimator was only available for 3
of the 5 covariance structures of interest. Maximum likelihood estimators of some

matrices were developed for models I, IV, and V. Maximum likelihood estimates were
not available for models II and III.
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For the matrix structures that did not have an MLE solution, the exiting MLE
solution was mimicked for each of the four partitions of the variance covariance
matrix. The upper left and lower right partitions could use the existing MLE formula.
The cross correlation matrix needed its own estimator and was the most difficult to

attain. Using a combination of the Hadmard product, eigenvectors, the uniqueness
of eigenvalues of a full rank matrix, the transformation of the cross product term,
and the asymptotic properties of the multivariate T distribution final estimators are
proposed. These components were combined to create an estimate of the partitioned
cross product term. Previous work by Srivastava and Naik (2008) used the SAS
optimization procedure to solve for the cross correlation term in the CCA matrix.
Our work here attempted to investigate the theoretical solutions to the this problem.
The solution developed gave some insight as to how a general solution could be
developed. See details in Chapter II.

Several testing sequences are explored in Chapter III, in an effort to reduce the
covariance structure down to the simplest matrix. Two prime hypothesis testing
paths are given. One travels through a uniform time correlation while the other tests
to determine if one of the variables does not truly have a correlation in time. Both
paths lead to the multivariate data taken independently in time. The estimation
procedures learned in Chapter II can be utilized to estimate the different covariance
structures. To ensure the correct variance complexity level is chosen, the researcher
must test the covariances of each model in an attempt to reduce the complexity.
A series of hypothesis tests are conducted using the loglikelihood ratio statistics to
reduce the complexity of the covariance structure at each step. The log likelihood
ratio statistic is used even though the estimates of covariance matrices II and III are
not exactly the maximum likelihood estimators.

In practice, the researcher will not know exactly which covariance matrix is the
correct matrix. He/she will have to perform repeated hypothesis tests until one
test rejects an attempt to reduce the matrix. The tests listed below show the same
testing information. In Chapter III, the tests are shown for each situation. Hence,
all the hypothesis tests are shown when the type II covariance matrix is true. The
hypothesis are carried out again when the type III covariance matrix is true. Similarly
this is done when type IV and type V matrices are true. The results show reasonable
rejection rates for large samples but very high rejection rates for small samples.
This is particularly true for the cases where the type II hypothesis is tested. The
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high rejection rate when reducing the matrix from type I to type II has greater
implications. It means the first step of the hypothesis testing sequence will also be
the last because for small samples the test often rejects even when the null hypothesis
is true. Both testing paths have the test of reducing from type I to type II as their
first step. The large rejection rate will most likely show a rejection of the test and
hence the researcher will not attempt to reduce the model to one of the simpler
covariance matrices.

These high rejection rates for type II hypothesis were attributed to the fact that
the type II hypothesis estimator, while performing well in MSE and bias metrics,
was not actually an MLE. To address this, a parametric bootstrapping procedure
was used to perform each test and determine if the hypothesis could be accepted.
Parametric bootstrapping performed very well with all observed type I error rates
at or near expected levels. Parametric bootstrapping also showed high power by
rejecting the reduction to hypothesis that were too simple. Using the parametric
bootstrapping gives a good probability of reducing the matrix down to the correct
covariance structure and stopping the reduction of the covariance matrix at that cor-
rect structure. Hence the parametric bootstrapping combined with the estimation
techniques in Chapter II could be used to create an estimation and testing proce-
dure. To illustrate the procedure, several data sets were pursued from industry and
academia. This resulted in several false starts but eventually a data set that matched
the longitudinal CCA came from NASA.

To illustrate the procedure, NASA Langley in Hampton, Virginia allowed access
to the Intercontinental Chemical Transport Experiment (INTEX). The purpose of
the experiment was to measure airflow in and out of major metropolitan cities around
the world, but specifically central America and the Asian subcontinent. Airflow data
from Mexico City was analyzed for two aircrafts March 19th, 2006 from 18:34:15 to
19:15:15. Two aircrafts flew wing tip to wing tip through the Mexico City Megaplex
pollution outflow. The aircrafts recorded multiple sensor readings repeatedly over
time from many elements. The data contained many errors and missing values but
data from three elements were complete enough for analysis. Ozone, water vapor
content, and carbon monoxide levels were all measured simultaneously by each plane
flying in close proximity. This allowed the estimation of the Kronecker product
variance covariance structure and led itself to canonical correlation analysis. Analysis
of the data showed the changes in measurements between the sensor readings were
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most similar for ozone and water vapor content. Unfortunately, the carbon monoxide
measurements between sensor readings did not match under canonical correlation
analysis. Hence, it was concluded the sensor would be good to estimate ozone jointly
for each plane. Water vapor changes were marginally aligned between the planes
while the observed carbon monoxide relation was not aligned well and should be
investigated.

Finally, Chapter IV aimed to provide a simple analysis methodology and test
to confirm if the data is indeed one of the Kronecker product covariance matrices.
This chapter creates a test based on large sample theory to address the inefficien-
cies in the large sample approximations attempted in Chapter II. Chapter IV also
examines the consequences of ignoring the Kronecker product variance covariance
structure and instead assuming independence of data among the time components.
Assuming such independence among the time components still allows researchers to
estimate the variance component for each time period. The usual canonical correla-
tion analysis were examined under this assumption and the canonical variables were
used to estimate the variance covariance matrix. This then leads to estimation of the
canonical correlations and the asymptotic distribution of the canonical correlations.
The asymptotic distribution involves the duplication matrix and the requirement to
create the matrix quickly for large t. A simple algorithm is developed to generate
the duplication matrix. The algorithm begins with a matrix of zeroes and cycles
through the elements of the base matrix, placing ones in the appropriate places. The
algorithm is simpler than most existing methods and gives insight into the structure
of the duplication matrix.

Once the asymptotic distribution of the canonical correlations is attained, it is
clear that under hypothesis II through V, the eigenvalues should all be identical.
Hence a test is constructed over the t time periods to determine if the eigenvalues
are similar. Due to the number of time intervals being directly proportional to the
number of tests required, Bonferroni correction is required to ensure the significance
level of the test remains constant. Tables are provided showing the resulting levels.
The test offers a method using asymptotic statistics to determine if the matrix is
totally unstructured or if one of the structures II through V should be used.
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CHAPTER II

ESTIMATION OF COVARIANCE MATRICES

Canonical correlation analysis (CCA) is used to identify and characterize the re-
lationship between two sets of random vectors. The procedure uses the variance
covariance matrices of these vectors to establish the mathematical relationship be-
tween them. It is one of the most general methods of determining a relationship
between two sets of vectors in that it does not make any distributional assumptions.
The method of CCA was introduced by Hotelling (1936) for use in instructional re-
search when studying the relationship between two sets of variables. CCA is found
in many applications and throughout many fields. It is routinely discussed in mul-
tivariate statistical textbooks including Johnson and Wichern (2002), Khattree and
Naik (2000), and Mardia, Kent and Bibby (1979).

ILl CANONICAL CORRELATION ANALYSIS

Let S? be the positive definite variance-covariance matrix of the ? ? 1 vector X,
?? be the positive definite variance covariance matrix of q ? 1 vector Y, and let the
covariance matrix between X and Y be the ? x q matrix ??? = cov(X,Y). The
positive definite variance covariance matrix of X and Y then can be written as

V Vy ^-'yx

2-1Xy ^-1X

The objective of canonical correlation analysis is to create a relationship between
the X variables and the Y variables. There are many methods to define a relationship,
but CCA attempts to find a g ? 1 vector 'a' and a ? ? 1 vector '&' such that the
correlation between a'Y and b'X is maximum. Specifically, the problem here is to
find Oi' and 'O1' such that

Corr(a[Y, b[X) "'1^*1
is maximized. In order to solve this problem the following restrictions on the vari-
ances are put, that is, Var(a\Y) = 1 and VaT(O[X) = 1. Such obtained linear
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combinations pair 'a?' ,'&i' is called as the first pair of canonical variables and the
maximum correlation is called the first canonical correlation coefficient. Further, the
linear combinations of Y and X which are uncorrelated with the first pair such that
the correlations between them is the next maximum are also obtained under the

restriction Var^Y) = 1 and Var^X) = 1 and such that

??tt(a[?, b[X) = a'^xybi

is maximized. As mentioned, all canonical pairs of different order are uncorrelated,
that is,

Cov^Y, a'jY) = 0 i ^j,

CoV[V1X, VjX) = 0 i f j,

???(a'^ VjX) = 0 ? f].
The solution to CCA problem lies in obtaining eigenvalues and eigenvectors of

certain matrices. The first pair of canonical variables (a^Y, V1X) is equal to

ß[S^2? and ¡[S-^?.
Similarly, the i th pair of canonical variables i = 2, 3, ..., g = min(p, q) is equal to

e'^-^Y and ?[S~^?.

The vectors e'2, e'3, . . . , e'g are the corresponding g eigenvectors of

^y 2IyxLlx llxyZly , (2)
and f[ , /2 , . . . , f'g are the corresponding g eigenvectors of

S? S??S? S??S? . (3)
The correlations co7^r(a'iY, b^X) are the square roots of the (the same set of)

eigenvalues of the matrix in (2) or (3).
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Canonical correlation analysis has been generalized to more than two sets of
vectors by Kettenring (1971). Not many approaches are available in the literature to
perform CCA on longitudinal data. Srivastava (2007) and Srivastava and Naik (2008)
have provided some directions and partial solutions. In this chapter we provide a
systematic approach to CCA of longitudinally observed variables.

II.2 REPEATED CANONICAL CORRELATION ANALYSIS

Let X and Y be repeated measurements observations over time. For a fixed time t¿0,
let %i and y, be vectors observed at the ith time period i = 1, ...t. Then define

Y= (2/1,2/2. ···>%) and X= (Xl, 24,·· -,^).

The variance covariance matrix of Yand X can be represented by a Kronecker product

structured matrix

/ F, <g> S, F^ T S„? \
A(g+p)xt(g+p) - lT, _v l· ^\ F??/ (g) S?? F? <g> S? J

The positive definite matrices F?, F?, and F?? respectively represent the cor-
relation matrices of repeated measurements of Y, of X, and correlation matrix of
repeated measurements between Y and X. Kronecker product structures have been
successfully utilized to analyze multivariate normal repeated measures data in Naik
and Rao (2001), Chaganty and Naik (2002), Roy and Khattree (2005), Srivastava,
Nahtman, and von Rosen (2008), and Srivastava, Nahtman and von Rosen (2008). As
in other canonical correlation problems, the objective is to determine linear functions
a' Y and b'X to maximize

a! ^yx ® S???

As previously defined, the variance must be restricted, for example as,

Var(a'X) = a'CovXa = a'(F? <g> S?)a = 1,
Var{b'Y) = b'CovYb = U(*y ® S„)6 = 1.
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The covariance between a'X and b'Y is

Cov(a'X, b'Y) = a'Cov(X, Y)b = a'Vxy ® Exyb.

The vectors 'a' and 'fe' must be chosen to maximize the correlation among all
possible pairs of variables.

As in CCA, the vectors 'a' and '6' that maximize the correlation are given by,

e'^y112 ® ^y1/2)Y and f'^1'2 ® S;1/2)*,
where e¿ is the i th eigenvector of,

%y2%xK^y%1/2 ® S,-^?^?-?^?-?/= (5)
and /i is the ? th eigenvector of

*-1/2*xy%1VyxVz1'2 ® ?-^?^?^?;1/2.
The i th pair of canonical variate ? = 1,2,..., min(p, q) = g are

ß:(F,"1/2 ® S^/^? and ¿(f-?/2 g, S-?/2)?.
Both e¿ and /¿ can be decomposed into the product of two eigenvectors. For

example, let the first eigenvector of

y-i/2V v-iy v-i/2Zjy ZjyxUx ¿-'xyZ-'y

be denoted by eiS and let the first eigenvector of

f-?2f f"?f f-!/2

be denoted by ß??. Then the eigenvector of (5) is given by,

ei* <8> e1E.
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This structure is important because it allows for ease in interpretation. It is
easy to see how the time variance covariance and the variance covariance of each
variable plays a role in determining the correlation. The canonical coefficients can
be separated and identified for each time period and for each separate variable.

II.3 ESTIMATION OF MATRICES IN A KRONECKER PRODUCT

In practice, the components of matrix D in (4) are not known. Hence those need to
be estimated based on the observed data. Previous work by Srivastava, Nahtman,
and von Rosen (2008) (SNV (2008)) discusses the maximum likelihood estimation
of the Kronecker product structure matrix of the form F <g> S. In order to apply a
similar approach to obtain estimates of F?2/ ® S?? here, we will first review that work
below.

Let

/ Zu Z12

Z21 Z22

Zlt

Z2t

\ /*? \

, where Zi = (Zn, zl2, ..., zit)' , i = l,...,p

y Zpi zP2 ¦ ¦ ¦ zpt J y zp J
be a ? ? t random matrix such that vec(z) ~ ???(µ, F ® S). That is,

/(^f),µ,F,S) =
1

(2t?)(?*)/2|F®S|1/2 exp
(vec(z) - µ)'(F ® Y,)-l(vec(z) - µ)

(6)
Suppose Zi,..., Zn is a random sample of size N from the above multivariate

normal distribution in (6). SNV (2008) obtained the maximum likelihood estimates
of S and F as follows. The MLE of an unrestricted positive definite matrix S is
given as

N

/ j zic^ zic
S = ??? (7)tN

and similarly the MLE of an unrestricted matrix F, except for the restriction that
?a = 1, is given by

N

^ir.
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and î>tt — I- Here

where,

and

/

Zi =

Zi11 zii2

Z{2\ Zi22

ZiIt

Zi2t

\

\ %ipl %ip2 - · · ¿ipt I

¿ic %i Z ;

I Z11 Z12 ... zlt \
¿21 ¿22 ··· Zit

Z =

V -ZpI Zp2 Zpt J

S
¿=i

Zijk

'IJ
?

J = l,...,p, k = !,...,£

(9)

The MLEs of S and F are finally obtained by iterating between (7) and (8).
The authors called this algorithm as a flip-flop algorithm. There are two structural
arrangements of the random variables. Each arrangement of the variables results in
the restructuring of the covariance matrix. The existing solutions take advantage of
both of these forms simultaneously. The first arrangement ?? puts all variables that
appear at the same time point in a vector. That is, for ? = 1, ..., ?,

Z1Ic

'pic

Using this notation, we have the following distribution:

/ 0 \ / ??S . . . ??S \Z?

Z.t

N

LVo/ \ ?„S ... ?aS ¡\
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The alternative arrangement is to list a single random variable across all time
points. That is, for j = I,..., ? define,

zi- =

zn

6jt

This results in the distribution:

Zl.

N

/o\

LVoy

/ Fs?? . . . Fs?? ?

\ Fs?1 . . . Fs?? J J
??.4 EXAMINING THE SNV(2008) SOLUTION

The maximum likelihood estimators in (7) and (8) can be seen to be weighted sums of
several estimators of the same matrix. The weights for each matrix are obtained from
the inverse of the accompanying matrix. Hence, the weighting for the S estimate is
based on estimated elements of F-1 and the weighting to estimate F is based on the
S-1 estimate.

To better understand what the formula is doing, consider the inverse of estimated
S matrix below:

/
Qn «12 ... Olip

Q2I 0>22 ¦ ¦ ¦ Ct2p

\

\ (XpI ???2 ¦ ¦ ¦ OLpp J
The solution to the F multiplies the zic matrix by the S inverse estimate,

JV

F =
Np

which can be written as:

N

y^ ail2fcl.4l. + Oli2Zkl.z'k2. + ¦ ¦ ¦ + (XppZkp.z'kp.
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Note that this formula breaks down the estimate into the sum of individual biased

estimates, S%=? zki.Aj./N of f· The expected value of each estimate is, E{zlz']) =
s^F. Hence the expected value of F is

a?s??F + a?2s?2F + - · . + a??s??? _ (a?s? + a12s?2 + ¦ ¦ ¦ + a??s.PP^PP. |F
£(F) =

the numerator of which is F times the the sum of the elements of Hadamard
product (defined below) of S and S-1.
Definition: Suppose A = (a^·) and B = (6¿J) where i = 1, . . . , m and j = I,..., ?
are two matrices of order m ? ? then the Hadamard product o of A and B is defined
as C = (cij) = AoB = (ciijbij).

An interesting property (Schott, 2007, p. 90) of Hadamard product is: VAoBl =
trace(AB') = S(a?^), where 1 is an m ? 1 vector of all ones.

When applied this result to A = S and B = S-1 we get trace(Ip), which is the
dimension of S, namely, p. However, since estimators of S and S-1 are used instead
of the parameters, we get ?(F) « F, that is, the weighted sum of biased estimators
is approximately unbiased.

Similarly, suppose
/

F-1 =

7n 7i2

721 722

7ii

72Í

\

y 7?? 7*2 · · · lu J
Then

can be written as

S

N

N

S**f-?*
S = ?=1

Nt

^7llzfe.l4.1 + 7l22fc.l4.2 + · · · + IttZk.tA.t
fe=l

Í7V (10)

As before the solution is weighted average of biased estimators of S. However, the
combined estimator is approximately unbiased.
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IL 5 ESTIMATION OF AR(I) CORRELATION PARAMETER

Often in modeling the correlations, especially in the context of longitudinal data,
certain simple correlation structures are useful. One popular and useful structure is
the AR(I) structure, given by

/ 1 ? ... ?'"2
? 1 ... ?

f = f (?) =

?-1 \
t-3 ??-2

V"'?-1 ?-2 P /
where ? is the correlation coefficient between any two consecutive repeated mea-
surements and |p| < 1. It is well known for this matrix that its determinant
|f| = (1 — ?2)?_1 and its inverse is:

/

F"

V

o

o

O

O

O

-?

1+P2
-?

O

-?

1 + P2

O

O

1 + P2 -p

1 + P2
-p

O \
O

O

O

O

-p

1 /

This can be expressed as F-?
1-P2 [B1 + p2B3 - PB2), where B1 = It =

diag(l,l,...,l), B3 = diag(0, 1, ..., 1, O), and B2 is a tridiagonal matrix with O on
the main diagonal and 1 on the upper and lower diagonals, that is,

0 ... O \
1 O .

O 1 .
Bo =

/o
1

O

1

O

1

O

O

1

O

O

1 /
One can easily accommodate estimation of S and ? when the covariance matrix

is of Kronecker product ? <g> S structure, that is, when F is of AR(I) structure,
F(?). Suppose F is the estimator obtained using the equation (8). Then solving the
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following cubic equation gives the maximum likelihood estimate of ? for given S,
which is obtained using equation (7). Suppose ? is the solution to

2(t - l)p3 - tr(B2Ü)p2 + 2(?t·(??F) + tr(B3Ü) - (t - I))? - tr{B2Ü) = 0. (11)
Then F = F (?). One needs to iterate between solving the cubic equation (11) and
solving (7) and (8) to obtain estimates of F and S.

II.6 ESTIMATING FOR REPEATED CCA

Now we will turn our attention to estimation of the matrices in our structure, namely,

? F„ <g> Ej, F^ <g> S??
\ F?3/ <g> S?? F? <g> S?

The cross correlation matrix has two components S?? and F?3/. The S?? matrix
has no restrictions and accounts for the cross correlation between X and Y at each
fixed time unit. The F??/ matrix accounts for correlation across time units. The two
structures of the F?? matrix that we have investigated are:

• AR(I)

• Unstructured correlation matrix.

In the AR(I) case, the model assumes the covariance matrix between X and Y
differ by a multiple. The partitioned matrix illustrates how the X and Y values are
correlated to each other and within time. It is important to note that each set of X
variâtes have the same covariance S? within a single point in time. The Y variâtes
also have the same constant covariance structure S^ within a single time period.

The F component of the covariance represents the correlation in time for each
set of multivariate X and Y data. The X values at time i and the X values at time

j have have a covariance value determined by multiplying the Variance of X by a
constant. The Y values have a similar covariance structure. In the case where the

time values have an AR(I) structure, the X vector taken at different time points is
Cov(Xi,Xj) = ?^~^??. The Y values have a similar structure.

The cross correlation covariance has a similar structure. The covariance values

within a time period can be expressed in a covariance matrix T*xy. Values across
time points have a covariance that is multiplied by a constant. In the case of the
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AR(I) structure the covariance components of two X vectors at time points i and j
are Cov{Xz, Yj) = ?^S??.

The previous work by Srivastava (2007) and Srivastava and Naik (2008) used
the SAS optimization procedure to get estimates of the restricted covariance matrix
with an AR(I) structure. One of the criticisms of that work was that no detailed
exploration of the estimation procedure was given. This work attempts to explore
the estimation of the the covariance matrices in D.

Let
2/11 2/12 ··· Vu

2/21 2/22 · · · Vit
Y

be a q ? t random matrix and

X

\

\ VqI Vq2 ¦ · · Vqt J

ZlI -^12
£21 -^22

X It

X2t

\

\ Xpi Xp2 · · ¦ Xpt j
be a ? ? t random matrix. Suppose

? vec{Y) \ ??W=I \ ~ Nt{p+q)(p,Dt{p+q)tt(p+q)),
vec(X) I

that is, the pdf of W is

f{W, µ, D) = 2n(pt+qt]/2 1/2exp -(W-µ)'D-1JW -µ) (12)

where , D
F, F

F?3/ (8) S?? F?
-1JZ^

Suppose F, and Xi are the random sample matrices of size N. Assume that Yic
and Xic are defined as before as how we had defined zic in (9). The block diagonal
Kronecker product matrices F^ <g) S? and F? ® Ex can be estimated using the work
of SNV (2008). However the F?<, (8) Exy matrix is more difficult to estimate. The
estimate of S?? depends on F"1 which is attainable based on the structure of Fxy

However, the estimate of ^>xy depends on Ex1. There is no guarantee that an estimate
of E^}, exists.
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However, estimators for F?2/ and S?? on a similar lines as that of SNV (2008) can
be constructed because the property of Hadamard matrix that we had used earlier to
represent SNV (2008) 's estimator holds true not only for an inverse of a matrix, but
also for a generalized inverse of a matrix, for example, for Moore-Penrose inverse.

As we know Moore-Penrose inverse of a matrix A (denoted by A+) is computed
as A+ = (A'A)-1A'. and it satisfies the following properties (Ravishanker and Day,
2002, p. 81)

1. AGA=A, i.e., G is a generalized inverse of A,

2. GAG=G, i.e., A is a generalized inverse of G,

3. (AG)'=AG, i.e., AG is symmetric,

4. (GAy=GA, i.e., GA is symmetric.

Now the following property of Hadamard Product holds true, that is,

/l\
(1,...,I)Ao(A+)' ! =tr(AA+) =rank(A). (13)

W
The equation in (13) holds true because of the fact that AA+ is an idempotent

matrix. Of course any other generalized inverse instead of Moore-Penrose inverse can
be used here.

The Hadamard product multiplies each element of A matrix by the corresponding
element in the (A+)' matrix. After the multiplication the elements are summed.
The end result of this procedure provides the rank of the matrix A. As we have
observed earlier, this shows that the SNV (2008) 's procedure creates a weighting for
the individual estimates as in (10). The fact that the Hadamard product equals the
rank shows SNV (2008) 's maximum likelihood estimator to be a weighted average.
Using this logic, we create estimators for the cross correlation terms F?2/®S?2/. Direct
attempts to maximize the likelihood in (12) did not produce a viable solution due
to the mathematics being intractable. Using the same structure as in SNV (2008) 's
solution, and taking advantage of the Hadamard product, an intuitive solution was
create to approximate the S?? matrix and the ^xy matrix.

The ??? estimate can use the inverse of the tyxy.
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N

xy ~ Nt
However, to gain the weighting for the estimate of F?3/ an inverse is needed from

the S?? matrix. Since the Exy cross correlation matrix may not be invertible or even
square, there are many matrices that could qualify as the inverse. The solution below
in (14) was created by substituting the Moore-Penrose inverse Ê+y for the inverse of
S,Jxy

N

/ „ XiC^XyYlC
F?? = t=1. , ^r- (14)xy min(p,q)N

Once ^xy is estimated for each iteration, the general form of the solution must be
forced into the proper form. In this case F^ is assumed to have an AR(I) structure
and must conform to that structure. To create this estimate, the inverse covariance
matrix can be written as a cubic equation as shown earlier.

The intuitive estimators (14) did not converge as well as expected. However,
the maximum likelihood estimators of SNV (2008) always converged. The number
of converging samples as a function of sample size is shown in Table 1. The ML
estimators and the intuitive estimators are shown in Tables 2, 3, 4, 5, and 6.

II.7 SIMULATION METHODOLOGY

In order to illustrate the analysis discussed here, data was simulated according to the
covariance matrix described above. First the Helmert matrix was used to generate
the positive definite matrices. The general form of a Helmert matrix Hfc of order k
has A;"1/2]-'/;, for its first row, and each of its other k -1 rows for i = 1, . . . , k - 1 has
the partitioned form

ii I -i I o /y/a¡,

with at = i(i + 1). A Helmert matrix is an orthogonal matrix, that is, H'H



20

HH' = Ifc. For example, the 4th order Helmert matrix is given by

H4

?

1

V2
1

v/6
1

y/V2

1

-1
72

1

76
1

¦v/12

1
74
0
-2
76

1

7Ï2

1
74
0

0
-3
7Ï2

The spectral decomposition of a symmetric matrix, A is A = ^A¿u¿u¿, where
the Uj 's are the eigenvectors of A. Now to generate a k x k positive definite matrix
we take the kth order Helmert matrix, whose columns will give us the eigenvector
of the desired matrix. Then choosing k positive eigenvalues and using the spectral
decomposition property we can construct the desired k ? k positive definite matrix.
We will use thus constructed positive definite matrix as S.

Partitioning S will give

->yx

-'xy

and E3,, Ex and Eyx can be used as variance-covariance matrix for y, ? and covariance
matrix between y and ? respectively. Then by choosing txt modeling matrix F,, to
associate with E2,, F? with Ex and F^? with Eyx we can construct the desired matrix

D =
F, F

F?^ <S> S??, F? (8) Ex
yx

F,
-•yx

Any number of observations can now be generated from the multivariate Normal
-/V(O, D) and repeated canonical correlation analysis can be performed on them as
discussed earlier.

For the simulation example, we chose three y components, two ? components and
three repeated measurements, that is, q = 4, ? = 2, and t = 3. A Helmert matrix of
order 6 is chosen and used to determine a 6 ? 6 positive definite variance covariance
matrix E. In addition, 12,1,8,6,4, and 2 were used as the eigenvalues which yielded
the following positive definite matrix E by the method described earlier.
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5.5 3.1754265 -0.5

3.1754265 6.5 3.1754265

-0.5 3.1754265 7.5

0.3535534 2.2453656 -0.353553

1.004158 1.7392527 -0.273861

1.5652476 1.4200939 -0.223607

S =

0.3535534

2.2453656

-0.353553 - 0.273861

6.25

0.1936492

0.1581139

1.004158 1.5652476

1.7392527 1.4200939

-0.223607

0.1936492 0.1581139

4.55 0.4490731

0.4490731 2.7

By partitioning S we get ETO, ??? and ??? as:

? _

5.5 3.1754265 -0.5 0.3535534

3.1754265 6.5 3.1754265 2.2453656
-0.5 3.1754265 7.5 -0.353553

0.3535534 2.2453656 -0.353553 6.25

4.55 0.4490731

0.4490731 2.7
H)HQ. ¿-Jyx —

1.004158

1.7392527

-0.273861

1.5652476

1.4200939

-0.223607

0.1936492 0.1581139

Assume AR(I) structure for repeated modeling matrices F,,, F?, and F^ with
correlation parameter py = 0.2, px = 0.4, and pyx = 0.3 respectively. Arranging all
the matrices together we have

D *? vv ^ yy yxyy Jyx

Fxy S F'-'xy ^Xx

One thousand simulations were observed for each sample of size 500, 350, 200,100,
and 50 from the multivariate normal (TV(O5D)) distribution and the population pa-
rameters S^, S?, S??, Py, pXl and pyx were estimated.

II. 7.1 Intuitive Estimation Results

For a sample size of 500, 1000 simulations showed 996 converged. The ML estimators
had a much smaller MSE and bias than the intuitive estimator. Table 2 shows the

results for 500 samples.
For a sample size of 350, 1000 simulations showed 975 converged. The ML es-

timators had a much smaller MSE and bias than the intuitive estimator. Table 3
shows the results for 350 samples.
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Sample Size
500
350
200
100
50

Number of Values Converged
996
975
871
645
515

TABLE 1: Intuitive estimate convergence values from 1000 simulations.

Sample Size
500

Parameter

S,(21)
S„(22)
Sy(31)
S„(32)
S,(33)
S,(41)
S, (42)
S, (43)
Ey(U)

Py
Sx(Il)
S?(21)
S?(22)

Px

EWIl)
EW12)
S1?,(22)
S1?,(23)
S1??/(31)
ElXy[02)
S1?3/(41)
S1?3/(42)

pixy

Simulations
1000

T
5.50000
3.17543
6.50000
-0.50000
3.17543
7.50000
0.35355
2.24537
-0.35355
6.25000
0.20000
4.55000
0.44907
2.70000
0.40000
1.00416
1.56525
1.73925
1.42009
-0.27386
-0.22361
0.19365
0.15811
0.30000

?
5.49091
3.16755
6.48315
-0.50270
3.16691
7.48407
0.34927
2.23774
-0.35161
6.23379
0.19939

4.53781
0.44612
2.69447
0.39907
1.18419
1.82970
2.02502
1.66430

-0.33653
-0.26029
0.21089
0.18202
0.34486

(?(T - ?)2)1'2
0.19355
0.16785
0.23614
0.15944
0.19235
0.27176
0.14595
0.17092
0.17407
0.23151
0.01497

0.18379
0.09253
0.10096
0.01952

0.45267
0.61523
0.67560
0.57283
0.21721
0.16079
0.16858
0.14543
0.10577

|(?-?)|
0.00909
0.00788
0.01685
0.00270
0.00852
0.01593
0.00428
0.00762
0.00195
0.01621
0.00061

0.01219
0.00296
0.00553
0.00093
0.18003
0.26446
0.28576
0.24420
0.06267
0.03669
0.01724
0.02391
0.04486

TABLE 2: Maximum Likelihood Solution for ??, S?, px, py, intuitive estimate of
Exy and ???, 500 Samples



23

Sample Size
350

Parameter

E2XIl)
S,(21)
S„(22)
S„(31)
S,(32)
S,(33)
S„(41)
S, (42)
S,(43)
S,(44)

Py
S?(?)
S?(21)
S?(22)

S1??(?)
EW12)
S1?„(21)
^ J- X J/ (,^ ^j
Sliy(31)
S1???(32)
S1?„(41)
S??„(41)

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.2

4.55
0.4490731

2.7
0.4

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

T
5.4887061
3.1764355
6.4907984
-0.485849
3.1693236
7.4604265
0.3495299
2.2294648
-0.352193
6.2122216
0.199912

4.5288238
0.4441403
2.6888746
0.3991333

1.3688871
2.1224049
2.3245121
1.9407226
-0.380666
-0.282851
0.219135
0.2095802
0.3677985

(?{T - ?)2)1/2
0.2409443
0.2086801
0.275141
0.1916637
0.2281348
0.3341316
0.1844736
0.2041458
0.2100673
0.2747173
0.017486

0.2142948
0.1141971
0.1247928
0.0232862

1.8452039
2.5966623
2.6125382
2.4474881
0.6019791
0.3035659
0.2961896
0.2945439
0.1486246

|(?-?)|
0.0112939
0.001009
0.0092016
0.014151
0.0061029
0.0395735
0.0040235
0.0159008
0.00136

0.0377784
8.8?-05

0.0211762
0.0049328
0.0111254
0.0008667
0.3647291
0.5571573
0.5852594
0.5206287
0.106805
0.059244
0.0254858
0.0514663
0.0677985

TABLE 3: Maximum Likelihood Solution for S?, S?, px, py, intuitive estimate of
S?? and ^xy, 350 samples
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Sample Size
200

Parameter

S„(?)
S„(21)
S„(22)
S„(31)
S„(32)
S„(33)
S„(41)
S„(42)
S, (43)
S„(44)

S2(Il)
S?(21)
S?(22)

Px

S???,(??)
Slxy(12)
Elxy(21)
S?^^??)
S???(31)

S1?!/(41)
S1??,(42)

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.2

4.55
0.4490731

2.7
0.4

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

?
5.4711093
3.1640223
6.4743773
-0.495453
3.1623281
7.465473

0.3534077
2.2339085
-0.345304
6.205943

0.2006511

4.5207644
0.4449863
2.6857411
0.398861
1.7722421
2.7555405
3.0173272
2.524706
-0.474997
-0.367542
0.282505
0.2573953
0.3981963

(?(? - ?)2)1/2
0.3202831
0.2735186
0.3820472
0.262255
0.3299204
0.4487569
0.2348238
0.2798036
0.2741676
0.3726603
0.0246555

0.2744799
0.1441758
0.163492
0.0322768
3.9507414
5.7241202
6.3816367
5.6338096
1.1771414
1.0190742
0.9106433
0.629088
0.2081228

|(?-?)|
0.0288907
0.0114042
0.0256227
0.004547
0.0130984
0.034527
0.0001457
0.0114571
0.008249
0.044057

0.0006511

0.0292356
0.0040868
0.0142589
0.001139

0.7680841
1.1902929
1.2780745
1.1046121
0.201136
0.143935
0.0888558
0.0992814
0.0981963

TABLE 4: Maximum Likelihood Solution for S?, S?, px, py, intuitive estimate of
S?? and F™, 200 samples
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Sample Size
100

Parameter

S„(11)
S?(21)
S„(22)
S„(31)
S,, (32)
S„(33)
S„(41)
S„(42)
S, (43)
S„(44)

Py
S1(Il)
S?(21)
S?(22)

Px

S1?1/(?)
S1?2,(12)
S1?2/(21)
S1??/(22)
21^(31)
¿j1Xj,(o2J
S???(41)
S1?,(42)

P'-xy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.2

4.55
0.4490731

2.7
0.4

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

?
5.4525786
3.1479364
6.4140674
-0.475498
3.1443529
7.4303896
0.3716303
2.2281972
-0.359171
6.2055091
0.1991069

4.5198069
0.4486643
2.6721157
0.39972

2.4483011
3.9285145
4.33286

3.5627714
-0.739009
-0.730624
0.3510516
0.3349653
0.442836

{?(ß - T)?2
0.4581956
0.4003749
0.5559107
0.3650991
0.4558047
0.6192218
0.3494294
0.4084596
0.3896021
0.5261355
0.0358495

0.3987957
0.2064195
0.2311758
0.0427603
7.4717073
12.417629
12.961319
11.956913
2.7171749
3.6170008
2.6102964
1.4479197
0.2805866

|(?-?)|
0.0474214
0.0274901
0.0859326
0.024502
0.0310736
0.0696104
0.0180769
0.0171684
0.005618
0.0444909
0.0008931

0.0301931
0.0004088
0.0278843

0.00028
1.4441431
2.3632669
2.5936073
2.1426775
0.465148
0.507017
0.1574024
0.1768514
0.142836

TABLE 5: Maximum Likelihood Solution for S^, S?, px, py, intuitive estimate of
??? and F?3/, 100 samples

For a sample size of 200, 1000 simulations showed 871 converged. The ML es-
timators had a much smaller MSE and bias than the intuitive estimator. Table 4

shows the results for 200 samples.
For a sample size of 100, 1000 simulations showed 645 converged. The ML es-

timators had a much smaller MSE and bias than the intuitive estimator. Table 5
shows the results for 100 samples.

For a sample size of 50, 1000 simulations showed convergence. The ML estimators
had a much smaller MSE and bias than the intuitive estimator. Table 6 shows the

results for 50 samples.
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Sample Size
50

Parameter

S,(?)
S,(21)
S,(22)
S„(31)
S„(32)
S„(33)
S„(41)
S, (42)
^y (43)
S,(44)

Py
Sx(Il)
S?(21)
S?(21)

Px

S1?„(11)
S1?!/(12)
S1?,(21)
S1??(22)
S1?„(31)
S1?,(32)
S1?2/(41)
S1??(42)

P*-xy

Simulations
1000

T
5.50000
3.17543
6.50000
-0.50000
3.17543
7.50000
0.35355
2.24537
-0.35355
6.25000

0.20000
4.55000
0.44907
2.70000
0.40000

1.00416
1.56525
1.73925
1.42009
-0.27386
-0.22361
0.19365
0.15811
0.30000

?
5.38572
3.12812
6.37219
-0.48519
3.10831
7.35267
0.35696
2.20256
-0.35449
6.12585

0.19905
4.43166
0.44469
2.65309
0.39930
2.21826
4.25959
4.30226
3.71180
-0.67614
-0.68435
0.63663
0.63454
0.46671

(?(? - ?)2)1'2
0.63838
0.53214
0.75108
0.52173
0.63379
0.87776
0.46468
0.55177
0.55607
0.74061
0.04838
0.56430
0.29620
0.32754
0.06129

4.54869
10.03225
9.20887
8.74069
4.06503
4.28020
3.26688
3.27403
0.35035

|(?-?)|
0.11428
0.04730
0.12781
0.01481
0.06712
0.14734
0.00340
0.04281
0.00094
0.12415

0.00095
0.11834
0.00438
0.04691
0.00070
1.21410
2.69434
2.56301
2.29170
0.40228
0.46074
0.44298
0.47643
0.16671

TABLE 6: Maximum Likelihood Solution for S?, S?, px, py, intuitive estimate of
S?? and F™, 50 samples



27

II.8 USE OF TRANSFORMATIONS TO ESTIMATE FYX -??

The intuitive method did not always converge. Two main points were learned from
the failures of the intuitive method. The first was that while the solution did not

always converge, the first iteration always produced a result very close to the actual
answer. The second was that the SVN (2008) 's solution always converged. These
two facts were used to create a series of transformations to help solve the problem of
estimation of S??. The proposed transformations move the cross product term into
the upper left corner of the partitioned matrix. The work by SNV (2008) then can
be used to estimate the matrix F?3/. Once F??/ is estimated, the intuitive method can
be used for one iteration to gain an estimate of T,xy. Towards this end, let

(y11) Iy9I,

and

X — (^H) · · · ) xpl,
be random vectors such that the vector

. 2/it, - - - ,2/«*)'

? -^Ii j · · · ; ^pt)

N

(p+q)txl

0

0

F, S F¿-'y ^ yx Jyx

F*„ <8> S:xy xy F?
(15)

Let Zi, ..., Zjv be a random sample from (15). Then the sample variance covariance
matrix can be computed as -^ X^=1 ZZ'.

This sample variance covariance matrix can be partitioned into four block matri-
ces so that each block can be used to estimate the corresponding S and F matrices.
Note that

¿S??/ ¿S??/? Nh S zz'TV
i=l

?=1
N

i=l
N

V ¿S??/ ¿S??'
?=1 i=l

The objective here is to estimate the matrices in the structure Fxy ,xy using

1 N
c = ì-Yyx'

¿=i

As mentioned the intuitive estimators in (14) did not produce reliable results.
Hence to estimate the matrices in F?3/ ® S?? matrix we are adopting alternative
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approach. The plan is to move this matrix to the upper left corner in the partition
so that the method of SNV (2008) can be used. First, the upper right hand corner of
the partitioned section can be isolated by using a series of transformations inspired by
Tan (1973). Thus we first transform the data to make the diagonals of the covariance
matrix an identity matrix as:

(F„ ^Ey)-V2 0 l G Y
0' (F? <g> Ex)-1/2 J [ X

The normal distribution was used to approximate the asymptotic distribution of
the transformation in (16). This results in a distribution that can be approximated

(16)

as:

approximately

In this, the matrix D equals

N

D = (F? <g> ExY1I2C^Hy <g> S,)-1/2.
We once again use the transformation:

-1/2 r -\ r? d] G (f„ <g> fiy)-1'2 0 Y
D' I J [ 0' (f?®??)-1/2 \ [ X

Multiplying the multivariate normal distribution vector by the inverse of its co-
variance matrix results in a multivariate T distribution (Tan, 1973). This converges
asymptotically to a normal distribution with mean zero and the identity matrix as
the variance covariance matrix.

approximately N

The D matrix is then moved to the upper left corner with the transformation as:

0 D

D' 0

/ D

D' I

-1/2
(%

0'

0

(F? <8> A -1/2

Y

X
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approximately

The solution converges to,

JV

Dis, DL <8>£>S DL .-1Xy LiXy

The spectral decomposition gives,

D* DL = UA2U'.
~*xy ???

For a positive definite Dyxy, based on (Harville, 1997, p. 538), the eigenvalues of
unique eigenvectors corresponding to positive definite matrices are unique. If non-
unique eigenvalues are present then the sum of the matrices formed from non-unique
eigenvectors corresponding to the same eigenvalues are unique. Hence the estimate

D^xy = UAU'
is unique. Then we have

CBaseVxy — A^y DyxyByy .
Note that the matrix CBase^xy can be either AR(I) or a positive definite matrix

or any other structured matrix. If CBase^xy is a positive definite matrix then the
solution is,

C<s,xy = Diag(CBase^xy) 1/2CBase^xyDiag(CBaSe^xy) ·
Thus, we have found ¿7F as an alternative estimate of F?2G Shaping the resulting

matrix into the AR(I) solution was discussed above.
Once the estimator of F?3/ is determined as above under the relevant restrictions,

one iteration can produce an estimate of ??? as:

N

2_jXicCi¡,xyY¿
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II.8.1 Transformation Simulation Results

Using these transformations, all values converged. The tables below show simulation
results. They include the intuitive estimates for comparison purposes.

In Table 7, the results of the transformation estimates are labeled Hxy{ij). All the
transformation results converged. The intuitive results based on the simulations that
converged are once again denoted T,lxy{ij) and are included for comparison purposes.
The resulting bias and MSE of the transformation estimate equal or exceed the bias
and MSE of the existing MLE estimates.

Another goal for this analysis was to extend the results to small sample sizes.
Tables 7, 8, 9, 10, and 11 show the results of this analysis. Based on the tables,
it appears that the transformation solution equaled or exceeded the MLE bias and
MSE.

Additional simulations are listed in tables 12, 13, 14, 15, 16, 17, 18, 19, 20, and
21.
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Sample Size
500

Parameter

Ev(H)
S,(21)
S, (22)
S,(31)
S„(32)
S„(33)
S„(41)
S, (42)
S, (43)
S, (44)

Py
Sx(Il)
S*(21)
S?(21)

Px

S?,(11)
S?,(12)
S?2/(21)
S?2/(22)
S??,(31)
EXy(oZ)
S„(41)
S?„(42)

Pxy

Sliy(12)
S1??(21)
S1??(22)
S1^(31)
S1?,(32)
S1^(41)
S1?,(42)

pixy

Simulations
1000
?

5.50000
3.17543
6.50000
-0.50000
3.17543
7.50000
0.35355
2.24537
-0.35355
6.25000
0.20000

4.55000
0.44907
2.70000
0.40000

1.00416
1.56525
1.73925
1.42009
-0.27386
-0.22361
0.19365
0.15811
0.30000

1.00416
1.56525
1.73925
1.42009
-0.27386
-0.22361
0.19365
0.15811
0.30000

T
5.49091
3.16755
6.48315
-0.50270
3.16691
7.48407
0.34927
2.23774
-0.35161
6.23379
0.19939

4.53781
0.44612
2.69447
0.39907

1.00466
1.56436
1.73518
1.41771
-0.27980
-0.22382
0.18905
0.15158
0.30217
1.18419
1.82970
2.02502
1.66430
-0.33653
-0.26029
0.21089
0.18202
0.34486

(?(? - ?)2)1/2
0.19355
0.16785
0.23614
0.15944
0.19235
0.27176
0.14595
0.17092
0.17407
0.23151
0.01497

0.18379
0.09253
0.10096
0.01952

0.13027
0.10695
0.15310
0.11413
0.14816
0.11304
0.13287
0.10581
0.04504

0.45267
0.61523
0.67560
0.57283
0.21721
0.16079
0.16858
0.14543
0.10577

Ke-O)I
0.00909
0.00788
0.01685
0.00270
0.00852
0.01593
0.00428
0.00762
0.00195
0.01621
0.00061

0.01219
0.00296
0.00553
0.00093

0.00050
0.00088
0.00408
0.00238
0.00594
0.00022
0.00460
0.00654
0.00217
0.18003
0.26446
0.28576
0.24420
0.06267
0.03669
0.01724
0.02391
0.04486

TABLE 7: Maximum Likelihood Solution for S?, Ex, px = .4, py = .2, transformation
estimate of pxy = .3 and Exy, 500 samples
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Sample Size
350

Parameter

Ey(U)
S„(21)
S, (22)
S„(31)
S„(32)
S„(33)
S„(41)
S„(42)
S„(43)
S, (44)

Py
S1(Il)
S?(21)
S?(22)

Px

S?,(11)

S?3/(21)
S?3/(22)
S?2,(31)
Z-1Xy(OZ)
S?,(41)
S?!/(42)

Pxy

S1?„(11)
S1?,(12)
S1?^(21)
S??,(22)
S1?,(31)
S1?,,(32)
S1?1/(41)
S1?,(42)

P^-xy

Simulations
1000

T
5.5

3.1754265
6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.2

4.55
0.4490731

2.7
0.4

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

Converge
975
?

5.4887061
3.1764355
6.4907984
-0.485849
3.1693236
7.4604265
0.3495299
2.2294648
-0.352193
6.2122216
0.199912

4.5288238
0.4441403
2.6888746
0.3991333

1.0028332
1.5647384
1.736294
1.422322
-0.26664
-0.217351
0.1883952

0.15349
0.3013871
1.3688871
2.1224049
2.3245121
1.9407226
-0.380666
-0.282851
0.219135
0.2095802
0.3677985

(?(T - T?)Ri2W2
0.2409443
0.2086801
0.275141

0.1916637
0.2281348
0.3341316
0.1844736
0.2041458
0.2100673
0.2747173
0.017486

0.2142948
0.1141971
0.1247928
0.0232862

0.1646205
0.1348201
0.1856855
0.1464912
0.1800344
0.1380549
0.1634804
0.1283671
0.0505144

1.8452039
2.5966623
2.6125382
2.4474881
0.6019791
0.3035659
0.2961896
0.2945439
0.1486246

|(?-?)|
0.0112939
0.001009
0.0092016
0.014151
0.0061029
0.0395735
0.0040235
0.0159008
0.00136

0.0377784
8.8?-05

0.0211762
0.0049328
0.0111254
0.0008667
0.0013248
0.0005092
0.0029587
0.0022281
0.007221
0.006256
0.005254
0.0046239
0.0013871

0.3647291
0.5571573
0.5852594
0.5206287
0.106805
0.059244
0.0254858
0.0514663
0.0677985

TABLE 8: Maximum Likelihood Solution for S^. S?, px = .4, py = .2, transformation
estimate of pxy = .3 and S??/, 350 samples
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Sample Size
200

Parameter

Ey(Il)
S„(21)
S„(22)
S„(31)
S„(32)
S„(33)
S„(41)
S„(42)
S„(43)
S,(44)

Py
S?(11)
S?(21)
S, (22)

S??(11)
S?3/(12)
S?,(21)
S?^(22)
S?^(??)
S??/(?2)
S?,(41)
S?„(42)

Pxy

S1?„(?)
S1?„(12)
S1?„(21)
S1??/(2?)
S1?„(31)
^-,-'-Xíy(13^J
S1?1/(41)
S1?„(42)

PJ-XJ/

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.2

4.55
0.4490731

2.7
0.4

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

Converge

?
5.4711093
3.1640223
6.4743773
-0.495453
3.1623281
7.465473

0.3534077
2.2339085
-0.345304
6.205943

0.2006511

4.5207644
0.4449863
2.6857411
0.398861

1.0062308
1.5662221
1.7315366
1.4190792
-0.276378
-0.221834
0.1914619
0.1531945
0.3031572

1.7722421
2.7555405
3.0173272
2.524706
-0.474997
-0.367542
0.282505
0.2573953
0.3981963

(?(? - ?)2)1/2
0.3202831
0.2735186
0.3820472
0.262255
0.3299204
0.4487569
0.2348238
0.2798036
0.2741676
0.3726603
0.0246555

0.2744799
0.1441758
0.163492
0.0322768
0.2075244
0.17157

0.2421632
0.1827922
0.2391721
0.1912619
0.2176764
0.1671407
0.0601464

3.9507414
5.7241202
6.3816367
5.6338096
1.1771414
1.0190742
0.9106433
0.629088
0.2081228

|(?-?)|
0.0288907
0.0114042
0.0256227
0.004547
0.0130984
0.034527
0.0001457
0.0114571
0.008249
0.044057

0.0006511

0.0292356
0.0040868
0.0142589
0.001139

0.0020728
0.0009745
0.0077161
0.0010147
0.002517
0.001773
0.0021873
0.0049194
0.0031572

0.7680841
1.1902929
1.2780745
1.1046121
0.201136
0.143935
0.0888558
0.0992814
0.0981963

TABLE 9
estimate of pxy

Maximum Likelihood Solution for Ey, S?, pa = .4, Py = .2, transformation
.3 and S™, 200 sample
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Sample Size
100

Parameter

Sy(H)
S„(21)
S„(22)
S„(31)
S„(32)
S, (33)
S„(41)
S„(42)
S,(43)
S„(44)

Py
S?(11)
S?(21)
S?(22)

Px

S?,(11)
S?,(12)
S?2?(21)
S?3/(2?)
S?^??)
S?3/(?2)
S?,(41)
S?„(42)

Pxy

S1?1/(?)
S1??(12)
S1?2/(21)
^ -?-?y (, ^ ^ J
S1?3/(31)
S1?2/(32)
S11?,(41)
S1?1,(42)

P'-xy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.2
4.55

0.4490731
2.7
0.4

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.3

Converge

T
5.4525786
3.1479364
6.4140674
-0.475498
3.1443529
7.4303896
0.3716303
2.2281972
-0.359171
6.2055091
0.1991069
4.5198069
0.4486643
2.6721157
0.39972

1.0004119
1.5498737
1.7357805
1.4032583
-0.265667
-0.227258
0.2007334
0.1641078
0.3040875

2.4483011
3.9285145
4.33286

3.5627714
-0.739009
-0.730624
0.3510516
0.3349653
0.442836

[E[Q-Qf)1'2
0.4581956
0.4003749
0.5559107
0.3650991
0.4558047
0.6192218
0.3494294
0.4084596
0.3896021
0.5261355
0.0358495

0.3987957
0.2064195
0.2311758
0.0427603
0.3007671
0.2434819
0.3349671
0.264244
0.3352885
0.2607316
0.3049106
0.2403161
0.0706872

7.4717073
12.417629
12.961319
11.956913
2.7171749
3.6170008
2.6102964
1.4479197
0.2805866

|(?-T)|
0.0474214
0.0274901
0.0859326
0.024502
0.0310736
0.0696104
0.0180769
0.0171684
0.005618
0.0444909
0.0008931

0.0301931
0.0004088
0.0278843
0.00028

0.0037461
0.0153739
0.0034722
0.0168356
0.008194
0.003651
0.0070842
0.0059939
0.0040875
1.4441431
2.3632669
2.5936073
2.1426775
0.465148
0.507017
0.1574024
0.1768514
0.142836

TABLE 10: Maximum Likelihood Solution for S?, S2
tion estimate of pxy = .3 and S??, 100 samples

px = .4, Py = .2, transforma-
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Sample Size
50

Parameter

S,(11)
S„'(21)
S?(22)
S,(31)
S, (32)
S, (33)
S„(41)
S„(42)
S, (43)
S, (44)

Py
S?(11)
S?(21)
S?(21)

Px

S?,(11)
:?2)

S??,(21)
S??/(22)
S??/(31)
S?2/(??)
S?,(41)
S??/(42)

Pxy

-'xy

S1?,(11)
S1??,(12)
S1??/(21)
S1?2/(22)
S1?,(31)
S1?,(32)
S1?,(41)
S1*„(42)

Pl-xy

Simulations
1000
?

5.50000
3.17543
6.50000
-0.50000
3.17543
7.50000
0.35355
2.24537
-0.35355
6.25000
0.20000
4.55000
0.44907
2.70000
0.40000

1.00416
1.56525
1.73925
1.42009
-0.27386
-0.22361
0.19365
0.15811
0.30000

1.00416
1.56525
1.73925
1.42009
-0.27386
-0.22361
0.19365
0.15811
0.30000

?
5.38572
3.12812
6.37219
-0.48519
3.10831
7.35267
0.35696
2.20256
-0.35449
6.12585
0.19905
4.43166
0.44469
2.65309
0.39930
0.99012
1.55870
1.70115
1.41299
-0.27898
-0.21468
0.19743
0.17390
0.30405

2.21826
4.25959
4.30226
3.71180
-0.67614
-0.68435
0.63663
0.63454
0.46671

(?{? - ?)2)1/2
0.63838
0.53214
0.75108
0.52173
0.63379
0.87776
0.46468
0.55177
0.55607
0.74061
0.04838

0.56430
0.29620
0.32754
0.06129

0.40499
0.34521
0.46706
0.36314
0.48118
0.36631
0.43212
0.34203
0.07828

4.54869
10.03225
9.20887
8.74069
4.06503
4.28020
3.26688
3.27403
0.35035

|(T-T)|
0.11428
0.04730
0.12781
0.01481
0.06712
0.14734
0.00340
0.04281
0.00094
0.12415
0.00095

0.11834
0.00438
0.04691
0.00070
0.01404
0.00655
0.03810
0.00710
0.00512
0.00893
0.00378
0.01579
0.00405

1.21410
2.69434
2.56301
2.29170
0.40228
0.46074
0.44298
0.47643
0.16671

TABLE 11: Maximum Likelihood Solution for S?, S?, px = .4, py = .2, transforma-
tion estimate of F xy = .3 and S??, 50 samples
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Sample Size
500

Parameter

S,(21
S„(22
S„(31
S„(32
S„(33
S„(41
S„(42'
S„(43'
S,(44

Py
S1(Il
S?(21
S?(21

Px

X2/ V-I. ?S-,
S??/(12
S?3/(21

JXÎ/S^,^??
S??/(?1
S??/(3?
S?,(41
S?,(42

Pxy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.5

4.55
0.4490731

2.7
0.7

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.6

?
5.497456
3.1824973
6.4945398
-0.490892
3.1716143
7.4754364
0.3537135
2.2282898
-0.359163
6.2310437
0.5001469

4.5418406
0.4462306
2.6924514
0.6993468
1.0140237
1.5760578
1.7555498
1.4338413
-0.276152
-0.221007
0.1922868
0.1601105
0.6031658

{?(? - ?)?2
0.2102784
0.181729
0.2481227
0.1682839
0.1982771
0.2738458
0.156369

0.1672169
0.1761539
0.2451567
0.0122433

0.1979322
0.092643
0.121602
0.0130086

0.1333523
0.1274859
0.1588138
0.1353264
0.1436449
0.1139707
0.133658

0.0981006
0.0331045

|(?-?)|
0.00909
0.00788
0.01685
0.0027

0.00852
0.01593
0.00428
0.00762
0.00195
0.01621
0.00061

0.01219
0.00296
0.00553
0.00093

0.0005
0.00088
0.00408
0.00238
0.00594
0.00022
0.0046

0.00654
0.00217

TABLE 12: Maximum Likelihood Solution for S^, ??, px
tion estimate of F?3/ = .6. ???, 500 samples

.7, Py = .5, transforma-
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Sample Size
350

Parameter

Sy(H)
S„(21)
S„(22)
S„(31)
S„(32)
S,(33)
S„(41)
S, (42)
S, (43)
S, (44)

Py
S?(11)
S?(21)
S?(21)

Px

Jxy :??)
S??/(12)
S??/(21)
S??/(22)
S??/(?1)
S?3/(32)
S«„(41)
S., (42)

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.5

4.55
0.4490731

2.7
0.7

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.6

?
5.4810299
3.1720532
6.4816379
-0.485198
3.1646824
7.4496956
0.3490526
2.2263096
-0.351765
6.2034697
0.4992722

4.5212693
0.4434266
2.6844134
0.6987151

1.0084197
1.5730801
1.7456283
1.4298761
-0.268075
-0.218595
0.1896067
0.1543918
0.6032167

(?(T - ?)?2
0.2496884
0.2122072
0.2846793
0.1913265
0.2297575
0.3436327
0.1842461
0.2053112
0.2099211
0.2865738
0.0144013

0.2415551
0.1146822
0.1393211
0.0149236

0.1698664
0.1510284
0.1990721
0.157933
0.1791795
0.1371458
0.1621896
0.1276023
0.0371701

?(?-T)|
0.0189701
0.0033733
0.0183621
0.014802

0.0107441
0.0503044
0.0045008
0.019056
0.001788
0.0465303
0.0007278

0.0287307
0.0056465
0.0155866
0.0012849

0.0042617
0.0078325
0.0063756
0.0097822
0.005786
0.005012
0.0040425
0.0037221
0.0032167

TABLE 13: Maximum Likelihood Solution for S^, S?, px
tion estimate of pxy — .6, S??, 350 samples

.7, Py = .5, transforma-
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Sample Size
200

Parameter

S„(?)
S„(21)
S, (22)
S?(31)
S„(32)
E3, (33)
S„(41)
S?(42)
S, (43)
S, (44)

Py
S?(?)
S?(21)
2,(21)

Px

S*,, (12)
Jxj/V

JXJ/l

Jxy ?

;??)
;?2)

S?3/(21)
S?,(22)
2-^2/(,3I)
S?,,^?)
S?,(41)
S?„(42)

Pxy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.5

4.55
0.4490731

2.7
0.7

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.6

?
5.460057
3.1574783
6.4612826
-0.494673
3.1559783
7.4505928
0.3525436
2.2292787
-0.344566
6.1935118
0.4994802

4.5080946
0.4435843
2.6782526
0.697912
1.0141367
1.5782876
1.7452219
1.429939
-0.278291
-0.223631
0.1928939
0.1541716
0.6053189

(?(?-T)2)1/2
0.3333726
0.2762595
0.3939938
0.262293
0.3335234
0.4667418
0.2343228
0.2803032
0.2733578
0.3871119
0.0197859

0.3134081
0.144832
0.1862663
0.0207387
0.2139515
0.1883618
0.2561211
0.1942096
0.2382108
0.1905037
0.2163289
0.1661991
0.044396

|(?-?)|
0.039943
0.0179482
0.0387174
0.005327
0.0194482
0.0494072
0.0010098
0.0160869
0.008987

0.0564882
0.0005198

0.0419054
0.0054888
0.0217474
0.002088
0.0099787
0.01304

0.0059692
0.0098451

0.00443
2.4?-05

0.0007553
0.0039423
0.0053189

TABLE 14: Maximum Likelihood Solution for S,,, S?, px
tion estimate of pxy — .6, S??, 200 samples

.7, Py = .5, transforma-
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Sample Size
100

Simulations
1000

Parameter Q ? [E[Q-Qf)1I2 |(?-?)|
actual mean mse E^(Il)

S„(21)
Ey(22)
S„(31)
S„(32)
S„(33)
S„(41)
S,(42)
Ey(43)
Ey(44)

Py

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.5

5.4260702
3.13262

6.3827564
-0.473144
3.1288726
7.3937446
0.3699242
2.2174955
-0.357346
6.1751332
0.4973483

0.4784037
0.4068378
0.5812693
0.3636832
0.4600244
0.6431054
0.3478751
0.4118784
0.3879035
0.548247
0.0290149

0.0739298
0.0428065
0.1172436
0.026856
0.0465539
0.1062554
0.0163708
0.0278701
0.003793
0.0748668
0.0026517

Sx(Il)
S?(21)
S?(21)

4.55
0.4490731

2.7
0.7

4.5048372
0.4469569
2.6629995
0.6978319

0.4448621
0.2074079
0.2590287
0.0275209

0.0451628
0.0021162
0.0370005
0.0021681

Sx27(H)
S?,(12)
S*?(21)
S?,(22)
S??/(31)

S?,(41)
Ex1, (42)

Pxy

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.6

1.0114324
1.5671074
1.7548912
1.4184933
-0.267722
-0.229939
0.203133
0.1658289
0.6070024

0.3063041
0.2590982
0.3538823
0.2751917
0.3345054
0.261472
0.3045123
0.2404585
0.0529681

0.0072744
0.0018598
0.0156385
0.0016006
0.006139
0.006332

0.0094838
0.007715
0.0070024

TABLE 15: Maximum Likelihood Solution for E3,, Ex, px
tion estimate of pxy = .6, ???, 100 samples

.7, Py = .5, transforma-
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Sample Size
50

Parameter

Ey(Il)
S„(21)
S„(22)
S„(31)
S„(32)
S„(33)
S„(41)
S, (42)
^y (43)
S,(44)

Py
S?(11)
S?(21)
S?(21)

Px

S??(11)
S„(12)
S„(21)
S?!/(22)
S??/(31)

S?,(41)
S?,(42)

Pxy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.5

4.55
0.4490731

2.7
0.7

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.6

T
5.3364285
3.0993952
6.3134047
-0.480815
3.0789193
7.2843427
0.3533904
2.1826858
-0.351376
6.070414
0.4953265

4.4019057
0.4419227
2.6348693
0.6953083

1.0037164
1.579705
1.725738

1.4318691
-0.280552
-0.216387
0.2001897
0.1755556
0.6080735

(E(Q - T)2)1/2
0.6661971
0.5392218
0.7774967
0.517831
0.6342282
0.9035013
0.4607988
0.555356
0.5509576
0.773375
0.0392319

0.632911
0.2960075
0.3653719
0.0394868

0.4097876
0.3640922
0.4851759
0.3780229
0.4813859
0.3660882
0.4343178
0.3422631
0.0581636

|(T-?)|
0.1635715
0.0760313
0.1865953
0.019185
0.0965072
0.2156573
0.000163
0.0626798
0.002177
0.179586
0.0046735

0.1480943
0.0071504
0.0651307
0.0046917

0.0004416
0.0144574
0.0135147
0.0117752
0.006691
0.00722

0.0065405
0.0174417
0.0080735

TABLE 16: Maximum Likelihood Solution for S
tion estimate of pxy = .6, S?2/, 50 samples

y ? Z-1X ) Px .7, Py = .5, transforma-
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Sample Size
500

Parameter

S,(?)
2,(21)
S„(22)
2,(31)
2,(32)
2,(33)
2,(41)
2,(42)
2,(43)
2,(44)

S1(Il)
2,(21)
2,(21)

Px

2?,(?)
S?,(12)
2?,(21)

^,,(olj
2,,(?2)
S?,(41)
S*, (42)

Pxy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.7

4.55
0.4490731

2.7
0.9

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.8

?
5.4778795
3.1699448
6.4827151
-0.49089

3.1616817
7.4640043
0.3552423
2.240337
-0.353683
6.2275419
0.6992041

4.5382513
0.4497473
2.6966176
0.8997312

1.0309727
1.5995125
1.7765789
1.4588709
-0.287845
-0.220866
0.1997921
0.1600122
0.8057155

(?(T - ?)2)1/2
0.2159619
0.179746
0.2542428
0.1595155
0.1946784
0.2961479
0.1530363
0.1805828
0.1789084
0.2485854
0.0089444

0.2253272
0.088836
0.132359
0.0051027
0.1393656
0.1478584
0.1847902
0.1491194
0.1393342
0.1128477
0.1316753
0.0972805
0.020209

|(?-?)|
0.0221205
0.0054817
0.0172849

0.00911
0.0137448
0.0359957
0.0016889
0.0050286

0.00013
0.0224581
0.0007959

0.0117487
0.0006742
0.0033824
0.0002688

0.0268147
0.0342649
0.0373262
0.038777
0.013984
0.002741
0.0061429
0.0018983
0.0057155

TABLE 17: Maximum Likelihood Solution for S?, S?, px = .9, py = .7, transforma-
tion estimate of pxy = .8, S??, 500 samples
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Sample Size
350

Parameter

Ey(Il)
S„(21)
S„(22)
S„(31)
S„(32)
Zy (33)
S„(41)
S„(42)
S„(43)
S„(44)

Py
S?(11)
S*(21)
S*(21)

Px

S?,(11)
S?^(12)
S??/(21)
S??/(2?)
S?^(31)
•^xjy ("^/
S?,(41)
S?,(42)

Pxy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.7

4.55
0.4490731

2.7
0.9

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.8

?
5.4524711
3.1483578
6.4558712

-0.5018
3.1524237
7.4525082
0.3447322
2.2286763
-0.350969
6.216812
0.6988288

4.5323967
0.4481981
2.6811017
0.8992556

1.0294186
1.5934765
1.7824754
1.4503627
-0.287186
-0.230191
0.1991799
0.1634754
0.8060741

(?(? - ?)2)1/2
0.2620899
0.2145186
0.3004566
0.2001472
0.2395107
0.341371
0.1849558
0.2031017
0.2071719
0.2941629
0.0104107

0.2634224
0.1084027
0.1553862
0.0061393

0.1673844
0.1693836
0.2083688
0.166312
0.170476
0.1305907
0.154785
0.1225106
0.0230246

?(?-?)|
0.0475289
0.0270687
0.0441288

0.0018
0.0230028
0.0474918
0.0088212
0.0166893
0.002584
0.033188
0.0011712

0.0176033
0.000875
0.0188983
0.0007444
0.0252606
0.0282289
0.0432227
0.0302688
0.013325
0.006584
0.0055307
0.0053615
0.0060741

TABLE 18: Maximum Likelihood Solution for S^, S?, px = .9, py = .7, transforma-
tion estimate of pxy = 8, ???, 350 samples
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Sample Size
200

Parameter

S,(?)
S„(21)
S,(22)
S„(31)
S„(32)
S„(33)
S,(41)
S„(42)
S„(43)
S„(44)

Py
S?(?)
S?(21)
S?(21)

Px

S,,, (12)
¦Jxj/

-"X2/

-*XJ/

-1XJ/

:??)
12)
Ì21)

S??/(2?)
^xj/(ol)
S??,(??)
S?,(41)
S?,(42)

Pxy

Simulations
1000

T
5.5

3.1754265
6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.7

4.55
0.4490731

2.7
0.9

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.8

T
5.4576495
3.1632318
6.4630494
-0.496903
3.1432533
7.4216936
0.357276
2.2318616
-0.348646
6.1761242
0.6982924

4.5292582
0.4496254
2.6774044
0.8994233
1.0579392
1.6217339
1.8072079
1.4699227
-0.29672
-0.230088
0.2152343
0.1613138
0.8088641

(?(T - T)?2
0.3478309
0.2795845
0.4072938
0.252731
0.3217733
0.4845413
0.2404264
0.2704161
0.2732901
0.3955597
0.0143742
0.336215
0.1386017
0.2034799
0.0076369

0.2199889
0.2145326
0.2774193
0.2154127
0.2238377
0.1753793
0.2049283
0.1625379
0.0268323

?(?-?)|
0.0423505
0.0121947
0.0369506
0.003097
0.0321732
0.0783064
0.0037226
0.013504
0.004907
0.0738758
0.0017076
0.0207418
0.0005523
0.0225956
0.0005767
0.0537812
0.0564863
0.0679552
0.0498288
0.022859
0.006481
0.0215851
0.0031999
0.0088641

TABLE 19: Maximum Likelihood Solution for S^, S?, p=
tion estimate of pxy = .8, S^, 200 samples

= .9, Py = .7, transforma-
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Sample Size
100

Parameter

S„(?)
S„(21)
S„(22)
S„(31)
S„(32)
S„(33)
Sy(41)
S,(42)
S„(43)
S,(44)

S?(?)
S?(21)
S?(21)

Px

S?,(?)
S??,(12)
S?!/(21)
^xy\¿¿)
•¿-?2/(31)
S??/(32)
S?,(41)
S?,(42)

Pxy

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.7

4.55
0.4490731

2.7
0.9

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.8

?
5.4084021
3.1332523
6.3884465
-0.487368
3.1156084
7.3297653
0.3494352
2.2019964
-0.342688
6.1174265
0.6964844

4.4361779
0.4456007
2.6432643
0.8977719
1.060472

1.6330437
1.8163562
1.4926379
-0.281931
-0.23692

0.2026673
0.1734867
0.8124478

- ft^U/2(?(? - T)2)
0.4954795
0.4136412
0.6026699
0.3614045
0.4633934
0.6894374
0.3453219
0.4040923
0.3935451
0.5647586
0.0208703

0.5012065
0.2091596
0.3080681
0.0120884
0.3203957
0.2852269
0.3851663
0.298534
0.3311458
0.2440435
0.2885638
0.2262316
0.0327053

|(?-?)|
0.0915979
0.0421742
0.1115535
0.012632

0.0598181
0.1702347
0.0041182
0.0433692
0.010865
0.1325735
0.0035156

0.1138221
0.0034724
0.0567357
0.0022281
0.056314

0.0677961
0.0771035
0.072544
0.00807
0.013313

0.0090181
0.0153728
0.0124478

TABLE 20
tion estimate of pxy

Maximum Likelihood Solution for S?, S?, px = .9, py = .7, transforma-
8, Exy, 100 samples
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Sample Size
50

Parameter

S„(11
S„(21
S„(22
S„(31
S„(32'
Ej,(33'
S,(41
S„(42
S, (43
S, (44

Py
S?(11
S?(21
S?(21

Px

S?^??
S??/(12
S??/(21
S?2/(22
^x,, (31

S?!/(41
S??/(42

Simulations
1000
?

5.5
3.1754265

6.5
-0.5

3.1754265
7.5

0.3535534
2.2453656
-0.353553

6.25
0.7

4.55
0.4490731

2.7
0.9

1.004158
1.5652476
1.7392527
1.4200939
-0.273861
-0.223607
0.1936492
0.1581139

0.8

?
5.2449571
3.0244643
6.2175313
-0.508366
3.0246369
7.1787759
0.3542595
2.1597801
-0.350286
5.9845576
0.6925648

4.3774264
0.4422599
2.5980262
0.8959648
1.0703362
1.6251627
1.8176896
1.4814802
-0.300954
-0.227072
0.2146725
0.1685907
0.8136635

(?(ß - T)2)1/2
0.7141923
0.5758214
0.8461018
0.5187708
0.6474253
0.9485797
0.470308
0.5567591
0.5595164
0.806369

0.0292255

0.6891424
0.2910104
0.4143961
0.0170313

0.4358383
0.3743967
0.5232614
0.3902393
0.4596601
0.3322915
0.4206123
0.3344183
0.0375795

|(?-T)|
0.2550429
0.1509622
0.2824687
0.008366
0.1507896
0.3212241
0.0007061
0.0855855
0.003267
0.2654424
0.0074352

0.1725736
0.0068132
0.1019738
0.0040352

0.0661782
0.0599151
0.0784369
0.0613863
0.027093
0.003465
0.0210233
0.0104768
0.0136635

TABLE 21

tion estimate of pxy
Maximum Likelihood Solution for S?, S?, px .9, Py = .7, transforma-

.8, S?„, 50 samples
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CHAPTER III

HYPOTHESIS TESTING IN REPEATED CCA

ULI FIVE HYPOTHESIS OF INTEREST

Estimating the covariance matrix with a Kronecker product covariance structure has
many advantages. Most importantly, the Kronecker product covariance structure
allows the data to conform to the subject matter expert understanding. An addi-
tional advantage is that using the structure greatly reduces the number of parameters
required for estimation.

For comparison purposes, in the standard CCA with no time components, where
the variance covariance matrix is

y y
y '-'yx

y y¿-'xy ¿-'x

the total number of parameters that require estimation of the covariance matrices
is determined as follows.

• The ??? matrix has q(q + l)/2 unique parameters.

• The S?? matrix has p(p + l)/2 unique parameters.

• The Tjxy matrix has pq unique parameters for the cross correlations.

• The µ? vector has q parameters.

• and µ? vector has ? parameters.

This gives a total of p(p + l)/2 + q(q + l)/2 + pq parameters for the covariance
matrix and ? + q parameters for the mean.

When sets of variables are recorded over time the number of parameters required
quickly increases. For t time periods and no assumed covariance structure, the num-
ber of parameters are as shown here in the matrix;

' 0"I1I a1¡2 . . ¦ CTii(p+9)í ?
C2,l s2,2 · · · s2,(?+?t)?

\ s(?+9)?,1 s(?+9)?,2) · · · a(p+q)t,(p+q)t )

(17)
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The number of parameters required for estimation of this covariance matrix are
(p+q)t(t(jp+q)+i) ^n exampie is shown below to illustrated the amount of data required
to estimate the parameters. The the X vector has ? = 2 data values and, the Y vector
has q = 4 values, with t = 3 time units. This results in a covariance matrix with
(2+4)3((2+4)3+i) = 171 parameters Estimating the mean increases it to 171+18=189
parameters. To have at least one degree of freedom for testing, 190 complete data
sets are required with each data set having 2 X values and 4 Y values observed over
3 time periods.

A series of covariance structures are shown below. Each covariance matrix repre-
sents a potential hypothesis the researcher can test in an effort to reduce the model
covariance structure. The covariances are numbered from I to V and provide a log-
ical sequential choice for how to reduce the modeled covariance structure from the
complete unrestricted covariance matrix labeled I down to the traditional covariance
matrix assuming independence between the populations in time labeled V. Tests
can be derived for matrices with a Kronecker product structure by using a similar
methodology as that outlined below.

III. 1.1 Variance Covariance Structures

II

III

IV

V

Variance Covariance Matrices

s?,?

C2,l

s?,2

0"2,2

s1,(?+</)?

s2>(?+5)?

?

\ a(p+q)t,l &(p+q)t,2) ¦ ¦ ¦ V(p+q)t,(p+q)t J
^y®Hy Fyx ->yx

Fxy ->xy F,

F??,®S
F

xy

yx

Ix <¦
Jyx F

or
Fxy Sxy

yx

F,
F (g) S

¦•yx

The first matrix in the sequence is the full unrestricted covariance matrix given
in (17). This matrix is used only if no other matrix will accommodate the data
structure. Since the matrix has no special data structure, all model parameters of
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Variance Covariance Matrix II: ' y

the covariance matrix must be estimated. As we have illustrated, covariance matrix
I would require the most data to estimate.

Besides having to estimate a large number of parameters, perhaps this structure is
not very practical either. In many applications especially when the data are repeated,
it is natural to have some structures as the covariances of the repeated measures. For
examples, in multivariate time series and repeated measures data, the autoregressive
and structure is common, and in that case the correlation with will likely decrease
over time.

The covariance structures below integrate subject matter expert opinion into
the modeling. These matrices are designed to use the correlation of multivariate
observations over time. Taking advantage of these structures greatly reduces the
number of covariance parameters that need to be estimated as well.

III. 1.2 Variance Covariance Matrix II

F„ <g> Ey ^yX <g> Ej
fyxy ® Exy ^x ® E3

shows the basic Kronecker product structure. It allows a different time element
correlation for the X values, the Y values, and the cross correlation of the two. That
is, the X values have their own time correlation and the Y values have their own
time correlation. The XY cross correlation values also have their own separate time
correlation. For example the time correlation for the X values at time one and the X
values at time two may be 0.1, while the Y values at time one to time two correlation
may be 0.3. The X values at time one and Y values at time two may have a 0.2
correlation.

Further, this structure has much fewer parameters than the full unrestricted co-
variance matrix I. Specifically,

• The F„ <g> S?? matrix has [^y^ - 1] + ^^ unique parameters.
• The F? (g) ??? matrix has [^?± - 1] + p(p2+1) unique parameters.
• The tyxy <8> Exy matrix has [~^- - 1] + pq unique parameters for the cross

correlations.

. This gives a total of [^ -1] +^ + [^ -l] + 2^ + [^ -1]+P9
unique parameters to estimate.
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• If the AR(I) structure is assumed for the time structure, all ^- values above
reduce to value of 1.

For the values ? = 4, q — 2, and t = 3, with an AR(I) correlation matrix
the covariance structure requires 24 parameters. This is 147 parameters less than
the unrestricted model. As illustrated in simulation, the high number of degrees of
freedom may contribute to inflating the significance level (probability of type 1 error)
in the hypothesis tests using the likelihood ratio statistic, ?2 approximation.

It is important to note that while the cross covariance values may vary, they must
remain within a specified range in order for the resulting covariance matrix to be
positive definite. Since Chapter II divides up the covariance matrix into partitioned
blocks and estimates each block separately, it is possible that the reconstructed total
variance covariance matrix is not positive definite. See the omitted covariance matrix
below for consequences and an example of this problem.

III. 1.3 Variance Covariance Matrix III

Var - Gov Matrix III: ( *' T S» »- ß S"* ) or ( '» ß =» *- ß S»"\ ??2/ T S?? Jx <8> Ex J \ yxy T S?2/ ?? <g> Ex
retains the covariance structure in the X values but takes away the time covariance
structure for Y values. The model makes intuitive sense since the XY cross correlation
time covariance structure remains when only one value set of variables becomes
independent. The model philosophy is that one of the data sets is dependent on
time while the other is independent. Under the AR(I) time correlation the model
contains 2Í^±12 _|_ 2Í5±i) _|_ pq _j_ 2 parameters. Either the Y or the X variable can be
correlated in time. Hence the two equations structures both have the same number
of parameters that require estimation.

The next logical step from hypothesis III would seem to be variance covariance
matrix

Iy ® ¿-¡y M^'Xy Q9 ¿-¡yX
*'xy ® ¿-¡xy ?? ® Ex

While the number of parameters 2ÍO-Ü + aLa±li + 1 js 1 less than covariance matrix
III, this covariance model is more complicated in the cross product correlation matrix.
The model assumes that each individual Y and X at time i are independent of Y and
X at time j f i. However, it assumes the cross product term is correlated in time.
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Hence, the Y values at time one and the X values at time two are related but the X
values at time one and the X values at time two are not related.

That is, this structure assumes that both the X and Y values have no time
correlation structure but the cross correlation of the two have a correlation structure.
In symbols this model assumes F? = / and F^ = /, while tyxy ^ I. While this
variance covariance may seem the next logical step to test, the resulting matrix
under the null hypothesis is usually not positive definite because it results in negative
eigenvalues. The fact that the covariance is unlikely to be positive definite is a sign
that real data covariance structures will probably not assume this form of covariance.

III. 1.4 Variance Covariance Matrix IV

Now, a hypothesis testing path is structure I ==> structure II ==> structure III =>¦
structure V. An alternative path is covariance I => structure II => structure IV
=>¦ structure V. This path involves testing to determine if all AR(I) F matrices are
equal as in equation 18, that is

Px = Py = Pxy, assuming unstructured or AR(I) structure.

/ F4 <g) Ey *t ® Eyx \Variance Covariance Matrix IV: (18)v F? <8> Exy % <8> Ex J
Under covariance matrix IV, each set of X and Y variables have the same AR(I)

correlation structure in time. This means only the ? parameter is required to be
estimated. The physical interpretation of this covariance structure is that all the
data has the same time correlation component. Hence, time has the same effect on
all observations simultaneously. This structure is most intuitive in that it assumes the
time correlation component is constant. Hence the mechanisms that are occurring
in time play the same role in the X values, the Y values, and the cross correlation of
the two. The corresponding covariance matrix is shown in equation (18).

Estimating variance covariance IV can be performed using the maximum likeli-
hood estimator defined above. First, the data must be rearranged such that the Y
and X values are grouped by time. Let

Z. i = \Vli-i ¦ ¦ ¦ t Vqi; -Eli -? · · ¦ ¦> -Epi) j ^ 1, Z, ..., G.
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Then arrange the z¿ vectors as

/o\z.i

N

I

W

-011 S ?12S
¦f2\ S ^22S

TV

^ ^iS ^2S

: ,( f®? )
W

^2?S

^t* ? y

where F?7 is the i,j th element of F? and S = F? ®S9 F? (g) S„?
F? ® S?3/ F? <8) S?

The parameters F and S can be estimated using the previous work by SNV (2008).
Note that the F values all have the same subscript. Assuming an AR(I) structure
for F this solution has one less parameter than III, namely, p(p2 + -(9+1) + 1.

III. 1.5 Variance Covariance Matrix V

Regardless of which path the researcher takes, whether it is Covariance I =>- Co-
variance II =4> Covariance III ==>¦ Covariance V or Covariance I =>- Covariance II

==>· Covariance IV =>· Covariance V, the final reduction in the sequence is variance
covariance matrix V.

A series of hypothesis can be tested to reduce the model to the simplest possible
covariance structure. The simpler the covariance structure, the fewer parameters it
will require and the more degrees of freedom left for testing. Fewer parameters also
means less data required to estimate variance covariance parameters. Covariance
V represents the simplest model. It has an identity matrix for the time covariance
component. In this model the matrix F equals the identity matrix throughout all
four partitions,

Covariance Matrix V :
lXy Q9 i-iXy Ix ® Zjx

lyx

I,

Syx

and it has the least number of parameters namely 2i£±ii + m±ll + pq that require
estimation.

Covariance V shows no covariance structure across time units. The model assumes
that what happens in time unit 1 does not influence time unit 2 or later. This simple
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assumption will be discussed in more detail in Chapter IV, and will probably be
the model used by a researcher when first faced with repeated data in canonical
correlation analysis set up.

III. 2 ASYMPTOTIC DISTRIBUTION IN TESTING

The log likelihood ratio statistics was used to determine if the model could be reduced
in complexity and hence require less parameters. Let

}{?,µ,1,)- ^{p exp ^
be the loglikelihood function, where

Z =

Then the loglikelihood ratio statistic is defined by

Y

X

? = -2 [logf (Z, µ0, t0) - logf (Z, µ, S)) ~ ?%
where the degrees of freedom equal the difference in the number of parameters.

The Bartlett Correction for the likelihood ratio given by (Bakewell and Wit,
2007) is Aj3C = 1^A. Simulation techniques as discussed in Chapter II were used to
simulate data from variance covariance matrices II through V.

The results when using the loglikelihood statistic with the Bartlett Correction
as per (Bakewell and Wit, 2007) are in the following tables. The left column of
the table shows the covariance structure of the sample data. For example, Table 22
shows II which indicates that covariance structure II was assumed for the covariance
matrix. The 2nd column denotes sample sizes for the tests. The following sample
sizes were used; 500, 350, 200, 100, and, 50. The next five columns show the size of
the corresponding tests. The top row shows the test performed in each case. I vs II
is the likelihood ratio test of covariance I vs covariance II. Similarly, II vs III uses
covariance III as the null hypothesis and determine whether or not the model can be
reduced from covariance II to covariance III. This is continued for all tests.

It is important to note that in practice the user will not know the true covariance
matrix associated with his data. Since the user of these hypothesis tests will not
know what the true underlying covariance structure is, he will continue to test until
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hypothesis testing indicates he should stop at a particular covariance. Possible testing
paths include I => II ==» III => V or I =F IV => V.

For each covariance structure, a simulation was constructed from a normal dis-
tribution. The covariance structure used in each simulation is shown in the model

column. This was performed 1000 times for each sample size. Tests were performed
using an a level of .05. The data was used to calculate the likelihood ratio statistic.
The ?2 distribution was used as an approximate distribution of the test statistics.
The tables below indicates how often the null hypothesis was rejected, that is, it
shows the observed size of the level of significance for each test. The null hypothesis
changes for each column of the tables. Observed tests include variance covariance
matrix I versus variance covariance matrix II (I vs II), variance covariance matrix
II versus variance covariance matrix III (II vs III), variance covariance matrix III
versus variance covariance matrix V (III vs V), or variance covariance matrix II ver-
sus variance covariance matrix IV (II vs IV), variance covariance matrix IV versus
variance covariance matrix V (IV vs V).

The true matrix used to generate the data is listed in the first column of each table
labeled as model. The table below shows the rejection rate for the hypothesis test
shown in the top row. Hence the cell in table 22 corresponding to column labeled II vs
IV and corresponding to the row with sample size 200 shows a rejection rate of .011.
This means out of 1000 samples using the loglikelihood ratio test for testing variance
covariance matrix II as the alternative hypothesis versus variance covariance matrix
IV as the null hypothesis, there were 11 times the simulation showed a rejection of
the null hypothesis. The null hypothesis for the test was variance covariance matrix
IV but the data for all tests in table 22 was simulated from the variance covariance

model II. Ideally all 1000 tests should have shown rejection of the null hypothesis
since the data was generated from a variance covariance matrix of II.

Model Sample Size
500
350
200
100
50

I vs II
.115
.097
.147

*

II vs III
1.000
1.000
1.000
1.000
.975

III vs V
1.000
1.000
.999
.993
.982

II vs IV
.782
.290
.011

0
0

IV vs V
1.000
1.000
1.000
1.000
1.000

TABLE 22: Rejection rates for 1000 samples, Model II

For covariance matrix II, the test of I vs. II should have shown consistent results.
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The rejection proportions were 0.115 at 500 samples, dropped to 0.097 at 350 samples.
These values are roughly double the desired 0.05 level for rejecting the null hypothesis.
It would appear that the size of tests are biased as shown by the high rejection rates.
The observed test sizes increases at 200 samples up to 0.147. There were not enough
data points to estimate the type I covariance matrix for 100 data points or below.

A researcher using these tests will have an objective to reduce the covariance ma-
trix to the simplest possible form. One advantage of increasing the matrix simplicity
is that the matrix becomes easier to interpret and more intuitive to understand.
Another advantage is of course the reduction in the number of parameters required
for estimation. Since the practitioner will not know the true covariance matrix he is
testing, it is thought he will test all matrices throughout the chain until the statistical
testing indicates he should stop reducing the matrix structure.

To illustrate this, Table 22 above has the observed rejection proportions for all
tests given the null hypothesis was covariance II. However, even if the true covariance
matrix is structure II, the practitioner will continue to test until his attempts at
matrix simplification are rejected. Hence, Table 22 shows the rejection proportion
for all tests of interest. The table shows the observed proportion of times the testing
procedure will prevent the researcher from reducing the matrix too far.

Table 22 shows the proportion of the tests rejected when testing to move from
unrestricted covariance I to covariance II. The values range from .097 to .147 under
covariance matrix II. This indicates a good chance of moving to the correct covariance
matrix structure. After reducing to variance covariance II, the researcher will attempt
to reduce the variance further down to covariance matrix III or IV. Attempts to
reduce the variance covariance matrix to III result in rejection proportion 1.00 to .975,
which indicates a low probability of reducing the covariance matrix to the incorrect
structure III. If the matrix is incorrectly reduced to III, testing results in a rejection
proportion 1.000 to .975 to avoid reducing the matrix to covariance hypothesis V.
The IV path has a higher probability of incorrect reduction. For large samples,
the tests show rejection proportions of .782 to .011 when attempting to reduce the
matrix to form IV. Small samples yielded 0 proportion rejection when testing II vs
IV. Hence if the sample size is 50, there is a high probability the matrix will be
incorrectly assumed to be of form IV. However, the proportion of tests allowing the
further incorrect reduction to V from IV was very small. No estimates were reduced
from IV to V.
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Reducing the model from II to IV shows the most drastic dependency on sample
size. For 500 samples, the observed probability of rejection was 78.2%. Hence there
is a good chance the model will not be reduced to the incorrect covariance matrix IV.
However, as the sample size decreased, the variability in the estimates increased and
the test was not powerful enough to detect the lack of fit from assuming covariance
structure IV. This evidence shows small samples have a high chance of incorrectly
reducing the covariance matrix.

Attempting to reduce the model to covariance V showed better results. There
were two possible reasons for this. One is the estimate of IV and V are the maxi-
mum likelihood estimates. The other is that hypothesis V is so restricting that the
estimates clearly show it is an incorrect reduction of the covariance matrix.

Model Sample Size
III
III
III
III
III

500
350
200
100
50

I vs II
.137
.114
.157

*

II vs III
.109
.105
.094
.084
.063

III vs V
1.000
1.000
1.000
1.000
.996

II vs IV
1.000
1.000
.994
.340
.005

IV vs V
1.000
1.000
1.000
.965
.732

TABLE 23: Rejection rates for 1000 samples, Model III

Table 23 shows the hypothesis tests under the covariance structures III. For large
samples, the test shows rejection proportions between 0.114 to 0.157. This indicates
that large samples will allow reduction of the covariance matrix from I to II but the
rejection rate is almost 3 times the required .05 Testing from II to III shows rejection
proportions from 0.105 to 0.063. Attempts to reduce the model further from III to V
yielded rejection rate of 1.000 to .996 or 1000 rejections out of 1000 simulations and
996 rejections out of 1000 simulations for sample size 50. Hence the testing procedure
has a good chance of reducing the model to III but will most likely stop before it
reduces the model all the way down to total independence hypothesis V. For large
samples, the likelihood ratio statistic will also prevent reduction of the covariance to
IV, but small samples may allow the incorrect reduction.

Table 24 shows the hypothesis tests when the true covariance matrix is IV. The
first test was to reduce the model from the unrestricted variance covariance matrix

to matrix II. This test showed .113 to .145 for sample sizes 500 to 200. Testing to
reduce from covariance II to III showed rejection of the null hypothesis. Hence, it
is unlikely the covariance matrix will be reduced to the III hypothesis. Attempts to
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Model I Sample Size
IV
IV
IV
IV
IV

500
350
200
100
50

I vs II
.113
.145
.145

*

II vs III
1.000
1.000
1.000
1.000
1.000

III vs V
.917
.923
.928
.889
.775

II vs IV
0
0
0
0
0

IV vs V
1.000
1.000
1.000
1.000
1.000

TABLE 24: Rejection rates for 1000 samples, Model IV

reduce the hypothesis from II to IV resulted in no rejections indicating a very high
likelihood that hypothesis testing for covariance reduction will end in covariance IV.
All hypothesis testing for all samples sizes showed rejection of the null hypothesis
when testing reduction from IV to V. Hence it is very likely to reduce the hypothesis
to IV and stop reducing the covariance matrix. It should also be noted that the
estimate for IV is the maximum likelihood estimate.

Model Sample Size I vs II
V
V
V
V
V

500
350
200
100
50

.122

.091

.142
*

II vs III
.099
.089
.095
.080
.051

III vs V
.021
.015
.020
.015
.023

II vs IV
0
0
0
0
0

IV vs V
.032
.018
.053
.038
.027

TABLE 25: Rejection rates for 1000 samples, Model V

Table 25 shows rejection proportions for the hypothesis testing sequence when
hypothesis V was true. The test indicated rejection proportions between 0.091 and
0.142 for rejecting covariance matrix II. Once again the probability of rejecting the
II hypothesis is 2 to 3 times higher than expected. Hence for small samples, it is
unlikely the testing procedure will make it past the first reduction of covariance I
versus covariance II. However, once the testing procedure proceeds past this initial
test, the results are more promising that the procedure will reduce down to the
correct covariance structure. Testing from covariance II to covariance III shows 0.050
to 0.099 rejection rate for all samples sizes. Reducing from III to V shows a much
less rejection of 0.015 to 0.023. No rejections resulted when testing for reduction
from II to IV. Hence this hypothesis was never rejected when the true covariance
structure was hypothesis V i.e. the values were independent. Finally, the hypothesis
test IV to V was rejected 0.018 to 0.053. Testing hypothesis IV versus V was a
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true maximum likelihood test because all the estimates were gained using maximum
likelihood functions.

III.3 BOOTSTRAPPING

The hypothesis tests above showed a higher rejection rate than the expected .05.
This was most likely due to differences between the MLE and the estimates. While
the estimates mentioned in Chapter II perform well estimates only in IV and V are
maximum likelihood estimators and hence will yield a ?2 asymptotic distribution.
Since the estimates shown above may not be the maximum likelihood estimates,
another methodology was used to approximate confidence intervals. Bootstrapping
was used to create tests that give more accurate rejection probabilities. Paramet-
ric bootstrapping stimulations based on (Efron and Tibshirani, 1993) theory were
used to create hypothesis tests. For each possible covariance structure, a set of 100
simulations were performed. Each of the 100 simulations consisted of 100 bootstrap
samples.

The following sequence was followed for the bootstrapping simulations. The se-
quence stated here shows the parametric bootstrap procedure when testing covari-
ance I vs covariance II. Other tests followed the same pattern. For covariance II, a
covariance matrix was assumed as

/ F„ <g> Ey ^yx ® Eyx \
\ yxy ® S?? F? <g> Ex J '

The covariance matrix was used to simulate one initial sample data set termed
the initial sample data.

/ 2/111 · · · yPn ¦ ¦ ¦ Vm ¦ ¦ ¦ Vpti Xm ¦ ¦ ¦ Xqii ¦ ¦ ¦ X\n · · · xqti

\ VlIn ¦ ¦ ¦ VpIn ¦ ¦ ¦ V\tn ¦ ¦ ¦ Vptn ^Un ¦ ¦ ¦ %qln ¦ ¦ ¦ X Un ¦ ¦ ¦ xqtn J
(19)

The third subscript in (19) denotes the sample number. The sample data was
used for two purposes. The first was to estimate the test statistic based on the
likelihood ratio. The likelihood ratio statistics was used as a test statistic for the
bootstrap samples as well. The loglikelihood ratio statistic is defined by

? = -2 (log(L(Y, X, µ, S??)) - log(L(Y, X, µ, S?{a)))) ¦
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This statistic was compared to the statistics obtained using bootstrap samples
generated next. The next step was to use the initial sample to estimate the bootstrap
variance covariance matrix.

f Ì!y®ty Ì>yX <g> Eyx
\ F?2/ <g> txy F? ® Ex

The bootstrap variance covariance matrix was used to generate B bootstrap sam-
ples.

2/Î.Î/2, ¦¦·,?/£
X1, x25 · · ¦ j Xb

Each bootstrap sample was used to create an estimate of the sample variance
covariance matrix.

f*=( f;®S; f;*®?;*^ **xy ® ?^ f· ® ?;
Each bootstrap sample was also used to get a test statistics.

K -2 (log(L(Y, X, µ, S„.)) - Ia9(L(Y, X, µ, S^}))) ·
? was compared to the B=IOO bootstrap samples of ?£. If ? was greater than

95% of the Xl values the null hypothesis was rejected. This procedure was performed
S=IOO times to gain an observed size for the bootstrap tests.

The bootstrap procedure defined above was repeated for samples sizes 50, 100,
200, 350, and 500. Null hypothesis structures tested were II, III, IV, and V. A series of
tests were performed for each hypothesis. A researcher testing the hypothesis would
not know the true underlying hypothesis. Hence he will continue to test starting with
I versus II until an attempt to simplify the matrix fails. The bootstrap test table
below shows all 5 test rejection rates in an attempt to reduce the null hypothesis
from covariance I down to covariance V.

Table 26 above shows the observed size for the bootstrap tests. The data for all
tests was generated under the covariance matrix II. In this case, the test to reject
the null hypothesis covariance matrix II ranged from 0.08 to 0.06. These values are
well within sampling error for the desired 5% value that was expected. Hence the
bootstrap procedure seems to give a test of the appropriate size. The next step is to
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Model I Sample Size
II
II
II
II
II

500
350
200
100
50

I vs II
.08
.07
.06
*

II vs III
1.0
1.0
1.0
.92
.95

III vs V
1.0
1.0
1.0
1.0
.96

II vs IV
1.0
.99
.98
.92
.66

IV vs V
1.00
1.00
1.00
1.00
1.00

TABLE 26: Rejection rates for 100 samples, Model II

see if the testing procedures will further reduce the test below hypothesis II. Since
the true underlying distribution used to generate the data was covariance II, it is
undesirable to reduce the assumed hypothesis any further. Attempts to reduce the
covariance from II to III resulted in rejection proportions from 0.92 to 1.00. This
indicates a strong power in the test to detect the incorrect reduction. Attempts to
reduce the covariance structure from III to V resulted in rejection proportions from
0.96 up to 1.00. Attempts to reduce the covariance from II to IV for samples 100
and above resulted in rejection rates 0.92 and above. However, small samples results
only showed 0.66 chance of detecting the incorrect reduction. Tests to reduce the
test from IV to V were always rejected. Hence, it is very likely that this testing
procedure will correctly reduce the model from covariance structure I to covariance
structure II and no further.

Model
III
III
III
III
III

Sample Size
500
350
200
100
50

I vs II
.06
.1

.05

II vs III
.05
.06
.01
.06
.02

III vs V
1.00
1.00
1.00
1.00
1.00

II vs IV
1.00
1.00
1.00
1.00
1.00

IV vs V
1.00
1.00
1.00
.96
.77

TABLE 27: Rejection rates for 100 samples, Model III

Table 27 rejection rates are generated from covariance III. Testing to reduce the
covariance matrix from I to II shows rejection rates from 0.05 to 0.10. The range
is slightly higher than 0.05 target value. However, there is still a good chance of
correctly reducing the covariance matrix from I to II. Furthermore, hypothesis testing
from II to HI has rejection rates of 0.01 to 0.06. Hence, it is likely that the testing
procedure will result in a reduction to covariance III. Testing to reduce hypothesis
III to V showed 1.00 rejection proportions. Testing to reduce the covariance matrix
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from II to IV also resulted in a 1.00 rejection rate. Hence, if the true hypothesis is
independent across time intervals, this test is likely to detect that independence.

Model
IV
IV
IV
IV
IV

Sample Size
500
350
200
100
50

I vs II
.05
.1

.03
*

II vs III
1.00
1.00
1.00
1.00
1.00

III vs V
94
89
94
88

II vs IV
.04
.07
.06
.06
.04

IV vs V
1.0
1.0
1.0
1.0
1.0

TABLE 28: Rejection rates for 100 samples, Model IV

Table 28 shows the rejection rates under the hypothesis IV. Testing from I to
II gives rejection proportions from 0.03 to 0.10. Testing from II to III gave 1.00
rejection rates. Hence it is unlikely to reduce to the incorrect hypothesis III. Testing
hypothesis II vs IV gives expected rejection rate from 0.04 to 0.07. Continued testing
from IV to V showed 100% rejection for all samples. Hence, once the testing gives
the IV hypothesis, it is unlikely to reduce below that if the true covariance matrix is
IV.

Model
V
V
V
V
V

Sample Size
500
350
200
100
50

I vs II
.05
.10
.03
*

II vs III
.08
.08
.08
.05
.05

III vs V
.1

.03

.09

.08

.05

II vs IV
.1

.07

.11
.1
.06

IV vs V
.07
.07
.06
.04
.06

TABLE 29: Rejection rates for 100 samples, Model V

Table 29 shows the rejection rates under the covariance V. The initial test reducing
from the unstructured covariance I to II shows rejection rates from 0.03 to 0.1. It is
important to note that the rejection rates for small samples are not larger than the
rejection rates for large samples. For covariance V, it is very likely the researcher will
reduce the model from the unstructured case down to covariance II. Further testing
from covariance II to covariance III shows rejection rates of 0.05 to 0.08. Once again
this is in the acceptable range and yields a good probability the researcher will reduce
the covariance structure to III. Testing from III to V yields rejection rates of 0.03 to
0.09. These are close to the desired rejection rates. Taking the other path also yields
promising results. Rejection rates for testing II to IV gives rejection rates from 0.06
to 0.11. Hence, it is likely the researcher will reduce the hypothesis to IV. Finally
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testing from IV to V gives rejection values of 0.04 to 0.07. Hence using parametric
bootstrapping gives reasonable rejection rates for hypothesis V.

Overall parametric bootstrapping combined with the estimator above showed
good results. The bootstrap samples above were based on 100 boot strap iterations.
Using the normal approximation, a 95% confidence interval for the rejection region
when the null hypothesis is true runs from 0.006 to 0.094. Most of the values ob-
served above fell in that range. Furthermore, when the null hypothesis was false, the
observed power of the test was high, thus ensuring a low probability of the researcher
incorrectly reducing the data to a hypothesis that is too simple and incorrect.

III.4 NASA DATA

Data was acquired from NASA Langley to illustrate the method. The data was
used from the Intercontinental Chemical Transport Experiment Phase B (INTEX-
B) project. The INTEX-B* was an experiment that aimed to understand gases and
aerosol transport on a transcontinental / intercontinental scale. The project also
aimed to assess the scale and the impact of such gases on air quality and the overall
climate effect. The primary constituents of the experimentation were ozone, aerosols,
long-lived greenhouse gases, and all their precursors.

The INTEX experiment was a two phase plan. The first phase INTEX-A was
completed in the summer 2004. The second phase INTEX B was completed in
the spring of 2006. INTEX experimentation was implemented in coordination with
MIRAGE-Mex and, DLR/IMPACT studies. All three projects were performed in
coordination with satellite observation studies also performed at NASA.

The data for this report came from the second half of the study INTEX-B. The
INTEX-B field study was performed from March 1 to April 30, 2006 carried out
approximately 8 weeks. It was performed in two parts. The first part was performed
during March 1-31 and focused on Mexico City pollution outflow. The second part
(INTEX-B/Part II) was performed during April 1-30 and focused on the Asian pol-
lution inflow. Due to the location, several national and international partners joined
in the INTEX-B study. Data used in this dissertation came primarily from March
19 2006 18:34:15 to 19:15:15.

Two aircraft were used in the experiment. One was a NASA DC-8 flown out
of Houston, Texas and the other was an NSF/NCAR C-130 from Tampico, Mexico.
Both planes had air routes designed to measure pollution outflow from Mexico city.
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However, from 18:34:15 to 19:15:15, the two aircraft flew close together in formation,
with sensors on each taking atmospheric readings. Preliminary readings of interest
were Carbon (CO), Ozone (03), and Water (H20). Both craft took continuous
readings for the 41 minutes. Figure 1 shows the entire flight path of each plane
as well as the joint flight path where measurements were taken from each plain
simultaneously.

The estimation procedures created in Chapter II were used to estimate the vari-
ance covariance matrix of these variables. The objective was to determine if the
the covariance structure of the flight data would match subject matter expectations.
The data were taken simultaneously for each molecule, experts expected to see a
covariance structure

F,

Fyx

F,
¦'yx

xy Yy '-'xy

The F matrices in these were not AR(I) structure but instead represent the
correlation matrix. Examining the data showed the aircraft changed altitude during
the flight which drastically changed the element quantities. To compensate for this,
data was used only when the aircraft was below 400 meters.

The aircrafts changed altitude roughly 700 seconds into the flight time wherein
both planes were within the same airspace. Figure 2 shows the aircraft altitude over
time. The change in aircraft altitude caused a large change in the reading level of
the molecules of interest. The levels of O3, CO, H2O, and the aircraft altitude were
scaled to the values of zero to one. All Molecular measurements were taken in grams
of substance per kilogram of atmosphere. Altitude was measured in meters.
Altitude I 03 DC-8 CO DC-8 H20 DC-8 03 C-130 CO C-130 H20 C-130

313
3992.3

35.0317
81.85337

112.93
222.59

2.295522603
14.55818318

33.2
85.2

103.3845
211.3836

3.90521
16.5065

TABLE 30: Altitude and Molecule measurements before scaling

Figure 2 shows how the change in aircraft altitude affected the measurements.
The H20 measurement dropped drastically as both aircraft increased altitude. CO
measurements started around 150 and fell sharply to 112 as the aircraft approached
2500 feet. As the aircraft rose toward 4000 feet, the CO value rose sharply. The 03
values rose steadily every time the aircraft increased altitude.

Lag one differences were calculated for each molecule and the resulting data was
analyzed. The lag one difference accounted for the change in molecules caused by
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the change in altitude. The data was too close together in time to get an accurate
measurement. After the data was thinned there was still an altitude oriented trend
in the data. To remove this, a 4 th degree polynomial was fit to the data with change
in altitude as the predictor variable and the change in each variable as the response.
The residuals were then thinned and used in the canonical correlation analysis.

A thinning procedure was used to sub set the data for analysis. The data was
divided into groups of 23 observations. The first, sixth, and eleventh observations
were used in the analysis. This left a twelve observation gap between the time values
used in each data set. Attempts to reduce the group size to 22 or fewer data points
or to reduce the spacing of the observations closer resulted in a singular variance
covariance matrix.

After the differencing, removal of the altitude trend, and data thinning, the re-
sulting data may seem difficult to interpret. Physical interpretation of each can be
thought of as follows. Differencing allows us to examine the change in each sensor
measurement level with respect to the change in the other sensor levels. Removing
the trend due to altitude changes simply removes some explainable variation from
the calculations. Finally the data is highly correlated, with each second of data
being very close to the next second. Thinning allows us to reduce the correlation
between samples. The resulting canonical correlation analysis shows how changes
in measurements of the DC-8 sensors relate to changes in the measurements of the
C- 130 sensors.

The covariance matrix testing sequence defined above was performed on the dif-
ferenced values.

Hypothesis Test Observed P-value
~~ II =» III .00

II =*? IV .23
IV =» V I .007

TABLE 31: Testing Results for the NASA data

*Note that due to the low number of data points, the estimate of the unrestricted
covariance I was singular and hence the likelihood could not be calculated.

The results using parametric bootstrapping show that hypothesis IV was the
most likely covariance structure to have generated the data. Attempts to reduce
the covariance to III and V resulted in observed p-values of .007 or less. Hence
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the difference values were modeled using a IV matrix. As discussed previously, the
covariance estimate for IV is a maximum likelihood estimator.

EyDC-8 03 S„DC-8 CO E^DC-8 H20 EXC-130 03 Ex C-130 CO EzC-130 H20
0.2119047
-0.011894
0.0049709

-0.011894
0.5828666
-0.01056

0.0049709
-0.01056

0.0053191

0.2359842
0.1215785
0.0014622

0.1215785
7.2159748
0.0053734

0.0014622
0.0053734
0.011764

TABLE 32: Covariance IV Estimates for NASA DC-8 S„ and C-130 S1

ÍJXy Va
0.0371183
0.0284117
-0.000511

l_JXy CQ
-0.056899

-0.0285
0.0094509

??? H20
-0.00096
0.002261

6.8809E-6

F 03

-0.131819
0.0173763

F CO
-0.131819

1
-0.131819

F ?20
0.0173763
-0.131819

1

TABLE 33: Covariance IV Estimates for NASA DC-8 and C-130 cross covariance
S?? and correlation F

The Tables 32 and 33 show the maximum likelihood estimates of the variance
covariance matrix. The values in Table 32 show the values for the data within a
single time point. The values show the CO molecule as measured by the DC-8 aircraft
has a much lower variance than the CO molecule as measured by the C-130 aircraft.
Other variance and covariances are comparable. Using this estimation method, it was
possible to estimate the 27 parameters of the variance covariance structure. If there
were no covariance structures assumed, the variance covariance matrix would have
required 171 parameters. Since the data set only contained 34 values after thinning,
it would have been impossible to estimate a nonsingular variance covariance matrix.

NASA Analysis

Altitude I 03 DC-8 I CO DC-8 H20 DC-8 03 C-130 I CO C-130 H20 C-130
313

3992.3
35.0317

81.85337
112.93
222.59

2.295522603
14.55818318

33.2
85.2

103.3845
211.3836

3.90521
16.5065

TABLE 34: Altitude and Molecule measurements before scaling

The advantage of the Kronecker product covariance structure in relation to the
canonical correlation is the variables can be broken into two parts. The element
correlation and the time correlation.
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Canonical Correlation
1st Canonical Correlation
2nd Canonical Correlation
3rd Canonical Correlation

0.201539
0.046524
0.02943

TABLE 35: Canonical Correlations Within Each Time Period

1st Variable 2nd Variable 3rd Variable
Ozone DC-8

Carbon Monoxide DC-8
Water DC- 8

2.0194259995
0.4867624881
-3.115793454

-0.222118448
0.8116618203

12.605438

-0.835241353
0.9402128968
-5.528166362

TABLE 36: Raw Canonical Coefficients DC-8

Canonical correlation analysis on the data showed the combination of variables
and how they were related. The first canonical correlation gives the highest corre-
lation between the two sets of data. The best correlation between the two sets was

0.201. The first Canonical variable had Ozone from the DC-8 (OD) as the dominate
attribute and Ozone from the C-130 (OC) also as the dominate attribute. Both val-
ues were positive and close in magnitude. This is an indicator that the variables for
Ozone from each sensor are measured at about the same levels and are very closely
correlated.

The OD had an 0.88 correlation with the DC-8 first Canonical variable (Dl)
from table 40 and 0.178 in table 42 with the first C-130 canonical variable (Cl).
This represents the majority of the correlation between the DC-8 and the C-130
data set.

This is an indication that most of the OD variability is represented in Dl. Hence
The DC-8 Ozone value is a strong driver for the best relationship with the C-130 data
set. Similarly, the OC had a 0.92 correlation with the Cl and a 0.1860 correlation
with Dl shown in tables 41 and 43. This means most of the OC is represented in
Cl.

The water coefficients in the first canonical variable are negative. The fact that
both are negative shows they both effects are similar in how they relate to the Dl and
Cl. However it should be pointed out that the magnitude of that effect is different
in each case, the H20 effect in the DC-IO (HD) had a coefficient of -3.11 while the



66

1st Variable 2nd Variable 3rd Variable
Ozone C-130

Carbon Monoxide C-130
Water C-130

1.9766923865
-0.141696141
-0.543495619

0.579679451
0.3110932006
3.6870230035

-0.18
-0.151570441
8.4381687378

TABLE 37: Raw Canonical Coefficients C-130

Ozone DC-8
Carbon Monoxide DC-8

Water DC- 8

1st Variable 2nd Variable 3rd Variable
0.9296
0.3716
-0.2272

-0.1022
0.6197
0.9193

-0.3845
0.7178
-0.4032

TABLE 38: Standardized Canonical Coefficients DC-8

H20 effect in the C-130 (HC) had a coefficient of -0.54 as shown in tables 36 and
37. This could be a sign that the scales of both variables are different in magnitude.
However looking at the standardized coefficients which equalizes the scales shows a
similar difference. Under the standardized scale HD is -0.2272 while HC is -0.0589 as
shown in tables 38 and 39. Hence it would appear the HD plays a much larger role in
Dl than HC plays in Cl. In other words the water reading on the DC-8 is inversely
proportional to the ozone reading on from the C-130 sensor values. While the water
reading from the C-130 sensors is negatively correlated similar to the water reading
from the DC-8 sensors, the correlation is not as strong.

The most surprising sensor readings were the carbon monoxide readings. The
magnitude of the carbon coefficient was small in the first canonical correlations for
both aircraft with Dl having a 0.487 and Cl having a -0.141. However the standard
canonical coefficients showed 0.372 and -0.381 from tables 38 and 39 which is an

indication the magnitude difference may have been caused by different scales used
by each sensor. The unexpected characteristic is the sign of the coefficients. One
is positive while the other is negative. Hence the DC-8 carbon (CD) measurement
shows it is positively correlated with the C-130 data set while the C-130 carbon (CC)
measurement shows it is negatively correlated with the DC-8 data set. This is an
unfortunate find because both sensors are measuring the same elements in the same
airspace, both correlations are expected to go the same direction. The two most
likely causes are atmospheric variability and or sensor differences.



Ozone C-130
Carbon Monoxide C-130

Water C-130

1st Variable 2nd Variable 3rd Variable
0.9602
-0.3806
-0.0589

0.2816
0.8357
0.3999

-0.0899
-0.4072
0.9152

TABLE 39: Standardized Canonical Coefficients C-130

Ozone DC-8
Carbon Monoxide DC-8

Water DC- 8

1st Variable 2nd Variable 3rd Variable
0.8834
0.3833
-0.1601

0.0129
0.4488
0.7867

-0.4685
0.8073
-0.5962
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TABLE 40: Correlation between DC-8 elements and their canonical Variables

The first is that the planes are not flying close enough together and that carbon
element densities in the atmosphere vary with only a few meters distance between
locations. For safety reasons, the planes are unlikely to fly any more closely together.
If this is the case, it is unlikely to be resolved. However future tests may want to
install both sets of sensors on the same aircraft. The second likely cause is that one
or both of the sensors is not accurately measuring the carbon levels. In this case, a
third sensor could be used to help calibrate the other two.

The two other canonical correlations are shown for completeness. However, since
the correlation between the variables is 0.04 and 0.02, these were not considered to
play an important role in the analysis.

In conclusion, the change in element measurements were modeled with a type II
covariance structure from Chapter II. The structure showed each sensor's measure-
ment of ozone matched up on both planes. Measurements of water matched slightly
less and carbon measurements showed entirely different results between the planes.
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Ozone C-130
Carbon Monoxide C-130

Water C-130

1st Variable 2nd Variable 3rd Variable
0.9231
-0.2923
-0.0393

0.3706
0.8693
0.4231

-0.1025
-0.3987
0.9052

TABLE 41: Correlation between C-130 elements and their canonical Variables

Ozone DC-8
Carbon Monoxide DC-8

Water DC- 8

1st Variable 2nd Variable 3rd Variable
0.1780
0.0772
-0.0323

0.0006
0.0209
0.0366

-0.0138
0.0238
-0.0175

TABLE 42: Correlation between DC-8 elements and the Canonical Variables of the
C-130

Ozone C-130
Carbon Monoxide C-130

Water C-130

1st Variable 2nd Variable 3rd Variable
0.1860
-0.0589
-0.0079

0.0172
0.0404
0.0197

-0.0030
-0.0117
0.0266

TABLE 43: Correlation between C-130 elements and the Canonical Variables of the
DC-8
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FIG. 1: INTEX-B Airtracks
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CHAPTER IV

A SIMPLIFIED APPROACH

IV. 1 ALTERNATIVE DATA STRUCTURE

In the previous chapters, we have successfully used Kronecker product covariance
matrix and showed how to perform a CCA of longitudinal data. We also provided
some tests for testing Kronecker product covariance structure. However for correctly
implementing the tests, bootstrap computations were needed. Bootstrap computa-
tions can be quite involved, especially when the dimensions of data are large. In
this chapter we look for alternative, but simpler methods for testing for Kronecker
product covariance structure.

Under the Kronecker product covariance structure, each yj = (yij, y2j, · · · , Uqj)',
for j = ?,.,.,? has the same covariance matrix Ey. Similarly, each Xj =
(xij, X2,j, · ¦ · , Xp,j)' f°r 3 = 1) ··) * has the same variance covariance matrix Ex. Fur-
ther, the covariance matrix between Xj and yj is the same as S?? for all j = 1, ...,i.
However, the covariance matrices between the Xj and x'¿, between yj and y'j and
between Xj and y'j are affected by the matrices F?, F^, and F?^ respectively. The F
matrices complicate the model and analysts may avoid calculating the full covariance
involving the F matrices in favor of a simpler model.

In this chapter, the canonical correlations are calculated ignoring the time corre-
lation structure. The asymptotic distribution of the canonical correlations is derived
which involves use of a duplication matrix. A simple algorithm is provided to gener-
ate the duplication matrix.

It is possible for the researcher to analyze the data ignoring the time covariance
structure. In this case, the researcher will assume the F??/ = /, F^ = I, and F? = /.
Ignoring the time covariance matrix will allow the researcher to conserve data points
and simplify the analysis. When the researcher ignores the time covariance structure,
he still retains the covariance structure within single time units. Hence the data
points (yij,'f/2j, ¦ · · ,Vq,j) are still considered to have the same covariance structure
within a single time unit. However, the covariance structure between the two time
units is removed.
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IV. 2 USING THE UNSTRUCTURED ESTIMATE

When the time covariance matrix is ignored, the following is assumed for the analysis:

" Y1 1 G / 0 \ / S„ ... 0 Exy ... 0 y
Yn AT 0 0 ¦¦¦ S, 0 ... Ex,
X1 0 Eyx ... 0 Ex ... 0

_Xn \ L \ ° / V ° · · · S?* ° · ¦ · ?? y _
Without loss of generality, we have assumed means to be zero. The researcher

will then pool the data together to increase data and gain better estimates. This
method is much simpler than estimating the entire covariance matrix as discussed in
Chapter II. However, this does not correctly model the data.

When taken individually, the covariances of each set of Y observations can be
separated by time. In this way all Y data taken at time period one can be used to
estimate Ey. Data taken at time period two can be used to estimate ?? and so on
for all time points. The same is true for the X observations, where X values observed
at time one can give an estimation of Ex and X values observed at time point two
also give an estimate of Ex and so on.

Since this analysis is much simpler than the estimation technique discussed in
Chapter II, it can be used as a preliminary method to determine whether or not the
data needs to be modeled with the more complicated structure. To investigate this
simplification, two values examined were the asymptotic distribution of the canonical
variâtes and the asymptotic distribution of the canonical correlations.

If the true covariance matrices for X and Y (E^Ex, and Eyx) are known, then
the true canonical variâtes and canonical correlations can be derived.

The tth pair of canonical variate pairs are defined by:

Ut = e'^-^Y and Vt = /,'Ej1Z2X
The vector et is the associated (gxl) eigenvectors of

y—1/2V y-ly y-1/2

and the vector ft is the associated (pxl) eigenvectors of
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V-V2V y-ly. y-1/2

It is important to note these are the same eigenvectors and eigenvalues ßS defined
in Chapter II for longitudinal data. Chapter II covariance matrices had 2 parts, the
time series correlation structure and the multivariate variable structure as

^v ¥ ìjt, ? t· ? ?? ^ li¦yx ¦ xy^y Z-¡y Z-jyx¿Jx ¿-'xyì-'y and
f; -1/2 F?,,F^F,,?F? 1/2 S-1/2? ?_?? V? ¿-'?? Z-1Ii Z-1VX Z-1xy^y

-1/2

1/2, -1/2Ignoring the time correlation structure removed the F^ F3/?F?1F?^F^ com
ponent from the eigenvector calculations.

IV.3 REDUCING TO THE TIME COVARIANCE FUNCTION

Let

afc = é^1'2 and bfc = /¿S;1/2
where a¿ and b/. are the vectors of canonical coefficients for the k th canonical
variâtes. Let

a2k
Qfc = , and bk

\ CLgk J \ bpk )
Under models II through V from Chapter III, it is important to note that each

dk and bk canonical coefficient vector is identical when each time period is treated
individually. The sample values will vary but the theoretical values remain equal.

Let the variables Y7- and Xj be defined before as,

yi = (yij,y2jì---,yqj),'
Xj — [?ij , X2j , , Xpj )¦'

(20)

The Yj vector represents q values of the Y variable recorded at time j and the
Xj vector represents the ? values of the X variable recorded at time j . The canonical
variâtes can be written as
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It ® ai O
O It. T K

Y

X

ak ... O O O O

O O ak O O O
O O O bk O O

O O O O O bk

The transformation results in covariance matrix

Yi

Yt
Xi

Xt.

? ®a'k 0
0 It® K

F, F

FXy ^cV ¿~txy

yx

F,
-<2/x <8>a'fe 0

0 It ® b'k

T =

a,'kT,yak

a'kPy~lY,yak
bk¿->yxClk

a'kPy ^yak a'kExybk

a'kEyak a'kPxy ^xyh
b'kPxy ^xyCík^n-iv „. yj:xhk

Since a^E^Ojk = 1 and b'kHxbk = 1 the matrix reduces to

0^Px2/1 S™? \JxyVk

ak^xybk
b'kpnx-^xh

b'kT,xbk J

? (21)F» F???*
F??? F?

where

^k — O-k^xybk-

Equation (21) shows how canonical correlation analysis can be used to reduce
the covariance matrix to a function of correlations between time units. It should be

noted that while the researcher may choose to ignore the covariance structure across
the time points, the true variance covariance matrix still shows the time dependency
after the transformation.
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IV.4 CREATING THE DUPLICATION MATRIX

The distribution of the canonical correlations can be derived from asymptotic dis-
tribution of the variance covariance matrix T, which is a 2t ? 2t matrix of sample
variance covariance matrix of the transformed data. This requires the use of the
duplication matrix and accompanying matrix operations (Schott, 1997, p. 285; Tim,
2002, p. 90). The duplication matrix can be used to determine the asymptotic dis-
tribution of the vector vech(Q) using the asymptotic distribution of the ? matrix.
The canonical correlations are subsets of the matrix T.

vecHë) ^(^??),(^|?)) (22)
Equation 22 gives the asymptotic distribution of the vech(Ö) vector. Vech(0) is

chosen over vec(6) to ensure the corresponding distribution is nonsingular. The D+
matrix is the Moore-Penrose inverse of the Duplication matrix, determined as

Dt = {D'vDvylD'v.
The corresponding asymptotic variance is a function of the Kronecker product

covariance matrix and the Moore-Penrose inverse of the duplication matrix. It is
clear that the duplication matrix is a useful matrix and it would be helpful to have an
algorithm to create this matrix easily. In the following the structure of the vech and
vec operators will be used to create a simple algorithm to calculate the duplication
matrix.

The matrix transformations shown next in equation (23) are the vech and vec
operators. Equation (23) illustrates the vech and vec operators with an ? ? ? matrix
A. The vech operator takes an ? ? ? symmetric matrix A and transforms it into a
t"+1)" vector that does not include the duplicate entries from the original matrix.
The procedure used transforms the matrix A to take the first column of the matrix
and create the first ? rows of the vector. Take the second column of the original
matrix, remove the first value, and attach the remaining ? — 1 values to the new
vector. Continue in this way until the last column of the matrix is reached. When
the last column of the A matrix is appended, only one value from matrix A, An^n is
appended to the column of vector vech(A).

The vec operator uses an ? ? ? matrix A to create an ?2 ? 1 vector by stacking
the columns of A. The first value in the vector is the row 1 column 1 from the original
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matrix a?,?. The second value is the matrix entry from row 2 column 1 of the original
matrix a2 ? . This continues for all elements of the matrix.

A

O11 a12

«21 «22

«ni «n2

Û2n
; vech(A)

«1,1

«2,1
»1,1

0-2,1
an,l

«1,2

02,2
On1I
«2,2

«3,2

«n,2

«n— l,n— 1

«n,n — 1

«p,t?

vec(A) «n,2

«l,n-l

Q"n,n— 1

«l,n

(23)

The duplication matrix D^ converts an n(n2+1) ? 1 vector into an ?2 ? 1 vector. The
matrix Dv allows the transformation from vech(A) into vec(A). The transformation
matrix between the vec(A) and vech(A) is shown below.

Dvvech(A) = vec(A),
where
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Dy =

In
0 10 0
oooo

0 0 10

0 0 0 0

oooo

0 0 0 0

oooo

O ... O

O o ... o

O I„_i
O O ... O

0 0 1 O ... O

0 O

1 O

0 0 0 O

O

O

1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

I2 o
0 0 0

0 0 0

(24)

O O O O ... O O O O ... O ... O 1 O

O O O O ... O O O O ... O ... O O 1

The Dv matrix must be created automatically to accommodate different number
of time periods. An algorithm to create the Dv matrix is included below. The Dv
matrix dimensions are ?2 ? "^+ ' . The first step is to create a matrix of zeros
corresponding to those dimensions.

An algorithm was created to automate the creation of the duplication matrix.
The algorithm takes advantage of the duplication matrix structure. Each row of the
duplication matrix is used to recreate a row of the original matrix from (vech) vector.
What follows is a simple algorithm to create the duplication matrix. The algorithm
is simpler than another approach in (Harville, 1997, p. 352). The steps below show
the logical sequence used to develop the algorithm.

The first rows of the duplication matrix form an identity matrix In. These simply
replicate rows 1 through ? of the original matrix.



78

O O 0 0 0

a?,?

«2,1

«p,?

«2,2
«3,2

«n,2

«p— ?,?— 1

^t?,?-1

«??.. T?.

??,?

Û2,l

«?,?
0

Since 01,2 = «2,1, the ^ec/i matrix does not contain a value for the matrix element
ai t2- Hence the duplication matrix uses a previous row from vech(A) to add the
correct value into a row to add back in the duplication matrix.

0 10 0

0

0 0

0.000

0 ... 0 0 0

«1,1

0-2,1

«2,2

«3,2

On, 2

«n— l,n— 1

«n,7i— 1

O·?,?

«1,1

«2,1

«p,?

«1,2
0

Matrix values A2^ to An^ can be pulled directly from the vech(A) vector rows
n+1 to 2n-l. This creates another identity matrix with the dimensions Jn-I-
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O 1

O O

O

O

O

O

O

O O

O

O

O

1-n-l

0 0 0

0 0 0

0 0 0

«1,1
»2,1

Qn1I

«2,2

«3,2

Qn,2

^n- l,7i— 1

Q"n,n— 1

u>n,n

Rows vec(A)2n+i and vec(A)2n+2 are elements A^ and ,42,3 of the original matrix.
These values are not directly contained in the vedi vector because the A matrix is
symmetric. To obtain these rows, the duplication matrix takes them from previous
rows of vech(A) vector.

a?,?

Q2,l

?-?,?

«1,2

«2,2

O?,2
0

In
0 10 0
0 0 0 0

0 0 10

0 0 0 0

0 ... o

o o ... o

0 In-I
o o ... o
0 0 1 o ... o

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

a?,?

?2,1

ûn,l

«2,2

Û3,2

a?,2

&n— ?,?— 1

«?,?— 1
LL ?. ?

This pattern is repeated to gain the relationship Dvech(A) = vec(A).
trix in Equation (25) is separated with vertical and horizontal lines to

a?,?

«2,1

An, 1
ai,2

a-2,2

an,2

«1,3

«2,3
0

The ma-

illustrate
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the different subsections. These subsections were used to automate the duplication
matrix.

0 10 0

0 0 0 0 0

0 0 10

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

•-71- 1

0 10

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0

0

0

0

0

0

0

Ii

a?,?

a-2,1

<Vi

»2,2

03,2

«n,2

«t?— l,n— 1

«t?,?— 1

«71,71

a?,?

«2,1

On1I

«1,2

«2,2

«71,2

«?,t?-1

«t?,t?— 1

«1,71

(25)
The columns of the duplication matrix can be labeled to correspond to the cells

of the original matrix and the rows of the vech vector. The rows of the duplication
matrix can be labeled to represent the cells of the original matrix and the rows of
the vec(A) vector.

row/column
11

21

n\

12

nn

11 21 nl 22 32 n2 nn

1 0

0 1

0 0

0 1

0 0

0 0 0
0 0 0

1 0 0

0 0 0

0 0 0

0

0

0

0

0

0

0

0

0

(26)

An algorithm was created to populate the duplication matrix. First the columns
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of the matrix A are indexed from 1 to n("2+1) and the rows are labeled from 1 to n2.
Index

1

2

?

n + 1

n2

row/column
1,1
2,1

n, 1
1,2

n,n

n(rt+l)
2

1,1 2,1 ... n,l 2,2 3,2 . 71,2 n,n

1

0

0

0

0

1

0

1

0 0

0

0

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

The algorithm cycles through all rows and columns of the original matrix. For
each row and column, the duplication matrix will have a 1 in the position defined in
equation (27) or (28) below.

The duplication matrix represents each element in the original matrix. Hence to
create the algorithm for Dv, it must cycle through every element in the A matrix.
Let

When cycling through the row and column indexes, use one of the two formulas
below (27) or (28). Begin the algorithm with cell row index (RI)=I and column
index (CI)=I. Then move to RI =1 and CI=2. Cycle through the entire matrix in
this way. While cycling through the matrix if the row index is greater than or equal
to the column index use equation (27). The value ? is the total number of rows or
the total number of columns in the original matrix. Formula (27) or (28) gives the
duplication row index (DRI) and the duplication column index (DCI) for each cell
in the matrix that will become 1. The remaining cells are 0.

Duplication Matrix Row Index and Column Index =
(DRI, DCI) =

Un(CI - 1) + RI, n(CI - 1) - (CI-WCI-V + (1 + RI - CI)
If the column index is greater than the row index use equation (28) .

Duplication Row and Column index =
(DRI, DCI) =

((n(C/ - 1) + row, n(RI - 1) - W-W*1-1) +(I + CI- RI)

(27)

(28)
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After cycling the matrix row and column indexes and placing a one in the cor-
responding location of the Dv matrix the result will be the duplication matrix such
that Dvvech(A) = vec(A).

To gain the large sample distribution for the canonical correlations, specific values
are required from the covariance matrix. The canonical correlations are estimated
in the covariance matrix T. The equation (33) shows a large sample approximation
for the distribution of T. Only specific values of from the distribution are required
to estimate the canonical correlation distribution.

vech{ß) ~ N vech(e),
2D+Q ® QD+'

n-1 (29)

vech(Q)

vech

( a?a?

a'kPy l^Vak
Oj^yxCLk

\ b'kPxy^ya-k

a'kPy %afc a'k^xyh

a'kEyak a'kpxy T,xybk
?????S??a?< b'kExbk

b'kZyxak b'kpnx-^xbk

I a'kEyak \

a'kPy'lEyak
ak^xybk

a'kP%l^xybk
0,k2-iyCLk

a'kPy 2^yak
^¡¡Pxy^xyVk

a'kPxy2Zxybk

\ b'kYlxbk J

akPxy1Zxybk \

ak^xybk
b'kPrlzxbk

b'k^xbk J
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IV.4.1 Isolating Variables of Interest

Once the Duplication matrix is created and the asymptotic distribution is calculated,
the values pertaining to the canonical correlations can be isolated. Only the values
corresponding to a'kHxybk are required to determine the asymptotic distribution of
the canonical correlations. The position of these values within vech{Q) are labeled
in equation (30) below.

vech{ß)

V1:

Vt+I

V2t+t+l

^2í+2t-l+í+l

!>2í(i-l)-fí=±KírHÍ+í+i

\

V,2t(t-l)- (t-l)(t-2) +i+1

V '¦V(l+2t)t

I Q-fcl-lxyük \

a]^-'xy0k

Ofc^iyOfe

O-k^xy^k

(^k^XXpk

O-k^xy^k

J

(30)

\ b'kExybk )
The pattern of these values can be recognized and replicated. The first canonical

correlation retained corresponds to the i + 1 location in the vech(Q) vector. The
next first canonical correlation that follows in the vech vector corresponds to the
position 2t+t+l. The pattern continues with the ith canonical correlation in the
2t(t (t-l)(t-2) t + 1 position. Note all fcth canonical correlations will be the
result of the ak and bk eigenvalues. Hence if ak and bk are taken from the first
eigenvectors all canonical correlations will be the kih canonical correlation.

Using matrix Cv defined as in equation (31) we can isolate values of the covariance
for the canonical correlations. The Cv matrix has dimensions t x —^—'-¦ The
resulting matrix is zero everywhere except at the t points where it is 1.
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G1;

/ O
O

G = 1^«l,t+l
G* =1^1^2,3?+1

V ? G„
2t(í~l)-

O

O

(t-l)(t-2)

. o \

. O

=1 .. O

(31)

The asymptotic distribution of the canonical correlations are shown in equation
(33). The Cv matrix helps isolate and subset the canonical correlation variances.

Cvvech{&) ~ N Cvvech{Q), 2CvD+e ® QD+' C'v
n-\

IV.5 HYPOTHESIS TEST GOING FROM I TO II

(32)

If the true variance covariance matrix is one of the covariance structures II through
V from Chapter III, the canonical correlations within each time period will have
the same value. As shown in Chapter III, attempts at using asymptotic maximum
likelihood approximations as a basis for a hypothesis test to reduce the covariance
from I to II showed a high bias in the test. This bias may have resulted from using
the log likelihood ratio test approximation on an estimator that may not have been
the maximum likelihood estimator. The distribution shown in equation (33) provides
a test going from covariance matrix I to II that should bring the Type I error down
closer to 0.05 when we specify the correct covariance.

Since under structure II through V all sigma matrices are equal and hence their
canonical correlations are also equal, a reasonable test to determine reduction of the
covariance I to covariance II would be to test if the 1st canonical correlations are
equal.

Let the null hypothesis be that all the first canonical correlations are equal to
each other, that is,

H0 : ?? = A2 — · · · — At.

Note the ? values are the first canonical correlation coefficient for each set of data
at a specific time point. Hence Ai is the first canonical correlation for the first time
period, A2 is the first canonical correlation for the second time period, and so on.
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The variance covariance matrix was estimated at each of the time points, as

Si = Syi Syx* > , where* = 1,2,. ..,Í.
The Si matrices were averaged together to produce one matrix S. Canonical cor-

relation analysis was then performed using the S matrix and the first set of canonical
coefficients a were produced for the Y values along with the first set of canonical co-
efficients b for the X values.

The X and Y variables were then transformed by b and a vectors, respectively.

Y \ Í It(S)O.' 0 WY
XJ \ 0 It®V ) \x

If the true underlying variance covariance matrix is of the form

F <g> S? F <g> S??
F <g> S?? F ® S*

the canonical correlations should all be equal. Under the matrix II the variance
. Y

covariance matrix of G I is
X

T = G F <g> S„ F <g> Eyx
F ® S?? F <g> S?

/ a'S?a

a'?G%a
? 2-IyxQ,

\ b'pnxylEXyä

a'Py S?a

a'S?a
? „?-?? ;;Xy ^xyUVp

? ¿-¡yXCL

a ¿-???,?Xy<-

a'Pxy^xyb
6'S?6

VfC-1ZxB

a'???-?S??? \

a, ¿-iXyb
VpT1ZxO

UZxb

This will be asymptotically distributed as

Cvvech{Q) ~ N [ Cvvech(Q) 2CVD+Q ®®Df O0
n-1

To test all the ?
?,

?

values simultaneously,

V A4 J
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?? — ?2
^2 = ?ß

the Bonferroni correction was used to account for inflation in the Type I error rate
from testing multiple hypothesis. The matrix ? was used to construct a test for the
? values (Ravishanker and Dey, 2002, p. 217).

? =

1-10 0

0 1-10

0

0

0 0 0 0 0 0 1 -1

?? = ACvvech(e) ~ N ACvvech(e), 2ACvDt(e®e)DfC'vA'
? — 1

and the decision rule is to reject H0 if the absolute value of the test statistic is
greater than Z1 <*_0 x 2(t-l)

IV. 5.1 Canonical Correlation Test Result

Simultaneous tests were conducted to determine if ?? = 0 for all ?. A simulation
was run to test the asymptotic distribution of the ? values. The distribution had
samples sizes of 50 to 500. The number of X variables were fixed at 2. The number
of Y variables were fixed at 4. The px, py and pxy fluctuated from 0.2 and 0.8. The
time value fluctuated between 3, 6, and 9 units. The overall rejection rate was set at
a = .05 and the number of rejections were recorded for each run of 100 simulations.
The Tables (44)-(48) illustrates the rejection rates for sample sizes 50 to 500. The
asymptotic distribution seems to hold with all tests showing a rejection rates of
around the expected 5 out of 100 or 0.05.

IV. 5.2 Example Variance Covariance Matrix for t = 3

To gain insight into the problem, the covariance matrix was calculated for the case
of t = 1, t = 2 and t = 3. The AR(I) correlation matrix was used in the calculation.
The ? (8) ? matrix is (2?)2 ? (2?)2. For t = 1 this is 4 ? 4 for 16 elements. For t = 2
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the matrix has 16 ? 16 = 256 elements. For ? = 3 the matrix results in 36 ? 36 = 1296
elements. An algorithm was developed to multiply the matrix CVD+ by ? <g> ? and
CVD+Q (g> ? by CVD''V+ . The resulting method allowed the individual values of the
CVD+ (T ® Q)D+' C'v matrix to be derived.

The objective was to show how the px, py, and pxy values propagate through the
equations and influence the resulting variance covariance matrix

(2CvD+(e®e)D¿'c'vy
For t = 1 the matrix CVD+ was shown to be

CVD+ =

( O 0.5 0.5 0 ) ·
The full variance covariance matrix

(2CvD+{Q®Q)Dt'Cv)
was equal to

(1 + ?2) .
See Anderson, (1984, p. 120-121) for a comparison.
For ? = 2 the matrix CVD+ was shown to be

CvD+ =

f 0 CvD+3 = .5 0 ... C11D+
V . . . 0 CvDv23+ = .5 0

The full variance covariance matrix

(2CvD+(@®Q)DtC'v) =
was equal to

/ l + ?2 X2p2xy+ PxPy \
\X2p2xy + PxPy l + ?2 J

= .5 0

0 CVD+2M = .5 0



For t = 3 the matrix CVD£ was shown to be

CVD+ =

'\

CvD^14 .5 0

0

0

0

0 CVD¿211 = .5 0
0 0 0

0

^^1,19
0

0 CD+ = .5
.5 0

0

0

0

0 CVD+ = .5 0

0

0

0

0
^¦"-^3,33 ~~ ·5

lo o
The full variance covariance matrix

was equal to
(2CvDt(e®e)Dt'av) =

( 1 + ?2 ^pL + PxPy ^ Ply + pip?2?2 \
\2n2? Px

Jxy < rxry ¦· rxy · rxr-y

'xv - PxPy 1 + ?2 ?2 Ply + PxPy
\ ?2 P% + pIpI A2Px, + PxPy l + ?2 )

Matrix structure of the covariance shows that ? plays a role in all variance covari-
ance approximations. The variance for each ? is l + ?2. For t = 2 the variance of each
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? remains 1 + ?2 but the covariance between ? 's is \2p2xy + pxpy. This shows that the
covariance is a function of all three, px, py, and pxy. For t = 3 the variance of ? re-
mains the same and the covariance for ? between sequential points remains constant.
The new term in the model is A2p^y + p2p2 for the covariance between ?? and A3. The
sequence repeats and hence covariance between A¿ and A.,· = X2pxy 3 +pi ° pi J ¦ If
px = py = pxy = ? then the covariance between the terms A¿ and Aj decays at a rate
(1 + A2)p2|i-7L However, px, py, and pxy do not appear in the A estimate. This makes
sense since the A is the canonical correlation of the S matrix.

IV. 5. 3 Testing Specific Structures

Using the distribution defined above, it is possible to test more specific forms of the
variance covariance matrix. The objective of the following test is to rule out the
covariance structures shown in Chapter II and Chapter III. After the transformation
using the canonical coefficients, the distribution is

vech(e) ~ N vech{e), 20+(0^e)D+'
71-1

The delta theorem was used to calculate the asymptotic distribution for the ratio
of multiple variables. The idea behind this test is to create ratios from T that will
equal py, pxy, and px under the null hypothesis. If the ratios are rejected, then
variance covariance structure II through V should be rejected. If the ratios are not
rejected, the researcher should then estimate and test variance covariance matrices
II through V using the methods discussed in Chapter II and Chapter III.

Under the null hypotheses II through V, it is possible to create ratios of random
variables that can be tested to disprove the null hypothesis. For the case of t = 3
the matrix is

/

vech{ß) = vech

Py

A

Ap1

V ??:
xy

'xy

Py
1

Py

XPxy
A

XPxy

pl
Py
1

^P2Xy
Apxj/

A

A

Apxj/
??2xy

1

Px

PÌ

Apxy
A

XPxy
Px

1

Px

Xp:
XPxy

A

PÌ
Px

xy

Let the ? matrix represent the estimates of the T matrix
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/

vech(Q) =

Py

Pl
?

?-Pxy
XPÎy

1

Py
????

?

????
1

????
?

1

PÌ
1

V ? /
If variance covariance matrices II through V are true, specific ratios in the vech(0)

vector can be created to test the basic matrix structure. Hypothesis tests can be for-
mulated from ratios of elements of the vechiß) vector and the asymptotic distribution
can be used to approximate the variance.

First, all similar terms must be averaged together. Use a transformation of the
vech(&) vector to average like terms. For the case of t = 3 multiply vech{ß) by the
matrix

Tvech{ß) =
(T1T2)VeCh(Q) =

Py P2y ? ??xy ^Pxy Px Px
Where
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/ O 0.5 O
0 0 1

G? =

0

0

0

0

0 0 0.5

0

0

0

0 0 0.5

0 0

0 0

0 0 0 0.25 0 0

and

0 0 0 0 0

0 0 0 0 0

\ 0 0 0 0 0

/ 0 0 0
0 0 0

0 0 0

0.5 0

0 0

0 0

0

o

o

o

O

O

O

O

0.5

O

O

O

0.25 O

O O
O

O

O

O

o \
O

O

0.25

O

O

Vo = O O 0.25 O O
O 0.5 O

O

ooooooo\
0 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0

O O 0.5 O O 0.5 OO O

\ O O 0 0001000/
The resulting vector is distributed as

Tvech{Q) ~ N Tvech{Q), 2?£>+(T®T)£+'?/
?

If hypothesis II is true, the equations in (34) should hold.

Py Py
?Px

^Pxy

If hypothesis III is true, the equations in (35) or (36) should hold.

Pv Py = 1 ^Pxy Xpxy
???-y A

Agi =
Px

(33)

(34)

(35)

or

= Py ÌPÌy >>Px
Py >*Pxy ?

If hypothesis IV is true, equation (37) should hold.

^a = Px = IPx HX (36)

pify = py ???
*Pxy

? Px Px

If hypothesis V is true, equation (38) should hold.

(37)
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Pl,2 = Py = XPÌy = XPxy = ??2? = = O (38)

IV.5.4 Multivariate Delta Theorem Application

The Multivariate Delta Theorem can be used to estimate the asymptotic distribution
of the ratios shown in equations (34) through (38). It is important to remember in
the following derivations that p2y and py, XpI and XpI, and Xply, Xpxy, and ? are
calculated as separate random variables and are not functions of one another.

Let

(*?

\Xn J

(
N

I Ui \Pi I s?,?

\\ Pn )

s? ? \

\ &?,? . . . s?<? J

\

)
The multivariate delta theorem states the asymptotic distribution of

/ /i(zi, · · ¦ , Xn) \ ( ( /i(/ii, · · · , Pn) \ ( s?,? . . . s^? \ \
N

\ /ml, -^l j ¦ · · ? -^n) J

where ? is defined as

V
,c

\ fm(Pl, ¦ ¦ ¦ , Pn) ) \ s?,:

C
&n,n J I

C =

/

V

Sfl(xi,-..,Xn)
d??

¿/m(ii,...,in)
áxi

¿/l(xi,...,Xn) \
d??

Sxn /

In the case of equation (34), C evaluated at the estimated value yields

(Py)2 (Py)

UI =

0

0

0 01

0 0 0

0 0
(?)2

0 0

0

0

~^Pxy

?

0

0

0 0 0

0 0 0

1

___ (Apjî,)2 (???3/)

0

0

\

0 o

0 0

{Pi)2 (??)

1 0 /V o o o
Under the covariance function II, the distribution of the ratios in 34 are
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Py

Py

*PÎy
Apxy

???-y

??

N

Py

Pxy

Pxy
Px

\ Px J

2C//TD+(0®0)D+'T,C;/
n-1

V Px J
The methods defined previously can be used to test the covariance II structure.
Let An be defined as

/ 1 -1 0 0 0 0 \
An = 0 0 1-10 0

^00001-1
The asymptotic distribution of the test for equation (34) is

/ S \
Py

Py

J

AII

Api

>>Px

Px

?. ? 2A77QzTD+ (T 8» ?)?+ ?'&?'//' ? — I
VW /

V Px J
Non rejection of these tests do not necessarily mean the type II hypothesis is

true. There are many forms of the matrix that should not reject under the null
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hypothesis. However, the objective of this chapter was to derive simple tests to alert
the researcher that more complicated models may be able to aid in modeling the
data. Tests listed here are designed to rule out hypothesis II through V. If these
simple tests do not reject hypothesis II through V, it is an indication that more time
should be spent to investigate the more advance models.
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Sample
Size

Number of
X values

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

Number of
Y value

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

Time
Units

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9
3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

Px

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

Pxy

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

Py

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

Number

Rejected
1
3
2
7
1
5
0
4
0
0
1
3
3
4
2
3
3
3
4
3
4
4
2
4
3
5
2
3
5
4
2
4
4
4
3
1

TABLE 44: Rejection Rates for Test X1 = X2 = . . . = Xu Sample sizes 50 to 100
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Sample
Size

Number of
X values

Number of
Y value

Time
Units

Px Pxy Py Rejection
Rate

150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150
150

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

8
5
3
2
3
7
4
5
4
5
4
4
1
7
1
7
2
2

200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200
200

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

3
7
5
8
9
5
3
5
5
5
2
0
6
1
4
2
4
3

TABLE 45: Rejection Rates for Test Ai = A2 = . . . = At, Sample sizes 150 to 200
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Sample
Size

Number of
X values

Number of
Y value

Time
Units

Px Pxy Py Rejection
Rate

250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250
250

2
2
2
¦2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

8
1
2
4
4
2
7
7
2

10
5
3
4
9
3
3
3
4

300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300
300

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

4
4
2
7
3
5
2
3
6
6
3
4
7
7
6
5
5
3

TABLE 46: Rejection Rates for Test A1 = A2 = A4, Sample sizes 250 to 300
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Sample
Size

Number of
X values

Number of
Y value

Time
Units

Px Pxy Py Rejection
Rate

350
350
350
350
350
350
350
350
350
350
350
350
350
350
350
350
350
350

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

0
4
5
5
2
5
5
7
5
6
5
5
2
5
6
5
7
5

400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400
400

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

5
3
5
6
6
5
3
5
5
7
3
2
3
3
1
1
1
6

TABLE 47: Rejection Rates for Test X1 = X2 = . . . = Xti Sample sizes 350 to 400
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Sample
Size

Number of
X values

Number of
Y value

Time
Units

Px Pxy Py Rejection
Rate

450
450
450
450
450
450
450
450
450
450
450
450
450
450
450
450
450
450

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

3
5
4
7
5
3
5
5
3
5
3
5
4
3
3
2
4
4

500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

3
3
3
3
3
3
6
6
6
6
6
6
9
9
9
9
9
9

0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8
0.2
0.2
0.2
0.8
0.8
0.8

0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8

0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8
0.2
0.8
0.8
0.2
0.2
0.8

2
5
5
5
8
5
3
5
5
4
6
0
2
4
5
3
1
7

TABLE 48: Rejection Rates for Test A1 Ao = A4 , Sample sizes 450 to 500
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APPENDIX A

THE PROGRAM

This program performs Bootstrap testing on real data or
on simulated data. The program provides the
transformation estimates shown in Chapter II and III .

dm' log ; clear ; output ; clear ; ' ;
options nodate pageno = l;

*Set up the library directory ;
libname NASA "C:\Documents and Settings \518383\My

Documents\Ray\Backup090110\Ph.D111810\NASA data";

*Input the data for analysis . See below for the required
analysis format . ;

data nasa ;
set nasa . nasaextrap ; if Altitude_m_ >400 then delete;
run ;

PROC IML;

*AR1 program creates an ARl matrix given rho and t ;
start ari (t , rho , phi ) ;
phi=shape (O , t , t ) ;
do r=l to t ; do s=l to t ;
if (rho=0 )then phi [R1S]=O;
if (rho=0 & r=s )then phi [R, S] = I;
if abs(rho)>0 then phi [R, S] = rho**abs (r-s ) ;
end ; end ;
finish ari ;
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*Take the square root of matrix al and return as matrix
bl;

start sqrtmatl (al , bl ) ;
run eigen (value , vector , al ) ;
bl=shape (0 ,nrow(al ) ,nrow(al ) ) ;
do dl=l to nrow(al);
if value [dl ,1] <0 then con=0;
if value [dl ,1] >0 then con=sqrt ( value [dl , 1 ]) ;
bl=bl+con* vector [,dl]*t(vector[,dl]);
end;*b is the square root of a;
finish sqrtmatl ;

*Nasadata takes the data and differences it , fits it to 4th
degree polynomials then, groups it into groups of 23, and
thins it ;
start ? as ad at a (ndtemp2 , samplesize ) ;
* Program to Process NASA data;
use Nasa; read all var _ a 1 1 _ into ndl ; close Nasa;
*Calculate difference in the data ; difference =1;
if difference >0 then ndl=ndl [1+ difference : nrow(ndl ) ,]

—ndl [ 1 : nrow(ndl)— difference ,];
ndtemp=ndl ;
*Add a time element to the data ;
nd3=shape (0 ,nrow(ndl ) ,1);

*Fit fourth degree polynomial to the data and
use the residuals ;

a=(ndtemp [ , 1] — j ( nrow ( ndtemp ) ,1 , 1 ) * ndtemp [ : ,1])/1139.335;
int=j (nrow (a) ,1 , 1) ; a2=a#a ; a3=a2#a ; a4=a2#a2 ;
x=int I I a I I a2 I I a3 I I a4 ;
residuals=ndtemp [,2:7] — x*inv(t(x)*x)*t (x)* ndtemp [ ,2:7];
nd=ndtemp [,1]|| residuals;



*Group data and thin the group to use only 3 values ;
group = 23; samplesize=int (nrow(ndl )/ group ) ;
do rd=l to samplesize ;

*Thin the data;
ndyl=nd[l + (rd-l)*group ,2:4]; ndxl=nd[l + (rd -I)* group ,5 : 7] ;
ndy2=nd[6 + (rd-l)*group ,2:4] ; ndx2=nd[6 + (rd -l)*group ,5:7] ;
ndy3=nd[ll + (rd-l)*group ,2:4] ; ndx3=nd[ll + (rd -l)*group ,5:7] ;
ndtemp2=ndtemp2//(ndyl | | ndy2 | | ndy3 | | ndxl | | ndx2 | | ndx3 ) ;
end ;
finish nasadata ;

*Create Helmert matrix;
start helmertsubl2 (dim , helmert 12 ) ;
helmert 12=shape (1/ sqrt (dim) ,dim , dim) ;
do h=2 to dim ; do c=l to dim;
if c<h then helmertl2 [h , c] = l/ sqrt (h*(h- I)) ;
if c=h then helmertl2 [h , c] = (l-h)/ sqrt (h*(h- I)) ;
if Oh then helmertl2 [h , c] =0;
end ; end ;
finish helmertsubl2 ;

*Use the Helert matrix to create covariance matrix . ;
start covariance34 ( vals34 , helmert34 , cov34 ) ;
*vals34 are eigan values, Helmert34 is helmert matrix,
cov34 is output result ;
cov34=shape (0 ,nrow( vals34 ) , nrow ( ? al s 34 ) ) ;
do h34=l to nrow( vals34 ) ;
matrix34=helmert34 [ , h34] * t ( helmert34 [ , h34 ] ) ;
constant34=vals34 [h34 , 1] ; cov34=constant34*matrix34+cov34 ;
end ;
finish covariance34 ;

start rannorm45 ( seed45 , rowkron45 , mean45 ,



kroncov45 , iter45 , obs45 ) ;
*generate normal random numbers;
*initialize obs45 matrix to Os and 1 row;
*obs45=shape (0,1 , nrow( kroncov45 ) ) ;
c ¦ = j ( rowkron45 , 1 , seed45 ) ;
run sqrtmatl (kroncov45 , sqrts45 ) ;
do i45=l to iter45 ;
*create standard normal zero one data;
norms45 = normal(c);
+ multiply by square root of the kronecker product;
norm45=sqrts45*norms45 ;
+append data so rows are observations ;
if obs45[l,l]=0 then obs45= t(norm45);
else obs45=obs45//t (norm45 ) ;
*obs45 is the vector of randomnormal variables with

kroncov covariance matrix ;
end ;
finish rannorm45 ;

+ Heristic estimate ? is the time and the number of rows
of phi q is the total of multivariate variables in the
matrix ;

+ This subroutine requires Obs56 p56 q56 returns d if f 56
start estimation56 (obs56 , p56 , q56 , dif f 56 , s56 ) ;
+ average of all matrices;
xbar56=obs56 [ : , ] ; S56=shape (0 ,p56 , p56 ) ;
n56=nrow(obs56 );* number of rows of data;
diff5 6=shape (0 ,nrow(obs56 ) , ? col (obs56 ) ) ;
do i56 = 1 to n56 ;
dif f 56 [i56 ,] = obs56[i56 ,]— xbar56;
end ;
do k56=l to n56 ; do overq=l to q56 ;
a56 = (overq — l)*p56 + l;a562=overq*p56 ;
b56=k56 ;m56=diff56 [b56 , a56 : a562 ] ;
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s56=t (m56)*m56/n56/q56+s56 ;
end ; end ;
finish estimation56 ;

*This subroutine puts the phixy estimate into an ari
structure ;
start ari assumption (phixy , phixyout , t , n) ;
bl=shape(0,t , t ) ; b2=bl ; b3=bl ;
do i=l to t ;
if i>l then b2 [ i , i -I] = I;
if i>l then b2[i-l,i] = l;
if (i>l & i<t) then b3 [ i , i] = l;
end ;
Sn=phixy ;BBl=trace (Sn ) ; BB2=trace (b2*Sn ) ;BB3=trace (b3*Sn ) ;
p=shape(0,l ,4); p[l,l]= -.5*(2*n*t-2*n ) ; ? [1 ,2] = bb2/2;
p[l,3]= -.5*(2*bbl+2*BB3+2*n-2*n*t );p[l ,4] = bb2/2;
r=polyroot (p ) ;
do ch=l to 3; if r[ch,2]=0 then rl=r[ch,l]; end;
if rl>l then rl =.999999999; if rl<-l then rl = -.99999999;
call ari (t , rl , phixyout ) ;
finish arlassumption ;

*The program creates Phi from Sigma, q is ?
while ? is the time . ;

start mlephi67 (s67 , phi67 , di ff 6 7 , q67 ) ;
t=q67 ; phi67=shape (0 , q67 , q67 ) ;
p67=ncol ( diff67 )/q67 ; x67=shape (0 ,p67 , q67 ) ;
n=nrow( d i ff 6 7 ) ;
*Step through all observations k67 is the

observation number;
do k67=l to nrow(diff67 );
? construct each ? (? ? q) matrix;
do overq=l to q67 ;
*m67 consists of qth column of vecoter ;
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x67 [ , overq] = t ( diff 67 [k67 , ( overq — l)*p67 + l: overq *p67 ] ) ;
end ;
phi67=t(x67)*inv(s67)*x67/p67/nrow(diff6 7) + phi67;
end ;
finish mlephi67 ;

*Mle of sigma. It takes data and puts it into the correct
form, for the MLE estimate;

start mlesig7 (s7 , phi7 , di ff 7 , q7 ) ;
p7=ncol(diff7)/q7;
s7=shape (0 ,p7 , p7) ;
x7=shape (0 ,p7 , q7 ) ;
do k7=l to nrow(diff7);
*construct each ? (? ? q) matrix;
do overq=l to q7 ;
*m67 consists of qth column of vecoter ;
x7 [ , overq] = t ( diff 7 [k7 , ( overq — l)*p7 + l: overq *p7 ] ) ;
end ;
s7=x7*t(inv(phi7))*t (x7)/nrow( dif f 7 )/q7+s7 ;
end ;
finish mlesig7 ;

start mlesings (diff , nrowy , nrowx , t , phixy , sxy ) ;
yic=shape (0 ,nrowy , t ) ; xic=shape (0 ,nrowx , t ) ;
n=nrow( diff ) ; sxy=shape (0 ,nrowy , nrowx) ;
sxyt=shape (0 , nrowy , nrowx ) ;
do i=l to ? ; do j=l to t;
yic [ , j] = t( diff [i , nrowy *(j - 1) + 1: nrowy* j ] ) ;
end ;
do j=l to t ;
xic [ ,j] = t( diff [i , nrowy* t+nrowx*(j — 1) + 1: nrowy* t+nrowx* j ] ) ;
end ;
sxyt = (yic)*t(inv (phixy))* t ( xic )/n/t+sxyt ;
sxy = (yic )*( inv (phixy))* t (xic )/n/t+sxy ;



end ;
finish mlesings ;

**Subroutine final transformation**;
*This subroutine transforms the data and uses the SVN2008

solution to gain an estimate of the Psixy matrix.;

start finaltrans (phyy , syy , phxx , sxx , diff , kromodelxy ,
yn ,xn , t , phixyest , sigmaxyest ) ;

k = l;conv = 10;sigmaxyest=shape (0 , nrow(syy ) ,nrow(sxx ) ) ;
do while (conv >.0001);
sigmaxyestold=sigmaxyest ;
*create total=[A 0,0 B] matrix;
naiky=phyy@syy ; naikx=phxx@sxx ;
zero=shape (0 , nrow( naiky ) , nrow ( naikx ) ) ;
total=(naiky | | zero)//(t(zero ) | | naikx);
*transform diff using isqtot=[A 0, 0 B] ~ — 1/2;
call sqrtmatl (inv(total ) , isqtot );
transformed data to give I D, D I covariance matrix;
IDDIdata=t ( isqtot *t( diff ));
*estimate actual matrix [I D, D I];
IDDI=t(iddidata)*iddidata/(nrow( diff ));
*create sqruare root of iddi isiddi=hat[I D, D I]"— 1/2;
call sqrtmatl(inv(iddi) ,isqiddi );
*This creates Idata has hat [ I 0, 0 I] covariance matrix;
Idata=t ( isqiddi*t (iddidata )) ;
*Dmatrix will have hat [0 D, D O]. Procedure below makes

this happen. This create matrix from results 0 phi
sigma phi sigma 0;

Dmatrix=iddi ;
*replace the yy values which reside in the upper right

hand corner . ;
do aa=l to yn*t;do bb=l to yn*t ; Dmatrix [ aa , bb] = 0;end ; end ;
*replace the xx values which reside in the bottom right



hand corner . ;
do aa=l to xn*t;do bb=l to xn*t ;
Dmatrix [aa+yn*t , bb+yn*t] = 0; end ; end ;
*datac has matrix [DDp 0, 0 DpD];
Ddata=t ( Dmatrix*t ( idata ) ) ; yc=Ddata [ , 1 : yn*t ] ;
xc=Ddata [ , yn*t + l:yn*t+xn*t ] ;
*use estimates from above for phyy syy and phxx sxx ;
esxd=t (xc)*xc/nrow(xc ) ;
*Get initial estimate ; dpdS=esxd [ 1 : xn , 1 : xn ] ;
? bottom right corner is 1 on phi ;
dpdS=esxd [(t-l)*xn + l:(t -l)*xn+xn , ( t -l)*xn + l:(t -l)*xn+xn] ;
call sqrtmatl (phyy , sqphyy ) ;
call sqrtmatl ( in ? (phyy) , isqphyy ) ;
call sqrtmatl (phxx , sqphxx ) ;
call sqrtmatl ( in ? (phxx) , isqphxx ) ;
md=l; i=0;
do while (md>.001);
i=i + 1; dpdSold=dpdS ;
*use dpdP and dpdS as initial estimate for sxy and phixy ;
run mlephi67 (dpdS , dpdP , xc , t ) ;
*dP is an estimate of phi piece of dp=b~— 1/2 c a'— 1/2;
call sqrtmatl (dpdP ,dP) ;
*remove b and a elements to get C estimate ;
cp=sqphyy*dP*sqphxx ; cP=sqphxx*dP*sqphyy ;
? print cP ;
*The model estimates the AR(I) structure;
cPin=cP*nrow(xc ) ; call ari assumption (cPin , cPout , t ,nrow(xc ) ) ;
cP=cPout ;
? Insures the resulting matrix is correlation if ARl

is present this does nothing;
cp=sqrt ( inv ( diag (cp)))* cp*sqrt (inv ( diag (cp ) ) ) ; cP[t , t] = l;
dp=isqphxx*cp*isqphyy ; dpdP=dP*t (dP ) ;

run mlesig7 (dpdS , dpdP , xc , t ) ;
mdm=abs(dpdSold-dpdS); md=mdm[+ ,+] ; i f i >2000 then md=0;



end ;
*this line gives estimate of CP;
phixyest=cp ;
+ generate estimate of;
call mlesings(diff , yn ,xn , t ,phixyest , sigmaxyest ) ;
call sqrtmatl ( inv ( sxx) , isqsxx ) ;
call sqrtmatl ( inv ( syy ), isqsyy ) ;
testsigmal=(isqsxx)*t (sigmaxyest )* t ( isqsyy )

*t(isqsyy)*(sigmaxyest)*t(isqsxx);
k=k + l; converge=abs ( sigmaxyestold—sigmaxyest ) ;

conv=con verge [+,+];
kromodelxy=phixyest@sigmaxyest ; if k>2000 then conv=0;
if k>2000 then print "final method failed";
end ;
finish finaltrans ;

*This program provides the hypothesis tests statistics;
start test ( diff , Hlmodel , iter , HOmodel , xn , yn , t , statistic ,
pvalue , df ) ;
dthO=det (hlmodel ) ; dthl=det (hOmodel ) ; logexp = -
if (det(hlmodel)>0 & det (hOmodel) >0) then
logexp=— iter * log (det (HOmodel)) /2— trace ( diff * inv (HOmodel)

*t( diff ))/2+ i ter* log (det (Hlmodel)) /2+ trace ( diff*
inv(Hlmodel)*t(diff ))/2;

ho= iter *log( det (HOmodel)) /2 — trace ( diff * inv (HOmodel)
*t ( diff ) )/2;

hi= iter*log(det (Hlmodel)) /2+ trace ( diff *inv (Hlmodel)
*t ( diff ) )/2;

if det (hlmodel)<=0 then print "Determinate Hl <=0";
if det(hOmodel)<=0 then print "Determinate HO <=0";
statistic=(iter — 2)/ iter *— 2* logexp ;
pvalue=l-CDF( 'CHISQUARE' ,statistic ,df);
nhere=nrow( diff ) ;
finish test ;
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start boot check (boot Oa , boot la , stats ) ;
b=nrow( bootla ) ; c=ncol ( bootla ) ; stats=shape (0 , 1 , c ) ;
do i=l to b ; do j=l to c;
if bootOa [1 , j]>bootla [i , j ] then

stats [1 , j]=st at s [1 , j ] + l/b;
end ; end ;
finish ;

\*
This is the main section of the program. It can be used
to generate the matrices for the Kronecker product .
It also allows the input of data to be analyzed using
the transformation estimate and tested using
Bootstrapping .
*\
start main (iter ,sims ,bkronecker ,bstrap ,boot out , ndtemp ,

inputdata , ho , xn , yn , t , rhoxx , rhoxy , rhoyy ) ;
do simulations=l to sims ;
*number of iterations= sample size ; samplesize=iter ;
*print simulations sims;
*seed is used for the random number generator ; seed=iter ;
*mean is the mean of random variables ; mean=0;
*x must be less than or equal to y;
RUN ari (t , rhoxx ,phiXX) ; *generate phiXY AR(I) structure;
RUN ari (t , rhoxy ,phiXY) ; *generate phiYY AR( 1 ) structure;
RUN ar 1 ( t , rhoyy , phiYY ) ;
eigenvaluesl={12,l,8,6,5,4,5}; eigenvalues=t (eigenvaluesl );
eigenvaluest=t(eigenvaluesl ); q=nrow ( eigenvaluesl );
*generate helmert matricies ;
run helmertsubl2 (nrow( eigenvaluesl ) , helmertl ) ;
*generate covariance matrix from helmert and eiganvalues ;
run covariance34 ( eigenvaluesl ,helmertl , covarianceq ) ;



*SIGMAXX ; SIGMAXX=COVARIANŒQ [ y? + 1 : xn+yn , y? + 1 : xn+yn ] ;
*SIGMAYY ; SIGMAYY=COVARIANCEQ [ 1 : yn , 1 : yn ] ;
*SIGMAYX ; SIGMAYX=COVARIANCEQ [ 1 : yn , yn + 1 : xn+yn ] ;
call svd (uyx , eyx , vyx , sigmayx ) ;
*sigma is the covariance matrix for multiple observations
at a single time interval.;
YY=PHIYY@SIGMAYY ; YX=PHTXY@SIGMAYX ; XX=PHKX@SIGMAXX ;
TOP=YY I I YX ; BOTTOM=t ( yx ) | | XX ; PHISIGMA=TOP/ /BOTTOM ;
*if bstrap=l then PHISIGMA value comes from outside the

program. This is the estimated matrix from a previous
data set ;

if bstrap=l then PHISIGMA=bkronecker ;
call svd (us , eigen , vs , phisigma ) ;
rowkron=nrow( phisigma ) ; obs=shape (0,1 ,nrow( phisigma ) ) ;
run rannorm45 ( seed , rowkron , mean , phisigma ,iter , obs ) ;
? determines if the data set will be input and if so
assigns the input data to obs which was the sample data;
if inputdata=l then obs=ndtemp ; qxx=t ;
*subset the data data exists as ? by Yt+xt matrix, 1 to yt

are the y observations ;
y=obs [ , 1 : nrow(yy ) ] ; *and yt+1 to yt+l+xt are the X

observations ;
x=obs [ , nrow(yy) + l:nrow( phisigma ) ] ;
run estimation56 (y , nrow(sigmayy ) , t , diffy , syy ) ;

* For Hypothesis 3 termed 3a below assume RhoYY equals
I_t so only one iteration is needed;

syy3a=syy; phyy3a=I ( t ) ;
run mlesig7 (syy3A , phyy3A , diffy , t);
kromodelyy3a=phyy3a@syy3a ;
*gives the MT1E of model 2 with phyy unrestricted ;
md=l; i i =0;
do while (md>. 000000001);
ii = ii+l; syyold=syy ; run mlephi67 ( syy , phyy , diffy , t ) ;
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run mlesig7(syy , phyy , diffy , t );
*AR1 structure ;
phyyin=phyy*nrow( diffy ) ;
call ari assumption ( phyyin , phyyout , nrow(phiyy )

,nrow( diffy ));
phyy=phyyout ;
phyy=sqrt ( inv ( diag ( phyy ) ) ) * phyy* sqrt ( inv ( diag (phyy ) ) ) ;
mdm=abs ( syyold—syy ) ;md=mdm[ + , + ] ;
if i i >2000 then md=0;
end ;
kromodelyy=phyy@syy; rhoyyest=phyy [ 1 ,2];
syys=shape(0 ,1 ,yn*(yn + l)/2) ;
syysactual=shape (0,1 , yn*(yn + l)/2);
do r= 1 to yn ; do c=l to r;
syysactual [1 ,( r — l)*r/2+c] = sigmayy [r , c ] ;
syys [1 , (r-l)*r/2+c] = syy [r , c] ;
end ; end ;
ryyt=ryyt//rhoyyest ; syyt=syyt //syys ;
*This section estimates Psixx and Sigmaxx ;

run estimation56(x, nrow ( sigmaxx ) , t , diffx , sxx ) ;
sxx4=sxx ; phxx4=I ( t ) ;
*gives the MLE of model 3a model with phyy = I;
run mlesig7 ( sxx4 , phxx4 , diffx , t ) ; kromodelxx4=phxx4@sxx4 ;
md=l; i i =0;
do while (md>. 000000001);
ii = i i +1; sxxold=sxx ;
run mlephi67 (sxx , phxx , diffx , t ) ;
run mlesig7 (sxx , phxx , diffx , t ) ;
phxxin=phxx*nrow( diffx ) ;
call ari assumption (phxxin , phxxout ,nrow(phixx) ,nrow( diffx ) ) ;
phxx=phxxout ;
phxx=sqrt (inv ( diag (phxx) ) ) * phxx* sqrt (inv (diag (phxx) ) ) ;
phxx [t , t ] = l;mdm=abs (sxxold—sxx ) ;md=mdm[+ , + ];



if ii >2000 then md=0;
end ;
kromodelxx=phxx@sxx ; rhoxxest=phxx [1 , 2] ;
sxxs=shape (O ,1 ,xn*(xn + l)/2);
sxxsactual=shape (0,l,xn*(xn + l)/2);
do r= 1 to xn ; do c=l to r;
sxxsactual [1 , ( r — l)*r/2+c] = sigmaxx [r , c ] ;
sxxs [1 , ( r — l)*r/2+c] = sxx [r , c ] ;
end ; end ;
? print sxxs rhoxx;* print sxx phxx t, sigmaxx phixx ;
? cumulate the values for summarization statistics;
rxxt=rxxt //rhoxxest ; sxxt=sxxt //sxxs ;
run estimation56 ( obs , nrow(sigmaxx)+nrow (sigmayy ) ,

t , diff , s ) ;
kroest=t ( diff )* dif f / iter ; *estimate unrestricted Cov;
*use small upper left hand corner piece for sigma;
sigmaxyest=t ( diff [ , 1 : nrow( sigmayy )] ) * diff [ ,nrow(yy) + l

: nrow(yy)+nrow( sigmaxx )] / iter ;
run estimation56 (obs , nrow(sigmaxx)+nrow( sigmayy ) ,

t , diff , s ) ;
kroest=t ( diff)* diff/iter ;
? use small upper left hand corner piece for sigma ;

? rearrange collumns to change estimated matrix
From yll y21 y31 ... ypl ... y21 ... ypt xll ... xqt
to yll .. ynl xll .. xql yl2 ... yn2 xl2 ...
such that all time point 1 values are together , then time

point 2 values and so on . ;
b3diff=diff ;
do i=l to t ;
b3diff [ ,(i -l)*(xn+yn) + l:(i -l)*(xn+yn)+yn]

= diff [ , ( i — l)*yn + l: i*yn] ;
b 3 diff [ , l + (i — l)*(xn+yn)+yn : i *(xn+yn)]

= diff [ , yn*t + (i —l)*xn + l:yn*t+i *xn ] ;



end ;
+ Initial estimate ofr s3b ; s3b=s ;md=l; ii=0;
do while (md>.0001);
ii = i i +1; s3bold=s3b ;
run mlephi67 (s3b , ph3b , b3diff , t ) ;
run mlesig7 (s3b , ph3b , b3diff , t ) ;
ph3bin=ph3b*nrow( diff ) ;
call ari assumption (ph3bin , ph3bout , nrow(ph3b) ,nrow( diff ) ) ;
ph3b=ph3bout ; ph3b[t,t] = l;
mdm=abs ( s3bold—s3b ) ;md=mdm[+ , + ] ;
if ii >2000 then md=0;
end ;
+ estimate of model kroneckerxx ;
s3byy=s3b [ 1 : yn , 1 : yn ] ; s3byx=s3b [ 1 : yn , yn + l:xn+yn] ;
s3bxx=s3b [yn + l:yn+xn , yn + l:yn+xn ] ;
kromodel3b = ( (ph3b@s3byy ) | | ( ph3b@s3byx) )//

( (ph3b@t(s3byx)) I |(ph3b@s3bxx) );
rho3best=ph3b [ 1 ,2];
L3b=- iter*log(det(kromodel3b))/2

— trace (diff*inv ( kromodel3b) * t ( diff ) ) /2 ;
phixyest5=I ( t ) ;
run mlesig7 (sigmaxyest5 , phixyestö , b3diff , t ) ;

s5yy=sigmaxyest5 [ 1 : yn , 1 : yn ] ;
s5yx=sigmaxyest5 [ 1 : yn , yn + l:xn+yn ] ;
s5xx=sigmaxyest5 [yn + l:yn+xn , yn + l:yn+xn ] ;
kromodel5 = ( ( phixyest5@s5yy ) | | ( phixyest5@s5yx ) )

//( (phixyest5@t (s5yx ) ) I I ( phixyest5@s5xx) ); ;
call finaltrans (phyy , syy , phxx , sxx ,diff , kromodelxy2 ,

yn , xn , t , phixy2 , sigmaxy2 ) ;
call finaltrans (phyy3a , syy 3a , phxx , sxx ,diff , kromodelxy3a

,yn , xn , t , phixy3a , sigmaxy3a ) ;
call finaltrans (phyy3a , syy 3a , phxx4 , sxx4 ,diff , kromodelxy4

, yn , xn , t , phixy4 , sigmaxy4 ) ;



kromodel4= (kromodelyy3a | | kromodelxy4 )
//( t (kromodelxy4 ) | | kromodelxx4 ) ;

kromodel3a= ( kromodelyy3a | | kromodelxy3a)
//( t (kromodelxy3a ) | | kromodelxx) ;

kromodel2= (kromodelyy | | kromodelxy2)
//(t (kromodelxy2 ) I I kromodelxx) ;

Kromodell= kroest ;
*Calculate determinates of estimates;
detl=det ( kromodell ) ; det2=det ( kromodel2 ) ;
det3a=det (kromodel3a ) ; det3b=det (kromodel3b ) ;
det4=det (kromodel4 ) ; det5=det (kromodel5 ) ;

pvaluel2=0;pvalue23a=0;pvalue3a4=0;pvalue45=0;
pvalue23b=0;pvalue3b5=0;
*test model 2 vs model 3b;
*model 2 vs 3b; di23b=l+(yn + l)*yn/2+l+yn*xn+l+(xn + l)

*xn/2 — l+(yn+l)*yn/2+yn*xn+(xn + l)*xn/2;
if (det2>0 & det3b>0) then call test ( diff , kromodel2 ,
iter , kromodel3b , xn , yn , t , statistic , pvalue23b , df23b ) ;

if simulations=! then count23b=0;
if (det2>0 & det3b>0 & pvalue23b <.05) then

count23b=count23b + l;
if (det2>0 & det3b>0) then

pvaluet23b=pvalue23b//pvaluet23b ;
*test model 3b vs model 5;*model 3b vs 5;
df3b5= ( (yn + l)*yn/2+(xn + l)*xn/2+yn*xn+l ) -

( (yn + l)*yn/2 + (xn + l)*xn/2+yn*xn );
if (det5>0 & det3b>0) then call test ( diff , kromodel3b ,

iter , kromodelö , xn , yn , t , statistic , pvalue3b5 , df3b5 ) ;
*if det2<0 then pvaluel2=0; if simulations=l then

count3b5=0;
if (det5>0 & det3b>0 & pvalue3b5 <.05) then

count 3b 5=count3b5 + l;
if (det5>0 & det3b>0) then pvaluet3b5=pvalue3b5
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//pvaluet3b5 ;
*test model 1 vs model 2;*model 1 vs 2;
dfl2 = (yn+xn)*t*((yn+xn)*t+l)/2-

( (yn + l)*yn/2+(xn + l)*xn/2+yn*xn+3 );
if (detl>0 h det2 >0) then call test ( diff , kromodell , iter ,

kromodel2 , xn , yn , t , statistic , pvaluel2 , dfl2 ) ;
if simulations=l then countl2=0;
if (detl>0 & det2>0 & pvaluel2 <.05) then

count 12=count 12 + 1;
if (detl>0 L· det2>0) then pvaluetl2=pvaluel2//pvaluetl2 ;

*test model 2 vs model 3;*model 2 vs 3;
df23a=( (yn + l)*yn/2+(xn + l)*xn/2+yn*xn+3 )-

((yn + l)*yn/2+(xn + l)*xn/2+l+yn*xn + l);
if (det2>0 & det3a>0) then call test ( diff , kromodel2 ,

iter , kromodel3a , xn , yn , t , statistic , pvalue23a , df23a ) ;
if simulations=l then count23a=0;
if (det2>0 h det3a>0 & pvalue23a <.05) then

count23a=count23a + l;
if (det2>0 & det3a>0) then pvaluet23a=

pvalue23a//pvaluet23a ;

*test model 3 vs model 4;*model 3 vs 4;
df3a4 = ((yn + l)*yn/2+(xn + l)*xn/2+l+yn*xn+l)-

((yn + l)*yn/2+(xn + l)*xn/2+yn*xn + l);
if (det3a>0& det4>0) then call test ( diff , kromodel3a ,

iter , kromodel4 , xn , yn , t , statistic , pvalue3a4 , df3a4 ) ;
if simulations=l then count3a4=0;
if (det3a>0 & det4>0 & pvalue3a4 <.05) then

count3a4=count3a4 + l;
if (det3a>0 & det4>0) then pvaluet3a4=

pvalue3a4//pvaluet3a4 ;

*test model 4 vs model 5;*model 4 vs 5;
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df45=((yn + l)*yn/2+(xn + l)*xn/2+yn*xn+l)-
( (yn + l)*yn/2+(xn + l)*xn/2+yn*xn ) ;

if (det4>0 & det5>0) then call test ( diff , kromodel4 ,
iter , kromodelö , xn , yn , t , statistic , pvalue45 , df45 ) ;

if simulations=l then count45=0;
if (det4>0 & det5>0 & pvalue45 <.05) then count45=count45 + l;
if (det4>0 & det5>0) then pvaluet45=pvalue45//pvaluet45 ;

df3a5 = ((yn+l)*yn/2+(xn + l)*xn/2+yn*xn+2)-
( (yn + l)*yn/2 + (xn + l)*xn/2+yn*xn ) ;

if (det3a>0 & det5>0) then call test ( diff , kromodel3a ,
iter , kromodelö , xn, yn , t , statistic ,pvalue3a5,df3a5);

pvalue3a5=0; if simulations=l then count3a5=0;
if (det3a>0 & det5>0 & pvalue3a5 <.05) then

count3a5=count3a5 + l;
if (det3a>0 & det5>0) then pvaluet3a5=

pvalue3a5// pvaluet3a5 ;

nl2=nrow( pvaluetl2); n23a=nrow( pvaluet23a ) ;
n3a4=nrow( pvaluet3a4 ) ; n45=nrow( pvaluet45 ) ;
n23b=nrow( pvaluet23b); n3b5=nrow( pvaluet3b5);
n3a5=nrow( pvaluet3a5 ) ;

**For Boot Strapping, need to have the test statistics***;
*if bstrap=0 this is the first run of the program. The
simulation is estimating the first matrix to run the
bootstrap samples. It is important for this matrix to be
output to the simulation .
if bstrap=l bkronecker is being input into the simulaiton
and should not change between runs . ;
* this sets bkronecker to deliver it outside the model.

if bstrap=! it does not change bkronecker becuase we



neeed to use the same one . ;

if (bstrap=0 & ho=2) then bkronecker=kromodel2 ;
if (bstrap=0 & ho=3) then bkronecker=kromodel3a ;
if (bstrap=0 & ho=4) then bkronecker=kromodel3b ;
if (bstrap=0 & ho=5) then bkronecker=kromodel5 ;
boot=shape (0 ,1 , 5) ;
if ho=2 then call test ( diff , kromodell , iter , kromodel2 , xn ,

yn , t , statisticl2 ,pvaluel2 ,dfl2);
if ho=3 then call test ( diff , kromodel2 , iter , kromodel3a , xn ,

yn,t,statistic23a , pvalue23a , df23a ) ;
if ho=5 then call test ( diff , kromodel3a , iter , kromodelö , xn ,

yn,t,statistic3a5 ,pvalue3a5 , df3a5 ) ;
if ho=4 then call test ( diff , kromodel2 , iter , kromodel3b , xn.

yn,t,statistic23b , pvalue23b , df23b ) ;
if ho=5 then call test ( diff , kromodel3b , iter , kromodelö , xn.

yn , t , statistic3b5 ,pvalue3b5 ,df3b5);

if bstrap=0 then Print" Covariance Matrix II";
psiy2=phyy; sigmay2=syy ; psixy2=phixy2 ; sigmaxy2=sigmaxy2 ;
psix2=phxx; sigmax2=sxx ;
if bstrap=0 then print psiy2 sigmay2 psixy2 sigmaxy2 psix2

sigmax2 ;

if bstrap=0 then Print" Covariance Matrix III";
psiy3=phyy3a ; sigmay3=syy3a ; psixy3=phixy3a ;
sigma3=sigmaxy3a ; psix3=phxx; sigmax3=sxx ;
if bstrap=0 then print psiy3 sigmay3 psixy3 sigma3
psix3 sigmax3 ;

if bstrap=0 then Print" Covariance Matrix IV";
sigmay4=s3byy ; sigmaxy4=s3byx ; sigmax4=s3bxx ; psi4=ph3b;
if bstrap=0 then print sigmay4 sigmaxy4 sigmax4 psi4 ;



if bstrap=0 then Print" Covariance Matrix V";
sigmay5=s5yy ; sigmaxy5=s5yx ; sigmax5=s5xx ;
if bstrap=0 then print sigmayö sigmaxyö sigmax5 ;

if ho=2 then boot [1 , 1] = statistic 1 2 ;
if ho=3 then boot [1 ,2] = st atistic23a ;
if ho=5 then boot [1 ,3]= st atistic3a5 ;
if ho=4 then boot [1 ,4] = statistic23b ;
if ho=5 then boot [1 ,5] = statistic3b5 ;

if simulations=l then bootout=boot ;
if simulations >1 then bootout=bootout//boot ;

* ^Summary Statistics * * * ;
*record estimate of phixy phixy2 , sigmaxy2 ;
rhoxyest=phixy2 [1 ,2] ; sxys=shape (0 ,1 ,xn*yn) ;
sxysactual=shape (0 , 1 ,xn*yn ) ;
rxyest=shape (0 , 1 , t*t ) ; rxysactual=shape (0,1 , t * t ) ;
*load sample values into matrix put sigmaxyest into row
vector ;
do r=l to nrow(phixy2 ) ; do c=l to nrow( phixy2 ) ;
rxysactual [1 , ( r — I)* ncol ( phixy 2 )+c] = phixy [r , c ] ;
rxyest [1 , (r — I)* ncol ( phixy 2 ) + c] = phixy 2 [r , c ] ;
end ; end ;

do r= 1 to nrow( sigmaxyest ); do c=l to ncol ( sigmaxyest ) ;
sxysactual[l , ( r — 1)* ncol ( sigmaxyest) + c] = sigmayx [r , c ] ;
sxys [1 , ( r — 1)* ncol ( sigmaxyest) + c] = sigmaxy2 [r , c ] ;
end ; end ;
*vectors of the solutions 2 estimates transformation

method rxt has all the rhoxy values sxyt has all the
sigma sxyt values ;

rxyt=rxyt// rhoxy est ; sxyt=sxyt //sxys ; kro=phixy@sigmayx ;



end ;
finish main;
start maini ;
/*
* start main( samplesize , sims , bkronecker , bstrap , bootout ,

ndtemp , inputdata , ho ,xn ,yn , t , rhoxx , rhoxy , rhoyy ) ;
sample size is the number of complete samples in the data.
sims is the number of simulations to run within main.
for real data make this 1 to read in the first data set

get the main statistics.
for the bootstrap samples make it b;
bkronecker is the bootstrapping kronecker product matrix.
if bstrap=0 the bkronecker value is generated by the
program either calculated from outside data or from
simulated data

if bstrap=l then bkronecker matrix is generated outside
the program and read in .
ndtemp is the data to be input into the program.
if inputdata=l data is input from ndtemp.
if inputdata=0 data is not input into the program.
Data must be in the form

ylly21 . . . yql . . . ylt . . . yqt xll . . . xpl . . . xlt . . . xpt ;
for bootstrapping inputdata=l for the first run and
inputdata=0 for the other runs ;
ho is the null hypothesis to test . 11=2 111=3 IV=4 V=5
the pvalue is set to 1 for all other tests .
The pvalue for the test of interest is the only value
correct in the output
xn yn t are the number of data points in the ? y
multivariate vectors and t is the number of time periods .
These inputs mean the same thing all the time
rhoxx , rhoxy , rhoyy assign values to the respective rho
values, these are only used if bstrap=0 and inputdata=0
*/



xn = 3;yn=3;T=3;RHOxx=.7;RHOxy=.8;RHOyy=.7;
samplesize =53;B=300; count =0; Hyp=4;
*simul is the number of simulations to run. For real data
this value is 1 to input the data and 1 of b simulations
within main to get bootstrap tests . To run simulations
this value should be higher.;
simul = l;
*Input data here will change the sample size ;
run nasadata (ndtemp , samplesize ) ;
statcount=shape (0 , 1 ,5) ;
do s=l to simul ;
*calls the first iteration to estimate the inital cov var

matrix from the data ;
call main( samplesize ,1 , bkron ,0 , bootO ,ndtemp ,1 ,Hyp,xn , yn ,

t , rhoxx , rhoxy , rhoyy ) ;
^perform the bootstrap calculations ;
call main (samplesize ,b , bkron ,1 , booti ,ndtemp ,0 ,Hyp,xn ,yn ,

t , rhoxx , rhoxy , rhoyy ) ;
call bootcheck (bootO , booti , stat );* print stat ;
do i=l to 5;
*This looks at all the pvalues and count the one below
.05. if simul =1 as in real data this will be 1 or 0;

if stat [1 , i] >.95 then statcount [1 , i] = statcount [1 , i] + l/simu
end ;
end ;
Bootpvalue=l— stat ;
print 'IvsII IIvsIII IIIvsV HsIV IVvsV ' ;
*only the bootstrap value for the test specified in hyp
is correct. The others are set to 1;
print Bootpvalue ;
if simul>l then print stat;
finish maini ;
run maini ; quit ;
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